WorldWideScience

Sample records for concentrate precipitation stages

  1. Two-stage precipitation of neptunium (IV) oxalate

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    Neptunium (IV) oxalate was precipitated using a two-stage precipitation system. A series of precipitation experiments was used to identify the significant process variables affecting precipitate characteristics. Process variables tested were input concentrations, solubility conditions in the first stage precipitator, precipitation temperatures, and residence time in the first stage precipitator. A procedure has been demonstrated that produces neptunium (IV) oxalate particles that filter well and readily calcine to the oxide

  2. Behaviour of the pH adjustment, Ion exchange and concentrate precipitation stages in the acid leaching of uranium phosphate ores

    International Nuclear Information System (INIS)

    Estrada Aguilar, J.; Uriarte Hueda, A.

    1962-01-01

    The uranium recovery from acid leach solutions of uranium-phosphate ores has been studied. Relations have been found between the solution characteristics and the results obtained at different stages of the process. The following data can thus be predicted: solids to remove and uranium recovery in the pH adjustment stage, uranium capacity of the resin, more suitable eluating agent, elution velocity and uranium concentration in the eluate in the ion exchange stage, and composition of the concentrate produced by direct precipitation of the eluate in the concentrate precipitation stage. (Author) 8 refs

  3. Engineering analysis of the two-stage trifluoride precipitation process

    International Nuclear Information System (INIS)

    Luerkens, D.w.W.

    1984-06-01

    An engineering analysis of two-stage trifluoride precipitation processes is developed. Precipitation kinetics are modeled using consecutive reactions to represent fluoride complexation. Material balances across the precipitators are used to model the time dependent concentration profiles of the main chemical species. The results of the engineering analysis are correlated with previous experimental work on plutonium trifluoride and cerium trifluoride

  4. Two-stage precipitation of plutonium trifluoride

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1984-04-01

    Plutonium trifluoride was precipitated using a two-stage precipitation system. A series of precipitation experiments identified the significant process variables affecting precipitate characteristics. A mathematical precipitation model was developed which was based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter that can be used to control particle characteristics

  5. Effects of turbulence on warm clouds and precipitation with various aerosol concentrations

    Science.gov (United States)

    Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young

    2015-02-01

    This study investigates the effects of turbulence-induced collision enhancement (TICE) on warm clouds and precipitation by changing the cloud condensation nuclei (CCN) number concentration using a two-dimensional dynamic model with bin microphysics. TICE is determined according to the Taylor microscale Reynolds number and the turbulent dissipation rate. The thermodynamic sounding used in this study is characterized by a warm and humid atmosphere with a capping inversion layer, which is suitable for simulating warm clouds. For all CCN concentrations, TICE slightly reduces the liquid water path during the early stage of cloud development and accelerates the onset of surface precipitation. However, changes in the rainwater path and in the amount of surface precipitation that are caused by TICE depend on the CCN concentrations. For high CCN concentrations, the mean cloud drop number concentration (CDNC) decreases and the mean effective radius increases due to TICE. These changes cause an increase in the amount of surface precipitation. However, for low CCN concentrations, changes in the mean CDNC and in the mean effective radius induced by TICE are small and the amount of surface precipitation decreases slightly due to TICE. A decrease in condensation due to the accelerated coalescence between droplets explains the surface precipitation decrease. In addition, an increase in the CCN concentration can lead to an increase in the amount of surface precipitation, and the relationship between the CCN concentration and the amount of surface precipitation is affected by TICE. It is shown that these results depend on the atmospheric relative humidity.

  6. Behaviour of the pH adjustment, Ion exchange and concentrate precipitation stages in the acid leaching of uranium phosphate ores; Tratamiento de disoluciones de lixiviacion de minerales de uranio en presencia de fosfatos. Comportamiento en las etapas de ajuste de PH, cambio de ion y precipitacion de concentrados

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Aguilar, J; Uriarte Hueda, A

    1962-07-01

    The uranium recovery from acid leach solutions of uranium-phosphate ores has been studied. Relations have been found between the solution characteristics and the results obtained at different stages of the process. The following data can thus be predicted: solids to remove and uranium recovery in the pH adjustment stage, uranium capacity of the resin, more suitable eluating agent, elution velocity and uranium concentration in the eluate in the ion exchange stage, and composition of the concentrate produced by direct precipitation of the eluate in the concentrate precipitation stage. (Author) 8 refs.

  7. Concentration of tritium in precipitation and river water

    International Nuclear Information System (INIS)

    Chatani, Kunio

    1983-01-01

    The concentration of tritium in precipitation and river water has been measured sice 1973 in Aichi, Japan. The tritium in water samples was enriched by electrolysis, and measured by liquid scintillation counting. The concentration of tritium in precipitation decreased from 27 TU in 1973 to 17 TU in 1979, and showed seasonal variation. During this period, there was a rise of concentration because of Chinese nuclear detonation. The concentration of tritium in river water gradually decreased from 44 TU in 1973 to 24 TU in 1979, and the seasonal variation was not observed. Based on the observed values, the relation among precipitation, river water and ground water was analyzed. (J.P.N.)

  8. A polychromatic turbidity microplate assay to distinguish discovery stage drug molecules with beneficial precipitation properties.

    Science.gov (United States)

    Morrison, John; Nophsker, Michelle; Elzinga, Paul; Donoso, Maria; Park, Hyunsoo; Haskell, Roy

    2017-10-05

    A material sparing microplate screening assay was developed to evaluate and compare the precipitation of discovery stage drug molecules as a function of time, concentration and media composition. Polychromatic turbidity time course profiles were collected for cinnarizine, probucol, dipyridamole as well as BMS-932481, and compared with turbidity profiles of monodisperse particle size standards. Precipitation for select sample conditions were further characterized at several time points by size, morphology, amount and form via laser diffraction, microscopy, size based particle counting and X-ray diffraction respectively. Wavelength dependent turbidity was found indicative of nanoprecipitate, while wavelength independent turbidity was consistent with larger microprecipitate formation. A transition from wavelength dependent to wavelength independent turbidity occurred for nanoparticle to microparticle growth, and a decrease in wavelength independent turbidity correlated with continued growth in size of microparticles. Other sudden changes in turbidity signal over time such as rapid fluctuation, a decrease in slope or a sharp inversion were correlated with very large or aggregated macro-precipitates exceeding 100μm in diameter, a change in the rate of precipitate formation or an amorphous to crystalline form conversion respectively. The assay provides an effective method to efficiently monitor and screen the precipitation fates of drug molecules, even during the early stages of discovery with limited amounts of available material. This capability highlights molecules with beneficial precipitation properties that are able to generate and maintain solubility enabling amorphous or nanoparticle precipitates. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Precipitation and clustering in the early stages of ageing in Inconel 718

    International Nuclear Information System (INIS)

    Alam, Talukder; Chaturvedi, Mahesh; Ringer, Simon P.; Cairney, Julie M.

    2010-01-01

    Research highlights: → IN718 could be age hardened rapidly by secondary phase formation. → Co-located phases were observed in the earliest stage of detection. → Clustering of Ti/Al and Nb atoms was observed prior to precipitation. - Abstract: In this report we investigate the onset and evolution of precipitation in the early stages of ageing in the alloy WE 91, a variant of the Ni-Fe-Cr superalloy Inconel 718 (IN718). Transmission electron microscopy and atom probe tomography were used to study the size and volume fraction of γ' and γ'' precipitates and the extent of pre-precipitate clustering of Al/Ti and Nb. Co-located γ' and γ'' precipitates were observed from the shortest ageing times that precipitates could be visualised using atom probe. At shorter times, prior to the observation of precipitates, clustering of Al/Ti and Nb was shown to occur. The respective volume fraction of the γ' and γ'' precipitates and the clustering of Al/Ti and Nb suggest that γ'' nucleates prior to γ' during ageing at 706 deg. C for this alloy.

  10. Study of the early stages of precipitation of molybdenum in steelwelds

    International Nuclear Information System (INIS)

    Choudhary, H.U.

    2001-01-01

    The addition of molybdenum to steel welds in quite small concentrations leads to a variety of anomalous microstructural and mechanical property effects. In some cases, the effects manifest even there are no obvious changes in microstructure at the resolution of a transmission electron microscope. It has been reported in the published literature, that an increase in the molybdenum concentration leads to a corresponding increase in the proportion of primary microstructure in multipass welds. Another striking anomaly with molybdenum containing welds, identified in the published literature, is that the strength of such welds is much higher than is estimated using normally reliable models for he prediction of mechanical properties. The surprising feature of this anomaly is that it is present even for the as-deposited microstructure, which has not been deliberately or otherwise tempered. The anomaly cannot therefore be attributed to easily observed secondary hardening effects, and indeed precipitates such a molybdenum carbides are not found to occur in the as-deposited state at the resolution of a conventional transmission electron microscope. An investigation has been carried out to study the possible existence of the early stages of precipitation/clustering of molybdenum atoms, using the atomic resolution method know as APFIM (Atom Probe Field Ion Microscopy). The results has given a strong indication that the anomalous strengthening in the as deposited welds is due to sub-microscopic effects, arising from the fine scale clustering of molybdenum atoms. This clustering appears to occur in the ferrite as the weld cools to ambient temperature after solidification. The effect is essentially secondary hardening, but at the very early stages. (author)

  11. Precipitation and clustering in the early stages of ageing in Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Talukder, E-mail: talukder.alam@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); Chaturvedi, Mahesh [Department of Mechanical and Industrial Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 (Canada); Ringer, Simon P.; Cairney, Julie M. [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia)

    2010-11-15

    Research highlights: {yields} IN718 could be age hardened rapidly by secondary phase formation. {yields} Co-located phases were observed in the earliest stage of detection. {yields} Clustering of Ti/Al and Nb atoms was observed prior to precipitation. - Abstract: In this report we investigate the onset and evolution of precipitation in the early stages of ageing in the alloy WE 91, a variant of the Ni-Fe-Cr superalloy Inconel 718 (IN718). Transmission electron microscopy and atom probe tomography were used to study the size and volume fraction of {gamma}' and {gamma}'' precipitates and the extent of pre-precipitate clustering of Al/Ti and Nb. Co-located {gamma}' and {gamma}'' precipitates were observed from the shortest ageing times that precipitates could be visualised using atom probe. At shorter times, prior to the observation of precipitates, clustering of Al/Ti and Nb was shown to occur. The respective volume fraction of the {gamma}' and {gamma}'' precipitates and the clustering of Al/Ti and Nb suggest that {gamma}'' nucleates prior to {gamma}' during ageing at 706 deg. C for this alloy.

  12. Optics of two-stage photovoltaic concentrators with dielectric second stages

    Science.gov (United States)

    Ning, Xiaohui; O'Gallagher, Joseph; Winston, Roland

    1987-04-01

    Two-stage photovoltaic concentrators with Fresnel lenses as primaries and dielectric totally internally reflecting nonimaging concentrators as secondaries are discussed. The general design principles of such two-stage systems are given. Their optical properties are studied and analyzed in detail using computer ray trace procedures. It is found that the two-stage concentrator offers not only a higher concentration or increased acceptance angle, but also a more uniform flux distribution on the photovoltaic cell than the point focusing Fresnel lens alone. Experimental measurements with a two-stage prototype module are presented and compared to the analytical predictions.

  13. Optics of two-stage photovoltaic concentrators with dielectric second stages.

    Science.gov (United States)

    Ning, X; O'Gallagher, J; Winston, R

    1987-04-01

    Two-stage photovoltaic concentrators with Fresnel lenses as primaries and dielectric totally internally reflecting nonimaging concentrators as secondaries are discussed. The general design principles of such two-stage systems are given. Their optical properties are studied and analyzed in detail using computer ray trace procedures. It is found that the two-stage concentrator offers not only a higher concentration or increased acceptance angle, but also a more uniform flux distribution on the photovoltaic cell than the point focusing Fresnel lens alone. Experimental measurements with a two-stage prototype module are presented and compared to the analytical predictions.

  14. Structural changes in precipitates and cell model for the conversion of amorphous calcium phosphate to hydroxyapatite during the initial stage of precipitation

    Science.gov (United States)

    Zyman, Z.; Rokhmistrov, D.; Glushko, V.

    2012-08-01

    A new insight on the conversion of an amorphous calcium phosphate, ACP, to hydroxyapatite, HA, has been proposed. The ACP has been precipitated under appropriate conditions of the nitrous method (low concentrations of reactants, pH>10, 25 °С, fast mixing). The ACP to HA conversion has been found to commence immediately after the ACP precipitation. The conversion reveals itself in the first detected shift of the diffuse maximum from 29.5° 2θ (ACP) to about 32° 2θ (the position of principal peaks of HA) in the XRD patterns for the precipitates of 2 min-6 h lifetimes. The precipitates are biphasic mixtures of ACP and nanocrystalline HA, nHA, with increasing nHA/ACP ratio for longer lifetimes. Characteristics of the simulated XRD profiles calculated proceeding on such a picture are excellently confirmed by experimental results. At the end of the conversion, HA nanocrystals start growing. This follows from the appearance of broadened diffraction maxima, which gradually sharpen, along with the appearance and gradual increase of splitting of the initially featureless υ3 and υ4PO43- bands in the IR spectra of precipitates with their aging (after 6 h of the precipitation). Based on the detected structural and compositional peculiarities of ACP in the early stage of precipitation, a cell model for the HA crystallization has been proposed. Proceeding on the model, the principal data in this and earlier studies, considering the ACP to HA conversion as an internal rearrangement process in the ACP particles, has been reasonably explained.

  15. Photoluminescence due to early stage of oxygen precipitation in multicrystalline Si for solar cells

    Science.gov (United States)

    Higuchi, Fumito; Tajima, Michio; Ogura, Atsushi

    2017-07-01

    To analyze the early stage of oxygen precipitation in n-type multicrytalline Si, the spectral change of photoluminescence (PL) induced by thermal treatment at 450-650 °C was investigated in relation to the changes in excess donor and interstitial oxygen concentrations. We observed the characteristic PL bands in the near-band-edge region and sharp lines in the deep-level region in correspondence with the generation of thermal donors and new donors. The observed PL spectral variation is essentially the same as that in Czochralski-grown Si annealed at 450-650 °C.

  16. Spatial distribution of the daily precipitation concentration index in Southern Russia

    Science.gov (United States)

    Vyshkvarkova, Elena; Voskresenskaya, Elena; Martin-Vide, Javier

    2018-05-01

    The territory of Southern Russia presents a great diversity of climates and complex orography that lead to a very different precipitation distribution. Annual precipitation amounts differ between 222 mm in the coast of the Caspian Sea and > 2000 mm in the highest parts of the Caucasus Mountains. In order to investigate the statistical structure of daily precipitation across the study region the daily precipitation Concentration Index (CI) was used. In present paper, the CI was calculated for 42 meteorological stations during the 1970-2010 period. The analysis of precipitation concentration identified that the distribution of daily precipitation is more regular over the west, north and south regions compared to the east (the Caspian Sea coast and the Caspian Depression). The Crimean peninsula is characterized by low CI values in the north and high values in the eastern part.

  17. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050)

    International Nuclear Information System (INIS)

    Sha Gang; Cerezo, Alfred

    2004-01-01

    GP zone and metastable η ' formation during the early-stage precipitation of a 7050 Al alloy aged at 121 deg. C has been investigated using transmission electron microscopy, together with 3-dimensional atom probe analysis (of the chemistry and morphology) of individual precipitates. Small Mg-rich clusters (GPI zones) are found in the alloy after short ageing times at 121 deg. C, together with larger GPI zones (Zn/Mg=1.0). Zn-rich η ' platelets are seen to form mainly between 30 and 240 min ageing, coexisting with larger GPI zones. A significant fraction of elongated clusters have also been observed over this period of ageing. The dominant mechanism for η ' formation at this stage is shown to be by transformation of small GPI zones, via these elongated clusters and not by nucleation on larger zones

  18. Separation of Yttrium from Rare Earth Concentrates in Fractional Hydroxide Precipitation

    International Nuclear Information System (INIS)

    Tri Handini; Purwoto; Mulyono

    2007-01-01

    Yttrium has been separated from rare earth concentrates by precipitation in fractional hydroxide using urea. The purpose of this research is to increase the yttrium rate resulting from the sedimentary process through separation of yttrium from other rare earth in fractional hydroxide precipitation using urea. In this research, we study the process variable of the concentration of urea, the ratio of feed volume to condensation volume of urea, as well as the temperature. Determination analysis of the rare earth rate is conducted using an X-ray spectrometer. The best result Y=92.89 % is obtained at a concentration of urea of 50 %, a level of precipitation of 3 times, and a temperature of 80°C. (author)

  19. Seasonal fluctuations of organophosphate concentrations in precipitation and storm water runoff.

    Science.gov (United States)

    Regnery, Julia; Püttmann, Wilhelm

    2010-02-01

    To investigate seasonal fluctuations and trends of organophosphate (flame retardants, plasticizers) concentrations in rain and snow, precipitation samples were collected in 2007-2009 period at a densely populated urban sampling site and two sparsely populated rural sampling sites in middle Germany. In addition, storm water runoff was sampled from May 2008 to April 2009 at an urban storm water holding tank (SWHT). Samples were analyzed for tris(2-chloroethyl) phosphate (TCEP), tris(2-chloro-1-methylethyl) phosphate (TCPP), tris(1,3-dichloro-2-propyl) phosphate (TDCP), tris(2-butoxyethyl) phosphate (TBEP), tri-iso-butyl phosphate (TiBP), and tri-n-butyl phosphate (TnBP) by gas chromatography-mass spectrometry after solid phase extraction. Among the six analyzed organophosphates (OPs), TCPP dominated in all precipitation and SWHT water samples with maximum concentrations exceeding 1000ngL(-1). For all analytes, no seasonal trends were observed at the urban precipitation sampling site, although atmospheric photooxidation was expected to reduce particularly concentrations of non-chlorinated OPs during transport from urban to remote areas in summer months with higher global irradiation. In the SWHT a seasonal trend with decreasing concentrations in summer/autumn is evident for the non-chlorinated OPs due to in-lake degradation but not for the chlorinated OPs. Furthermore, an accumulation of OPs deposited in SWHTs was observed with concentrations often exceeding those observed in wet precipitation. Median concentrations of TCPP (880ngL(-1)), TDCP (13ngL(-1)) and TBEP (77ngL(-1)) at the SWHT were more than twice as high as median concentrations measured at the urban precipitation sampling site (403ngL(-1), 5ngL(-1), and 21ngL(-1) respectively).

  20. Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2007-12-01

    A two-dimensional cloud-resolving model with detailed spectral bin microphysics is used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: south Florida, Oklahoma, and the central Pacific. A pair of model simulations, one with an idealized low cloud condensation nuclei (CCN) (clean) and one with an idealized high CCN (dirty environment), is conducted for each case. In all three cases, rain reaches the ground earlier for the low-CCN case. Rain suppression is also evident in all three cases with high CCN. However, this suppression only occurs during the early stages of the simulations. During the mature stages of the simulations the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case to almost no effect in the Florida case to rain enhancement in the Pacific case. The model results suggest that evaporative cooling in the lower troposphere is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions with the low-level wind shear. Consequently, precipitation processes can be more vigorous. For example, the evaporative cooling is more than two times stronger in the lower troposphere with high CCN for the Pacific case. Sensitivity tests also suggest that ice processes are crucial for suppressing precipitation in the Oklahoma case with high CCN. A comparison and review of other modeling studies are also presented.

  1. Design of nonimaging concentrators as second stages in tandem with image-forming first-stage concentrators

    Science.gov (United States)

    Winston, R.; Welford, W. T.

    1980-02-01

    The paper discusses the paraboloidal mirror as a tracking solar concentrator, fitting a nonimaging second stage to the paraboloidal mirror, other image-forming systems as first stages, and tracking systems in two-dimensional geometry. Because of inherent aberrations, the paraboloidal mirror cannot achieve the thermodynamic limit. It is shown how paraboloidal mirrors of short focal ratio and similar systems can have their flux concentration enhanced to near the thermodynamic limit by the addition of nonimaging compound elliptical concentrators.

  2. Design of nonimaging concentrators as second stages in tandem with image-forming first-stage concentrators

    Science.gov (United States)

    Winston, R.; Welford, W. T.

    1980-01-01

    The paper discusses the paraboloidal mirror as a tracking solar concentrator, fitting a nonimaging second stage to the paraboloidal mirror, other image-forming systems as first stages, and tracking systems in two-dimensional geometry. Because of inherent aberrations, the paraboloidal mirror cannot achieve the thermodynamic limit. It is shown how paraboloidal mirrors of short focal ratio and similar systems can have their flux concentration enhanced to near the thermodynamic limit by the addition of nonimaging compound elliptical concentrators.

  3. Simulations of monthly mean nitrate concentrations in precipitation over East Asia

    International Nuclear Information System (INIS)

    Junling An; Xinjin Cheng; Ueda, Hiromasa; Kajino, Mizuo

    2002-01-01

    Monthly mean nitrate concentrations in precipitation over East Asia (10-55 o N, 75-155 o E) in April, July, September, and December of 1999 were simulated by using a regional air quality Eulerian model (RAQM) with meteorological fields four times per day taken from National Centers for Environmental Prediction. The distribution of the nitrate concentration in precipitation depends significantly on the emission patterns of nitrogen oxides (NO x =NO+NO 2 ) and volatile organic compound (VOC) and seasonal precipitation variability. The downward trend is also revealed, particularly on July and December. Highest concentrations are found in the industrialized regions, i.e., the coastal area of the Mainland of China, the Bay of the Huanghai Sea and the Bohai Sea, Korea, and Southern Japan. Long-range transport may cause elevated concentrations in remote areas downwind of the industrialized regions under favorable meteorological conditions, e.g., low precipitation. Comparison of observation and simulations indicates that the RAQM model reasonably predicts synoptic-scale changes in different months (seasons) and simulated nitrate levels in 4 months fit observed data with the discrepancy within a factor of 2. Exclusion of liquid chemistry within clouds is feasible for regional (1 o x1 o ) and long-term (monthly) nitrate simulations. The uncertainty originates mainly from that of the emission data and modeled precipitation amounts and initial and boundary conditions. (author)

  4. [Investigation of stages of chemical leaching and biooxidation during the extraction of gold from sulfide concentrates].

    Science.gov (United States)

    Murav'ev, M I; Fomchenko, N V; Kondrat'eva, T V

    2015-01-01

    We examined the chemical leaching and biooxidation stages in a two-stage biooxidation process of an auriferous sulfide concentrate containing pyrrhotite, arsenopyrite and pyrite. Chemical leaching of the concentrate (slurry density at 200 g/L) by ferric sulfate biosolvent (initial concentration at 35.6 g/L), which was obtained by microbial oxidation of ferrous sulfate for 2 hours at 70°C at pH 1.4, was allowed to oxidize 20.4% ofarsenopyrite and 52.1% of sulfur. The most effective biooxidation of chemically leached concentrate was observed at 45°C in the presence of yeast extract. Oxidation of the sulfide concentrate in a two-step process proceeded more efficiently than in one-step. In a two-step mode, gold extraction from the precipitate was 10% higher and the content of elemental sulfur was two times lower than in a one-step process.

  5. Concentrations of tritium in atmospheric moisture and precipitation of Mt. Hakkoda

    International Nuclear Information System (INIS)

    Kimura, Hideki; Kon, Takezumi; Sasaki, Mamoru

    2000-01-01

    A large-scale spent nuclear fuel reprocessing plant in Japan is now under construction in Rokkasho Village, Aomori Prefecture. The 3 H will be one of the major radionuclides released from the plant. To grasp the behavior of 3 H in the environment in Aomori Prefecture, we surveyed 3 H concentrations in the atmospheric moisture and the precipitation samples at Mt. Hakkoda. Additional atmospheric moisture samples were collected at Rokkasho Village and Aomori City. The relatively high 3 H concentration in the atmospheric moisture and the precipitation samples at Mt. Hakkoda were observed from spring to summer. The 3 H concentrations in the precipitation were similar to those in the atmospheric moisture. The temporal variation patterns of 3 H concentrations in the atmospheric moisture were similar in relatively wide region that covers from Mt. Hakkoda to Aomori City and Rokkasho Village. The 3 H concentration in atmospheric moisture at the top of Mt. Hakkoda positively correlated with the ozone concentration. It suggested that 3 H originated from the stratosphere, and showed that ozone might be used as an indictor of background 3 H. (author)

  6. Application of the Alternative Traditional and Selective Precipitation Routes for Recovery of High Grade Thorium Concentrates from Egyptian Crude Monazite Sand

    International Nuclear Information System (INIS)

    Helaly, O.S.

    2017-01-01

    Process flow sheet selection for thorium separation in relatively high grade concentrate from Egyptian crude monazite sand was carried out. Traditional selective leaching and precipitation routes were applied after sulfuric acid digestion upon Egyptian crude monazite for this purpose. The resultant hot grey sulfate paste from monazite digestion was firstly cooled to ambient temperature then leached by normal water into two successive stages. The first leach solution contained most of the thorium which represents about 88% of the present thorium and its concentration in the liquor reached 4.5 g Th/l. This liquor also contains most of the free acids and major of impurities especially iron (more than 6.3 g Fe/l). Different routes were tested to evaluate the suitable conditions that verify maximum recovery of thorium from such monazite sulfate solution and producing relatively high grade concentrate. Two different possible traditional and selective methods were involved, namely; thorium initial precipitation with rare earth elements as double sulfate or its precipitation as phosphate through acidity control at ph 1.1 which seems to be the simple, brief and convenient route to accomplish this purpose. Further separation and/or upgrading of thorium from these precipitates (after conversion to hydroxides or without) were conducted through re-dissolution in hydrochloric acid and re-precipitation with different selective reagents in the form of hydroxide, oxalate or fluoride was also included. The target was accomplished through thorium co-precipitation with light rare earth elements as double sulfate, followed by its recovery from this fraction, where a concentrate of grade 68.3% was produced

  7. Comparative Influences of Precipitation and River Stage on Groundwater Levels in Near-River Areas

    Directory of Open Access Journals (Sweden)

    Incheol Kim

    2015-12-01

    Full Text Available The sustainable performance of foundations of various urban buildings and infrastructures is strongly affected by groundwater level (GWL, as GWL causes changes in the stress state within soil. In the present study, the components affecting GWL were investigated, focusing on the effects of precipitation and river stage. These components were analyzed using a six-year database established for hydrological and groundwater monitoring data. Five study regions for which daily measured precipitation, river stage, and GWL data were available were compared. Different periods of precipitation, geographical characteristics, and local surface conditions were considered in the analysis. The results indicated that key influence components on GWL are different depending on the hydrological, geological, and geographical characteristics of the target regions. River stage had the strongest influence on GWL in urban areas near large rivers with a high ratio of paved surface. In rural areas, where the paved surface area ratio and soil permeability were low, the moving average showed a closer correlation to GWL than river stage. A moving average-based method to predict GWL variation with time was proposed for regions with a low ratio of paved surface area and low permeability soils.

  8. MCS precipitation and downburst intensity response to increased aerosol concentrations

    Science.gov (United States)

    Clavner, M.; Cotton, W. R.; van den Heever, S. C.

    2015-12-01

    Mesoscale convective systems (MCSs) are important contributors to rainfall in the High Plains of the United States as well as producers of severe weather such as hail, tornados and straight-line wind events known as derechos. Past studies have shown that changes in aerosol concentrations serving as cloud condensation nuclei (CCN) alter the MCS hydrometeor characteristics which in turn modify precipitation yield, downdraft velocity, cold-pool strength, storm propagation and the potential for severe weather to occur. In this study, the sensitivity of MCS precipitation characteristics and convective downburst velocities associated with a derecho to changes in CCN concentrations were examined by simulating a case study using the Regional Atmospheric Modeling System (RAMS). The case study of the 8 May 2009 "Super-Derecho" MCS was chosen since it produced a swath of widespread wind damage in association with an embedded large-scale bow echo, over a broad region from the High Plains of western Kansas to the foothills of the Appalachians. The sensitivity of the storm to changes in CCN concentrations was examined by conducting a set of three simulations which differed in the initial aerosol concentration based on output from the 3D chemical transport model, GEOS-Chem. Results from this study indicate that while increasing CCN concentrations led to an increase in precipitation rates, the changes to the derecho strength were not linear. A moderate increase in aerosol concentration reduced the derecho strength, while the simulation with the highest aerosol concentrations increased the derecho intensity. These changes are attributed to the impact of enhanced CCN concentration on the production of convective downbursts. An analysis of aerosol loading impacts on these MCS features will be presented.

  9. Tritium concentration analysis in atmospheric precipitation in Serbia.

    Science.gov (United States)

    Janković, Marija M; Janković, Bojan Ž; Todorović, Dragana J; Ignjatović, Ljubiša M

    2012-01-01

    Tritium activity concentration were monitored in monthly precipitation at five locations in Serbia (Meteorological Station of Belgrade at Zeleno Brdo, Vinča Institute of Nuclear Sciences, Smederevska Palanka, Kraljevo and Niš) over 2005, using electrolytic enrichment and liquid scintillation counting. The obtained concentrations ranged from 3.36 to 127.02 TU. The activity values obtained in samples collected at Zeleno Brdo were lower or close to the minimum detectable activity (MDA), which has a value of 3.36 TU. Significantly higher tritium levels were obtained in samples collected in Vinča Institute of Nuclear Sciences compared with samples from the other investigated locations. Amount of precipitation were also recorded. A good linear correlation (r = 0.75) for Zeleno Brdo and VINS between their tritium activity was obtained. It was found that the value of the symmetrical index n (which indicates the magnitude of tritium content changes with time (months) through its second derivative) is the highest for Vinča Institute of Nuclear Sciences compared to other locations, which is in accordance with the fact that the highest concentrations of tritium were obtained in the samples from the cited place.

  10. An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France

    Science.gov (United States)

    Chardon, Jérémy; Hingray, Benoit; Favre, Anne-Catherine

    2018-01-01

    Statistical downscaling models (SDMs) are often used to produce local weather scenarios from large-scale atmospheric information. SDMs include transfer functions which are based on a statistical link identified from observations between local weather and a set of large-scale predictors. As physical processes driving surface weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of the data. In this study, we present a two-stage analog/regression model where the regression link is estimated from atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential heights at 1000 and 500 hPa. For the regression stage, two generalized linear models are further used to model the probability of precipitation occurrence and the distribution of non-zero precipitation amounts, respectively. The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-frequent weather configurations.

  11. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

    International Nuclear Information System (INIS)

    Grimm, J.W.; Lynch, J.A.

    2005-01-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8 km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8 km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate. - A linear least-squares regression approach was used to develop daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

  12. An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France

    Directory of Open Access Journals (Sweden)

    J. Chardon

    2018-01-01

    Full Text Available Statistical downscaling models (SDMs are often used to produce local weather scenarios from large-scale atmospheric information. SDMs include transfer functions which are based on a statistical link identified from observations between local weather and a set of large-scale predictors. As physical processes driving surface weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of the data. In this study, we present a two-stage analog/regression model where the regression link is estimated from atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential heights at 1000 and 500 hPa. For the regression stage, two generalized linear models are further used to model the probability of precipitation occurrence and the distribution of non-zero precipitation amounts, respectively. The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-frequent weather configurations.

  13. Precipitation of ammonium from concentrated industrial wastes as struvite: a search for the optimal reagents.

    Science.gov (United States)

    Borojovich, Eitan J C; Münster, Meshulam; Rafailov, Gennady; Porat, Ze'ev

    2010-07-01

    Precipitation of struvite (MgNH4PO4) is a known process for purification of wastewater from high concentrations of ammonium. The optimal conditions for precipitation are basic pH (around 9) and sufficient concentrations of magnesium and phosphate ions. In this work, we accomplished efficient precipitation of ammonium from concentrated industrial waste stream by using magnesium oxide (MgO) both as a source of magnesium ions and as a base. Best results were obtained with technical-grade MgO, which provided 99% removal of ammonium. Moreover, ammonium removal occurred already at pH 7, and the residual ammonium concentration (50 mg/L) remained constant upon addition of more MgO without rising again, as occurs with sodium hydroxide (NaOH). This process may have two other advantages; it also can be relevant for the problem of uncontrolled precipitation of struvite in the supernatant of anaerobic sludge treatment plants, and the precipitate can be used as a fertilizer.

  14. Concentration of light rare earths process by amoniacal precipitation

    International Nuclear Information System (INIS)

    Aguilera, Y.; Rapado, M.; Consuegra, R.

    1996-01-01

    A procedure for the separation and concentration of light rare earths using a mixture of ammonia and water was developed. As a result technical concentrates of rare earths were obtained and the physical separation in the filtration step was improved. The filtration parameters (cake resistance r 0 and filtration web resistance R) were obtained for this process being they 5,5.10 11 cm/g and 3,4.10 13 cm -1 respectively. The proposed technology concentrates (Ce, La and Nd) with purities ranging from: 85-90 %, 85-87 % and 42-65 % respectively in only one precipitation step

  15. Effect of sulfide concentration on the location of the metal precipitates in inversed fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Gomez, D., E-mail: d.villagomez@unesco-ihe.org [Core Pollution Prevention and Control, UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft (Netherlands); Ababneh, H.; Papirio, S.; Rousseau, D.P.L.; Lens, P.N.L. [Core Pollution Prevention and Control, UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft (Netherlands)

    2011-08-15

    Highlights: {yields} Sulfide concentration governs the location of metal precipitates in sulfate reducing bioreactors. {yields} High dissolved sulfide induces metal precipitation in the bulk liquid as fines. {yields} Low dissolved sulfide concentrations yield local supersaturation and thus metal precipitation in the biofilm. -- Abstract: The effect of the sulfide concentration on the location of the metal precipitates within sulfate-reducing inversed fluidized bed (IFB) reactors was evaluated. Two mesophilic IFB reactors were operated for over 100 days at the same operational conditions, but with different chemical oxygen demand (COD) to SO{sub 4}{sup 2-} ratio (5 and 1, respectively). After a start up phase, 10 mg/L of Cu, Pb, Cd and Zn each were added to the influent. The sulfide concentration in one IFB reactor reached 648 mg/L, while it reached only 59 mg/L in the other one. In the high sulfide IFB reactor, the precipitated metals were mainly located in the bulk liquid (as fines), whereas in the low sulfide IFB reactor the metal preciptiates were mainly present in the biofilm. The latter can be explained by local supersaturation due to sulfide production in the biofilm. This paper demonstrates that the sulfide concentration needs to be controlled in sulfate reducing IFB reactors to steer the location of the metal precipitates for recovery.

  16. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed.

    Science.gov (United States)

    Grimm, J W; Lynch, J A

    2005-06-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate.

  17. Investigating the early stages of mineral precipitation by potentiometric titration and analytical ultracentrifugation.

    Science.gov (United States)

    Kellermeier, Matthias; Cölfen, Helmut; Gebauer, Denis

    2013-01-01

    Despite the importance of crystallization for various areas of research, our understanding of the early stages of the mineral precipitation from solution and of the actual mechanism of nucleation is still rather limited. Indeed, detailed insights into the processes underlying nucleation may enable a systematic development of novel strategies for controlling mineralization, which is highly relevant for fields ranging from materials chemistry to medicine. In this work, we describe experimental aspects of a quantitative assay, which relies on pH titrations combined with in situ metal ion potentiometry and conductivity measurements. The assay has originally been designed to study the crystallization of calcium carbonate, one of the most abundant biominerals. However, the developed procedures can also be readily applied to any compound containing cations for which ion-selective electrodes are available. Besides the possibility to quantitatively assess ion association prior to nucleation and to directly determine thermodynamic solubility products of precipitated phases, the main advantage of the crystallization assay is the unambiguous identification of the different stages of precipitation (i.e., prenucleation, nucleation, and early postnucleation) and the characterization of the multiple effects of additives. Furthermore, the experiments permit targeted access to distinct precursor species and intermediate stages, which thus can be analyzed by additional methods such as cryo-electron microscopy or analytical ultracentrifugation (AUC). Regarding ion association in solution, AUC detects entities significantly larger than simple ion pairs, so-called prenucleation clusters. Sedimentation coefficient values and distributions obtained for the calcium carbonate system are discussed in light of recent insights into the structural nature of prenucleation clusters. © 2013 Elsevier Inc. All rights reserved.

  18. Investigation the Concentration and Trend of Winter Precipitation of Iranian Border Stations over the Last Half Century

    Directory of Open Access Journals (Sweden)

    Keyvan Khalili

    2017-02-01

    Full Text Available Introduction: Climate change in the current era is a very important environmental challenge. Our understanding of the impacts of human activities on the environment, especially those related to global warming caused by increased greenhouse gases indicates that, most probably, a number of hydro-climatic parameters are changing. Based on the scientific reports, the average temperature of the earth has increased about 0.6 degrees centigrade over the 20th century and it is expected that the amount of evaporation continues to rise. In this case, the atmosphere would be able to transport larger amounts of water vapor, influencing the amount of atmospheric precipitations (21. Low precipitation and its severe fluctuations in the daily, seasonal and annual time scales are the intrinsic characteristics of Iran’s climates. Based on the research background, it seems that no comprehensive study has been conducted on concentration of winter precipitation in Iran. The aim of this study is to calculate the concentration and Trend of precipitation of Iranian border stations over the last half-century. Materials and Methods: Iran with an area of over16480000 square kilometers is situated in the northern hemisphere and southwest of Asia. Almost all parts of Iran have four seasons. In general, a year can be divided into two warm and cold seasons. In this study, 18 stations were selected among more than 200 synoptic stations existing in the country, for investigating the concentration and precipitation trend. PCI Index The PCI index has been proposed as an index of precipitation concentration. The seasonal scales of this index are calculated as equation 1(18: (1 Where Pi is the amount of monthly precipitation in the ith month. Based on the proposed formula, the minimum value of theoretical PCI is 8.3, indicating absolute uniformity in the precipitation concentration (i.e. the same amount of precipitation occurs every month. Trend analysis The aim of process test

  19. Novel method for concentrating and drying polymeric nanoparticles: hydrogen bonding coacervate precipitation.

    Science.gov (United States)

    D'Addio, Suzanne M; Kafka, Concepcion; Akbulut, Mustafa; Beattie, Patrick; Saad, Walid; Herrera, Margarita; Kennedy, Michael T; Prud'homme, Robert K

    2010-04-05

    Nanoparticles have significant potential in therapeutic applications to improve the bioavailability and efficacy of active drug compounds. However, the retention of nanometer sizes during concentrating or drying steps presents a significant problem. We report on a new concentrating and drying process for poly(ethylene glycol) (PEG) stabilized nanoparticles, which relies upon the unique pH sensitive hydrogen bonding interaction between PEG and polyacid species. In the hydrogen bonding coacervate precipitation (HBCP) process, PEG protected nanoparticles rapidly aggregate into an easily filterable precipitate upon the addition various polyacids. When the resulting solid is neutralized, the ionization of the acid groups eliminates the hydrogen bonded structure and the approximately 100 nm particles redisperse back to within 10% of their original size when poly(acrylic acid) and citric acid are used and 45% when poly(aspartic acid) is used. While polyacid concentrations of 1-5 wt % were used to form the precipitates, the incorporation of the acid into the PEG layer is approximately 1:1 (acid residue):(ethylene oxide unit) in the final dried precipitate. The redispersion of dried beta-carotene nanoparticles protected with PEG-b-poly(lactide-co-glycolide) polymers dried by HBCP was compared with the redispersion of particles dried by freeze-drying with sucrose as a cryprotectant, spray freeze-drying, and normal drying. Freeze-drying with 0, 2, and 12 wt % sucrose solutions resulted in size increases of 350%, 50%, and 6%, respectively. Spray freeze-drying resulted in particles with increased sizes of 50%, but no cryoprotectant and only moderate redispersion energy was required. Conventional drying resulted in solids that could not be redispersed back to nanometer size. The new HBCP process offers a promising and efficient way to concentrate or convert nanoparticle dispersions into a stable dry powder form.

  20. Long-Term Precipitation Analysis and Estimation of Precipitation Concentration Index Using Three Support Vector Machine Methods

    Directory of Open Access Journals (Sweden)

    Milan Gocic

    2016-01-01

    Full Text Available The monthly precipitation data from 29 stations in Serbia during the period of 1946–2012 were considered. Precipitation trends were calculated using linear regression method. Three CLINO periods (1961–1990, 1971–2000, and 1981–2010 in three subregions were analysed. The CLINO 1981–2010 period had a significant increasing trend. Spatial pattern of the precipitation concentration index (PCI was presented. For the purpose of PCI prediction, three Support Vector Machine (SVM models, namely, SVM coupled with the discrete wavelet transform (SVM-Wavelet, the firefly algorithm (SVM-FFA, and using the radial basis function (SVM-RBF, were developed and used. The estimation and prediction results of these models were compared with each other using three statistical indicators, that is, root mean square error, coefficient of determination, and coefficient of efficiency. The experimental results showed that an improvement in predictive accuracy and capability of generalization can be achieved by the SVM-Wavelet approach. Moreover, the results indicated the proposed SVM-Wavelet model can adequately predict the PCI.

  1. CONCENTRATION OF Pu USING AN IODATE PRECIPITATE

    Science.gov (United States)

    Fries, B.A.

    1960-02-23

    A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.

  2. Sensitive indicators of Stipa bungeana response to precipitation under ambient and elevated CO2 concentration

    Science.gov (United States)

    Shi, Yaohui; Zhou, Guangsheng; Jiang, Yanling; Wang, Hui; Xu, Zhenzhu

    2018-02-01

    Precipitation is a primary environmental factor in the semiarid grasslands of northern China. With increased concentrations of atmospheric greenhouse gases, precipitation regimes will change, and high-impact weather events may be more common. Currently, many ecophysiological indicators are known to reflect drought conditions, but these indicators vary greatly among species, and few studies focus on the applicability of these drought indicators under high CO2 conditions. In this study, five precipitation levels (- 30%, - 15%, control, + 15%, and + 30%) were used to simulate the effects of precipitation change on 18 ecophysiological characteristics in Stipa bungeana, including leaf area, plant height, leaf nitrogen (N), and chlorophyll content, among others. Two levels of CO2 concentration (ambient, 390 ppm; 550 ppm) were used to simulate the effects of elevated CO2 on these drought indicators. Using gray relational analysis and phenotypic plasticity analysis, we found that total leaf area or leaf number (morphology), leaf water potential or leaf water content (physiology), and aboveground biomass better reflected the water status of S. bungeana under ambient and elevated CO2 than the 13 other analyzed variables. The sensitivity of drought indicators changed under the elevated CO2 condition. By quantifying the relationship between precipitation and the five most sensitive indicators, we found that the thresholds of precipitation decreased under elevated CO2 concentration. These results will be useful for objective monitoring and assessment of the occurrence and development of drought events in S. bungeana grasslands.

  3. Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate.

    Science.gov (United States)

    Porvali, Antti; Wilson, Benjamin P; Lundström, Mari

    2018-01-01

    In NiMH battery leaching, rare earth element (REE) precipitation from sulfate media is often reported as being a result of increasing pH of the pregnant leach solution (PLS). Here we demonstrate that this precipitation is a phenomenon that depends on both Na + and SO 4 2- concentrations and not solely on pH. A two-stage leaching for industrially crushed NiMH waste is performed: The first stage consists of H 2 SO 4 leaching (2 M H 2 SO 4 , L/S = 10.4, V = 104 ml, T = 30 °C) and the second stage of H 2 O leaching (V = 100 ml, T = 25 °C). Moreover, precipitation experiments are separately performed as a function of added Na 2 SO 4 and H 2 SO 4 . During the precipitation, higher than stoichiometric quantities of Na to REE are utilized and this increase in both precipitation reagent concentrations results in an improved double sulfate precipitation efficiency. The best REE precipitation efficiencies (98-99%) - achieved by increasing concentrations of H 2 SO 4 and Na 2 SO 4 by 1.59 M and 0.35 M, respectively - results in a 21.8 times Na (as Na 2 SO 4 ) and 58.3 times SO 4 change in stoichiometric ratio to REE. Results strongly indicate a straightforward approach for REE recovery from NiMH battery waste without the need to increase the pH of PLS. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. The effect of the accident of Fukushima Daiichi Nuclear Power Plants on Niigata city based on tritium concentration in precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, N. [Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University 8050 Ikarashi 2-III ocho, Niigata-shi, Nishiku, Niigata Pref. 950-2181 (Japan); Environmental Analytical Center of Niigata Prefecture 53-1 Ojigouya, Kounan-ku, Niigata Pref. 950-1144 (Japan); Imaizumi, H.; Kano, N.; Ying, W. [Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University 8050 Ikarashi 2-III ocho, Niigata-shi, Nishiku, Niigata Pref. 950-2181 (Japan)

    2014-07-01

    The maximum value of tritium concentration in precipitation was 200 Bq/kg in Niigata city when atmospheric nuclear-bomb tests were performed in 1960s. After that, tritium concentration continuously decreased and reached to environmental revel (0.5~1.0 Bq/kg). However, after the accident of Fukushima daiichi nuclear power plants, the tritium concentration in precipitation increased in Niigata city. Therefore the observation of tritium concentration had to be carried out. In our laboratory, we have investigated the tritium concentration in precipitation and also investigated the relation between the tritium concentration and other ion (Na⁺, Mg⁺, K⁺, Ca⁺, Cl⁻, NO3⁺ or SO₄²⁻) concentration in precipitation in Niigata city. In this study, precipitation in Niigata city was gathered monthly and the evaluation of tritium concentration in precipitation was performed. In addition, we also collected the precipitation hourly (short precipitation). Each water sample thus obtained was distilled with sodium peroxide and potassium permanganate. Then the water sample thus distilled was enriched in SPE electronic enrichment apparatus, and the tritium concentration in the sample thus treated was measured in a liquid scintillation counter. On the other hand, each ion concentration in the sample was measured by ion chromatography or Atomic Absorption Spectrometry. From the above the mentioned, the following five matters can be found. (1) The tritium concentration in the samples in March and April 2011 were twice or three times higher than that in March and April in annual years. In other words, it is considered that the thus high level concentration of tritium leads to the evaluation of the effect of the accident of the Fukushima nuclear power plants on Niigata city. (2) As to the sample, the concentration of the non-sea salt Ca²⁺ (nssCa²⁺) is similar to that in March and April in annual years. (3) For each short precipitation sample collected on March 15, 2011

  5. Precipitation of uranium concentrates by hydrogen peroxide

    International Nuclear Information System (INIS)

    Barbosa Filho, O.; Teixeira, L.A.C.

    1987-01-01

    An experimental study on the precipitation of uranyl peroxide (UO 4 x H 2 O) has been carried out in a laboratory scale. The objective was to assess the possibility of the peroxide route as an alternative to a conventional ammonium diuranate process. A factorial design was used to evaluate the effects of the initial pH, precipitation pH and H 2 O 2 /UO 2 2+ ratio upon the process. The responses were measured in terms of: efficiency of U precipitation, content of U in the precipitates, and distribution of impurities in the precipitates. (Author) [pt

  6. Controlling Factors of Mercury Wet Deposition and Precipitation Concentrations in Upstate New York

    Science.gov (United States)

    Ye, Z.; Mao, H.; Driscoll, C. T.

    2017-12-01

    Observations from the Mercury Deposition Network (MDN) at Huntington Wildlife Forest (HWF) suggested that a significant decline in Hg concentrations in precipitation was linked to Hg emission decreases in the United States, especially in the Northeast and Midwest, and yet Hg wet deposition has remained fairly constant over the past two decades. The present study was aimed to investigate how climatic, terrestrial, and anthropogenic factors had influenced the Hg wet deposition flux in upstate New York (NY). To achieve this, an improved Community Multiscale Air Quality (CMAQ) model was employed, which included state-of-the-art Hg and halogen chemistry mechanisms. A base simulation and five sensitivity simulations were conducted. The base simulation used 2010 meteorology, U.S. EPA NEI 2011, and GEOS-Chem output as initial and boundary conditions (ICs and BCs). The five sensitivity runs each changed one condition at the time as follows: 1-3) 2004, 2005, and 2007 meteorology instead of 2010, 4) NEI 2005 Hg anthropogenic emission out of NYS instead of NEI 2011, and 5) no in-state Hg anthropogenic emission. The study period of all the simulations was March - November 2010, and the domain covered the northeastern United States at 12 km resolution. As a result, compared with rural areas in NYS, Hg wet deposition and ambient Hg concentrations in urban areas were affected more significantly by in-state anthropogenic Hg emission. The in-state anthropogenic Hg emissions contributed up to 20% of Hg wet deposition at urban sites and cloud height, precipitation, wind speed and direction, and relative humidity, among which precipitation had the largest effects in most areas. Diluting effects were found in non-convective precipitation, which contributed 31-48% to changes in Hg concentration in precipitation.

  7. Coupling meteorology, metal concentrations, and Pb isotopes for source attribution in archived precipitation samples.

    Science.gov (United States)

    Graney, Joseph R; Landis, Matthew S

    2013-03-15

    A technique that couples lead (Pb) isotopes and multi-element concentrations with meteorological analysis was used to assess source contributions to precipitation samples at the Bondville, Illinois USA National Trends Network (NTN) site. Precipitation samples collected over a 16month period (July 1994-October 1995) at Bondville were parsed into six unique meteorological flow regimes using a minimum variance clustering technique on back trajectory endpoints. Pb isotope ratios and multi-element concentrations were measured using high resolution inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) on the archived precipitation samples. Bondville is located in central Illinois, ~250km downwind from smelters in southeast Missouri. The Mississippi Valley Type ore deposits in Missouri provided a unique multi-element and Pb isotope fingerprint for smelter emissions which could be contrasted to industrial emissions from the Chicago and Indianapolis urban areas (~125km north and east, of Bondville respectively) and regional emissions from electric utility facilities. Differences in Pb isotopes and element concentrations in precipitation corresponded to flow regime. Industrial sources from urban areas, and thorogenic Pb from coal use, could be differentiated from smelter emissions from Missouri by coupling Pb isotopes with variations in element ratios and relative mass factors. Using a three endmember mixing model based on Pb isotope ratio differences, industrial processes in urban airsheds contributed 56±19%, smelters in southeast Missouri 26±13%, and coal combustion 18±7%, of the Pb in precipitation collected in Bondville in the mid-1990s. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Precipitation of uranium concentrates by hydrogen peroxide

    International Nuclear Information System (INIS)

    Barbosa Filho, O.

    1986-12-01

    An experimental study on the (UO 4 .xH 2 ) uranyl peroxide precipitation from a uranium process strip solution is presented. The runs were performed in a batch reactor, in laboratory scale. The main objective was to assess the possibility of the peroxide route as an alternative to a conventional ammonium diuranate process. The chemical composition of process solution was obtained. The experiments were conducted according to a factorial design, aiming to evaluate the effects of initial pH, precipitation pH and H 2 O 2 /UO 2 2+ ratio upon the process. The responses were measured in terms of the efficiency of U precipitation, the content of U in the precipitates and the distribution of impurities in the precipitates. The results indicated that the process works is satisfactory on the studied conditions and depending on conditions, it is possible to achieve levels of U precipitation efficiency greater than 99.9% in reaction times of 2 hours. The precipitates reach grades around 99% U 3 O 8 after calcination (900 0 C) and impurities fall below the limit for penalties established by the ASTM and the Allied Chemical Standards. The precipitates are composed of large aggregates of crystals of 1-4 μm, are fast settling and filtering, and are free-flowing when dry. (Author) [pt

  9. The time series variations of tritium concentration in precipitation and its relationships to the rainfall-inducing air mass

    International Nuclear Information System (INIS)

    Shimada, Jun

    1978-01-01

    The author measured the tritium concentration in precipitation of Tokyo for every ten-day period from August 1972 to May 1974. Judging from the daily synoptic weather chart, the rainfall-inducing air masses in Japan were classified into five types; polar maritime air mass (Pm), polar continental air mass (Pc), tropical maritime air mass (Tm), tropical continental air mass (Tc), and equatorial maritime air mass (Em). And the precipitation for every ten-day period sampled for tritium measurement were classified into these five types. Based on this classification, it is confirmed that there exist clear difference in the tritium concentration between the rainfall from the continental air mass and ones from the maritime air mass. It is characteristic that the tritium concentration in rainfall induced by equatorial maritime air mass such as typhoon in summer and early fall season is very low whereas the tritium concentration in rainfall and snowfall induced directly by the polar continental air mass in late winter season is very high. The regional difference of the tritium concentration in intermonthly precipitation could considerably be explained by this synoptic meteological classification of rainfall-inducing air mass. In spite of these regional difference of tritium concentration in precipitation, use of the tritium concentration of Tokyo as a representative value of Japan may be allowed because of the similarities of the changing pattern and annual mean tritium concentration. The time series variations of tritium concentration in precipitation of Tokyo from August 1972 to December 1977, Tsukuba from December 1976 to April 1978, and Nagaoka from April 1977 to March 1978 are listed. (author)

  10. Different nonideality relationships, different databases and their effects on modeling precipitation from concentrated solutions using numerical speciation codes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.F.; Ebinger, M.H.

    1996-08-01

    Four simple precipitation problems are solved to examine the use of numerical equilibrium codes. The study emphasizes concentrated solutions, assumes both ideal and nonideal solutions, and employs different databases and different activity-coefficient relationships. The study uses the EQ3/6 numerical speciation codes. The results show satisfactory material balances and agreement between solubility products calculated from free-energy relationships and those calculated from concentrations and activity coefficients. Precipitates show slightly higher solubilities when the solutions are regarded as nonideal than when considered ideal, agreeing with theory. When a substance may precipitate from a solution dilute in the precipitating substance, a code may or may not predict precipitation, depending on the database or activity-coefficient relationship used. In a problem involving a two-component precipitation, there are only small differences in the precipitate mass and composition between the ideal and nonideal solution calculations. Analysis of this result indicates that this may be a frequent occurrence. An analytical approach is derived for judging whether this phenomenon will occur in any real or postulated precipitation situation. The discussion looks at applications of this approach. In the solutes remaining after the precipitations, there seems to be little consistency in the calculated concentrations and activity coefficients. They do not appear to depend in any coherent manner on the database or activity-coefficient relationship used. These results reinforce warnings in the literature about perfunctory or mechanical use of numerical speciation codes.

  11. Analysis of movements of both specific activity of tritium and concentration of each ion in short-term precipitation at typhoons

    International Nuclear Information System (INIS)

    Yamada, Ryuta; Watanabe, Minami; Ying, Wang; Kataoka, Noriaki; Morita, Syogo; Imaizumi, Hiroshi; Kano, Naoki

    2015-01-01

    Both the specific activity of tritium and the concentration of several ions(Na + , K + , Mg 2+ , Ca 2+ , Cl - , NO 3 - , SO 4 2- ) in precipitation at typhoons in Niigata city, Japan were measured, and the following matters were found as to precipitation at typhoon. (1) Specific activities of tritium at typhoons were under the average of the activities in precipitation in the same month. (2) The specific activity of tritium depends on that whether the precipitation was sampled after the several days from the last rain, or not so long. (3) Movements of these ion concentrations in precipitation are similar to each other except nitrate ion. (4) Each ion concentration ratio in precipitation at a typhoon became to be similar to that in sea with time. (5) Using relative compositional ratio of sampled water to sea water defined in this research, the effect of sea water on precipitation can be revealed. (author)

  12. Optimization of precipitation conditions of thorium oxalate precipitate

    International Nuclear Information System (INIS)

    Pazukhin, Eh.M.; Smirnova, E.A.; Krivokhatskij, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1986-01-01

    Thorium precipitation in the form of difficultly soluble oxalate has been investigated. The equation binding the concentration of metal with the nitric acid in the initial solution and quantity of a precipitator necessary for minimization of desired product losses is derived. The graphical solution of this equation for a case, when the oxalic acid with 0.78 mol/l concentration is the precipitator, is presented

  13. Illumination uniformity issue explored via two-stage solar concentrator system based on Fresnel lens and compound flat concentrator

    International Nuclear Information System (INIS)

    Yeh, Naichia

    2016-01-01

    This paper illustrates details about the solar radiation distribution on the target of a two-stage solar concentrator that combines the Fresnel lens (FL) and the compound flat concentrator (CFC). The paper starts with a review of some FL development milestones such as the two-stage systems and the comparisons of flat vs. curved lenses in addition to the most noteworthy FL-based solar energy application, concentration photovoltaic (CPV). Through the review of the FL based CPV and two-stage concentrators, this study leads to the development of an algorithm to explore the spectrum distribution insight on the receiver of a two-stage (FL plus CFC) solar concentration system. It established the potential for using a correctly positioned 2nd stage reflector of right dimension to selectively redirect the desired spectrum on the target area so as to enhance the concentration flux intensity and uniformity at the same time. The study also helped to chart out the approximate locations of certain spectrum segments on the FL's target area, which is useful for exploring the spectrum control mechanism via the Fresnel lenses. - Highlights: • Map out the approximate locations of spectrum segments on FL's focal area. • Use the 2nd stage reflector to selectively reflect the desired spectrum on target. • Explore the spectrum distribution insight on FL solar concentrators' target area.

  14. Environmental isotope data no.1: World survey of isotope concentration in precipitation (1953-1963)

    International Nuclear Information System (INIS)

    1969-01-01

    This volume reports environmental isotope (tritium, deuterium and oxygen-18) concentrations in monthly samples of precipitation taken by a global network of 155 stations in the period 1953-1963. Selected meteorological data (amount of precipitation, vapour pressure and temperature) are presented to aid the user in hydrological and hydrometerological studies. The collection of the precipitation samples is carried out by the meteorological services of 65 countries and territories. Analyses of the network samples are done in co-operating laboratories in Canada, Denmark, India, Israel, New Zealand, Sweden and the United States of America and in the IAEA laboratory in Vienna. 4 refs, 2 figs

  15. Interfacial Precipitation of Phosphate on Hematite and Goethite

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2018-05-01

    Full Text Available Adsorption and subsequent precipitation of dissolved phosphates on iron oxides, such as hematite and goethite, is of considerable importance in predicting the bioavailability of phosphates. We used in situ atomic force microscopy (AFM to image the kinetic processes of phosphate-bearing solutions interacting with hematite or goethite surfaces. The nucleation of nanoparticles (1.0–4.0 nm in height of iron phosphate (Fe(III-P phases, possibly an amorphous phase at the initial stages, was observed during the dissolution of both hematite and goethite at the earliest crystallization stages. This was followed by a subsequent aggregation stage where larger particles and layered precipitates are formed under different pH values, ionic strengths, and organic additives. Kinetic analysis of the surface nucleation of Fe-P phases in 50 mM NH4H2PO4 at pH 4.5 showed the nucleation rate was greater on goethite than hematite. Enhanced goethite and hematite dissolution in the presence of 10 mM AlCl3 resulted in a rapid increase in Fe-P nucleation rates. A low concentration of citrate promoted the nucleation, whereas nucleation was inhibited at higher concentrations of citrate. By modeling using PHREEQC, calculated saturation indices (SI showed that the three Fe(III-P phases of cacoxenite, tinticite, and strengite may be supersaturated in the reacted solutions. Cacoxenite is predicted to be more thermodynamically favorable in all the phosphate solutions if equilibrium is reached with respect to hematite or goethite, although possibly only amorphous precipitates were observed at the earliest stages. These direct observations at the nanoscale may improve our understanding of phosphate immobilization in iron oxide-rich acid soils.

  16. Bioavailability of zinc to rats from defatted soy flour, acid-precipitated soy concentrate and neutralized soy concentrate as determined by intrinsic and extrinsic labeling techniques

    International Nuclear Information System (INIS)

    Ketelsen, S.M.; Stuart, M.A.; Weaver, C.M.; Forbes, R.M.; Erdman, J.W. Jr.

    1984-01-01

    The bioavailability of 65Zn from intrinsically and extrinsically labeled soy flour, acid-precipitated soy concentrate and neutralized soy concentrate was evaluated in rats. Weanling rats were fed marginally zinc-deficient diets, providing 8 ppm zinc from one of these three soy products, for 7 days. The rats then received a radioactively labeled test meal, identical in composition to the previous diet except that the soy product was either intrinsically or extrinsically labeled with 65Zn. After the test meal the rats were again fed diets the same as those consumed prior to the test meal. Whole-body retention of 65Zn at 24 hours and 12 days as well as 65Zn retained in tibias of rats given meals containing neutralized concentrate-based meals was significantly lower than for rats given meals containing the soy flour or acid-precipitated concentrate. In addition, retention of 65Zn from the extrinsically labeled acid-precipitated concentrate-based meal was significantly higher than from the same product intrinsically labeled. These findings confirm the results of previous feeding studies from which it was suggested that neutralization of soy protein concentrates reduces zinc bioavailability to the rat. In addition, the results are taken to suggest that experimental conditions may influence the validity of the extrinsic labeling technique for zinc

  17. Radionuclide concentrations in ground level air and precipitation in South Germany from 1976 to 1982

    International Nuclear Information System (INIS)

    Hoetzl, H.; Rosner, G.; Winkler, R.

    1983-08-01

    The activity concentrations of fallout radionuclides from atmospheric nuclear test explosions and of Be-7 in ground level air and precipitation have been determined by the Institut fuer Strahlenschutz at Munich-Neuherberg since 1970. While methods and results from 1970 to 1975 have been published in a previous report, the present report describes the revised program which includes now the naturally occurring nuclides Pb-210 and Po-210, as well as H-3. Sampling methods, analytical techniques and measuring procedures are given. The results up to the end of 1982 are reported and seasonal and long-term variations of radionuclide concentrations as well as frequency distributions of the data are discussed. The data are compared with those of other stations. As a consequence of some recent atmospheric nuclear test explosions by the People's Republic of China also short-lived radionuclides have been detected in ground level air and precipitation. The radiation exposure due to the radioactivity in ground level air and precipitation is estimated. (orig.)

  18. Effect of Aqueous Media on the Recovery of Scandium by Selective Precipitation

    Directory of Open Access Journals (Sweden)

    Bengi Yagmurlu

    2018-05-01

    Full Text Available This research presents a novel precipitation method for scandium (Sc concentrate refining from bauxite residue leachates and the effect of aqueous media on this triple-stage successive precipitation process. The precipitation pattern and the precipitation behavior of the constituent elements was investigated using different precipitation agents in three major mineral acid media, namely, H2SO4, HNO3, and HCl in a comparative manner. Experimental investigations showed behavioral similarities between HNO3 and HCl media, while H2SO4 media was different from them because of the nature of the formed complexes. NH4OH was found to be the best precipitation agent in every leaching media to remove Fe(III with low Sc co-precipitation. To limit Sc loss from the system, Fe(III removal was divided into two steps, leading to more than 90% of Fe(III removal at the end of the process. Phosphate concentrates were produced in the final step of the precipitation process with dibasic phosphates which have a strong affinity towards Sc. Concentrates containing more than 50% of ScPO4 were produced in each case from the solutions after Fe(III removal, as described. A flow diagram of the selective precipitation process is proposed for these three mineral acid media with their characteristic parameters.

  19. Relationships among developmental stage, metamorphic timing, and concentrations of elements in bullfrogs (Rana catesbeiana)

    Energy Technology Data Exchange (ETDEWEB)

    Snodgrass, J.W.; Hopkins, W.A.; Roe, J.H. [Towson University, Towson, MD (United States). Dept. for Biological Science

    2003-07-01

    We collected bullfrog (Rana catesbeiana) larvae from a coal combustion waste settling basin to investigate the effects of developmental stage and timing of metamorphosis on concentrations of a series of trace elements in bullfrog tissues. Bullfrogs at four stages of development (from no hind limbs to recently metamorphosed juveniles) and bullfrogs that metamorphosed in the fall or overwintered in the contaminated basin and metamorphosed in the spring were analyzed for whole-body concentrations of Al, V, Cr, Ni, Cu, As, Pb, Cd, Zn, Ag, Sr, and Se. After the effects of dry mass were removed, tissue concentrations of six elements (Al, V, Cr, Ni, Cu, As, and Pb) decreased from the late larval stage through metamorphosis. Decreases in concentrations through metamorphosis ranged from 40% for Cu to 97% for Al. Tissue concentrations of these elements were also similar or higher in spring; Al and Cr concentrations were 34 and 90% higher in the spring, respectively, whereas As, Ni, Cu, and Pb concentrations were {lt} 10% higher. Concentrations of Cd, Se, and Ag varied among seasons but not among stages; Cd and Ag concentrations were 40 and 62% lower, respectively, and Se concentrations were 21% higher in spring. Concentrations of Zn varied only among stages; concentrations decreased gradually through late larval stage and then increased through metamorphosis. Concentrations of Sr varied among stages, but this variation was dependent on the season. Concentrations of Sr were higher in larval stages during the spring, but because concentrations of Sr increased 122% through metamorphosis in the fall and only 22% in the spring, concentrations were higher in fall metamorphs when compared with spring metamorphs. Our results indicate that metamorphosis and season of metamorphosis affects trace element concentrations in bullfrogs and may have important implications for the health of juveniles and the transfer of pollutants from the aquatic to the terrestrial environment.

  20. Environmental isotope data no. 10: World survey of isotope concentration in precipitation (1988-1991). Report from a network

    International Nuclear Information System (INIS)

    1994-01-01

    This is the tenth volume of the publication Environmental Isotope Data: World Survey of Isotope Concentration in Precipitation. This volume is primarily concerned with the concentration of the environmental isotopes (tritium, deuterium and oxygen-18) in monthly samples of precipitation taken by a global network of 169 stations in the period 1988 to 1991. Selected meteorological data, such as the amount of precipitation, mean water vapour pressure and surface air temperature, are also presented. Data before 1988 which were unavailable at the time of the earlier issues have also been included in the latter part of this volume as late reports. The data are being widely used in hydrological, hydrometeorological and climatological studies. 9 refs, 2 figs

  1. Stationary nonimaging concentrator as a second stage element in tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Kritchman, E.M.; O' Gallagher, J.; Snail, K.A.; Winston, R.

    1983-06-01

    The University of Chicago solar energy group and GTE Research have developed an Integrated Stationary Evacuated Concentration (ISEC) collector tube. In this paper the increase in concentration of line focus concentrators that can be achieved using the evacuated CPC collector tube as a second stage element is examined. Three primary elements of the overall concentration are analyzed: a flat parabolic absorber trough, a flat Fresnel lens, and a color and coma corrected Fresnel lens. The three examples demonstrate that high concentration ratios may be achieved by using the already fabricated ISEC as a second stage element. The ISEC also suppresses thermal losses due to conduction, convection, and infrared radiation.

  2. To postpone the precipitation of manganese oxides in the degradation of tetrachloroethylene by controlling the permanganate concentration.

    Science.gov (United States)

    Yang, Weiwei; Qiu, Zhaofu; Zhao, Zhexuan; Lu, Shuguang; Sui, Qian; Gu, Xiaogang

    2017-01-01

    Controlled-release permanganate (CRP) is a relatively new technology used to treat contaminated groundwater. This study tested the encapsulation of permanganate using stearic acid to realize controlled-release properties. Batch experiments were conducted to investigate the performance of manganese oxides (MnO 2 ) in the reaction between CRP and the contaminant of interest: tetrachloroethylene (PCE). The results showed that higher ionic strengths (I = 0.1 mol/L) cause earlier precipitation of MnO 2 colloids. Using CRP to degrade PCE could decrease the amount of MnO 2 colloids produced and postpone precipitation compared to raw potassium permanganate (KMnO 4 ) under high ionic strength conditions by controlling the KMnO 4 concentration in the solution. The amount of MnO 2 colloids produced and the time of precipitation depended more on the CRP grain size than on the CRP mass ratio. Controlling the KMnO 4 concentration used in the reaction could control the formation of MnO 2 precipitates in the premise of guarantee the removal rate of PCE.

  3. Enrichment of yttrium from rare earth concentrate by ammonium carbonate leaching and peroxide precipitation

    International Nuclear Information System (INIS)

    Vasconcellos, Mari E. de; Rocha, S.M.R. da; Pedreira, W.R.; Queiroz S, Carlos A. da; Abrao, Alcidio

    2006-01-01

    The rare earth elements (REE) solubility with ammonium carbonate vary progressively from element to element, the heavy rare earth elements (HRE) being more soluble than the light rare earth elements (LRE). Their solubility is function of the carbonate concentration and the kind of carbonate as sodium, potassium and ammonium. In this work, it is explored this ability of the carbonate for the dissolution of the REE and an easy separation of yttrium was achieved using the precipitation of the peroxide from complex yttrium carbonate. For this work is used a REE concentrate containing (%) Y 2 O 3 2.4, Dy 2 O 3 0.6, Gd 2 O 3 2.7, CeO 2 2.5, Nd 2 O 3 33.2, La 2 O 3 40.3, Sm 2 O 3 4.1 and Pr 6 O 11 7.5. The mentioned concentrate was produced industrially from the chemical treatment of monazite sand by NUCLEMON in Sao Paulo. The yttrium concentrate was treated with 200 g L -1 ammonium carbonate during 10 and 30 min at room temperature. The experiments indicated that a single leaching operation was sufficient to get a rich yttrium solution with about 60.3% Y 2 O 3 . In a second step, this yttrium solution was treated with an excess of hydrogen peroxide (130 volumes), cerium, praseodymium and neodymium peroxides being completely precipitated and separated from yttrium. Yttrium was recovered from the carbonate solution as the oxalate and finally as oxide. The final product is an 81% Y 2 O 3 . This separation envisages an industrial application. The work discussed the solubility of the REE using ammonium carbonate and the subsequent precipitation of the correspondent peroxides

  4. Radon concentration and exhalation measurements with semiconductor detector and electrostatic precipitator working in a closed circulation system

    International Nuclear Information System (INIS)

    Wojcik, M.; Morawska, L.

    1982-01-01

    An apparatus is described and a method presented for the determination of concentration of radon emanated from solid and liquid samples. In this method an object or a sample of air is closed in an hermetically sealed chamber. The air contaminated by radon and its daughters is circulated in a closed system a few times through an electrostatic precipitator mounted in one housing with a semiconductor Si Li detector. The concentration of radon is determined by the alpha activity measurement of its daughters. The sensitivity of the apparatus is very high. While calculating a radon concentration from an activity measurement of RaA (fast method) the sensitivity is about 0.07 pCi/l and when measuring the activity of RaC' (slow method) it is 0.008 pCi/l. Due to the application of an electrostatic precipitator and a silicon detector it is possible to perform alpha spectrometric measurements and thus separate activities of RaA, RaC', and ThC and to calculate 222 Rn or 220 Rn concentrations. The efficiency of RaA, RaB, RaC, ThB and ThC collection is constant, due to the method involving the circulation of the air through the electrostatic precipitator several times. (author)

  5. Determination of fluorine concentrations using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry to analyze fluoride precipitates.

    Science.gov (United States)

    Lee, H. A.; Lee, J.; Kwon, E.; Kim, D.; Yoon, H. O.

    2015-12-01

    In recent times, fluorine has been receiving increasing attention due to the possibility for chemical (HF) leakage accidents and its high toxicity to human and environment. In this respect, a novel approach for the determination of fluorine concentrations in water samples using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry was investigated in this study. The main disadvantage of WDXRF technique for fluorine analysis is low analytical sensitivity for light elements with atomic number (Z) less than 15. To overcome this problem, we employed the precipitation reaction which fluoride is reacted with cation such as Al3+ and/or Ca2+ prior to WDXRF analysis because of their high analytical sensitivity. The cation was added in fluoride solutions to form precipitate (AlF3 and/or CaF2) and then the solution was filtered through Whatman filter. After drying at 60 °C for 5 min, the filter was coated with X-ray film and directly analyzed using WDXRF spectrometry. Consequently, we analyzed the cation on filter and subsequently fluorine concentration was calculated inversely based on chemical form of precipitate. This method can improve the analytical sensitivity of WDXRF technique for fluorine analysis and be applicable to various elements that can make precipitate.

  6. Centrifugal precipitation chromatography

    Science.gov (United States)

    Ito, Yoichiro; Lin, Qi

    2009-01-01

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. The countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation. PMID:19541553

  7. Inhibition of calcium phosphate precipitation under environmentally-relevant conditions

    International Nuclear Information System (INIS)

    Cao Xinde; Harris, Willie G.; Josan, Manohardeep S.; Nair, Vimala D.

    2007-01-01

    Precipitation of Ca phosphates plays an important role in controlling P activity and availability in environmental systems. The purpose of this study was to determine inhibitory effects on Ca phosphate precipitation by Mg 2+ , SO 4 2- , CO 3 2- , humic acid, oxalic acid, biogenic Si, and Si-rich soil clay commonly found in soils, sediments, and waste streams. Precipitation rates were determined by measuring decrease of P concentration in solutions during the first 60 min; and precipitated solid phases identified using X-ray diffraction and electron microscopy. Poorly-crystalline hydroxyapatite (HAP: Ca 5 (PO 4 ) 3 OH) formed in control solutions over the experiment period of 24 h, following a second-order dependence on P concentration. Humic acid and Mg 2+ significantly inhibited formation of HAP, allowing formation of a more soluble amorphous Ca phosphate phase (ACP), and thus reducing the precipitation rate constants by 94-96%. Inhibition caused by Mg 2+ results from its incorporation into Ca phosphate precipitates, preventing formation of a well-crystalline phase. Humic acid likely suppressed Ca phosphate precipitation by adsorbing onto the newly-formed nuclei. Presence of oxalic acid resulted in almost complete inhibition of HAP precipitation due to preemptive Ca-oxalate formation. Carbonate substituted for phosphate, decreasing the crystallinity of HAP and thus reducing precipitation rate constant by 44%. Sulfate and Si-rich solids had less impact on formation of HAP; while they reduced precipitation in the early stage, they did not differ from the control after 24 h. Results indicate that components (e.g., Mg 2+ , humic acid) producing relatively soluble ACP are more likely to reduce P stability and precipitation rate of Ca phosphate in soils and sediments than are components (e.g., SO 4 2- , Si) that have less effect on the crystallinity

  8. Silicon concentrator cells in a two-stage photovoltaic system with a concentration factor of 300x

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, A.

    2005-06-15

    In this work a rear contacted silicon concentrator cell was developed for an application in a two stage concentrator photovoltaic system. This system was developed at Fraunhofer ISE some years ago. The innovation of this one-axis tracked system is that it enables a high geometrical concentration of 300x in combination with a high optical efficiency (around 78%) and a large acceptance angle of {+-}23.5 all year through. For this, the system uses a parabolic mirror (40.4x) and a three dimensional second stage consisting of compound parabolic concentrators (CPCs, 7.7x). For the concentrator concept and particularly for an easy cell integration, the rear line contacted concentrator (RLCC) cells with a maximum efficiency of 25% were developed and a hybrid mounting concept for the RLCC cells is presented. The optical performance of different CPC materials was tested and analysed in this work. Finally, small modules consisting of six series interconnected RLCC cells and six CPCs were integrated into the concentrator system and tested outdoor. A system efficiency of 16.2% was reached at around 800 W/m2 direct irradiance under realistic outdoor conditions. (orig.)

  9. Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs.

    Science.gov (United States)

    Schmitz, Max; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-11-20

    While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries.

  10. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    Science.gov (United States)

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  11. Heterogeneous precipitation of niobium carbide in the ferrite by Monte Carlo simulations; Cinetique de precipitation heterogene du carbure de niobium dans la ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Hin, C

    2005-12-15

    The precipitation of niobium carbides in industrial steels is commonly used to control the recrystallization process or the amount of interstitial atoms in solid solution. It is then important to understand the precipitation kinetics and especially the competition between homogeneous and heterogeneous precipitation, since both of them have been observed experimentally, depending on they alloy composition, microstructure and thermal treatments. We propose Monte Carlo simulations of NbC precipitation in {open_square}-iron, based on a simple atomic description of the main parameters which control the kinetic pathway: - Realistic diffusion properties, with a rapid diffusion of C atoms by interstitial jumps and a slower diffusion of Fe and Nb atoms by vacancy jumps; - A model of grain boundaries which reproduces the segregation properties of Nb and C; - A model of dislocation which interacts with solute atoms through local segregation energies and long range elastic field; - A point defect source which drives the vacancy concentration towards its equilibrium value. Depending on the precipitation conditions, Monte Carlo simulations predict different kinetic behaviors, including a transient precipitation of metastable carbides, an early segregation stage of C, wetting phenomena at grain boundaries and on dislocations and a competition between homogeneous and heterogeneous NbC precipitation. Concerning the last point, we highlight that long range elastic field due to dislocation favors clearly the heterogeneous precipitation on dislocations. To understand this effect, we have developed a heterogeneous nucleation model including the calculation of the local concentration of solute atoms around the dislocation, the change of the solubility limit relative to the solubility limit in bulk and the energy of precipitates in an elastic field. We have concluded that elastic field favors the heterogeneous precipitation through the fall in nucleation barrier. (author)

  12. The production of rare earth elements group via tributyl phosphate extraction and precipitation stripping using oxalic acid

    Directory of Open Access Journals (Sweden)

    Esmaeil Jorjani

    2016-11-01

    Full Text Available In this study, solvent extraction and precipitation stripping were used to produce rare earth elements (REEs. Tributyl phosphate (TBP was used to extract yttrium, lanthanum, cerium, and neodymium from an aqueous solution produced by nitric acid leaching of apatite concentrate. In the extraction stage, the effects of TBP concentration, pH, contact time, temperature, and phase ratio were investigated. The results show that about 95%, 90%, 87% and 80% of neodymium, cerium, lanthanum, and yttrium, respectively, can be extracted in optimum conditions of extraction. Hot, deionized water was used to scrub the impurities from the loaded organic phase. The results showed that three stages of scrubbing with a phase ratio (Va/Vo of five removed about 80%, 30%, 27%, and 15% of Ca, Mg, Fe, and P, respectively, from loaded TBP, while less than 9% of total REEs was lost. The effects on precipitation stripping of oxalic acid concentration, contact time, and phase ratio were investigated. The results showed that precipitation stripping is a viable alternative to traditional acid stripping in the REEs production process. Mixed REEs oxide with an assay of about 90% can be achieved as a final product.

  13. New route for uranium concentrate production from Caetite ore, Bahia State, Brazil; dynamic leaching - direct precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Carlos A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: cmorais@cdtn.br; Gomiero, Luiz A.; Scassiotti Filho, Walter [Industrias Nucleares do Brasil S.A. (INB), Caetite, BA (Brazil)]. E-mails: gomiero@inb.gov.br; scassiotti@inb.gov.br

    2007-07-01

    The common uranium concentrate production consists of ore leaching, uranium purification/concentration by solvent extraction and uranium precipitation as ammonium diuranate steps. In the present work, a new route of uranium concentrate production from Caetite, BA-Brazil ore was investigated. The following steps were investigated: dynamic leaching of the ground ore with sulfuric acid; sulfuric liquor pre-neutralization until pH 3.7; uranium peroxide precipitation. The study was carried out in bath and continuous circuits. In the dynamic leaching of ground ore in agitated tanks the uranium content in the leached ore may be as low as 100 {mu}g/g U{sub 3}O{sub 8}, depending on grinding size. In the pre-neutralization step, the iron content in the liquor is decreased in 99 wt.%, dropping from 3.62 g/L to 0.030 g/L. The sulfate content in the liquor reduces from 46 g/L to 22 g/L. A calcinated final product assaying 99.7 wt.% U{sub 3}O{sub 8} was obtained. The full process recovery was over 94%. (author)

  14. On-line estimation of the dissolved zinc concentration during ZnS precipitation in a CSTR

    NARCIS (Netherlands)

    Grootscholten, T.I.M.; Keesman, K.J.; Lens, P.N.L.

    2007-01-01

    Abstract In this paper a method is presented to estimate the reaction term of zinc sulphide precipitation and the zinc concentration in a CSTR, using the read-out signal of a sulphide selective electrode. The reaction between zinc and sulphide is described by a non-linear model and therefore

  15. In Vitro, in Silico, and in Vivo Assessments of Intestinal Precipitation and Its Impact on Bioavailability of a BCS Class 2 Basic Compound.

    Science.gov (United States)

    Kou, Dawen; Zhang, Chen; Yiu, Hiuwing; Ng, Tania; Lubach, Joseph W; Janson, Matthew; Mao, Chen; Durk, Matthew; Chinn, Leslie; Winter, Helen; Wigman, Larry; Yehl, Peter

    2018-04-02

    In this study, a multipronged approach of in vitro experiments, in silico simulations, and in vivo studies was developed to evaluate the dissolution, supersaturation, precipitation, and absorption of three formulations of Compound-A, a BCS class 2 weak base with pH-dependent solubility. In in vitro 2-stage dissolution experiments, the solutions were highly supersaturated with no precipitation at the low dose but increasing precipitation at higher doses. No difference in precipitation was observed between the capsules and tablets. The in vitro precipitate was found to be noncrystalline with higher solubility than the crystalline API, and was readily soluble when the drug concentration was lowered by dilution. A gastric transit and biphasic dissolution (GTBD) model was developed to better mimic gastric transfer and intestinal absorption. Precipitation was also observed in GTBD, but the precipitate redissolved and partitioned into the organic phase. In vivo data from the phase 1 clinical trial showed linear and dose proportional PK for the formulations with no evidence of in vivo precipitation. While the in vitro precipitation observed in the 2-stage dissolution appeared to overestimate in vivo precipitation, the GTBD model provided absorption profiles consistent with in vivo data. In silico simulation of plasma concentrations by GastroPlus using biorelevant in vitro dissolution data from the tablets and capsules and assuming negligible precipitation was in line with the observed in vivo profiles of the two formulations. The totality of data generated with Compound-A indicated that the bioavailability differences among the three formulations were better explained by the differences in gastric dissolution than intestinal precipitation. The lack of intestinal precipitation was consistent with several other BCS class 2 basic compounds in the literature for which highly supersaturated concentrations and rapid absorption were also observed.

  16. Filterless pre-concentration by co-precipitation by formation of crystalline precipitate in the analysis of barium by FIA-FAES

    DEFF Research Database (Denmark)

    Plamboeck, C.; Westtoft, H.C.; Pedersen, S.A.

    2003-01-01

    A novel method based on flow injection analysis (FIA) and flame atomic emission spectrometry (FAES) is presented. It was developed for direct determination of barium in drinking water, in natural water, in digested samples of bone and liver, in saline water and in a standard reference material...... (NIST SRM 1640). It was found that digestion of bone by an incineration procedure was required, in order to extract most of the barium. In the FIA manifold, barium was pre-concentrated by co-precipitation with lead chromate leading to a crystalline deposit that adhered well to the inner walls of a nylon...

  17. An Improved Plutonium Trifluoride Precipitation Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, H.D.

    2001-06-26

    This report discusses results of the plutonium trifluoride two-stage precipitation study. A series of precipitation experiments was used to identify the significant process variables affecting precipitation performance. A mathematical model of the precipitation process was developed which is based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter which can be used to control the performance of the plutonium trifluoride precipitation process. Recommendations have been made which will optimize the FB-Line plutonium trifluoride precipitation process.

  18. An Improved Plutonium Trifluoride Precipitation Flowsheet

    International Nuclear Information System (INIS)

    Harmon, H.D.

    2001-01-01

    This report discusses results of the plutonium trifluoride two-stage precipitation study. A series of precipitation experiments was used to identify the significant process variables affecting precipitation performance. A mathematical model of the precipitation process was developed which is based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter which can be used to control the performance of the plutonium trifluoride precipitation process. Recommendations have been made which will optimize the FB-Line plutonium trifluoride precipitation process

  19. Precipitation modeling of inclusions at different stages of the steel making process

    International Nuclear Information System (INIS)

    Carreno, V.; Morales, R.D.; Romeero, A.; Hernandez, M.; Morales, R.D.

    1998-01-01

    Steel making processes are continuously improved in order to attend the increasing requirements of the cleanness of the liquid metal. At the refining stages, as deoxidation and desulphuration, the formation of inclusions of oxides and sulphides is promoted, which on the other hand, are the most frequent inclusions. In this work a mathematical simulator of the precipitation and chemical composition of non-metallic inclusions at different steps of the steel making process is presented. To this purpose, it is assumed that inclusions formed by reoxidation can be simulated by increasing arbitrarily the oxygen levels consumed by the residual elements (aluminium, calcium, etc) and starting the chemical reaction with less powerful deoxidants (silicium and manganese). Accordingly, different operative conditions can be simulated. Numerical predictions are compared with experimental results of industrial trials, as well as results included in the bibliography. (Author) 7 refs

  20. The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration

    International Nuclear Information System (INIS)

    Tan, Lijun; Ji, Xu; Li, Ming; Leng, Congbin; Luo, Xi; Li, Haili

    2014-01-01

    Highlights: • A two-stage photovoltaic thermal system based on solar trough concentration. • Maximum cell efficiency of 5.21% with the mirror opening width of 57 cm. • With single cycle, maximum temperatures rise in the heating stage is 12.06 °C. • With 30 min multiple cycles, working medium temperature 62.8 °C, increased 28.7 °C. - Abstract: A two-stage photovoltaic thermal system based on solar trough concentration is proposed, in which the metal cavity heating stage is added on the basis of the PV/T stage, and thermal energy with higher temperature is output while electric energy is output. With the 1.8 m 2 mirror PV/T system, the characteristic parameters of the space solar cell under non-concentrating solar radiation and concentrating solar radiation are respectively tested experimentally, and the solar cell output characteristics at different opening widths of concentrating mirror of the PV/T stage under condensation are also tested experimentally. When the mirror opening width was 57 cm, the solar cell efficiency reached maximum value of 5.21%. The experimental platform of the two-stage photovoltaic thermal system was established, with a 1.8 m 2 mirror PV/T stage and a 15 m 2 mirror heating stage, or a 1.8 m 2 mirror PV/T stage and a 30 m 2 mirror heating stage. The results showed that with single cycle, the long metal cavity heating stage would bring lower thermal efficiency, but temperature rise of the working medium is higher, up to 12.06 °C with only single cycle. With 30 min closed multiple cycles, the temperature of the working medium in the water tank was 62.8 °C, with an increase of 28.7 °C, and thermal energy with higher temperature could be output

  1. In Silico Modeling Approach for the Evaluation of Gastrointestinal Dissolution, Supersaturation, and Precipitation of Posaconazole.

    Science.gov (United States)

    Hens, Bart; Pathak, Shriram M; Mitra, Amitava; Patel, Nikunjkumar; Liu, Bo; Patel, Sanjaykumar; Jamei, Masoud; Brouwers, Joachim; Augustijns, Patrick; Turner, David B

    2017-12-04

    The aim of this study was to evaluate gastrointestinal (GI) dissolution, supersaturation, and precipitation of posaconazole, formulated as an acidified (pH 1.6) and neutral (pH 7.1) suspension. A physiologically based pharmacokinetic (PBPK) modeling and simulation tool was applied to simulate GI and systemic concentration-time profiles of posaconazole, which were directly compared with intraluminal and systemic data measured in humans. The Advanced Dissolution Absorption and Metabolism (ADAM) model of the Simcyp Simulator correctly simulated incomplete gastric dissolution and saturated duodenal concentrations of posaconazole in the duodenal fluids following administration of the neutral suspension. In contrast, gastric dissolution was approximately 2-fold higher after administration of the acidified suspension, which resulted in supersaturated concentrations of posaconazole upon transfer to the upper small intestine. The precipitation kinetics of posaconazole were described by two precipitation rate constants, extracted by semimechanistic modeling of a two-stage medium change in vitro dissolution test. The 2-fold difference in exposure in the duodenal compartment for the two formulations corresponded with a 2-fold difference in systemic exposure. This study demonstrated for the first time predictive in silico simulations of GI dissolution, supersaturation, and precipitation for a weakly basic compound in part informed by modeling of in vitro dissolution experiments and validated via clinical measurements in both GI fluids and plasma. Sensitivity analysis with the PBPK model indicated that the critical supersaturation ratio (CSR) and second precipitation rate constant (sPRC) are important parameters of the model. Due to the limitations of the two-stage medium change experiment the CSR was extracted directly from the clinical data. However, in vitro experiments with the BioGIT transfer system performed after completion of the in silico modeling provided an almost

  2. Climatic trends of different intensity heavy precipitation events concentration in China%中国强降水过程时空集中度气候趋势

    Institute of Scientific and Technical Information of China (English)

    谢志清; 杜银; 姜爱军

    2005-01-01

    Based on 740 stations of daily precipitation datasets in China, the precipitationconcentration degree (PCD) and precipitation-concentration period (PCP) of different intensity durative precipitation events were calculated to analyze their statistical characteristics, mainly including spatial and temporal distributions, variations and climatic trends of the two parameters of the durative heavy precipitation events in China. It is proved that these two parameters of heavy rainfall can display the temporal inhomogeneity in the precipitation field. And it is also found that there is a good positive relationship between the precipitation-concentration degree and annual rainfall amount in the Eastern and Central China. This method can be applied in flood assessment and climate change fields.

  3. Tritium time series in precipitation of Rm. Valcea, Romania.

    Science.gov (United States)

    Varlam, Carmen; Duliu, Octavian G; Faurescu, Ionut; Vagner, Irina; Faurescu, Denisa

    2016-01-01

    Following tritium concentration records in precipitation for the period 1999-2013 and tritium concentration behaviour during this period for the Ramnicu Valcea (Rm. Valcea) location, the tritium level of individual precipitations of the late spring and summer for the 2009-2013 period was investigated. Despite good correlation between monthly mean tritium concentrations and monthly mean precipitations over the 15-year period of observations (Pearson coefficient 0.87), the individual precipitations had no linear correlation between the tritium concentration and the amount of precipitation.

  4. Concentration and the second stage of labor: outcomes associated with the interactive metronome.

    Science.gov (United States)

    McGowan, Meghan L; Lin, Alexander; Ou-Yang, Robin; Zei, Markus; Grobman, William

    2012-11-01

    To analyze the association between concentration, as measured by the Interactive Metronome, and a prolonged second stage of labor in nulliparous patients. From September 2008 to November 2009, nulliparous women at ≥34 weeks' gestation who were planning to use an epidural were asked to perform a 1-minute Interactive Metronome clapping test. Scores and demographic information were recorded. Data were then abstracted regarding each patient's labor course. The main outcome measure was the frequency of the second stage of labor exceeding 2 hours. Only patients with epidural anesthesia who completed the second stage of labor and did not require operative delivery performed for fetal indications prior to 2 full hours of pushing were included. Of the patients whose Interactive Metronome test scores were in the last quartile, which we associated with poor concentration, 52.9% (18/34) had a second stage of labor exceeding 2 hours compared with only 31.7% (33/104) of patients whose scores placed them in the first three quartiles (p = 0.026). Nulliparous patients with poor concentration scores, as measured by the Interactive Metronome, were more likely to push greater than 2 hours in the second stage of labor. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Impact of dissolution and carbonate precipitation on carbon storage in basalt

    Science.gov (United States)

    Wells, R. K.; Xiong, W.; Tadeoye, J.; Menefee, A.; Ellis, B. R.; Skemer, P. A.; Giammar, D.

    2016-12-01

    The spatial evolution of silicate mineral dissolution, carbonate precipitation, and the transport of fluids influence the viability of carbon storage in basalt reservoirs. Dissolution of natural basalt and subsequent carbonate precipitation in systems with different transport processes operating were characterized using static and flow-through (5 mL/hr) experiments at 50, 100, and 150 °C, and 100 bar CO2. Intact samples and cores with milled pathways that simulate fractures were tested. Spatial and mineralogical patterns in dissolution and precipitation were analyzed using optical and electron microscopy, microCT scanning, and surface roughness data. Precipitates and fluid chemistry were analyzed using Raman spectroscopy, SEM-EDS, and ICP-MS. Analysis of the bulk solution and surface topography suggests dissolution of olivine and pyroxene grains begins within hours of the start of the experiments. In flow-through experiments, total effluent cation concentrations reach a peak concentration within a few hours then drop towards a steady state within a few days. In static experiments, the initial rate of cation release is faster than it is after several weeks. In both cases Ca2+, Mg2+, and Fe2+ are the dominant cations in solution in the initial stages of reaction. Lower concentrations of Na2+, K+, and Al3+, and the preservation of feldspar and matrix grains after several weeks of reaction indicate the slow reactivity of these minerals. As the reaction progresses, the surface roughness increases steadily with cavities developing at the sites of olivine and pyroxene grains. Post-reaction analysis of basalt samples reacted at static conditions with milled pathways reveals that both siderite and amorphous silica precipitated within diffusion-limited zones as early as 4-6 weeks. Siderite abundance varies with distance along the pathway with the highest concentration of carbonates 1-2 cm below the fracture opening. Siderite precipitates are large enough to fill fracture

  6. Heterogeneous precipitation of niobium carbide in the ferrite by Monte Carlo simulations

    International Nuclear Information System (INIS)

    Hin, C.

    2005-12-01

    The precipitation of niobium carbides in industrial steels is commonly used to control the recrystallization process or the amount of interstitial atoms in solid solution. It is then important to understand the precipitation kinetics and especially the competition between homogeneous and heterogeneous precipitation, since both of them have been observed experimentally, depending on they alloy composition, microstructure and thermal treatments. We propose Monte Carlo simulations of NbC precipitation in □-iron, based on a simple atomic description of the main parameters which control the kinetic pathway: - Realistic diffusion properties, with a rapid diffusion of C atoms by interstitial jumps and a slower diffusion of Fe and Nb atoms by vacancy jumps; - A model of grain boundaries which reproduces the segregation properties of Nb and C; - A model of dislocation which interacts with solute atoms through local segregation energies and long range elastic field; - A point defect source which drives the vacancy concentration towards its equilibrium value. Depending on the precipitation conditions, Monte Carlo simulations predict different kinetic behaviors, including a transient precipitation of metastable carbides, an early segregation stage of C, wetting phenomena at grain boundaries and on dislocations and a competition between homogeneous and heterogeneous NbC precipitation. Concerning the last point, we highlight that long range elastic field due to dislocation favors clearly the heterogeneous precipitation on dislocations. To understand this effect, we have developed a heterogeneous nucleation model including the calculation of the local concentration of solute atoms around the dislocation, the change of the solubility limit relative to the solubility limit in bulk and the energy of precipitates in an elastic field. We have concluded that elastic field favors the heterogeneous precipitation through the fall in nucleation barrier. (author)

  7. Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation

    KAUST Repository

    Vlach, Martin; Cizek, Jakub; Melikhova, Oksana; Stulikova, Ivana; Smola, Bohumil; Kekule, Tomas; Kudrnova, Hana; Gemma, Ryota; Neubert, Volkmar

    2015-01-01

    Thermal effects on the precipitation stages in as-cast Al-0.70 at. pct Mn-0.15 at. pct Sc-0.05 at. pct Zr alloy were studied. The role of lattice defects was elucidated by positron annihilation spectroscopy (lifetime and coincidence Doppler broadening) enabling investigation of solutes clustering at the atomic scale. This technique has never been used in the Al-Sc- and/or Al-Zr-based alloys so far. Studies by positron annihilation were combined with resistometry, hardness measurements, and microstructure observations. Positrons trapped at defects are preferentially annihilated by Sc electrons. Lifetime of trapped positrons indicates that Sc atoms segregate at dislocations. Maximum fraction of positrons annihilated by Sc electrons occurring at 453 K (180 °C) suggests that clustering of Sc bound with vacancies takes place. It is followed by peak of this fraction at 573 K (300 °C). A rise of the contribution of trapped positrons annihilated by Zr electrons starting at 513 K (240 °C) and attaining maximum also at 573 K (300 °C) confirms that Zr participates in precipitation of the Al3Sc particles already at these temperatures. The pronounced hardening at 573 K (300 °C) has its nature in the precipitation of the Al3Sc particles with a Zr-rich shell. The contribution of trapped positrons annihilated by Mn electrons was found to be negligible. © 2015, The Minerals, Metals & Materials Society and ASM International.

  8. Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation

    KAUST Repository

    Vlach, Martin

    2015-01-29

    Thermal effects on the precipitation stages in as-cast Al-0.70 at. pct Mn-0.15 at. pct Sc-0.05 at. pct Zr alloy were studied. The role of lattice defects was elucidated by positron annihilation spectroscopy (lifetime and coincidence Doppler broadening) enabling investigation of solutes clustering at the atomic scale. This technique has never been used in the Al-Sc- and/or Al-Zr-based alloys so far. Studies by positron annihilation were combined with resistometry, hardness measurements, and microstructure observations. Positrons trapped at defects are preferentially annihilated by Sc electrons. Lifetime of trapped positrons indicates that Sc atoms segregate at dislocations. Maximum fraction of positrons annihilated by Sc electrons occurring at 453 K (180 °C) suggests that clustering of Sc bound with vacancies takes place. It is followed by peak of this fraction at 573 K (300 °C). A rise of the contribution of trapped positrons annihilated by Zr electrons starting at 513 K (240 °C) and attaining maximum also at 573 K (300 °C) confirms that Zr participates in precipitation of the Al3Sc particles already at these temperatures. The pronounced hardening at 573 K (300 °C) has its nature in the precipitation of the Al3Sc particles with a Zr-rich shell. The contribution of trapped positrons annihilated by Mn electrons was found to be negligible. © 2015, The Minerals, Metals & Materials Society and ASM International.

  9. The Relationship Between Latent Heating, Vertical Velocity, and Precipitation Processes: the Impact of Aerosols on Precipitation in Organized Deep Convective Systems

    Science.gov (United States)

    Tao, Wei-Kuo; Li, Xiaowen

    2016-01-01

    A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updraftsdowndrafts in the middlelower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.

  10. A procedure for reducing the concentration of hydrogen ions in acid anionic eluate and equipment therefore

    International Nuclear Information System (INIS)

    Parobek, P.; Baloun, S.; Plevac, S.

    1989-01-01

    The method is described of reducing the concentration of hydrogen ions in acid anionic eluate produced in the separation of uranium or other metals, in which anion exchanger elution, precipitation, filtration and precipitate and anion exchanger washing are used. The technological line for such elution comprises at least one ion exchange column and at least one container. They together form the first and the second stages of preparation of the acid anion elution solution, the sorption-elution separation of hydrogen ions on an cation exchanger being inserted between them. The preparation of the solution is divide into two stages. In the first stage, the acid and part of the solution for the preparation of the acid anion elution solution are supplied. The resulting enriched acid elution solution is fe onto the cation exchanger where the hydrogen ion concentration i reduced. It is then carried into the second stage where it is mixed with the remaining part of the solution. (B.S.)

  11. Stationary nonimaging concentrator as a second stage element in tracking systems

    Science.gov (United States)

    Kritchman, E. M.; Snail, K. A.; Ogallagher, J.; Winston, R.

    1983-01-01

    An increase in the concentration in line focus solar concentrators is shown to be available using an evacuated compound parabolic concentrator (CPC) tube as a second stage element. The absorber is integrated into an evacuated tube with a transparent upper section and a reflective lower section, with a selective coating on the absorber surface. The overall concentration is calculated in consideration of a parabolic mirror in a trough configuration, a flat Fresnel lens over the top, or a color and coma corrected Fresnel lens. The resulting apparatus is noted to also suppress thermal losses due to conduction, convection, and IR radiation.

  12. Scavenging of radon daughters by precipitation from the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Fujinami, Naoto [Kyoto Prefectural Inst. of Hygienic and Environmental Sciences (Japan)

    1997-02-01

    By the continuous measurement of the radon daughters concentration in the rain and snow water and atmosphere and the data analysis, the following results were obtained. The radon daughters concentration was almost constant in the rain and snow water in spite of the length during weather without precipitation. It has not tendency to show the high concentration of radon daughters in precipitation and snow during beginning of them. When the precipitation intensity is constant, it`s concentration does not change during precipitation and snowfall. The concentration does not depend on the amount of precipitation, but on the precipitation intensity. We did not observe a correlation between the radon daughters concentration in the rain and snow water and that in the surface air. The atmospheric concentration was decreased by precipitation and snowfall, but that of rain and snow water did not decrease. The above results seems to show that the contribution of washout under the cloud to radon daughters in rain and snow water is small and that of rainout in the cloud is large. This result is agreement with the Jacob`s experimental results. (S.Y.)

  13. STRONTIUM PRECIPITATION

    Science.gov (United States)

    McKenzie, T.R.

    1960-09-13

    A process is given for improving the precipitation of strontium from an aqueous phosphoric-acid-containing solution with nickel or cobalt ferrocyanide by simultaneously precipitating strontium or calcium phosphate. This is accomplished by adding to the ferrocyanide-containing solution calcium or strontium nitrate in a quantity to yield a concentration of from 0.004 to 0.03 and adjusting the pH of the solution to a value of above 8.

  14. Study on Thorium Hidroxide and Ammonium Diuranate precipitation

    International Nuclear Information System (INIS)

    Damunir; Sukarsono, R; Busron-Masduki; Indra-Suryawan

    1996-01-01

    Thorium hydroxide and ammonium diuranate precipitation studied by the reaction of mixed thorium nitrate and uranyl nitrate using ammonium hydroxide. The purposes of this research was study of pH condition. U/Th ratio and NH 4 OH concentration on the precipitation. Mixed of thorium nitrate and uranyl nitrate 50 ml was reacted by excess ammonium hydroxide 2 - 10 M, pH 4-8, 40-80 o C of temperature and 5 - 100 % ratio of U/Th. The best of precipitation depend on thorium and uranium content on the precipitation. The experiment result for the best condition of precipitation was 25 % of ratio U/Th, pH 6 - 8, 60-80 o C of temperature, and 6 - 10 M concentration of ammonium hydroxide, was produced precipitate by 3,938 - 5,455 weight percent of mean concentration of U and 22,365-31,873 weight percent of mean concentration of Th

  15. Rheology of tetraphenylborate precipitate slurry

    International Nuclear Information System (INIS)

    Goren, I.D.; Martin, H.D.; McLain, M.A.

    1985-01-01

    The rheological properties of tetraphenylborate precipitate slurry were determined. This nonradioactive slurry simulates the radioactive tetraphenylborate precipitate generated at the Savannah River Plant by the In-Tank Precipitation Process. The data obtained in this study was applied in the design of slurry pumps, transfer pumps, transfer lines, and vessel agitation for the Defense Waste Processing Facility and other High Level Waste treatment projects. The precipitate slurry behaves as a Bingham plastic. The yield stress is directly proportional to the concentration of insoluble solids over the range of concentrations studied. The consistency is also a linear function of insoluble solids over the same concentration range. Neither the yield stress nor the consistency was observed to be affected by the presence of the soluble solids. Temperature effects on flow properties of the slurry were also examined: the yield stress is inversely proportional to temperature, but the consistency of the slurry is independent of temperature. No significant time-dependent effects were found. 4 refs., 4 figs., 3 tabs

  16. An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation

    Directory of Open Access Journals (Sweden)

    S. Solomos

    2011-01-01

    Full Text Available This report addresses the effects of pollution on the development of precipitation in clean ("pristine" and polluted ("hazy" environments in the Eastern Mediterranean by using the Integrated Community Limited Area Modeling System (ICLAMS (an extended version of the Regional Atmospheric Modeling System, RAMS. The use of this model allows one to investigate the interactions of the aerosols with cloud development. The simulations show that the onset of precipitation in hazy clouds is delayed compared to pristine conditions. Adding small concentrations of GCCN to polluted clouds promotes early-stage rain. The addition of GCCN to pristine clouds has no effect on precipitation amounts. Topography was found to be more important for the distribution of precipitation than aerosol properties. Increasing by 15% the concentration of hygroscopic dust particles for a case study over the Eastern Mediterranean resulted in more vigorous convection and more intense updrafts. The clouds that were formed extended about three kilometers higher, delaying the initiation of precipitation by one hour. Prognostic treatment of the aerosol concentrations in the explicit cloud droplet nucleation scheme of the model, improved the model performance for the twenty-four hour accumulated precipitation. The spatial distribution and the amounts of precipitation were found to vary greatly between the different aerosol scenarios. These results indicate the large uncertainty that remains and the need for more accurate description of aerosol feedbacks in atmospheric models and climate change predictions.

  17. TCA precipitation.

    Science.gov (United States)

    Koontz, Laura

    2014-01-01

    Trichloroacetic acid (TCA) precipitation of proteins is commonly used to concentrate protein samples or remove contaminants, including salts and detergents, prior to downstream applications such as SDS-PAGE or 2D-gels. TCA precipitation denatures the protein, so it should not be used if the protein must remain in its folded state (e.g., if you want to measure a biochemical activity of the protein). © 2014 Elsevier Inc. All rights reserved.

  18. Experimental studies of two-stage centrifugal dust concentrator

    Science.gov (United States)

    Vechkanova, M. V.; Fadin, Yu M.; Ovsyannikov, Yu G.

    2018-03-01

    The article presents data of experimental results of two-stage centrifugal dust concentrator, describes its design, and shows the development of a method of engineering calculation and laboratory investigations. For the experiments, the authors used quartz, ceramic dust and slag. Experimental dispersion analysis of dust particles was obtained by sedimentation method. To build a mathematical model of the process, dust collection was built using central composite rotatable design of the four factorial experiment. A sequence of experiments was conducted in accordance with the table of random numbers. Conclusion were made.

  19. Tritium Level in Romanian Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Stefanescu, I.; Faurescu, I.; Bogdan, D.; Soare, A. [Institute for Cryogenic and Isotope Technologies, Rm. Valcea (Romania); Duliu, O. G. [Faculty of Physics, University of Bucharest, Magurele (Romania)

    2013-07-15

    Romania is one of the countries that has no station included in GNIP (Global Network of Isotopes in Precipitation) on its territory. This paper presents results regarding the tritium concentration in precipitation for the period 1999-2009. The precipitation fell at the Institute for cryogenic and Isotope technologies (geographical coordinates: altitude 237 m, latitude 45{sup o}02'07' N, longitude 24{sup o}17'03' E) an was collected both individually and as a composite average of each month. It was individually measured and the average was calculated and compared with the tritium concentration measured in the composite sample. tritium concentration levels ranged from 9.9 {+-} 2.1 TU for 2004 and 13.7 {+-} 2.2 TU for 2009. Comparing the arithmetic mean values with the weighted mean for the period of observation, it was noticed that the higher absolute values of the weighted means were constant. It was found that for the calculated monthly average for the period of observation (1999-2009), the months with the maximum tritium concentration are the same as the months with the maximum amount of precipitation. This behaviour is typical for the monitored location. (author)

  20. Continuous precipitation of uranium peroxide in process pilot plant

    International Nuclear Information System (INIS)

    Quinelato, A.L.

    1990-01-01

    An experimental study on uranium peroxide precipitation has been carried out with the objective to evaluate the influence of the main process parameters with a technological approach. The uraniferous solution used was obtained from the hydrometallurgical processing of an ore from Itataia - CE. Studies were developed in two distinct experimental stages. In the first stage, the precipitation was investigated by means of laboratory batch tests and, in the second stage, by means of continuous operation in a process pilot plant. (author)

  1. Impact of Precipitation Fluctuation on Desert-Grassland ANPP

    Directory of Open Access Journals (Sweden)

    Liangxu Liu

    2016-11-01

    Full Text Available Precipitation change has significantly influenced annual net primary productivity (ANPP at either annual or seasonal scales in desert steppes in arid and semi-arid regions. In order to reveal the process of precipitation driving ANPP at different time scales, responses of different ANPP levels to the inter-annual and intra-annual precipitation fluctuations were analyzed. ANPP was reversed by building a ground reflectance spectrum model, from 2000 to 2015, using the normalized differential vegetation index of the Moderate-Resolution Imaging Spectroradiometer (MODIS-NDVI data at 250 m × 250 m spatial resolution. Since the description of the differently expressing forms of precipitation are not sufficient in former studies in order to overcome the deficiency of former studies, in this study, intra-annual precipitation fluctuations were analyzed not only with precipitation of May–August, June–August, July–August, and August, respectively, which have direct influence on vegetation productivity within the year, but quantitative description, vector precipitation (R, concentration ratio (Cd, and concentration period (D, were also used to describe the overall characteristics of intra-annual precipitation fluctuations. The concentration ratio and the maximum precipitation period of the intra-annual precipitation were represented by using monthly precipitation. The results showed that: (1 in the period from 1971 to 2015, the maximum annual precipitation is 3.76 times that of the minimum in the Urat desert steppe; (2 vector precipitation is more significantly related to ANPP (r = 0.7724, p = 0.000 compared to meteorological annual precipitation and real annual precipitation influence; and (3 annual precipitation is almost concentrated in 5–8 months and monthly precipitation accumulation has significantly effected ANPP, especially in the period of June–August, since the vegetation composition in the study area was mainly sub-shrubs and perennial

  2. Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002–2008

    International Nuclear Information System (INIS)

    Risch, Martin R.; Gay, David A.; Fowler, Kathleen K.; Keeler, Gerard J.; Backus, Sean M.; Blanchard, Pierrette; Barres, James A.; Dvonch, J. Timothy

    2012-01-01

    Annual and weekly mercury (Hg) concentrations, precipitation depths, and Hg wet deposition in the Great Lakes region were analyzed by using data from 5 monitoring networks in the USA and Canada for a 2002–2008 study period. High-resolution maps of calculated annual data, 7-year mean data, and net interannual change for the study period were prepared to assess spatial patterns. Areas with 7-year mean annual Hg concentrations higher than the 12 ng per liter water-quality criterion were mapped in 4 states. Temporal trends in measured weekly data were determined statistically. Monitoring sites with significant 7-year trends in weekly Hg wet deposition were spatially separated and were not sites with trends in weekly Hg concentration. During 2002–2008, Hg wet deposition was found to be unchanged in the Great Lakes region and its subregions. Any small decreases in Hg concentration apparently were offset by increases in precipitation. - Highlights: ► Data from 5 Hg and precipitation networks in the USA and Canada were combined for the first time. ► High-resolution maps and statistical trends tests were used for spatial and temporal data analysis. ► Some 7-year mean annual Hg concentrations exceeded a 12 ng per liter water-quality criterion. ► Small, localized decreases in Hg concentration were offset by increases in precipitation. ► Hg wet deposition was unchanged in the Great Lakes region and its subregions during 2002–2008. - Analysis of monitoring data from 5 networks in the USA and Canada determined that mercury wet deposition was unchanged in the North American Great Lakes region during 2002–2008.

  3. Effect of Initial ZrOCl₂ Concentration on the Homogeneous Precipitation of Nanoscale 3Y-TZP Powder.

    Science.gov (United States)

    Jeong, Hyeongdo; Lee, Jong Kook

    2018-09-01

    Nanoscale yttria-stabilized zirconia (Y-TZP) powder was synthesized by homogeneous precipitation via urea hydrolysis, and the influence of a dispersing agent and the initial ZrOCl2 concentration on the powder characteristics was investigated. A precipitated gel was obtained from the reaction of the precursor solution with zirconium oxychloride, yttrium chloride, and urea with heating at 110 °C for 5 h. The initial ZrOCl2 concentration was controlled from 0.25 to 1 M. To observe the effect of adding a dispersing agent on the agglomeration of primary particles, we used two starting compositions, one with and the other without a dispersing agent, ammonium polymethacrylate. Two crystalline powders were obtained after drying, calcination, and milling the gel, and we investigated the powder characteristics, such as particle agglomeration, the specific surface area, the microstructure, and phase composition. Two scales of agglomerates were observed in the particle size distribution, namely, 190 to 362 nm at the primary scale and 1.6-4.0 μm at the secondary scale. The amount of secondary agglomerate increased from 6 to 20 vol% with the increasing initial ZrOCl2 concentration. The size of both types of agglomerate and the amount of secondary agglomerates decreased due to the addition of the dispersing agent, especially the primary agglomerate size. The sintered density and microstructure of Y-TZP were affected by the agglomeration behavior, especially the amount of secondary agglomerates.

  4. The production of rare earth elements group via tributyl phosphate extraction and precipitation stripping using oxalic acid

    OpenAIRE

    Jorjani, Esmaeil; Shahbazi, Malek

    2016-01-01

    In this study, solvent extraction and precipitation stripping were used to produce rare earth elements (REEs). Tributyl phosphate (TBP) was used to extract yttrium, lanthanum, cerium, and neodymium from an aqueous solution produced by nitric acid leaching of apatite concentrate. In the extraction stage, the effects of TBP concentration, pH, contact time, temperature, and phase ratio were investigated. The results show that about 95%, 90%, 87% and 80% of neodymium, cerium, lanthanum, and yttri...

  5. Long-term morphine delivery via slow release morphine pellets or osmotic pumps: Plasma concentration, analgesia, and naloxone-precipitated withdrawal.

    Science.gov (United States)

    McLane, Virginia D; Bergquist, Ivy; Cormier, James; Barlow, Deborah J; Houseknecht, Karen L; Bilsky, Edward J; Cao, Ling

    2017-09-15

    Slow-release morphine sulfate pellets and osmotic pumps are common routes of chronic morphine delivery in mouse models, but direct comparisons of these drug delivery systems are lacking. In this study, we assessed the efficacy of slow-release pellets versus osmotic pumps in delivering morphine to adult mice. Male C57BL/6NCr mice (8weeksold) were implanted subcutaneously with slow-release pellets (25mg morphine sulfate) or osmotic pumps (64mg/mL, 1.0μL/h). Plasma morphine concentrations were quantified via LC-MS/MS, analgesic efficacy was determined by tail flick assay, and dependence was assessed with naloxone-precipitated withdrawal behaviors (jumping) and physiological effects (excretion, weight loss). Morphine pellets delivered significantly higher plasma drug concentrations compared to osmotic pumps, which were limited by the solubility of the morphine sulfate and pump volume/flow rate. Within 96h post-implantation, plasma morphine concentrations were indistinguishable in pellet vs. pump-treated samples. While osmotic pump did not have an antinociceptive effect in the tail flick assay, pumps and pellets induced comparable dependence symptoms (naloxone-precipitated jumping behavior) from 24-72h post-implantation. In this study, we compared slow-release morphine pellets to osmotic minipumps for morphine delivery in mice. We found that osmotic pumps and subcutaneous morphine sulfate pellets yielded significantly different pharmacokinetics over a 7-day period, and as a result significantly different antinociceptive efficacy. Nonetheless, both delivery methods induced dependence as measured by naloxone-precipitated withdrawal. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Investigation of Neptunium Precipitator Cleanout Options

    International Nuclear Information System (INIS)

    Hill, B.C.

    2003-01-01

    Oxalate precipitation followed by filtration is used to prepare plutonium oxalate. Historically, plutonium oxalate has tended to accumulate in the precipitation tanks. These solids are periodically removed by flushing with concentrated (64 percent) nitric acid. The same precipitation tanks will now be used in the processing of neptunium. Literature values indicate that neptunium oxalate may not be as soluble as plutonium oxalate in nitric acid. Although a wide variety of options is available to improve neptunium oxalate solubility for precipitator flushing, most of these options are not practical for use. Many of these options require the use of incompatible or difficult to handle chemicals. Other options would require expensive equipment modifications or are likely to lead to product contamination. Based on review of literature and experimental results, the two best options for flushing the precipitator are (1) 64 percent nitric acid and (2) addition of sodium permanganate follow ed by sodium nitrite. Nitric acid is the easiest option to implement. It is already used in the facility and will not lead to product contamination. Experimental results indicate that neptunium oxalate can be dissolved in concentrated nitric acid (64 percent) at 60 degree C to a concentration of 2.6 to 5.6 grams of Np/liter after at least three hours of heating. A lower concentration (1.1 grams of Np/liter) was measured at 60 degree C after less than two hours of heating. These concentrations are acceptable for flushing if precipitator holdup is low (approximately 100-250 grams), but a second method is required for effective flushing if precipitator holdup is high (approximately 2 kilograms). The most effective method for obtaining higher neptunium concentrations is the use of sodium permanganate followed by the addition of sodium nitrite. There is concern that residual manganese from these flushes could impact product purity. Gas generation during permanganate addition is also a concern

  7. Two-axis tracking using translation stages for a lens-to-channel waveguide solar concentrator.

    Science.gov (United States)

    Liu, Yuxiao; Huang, Ran; Madsen, Christi K

    2014-10-20

    A two-axis tracking scheme designed for tracker and a translation stage is discussed. The translation stage is used for adjusting positions for seasonal sun movement. It has two-dimensional x-y tracking instead of horizontal movement x-only. This tracking method is compatible with planar waveguide solar concentrators. A prototype system with 50x concentration shows >75% optical efficiency throughout the year in simulation and >65% efficiency experimentally. This efficiency can be further improved by the use of anti-reflection layers and a larger waveguide refractive index.

  8. Dilution physics modeling: Dissolution/precipitation chemistry

    International Nuclear Information System (INIS)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics

  9. Precipitation of {gamma}' phase in {delta}-precipitated Alloy 718 during deformation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nalawade, S.A. [Structural Metallurgy Section, Mechanical Metallurgy Section, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sundararaman, M., E-mail: msraman@barc.gov.in [Structural Metallurgy Section, Mechanical Metallurgy Section, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, J.B.; Verma, A.; Kishore, R. [Structural Metallurgy Section, Mechanical Metallurgy Section, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2010-05-15

    Alloy 718 samples aged to precipitate only {delta} particles (with maximum volume fraction) when tensile deformed to fracture at elevated temperatures revealed precipitation of {gamma}' and {gamma}'' phases. The {gamma}' precipitation was found to precede the {gamma}'' phase precipitation unlike in the case of specimens subjected to standard ageing treatment where both the {gamma}' and the {gamma}'' phases precipitate simultaneously. This sequence is explained on the basis of the relative concentration of Al, Ti and Nb in the matrix of {delta} precipitated Alloy 718 microstructure. The precipitation sequence was consistent with the Cozar and Pineau's model that predicts such sequences on the basis of (Al + Ti) to Nb atom ratios.

  10. Process for treatment of pyrochlore concentrates

    International Nuclear Information System (INIS)

    Charlot, G.

    1976-01-01

    A continuous process is described for extraction of niobium, rare earths and thorium from niobium ore concentrates which includes digesting the ore with a hot solution containing 13 to 16 moles of sulphuric acid per liter, diluting the solution to a concentration of 10 to 13 moles of sulphuric acid per liter, separating the insolubles from the solution which includes alkaline earth sulphates and the sulphates of thorium and rare earths that are present, reducing titanium in solution to the trivalent state and diluting the solution to a concentration of 5 to 7 moles of sulphuric acid per liter, separating the precipitated niobium oxide and sulphates of thorium and rare earths, and then concentrating the resulting solution to the level desired for recycle to the digestion stage. 10 Claims, No Drawings

  11. On-line estimation of the dissolved zinc concentration during ZnS precipitation in a continuous stirred tank reactor (CSTR)

    NARCIS (Netherlands)

    Grootscholten, T.I.M.; Keesman, K.J.; Lens, P.N.L.

    2008-01-01

    In this paper a method is presented to estimate the reaction term of zinc sulphide precipitation and the zinc concentration in a CSTR, using the read-out signal of a sulphide selective electrode. The reaction between zinc and sulphide is described by a non-linear model and therefore classical

  12. Effects of Calcium Source on Biochemical Properties of Microbial CaCO3 Precipitation.

    Science.gov (United States)

    Xu, Jing; Du, Yali; Jiang, Zhengwu; She, Anming

    2015-01-01

    The biochemical properties of CaCO3 precipitation induced by Sporosarcina pasteurii, an ureolytic type microorganism, were investigated. Effects of calcium source on the precipitation process were examined, since calcium source plays a key role in microbiologically induced mineralization. Regardless of the calcium source type, three distinct stages in the precipitation process were identified by Ca(2+), NH4 (+), pH and cell density monitoring. Compared with stage 1 and 3, stage 2 was considered as the most critical part since biotic CaCO3 precipitation occurs during this stage. Kinetics studies showed that the microbial CaCO3 precipitation rate for calcium lactate was over twice of that for calcium nitrate, indicating that calcium lactate is more beneficial for the cell activity, which in turn determines urease production and CaCO3 precipitation. X-ray diffraction analysis confirmed the CaCO3 crystal as calcite, although scanning electron microscopy revealed a difference in crystal size and morphology if calcium source was different. The findings of this paper further suggest a promising application of microbiologically induced CaCO3 precipitation in remediation of surface and cracks of porous media, e.g., cement-based composites, particularly by using organic source of calcium lactate.

  13. Reference values assessment in a Mediterranean population for small dense low-density lipoprotein concentration isolated by an optimized precipitation method

    Directory of Open Access Journals (Sweden)

    Fernández-Cidón B

    2017-06-01

    Full Text Available Bárbara Fernández-Cidón,1–3 Ariadna Padró-Miquel,1 Pedro Alía-Ramos,1 María José Castro-Castro,1 Marta Fanlo-Maresma,4 Dolors Dot-Bach,1 José Valero-Politi,1 Xavier Pintó-Sala,4 Beatriz Candás-Estébanez1 1Clinical Laboratory, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain; 2Department of Biochemistry, Molecular Biology and Biomedicine, Autonomous University of Barcelona (UAB, Barcelona, Spain; 3Department of Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL, L’Hospitalet de Llobregat, Spain; 4Cardiovascular Risk Unit, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain Background: High serum concentrations of small dense low-density lipoprotein cholesterol (sd-LDL-c particles are associated with risk of cardiovascular disease (CVD. Their clinical application has been hindered as a consequence of the laborious current method used for their quantification. Objective: Optimize a simple and fast precipitation method to isolate sd-LDL particles and establish a reference interval in a Mediterranean population. Materials and methods: Forty-five serum samples were collected, and sd-LDL particles were isolated using a modified heparin-Mg2+ precipitation method. sd-LDL-c concentration was calculated by subtracting high-density lipoprotein cholesterol (HDL-c from the total cholesterol measured in the supernatant. This method was compared with the reference method (ultracentrifugation. Reference values were estimated according to the Clinical and Laboratory Standards Institute and The International Federation of Clinical Chemistry and Laboratory Medicine recommendations. sd-LDL-c concentration was measured in serums from 79 subjects with no lipid metabolism abnormalities. Results: The Passing–Bablok regression equation is y = 1.52 (0.72 to 1.73 + 0.07x (−0.1 to 0.13, demonstrating no significant statistical differences

  14. Effects of different oxyanions in solution on the precipitation of jarosite at room temperature.

    Science.gov (United States)

    Yeongkyoo, Kim

    2018-04-09

    The effects of five different oxyanions, AsO 4 , SeO 3 , SeO 4 , MoO 4 , and CrO 4 , on the precipitation of jarosite at room temperature were investigated by X-ray diffraction, scanning electron microscopy, and chemical analysis. Different amounts (2, 5, and 10 mol%) of oxyanions in the starting solution and different aging times (1 h-40 days) were used for the experiment. In the initial stage, only the amorphous phase appears for all samples. With increasing aging time, jarosite and jarosite with oxyanions start precipitating at room temperature with different precipitation rates and crystallinities. Jarosite with AsO 4 shows the lowest precipitation rate and lowest crystallinity. With increasing amounts of oxyanions, the crystallization rate decreases, especially for jarosite with AsO 4 . The jarosite samples with CrO 4 and SeO 4 show the fastest precipitation and highest crystallinities. For the jarosite samples with a low precipitation rate and low crystallinity, the amorphous phase contains high concentrations of oxyanions, probably because of the fast precipitation of the amorphous iron oxyanion phase; however, the phase with fast jarosite precipitation contains fewer oxyanions. The results show that coprecipitation of jarosite can play a more important role in controlling the behavior of CrO 4 than AsO 4 in acid mine drainage. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Precipitation stripping of neodymium from carboxylate extractant with aqueous oxalic acid solutions

    International Nuclear Information System (INIS)

    Konishi, Yasuhiro; Asai, Satoru; Murai, Tetuya

    1993-01-01

    This paper describes a precipitation stripping method in which neodymium ions are stripped from carboxylate extractant in organic solvent and simultaneously precipitated with aqueous oxalic acid solution. For the single-stage process, a quantitative criterion for precipitating oxalate powders was derived theoretically, and stripping experiments were done under the precipitation conditions. The resultant precipitates were neodymium oxalate, which is completely free from contamination by the carboxylate extractant and the organic solvent. The overall rate of stripping was controlled by the transfer of neodymium carboxylate in the organic solution, indicating that the presence of oxalic acid in the aqueous phase has no effect on the stripping rate. These findings demonstrate the feasibility of combining the conventional stripping and precipitation stages in a solvent extraction process for separation and purification of rare earths

  16. A review of United States yellow cake precipitation practice

    International Nuclear Information System (INIS)

    Litz, J.E.; Coleman, R.B.

    1980-01-01

    The various process flowsheets used to produce concentrated uranium solutions are reviewed. The choices of flowsheets are affected by ore alkalinity, uranium mineralization, and the impurities solubilized during leaching. The techniques used to precipitate yellow cake from concentrated uranium solutions are reviewed. Consideration is given to precipitation chemistry, reagent requirements, and process equipment and costs for precipitation, dewatering, drying and calcining. (author)

  17. Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators

    Science.gov (United States)

    Friedman, Robert P.; Gordon, Jeffrey M.; Ries, Harald

    1995-08-01

    Using the recently-invented tailored edge-ray concentrator (TERC) approach for the design of compact two-stage high-flux solar collectors--a focusing primary reflector and a nonimaging TERC secondary reflector--we present: 1) a new primary reflector shape based on the TERC approach and a secondary TERC tailored to its particular flux map, such that more compact concentrators emerge at flux concentration levels in excess of 90% of the thermodynamic limit; and 2) calculations and raytrace simulations result which demonstrate the V-cone approximations to a wide variety of TERCs attain the concentration of the TERC to within a few percent, and hence represent practical secondary concentrators that may be superior to corresponding compound parabolic concentrator or trumpet secondaries.

  18. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    International Nuclear Information System (INIS)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 μ in diameter and contained numerous small voids (less than 0.3 μm) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 μm in diameter and contained large voids (approximately 1 μm). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost

  19. Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, R.C.

    1978-04-01

    A mathematical model describing the kinetics of continuous precipitation was developed which accounts for crystal nucleation, crystal growth, primary coagulation, and secondary coagulation. Population density distributions, average particle sizes, dominant particle sizes, and suspension density fractions of the crystallites, primary agglomerates, and secondary agglomerates leaving the continuous precipitator can be determined. This kinetic model was applied to the continuous precipitation of ammonium polyuranate, which consists of: (1) elementary crystals, (2) clusters or primary coagulated particles, and (3) agglomerates or secondary coagulated particles. The crystallites are thin, submicron, hexagonal platelets. The clusters had an upper size limit of about 7 ..mu.. in diameter and contained numerous small voids (less than 0.3 ..mu..m) due to the packing of the crystallites. The agglomerates had an upper size limit of about 40 ..mu..m in diameter and contained large voids (approximately 1 ..mu..m). The particle size distribution and particle structure of the ammonium polyuranate precipitate can be controlled through proper regulation of the precipitation conditions. The ratio of clusters to agglomerates can be best controlled through the uranium concentration, and the cohesiveness or internal bonding strength of the particles can be controlled with the ammonium to uranium reacting feed mole ratio. These two conditions, in conjunction with the residence time, will determine the nucleation rates, growth rates, and size distributions of the particles leaving the continuous precipitator. With proper control of these physical particle characteristics, the use of pore formers, ball-milling, and powder blending can probably be eliminated from the nuclear fuel fabrication process, substantially reducing the cost.

  20. Precipitation evolution and kinetics in a magnesium-neodymium-zinc alloy

    International Nuclear Information System (INIS)

    Sanaty-Zadeh, A.; Xia, X.; Luo, A.A.; Stone, D.S.

    2014-01-01

    Highlights: • Precipitation sequence and kinetics in Mg–3Nd–0.2Zn wt.% alloy were studied. • Lower amount of zinc than 0.5 wt.% does not change the sequence of precipitation. • A new orientation with respect to the matrix was detected for β″ precipitates. • β″ Precipitates contribute to the age hardening of the alloy. • Quenched-in vacancies play an important role in early stage of precipitation. -- Abstract: In this research, the precipitation sequence investigation and phase identification in Mg–3Nd–0.2Zn–0.46Zr (wt.%) system were performed using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) techniques. The results showed the precipitation sequence to be: Super saturated solid solution (SSSS) → Clustering of atoms/short range ordering → β″ → β′ → β which shows that low zinc content (less than 0.5 %wt) does not influence the precipitation sequence. TEM studies revealed that in addition to prismatic planes, β′′ precipitates lie on pyramidal planes in Mg matrix, which has not been reported previously in this system. Further investigation using TEM and aging experiments showed that these precipitates are responsible for the age hardening of the alloy. Furthermore, the kinetic studies showed that quenched-in vacancies play an important role in the early stage of precipitation and formation of β′′ while formation of β′ is dominantly diffusion controlled process and quenched-in vacancies are no longer effective

  1. Influence of phosphates when uranium in solutions obtained by attacking Forez with sulfuric acid is precipitated by the action of lime; Influence des phosphates, lors de la precipitation par la chaux, de l'uranium contenu dans les solutions d'attaque sulfurique du Forez

    Energy Technology Data Exchange (ETDEWEB)

    Brebec, G

    1959-03-01

    Influence of phosphates when uranium in solutions obtained by attacking Forez with sulfuric acid is precipitated by the action of lime was studied. Most of the phosphates were eliminated in the form of ferric phosphates without noticeable losses of uranium: for this it is only necessary to add sufficient ferric sulfate to the solution to be treated so that [Po{sub 4}{sup 3-}]/[Fe{sup 3+}] {approx} 0,4. In these conditions, the preparation of a calcium concentrate rich in uranium takes place in two stages. The first is neutralization at pH 2,7 to 2,8 with elimination of phosphates, sulfates and iron; the second is precipitation of the concentrate at pH 6,5. (author) [French] Nous avons reussi a eliminer la majeure partie des phosphates sous forme de phosphates ferriques, sans pertes sensibles d'uranium. Pour cela, il suffit d'ajouter a la solution a traiter, du sulfate ferrique en quantite telle que: (Po{sub 4}{sup 3-}]/[Fe{sup 3+}] {approx} 0,4. Dans ces conditions, la preparation du concentre calcique, riche en uranium, s'effectue normalement en deux temps: 1) preneutralisation a pH 2,7-2,8: elimination des sulfates, phosphates et fer; 2) precipitation du concentre a pH 6,5. (auteur)

  2. Elevation of plasma milrinone concentrations in stage D heart failure associated with renal dysfunction.

    Science.gov (United States)

    Cox, Zachary L; Calcutt, Marion W; Morrison, Thomas B; Akers, Wendell S; Davis, Mary Beth; Lenihan, Daniel J

    2013-09-01

    To determine steady state milrinone concentrations in patients with stage D heart failure (HF) with and without renal dysfunction We retrospectively identified patients with stage D HF at a single medical center on continuous milrinonein fusion at the time of plasma collection for entry into a research registry database. Milrinone was prescribed and titrated to improve hemodynamic and clinical status by a cardiologist. Plasma samples were obtained at steady state milrinone concentrations. Patients were stratified by creatinine clearance (CrCl) into 4 groups: group 1 (CrCl >60 mL/min), group 2 (CrCl 60-30 mL/min), group 3 (CrCl milrinone hemodynamic changes by cardiac catheterization and electrophysiologic changes by implantable cardiac defibrillator (ICD) interrogation. A total of 29 patients were identified: group 1 (n=14), group 2 (n=10), group 3(n=3), and group 4 (n = 2). The mean infusion rate (0.391+0.08 mg/kg/min) did not differ between groups (P=0.14). The mean milrinone concentration was 451+243 ng/mL in group 1, 591+293 ng/mL in group 2, 1575+962 ng/mL in group 3, and 6252+4409 ng/mL in group 4 (Pmilrinone hemodynamic improvements between the groups (P=0.41). The ICD interrogation revealed limited comparisons, but 6 of the 8 post milrinone ventricular tachycardia episodes requiring defibrillation occurred in group 4 patients. Patients with stage D HF having severe renal dysfunction have elevated milrinone concentrations. Future studies of milrinone concentrations are warranted to investigate the potential risk of life-threatening arrhythmias and potential dosing regimens in renal dysfunction.

  3. Influence of Si concentration on the precipitation in Al-1 at.% Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Afify, N. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)], E-mail: afify@aun.edu.eg; Gaber, A.; Mostafa, M.S.; Abbady, Gh. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2008-08-25

    The aging processes in Al-Mg-Si alloys have been studied by using differential scanning calorimetry (DSC), microhardness measurements (HV) and X-ray diffraction (XRD). Five processes have been detected by the DSC curves and HV behaviour. In the DSC curves, four exothermic and one endothermic reactions are developed. The sequence of processes are Guinier-Preston (G.P.) zones, dissolution of the G.P. zones, intermediate precipitation of {beta}''-phase, precipitation of {beta}'-phase and precipitation of the stable {beta}-phase + Si particles. The activation energies associated with the processes have been determined by using Kissinger method. Consequently, the nucleation mechanism of the precipitates can be explained. These phases are confirmed by XRD analysis.

  4. Precipitation and Hardening in Magnesium Alloys

    Science.gov (United States)

    Nie, Jian-Feng

    2012-11-01

    Magnesium alloys have received an increasing interest in the past 12 years for potential applications in the automotive, aircraft, aerospace, and electronic industries. Many of these alloys are strong because of solid-state precipitates that are produced by an age-hardening process. Although some strength improvements of existing magnesium alloys have been made and some novel alloys with improved strength have been developed, the strength level that has been achieved so far is still substantially lower than that obtained in counterpart aluminum alloys. Further improvements in the alloy strength require a better understanding of the structure, morphology, orientation of precipitates, effects of precipitate morphology, and orientation on the strengthening and microstructural factors that are important in controlling the nucleation and growth of these precipitates. In this review, precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined. It is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years. The challenges associated with precipitation hardening and age hardening are identified and discussed, and guidelines are outlined for the rational design and development of higher strength, and ultimately ultrahigh strength, magnesium alloys via precipitation hardening.

  5. The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal.

    Science.gov (United States)

    Tolonen, Emma-Tuulia; Hu, Tao; Rämö, Jaakko; Lassi, Ulla

    2016-10-01

    The aim of this research was to investigate sulphate removal from mine water by precipitation as ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and the utilisation of the precipitate as a sorbent for arsenate removal. The mine water sulphate concentration was reduced by 85-90% from the initial 1400 mg/L during ettringite precipitation depending on the treatment method. The precipitation conditions were also simulated with MINEQL + software, and the computational results were compared with the experimental results. The precipitated solids were characterised with X-ray diffraction and a scanning electron microscope. The precipitated solids were tested as sorbents for arsenate removal from the model solution. The arsenic(V) model solution concentration reduced 86-96% from the initial 1.5 mg/L with a 1 g/L sorbent dosage. The effect of initial arsenate concentration on the sorption of arsenate on the precipitate was studied and Langmuir, Freundlich, and Langmuir-Freundlich sorption isotherm models were fitted to the experimental data. The maximum arsenate sorption capacity (qm = 11.2 ± 4.7 mg/g) of the precipitate was obtained from the Langmuir-Freundlich isotherm. The results indicate that the precipitate produced during sulphate removal from mine water by precipitation as ettringite could be further used as a sorbent for arsenate removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Precipitation Mechanism of Sigma Phase in Super Duplex Stainless Steels

    Science.gov (United States)

    Nakade, Katsuyuki; Kuroda, Toshio

    The influence of alloying elements on the precipitation behavior of sigma (σ) phase was investigated for conventional SAF2205 and SAF2507 super duplex stainless steel. Time-Temperature-Precipitation (T-T-P) diagram of sigma phase of SAF2507 were shifted toward to shorter times compared to SAF2205. The precipitation of sigma phase was accelerated with increasing Cr and Mo concentration. According to the microstructure observation, the sigma phase began to precipitate at ferrite (α) ⁄ austenite (γ) phase boundaries and grew into ferrite for SAF2507 and SAF2205 steel. In the as-received condition, Cr and Mo concentration in ferrite was clearly higher than that in austenite. Especially, it was found that Mo concentration in ferrite of SAF2507 was higher than that in ferrite of SAF2205. The result of EPMA-measurement showed that sigma phase was mainly Fe-Cr-Mo intermetallic compound and Mo was significantly enriched into sigma phase. The difference of Mo concentration in ferrite significantly affected to the sigma phase precipitation. The secondary austenite formation was also induced by sigma phase precipitation. Cr and Mo were ejected to the remained ferrite ⁄ austenite phase boundaries by secondary austenite formation. Consequently, sigma phase precipitation was more accelerated by the reheating.

  7. Experimental study of diffuse auroral precipitations

    International Nuclear Information System (INIS)

    Mouaia, K.

    1983-01-01

    First chapter is devoted to low energy electron precipitation in the evening sector of the auroral magnetosphere, during quiet and disturbed magnetic periods. Four subjects are studied in detail: the latitude distribution of the varied auroral forms and their relations to external magnetosphere; the time coefficients related to precipitations, the form and the dynamic of the diffuse precipitation equatorial frontier; the precipitation effect on the ionosphere concentration. The last part of the chapter shows that the plasma convection in the magnetosphere, associated to wave-particle interactions near the equatorial accounts for the principal characteristics of the evening sector diffuse electronic precipitations. The second chapter deals with subauroral precipitations of low energy ions, after the magnetospheric substorms, in the high latitude regions of the morning sector [fr

  8. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  9. The influence of tri-n-octyl phosphine oxide and extraction stage on purification of Thorium concentrate

    International Nuclear Information System (INIS)

    M-V-Purwani; Moch-Setyadji

    2015-01-01

    The extraction of thorium oxalate concentrate as processing product of monazite using Tri Octyl Phosphine Oxide (TOPO) has been done. The most impurities contained in thorium oxalate concentrate are Ce (cerium) and La (lanthanum). The purpose of this study is to purify Th by separating Ce and La using extraction process. The extraction is done by batch and multistage. The solution of feed or water phase is 10 grams of Th oxalate concentrate dissolved in 10.08 M HNO 3 so that the volume becomes 100 mL and the organic phase is TOPO in kerosene. Stripping in each stage conducted three times, first stripping use water, second stripping use 5 % oxalic acid and the third stripping use water. Extraction time at every stage is 15 minutes and stripping time at every stage is 5 minutes with ratio of aqueous phase to organic phase = 1 : 1 . The parameters were studied % TOPO - kerosene and number of extraction stage. The optimum usage of TOPO in kerosene is 5 %. On extraction I obtained Ce concentrate and on extraction II and III obtained Th concentrates. The extraction II efficiency of Th is 39.76 % and extraction III efficiency of Th is 26.33 % . Coefficient of distribution (Kd) of Th in stage II is 0.7587 and Kd of Th in stage III is 1.0096. Total extraction efficiency of Th is 80.08 %, total extraction efficiency of Ce is 56.12 %, and total extraction efficiency of La is 1.54 %. The separation factor of Th – Ce in extraction I is 1.00 and separation factor of Th – La in extraction I is 92.0, separation factor of Th – Ce in extraction II is 250.24, and separation factor of Th – La in extraction II is ∞. Separation factor of Th – Ce in extraction III is 124.22 and separation factor of Th – La in extraction III is ∞. Total separation factor of Th – Ce is 1.4270 and total separation factor of Th – La is 4.0459. The content of Th oxalate in stripping product from the extraction II is 97.06 % and in stripping product from the extraction III is 98

  10. A laboratory study of ikaite (CaCO3·6H2O) precipitation as a function of pH, salinity, temperature and phosphate concentration

    OpenAIRE

    Hu, Yu-Bin; Wolf-Gladrow, Dieter A.; Dieckmann, Gerhard S.; Völker, Christoph; Nehrke, Gernot

    2014-01-01

    Ikaite (CaCO3·6H2O) has only recently been discovered in sea ice, in a study that also provided first direct evidence of CaCO3 precipitation in sea ice. However, little is as yet known about the impact of physico-chemical processes on ikaite precipitation in sea ice. Our study focused on how the changes in pH, salinity, temperature and phosphate (PO4) concentration affect the precipitation of ikaite. Experiments were set up at pH from 8.5 to 10.0, salinities from 0 to 105 (in both artificial ...

  11. Concentrations of benzene, toluene, ethylbenzene and o-xylene in soil and atmospheric precipitations in the cities of Almaty and Astana

    Directory of Open Access Journals (Sweden)

    Dina Orazbayeva

    2016-06-01

    Full Text Available BTEX (benzene, toluene, ethylbenzene, xylene is one of the most dangerous groups of organic toxicants in terms of emissions and risks to public health. BTEX are present in almost all technogenic and natural objects. The greatest risk to public health is caused by BTEX contamination of cities characterized by high population densities and emissions to the environment. The aim of this work was to determine the concentrations of benzene, toluene, ethylbenzene and o-xylene in samples of soils and atmospheric precipitations selected in the cities of Almaty and Astana. Screening and quantification of analytes was performed by gas chromatography - mass spectrometry. Solid-phase microextraction was used for sample preparation. In the soil samples collected in the cities of Almaty and Astana, the concentrations of analytes ranged from 29.9 to 455 ng/g for benzene, from 9.9 to 375 ng/g for toluene, from 1.8 to 386 ng/g for ethylbenzene, and from 2.4 to 217 ng/g for o-xylene. Concentrations of BTEX in samples of atmospheric precipitations varied in the range of 8.2-21.2 ng/g for benzene; 0.8-5.1 ng/g for toluene; 0.1-1.1 ng/g for ethylbenzene; and 0.2-0.5 ng/g for o-xylene. BTEX concentrations in analyzed soil samples were in average ten times higher than those measured in European cities.

  12. Correlation between serum and peritoneal fluid glutathione S-transferases T1 concentration with different stages of endometriosis

    Directory of Open Access Journals (Sweden)

    Sohail Mashayekhi

    2018-03-01

    Full Text Available Endometriosis is a gynecological disease defined by the histological presence of endometrial glands and stroma outside the uterine cavity. Ectopic endometrial cell proliferation and chronic inflammation in endometriosis were shown to be associated with oxidative stress (OS induction. OS is a condition in which reactive oxygen species (ROS overproduction and antioxidant deficiency cause a shift in oxidant/antioxidant balance. Glutathione S-transferases (GSTs comprise a family of eukaryotic and prokaryotic phase II metabolic isozymes best known for their ability to catalyze the conjugation of the reduced form of glutathione (GSH to xenobiotic substrates for the purpose of detoxification. The aim of this project was to study the concentrations of GSTT1 in the serum and peritoneal fluid (PF of patients with different stages of endometriosis. Frothy two PF and serum from normal and 152 from different stages of patients with endometriosis (stage I: n = 30, stage II: n = 39, stage III: n = 43 and stage IV: n = 40 were included in this study. The level of GSTT1 in the serum was determined by enzyme linked immunosorbent assay (ELISA. The results showed the presence of GSTT1 in all serum and peritoneal fluid samples, while, starting from stages I to IV endometriosis, a significant decrease in GSTT1 concentration was seen as compared to controls. It is concluded that levels of GSTT1 is negatively correlated with advanced stages of endometriosis. It is also suggested that the detection of serum and/or peritoneal fluid GSTT1 concentration may be valuable in the classifying of endometriosis.

  13. Comparison of early stages of precipitation in molybdenum-rich and molybdenum-poor maraging stainless steels

    International Nuclear Information System (INIS)

    Andersson, M.; Stiller, K.; Haettestrand, M.

    2004-01-01

    Full text: The precipitation hardening process in the molybdenum-rich Sandvik alloy 1RK91, with composition 12.8Cr-8.6Ni-2.3Mo-1.7Cu-1.2Ti-0.7Al (at. %), has previously been investigated with APFIM, energy-filtering transmission electron microscopy, and conventional transmission electron microscopy. The initial ageing response corresponds to Ni 3 (Al, Ti)-type precipitates, nucleating on copper clusters after only five minutes of ageing at 475 o C. After several hours of ageing, the precipitation hardening also includes contribution from molybdenum-rich quasicrystalline precipitates of icosahedral symmetry (R'), and another nickel-rich phase of type L1 0 . This complex precipitation behaviour, in combination with a resistance to coarsening of R', results in a continuous increase in material hardness for up to several hundred of hours of ageing. A significant difference in ageing response has been observed between the Sandvik alloy 1RK91 and molybdenum-poor alloy Carpenter 455 with composition 12.3Cr-7.9Ni-0.3Mo-1.8Cu-1.3Ti-0.1Al (at. %). During ageing at 475 o C, the hardness of Carpenter 455 saturates with a subsequent softening after just a few hours. The reason for the discrepancy in the ageing behaviour of the two steels is not well understood, since the precipitation reactions in Carpenter 455 have not been thoroughly surveyed. Therefore, the precipitation hardening process of Carpenter 455 has been studied, by using three-dimensional atom probe and energy-filtering transmission electron microscopy. The results have been compared with the precipitation hardening process of 1RK91 in order to explain the difference in ageing response of the two steels. Special interest has been devoted to understand the influence of molybdenum in the precipitation process of 1RK91. Refs 3 (author)

  14. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim

    2004-01-01

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure.......Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure....

  15. Sulphate deposition by precipitation into Lake Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R W; Whelpdale, D M

    1973-01-01

    Measurements of sulphate concentration in precipitation from individual snow storms of several hours duration in the western Lake Ontario region indicate that approximately 9-66 mg/M/sub 2/ of SO/sub 4//sup 2 -/ is being deposited into the lake per storm. This amount is up to several times more than daily average values over long periods found by other workers. Using a mean sulphate concentration of 4 mg/l and an annual accumulation of precipitation of 760 mm, the yearly sulphate deposition by precipitation is about 0.1% of the total mass of sulphate in the lake; however, more significantly, it is of the same order of magnitude as that discharged directly into the lake by industry.

  16. Effect of humic substances on the precipitation of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    SONG Yong-hui; Hermann H. HAHN; Erhard HOFFMANN; Peter G. WEIDLER

    2006-01-01

    For phosphorus (P) recovery from wastewater, the effect of humic substances (HS) on the precipitation of calcium phosphate was studied. Batch experiments of calcium phosphate precipitation were undertaken with synthetic water that contained 20 mg/L phosphate (as P) and 20 mg/L HS (as dissolved organic carbon, DOC) at a constant pH value in the range of 8.0-10.0. The concentration variations of phosphate, calcium (Ca) and HS were measured in the precipitation process; the crystalline state and compositions of the precipitates were analysed by powder X-ray diffraction (XRD) and chemical methods, respectively. It showed that at solution pH 8.0, the precipitation rate and removal efficiency of phosphate were greatly reduced by HS, but at solution pH ≥9.0,the effect of HS was very small. The Ca consumption for the precipitation of phosphate increased when HS was added; HS was also removed from solution with the precipitation of calcium phosphate. At solution pH 8.0 and HS concentrations ≤ 3.5 mg/L, and at pH ≥ 9.0 and HS concentrations ≤ 10 mg/L, the final precipitates were proved to be hydroxyapatite (HAP) by XRD. The increases of solution pH value and initial Ca/P ratio helped reduce the influence of HS on the precipitation of phosphate.

  17. Effect of wine dilution on the reliability of tannin analysis by protein precipitation

    DEFF Research Database (Denmark)

    Jensen, Jacob Skibsted; Werge, Hans Henrik Malmborg; Egebo, Max

    2008-01-01

    A reported analytical method for tannin quantification relies on selective precipitation of tannins with bovine serum albumin. The reliability of tannin analysis by protein precipitation on wines having variable tannin levels was evaluated by measuring the tannin concentration of various dilutions...... of five commercial red wines. Tannin concentrations of both very diluted and concentrated samples were systematically underestimated, which could be explained by a precipitation threshold and insufficient protein for precipitation, respectively. Based on these findings, we have defined a valid range...... of the tannin response in the protein precipitation-tannin assay, which suffers minimally from these problems....

  18. Precipitated iron. A limit on gettering efficacy in multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fenning, D.P.; Hofstetter, J.; Bertoni, M.I.; Buonassisi, T. [Massachusetts Institute of Technology MIT, Cambridge, Massachusetts 02139 (United States); Coletti, G. [ECN Solar Energy, Westerduinweg 3, NL-1755 LE Petten (Netherlands); Lai, B. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Del Canizo, C. [Instituto de Energia Solar, Universidad Politecnica de Madrid, 28040 Madrid (Spain)

    2013-01-31

    A phosphorus diffusion gettering model is used to examine the efficacy of a standard gettering process on interstitial and precipitated iron in multicrystalline silicon. The model predicts a large concentration of precipitated iron remaining after standard gettering for most as-grown iron distributions. Although changes in the precipitated iron distribution are predicted to be small, the simulated post-processing interstitial iron concentration is predicted to depend strongly on the as-grown distribution of precipitates, indicating that precipitates must be considered as internal sources of contamination during processing. To inform and validate the model, the iron distributions before and after a standard phosphorus diffusion step are studied in samples from the bottom, middle, and top of an intentionally Fe-contaminated laboratory ingot. A census of iron-silicide precipitates taken by synchrotron-based X-ray fluorescence microscopy confirms the presence of a high density of iron-silicide precipitates both before and after phosphorus diffusion. A comparable precipitated iron distribution was measured in a sister wafer after hydrogenation during a firing step. The similar distributions of precipitated iron seen after each step in the solar cell process confirm that the effect of standard gettering on precipitated iron is strongly limited as predicted by simulation. Good agreement between the experimental and simulated data supports the hypothesis that gettering kinetics is governed by not only the total iron concentration but also by the distribution of precipitated iron. Finally, future directions based on the modeling are suggested for the improvement of effective minority carrier lifetime in multicrystalline silicon solar cells.

  19. Optimization of the recycling process of precipitation barren solution in a uranium mine

    International Nuclear Information System (INIS)

    Long Qing; Yu Suqin; Zhao Wucheng; Han Wei; Zhang Hui; Chen Shuangxi

    2014-01-01

    Alkaline leaching process was adopted to recover uranium from ores in a uranium mine, and high concentration uranium solution, which would be later used in precipitation, was obtained after ion-exchange and elution steps. The eluting agent consisted of NaCl and NaHCO 3 . Though precipitation barren solution contained as high as 80 g/L Na 2 CO 3 , it still can not be recycled due to presence of high Cl - concentration So, both elution and precipitation processes were optimized in order to control the Cl - concentration in the precipitation barren solution to the recyclable concentration range. Because the precipitation barren solution can be recycled by optimization, the agent consumption was lowered and the discharge of waste water was reduced. (authors)

  20. Aerosol-Cloud-Precipitation Interactions in WRF Model:Sensitivity to Autoconversion Parameterization

    Institute of Scientific and Technical Information of China (English)

    解小宁; 刘晓东

    2015-01-01

    Cloud-to-rain autoconversion process is an important player in aerosol loading, cloud morphology, and precipitation variations because it can modulate cloud microphysical characteristics depending on the par-ticipation of aerosols, and aff ects the spatio-temporal distribution and total amount of precipitation. By applying the Kessler, the Khairoutdinov-Kogan (KK), and the Dispersion autoconversion parameterization schemes in a set of sensitivity experiments, the indirect eff ects of aerosols on clouds and precipitation are investigated for a deep convective cloud system in Beijing under various aerosol concentration backgrounds from 50 to 10000 cm−3. Numerical experiments show that aerosol-induced precipitation change is strongly dependent on autoconversion parameterization schemes. For the Kessler scheme, the average cumulative precipitation is enhanced slightly with increasing aerosols, whereas surface precipitation is reduced signifi-cantly with increasing aerosols for the KK scheme. Moreover, precipitation varies non-monotonically for the Dispersion scheme, increasing with aerosols at lower concentrations and decreasing at higher concentrations. These diff erent trends of aerosol-induced precipitation change are mainly ascribed to diff erences in rain wa-ter content under these three autoconversion parameterization schemes. Therefore, this study suggests that accurate parameterization of cloud microphysical processes, particularly the cloud-to-rain autoconversion process, is needed for improving the scientifi c understanding of aerosol-cloud-precipitation interactions.

  1. Comparing NEXRAD Operational Precipitation Estimates and Raingage Observations of Intense Precipitation in the Missouri River Basin.

    Science.gov (United States)

    Young, C. B.

    2002-05-01

    Accurate observation of precipitation is critical to the study and modeling of land surface hydrologic processes. NEXRAD radar-based precipitation estimates are increasingly used in field experiments, hydrologic modeling, and water and energy budget studies due to their high spatial and temporal resolution, national coverage, and perceived accuracy. Extensive development and testing of NEXRAD precipitation algorithms have been carried out in the Southern Plains. Previous studies (Young et al. 2000, Young et al. 1999, Smith et al. 1996) indicate that NEXRAD operational products tend to underestimate precipitation at light rain rates. This study investigates the performance of NEXRAD precipitation estimates of high-intensity rainfall, focusing on flood-producing storms in the Missouri River Basin. NEXRAD estimates for these storms are compared with data from multiple raingage networks, including NWS recording and non-recording gages and ALERT raingage data for the Kansas City metropolitan area. Analyses include comparisons of gage and radar data at a wide range of temporal and spatial scales. Particular attention is paid to the October 4th, 1998, storm that produced severe flooding in Kansas City. NOTE: The phrase `NEXRAD operational products' in this abstract includes precipitation estimates generated using the Stage III and P1 algorithms. Both of these products estimate hourly accumulations on the (approximately) 4 km HRAP grid.

  2. Modelling Particulate Removal in Tubular Wet Electrostatic Precipitators Using a Modified Drift Flux Model

    Directory of Open Access Journals (Sweden)

    S Ramechecandane

    2016-09-01

    Full Text Available Tubular electrostatic precipitators (ESP have been used in a number of chemical processing industries. The tubular ESPs have many advantages over conventional plate-plate and wire-plate ESPs. The present study is concerned with the numerical modeling of particulate removal in a tubular wet single-stage electrostatic precipitator (wESP. The geometric parameters of a model wESP and the corresponding inlet gas velocities for the wESP are chosen from available experimental data. In addition to the RNG k - ε model for the mean turbulent flow field inside the wESP, the Poisson equation for the electric field, the charge continuity equation and the concentration equation are solved sequentially to obtain a full-fledged solution to the problem under investigation. The proposed drift flux model is implemented in the opensource CFD code OpenFOAM®. The paper discusses the influence of the number of charges acquired by the particles and the corresponding inlet gas velocities on particle concentration distribution within the wESP. Two representative cases with monodispersed particles of 1 μm and 10 μm diameter are considered for the numerical analysis. It is seen from the present analysis that the number of units of charge on particles, the particle size and the inlet gas velocities play a vital role in determining the efficiency of electrostatic precipitation.

  3. Formation of copper precipitates in silicon

    Science.gov (United States)

    Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.

    1999-12-01

    The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.

  4. Evidence of sub-10 nm aluminum-oxygen precipitates in silicon

    International Nuclear Information System (INIS)

    Moutanabbir, Oussama; Isheim, Dieter; Mao, Zugang; Seidman, David N

    2016-01-01

    In this research, ultraviolet laser-assisted atom-probe tomography (APT) was utilized to investigate precisely the behavior at the atomistic level of aluminum impurities in ultrathin epitaxial silicon layers. Aluminum atoms were incorporated in situ during the growth process. The measured average aluminum concentration in the grown layers exceeds by several orders of magnitude the equilibrium bulk solubility. Three-dimensional atom-by-atom mapping demonstrates that aluminum atoms precipitate in the silicon matrix and form nanoscopic precipitates with lateral dimensions in the 1.3 to 6.2 nm range. These precipitates were found to form only in the presence of oxygen impurity atoms, thus providing clear evidence of the long-hypothesized role of oxygen and aluminum-oxygen complexes in facilitating the precipitation of aluminum in a silicon lattice. The measured average aluminum and oxygen concentrations in the precipitates are ∼10 ± 0.5 at.% and ∼4.4 ± 0.5 at.%, respectively. This synergistic interaction is supported by first-principles calculations of the binding energies of aluminum-oxygen dimers in silicon. The calculations demonstrate that there is a strong binding between aluminum and oxygen atoms, with Al-O-Al and O-Al-Al as the energetically favorable sequences corresponding to precipitates in which the concentration of aluminum is twice as large as the oxygen concentration in agreement with APT data. (paper)

  5. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    Science.gov (United States)

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  6. Effect of abnormal outflow from end stages on concentration profile in uranium-stripping bank of PUREX flowsheet

    International Nuclear Information System (INIS)

    Ueda, Yoshinori; Matsumoto, Shiro

    2002-01-01

    The effect of the abnormal outflow from the end stages on the concentration profile was studied for the uranium-stripping bank to consider the design and the operation of the solvent extraction process, which eases the undesirable effects due to such abnormal flow. The abnormal outflow affected the concentration profile in the same manner as the decrease in the rate of the corresponding liquid flow rate entering the bank. The results suggested that the solvent extractor at the aqueous inlet stage in stripping banks and the solvent extractor at the organic inlet stage in extraction banks should be carefully designed to restrict the respective abnormal aqueous and organic outflows within the normal operational liquid flow rate range. Combining the result and the inherent phase separation behavior of the extractor suggested the possibility of designing the process with the self-controlled function of throughput, which eases the change of the concentration profile due to the undesirable increase in the rate of liquid flow rate entering the bank. Basically the proposed approaches are probably applicable to other general extraction and stripping processes. (author)

  7. Phase-field modeling of Mn-Ni-Si precipitate behavior on the bcc-Fe matrix

    International Nuclear Information System (INIS)

    Chang, Kun Ok; Kwon, Jun Hyun

    2016-01-01

    The formation of Mn-Ni-Si precipitate (hereafter MNS precipitate) is widely accepted by one of the main reasons of late stage hardening and embrittlement of Reactor Pressure Vessel (RPV) during nuclear power plant (NPP) operation. Since MNS precipitate is not considered in current regulatory model, this late stage hardening can be a limiting factor for life extension of nuclear power plants up to 80 or more years. The stability of the MNS precipitate was investigated from the thermodynamic view point and they concluded that MNS precipitate is a stable phase even with very little Cu contents, and they assessed UW1 thermodynamic database which can predict the thermodynamic stability of MNS precipitate at operating temperature of NPP ( ∼ 290 .deg. C). Based on the non-classical nucleation theory, we performed the phase-field modeling of nucleation and growth of MNS precipitate. The microstructure evolution of Mn-Ni-Cu precipitate has been simulated using the phase-field method and their approaches are focused on a role of the Cu contents. Also, a role of the interstitial loop on the nucleation and growth kinetics of MNS precipitate was analyzed.

  8. NWP-Based Adjustment of IMERG Precipitation for Flood-Inducing Complex Terrain Storms: Evaluation over CONUS

    Directory of Open Access Journals (Sweden)

    Xinxuan Zhang

    2018-04-01

    Full Text Available This paper evaluates the use of precipitation forecasts from a numerical weather prediction (NWP model for near-real-time satellite precipitation adjustment based on 81 flood-inducing heavy precipitation events in seven mountainous regions over the conterminous United States. The study is facilitated by the National Center for Atmospheric Research (NCAR real-time ensemble forecasts (called model, the Integrated Multi-satellitE Retrievals for GPM (IMERG near-real-time precipitation product (called raw IMERG and the Stage IV multi-radar/multi-sensor precipitation product (called Stage IV used as a reference. We evaluated four precipitation datasets (the model forecasts, raw IMERG, gauge-adjusted IMERG and model-adjusted IMERG through comparisons against Stage IV at six-hourly and event length scales. The raw IMERG product consistently underestimated heavy precipitation in all study regions, while the domain average rainfall magnitudes exhibited by the model were fairly accurate. The model exhibited error in the locations of intense precipitation over inland regions, however, while the IMERG product generally showed correct spatial precipitation patterns. Overall, the model-adjusted IMERG product performed best over inland regions by taking advantage of the more accurate rainfall magnitude from NWP and the spatial distribution from IMERG. In coastal regions, although model-based adjustment effectively improved the performance of the raw IMERG product, the model forecast performed even better. The IMERG product could benefit from gauge-based adjustment, as well, but the improvement from model-based adjustment was consistently more significant.

  9. ETHANOL PRECIPITATION OF GLYCOSYL HYDROLASES PRODUCED BY Trichoderma harzianum P49P11

    Directory of Open Access Journals (Sweden)

    M. A. Mariño

    2015-06-01

    Full Text Available AbstractThis study aimed to concentrate glycosyl hydrolases produced by Trichoderma harzianum P49P11 by ethanol precipitation. The variables tested besides ethanol concentration were temperature and pH. The precipitation with 90% (v/v ethanol at pH 5.0 recovered more than 98% of the xylanase activity, regard less of the temperature (5.0, 15.0, or 25.0 °C. The maximum recovery of cellulase activity as FPase was 77% by precipitation carried out at this same pH and ethanol concentration but at 5.0 °C. Therefore, ethanol precipitation can be considered to be an efficient technique for xylanase concentration and, to a certain extent, also for the cellulase complex.

  10. Study of precipitation behaviour of Mo and Zr in nitric acid solution

    International Nuclear Information System (INIS)

    Lin Cansheng; Wang Xiaoying; Zhang Chonghai

    1992-01-01

    The precipitation behaviour of Mo and Zr which depends on the concentrations of Mo, Zr, nitric acid and temperature is studied. Precipitation, post-precipitation and ultracentrifugation experiments are made at 100 deg C, 80 deg C, 60 deg C, 40 deg C and room temperatures in the range of 0.6-6.0 mol/1 nitric acid. The experimental feeds are made up of molybdenum labelled with 99 Mo, zirconium labelled with 95 Zr and nitric acid solution. The feed is allowed to stand at constant temperature for some time for the observation of precipitation behaviour. The filtered precipitate and ultracentrifuged liquid is to be measured with HP (Ge)-multichannel analyser in order to determine the content of Mo, Zr and their mole ration in the precipitate and to find out whether there is colloid in the liquid. The results show that the mixed solution of Mo and Zr can produce precipitate and post-precipitate in nitric acid. If the filtrated liquid is allowed to stand for some time, precipitate can be produced again, until the concentration of Mo and Zr in the feed is too low to form precipitate, such as 2.5 x 10 -3 mol/1. If the concentration of nitric acid is less than 4.0 mol/1, the precipitation is produced easily and more precipitate is formed. Precipitation is slower in solutions which are more than 4.0 mol/1 in HNO 3 . The mole-ratio of Mo to Zr in the precipitate is 2 to 1 and it is not dependent on that ratio in the system

  11. Thermokinetic Simulation of Precipitation in NiTi Shape Memory Alloys

    Science.gov (United States)

    Cirstea, C. D.; Karadeniz-Povoden, E.; Kozeschnik, E.; Lungu, M.; Lang, P.; Balagurov, A.; Cirstea, V.

    2017-06-01

    Considering classical nucleation theory and evolution equations for the growth and composition change of precipitates, we simulate the evolution of the precipitates structure in the classical stages of nucleation, growth and coarsening using the solid-state transformation Matcalc software. The formation of Ni3Ti, Ni4Ti3 or Ni3Ti2 precipitate is the key to hardening phenomenon of the alloys, which depends on the nickel solubility in the bulk alloys. The microstructural evolution of metastable Ni4Ti3 and Ni3Ti2 precipitates in Ni-rich TiNi alloys is simulated by computational thermokinetics, based on thermodynamic and diffusion databases. The simulated precipitate phase fractions are compared with experimental data.

  12. The adsorption of orthophosphate onto casein-iron precipitates.

    Science.gov (United States)

    Mittal, Vikas A; Ellis, Ashling; Ye, Aiqian; Edwards, Patrick J B; Singh, Harjinder

    2018-01-15

    This study explored the interactions of orthophosphate with casein-iron precipitates. Casein-iron precipitates were formed by adding ferric chloride at ≥10mM to sodium caseinate solutions ranging in concentration from 1 to 3%(w/v). The addition of different concentrations of orthophosphate solution to the casein-iron precipitates resulted in gradual adsorption of the orthophosphate, causing re-dispersion of the casein-iron complexes. The interactions of added orthophosphate with iron in the presence and absence of caseins are postulated, and new mechanisms are proposed. The re-dispersed soluble complexes of casein-iron-orthophosphate generated using this process could be used as novel iron fortificants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Loggerhead sea turtle (Caretta caretta) egg yolk concentrations of persistent organic pollutants and lipid increase during the last stage of embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Alava, Juan Jose [School of the Environment, University of South Carolina, 702G Byrnes Building, Columbia, SC 29208 (United States) and Center for Coastal Environmental Health and Biomolecular Research, National Oceanic and Atmospheric Administration, 219 Ft. Johnson Road, Charleston, SC 29412 (United States)]. E-mail: jalavasa@sfu.ca; Keller, Jennifer M. [National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412 (United States)]. E-mail: Jennifer.Keller@noaa.gov; Kucklick, John R. [National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412 (United States); Wyneken, Jeanette [Florida Atlantic University, Department of Biological Sciences, 777 Glades Road, Boca Raton, FL 33431 (United States); Crowder, Larry [Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, NC 28516 (United States); Scott, Geoffrey I. [Center for Coastal Environmental Health and Biomolecular Research, National Oceanic and Atmospheric Administration, 219 Ft. Johnson Road, Charleston, SC 29412 (United States)

    2006-08-15

    Data are scarce describing the concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides in sea turtle eggs. The purpose of this study was to establish appropriate sample collection methodology to monitor these contaminants in sea turtle eggs. Contaminant concentrations were measured in yolk samples from eggs that failed to hatch from three loggerhead sea turtle (Caretta caretta) nests collected in southern Florida to determine if concentrations change through embryonic development. One to three egg yolk samples per nest were analyzed from early, middle, and late developmental stages (n = 22 eggs total). PCB and pesticide concentrations were determined by gas chromatography with electron capture detection (GC-ECD). Geometric mean concentrations of {sigma}PCBs (52 congeners), {sigma}DDTs, {sigma}chlordanes, and dieldrin in all eggs were 65.0 (range = 7.11 to 3930 ng/g lipid), 67.1 (range = 7.88 to 1340 ng/g lipid), 37.0 (range = 4.04 to 685 ng/g lipid), and 11.1 ng/g lipid (range = 1.69 to 44.0 ng/g lipid), respectively. Early and middle developmental stage samples had similar concentrations of PCBs and organochlorine pesticides on a wet-mass basis (ng/g tissue extracted), but the concentrations doubled by the late stage. This increase is most likely attributable to the 50% increase in lipid content observed in the late-stage yolk. These findings indicate that an early-stage sample cannot be directly compared to a late-stage sample, especially from different nests. These preliminary findings also allowed us to calculate the minimum number of eggs per nest required for analysis to obtain an acceptable mean concentration per nest. More research is required to investigate geographical trends of contaminant concentrations and potential health effects (i.e., abnormalities) caused by these contaminants on sea turtle development.

  14. Loggerhead sea turtle (Caretta caretta) egg yolk concentrations of persistent organic pollutants and lipid increase during the last stage of embryonic development

    International Nuclear Information System (INIS)

    Alava, Juan Jose; Keller, Jennifer M.; Kucklick, John R.; Wyneken, Jeanette; Crowder, Larry; Scott, Geoffrey I.

    2006-01-01

    Data are scarce describing the concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides in sea turtle eggs. The purpose of this study was to establish appropriate sample collection methodology to monitor these contaminants in sea turtle eggs. Contaminant concentrations were measured in yolk samples from eggs that failed to hatch from three loggerhead sea turtle (Caretta caretta) nests collected in southern Florida to determine if concentrations change through embryonic development. One to three egg yolk samples per nest were analyzed from early, middle, and late developmental stages (n = 22 eggs total). PCB and pesticide concentrations were determined by gas chromatography with electron capture detection (GC-ECD). Geometric mean concentrations of ΣPCBs (52 congeners), ΣDDTs, Σchlordanes, and dieldrin in all eggs were 65.0 (range = 7.11 to 3930 ng/g lipid), 67.1 (range = 7.88 to 1340 ng/g lipid), 37.0 (range = 4.04 to 685 ng/g lipid), and 11.1 ng/g lipid (range = 1.69 to 44.0 ng/g lipid), respectively. Early and middle developmental stage samples had similar concentrations of PCBs and organochlorine pesticides on a wet-mass basis (ng/g tissue extracted), but the concentrations doubled by the late stage. This increase is most likely attributable to the 50% increase in lipid content observed in the late-stage yolk. These findings indicate that an early-stage sample cannot be directly compared to a late-stage sample, especially from different nests. These preliminary findings also allowed us to calculate the minimum number of eggs per nest required for analysis to obtain an acceptable mean concentration per nest. More research is required to investigate geographical trends of contaminant concentrations and potential health effects (i.e., abnormalities) caused by these contaminants on sea turtle development

  15. Precipitation and purification of uranium from rock phosphate

    International Nuclear Information System (INIS)

    AbowSlama, E.H.Y.; Sam, A.K.; Etemad Ebraheem

    2014-01-01

    This study was carried-out to leach uranium from rock phosphate using sulphuric acid in the presence of potassium chlorate as an oxidant and to investigate the relative purity of different forms of yellow cakes produced with ammonia, magnesia and sodium hydroxide as precipitants, as well as purification of the products with TBP and matching its impurity levels with specifications of the commercial products. Alpha-particle spectrometry was used for determination of activity concentration of uranium isotopes in rock phosphate, resulting phosphoric acid, and in different forms of the yellow cake. Likewise, atomic absorption spectroscopy was used for determination of impurities. On the average, the equivalent mass concentration of uranium was 119.38 ± 79.66 ppm (rock phosphate) and 57.85 ± 20.46 ppm (phosphoric acid) with corresponding low percent of dissolution (48 %) which is considered low. The isotopic ratio ( 234 U: 238 U) in all stages of hydrometallurgical process was not much different from unity indicating lack of fractionation. Upon comparing the levels of impurities in different form of crude yellow cakes, it was found that the lowest levels were measured in hydrated trioxide (UO 3 ·xH 2 O). This implies that saturated magnesia is least aggressive relative to other precipitants and gives relatively pure crude cake. Therefore, it was used as an index to judge the relative purity of other forms of yellow cakes by taking the respective elemental ratios. The levels of impurities (Fe, Zn, Mn, Cu, Ni, Cd and Pb) in the purified yellow cake were found comparable with those specified for commercial products. (author)

  16. The trial of obtaining a high-grade gadolinium concentrate using the fractional precipitation together with the ion exchange

    International Nuclear Information System (INIS)

    Ozga, W.; Soltysiak, I.

    1980-01-01

    The modified fractional precipitation of lanthanon-potassium double chromate was used for preliminary separation of gadolinium concentrate containing 60% Gd 2 O 3 , 33,3% Sm 2 O 3 . The 1-st fraction enriched with samarium (60% Sm 2 O 3 ) and 2-nd fraction enriched with gadolinium (80% Gd 2 O 3 with efficiency of 82% recounting on Gd 2 O 3 ) were obtained. Both fractions were separated by the elution with EDTA solution buffered with ammonium acetate. The good results were obtained by ion exchange separation only of the 1-st fraction. (author)

  17. A study preliminary technician for the obtaining of concentrated de lanthanum and cerium to leave of national minerals

    International Nuclear Information System (INIS)

    Orrego A, P; Navarro D, Patricio; Mahu A, Susana; Vega V, Pilar

    1999-01-01

    A preliminary technical study was carried out to obtain concentrated oxides of Lanthanum (La) and Cerium (Ce), from a radioactively anomalous local mineral. This study is part of a joint project of the National Mining Company (ENAMI) and the Chilean Nuclear Energy Commission (CCHEN), G eological Investigation of Rare Earth in the Region III mountain range ; which aims to diversify the production of minerals that have potential economic interest in the short term. Three sections were defined over area of 100 km 2 , where the rare earth bearing metallic mineral is davidite ((AB-3(O, OH)-7), with A = Fe 2+ , RE, U, Ca, Na, Zr, Th; B = Ti 4+ , Fe 3+ U, V 3+ , Cr 3+ and varieties of anatase with Ti, RE, La, Ce and Nd. The metallurgical research includes the following stages: leaching with sulfuric acid, selective precipitation of purities and the rare earth, evaluating the reagents sodium hydroxide and ammonium hydroxide, dissolution of the precipitates containing rare earth with nitric acid and later precipitation with oxalic acid. According to the results obtained in the laboratory tests, the best operating conditions would be: (1) Leaching R(S/L) = 1, dosage 500 kg of acid /ton mineral; 90 , (2) Precipitation of impurities Ammonium Hydroxide, pH = 4.5 at 90 , (3) Precipitation elements of RE Ammonium Hydroxide, pH 7,5 at 90 , (4) Dissolution HNO-3, 70 , (5) Oxalic precipitation Oxalic acid, pH ∼ 1,0 at 70 . The results of each stage were evaluated with the following major points: Sulfuric acid is not a good leaching agent under normal conditions of temperature and pressure. For sulfuric solutions ammonium hydroxide provides the best precipitation efficiencies. Selective precipitation with oxalic acid produces bigger lanthanide recovery at a pH of less than 1.0. By means this design a concentrate of oxides of rare earth with an approximate of 43% may be obtained

  18. δ' precipitation in a binary Al-3.2 Wt % Li alloy

    International Nuclear Information System (INIS)

    Mahadev, V.; Mahalingam, K.; Liedl, G.L.; Sanders, T.H. Jr.

    1992-01-01

    This paper reports on a study of the early stages of Al 3 Li(δ') precipitation in a binary Al-3.2wt% Li alloy that was performed by X-ray scattering experiments. Efforts were made to understand the very early stages of precipitation. Particle size measurements were made on samples in the as quenched state and after isothermally aging for various times ranging from 5 minutes to 10 days at 433K, 453K and 473K. Short range order parameters and average atomic displacements were determined for early aging times. A simple simulation model based upon the particle size distribution is proposed to examine the implications of the experimental observations. This simulation fits the assumption that the particles are fully ordered and coherent with the matrix even in the very early stages of aging. Kinetics of the early stages were found to be consistent with data obtained for longer aging times and supports an early growth stage

  19. Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant.

    Science.gov (United States)

    Chae, Jung-Seok; Lee, Sang-Kuk; Kim, Yongjae; Lee, Jung-Min; Cho, Heung-Joon; Cho, Yong-Woo; Yun, Ju-Yong

    2011-07-01

    The distribution of tritium in water vapour and precipitation with discharge of tritiated water vapour and meteorological factors was studied around the Wolsung nuclear power plant (NPP) site during the period 2004-2008. The tritium concentrations in atmospheric water vapour and precipitation had a temporal variation with relatively high values in the early summer. Spatial distribution of tritium concentrations was affected by various factors such as distance from the NPP site, wind direction, tritium discharge into the atmosphere and atmospheric dispersion factor. The annual mean concentrations of atmospheric HTO and precipitation were correlated with the amount of gaseous tritium released from the Wolsung NPP. The tritium concentrations in precipitation decrease exponentially with an increase of the distance from the Wolsung NPP site.

  20. The tritium content of precipitation and surface water in Austria in 1984

    International Nuclear Information System (INIS)

    Rank, D.; Rajner, V.; Lust, G.

    1985-01-01

    This report includes weighted monthly 3 H-means from 23 precipitation sampling stations, 3 H-concentrations of daily precipitation samples from the station Wien-Arsenal, and 3 H-concentrations of monthly samples from 17 surface water sampling stations. (Author)

  1. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Science.gov (United States)

    Pogorzelec, Marta; Piekarska, Katarzyna

    2017-11-01

    The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  2. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Directory of Open Access Journals (Sweden)

    Pogorzelec Marta

    2017-01-01

    Full Text Available The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland. To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC. Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  3. Study on the relationship between serum concentration of CYFRA21-1 and pathological staging in patients with non-small cell lung cancer

    International Nuclear Information System (INIS)

    Shang Wenjun; Zhou Yaohong; Wang Xiaoli; Wu Yizhi; Li Jun

    2010-01-01

    Objective: To study the relationship between of serum concentrations of CYFRA21-1 and to pathological staging in patients with non-small cell lung cancer. Methods: Serum concentrations of CYFRA21-1 were determined with IRMA in 224 patients with non-small cell lung cancer. Results: The serum CYFRA21-1 levels in patients with non-small cell lung carcinoma increased gradually as the tumor size enlarged. Levels in patients of T2 and T3 stages were significantly higher than those in patients of T1 stage, but the difference between those in patients of T2 stage and T3 stage were not significant. The serum CYFRA21-1 levels also increased as the number of lymph nodes with metastasis increased. Differences of serum levels of CYFRA21-1 in patients of consecutive lymph node stages were all significant. Conclusion: Preoperative detection of the serum concentration of CYFRA21-1 in patient with non-small cell lung cancer has important clinical significance on the judgement of T, N stages. (authors)

  4. Correlation of endothelin-1 concentration and angiotensin-converting enzyme activity with the staging of liver fibrosis.

    Science.gov (United States)

    Kardum, Dusko; Fabijanić, Damir; Lukić, Anita; Romić, Zeljko; Petrovecki, Mladen; Bogdanović, Zoran; Jurić, Klara; Urek-Crncević, Marija; Banić, Marko

    2012-06-01

    Increased serum angiotensin-converting enzyme (SACE) activity and serum concentration of endothelin-1 (ET-1) were found in liver cirrhosis. We investigated a correlation between the different stages of liver fibrosis and SACE activity and serum ET-1 concentration. Seventy patients with pathohistologically established chronic liver disease were divided in three groups according to Ishak criteria for liver fibrosis: minimal fibrosis (Ishak score 0-1, n =20), medium fibrosis (Ishak score 2-5, n=20) and cirrhosis (Ishak score 6, n=30). SACE activity and ET-1 concentration were determined using commercial ELISA kits. SACE activity and ET-1 concentrations were proportional to the severity of disease, the highest being in patients with liver cirrhosis. Maximal increase in SACE activity was found between minimal and medium fibrosis while maximal increase in ET-1 concentration was revealed between medium fibrosis and cirrhosis. The analysis of the Receiver Operating Characteristic (ROC) curve for SACE activity suggested a cut-off value to separate minimal from medium fibrosis at 59.00 U/L (sensitivity 100%, specificity 64.7%). The cut-off value for serum ET-1 concentration to separate medium fibrosis from cirrhosis was 12.4 pg/mL (sensitivity 96.8%, specificity 94.4%). A positive correlation between SACE activity and ET-1 concentration was registered (Spearman's ñ = 0.438, p = 0.004). Both SACE activity and ET-1 concentration were increased in all stages of liver fibrosis. Cut-off points for SACE activity and ET-1 concentration could be a biochemical marker for the progression of fibrosis. Positive correlation between SACE activity and ET-1 concentration might indicate their interaction in the development of liver cirrhosis.

  5. Precipitation of ammonium diuranate : a study

    International Nuclear Information System (INIS)

    Krishnamoorthy, T.S.; Mahadevan, N.; Sankar Das, M.

    1991-01-01

    The precipitation of ammonium diuranate (ADU) forms the first step in the production of UO 2 fuel for reactors, and hence the quality and consistency of the ADU precipitate is very important in industrial operations. An investigation, on the precipitation of ADU, was carried out under conditions similar to those in industrial production, to evaluate the effect of various variables on the consistency and the quality of ADU. The variables studied were concentration of uranium and ammonia, pH, temperature and form of ammonia (gas or solution). The properties studied were the settling rate of the precipitates, surface area of the ADUs and calcined oxides and compositional characteristics of the ADUs. Multifactorial experiments and ruggedness tests were applied to identify the parameters to which the precipitation process is most vulnerable, so that such parameters may be controlled effectively. Besides, the effect and the importance of equilibrium conditions during the precipitation process, on the quality of the final ADU, was also established. The paper presents the results of these studies. (author). 6 refs., 3 figs., 7 tabs

  6. Arsenic precipitation from metallurgical effluents

    International Nuclear Information System (INIS)

    Navarro, P.; Vargas, C.; Araya, E.; Martin, I.; Alguacil, F. J.

    2004-01-01

    In the mining-metallurgical companies different liquid effluents are produced, which can contain a series of dissolved elements that are considered dangerous from an environmental point of view. One of these elements is the arsenic, especially in the state of oxidation +5 that can be precipitated as calcium or iron arsenate. To fulfil the environmental requests it should have in solution a content of arsenic lower than 0,5 mg/l and the obtained solid product should be very stable under the condition in which it will be stored. this work looks for the best conditions of arsenic precipitation, until achieving contents in solution lower than such mentioned concentration. Also, the stability of the precipitates was studied. (Author) 7 refs

  7. Self-organizing map network-based precipitation regionalization for the Tibetan Plateau and regional precipitation variability

    Science.gov (United States)

    Wang, Nini; Yin, Jianchuan

    2017-12-01

    A precipitation-based regionalization for the Tibetan Plateau (TP) was investigated for regional precipitation trend analysis and frequency analysis using data from 1113 grid points covering the period 1900-2014. The results utilizing self-organizing map (SOM) network suggest that four clusters of precipitation coherent zones can be identified, including the southwestern edge, the southern edge, the southeastern region, and the north central region. Regionalization results of the SOM network satisfactorily represent the influences of the atmospheric circulation systems such as the East Asian summer monsoon, the south Asian summer monsoon, and the mid-latitude westerlies. Regionalization results also well display the direct impacts of physical geographical features of the TP such as orography, topography, and land-sea distribution. Regional-scale annual precipitation trend as well as regional differences of annual and seasonal total precipitation were investigated by precipitation index such as precipitation concentration index (PCI) and Standardized Anomaly Index (SAI). Results demonstrate significant negative long-term linear trends in southeastern TP and the north central part of the TP, indicating arid and semi-arid regions in the TP are getting drier. The empirical mode decomposition (EMD) method shows an evolution of the main cycle with 4 and 12 months for all the representative grids of four sub-regions. The cross-wavelet analysis suggests that predominant and effective period of Indian Ocean Dipole (IOD) on monthly precipitation is around ˜12 months, except for the representative grid of the northwestern region.

  8. UV-vis Imaging of Piroxicam Supersaturation, Precipitation, and Dissolution in a Flow-Through Setup.

    Science.gov (United States)

    Sun, Yu; Chapman, Alex; Larsen, Susan W; Jensen, Henrik; Petersen, Nickolaj J; Goodall, David M; Østergaard, Jesper

    2018-06-05

    Evaluation of drug precipitation is important in order to address challenges regarding low and variable bioavailability of poorly water-soluble drugs, to assess potential risk of patient safety with infusion therapy, and to explore injectable in situ suspension-forming drug delivery systems. Generally, drug precipitation is assessed in vitro through solution concentration analysis methods. Dual-wavelength UV-vis imaging is a novel imaging technique that may provide an opportunity for simultaneously monitoring changes in both solution and solid phases during precipitation. In the present study, a multimodal approach integrating UV-vis imaging, light microscopy, and Raman spectroscopy was developed for characterization of piroxicam supersaturation, precipitation, and dissolution in a flow-through setup. A solution of piroxicam dissolved in 1-methyl-2-pyrrolidinone was injected into a flowing aqueous environment (pH 7.4), causing piroxicam to precipitate. Imaging at 405 and 280 nm monitored piroxicam concentration distributions during precipitation and revealed different supersaturation levels dependent on the initial concentration of the piroxicam solution. The combination with imaging at 525 nm, light microscopy, and Raman spectroscopy measurements demonstrated concentration-dependent precipitation and the formation, growth, and dissolution of individual particles. Results emphasize the importance of the specific hydrodynamic conditions on the piroxicam precipitation. The approach used may facilitate comprehensive understanding of drug precipitation and dissolution processes and may be developed further into a basic tool for formulation screening and development.

  9. Study of Ca-ATMP precipitation in the presence of magnesium ion.

    Science.gov (United States)

    Tantayakom, V; Fogler, H Scott; de Moraes, F F; Bualuang, M; Chavadej, S; Malakul, P

    2004-03-16

    ATMP (aminotri(methylenephosphonic acid)), a phosphonate scale inhibitor used in the petroleum industry, was used as a model scale inhibitor in this study. One of the goals of this work was to determine the range of conditions under which Mg ions, which are formed in reservoir formations containing dolomite, modulate the formation of Ca-ATMP precipitate as a scale inhibitor. The results revealed that the amount of ATMP precipitated decreased with addition of Mg ions in solution at all values of the solution pH. Furthermore, an increase in both the solution pH and the concentration of the divalent cations in solution resulted in a change of the molar ratio of (Ca + Mg) to ATMP in the precipitates. At a low solution pH (pH 1.5), Mg ions had little effect on the composition of the Ca-ATMP precipitate. However, at higher values of the solution pH (pH 4 and 7), the Ca to ATMP molar ratio in the precipitates decreased with increasing concentration of the Mg. Here it was found that Mg ions replaced Ca ions on available reactive sites of ATMP molecules. These results determined the limits of the Mg ion concentration, which affects the precipitation of Ca-ATMP, Mg-ATMP, and (Ca + Mg)-ATMP. The dissolution of the scale inhibitors was studied using a rotating disk reactor. These experiments showed that the total divalent cation molar ratio (Ca + Mg) to ATMP in the precipitates is the primary factor that controls the rate of dissolution (release) of the phosphonate precipitates. The phosphonate precipitate dissolution rates decreased as the molar ratio of divalent cations to ATMP in the precipitates increased.

  10. The tritium content of precipitation and surface water in Austria in 1986

    International Nuclear Information System (INIS)

    Rank, D.; Rajner, V.; Lust, G.

    1987-01-01

    This report includes weighted monthly 3 H-means for 23 precipitation sampling stations, 3 H-concentrations of daily precipitation samples from the station Wien-Arsenal, and 3 H-concentrations of monthly samples from 17 surface water sampling stations. 2 refs., 3 tabs., 18 figs. (Author)

  11. Addressing the issue of precipitates in maraging steels – Unambiguous answer

    International Nuclear Information System (INIS)

    Moshka, O.; Pinkas, M.; Brosh, E.; Ezersky, V.; Meshi, L.

    2015-01-01

    Despite several decades' long study, the identity of the precipitating phases responsible for the strengthening of maraging steels is still not clear. In the current work, this issue was extensively investigated using experimental and theoretical approaches. First, in-depth characterization of the precipitates in C250 steel and the precipitation order were performed through a combination of various Transmission Electron Microscopy (TEM) methods. In parallel, thermodynamic calculations were used for the prediction of the phase content at equilibrium. Then, in order to isolate the effects of the different precipitates, model alloys were cast and aged. It was shown that the phases responsible for the strengthening during the initial stages of aging are Ni 3 Mo and Ni 3 Ti. In the over-aged (close to equilibrium) condition, the steel consists of martensite, reverted austenite, Ni 3 Ti, and Fe–Mo phases. This conclusion was found to be in perfect agreement with thermodynamic calculations. The formation of Ni 3 Mo at early stages of aging, despite its calculated lowest driving force for formation, was attributed to a low barrier for formation

  12. Tritium in Japanese precipitation following the March 2011 Fukushima Daiichi Nuclear Plant accident.

    Science.gov (United States)

    Matsumoto, Takuya; Maruoka, Teruyuki; Shimoda, Gen; Obata, Hajime; Kagi, Hiroyuki; Suzuki, Katsuhiko; Yamamoto, Koshi; Mitsuguchi, Takehiro; Hagino, Kyoko; Tomioka, Naotaka; Sambandam, Chinmaya; Brummer, Daniela; Klaus, Philipp Martin; Aggarwal, Pradeep

    2013-02-15

    Tritium concentrations in Japanese precipitation samples collected after the March 2011 accident at the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) were measured. Values exceeding the pre-accident background were detected at three out of seven localities (Tsukuba, Kashiwa and Hongo) southwest of the FNPP1 at distances varying between 170 and 220 km from the source. The highest tritium content was found in the first rainfall in Tsukuba after the accident; however concentrations were 500 times less than the regulatory limit for tritium in drinking water. Tritium concentrations decreased steadily and rapidly with time, becoming indistinguishable from the pre-accident values within five weeks. The atmospheric tritium activities in the vicinity of the FNPP1 during the earliest stage of the accident was estimated to be 1.5×10(3) Bq/m(3), which is potentially capable of producing rainwater exceeding the regulatory limit, but only in the immediate vicinity of the source. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. co-removal with nucleated Cu(II) precipitation in continuous-flow ...

    African Journals Online (AJOL)

    A compact nucleated precipitation technology using two fluidised sand columns in series was developed to pretreat model metal-plating wastewater containing high concentrations of Cu(II) and Cr(VI). Since either Cu(II) precipitation or Cr(VI) co-removal with Cu(II) precipitation was found to be highly pH dependent in batch ...

  14. Procedure for the separation of cerium from crude phosphates and rare earth concentrates

    International Nuclear Information System (INIS)

    Richter, H.; Koenig, O.; Schmitt, A.; Grauss, H.; Freitag, S.

    1986-01-01

    The invention has to do with a procedure for the separation of cerium from crude phosphates and rare earth phosphate concentrates originating from the partial neutralization of nitric crude phosphate decomposition solutions. It is aimed at the cerium separation from the raw material at an early stage of reprocessing without preceding elimination of other components and impurities. The rare earth phosphate concentrates or crude phosphates are dissolved in nitric acid, the Ce 3+ is oxidized with potassium permanganate or magnanese(IV) hydroxide, and cerium(IV) phosphate is precipitated as pure substance by decreasing the acidity of the solution

  15. Impact of elevated CO_2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO_2 sequestration

    International Nuclear Information System (INIS)

    Paul, Varun G.; Wronkiewicz, David J.; Mormile, Melanie R.

    2017-01-01

    Interest in anthropogenic CO_2 release and associated global climatic change has prompted numerous laboratory-scale and commercial efforts focused on capturing, sequestering or utilizing CO_2 in the subsurface. Known carbonate mineral precipitating microorganisms, such as the anaerobic sulfate-reducing bacteria (SRB), could enhance the rate of conversion of CO_2 into solid minerals and thereby improve long-term storage of captured gasses. The ability of SRB to induce carbonate mineral precipitation, when exposed to atmospheric and elevated pCO_2, was investigated in laboratory scale tests with bacteria from organic-rich sediments collected from hypersaline Lake Estancia, New Mexico. The enriched SRB culture was inoculated in continuous gas flow and batch reactors under variable headspace pCO_2 (0.0059 psi to 20 psi). Solution pH, redox conditions, sulfide, calcium and magnesium concentrations were monitored in the reactors. Those reactors containing SRB that were exposed to pCO_2 of 14.7 psi or less showed Mg-calcite precipitation. Reactors exposed to 20 psi pCO_2 did not exhibit any carbonate mineralization, likely due to the inhibition of bacterial metabolism caused by the high levels of CO_2. Hydrogen, lactate and formate served as suitable electron donors for the SRB metabolism and related carbonate mineralization. Carbon isotopic studies confirmed that ∼53% of carbon in the precipitated carbonate minerals was derived from the CO_2 headspace, with the remaining carbon being derived from the organic electron donors, and the bicarbonate ions available in the liquid medium. The ability of halotolerant SRB to induce the precipitation of carbonate minerals can potentially be applied to the long-term storage of anthropogenic CO_2 in saline aquifers and other ideal subsurface rock units by converting the gas into solid immobile phases. - Highlights: • SRB under study are capable of precipitating calcite up to 14.7 psi pCO_2. • At 20 psi pCO_2, bacterial activity

  16. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    International Nuclear Information System (INIS)

    Mallik, P K; Swain, P.K.; Patnaik, S.C

    2016-01-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles. (paper)

  17. Differential Precipitation and Solubilization of Proteins.

    Science.gov (United States)

    Ryan, Barry J; Kinsella, Gemma K

    2017-01-01

    Differential protein precipitation is a rapid and economical step in protein purification and is based on exploiting the inherent physicochemical properties of the polypeptide. Precipitation of recombinant proteins, lysed from the host cell, is commonly used to concentrate the protein of choice before further polishing steps with more selective purification columns (e.g., His-Tag, Size Exclusion, etc.). Recombinant proteins can also precipitate naturally as inclusion bodies due to various influences during overexpression in the host cell. Although this phenomenon permits easier initial separation from native proteins, these inclusion bodies must carefully be differentially solubilized so as to reform functional, correctly folded proteins. Here, appropriate bioinformatics tools to aid in understanding a protein's propensity to aggregate and solubilize are explored as a backdrop for a typical protein extraction, precipitation, and selective resolubilization procedure, based on a recombinantly expressed protein.

  18. Spatio-temporal variability of several eco-precipitation indicators in China

    Science.gov (United States)

    Guo, B. B.; Zhang, J.; Wang, F.

    2016-12-01

    Climate change is expected to have large impacts on the eco-hydrological processes. Precipitation as one of the most important meteorological factors is a significant parameter in ecohydrology. Many studies and precipitation indexes focused on the long-term precipitation variability have been put forward. However, these former studies did not consider the vegetation response and these indexes could not reflect it efficiently. Eco-precipitation indicators reflecting the features and patterns of precipitations and serving as significant input parameters of eco-hydrological models are of paramount significance to the studies of these models. Therefore we proposed 4 important eco-precipitation indicators—Precipitation Variability Index (PVI), Precipitation Occurrence Rate (λ), Mean Precipitation Depth (1/θ) and Annual Precipitation (AP). The PVI index depicts the precipitation variability with a value of zero for perfectly uniform and increases as precipitation events become more sporadic. The λ, 1/θ and AP depict the precipitation frequency, intensity and annual amount, respectively. With large precipitation and vegetation discrepancies, China is selected as a study area. Firstly, these indicators are calculated separately with 55-years (1961-2015) daily precipitation time-series from 693 weather stations in China. Then, the temporal trend is analyzed through Mann-Kendall (MK) test and parametric t-test in annual time scale. Furthermore, the spatial distribution is analyzed through the spatial interpolation tools ANUsplin. The result shows that: (1) 1/θ increased significantly (4.59cm/10yr) while λ decreased significantly (1.54 days/10yr), which means there is an increasing trend of extreme precipitation events; (2)there is a significant downward trend of PVI, which means the rhythm of precipitation has a uniform and concentrated trend; (3) AP increased insignificantly (0.57mm/10yr); and (4)the MK test of these indicators shows that there is saltation of

  19. Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni

    International Nuclear Information System (INIS)

    Zhou, N.; Shen, C.; Wagner, M.F.-X.; Eggeler, G.; Mills, M.J.; Wang, Y.

    2010-01-01

    Precipitation of Ni 4 Ti 3 plays a critical role in determining the martensitic transformation path and temperature in Ni-Ti shape memory alloys. In this study, the equilibrium shape of a coherent Ni 4 Ti 3 precipitate and the concentration and stress fields around it are determined quantitatively using the phase field method. Most recent experimental data on lattice parameters, elastic constants, precipitate-matrix orientation relationship and thermodynamic database are used as model inputs. The effects of the concentration and stress fields on subsequent martensitic transformations are analyzed through interaction energy between a nucleating martensitic particle and the existing microstructure. Results indicate that R-phase formation prior to B19' phase could be attributed to both direct elastic interaction and stress-induced spatial variation in concentration near Ni 4 Ti 3 precipitates. The preferred nucleation sites for the R-phase are close to the broad side of the lenticular-shaped Ni 4 Ti 3 precipitates, where tension normal to the habit plane is highest, and Ni concentration is lowest.

  20. A highly sensitive electrostatic precipitator with no moving parts

    DEFF Research Database (Denmark)

    Teodosić, V.

    1968-01-01

    Cross correlation between a modulated precipitation voltage and the corresponding detector voltage variation gives a signal which is proportional to the fission gas concentration even when the precipitation electrode is not moving, which makes it possible to build a simple unit for fuel leakage...... detection....

  1. [Chemical characteristics of precipitation in South China Sea].

    Science.gov (United States)

    Xiao, Hong-Wei; Long, Ai-Min; Xie, Lu-Hua; Xiao, Hua-Yun; Liu, Cong-Qiang

    2014-02-01

    Rainwater samples were collected in the summer on "Shiyan 3" during the 2012 South China Sea Sectional Scientific Survey. The concentrations of anion and cation, and pH in precipitation were determined and backward trajectories of air mass were simulated to analyze the chemical characteristics of ions and examine the source of ions. The results indicated that the mean pH value of precipitation was 6.3, with 5.6 of minimal value in summer in South China Sea. The order of anion and cation abundance was Cl(-) > S04(2-) > NO3(-) and Na(+) > Mg(2+) > Ca(2+) > K(+). Cl(-) was the major anion and Na(+) was the major cation, with concentrations of 2 637.5 microeq x L(-1) and 2095.5 microeq x L(-1), respectively, showing that they were the characteristics of marine atmospheric precipitation. There was a good linear relationship between each pair of 7 ions, with correlation coefficient above 0.9, suggesting that they may have a common source. However, the correlation coefficients were lower between NO3(-) and other ions than the others, suggesting that NO3(-) had more complex sources. The concentrations of Ca(2+) and K(+) in precipitation may be related to coral environment in South China Sea. The backward trajectories in 6 stations showed that the air mass was from south and southwest of South China Sea, without passing through above the continent. These results suggested that precipitation affected by human ion source can be ignored in summer in South China Sea.

  2. A multi-source precipitation approach to fill gaps over a radar precipitation field

    Science.gov (United States)

    Tesfagiorgis, K. B.; Mahani, S. E.; Khanbilvardi, R.

    2012-12-01

    Satellite Precipitation Estimates (SPEs) may be the only available source of information for operational hydrologic and flash flood prediction due to spatial limitations of radar and gauge products. The present work develops an approach to seamlessly blend satellite, radar, climatological and gauge precipitation products to fill gaps over ground-based radar precipitation fields. To mix different precipitation products, the bias of any of the products relative to each other should be removed. For bias correction, the study used an ensemble-based method which aims to estimate spatially varying multiplicative biases in SPEs using a radar rainfall product. Bias factors were calculated for a randomly selected sample of rainy pixels in the study area. Spatial fields of estimated bias were generated taking into account spatial variation and random errors in the sampled values. A weighted Successive Correction Method (SCM) is proposed to make the merging between error corrected satellite and radar rainfall estimates. In addition to SCM, we use a Bayesian spatial method for merging the gap free radar with rain gauges, climatological rainfall sources and SPEs. We demonstrate the method using SPE Hydro-Estimator (HE), radar- based Stage-II, a climatological product PRISM and rain gauge dataset for several rain events from 2006 to 2008 over three different geographical locations of the United States. Results show that: the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements. The study implies that using the available radar pixels surrounding the gap area, rain gauge, PRISM and satellite products, a radar like product is achievable over radar gap areas that benefits the scientific community.

  3. Preventing Precipitation in the ISS Urine Processor

    Science.gov (United States)

    Muirhead, Dean; Carter, Layne; Williamson, Jill; Chambers, Antja

    2017-01-01

    The ISS Urine Processor Assembly (UPA) was initially designed to achieve 85% recovery of water from pretreated urine on ISS. Pretreated urine is comprised of crew urine treated with flush water, an oxidant (chromium trioxide), and an inorganic acid (sulfuric acid) to control microbial growth and inhibit precipitation. Unfortunately, initial operation of the UPA on ISS resulted in the precipitation of calcium sulfate at 85% recovery. This occurred because the calcium concentration in the crew urine was elevated in microgravity due to bone loss. The higher calcium concentration precipitated with sulfate from the pretreatment acid, resulting in a failure of the UPA due to the accumulation of solids in the Distillation Assembly. Since this failure, the UPA has been limited to a reduced recovery of water from urine to prevent calcium sulfate from reaching the solubility limit. NASA personnel have worked to identify a solution that would allow the UPA to return to a nominal recovery rate of 85%. This effort has culminated with the development of a pretreatment based on phosphoric acid instead of sulfuric acid. By eliminating the sulfate associated with the pretreatment, the brine can be concentrated to a much higher concentration before calcium sulfate reach the solubility limit. This paper summarizes the development of this pretreatment and the testing performed to verify its implementation on ISS.

  4. Diagnosis of Moist Vorticity and Moist Divergence for a Heavy Precipitation Event in Southwestern China

    Institute of Scientific and Technical Information of China (English)

    Gang LI; Daoyong YANG; Xiaohua JIANG; Jing PAN; Yanke TAN

    2017-01-01

    A regional heavy precipitation event that occurred over Sichuan Province on 8-9 September 2015 is analyzed based on hourly observed precipitation data obtained from weather stations and NCEP FNL data.Two moist dynamic parameters, i.e., moist vorticity (mζ) and moist divergence (mδ), are used to diagnose this heavy precipitation event.Results show that the topography over southwestern China has a significant impact on the ability of these two parameters to diagnose precipitation.When the impact of topography is weak (i.e., low altitude), mζ cannot exactly depict the location of precipitation in the initial stage of the event.Then, as the precipitation develops, its ability to depict the location improves significantly.In particular, mζ coincides best with the location of precipitation during the peak stage of the event.Besides, the evolution of the mζ center shows high consistency with the evolution of the precipitation center.For mδ,although some false-alarm regions are apparent, it reflects the location of precipitation almost entirely during the precipitation event.However, the mδ center shows inconsistency with the precipitation center.These results suggest that both mζ and mδ have a significant ability to predict the location of precipitation.Moreover, mζ has a stronger ability than mδ in terms of predicting the variability of the precipitation center.However, when the impact of topography is strong (i.e., high altitude), both of these two moist dynamic parameters are unable to depict the location and center of precipitation during the entire precipitation event, suggesting their weak ability to predict precipitation over complex topography.

  5. Correlation of Endothelin-1 Concentration and Angiotensin-Converting Enzyme Activity with the Staging of Liver Fibrosis

    OpenAIRE

    Kardum, Duško; Fabijanić, Damir; Lukić, Anita; Romić, Željko; Petrovečki, Mladen; Bogdanović, Zoran; Jurić, Klara; Urek-Crnčević, Marija; Banić, Marko

    2012-01-01

    Increased serum angiotensin-converting enzyme (SACE) activity and serum concentration of endothelin-1 (ET-1) were found in liver cirrhosis. We investigated a correlation between the different stages of liver fibrosis and SACE activity and serum ET-1 concentration. Seventy patients with pathohistologically established chronic liver disease were divided in three groups according to Ishak criteria for liver fibrosis: minimal fibrosis (Ishak score 0–1, n=20), medium fibrosis (Ishak sc...

  6. A hybrid liquid-phase precipitation (LPP) process in conjunction with membrane distillation (MD) for the treatment of the INEEL sodium-bearing liquid waste.

    Science.gov (United States)

    Bader, M S H

    2005-05-20

    A novel hybrid system combining liquid-phase precipitation (LPP) and membrane distillation (MD) is integrated for the treatment of the INEEL sodium-bearing liquid waste. The integrated system provides a "full separation" approach that consists of three main processing stages. The first stage is focused on the separation and recovery of nitric acid from the bulk of the waste stream using vacuum membrane distillation (VMD). In the second stage, polyvalent cations (mainly TRU elements and their fission products except cesium along with aluminum and other toxic metals) are separated from the bulk of monovalent anions and cations (dominantly sodium nitrate) by a front-end LPP. In the third stage, MD is used first to concentrate sodium nitrate to near saturation followed by a rear-end LPP to precipitate and separate sodium nitrate along with the remaining minor species from the bulk of the aqueous phase. The LPP-MD hybrid system uses a small amount of an additive and energy to carry out the treatment, addresses multiple critical species, extracts an economic value from some of waste species, generates minimal waste with suitable disposal paths, and offers rapid deployment. As such, the LPP-MD could be a valuable tool for multiple needs across the DOE complex where no effective or economic alternatives are available.

  7. Effect of M{sub 3}C on the precipitation behavior of M{sub 23}C{sub 6} phase during early stage of tempering in T91 ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chenxi; Liu, Yongchang; Zhang, Dantian; Ning, Baoqun; Yan, Zesheng [School of Material Science and Engineering, Tianjin Key Laboratory of Advanced Jointing Technology, Tianjin University, Tianjin (China)

    2011-12-15

    Tempered martensitic structure is the service condition of T91 ferritic steel after adopting the austenitizing followed by tempering. Needle-like M{sub 3}C particles are precipitated during air cooling after austenization, while the precipitation of M{sub 3}C is suppressed during the water cooling. The effect of existence of M{sub 3}C on the precipitation behaviors of M{sub 23}C{sub 6} during the early stage of tempering, as nucleation site, number density and size distribution, was investigated by means of TEM observation. The TEM results indicate that, upon the same tempering time, the size of M{sub 23}C{sub 6} is smaller and its number density is higher in the sample pre-existing M{sub 3}C than in the sample without M{sub 3}C. This can be explained that existence of M{sub 3}C results in more M{sub 23}C{sub 6} precipitates forming inside of grain, where a relatively low self-diffusion coefficient of alloy element leads to M{sub 23}C{sub 6} hardly coarsening. However, with the prolongation of tempering time, this effect becomes weaken. Microhardness results indicate that the existence of M{sub 3}C phase results in the increase of hardness after tempering due to the precipitation of finer and denser M{sub 23}C{sub 6} particles. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Identifying external influences on global precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Marvel, K.; Bonfils, C.

    2013-11-11

    Changes in global (ocean and land) precipitation are among the most important and least well-understood consequences of climate change. Increasing greenhouse gas concentrations are thought to affect the zonal-mean distribution of precipitation through two basic mechanisms. First, increasing temperatures will lead to an intensification of the hydrological cycle (“thermodynamic” changes). Second, changes in atmospheric circulation patterns will lead to poleward displacement of the storm tracks and subtropical dry zones and to a widening of the tropical belt (“dynamic” changes). We demonstrate that both these changes are occurring simultaneously in global precipitation, that this behavior cannot be explained by internal variability alone, and that external influences are responsible for the observed precipitation changes. Whereas existing model experiments are not of sufficient length to differentiate between natural and anthropogenic forcing terms at the 95% confidence level, we present evidence that the observed trends result from human activities.

  9. Experimental and theoretical study of heterogeneous iron precipitation in silicon

    OpenAIRE

    Haarahiltunen, Antti; Väinölä, Hele; Anttila, O.; Yli-Koski, Marko

    2007-01-01

    Heterogeneous iron precipitation in silicon was studied experimentally by measuring the gettering efficiency of oxide precipitate density of 1×10exp10cm−3. The wafers were contaminated with varying iron concentrations, and the gettering efficiency was studied using isothermal annealing in the temperature range from 300 to 780°C. It was found that iron precipitation obeys the so called s-curve behavior: if iron precipitation occurs, nearly all iron is gettered. For example, after 30 min anneal...

  10. Indium sulfide precipitation from hydrochloric acid solutions of calcium and sodium chlorides

    International Nuclear Information System (INIS)

    Kochetkova, N.V.; Bayandina, Yu.E.; Toptygina, G.M.; Shepot'ko, A.O.

    1988-01-01

    The effect of precipitation duration, acid concentration, indium complexing with chloride ions on the process of indium sulfide chemical precipitation in hydrochloric acid solutions, precipitate composition and dispersity are studied. It is established that indium sulfide solubility increases in solutions with acid concentration exceeding 0.40-0.45 mol/l. Calcium and indium chloride addition to diluted hydrochloric solutions greatly increases the solubility of indium sulfide. The effect of calcium chloride on In 2 S 3 solubility is higher than that of sodium chloride

  11. Method for modeling the deposition of sulfur by precipitation over regional scales

    International Nuclear Information System (INIS)

    Hicks, B.B.; Shannon, J.D.

    1979-01-01

    Radioactive fallout data suggest that the concentration of pollutants in rainfall, while highly variable, might be described on the average by about an inverse half-power dependence on the amount of precipitation. Recent measurements of sulfur concentrations in summer rainfall collected at Argonne National Laboratory tend to support this contention, as do preliminary results derived from operations of the DOE precipitation chemistry network. The concept is extended to develop a bulk removal rate for airborne total sulfur by precipitation for use in regional dispersion modeling

  12. Mercury in precipitation at an urbanized coastal zone of the Baltic Sea (Poland).

    Science.gov (United States)

    Saniewska, Dominika; Bełdowska, Magdalena; Bełdowski, Jacek; Falkowska, Lucyna

    2014-11-01

    Wet deposition is an important source of metals to the sea. The temporal variability of Hg concentrations in precipitation, and the impact of air masses of different origins over the Polish coastal zone were assessed. Samples of precipitation were collected (August 2008-May 2009) at an urbanized coastal station in Poland. Hg analyses were conducted using CVAFS. These were the first measurements of Hg concentration in precipitation obtained in the Polish coastal zone. Since Poland was identified as the biggest emitter of Hg to the Baltic, these data are very important. In the heating and non-heating season, Hg concentrations in precipitation were similar. Hg wet deposition flux dominated in summer, when the production of biomass in the aquatic system was able to actively adsorb Hg. Input of metal to the sea was attributed to regional and distant sources. Maritime air masses, through transformation of Hg(0), were an essential vector of mercury in precipitation.

  13. Studies on gadolinium precipitation in moderator system of nuclear reactor

    International Nuclear Information System (INIS)

    Joshi, Akhilesh C.; Rajesh, Puspalata; Rufus, A.L.; Velmurugan, S.

    2015-01-01

    Gadolinium is used in the moderator system of many Pressurised Heavy Water Reactors (PHWRs) for start-up, shut-down and reactivity control during operation. It is very much essential to maintain gadolinium concentration in the system as desired. It has been reported that gadolinium gets precipitated in as oxalate in carbonated water under the influence of γ-radiation. Hence, studies were carried out to investigate the effect of dose, presence of other metal ions and metal surfaces on the precipitation of gadolinium. The results showed that the amount of carboxylic acids viz., formic acid and oxalic acid, formed due to radiolysis is dependent on the dose and that the curve passes though a maxima. Gadolinium is added in higher concentration in Advanced Heavy Water Reactor. So, experiments with high concentration of gadolinium were also carried out. Ultra pure water saturated with high purity CO 2 containing gadolinium and desired ion/surface was irradiated with γ-radiation from 60 Co source at 25°C to doses ranging from 2.5-16.6 Mrad. At lower doses, formation of carboxylic acids takes place but as the dose increases, decomposition of these acids starts and hence the concentration Vs dose passes through a maximum. It was found that precipitation of gadolinium as oxalate occurred at lower doses. At higher doses, it was seen that pH of the solution decreases and hence solubility of gadolinium oxalate increases. It was also observed that the amount of gadolinium precipitated varied linearly with the initial concentration of gadolinium varying from 2 ppm to 20 ppm. While for gadolinium concentration from 20 ppm to 400 ppm, gadolinium in particulate form was observed. The amount of carboxylic acids formed depends on the nature of cations present in solution. It was found that the amount of oxalic acid formed in the case of gadolinium was more than that formed in the case of sodium. Presence of metal oxides such as ZrO 2 formed over zircoloy surfaces was found to

  14. The effect of the precipitation of coherent and incoherent precipitates on the ductility and toughness of high-strength steel

    International Nuclear Information System (INIS)

    Hamano, R.

    1993-01-01

    The effect of the coexistence of coherent and incoherent precipitates, such as M 2 C and NiAl, on the ductility and plane strain fracture toughness of 5 wt pct Ni-2 wt pct Al-based high-strength steels was studied. In order to disperse coherent and incoherent precipitates, the heat treatments were carried out as follows: (a) austenitizing at 1373 K, (b) tempering at 1023 or 923 K for dispersing the incoherent precipitates of M 2 C and NiAl, and then (c) aging at 843 K for 2.4 ks to disperse the coherent precipitate of NiAl into the matrix, which contains incoherent precipitates, such as M 2 C and NiAl. The results were obtained as follows: (a) when the strengthening precipitates consist of coherent ones, such as M 2 C and/or NiAl, the ductility and toughness are extremely low, and (b) when the strengthening precipitates consist of coherent and incoherent precipitates, such as M 2 C and NiAl, the ductility and fracture toughness significantly increase with no loss in strength. It is shown that the coexistence of coherent and incoherent precipitates increases homogeneous deformation, thus preventing local strain concentration and early cleavage cracking. Accordingly, the actions of coherent precipitates in strengthening the matrix and of incoherent precipitates in promoting, homogeneous deformation can be expected to increase both the strength and toughness of the material

  15. Silver precipitation from electrolytic effluents

    International Nuclear Information System (INIS)

    Rivera, I.; Patino, F.; Cruells, M.; Roca, A.; Vinals, J.

    2004-01-01

    The recovery of silver contained in electrolytic effluents is attractive due to its high economic value. These effluents are considered toxic wastes and it is not possible to dump them directly without any detoxification process. One of the most important way for silver recovery is the precipitation with sodium ditionite, sodium borohidride or hydrazine monohidrate. In this work, the most significant aspects related to the use of these reagents is presented. Results of silver precipitation with sodium ditionite from effluents containing thiosulfate without previous elimination of other species are also presented. silver concentration in the final effluents w <1 ppm. (Author) 15 refs

  16. Coincidence Doppler broadening and 3DAP study of the pre-precipitation stage of an Al-Li-Cu-Mg-Ag alloy

    International Nuclear Information System (INIS)

    Honma, T.; Yanagita, S.; Hono, K.; Nagai, Y.; Hasegawa, M.

    2004-01-01

    Pre-precipitation solute clustering in Al-Li-Cu-Mg-Ag and Al-Cu-Mg-Ag alloys has been investigated by coincidence Doppler broadening (CDB) spectroscopy of positron annihilation and three-dimensional atom probe (3DAP) analysis. Although Ag-Mg co-clusters form in the Al-Cu-Mg-Ag alloy in the early stage of aging, no evidence for the co-cluster formation was obtained from the Li containing alloy using 3DAP. While CDB spectra indicated that vacancies are associated with Ag after aging for 15 s in the Al-Cu-Mg-Ag alloy, vacancy-Ag association is suppressed in the Li containing alloy. Based on the 3DAP and CDB results, the reasons for the completely different clustering behaviors observed in these two similar alloys are discussed

  17. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    International Nuclear Information System (INIS)

    Shin, Jong-Ho; Jeong, JaeSuk; Lee, Jong-Wook

    2015-01-01

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni 3 Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni 3 Al precipitates and ellipsoidal M 23 C 6 carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni 3 Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni 3 Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage

  18. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong-Ho, E-mail: jongho.shin@doosan.com [Casting and Forging Technology Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of); Jeong, JaeSuk [Materials and Manufacturing Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of); Lee, Jong-Wook [Casting and Forging Technology Development Team, Doosan Heavy Industries and Construction, 22 Doosanvolvo-ro, Changwon 642-792 (Korea, Republic of)

    2015-01-15

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni{sub 3}Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni{sub 3}Al precipitates and ellipsoidal M{sub 23}C{sub 6} carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni{sub 3}Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni{sub 3}Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage.

  19. Determination of parameters dissolution of yellow-cake. Production of uranyl nitrate - Gas precipitation of AUC

    International Nuclear Information System (INIS)

    Mellah, A.

    1987-07-01

    The different stages of the purification cycle of yellow-cakes have been studied thoroughly in order to obtain an ammonium uranyl carbonate (AUC) as an intermediate product of uranium dioxide (UO 2 ). The optimal parameters of yellow-cake dissolution, filtration, extraction by solvent, scrubbing and stripping were determined. An original program of thermodynamic calculation was developed for the determination of the free energies of yellow-cake dissolution reactions. Different numerical methods were used to determine the kinetic constant, the reaction order and correlation equations of uranyl nitrate density as a function of U and H + concentrations, before and after the extraction cycle. For the first time, Algerian filteraids were used for the filtration of uranyl nitrate solutions with satisfactory results. A laboratory designed installation enabled the precipitation of AUC by injection of ammonia and carbon dioxide gases. Interesting results have been obtained and further investigations should be carried out in order to optimize all the paremeters of the gas precipitation of AUC

  20. Precipitation of cytochromes c with Na2CdI4

    International Nuclear Information System (INIS)

    Zhuravleva, D.V.; Kulish, M.A.; Mironov, A.F.

    1996-01-01

    Using cytochrome c from horse heart and the yeast Candida valida as examples, it was shown that a complex anion, cadmium tetraiodide (CdI 4 2- ), precipitated proteins from aqueous solutions at the reagent concentrations below 50 mM. The composition and pH value of the solution, as well as the starting protein concentration, considerably influenced the precipitation. The results suggest that this reagent acts on the protein by a mechanism similar to the salting-out process. The ability to act at small concentrations is the advantage of CdI 4 2- over conventional agents

  1. Content of nitrogen in atmospheric precipitation in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Angstroem, A; Hoegberg, L

    1952-01-01

    In the present paper an attempt is made to give a general idea of the geographical distribution of fixed nitrogen (NH/sub 4/-N) transferred to the soil through precipitation in Sweden. Further a map is given showing the distribution af alpha, a quantity proportional to the nitrogen concentration in the precipitation at the beginning of a rain and, it is assumed, representative for the content of fixed nitrogen in the atmosphere before the rain is falling. A discussion of different causes of the concentration of fixed nitrogen in precipitation is presented and a photochemical process is suggested, which would explain the almost constant ratio between NH/sub 4//sup -n/ and NO/sub 3//sup -n/ frequently found within the temperate zones. It is evident, however, that other causes also are at work, especially at lower latitudes. The need of laboratory experiments is emphasized.

  2. Comparison of Four Precipitation Forcing Datasets in Land Information System Simulations over the Continental U.S.

    Science.gov (United States)

    Case, Jonathan L.; Kumar, Sujay V.; Kuligowski, Robert J.; Langston, Carrie

    2013-01-01

    The NASA Short ]term Prediction Research and Transition (SPoRT) Center in Huntsville, AL is running a real ]time configuration of the NASA Land Information System (LIS) with the Noah land surface model (LSM). Output from the SPoRT ]LIS run is used to initialize land surface variables for local modeling applications at select National Weather Service (NWS) partner offices, and can be displayed in decision support systems for situational awareness and drought monitoring. The SPoRT ]LIS is run over a domain covering the southern and eastern United States, fully nested within the National Centers for Environmental Prediction Stage IV precipitation analysis grid, which provides precipitation forcing to the offline LIS ]Noah runs. The SPoRT Center seeks to expand the real ]time LIS domain to the entire Continental U.S. (CONUS); however, geographical limitations with the Stage IV analysis product have inhibited this expansion. Therefore, a goal of this study is to test alternative precipitation forcing datasets that can enable the LIS expansion by improving upon the current geographical limitations of the Stage IV product. The four precipitation forcing datasets that are inter ]compared on a 4 ]km resolution CONUS domain include the Stage IV, an experimental GOES quantitative precipitation estimate (QPE) from NESDIS/STAR, the National Mosaic and QPE (NMQ) product from the National Severe Storms Laboratory, and the North American Land Data Assimilation System phase 2 (NLDAS ]2) analyses. The NLDAS ]2 dataset is used as the control run, with each of the other three datasets considered experimental runs compared against the control. The regional strengths, weaknesses, and biases of each precipitation analysis are identified relative to the NLDAS ]2 control in terms of accumulated precipitation pattern and amount, and the impacts on the subsequent LSM spin ]up simulations. The ultimate goal is to identify an alternative precipitation forcing dataset that can best support an

  3. Mercury Wet Scavenging and Deposition Differences by Precipitation Type.

    Science.gov (United States)

    Kaulfus, Aaron S; Nair, Udaysankar; Holmes, Christopher D; Landing, William M

    2017-03-07

    We analyze the effect of precipitation type on mercury wet deposition using a new database of individual rain events spanning the contiguous United States. Measurements from the Mercury Deposition Network (MDN) containing single rainfall events were identified and classified into six precipitation types. Mercury concentrations in surface precipitation follow a power law of precipitation depth that is modulated by precipitation system morphology. After controlling for precipitation depth, the highest mercury deposition occurs in supercell thunderstorms, with decreasing deposition in disorganized thunderstorms, quasi-linear convective systems (QLCS), extratropical cyclones, light rain, and land-falling tropical cyclones. Convective morphologies (supercells, disorganized, and QLCS) enhance wet deposition by a factor of at least 1.6 relative to nonconvective morphologies. Mercury wet deposition also varies by geographic region and season. After controlling for other factors, we find that mercury wet deposition is greater over high-elevation sites, seasonally during summer, and in convective precipitation.

  4. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, R.; Martin, G.

    1979-01-01

    A TEM study of 1 MeV electron irradiated Al 1.9 at% Zn solid solution shows that Zn precipitates form, under irradiation at temperatures well above the Zn solvus temperature outside irradiation. The corresponding upward shift of this temperature is dose rate dependent. This new example of radiation-induced precipitation exhibits unexpected features, which are not accounted for by the available models: (1) no correlation exists between the location of the precipitates and that of the point defects sinks; (2) the precipitation of incoherent β-phase with atomic volume smaller than that of the matrix, and of coherent G.P. zones both occurs; (3) the size of the coherent β precipitates saturates at large dose. A general mechanism for solute concentration fluctuations under irradiation is proposed which qualitatively accounts for the formation of coherent G.P. zones and for the nucleation of solute clusters with more complex structures. A reanalysis of Russell's model (1977) for the growth of incoherent precipitates shows that it may qualitatively account for the observed behavior of the β phase precipitates. (Auth.)

  5. An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles.

    Science.gov (United States)

    Lorenz, T; Bojko, S; Bunjes, H; Dietzel, A

    2018-02-13

    Nanosizing increases the specific surface of drug particles, leading to faster dissolution inside the organism and improving the bioavailability of poorly water-soluble drugs. A novel approach for the preparation of drug nanoparticles in water using chemically inert microfluidic emulsification devices is presented in this paper. A lithographic fabrication sequence was established, allowing fabrication of intersecting and coaxial channels of different depths in glass as is required for 3D flow-focusing. Fenofibrate was used as a model for active pharmaceutical ingredients with very low water solubility in the experiments. It was dissolved in ethyl acetate and emulsified in water, as allowed by the 3D flow-focusing geometry. In the thread formation regime, the drug solution turned into monodisperse droplets of sizes down to below 1 μm. Fast supersaturation occurs individually in each droplet, as the disperse phase solvent progressively diffuses into the surrounding water. Liquid antisolvent precipitation results in highly monodisperse and amorphous nanoparticles of sizes down to 128 nm which can be precisely controlled by the continuous and disperse phase pressure. By comparing optically measured droplet sizes with particle sizes by dynamic light scattering, we could confirm that exactly one particle forms in every droplet. Furthermore, a downstream on-chip concentration allowed withdrawal of major volumes of only the continuous phase fluid which enabled an increase of particle concentration by up to 250 times.

  6. African aerosol and large-scale precipitation variability over West Africa

    International Nuclear Information System (INIS)

    Huang Jingfeng; Zhang Chidong; Prospero, Joseph M

    2009-01-01

    We investigated the large-scale connection between African aerosol and precipitation in the West African Monsoon (WAM) region using 8-year (2000-2007) monthly and daily Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products (aerosol optical depth, fine mode fraction) and Tropical Rainfall Measuring Mission (TRMM) precipitation and rain type. These high-quality data further confirmed our previous results that the large-scale link between aerosol and precipitation in this region undergoes distinct seasonal and spatial variability. Previously detected suppression of precipitation during months of high aerosol concentration occurs in both convective and stratiform rain, but not systematically in shallow rain. This suggests the suppression of deep convection due to the aerosol. Based on the seasonal cycle of dust and smoke and their geographical distribution, our data suggest that both dust (coarse mode aerosol) and smoke (fine mode aerosol) contribute to the precipitation suppression. However, the dust effect is evident over the Gulf of Guinea while the smoke effect is evident over both land and ocean. A back trajectory analysis further demonstrates that the precipitation reduction is statistically linked to the upwind aerosol concentration. This study suggests that African aerosol outbreaks in the WAM region can influence precipitation in the local monsoon system which has direct societal impact on the local community. It calls for more systematic investigations to determine the modulating mechanisms using both observational and modeling approaches.

  7. Removal of Cobalt Ions by Precipitate Foam Flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-09-30

    Simulated waste liquid containing 50 ppm cobalt ion was tested by precipitate flotation using a sodium lauryl sulfate as a collector. The effects of initial cobalt ion concentration, pH, surfactant concentration, flotation time, gas flow rate and foreign ions on removal efficiency of cobalt ion were studied. Pretreatment of the waste liquid with 35% H{sub 2}O{sub 2} prior to precipitate flotation made shift of optimal flotation pH from the strong alkalinity to weak alkaline range and made a favorable flotation of cobalt ion in wide range of pH. For the result of this experiment, 99.8% removal efficiency was obtained on the conditions of initial cobalt ion concentration 50 ppm, pH 9.5, gas flow rate 70 ml/min, flotation time 30 min. The simulate ion was formed to be the most harmful ion against removal of cobalt by precipitate flotation of the species which were tested. The presence of 0.1 M of SO{sub 4}{sup 2-} ion decreased removal efficiency of cobalt to 90% while the cobalt were almost entirely removed in the absence of sulfate ion. (author). 11 refs., 8 figs.

  8. α′ precipitation in neutron-irradiated Fe–Cr alloys

    International Nuclear Information System (INIS)

    Bachhav, Mukesh; Robert Odette, G.; Marquis, Emmanuelle A.

    2014-01-01

    Graphical abstract: -- A series of model Fe–Cr alloys containing 3–18 at.% Cr was neutron irradiated at a nominal temperature of 563 K to 1.82 dpa. Solute distributions were analyzed by atom probe tomography, which revealed α′ precipitation for alloys containing more than 9 at.% Cr. Both the Cr concentration dependence of α′ precipitation and the measured matrix compositions are in agreement with the recently published Fe–Cr phase diagrams. An irradiation-accelerated precipitation process is strongly suggested

  9. Polyfluorinated and perfluorinated chemicals in precipitation and runoff from cities across eastern and central China.

    Science.gov (United States)

    Zhao, Lijie; Zhou, Meng; Zhang, Tao; Sun, Hongwen

    2013-02-01

    Twenty-three polychlorinated and perfluorinated compounds (PFCs) were investigated in water phase and particulate matters of 19 precipitation samples (18 snow samples and 1 rain sample) from different cities across eastern and central China collected in February 2010. The PFCs in samples of 9e precipitation events during more than half a year at 1 site in Tianjin and 6 successive samples during 1 precipitation event were measured to elucidate the change of PFC in precipitation. In addition, PFCs in 3 runoffs at different kinds of sites in Tianjin were compared with those in the corresponding precipitation. The results showed that the particulate matters separated from the precipitation contained undetectable PFCs. The total PFC concentration ranged between 4.7 and 152 ng L(-1) in water phase of the precipitation samples, with perfluorooctanoic acid (PFOA) being detected at all of the sampling sites and the dominant PFC at most of the sampling sites. Some potential precursors of environmentally concerned PFCs and their degradation intermediates were measured simultaneously, among which 6:2 fluorotelomer unsaturated carboxylic acid (6:2 FTUCA), 8:2 FTUCA, and  × (3, 4, 5, 7):3 acid [F(CF(2))xCH(2)CH(2)COOH] were measured for the first time in Chinese precipitations; however, their concentrations were all lower than the limits of detection except that 6:2 FTUCA and 8:2 FTUCA could be detected in 3 and 8 precipitation samples, respectively. No clear seasonal variation in PFC concentrations in precipitation was observed during half a year; however, a relatively greater average concentration of total PFCs was observed during winter and summer compared with spring. The concentration of individual PFCs showed an obvious descending trend in the successive samples of the precipitation event. PFOA and perfluorononanoic acid in runoffs collected from different sites showed the following similar pattern-gas station > highway > university campus-whereas the other

  10. Heavy metal immobilization via microbially induced carbonate precipitation and co-precipitation

    Science.gov (United States)

    Lauchnor, E. G.; Stoick, E.

    2017-12-01

    Microbially induced CaCO3 precipitation (MICP) has been successfully used in applications such as porous media consolidation and sealing of leakage pathways in the subsurface, and it has the potential to be used for remediation of metal and radionuclide contaminants in surface and groundwater. In this work, MICP is investigated for removal of dissolved heavy metals from contaminated mine discharge water via co-precipitation in CaCO3 or formation of other metal carbonates. The bacterially catalyzed hydrolysis of urea produces inorganic carbon and ammonium and increases pH and the saturation index of carbonate minerals to promote precipitation of CaCO3. Other heavy metal cations can be co-precipitated in CaCO3 as impurities or by replacing Ca2+ in the crystal lattice. We performed laboratory batch experiments of MICP in alkaline mine drainage sampled from an abandoned mine site in Montana and containing a mixture of heavy metals at near neutral pH. Both a model bacterium, Sporosarcina pasteurii, and a ureolytic bacterium isolated from sediments on the mine site were used to promote MICP. Removal of dissolved metals from the aqueous phase was determined via inductively coupled plasma mass spectrometry and resulting precipitates were analyzed via electron microscopy and energy dispersive x-ray spectroscopy (EDX). Both S. pasteurii and the native ureolytic isolate demonstrated ureolysis, increased the pH and promoted precipitation of CaCO3 in batch tests. MICP by the native bacterium reduced concentrations of the heavy metals zinc, copper, cadmium, nickel and manganese in the water. S. pasteurii was also able to promote MICP, but with less removal of dissolved metals. Analysis of precipitates revealed calcium carbonate and phosphate minerals were likely present. The native isolate is undergoing identification via 16S DNA sequencing. Ongoing work will evaluate biofilm formation and MICP by the isolate in continuous flow, gravel-filled laboratory columns. This research

  11. Species- and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    Roe, J.H.; Hopkins, W.A.; Jackson, B.P. [University of Georgia, Aiken, SC (US)

    2005-07-01

    Information on species- and stage-specific patterns of contaminant accumulation is generally lacking for amphibians, yet such information could provide valuable knowledge on how amphibians interact with contaminants. We assessed concentrations of As, Cd, Cu, Ni, Pb, Se, Sr, and Zn in whole bodies of larval, recently metamorphosed, and adult life stages in Bufo terrestris and Rana sphenocephala from a site that currently receives coal combustion waste (CCW) discharge, a site where CCW was formerly discharged that has undergone natural attenuation for 30 years, and a nearby reference site. For the majority of elements (As, Cd, Cu, Ni, Pb, Zn), concentrations were highest in larvae, but Se and Sr concentrations remained elevated in later life stages, likely because these elements are S and Ca analogs, respectively, and are thus retained throughout structural changes during metamorphosis. Element concentrations were generally higher in B. terrestris than in R. sphenocephala. Concentrations of As, Se, and Sr were up to 11-35 times higher in metamorphs emigrating from CCW-polluted wetlands compared to unpolluted wetlands, suggesting metamorphosed amphibians can transport trace elements from aquatic disposal basins to nearby uncontaminated terrestrial habitats. In addition, anurans utilizing naturally revegetated sites up to 30 years after CCW disposal ceases are exposed to trace elements, although to a lesser degree than sites where CCW is currently discharged.

  12. Relations between precipitation, groundwater withdrawals, and changes in hydrologic conditions at selected monitoring sites in Volusia County, Florida, 1995--2010

    Science.gov (United States)

    Murray, Louis C.

    2012-01-01

    A study to examine the influences of climatic and anthropogenic stressors on groundwater levels, lake stages, and surface-water discharge at selected sites in northern Volusia County, Florida, was conducted in 2009 by the U.S. Geological Survey. Water-level data collected at 20 monitoring sites (17 groundwater and 3 lake sites) in the vicinity of a wetland area were analyzed with multiple linear regression to examine the relative influences of precipitation and groundwater withdrawals on changes in groundwater levels and lake stage. Analyses were conducted across varying periods of record between 1995 and 2010 and included the effects of groundwater withdrawals aggregated from municipal water-supply wells located within 12 miles of the project sites. Surface-water discharge data at the U.S. Geological Survey Tiger Bay canal site were analyzed for changes in flow between 1978 and 2001. As expected, water-level changes in monitoring wells located closer to areas of concentrated groundwater withdrawals were more highly correlated with withdrawals than were water-level changes measured in wells further removed from municipal well fields. Similarly, water-level changes in wells tapping the Upper Floridan aquifer, the source of municipal supply, were more highly correlated with groundwater withdrawals than were water-level changes in wells tapping the shallower surficial aquifer system. Water-level changes predicted by the regression models over precipitation-averaged periods of record were underestimated for observations having large positive monthly changes (generally greater than 1.0 foot). Such observations are associated with high precipitation and were identified as points in the regression analyses that produced large standardized residuals and/or observations of high influence. Thus, regression models produced by multiple linear regression analyses may have better predictive capability in wetland environments when applied to periods of average or below average

  13. Obtain of uranium concentrates from fertil liquids

    International Nuclear Information System (INIS)

    Narvaez Castillo, W.A.

    1992-01-01

    This research tried to encounter the form to remove uranium from the rock in the best way, for that it was used different process like leaching, extraction, concentration and precipitation. To leach the mineral was chosen basic leaching, using a mixture of carbonate-sodium bicarbonate, this method is more adequated for the basic nature of the mineral. In extraction was used specific uranium ionic interchanges, so was chosen a tertiary amine like Alamina 336. The concentration phase is intimately binding with the extraction by ionic interchange, for the capability of resine's extraction to obtain concentrated liquids. When the liquids were obtained with high concentration of uranium in the same time were purified and then were precipitated, for that we employed a precipitant agent like: Sodium hydroxide, Amonium hydroxide, Magnesium hydroxide, Hydrogen peroxide and phosphates. With all concentrates we obtain the YELLOW CAKE

  14. Phase separation in Al-Zr-Sc alloys: from atomic jumps to ordered precipitates growth; Separation de phase dans les alliages Al-Zr-Sc: du saut des atomes a la croissance de precipites ordonnes

    Energy Technology Data Exchange (ETDEWEB)

    Clouet, E

    2004-07-01

    Zirconium and scandium addition to aluminium alloys leads to the formation of ordered precipitates. This study aims to a better understanding of precipitation kinetics thanks to an approach combining atomic and mesoscopic models. An experimental work has been undertaken too so as to characterize by transmission electron microscopy Al{sub 3}Zr kinetics of precipitation. We mainly focus on the nucleation stage and, in this purpose, an atomic model lying on a rigid lattice has been built for Al-Zr-Sc system allowing us to study precipitation with kinetic Monte Carlo simulations. While keeping the vacancy exchange mechanism for diffusion, we introduce multi-site interactions going thus beyond a simple pair interaction model, and test the influence of these interactions on kinetics of precipitation. The comparison between Monte Carlo simulations and classical nucleation theory shows that mesoscopic models can lead to a good description of the nucleation stage of Al{sub 3}Zr and Al{sub 3}Sc as long as the order tendency of the system has been taken into account to calculate input parameters of these models. For the ternary Al-Zr-Sc system, atomic simulations allow a better understanding of the precipitation kinetic path. It is then possible to extend the field of classical nucleation theory so as to model nucleation in a ternary alloy where the stoichiometry of the precipitates is unknown. (author)

  15. Precipitation of Zinc Oxide Nanoparticles in Bicontinuous Microemulsions

    Directory of Open Access Journals (Sweden)

    Liliana E. Romo

    2011-01-01

    Full Text Available Zinc oxide nanoparticles were obtained directly, avoiding the calcination step, by precipitation at 70°C in bicontinuous microemulsions stabilized with a mixture of surfactants sodium bis (2-ethylhexyl sulfosuccinate/sodium dodecyl sulfate (2/1, wt./wt. containing 0.7 M zinc nitrate aqueous solution. Two concentrations of aqueous solution of precipitating agent sodium hydroxide were used under different dosing times on microemulsion. Characterization by X-ray diffraction and electron microscopy allowed us to identify particles with an acicular rod-like morphology and a hexagonal wurtzite crystal structure as small as 8.5 and 30 nm in average diameter and length, respectively. Productivities much higher than those typical in the preparation of zinc oxide nanoparticles via reverse microemulsions were obtained. Particle size was the same at the two studied sodium hydroxide concentrations, while it increases as dosing time of the precipitant agent increases. It is believed that the surfactant film on the microemulsion channels restricts the particle diameter growth.

  16. Precipitation of iron (III) using magnesium oxide in fluidized bed

    International Nuclear Information System (INIS)

    Esteban-Bocardo, P. A.; Ferreira-Rocha, S. D.

    2006-01-01

    A process for iron (III) removal by hydroxide precipitation from and acid synthetic inorganic effluent using magnesium oxide as an alternative precipitant agent in a fluidized bed was developed. An acid synthetic inorganic effluent containing 100 and 200 mg/l of ferric ions (pH=1.0) was continuously fed up to the acrylic column (30 cm high and 2 cm diameter) during 180 minutes. Magnesium oxide pulp (3% v/v) was injected at the beginning of the experiment in order to allow the iron hydroxides precipitation. The concentration and pH profiles agreed in their curves, while the pH profile rose,the concentration profile decreased and a high percentage of iron removal /higher to 99%) was reached. Extremely low iron concentrations have been reached, thus permitting to attend to the environmental standard of 10.0 mg/l for discharge of effluent containing ferric ions established by the law DN 10/86 of COPAM (Conselho de Politica Ambiental do Estado de Minas Gerais-Brazil). (Author)

  17. The Fractionation and Enrichment of La Content by Precipitation

    International Nuclear Information System (INIS)

    Suyanti; Purwani, MV

    2007-01-01

    The fractionation and enrichment of La content by precipitation have been done. The feed was La hydroxide by product of monazite sand. La hydroxide was diluted in HNO 3 and was precipitated with ammonia. For to obtain La, diluent was precipitated at pH 8 and the filtrate was precipitated with oxalic acid. The precipitant of La concentrated was more rich than the feed. This process was done continue and fractionally. The best yield of enrichment of La was obtained at dilution of 25 gram La Hydroxide in 20 ml HNO 3 . The efficient degree of fractionation was XV. The average weight of La concentrate was obtained at every fraction was 1 gram. The total sum weight from fraction I until fraction XV 13.5 grams. The average of La content was 48%, average fractionation efficiency of La for every step of fractionation was 48 %. Total efficiency all process was 100%. The average ratio of La/Nd was 2 and the ratio of La/Ce almost infinite. Before processed La/Ce was 7.86, and after process increase to 26.92 - to approach ∞. Before processed ratio of La/Nd was 2.79, after processed increased to 4.4 - to approach ∞. (author)

  18. A two-stage compound parabolic concentrator system with a large entrance over the exit aperture ratio

    International Nuclear Information System (INIS)

    Angelescu, Tatiana; Radu, A. A.

    2000-01-01

    Certain optical designs in the field of high energy gamma ray astronomy components of the Cherenkov light, collected by the mirror of telescope, be concentrated on the photo-cathodes of the photomultiplier tubes, with the help of the light collectors having large entrance and small exit apertures. Mathematical restrictions imposed by the design of the compound parabolic concentrator (CPC) implied that for a given cut-off angle and an entrance aperture, the exit aperture of the CPC should not exceed a limit value. If this value is larger than the active diameter of the photocathode, an additional concentrator must be added to the system in order to transfer the light collected, from the exit aperture of the compound parabolic concentrator to the photocathode of the photomultiplier tube. Different designs of a two-stage system composed by a a hollow compound parabolic concentrator and a solid, dielectric filled concentrator are evaluated in this paper, from the point of view of optical efficiency and manufacturability. (authors)

  19. Effects of natural organic matter on calcium and phosphorus co-precipitation.

    Science.gov (United States)

    Sindelar, Hugo R; Brown, Mark T; Boyer, Treavor H

    2015-11-01

    Phosphorus (P), calcium (Ca) and natural organic matter (NOM) naturally occur in all aquatic ecosystems. However, excessive P loads can cause eutrophic or hyper-eutrophic conditions in these waters. As a result, P regulation is important for these impaired aquatic systems, and Ca-P co-precipitation is a vital mechanism of natural P removal in many alkaline systems, such as the Florida Everglades. The interaction of P, Ca, and NOM is also an important factor in lime softening and corrosion control, both critical processes of drinking water treatment. Determining the role of NOM in Ca-P co-precipitation is important for identifying mechanisms that may limit P removal in both natural and engineered systems. The main goal of this research is to assess the role of NOM in inhibiting Ca and P co-precipitation by: (1) measuring how Ca, NOM, and P concentrations affect NOM's potential inhibition of co-precipitation; (2) determining the effect of pH; and (3) evaluating the precipitated solids. Results showed that Ca-P co-precipitation occurs at pH 9.5 in the presence of high natural organic matter (NOM) (≈30 mg L(-1)). The supersaturation of calcite overcomes the inhibitory effect of NOM seen at lower pH values. Higher initial P concentrations lead to both higher P precipitation rates and densities of P on the calcite surface. The maximum surface density of co-precipitated P on the precipitated calcite surface increases with increasing NOM levels, suggesting that NOM does prevent the co-precipitation of Ca and P. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Mugwar, Ahmed J. [Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); College of Engineering, Al-Muthanna University, Samawah (Iraq); Harbottle, Michael J., E-mail: harbottlem@cardiff.ac.uk [Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom)

    2016-08-15

    Highlights: • Minimum inhibitory concentrations (MIC) are determined for S. pasteurii with a range of metals. • Zinc & cadmium bioprecipitation is strongly linked to microbial carbonate generation. • Lead & copper carbonate bioprecipitation is limited & abiotic processes may be significant. • Bioprecipitation allows survival at & remediation of higher metal concentrations than expected. - Abstract: Biological precipitation of metallic contaminants has been explored as a remedial technology for contaminated groundwater systems. However, metal toxicity and availability limit the activity and remedial potential of bacteria. We report the ability of a bacterium, Sporosarcina pasteurii, to remove metals in aerobic aqueous systems through carbonate formation. Its ability to survive and grow in increasingly concentrated aqueous solutions of zinc, cadmium, lead and copper is explored, with and without a metal precipitation mechanism. In the presence of metal ions alone, bacterial growth was inhibited at a range of concentrations depending on the metal. Microbial activity in a urea-amended medium caused carbonate ion generation and pH elevation, providing conditions suitable for calcium carbonate bioprecipitation, and consequent removal of metal ions. Elevation of pH and calcium precipitation are shown to be strongly linked to removal of zinc and cadmium, but only partially linked to removal of lead and copper. The dependence of these effects on interactions between the respective metal and precipitated calcium carbonate are discussed. Finally, it is shown that the bacterium operates at higher metal concentrations in the presence of the urea-amended medium, suggesting that the metal removal mechanism offers a defence against metal toxicity.

  1. Micellar casein concentrate production with a 3X, 3-stage, uniform transmembrane pressure ceramic membrane process at 50°C.

    Science.gov (United States)

    Hurt, E; Zulewska, J; Newbold, M; Barbano, D M

    2010-12-01

    The production of serum protein (SP) and micellar casein from skim milk can be accomplished using microfiltration (MF). Potential commercial applications exist for both SP and micellar casein. Our research objective was to determine the total SP removal and SP removal for each stage, and the composition of retentates and permeates, for a 3×, continuous bleed-and-feed, 3-stage, uniform transmembrane pressure (UTP) system with 0.1-μm ceramic membranes, when processing pasteurized skim milk at 50°C with 2 stages of water diafiltration. For each of 4 replicates, about 1,100 kg of skim milk was pasteurized (72°C, 16s) and processed at 3× through the UTP MF system. Retentate from stage 1 was cooled to <4°C and stored until the next processing day, when it was diluted with reverse osmosis water back to a 1× concentration and again processed through the MF system (stage 2) to a 3× concentration. The retentate from stage 2 was stored at <4°C, and, on the next processing day, was diluted with reverse osmosis water back to a 1× concentration, before running through the MF system at 3× for a total of 3 stages. The retentate and permeate from each stage were analyzed for total nitrogen, noncasein nitrogen, and nonprotein nitrogen using Kjeldahl methods; sodium dodecyl sulfate-PAGE analysis was also performed on the retentates from each stage. Theoretically, a 3-stage, 3× MF process could remove 97% of the SP from skim milk, with a cumulative SP removal of 68 and 90% after the first and second stages, respectively. The cumulative SP removal using a 3-stage, 3× MF process with a UTP system with 0.01-μm ceramic membranes in this experiment was 64.8 ± 0.8, 87.8 ± 1.6, and 98.3 ± 2.3% for the first, second, and third stages, respectively, when calculated using the mass of SP removed in the permeate of each stage. Various methods of calculation of SP removal were evaluated. Given the analytical limitations in the various methods for measuring SP removal, calculation

  2. Acidic precipitation: considerations for an air-quality standard

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L.S.; Hendrey, G.R.; Stensland, G.J.; Johnson, D.W.; Francis, A.J.

    1980-01-01

    Acidic precipitation, wet or frozen deposition with a hydrogen ion concentration greatern than 2.5 ..mu..eq l/sup -1/ is a significant air pollution problem in the United States. The chief anions accounting for the hydrogen ions in rainfall are nitrate and sulfate. Agricultural systems are more likely to derive net nutritional benefits from increasing inputs of acidic rain than are forest systems when soils alone are considered. Agricultural soils may benefit because of the high N and S requirements of agricultural plants. Detrimental effects to forest soils may result if atmospheric H/sup +/ inputs significantly add to or exceed H/sup +/ production by soils. Acidification of fresh waters of southern Scandinavia, southwestern Scotland, southeastern Canada, and northeastern United States is caused by acid deposition. Areas of these regions in which this acidification occurs have in common, highly acidic precipitation with volume weighted mean annual H/sup +/ concentrations of 25 ..mu..eq l/sup -1/ or higher and slow weathering granitic or precambrian bedrock with thin soils deficient in minerals which would provide buffer capacity. Biological effects of acidification of fresh waters are detectable below pH 6.0. As lake and stream pH levels decrease below pH. 6.0, many species of plants, invertebrates, and vertebrates are progressively eliminated. Generally, fisheries are impacted below pH 5.0 and are completely destroyed below pH 4.8. There are few studies that document effects of acidic precipitation on terrestrial vegetation to establish an air quality standard. It must be demonstrated that current levels of precipitation acidity alone significantly injure terrestrial vegetation. In terms of documented damanges, current research indicates that establishing a standard for precipitation for the volume weighted annual H/sup +/ concentration at 25 ..mu..eq l/sup -1/ may protect the most sensitive areas from permanent lake acidification.

  3. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Son, Kuk-Hyeon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Yu, Chin-Ho [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr

    2005-10-27

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase.

  4. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Son, Kuk-Hyeon; Yu, Chin-Ho; Kwon, Yong Hoon; Kim, Hyung-Il

    2005-01-01

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase

  5. Evaluation of precipitates used in strainer head loss testing: Part III. Long-term aluminum hydroxide precipitation tests in borated water

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2011-01-01

    Research highlights: → Aluminum hydroxide precipitation boundary is similar to that for amorphous phase. → Various precipitation tests are combined into one map in temperature-'pH + p[Al] T '. → Flocculation tendency of precipitates depend on pH and total Al concentration. → DLVO theory explains qualitatively the dependency of flocculation tendency on pH. - Abstract: Long-term aluminum (Al) hydroxide precipitation tests were conducted in slightly alkaline solutions containing 2500 ppm boron. The solution temperature was cycled to obtain a temperature history more representative of emergency core cooling system temperatures after a loss-of-coolant accident. The observed Al precipitation boundary was close to predicted results for amorphous precipitates, which are higher than the solubility expected for crystalline forms. Bench-scale and loop head loss test results under various conditions were successfully combined into single map in a temperature - 'pH + p[Al] T ' domain, which yielded two bounding lines for Al hydroxide solubility in borated alkaline water that depend on whether or not loop head loss tests with Al alloy coupons are included. Precipitates were observed to form either as fine, cloudy suspensions, which showed very little tendency to settle, or as flocculated precipitates. The flocculation tendency of the precipitates can be qualitatively explained by a colloid stability theory or a phase diagram for protein solutions.

  6. Phosphate adsorption and precipitation on calcite under calco-carbonic equilibrium condition.

    Science.gov (United States)

    Li, Zhenxuan; Sun, Xiaowen; Huang, Lidong; Liu, Dagang; Yu, Luji; Wu, Hongsheng; Wei, Dongyang

    2017-09-01

    Phosphate (PO 4 3- ) removal on calcite often entails two processes: adsorption and precipitation. Separating these two processes is of great importance for assessment of PO 4 3- stability after removal. Thus, this study was aimed at finding a critical range of conditions for separating these two processes in calco-carbonic equilibrium, by adjusting PO 4 3- concentration, reaction time and pH. PO 4 3- removal kinetic results showed that: (I) At pH7.7, PO 4 3- removal was mainly by adsorption at initial PO 4 3- concentration ≤2.2 mg L -1 and reaction time ≤24 h, with dominant precipitation occurring at initial PO 4 3- concentration ≥3 mg L -1 after 24 h reaction; (II) At pH8.3, adsorption was the key removal process at initial PO 4 3- concentration ≤7.5 mg L -1 and reaction time ≤24 h, whereas precipitation was observed at initial PO 4 3- concentration of 10 mg L -1 after 24 h reaction, (III) At pH 9.1 and 10.1, PO 4 3- removal mechanism was mainly by adsorption at initial PO 4 3- concentration ≤10 mg L -1 within 24 h reaction. Based on the kinetic results, it is suggested that PO 4 3- precipitation will occur after 24 h reaction when saturation index of amorphous calcium phosphate is between 1.97 and 2.19. Besides, increasing PO 4 3- concentration does not cause a continuous decline of PO 4 3- removal percentage. Moreover, experimental removal data deviated largely from the theoretical adsorption value by CD-MUSIC model. These indicate occurrence of precipitation which is in agreement with the kinetic result. Therefore our study will provide fundamental reference information for better understanding of phosphorous stabilization after removal by calcite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Inducing mineral precipitation in groundwater by addition of phosphate

    Directory of Open Access Journals (Sweden)

    Hartmann Thomas

    2011-10-01

    Full Text Available Abstract Background Induced precipitation of phosphate minerals to scavenge trace elements from groundwater is a potential remediation approach for contaminated aquifers. The success of engineered precipitation schemes depends on the particular phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for phosphate mineral precipitation rely on stimulation of native microbial populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 mL-1 added to the precipitation medium. In addition, we tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM. Results The general progression of mineral precipitation was similar under all of the study conditions, with initial formation of amorphous calcium phosphate, and transformation to poorly crystalline hydroxylapatite (HAP within one week. The presence of the bacterial cells appeared to delay precipitation, although by the end of the experiments the overall extent of precipitation was similar for all treatments. The stoichiometry of the final precipitates as well as Rietveld structure refinement using x-ray diffraction data indicated that the presence of organic acids and bacterial cells resulted in an increasing a and decreasing c lattice parameter, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the solids was decreased in the treatments with cells and organic acids, compared to the control. Conclusions Our results suggest that the minerals formed initially during an engineered precipitation application for trace element sequestration may not be the ones that control long-term immobilization of the contaminants. In

  8. Simulation of effects of redox and precipitation on diffusion of uranium solution species in backfill

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-12-01

    This investigation addresses the problem of prediction of the rate of migration of redox-sensitive solution species within packing and backfill materials under conditions of variable oxidation potential. Effects of changes of oxidation potential and precipitation of stable uranium compounds during diffusion of uranium from a region of high oxidation potential into a region of low oxidation potential were simulated numerically. Questions of particular interest addressed in the investigation were the existence of a moving ''redox front'' and the influence of precipitation-dissolution processes on uranium migration. The simulations showed that no expanding redox fronts existed at any simulated time up to 3.2 x 10 5 years (10 13 s). In simulations where precipitation of stable solids was not allowed, variations of oxidation potential did not affect total uranium concentrations in solution. Concentration profiles could be predicted simply by diffusion of the (constant) source concentrations. In simulations where precipitation of stable solids was allowed, uraninite and calcium uranate accumulated at the source-transport domain interface, while coffinite penetrated further into the transport domain. Total uranium concentrations in regions of precipitation were determined by solubilities of the precipitated solids, and were six to seven orders of magnitude lower than those in the simulations without precipitation, throughout the domain of transport. 14 refs., 7 figs., 2 tabs

  9. Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds

    Science.gov (United States)

    Muhlbauer, A.; Hashino, T.; Xue, L.; Teller, A.; Lohmann, U.; Rasmussen, R. M.; Geresdi, I.; Pan, Z.

    2010-09-01

    Anthropogenic aerosols serve as a source of both cloud condensation nuclei (CCN) and ice nuclei (IN) and affect microphysical properties of clouds. Increasing aerosol number concentrations is hypothesized to retard the cloud droplet coalescence and the riming in mixed-phase clouds, thereby decreasing orographic precipitation. This study presents results from a model intercomparison of 2-D simulations of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. The sensitivity of orographic precipitation to changes in the aerosol number concentrations is analysed and compared for various dynamical and thermodynamical situations. Furthermore, the sensitivities of microphysical processes such as coalescence, aggregation, riming and diffusional growth to changes in the aerosol number concentrations are evaluated and compared. The participating numerical models are the model from the Consortium for Small-Scale Modeling (COSMO) with bulk microphysics, the Weather Research and Forecasting (WRF) model with bin microphysics and the University of Wisconsin modeling system (UWNMS) with a spectral ice habit prediction microphysics scheme. All models are operated on a cloud-resolving scale with 2 km horizontal grid spacing. The results of the model intercomparison suggest that the sensitivity of orographic precipitation to aerosol modifications varies greatly from case to case and from model to model. Neither a precipitation decrease nor a precipitation increase is found robustly in all simulations. Qualitative robust results can only be found for a subset of the simulations but even then quantitative agreement is scarce. Estimates of the aerosol effect on orographic precipitation are found to range from -19% to 0% depending on the simulated case and the model. Similarly, riming is shown to decrease in some cases and models whereas it increases in others, which implies that a decrease in riming with increasing aerosol load is not a robust result

  10. Developing precipitation hardenable high entropy alloys

    Science.gov (United States)

    Gwalani, Bharat

    High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi 2 (0 mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (gamma') and B2 precipitates in Al0.3CoCrFeNi. A detailed investigation of precipitation of the ordered phases in Al0.3CoCrFeNi and their thermal stability is done using atom probe tomography (APT), transmission electron microscopy (TEM) and Synchrotron X-ray in situ and ex situ analyses. The alloy strengthened via grain boundary strengthening following the Hall-Petch relationship offers a large increment of strength with small variation in grain size. Tensile strength of the Al0.3CoFeNi is increased by 50% on precipitation fine-scale gamma' precipitates

  11. Kinetics of niobium carbide precipitation in ferrite; Cinetiques de precipitation du carbure de niobium dans la ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Gendt, D

    2001-07-01

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  12. Kinetics of radiation-induced precipitation at the alloy surface

    Science.gov (United States)

    Lam, N. Q.; Nguyen, T.; Leaf, G. K.; Yip, S.

    1988-05-01

    Radiation-induced precipitation of a new phase at the surface of an alloy during irradiation at elevated temperatures was studied with the aid of a kinetic model of segregation. The preferential coupling of solute atoms with the defect fluxes gives rise to a strong solute enrichment at the surface, which, if surpassing the solute solubility limit, leads to the formation of a precipitate layer. The moving precipitate/matrix interface was accommodated by means of a mathematical scheme that transforms spatial coordinates into a reference frame in which the boundaries are immobile. Sample calculations were performed for precipitation of the γ'-Ni 3Si layer on Ni-Si alloys undergoing electron irradiation. The dependences of the precipitation kinetics on the defect-production rate, irradiation temperature, internal defect sink concentration and alloy composition were investigated systematically.

  13. Mathematical modelling of brittle phase precipitation in complex ruthenium containing nickel-based superalloys

    International Nuclear Information System (INIS)

    Rettig, Ralf

    2010-01-01

    A new model has been developed in this work which is capable of simulating the precipitation kinetics of brittle phases, especially TCP-phases (topologically close packed phases) in ruthenium containing superalloys. The model simultaneously simulates the nucleation and the growth stage of precipitation for any number of precipitating phases. The CALPHAD method (Calculation of Phase Diagrams) is employed to calculate thermodynamic properties, such as the driving force or phase compositions in equilibrium. For calculation of diffusion coefficients, kinetic mobility databases which are also based on the CALPHAD-method are used. The model is fully capable of handling multicomponent effects, which are common in complex superalloys. Metastable phases can be treated and will automatically be dissolved if they get unstable. As the model is based on the general CALPHAD method, it can be applied to a broad range of precipitation processes in different alloys as long as the relevant thermodynamic and kinetic databases are available. The developed model proves that the TCP-phases precipitate in a sequence of phases. The first phase that is often formed is the metastable σ-phase because it has the lowest interface energy due to low-energy planes at the interface between matrix and precipitate. After several hundred hours the stable μ- and P-phases start to precipitate by nucleating at the σ-phase which is energetically favourable. During the growth of these stable phases the sigma-phase is continuously dissolved. It can be shown by thermodynamic CALPHAD calculations that the sigma-phase has a lower Gibbs free enthalpy than the μ- and P-phase. All required parameters of the model, such as interface energy and nucleate densities, have been estimated. The mechanisms of suppression of TCP-phase precipitation in the presence of ruthenium in superalloys were investigated with the newly developed model. It is shown by the simulations that ruthenium mostly affects the nucleation

  14. The effect of cold work on the recrystallization and precipitation kinetics of Al-Cu alloy

    International Nuclear Information System (INIS)

    Taha, A.S.; EL-Mossalamy, S.; Nassar, A.M.

    1990-01-01

    The effect of cold work by rolling (10-70%) followed by isochronal and isothermal annealing on the microhardness and iso thermal annealing on the microhardness and structure of Al-3.94 wt % Cu was investigated using microhardness measurements, optical and scanning electron microscopy. Two stages of annealing were observed, the first stage lies in the range R T-623 degree K is associated with decrease in hardness indicating overall recovery, while the second stage lies in the range 623-823 degree K shows hardness increase with temperature indicating precipitation reaching a maximum at 823 degree K for all cold worked specimens. The maximum hardness increases with the increase of the degree of cold work. The first stage is attributed to recovery processes including recrystallization while the second stage is attributed to precipitation which enhanced by increasing amount of cold work as indicated by hardness and scanning electron microscopy observations

  15. Optimization of the conditions for the precipitation of thorium oxalate. II. Minimization of the product losses

    International Nuclear Information System (INIS)

    Pazukhin, E.M.; Smirnova, E.A.; Krivokhatskii, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1987-01-01

    The precipitation of thorium as a poorly soluble oxalate was investigated. An equation relating the concentrations of the metal and nitric acid in the initial solution and the amount of precipitant required to minimize the product losses was derived. A graphical solution of the equation is presented for the case where the precipitant is oxalic acid at a concentration of 0.78 M

  16. Continuous and simultaneous measurements of precipitation and vapor isotopes over two monsoon seasons during 2016-2017 in Singapore

    Science.gov (United States)

    Jackisch, D.; He, S.; Ong, M. R.; Goodkin, N.

    2017-12-01

    Water isotopes are important tracers of climate dynamics and their measurement can provide valuable insights into the relationship between isotopes and atmospheric parameters and overall convective activities. While most studies provide data on daily or even monthly time scales, high-temporal in-situ stable isotope measurements are scarce, especially in the tropics. In this study, we presented δ18O and δ2H values in precipitation and vapor continuously and simultaneously measured using laser spectroscopy in Singapore during the 2016/2017 Northeast (NE) Asian monsoon and 2017 Southwest (SW) Asian monsoon. We found that δ-values of precipitation and vapor exhibit quite different patterns during individual events, although there is a significant correlation between the δ-values of precipitation and of vapor. δ-values in precipitation during individual precipitation events show a distinct V-shape pattern, with the lowest isotope values observed in the middle of the event. However, isotopes in water vapor mostly show an L-shape and are characterized by a gradual decrease with the onset of rainfall. The difference in δ-values of precipitation and vapor is generally constant during the early stage of the events but gradually increases near the end. It is likely that vapor and precipitation are closer to equilibrium at the early stage of a rain event, but diverge at the later stages. This divergence can be largely attributed to the evaporation of raindrops. We notice a frequent drop in d-excess of precipitation, whereas d-excess in vapor increases. In addition, a significant correlation exists between outgoing longwave radiation (OLR) and isotopes in both precipitation and vapor, suggesting an influence of regional convective activity.

  17. Properties of precipitates formed during ammonization of extractional phosphoric acid

    International Nuclear Information System (INIS)

    Zakharova, B.S.; Komissarova, L.N.; Naumov, S.V.; Traskin, V.Yu.

    1992-01-01

    Dimensions of precipitated rare-earth phosphate particles -(0.1 μm)- are near the boundary of colloidal system sedimentation stability range at neutralization of extraction phosphoric acid. Thus, formation of multiple aggregates of colloidal particles results in immediate sedimentation of the precipitate. Processes occurring within the system may be described using second order reaction equation. Average efficient size of precipitates grows at reduction of reaction mixture pH. About 30% of rare-earth elements and yttrium in the extraction phosphoric acid is extracted from it; concentration of rare-earth elements, yttrium and scandium in precipitate is maximum 2 mass. %

  18. Study of precipitation in Al–Mg–Si Alloys by atom probe tomography II. Influence of Cu additions

    International Nuclear Information System (INIS)

    Zandbergen, M.W.; Cerezo, A.; Smith, G.D.W.

    2015-01-01

    Atom probe tomography (APT) analysis and hardness measurements have been used to characterise the early stages of precipitation in three Al–Mg–Si alloys with different Cu contents (Al–0.51 at.%Mg–0.94 at.%Si, with 0.01 at.%, 0.06 at.%, or 0.34 at.% Cu). A range of single and multi- stage heat treatments were chosen to evaluate the changes in precipitation processes. Three ageing temperatures were investigated, 298 K (natural ageing), 353 K (pre-ageing) and 453 K (automotive paint-bake conditions). The Cu content had significant effects on the microstructural evolution within the alloy. Formation of clusters which can act as precursors of elongated precipitates during paint-baking was found to be enhanced with increasing Cu content. This improved the paint-bake hardening response and mitigated the deleterious effects of natural ageing. Cu was present in all precipitates in the highest Cu-containing alloy. These precipitates were believed to be precursors to the Q′ phase. Mechanisms for the effects of Cu on precipitation kinetics are proposed.

  19. Effect of humic substances on phosphorus removal by struvite precipitation.

    Science.gov (United States)

    Zhou, Zhen; Hu, Dalong; Ren, Weichao; Zhao, Yuzeng; Jiang, Lu-Man; Wang, Luochun

    2015-12-01

    Humic substances (HS) are a major fraction of dissolved organic matters in wastewater. The effect of HS on phosphorus removal by struvite precipitation was investigated using synthetic wastewater under different initial pH values, Mg/P molar ratios and HS concentrations. The composition, morphology and thermal properties of harvested precipitates were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo-gravimetric analysis (TGA), respectively. It showed that inhibition effect of HS reached its maximum value of 48.9% at pH 8.0, and decreased to below 10% at pH>9.0. The increase of Mg/P ratio enhanced phosphorus removal efficiency, and thus reduced the influence of HS on struvite precipitation. At pH 9.0, the inhibitory effect of initial HS concentration matched the modified Monod model with half maximum inhibition concentration of 356mgL(-1), and 29% HS was removed in conjunction with struvite crystallisation. XRD analysis revealed that the crystal form of struvite precipitates was changed in the presence of HS. The morphology of harvested struvite was transformed from prismatic to pyramid owing to the coprecipitation of HS on crystal surface. TGA results revealed that the presence of HS could compromise struvite purity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Ice nucleation active particles are efficiently removed by precipitating clouds

    OpenAIRE

    Emiliano Stopelli; Franz Conen; Cindy E. Morris; Erik Herrmann; Nicolas Bukowiecki; Christine Alewell

    2015-01-01

    Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ(18)O to derive the fraction of water vapour lost from precipitating clouds ...

  1. Anomalous precipitation hardening in Al-(1 wt%)Cu thin films

    NARCIS (Netherlands)

    Bergers, L. J. C.; De Hosson, J. Th. M.; Geers, M. G. D.; Hoefnagels, J. P. M.

    2018-01-01

    This paper concentrates on the precipitation hardening of Al-(1 wt%)Cu thin films. It is shown that in contrast to bulk, the well-known approach of precipitation hardening in confined systems like thin layers and thin films does not operate in the conventional way. This work analyses and discusses

  2. Species-and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes

    International Nuclear Information System (INIS)

    Roe, John H.; Hopkins, William A.; Jackson, Brian P.

    2005-01-01

    Information on species-and stage-specific patterns of contaminant accumulation is generally lacking for amphibians, yet such information could provide valuable knowledge on how amphibians interact with contaminants. We assessed concentrations of As, Cd, Cu, Ni, Pb, Se, Sr, and Zn in whole bodies of larval, recently metamorphosed, and adult life stages in Bufo terrestris and Rana sphenocephala from a site that currently receives coal combustion waste (CCW) discharge, a site where CCW was formerly discharged that has undergone natural attenuation for 30 years, and a nearby reference site. For the majority of elements (As, Cd, Cu, Ni, Pb, Zn), concentrations were highest in larvae, but Se and Sr concentrations remained elevated in later life stages, likely because these elements are S and Ca analogs, respectively, and are thus retained throughout structural changes during metamorphosis. Element concentrations were generally higher in B. terrestris than in R. sphenocephala. Concentrations of As, Se, and Sr were up to 11-35 times higher in metamorphs emigrating from CCW-polluted wetlands compared to unpolluted wetlands, suggesting metamorphosed amphibians can transport trace elements from aquatic disposal basins to nearby uncontaminated terrestrial habitats. In addition, anurans utilizing naturally revegetated sites up to 30 years after CCW disposal ceases are exposed to trace elements, although to a lesser degree than sites where CCW is currently discharged. - Results suggest that metamorphosed amphibians can transport trace elements from aquatic disposal basins to non-contaminated habitats

  3. Species-and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    Roe, John H. [University of Georgia, Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802 (United States); Hopkins, William A. [University of Georgia, Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802 (United States)]. E-mail: hopkins@srel.edu; Jackson, Brian P. [University of Georgia, Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802 (United States)

    2005-07-15

    Information on species-and stage-specific patterns of contaminant accumulation is generally lacking for amphibians, yet such information could provide valuable knowledge on how amphibians interact with contaminants. We assessed concentrations of As, Cd, Cu, Ni, Pb, Se, Sr, and Zn in whole bodies of larval, recently metamorphosed, and adult life stages in Bufo terrestris and Rana sphenocephala from a site that currently receives coal combustion waste (CCW) discharge, a site where CCW was formerly discharged that has undergone natural attenuation for 30 years, and a nearby reference site. For the majority of elements (As, Cd, Cu, Ni, Pb, Zn), concentrations were highest in larvae, but Se and Sr concentrations remained elevated in later life stages, likely because these elements are S and Ca analogs, respectively, and are thus retained throughout structural changes during metamorphosis. Element concentrations were generally higher in B. terrestris than in R. sphenocephala. Concentrations of As, Se, and Sr were up to 11-35 times higher in metamorphs emigrating from CCW-polluted wetlands compared to unpolluted wetlands, suggesting metamorphosed amphibians can transport trace elements from aquatic disposal basins to nearby uncontaminated terrestrial habitats. In addition, anurans utilizing naturally revegetated sites up to 30 years after CCW disposal ceases are exposed to trace elements, although to a lesser degree than sites where CCW is currently discharged. - Results suggest that metamorphosed amphibians can transport trace elements from aquatic disposal basins to non-contaminated habitats.

  4. Studies on Pu(IV)/(III)-oxalate precipitation from nitric acid containing high concentration of calcium and fluoride ions

    International Nuclear Information System (INIS)

    Kalsi, P.K.; Pawar, S.M.; Ghadse, D.R.; Joshi, A.R.; Ramakrishna, V.V.; Vaidya, V.N.; Venugopal, V.

    2003-01-01

    Plutonium (IV)/(III) oxalate precipitation from nitric acid solution, containing large amount of calcium and fluoride ions was investigated. It was observed that direct precipitation of Pu (IV) oxalate from nitric acid containing large amount of calcium and fluoride ions did not give good decontamination of Pu from calcium and fluoride impurities. However, incorporation of hydroxide precipitation using ammonium hydroxide prior to Pu (IV) oxalate precipitation results into PuO 2 with much less calcium and fluoride impurities. Whereas, good decontamination from calcium and fluoride impurities could be obtained by employing Pu (III) oxalate precipitation directly from nitric acid containing large amount of calcium and fluoride ions. A method was also developed to recover Pu from the oxalate waste containing calcium and fluoride ions. (author)

  5. THE EFFECT OF SALICYLATES ON THE PRECIPITATION OF ANTIGEN WITH ANTIBODY.

    Science.gov (United States)

    Coburn, A F; Kapp, E M

    1943-02-01

    1. Sodium salicylate modifies the precipitation of normal rabbit serum protein by sodium tungstate, and partially inhibits the precipitation of horse serum euglobulin by rabbit antiserum. Sodium salicylate added to a system containing crystalline egg albumin and its antibody partly prevents the formation of precipitate, the degree of inhibition being related to the concentration of salicylate. 2. Precipitation in the equivalence zone is more readily prevented by salicylate than precipitation in the region of antibody excess, the immune system becoming progressively less sensitive to the action of salicylate as the excess of antibody becomes larger. 3. Formed precipitates were partly dissolved following resuspension in the presence of salicylate. 4. The salicylate effect on immune precipitation is reversible, and appears to be due to inactivation of antibody. 5. Salicylate was more effective in preventing specific precipitation than other anions of a lyotropic series tested.

  6. Precipitation behavior of uranium in multicomponent solution by oxalic acid

    International Nuclear Information System (INIS)

    Shin, Y.J.; Kim, I.S.; Lee, W.K.; Shin, H.S.; Ro, S.G.

    1996-01-01

    A study on the precipitation of uranium by oxalic acid was carried out in a multicomponent solution. The precipitation method is usually applied to the treatment of radioactive waste and the recovery of uranium from a uranium-scrap contaminated with impurities. In these cases, the problem is how to increase the precipitation yield of target element and to prevent impurities from coprecipitation. The multicomponent solution in the present experiment was prepared by dissolving U, Nd, Cs and Sr in nitric acid. The effects of concentrations of oxalic acid and ascorbic acid on the precipitation yield and purity of uranium were observed. As results of the study, the maximum precipitation yield of uranium is revealed to be about 96.5% and the relative precipitation ratio of Nd, Cs and Sr versus uranium are discussed at the condition of the maximum precipitation yield of uranium, respectively. (author). 11 refs., 5 figs., 1 tab

  7. A long-term variation of chemical composition in precipitation

    International Nuclear Information System (INIS)

    Yoshioka, Ryuma; Okimura, Takashi; Okumura, Takenobu

    1991-01-01

    Precipitation samples are collected at the six localities in the southwestern Japan weekly or monthly over a long period of time (1978-1989) in order to estimate chemical weathering rates and amount of weathered materials through chemical composition in natural waters. Major chemical composition is determined for the precipitation samples. Together with the data available in the literature, the following characteristics are recognized : 1) Most pH values fall in the narrow range of 4.4 to 5.4, 2) Systematic variations in pH values are observed among the precipitation samples of different geologic environments, 3) pH values become almost constant from 1984 to 1989, 4) NO 3 - concentrations gradually decrease to an almost constant value with time, and 5) ΔSO 4 2- concentrations gradually have a tendency to decrease from 1978 to 1985. The mechanism of phenomena described above is also presented. (author)

  8. Hydrochemical controls on aragonite versus calcite precipitation in cave dripwaters

    Science.gov (United States)

    Rossi, Carlos; Lozano, Rafael P.

    2016-11-01

    Despite the paleoclimatic relevance of primary calcite to aragonite transitions in stalagmites, the relative role of fluid Mg/Ca ratio, supersaturation and CO32- concentration in controlling such transitions is still incompletely understood. Accordingly, we have monitored the hydrochemistry of 50 drips and 8 pools that are currently precipitating calcite and/or aragonite in El Soplao and Torca Ancha Caves (N. Spain), investigating the mineralogy and geochemistry of the CaCO3 precipitates on the corresponding natural speleothem surfaces. The data reveal that, apart from possible substrate effects, dripwater Mg/Ca is the only obvious control on CaCO3 polymorphism in the studied stalagmites and pools, where calcite- and aragonite-precipitating dripwaters are separated by an initial (i.e. at stalactite tips) Mg/Ca threshold at ≈1.1 mol/mol. Within the analyzed ranges of pH (8.2-8.6), CO32- concentration (1-6 mg/L), supersaturation (SIaragonite: 0.08-1.08; SIcalcite: 0.23-1.24), drip rate (0.2-81 drops/min) and dissolved Zn (6-90 μg/L), we observe no unequivocal influence of these parameters on CaCO3 mineralogy. Despite the almost complete overlapping supersaturations of calcite- and aragonite-precipitating waters, the latter are on average less supersaturated because the waters having Mg/Ca above ∼1.1 have mostly achieved such high ratios by previously precipitating calcite. Both calcite and aragonite precipitated at or near oxygen isotopic equilibrium, and Mg incorporation into calcite was consistent with literature-based predictions, indicating that in the studied cases CaCO3 precipitation was not significantly influenced by strong kinetic effects. In the studied cases, the calcites that precipitate at ∼11 °C from dripwaters with initial Mg/Ca approaching ∼1.1 incorporate ∼5 mol% MgCO3, close to the published value above which calcite solubility exceeds aragonite solubility, suggesting that aragonite precipitation in high-relative-humidity caves is

  9. Study of calcium carbonate and sulfate co-precipitation

    KAUST Repository

    Zarga, Y.

    2013-06-01

    Co-precipitation of mineral based salts in scaling is still not well understood and/or thermodynamically well defined in the water industry. This study focuses on investigating calcium carbonate (CaCO3) and sulfate mixed precipitation in scaling which is commonly observed in industrial water treatment processes including seawater desalination either by thermal-based or membrane-based processes. Co-precipitation kinetics were studied carefully by monitoring several parameters simultaneously measured, including: pH, calcium and alkalinity concentrations as well as quartz microbalance responses. The CaCO3 germination in mixed precipitation was found to be different than that of simple precipitation. Indeed, the co-precipitation of CaCO3 germination time was not anymore related to supersaturation as in a simple homogenous precipitation, but was significantly reduced when the gypsum crystals appeared first. On the other hand, the calcium sulfate crystals appear to reduce the energetic barrier of CaCO3 nucleation and lead to its precipitation by activating heterogeneous germination. However, the presence of CaCO3 crystals does not seem to have any significant effect on gypsum precipitation. IR spectroscopy and the Scanning Electronic Microscopy (SEM) were used to identify the nature of scales structures. Gypsum was found to be the dominant precipitate while calcite and especially vaterite were found at lower proportions. These analyses showed also that gypsum crystals promote calcite crystallization to the detriment of other forms. © 2013 Elsevier Ltd.

  10. The effect of precipitation on contaminant dissolution and transport: Analytic solutions

    International Nuclear Information System (INIS)

    Light, W.B.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1988-09-01

    We analysed the effect of precipitation on the dissolution and transport rates of a nondecaying contaminant. Precipitation near the waste surface can have a profound effect on dissolution and transport rates. The mass-transfer rate at the waste surface is controlled by the solid-liquid reaction rate to an extent determined by the modified reaction-rate modulus, α. At later times extending to steady state, the mass-transfer rate depends on the location of the precipitation front r/sub p/ and on the solubility ratio C/sub o//C/sub p/. A precipitation front very near the waste surface can change the dissolution mechanism from solubility-diffusion-controlled to chemical-reaction-rate controlled. Precipitation limits the concentration of the contaminant at r > r/sub p/ to C/sub p/, steepening the concentration gradient for dissolution on the waste package side of the front and flattening the gradient for transport in the region outside the front. This increases the rate of contaminant transport from the waste to the front while decreasing the rate of transport away from the front, when compared to the situation without precipitation. The difference in the transport rates at the front is the rate of precipitation. For large changes in solubility, most of the contaminant is immobilized by precipitation, as was observed in a parallel study. The effect of a precipitation front located nearby in surrounding rock is to increase the release rate at the waste surface/rock interface. The increase in release rate at the waste surface is greater the closer the precipitation and the larger the ratio C/sub o//C/sub p/, also observed by others. The release rates of other waste constituents that dissolve congruently with the solubility-controlling matrix can be increased by a local high-solubility region between the waste surface and the precipitation front. 10 refs., 5 figs

  11. Studi Variasi Beban Pendinginan Di Evaporator Low Stage Sistem Refrigerasi Cascade Menggunakan Heat Exchanger Tipe Concentric Tube Dengan Fluida Kerja Refrigeran Musicool-22 Di High Stage Dan R-404a Di Low Stage

    Directory of Open Access Journals (Sweden)

    Arrad Ghani Safitra

    2013-03-01

    Full Text Available Salah satu aplikasi dalam refrigerasi makanan adalah pembekuan daging dalam cold storage. Dimana temperaturnya dijaga konstan dalam standar tertentu untuk mempertahankan kesegaran, memperpanjang masa simpan dan memberikan tekstur daging yang lebih baik. Penggunaan refrigeran Musicool-22 dan R-404A dengan compact heat exchanger pada sistem refrigerasi cascade masih kurang bagus. Sebagai solusi maka akan digunakan sistem refrigerasi cascade dengan refrigeran yang sama dan menggunakan concentric tube sebagai heat exchanger. Penelitian dilakukan dengan merancang alat sistem refrigerasi cascade dengan refrigeran Musicool-22 di High Stage dan R-404A di Low Stage. Kemudian dilakukan eksperimen pada sistem tersebut dengan variasi beban pendinginan di evaporator Low Stage menggunakan electric heater. Variasi mulai dari 0 (tanpa beban, 11, 35, 70, 95, 140, 210, dan 300 Watt. Hasil dari studi eksperimen ini menunjukkan nilai-nilai optimum untuk proses pembekuan daging yaitu pada pembebanan 35 Watt dengan Qevap = 0,327 kW, COPcas = 0,935 dan temperatur di dalam cooling box sebesar -26,2°C. Pada beban 300 Wat diperoleh kapasitas pendinginan maksimum pada sistem Low Stage sebesar 0,622 kW. Kerja maksimum kompresor pada sistem High Stage 0,148 kW dan Low Stage 0,461 kW, nilai COP cascade maksimum 1,020, efek refrigerasi maksimum pada Low Stage 135,865 kJ/kg, HRR maksimum pada Low Stage 1,742 Kemudian diperoleh nilai effectiveness cascade heat exchanger tertinggi 0,93 dan terendah 0,89 serta nilai NTU tertinggi 7,06 dan terendah 4,76 pada saat beban 300Watt.

  12. Characteristics of Spatial Structural Patterns and Temporal Variability of Annual Precipitation in Ningxia

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitation concentration index,wavelet analysis and Mann-Kendall rank statistic method,the characteristics of precipitation on the spatial-temporal variability and trend were analyzed by the monthly precipitation series in Ningxia during 1951-2008.[Result] In Ningxia,the spatial structural patterns of a...

  13. Multiscale modelling of precipitation in concentrated alloys: from atomistic Monte Carlo simulations to cluster dynamics I thermodynamics

    Science.gov (United States)

    Lépinoux, J.; Sigli, C.

    2018-01-01

    In a recent paper, the authors showed how the clusters free energies are constrained by the coagulation probability, and explained various anomalies observed during the precipitation kinetics in concentrated alloys. This coagulation probability appeared to be a too complex function to be accurately predicted knowing only the cluster distribution in Cluster Dynamics (CD). Using atomistic Monte Carlo (MC) simulations, it is shown that during a transformation at constant temperature, after a short transient regime, the transformation occurs at quasi-equilibrium. It is proposed to use MC simulations until the system quasi-equilibrates then to switch to CD which is mean field but not limited by a box size like MC. In this paper, we explain how to take into account the information available before the quasi-equilibrium state to establish guidelines to safely predict the cluster free energies.

  14. Plasma ascorbic acid concentrations in prevalent patients with end-stage renal disease on hemodialysis.

    Science.gov (United States)

    Sirover, William D; Liu, Yuguan; Logan, Amanda; Hunter, Krystal; Benz, Robert L; Prasad, Deepali; Avila, Jose; Venkatchalam, Thaliga; Weisberg, Lawrence S; Handelman, Garry J

    2015-05-01

    To determine the prevalence of vitamin C (ascorbic acid [AA]) deficiency in patients with end-stage renal disease, the effect of supplemental AA on plasma AA concentrations, and the extrinsic and intrinsic factors that affect plasma AA concentrations in this patient population. In study 1, we compared the effect of hemodialysis (HD) on plasma AA concentrations between patients with low and high pre-HD AA concentrations. In study 2, we analyzed kinetic and nonkinetic factors for their association with increased plasma AA concentrations in patients on maintenance HD. Study 1 was performed in a single outpatient HD clinic in Cherry Hill, New Jersey. Study 2 was performed in 4 outpatient HD clinics in Southern New Jersey. In study 1, we collected plasma samples from 8 adult patients on maintenance HD at various time points around their HD treatment and assayed them for AA concentration. In study 2, we enrolled 203 adult patients and measured pre-HD plasma AA concentrations. We ascertained supplemental AA use and assessed dietary AA intake. In study 1, plasma AA concentrations were compared during the intradialytic and interdialytic period. In study 2, pre-HD plasma AA concentrations were correlated with supplement use and demographic factors. Study 1 showed that over the course of a single HD treatment, the plasma AA concentration decreased by a mean (±standard deviation) of 60% (±6.6). In study 2, the median pre-HD plasma AA concentration was 15.7 μM (interquartile range, 8.7-66.8) in patients who did not take a supplement and 50.6 μM (interquartile range, 25.1-88.8) in patients who did take a supplement (P HD plasma AA concentration ≥30 μM. HD depletes plasma AA concentrations, and AA supplementation allows patients to achieve higher plasma AA concentrations. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  15. Kinetics modeling of precipitation with characteristic shape during post-implantation annealing

    Directory of Open Access Journals (Sweden)

    Kun-Dar Li

    2015-11-01

    Full Text Available In this study, we investigated the precipitation with characteristic shape in the microstructure during post-implantation annealing via a theoretical modeling approach. The processes of precipitates formation and evolution during phase separation were based on a nucleation and growth mechanism of atomic diffusion. Different stages of the precipitation, including the nucleation, growth and coalescence, were distinctly revealed in the numerical simulations. In addition, the influences of ion dose, temperature and crystallographic symmetry on the processes of faceted precipitation were also demonstrated. To comprehend the kinetic mechanism, the simulation results were further analyzed quantitatively by the Kolmogorov-Johnson-Mehl-Avrami (KJMA equation. The Avrami exponents obtained from the regression curves varied from 1.47 to 0.52 for different conditions. With the increase of ion dose and temperature, the nucleation and growth of precipitations were expedited in accordance with the shortened incubation time and the raised coefficient of growth rate. A miscellaneous shape of precipitates in various crystallographic symmetry systems could be simulated through this anisotropic model. From the analyses of the kinetics, more fundamental information about the nucleation and growth mechanism of faceted precipitation during post-implantation annealing was acquired for future application.

  16. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    Science.gov (United States)

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-05

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of lactation stage on the concentration of essential and selected toxic elements in milk of Dubrovačka ruda - Croatian endangered breed

    Directory of Open Access Journals (Sweden)

    Zvonko Antunović

    2016-11-01

    Full Text Available The aim of the present study was to determine the lactation stage effect on the concentration of essential and selected toxic elements in the sheep’s milk of Dubrovačka ruda. The research was conducted with 23 sheep, average age of 4 years, of 3rd lactation, while the milk samples were taken during the early (60th day, middle (90th day and late (120th day lactation stage. The sheep were selected according to uniformed body development, adequate health status, body condition, equable age (4 years, parity (3rd lactation, stage of lactation (±7 days and litter size (single. Sheep were reared on the extensive Mediterranean pastures, reared indoors afterwards, fed with hay ad libitum and feed mixtures in average 0.5 kg/day. Milk sample was collected during morning milking from each sheep. The digested samples were analyzed with continuous flow hydride generation technique using inductively coupled plasma for Ca, Mg, K, P, Na, Cu, Fe, Zn, Mn, Ni, Mo, Co, Cr, Cd and Pb concentrations. Significant increase of Mg, Na, Se, Mn, Mo and Cd concentrations were found in milk as well as decrease of K concentration during the lactation. Although the concentration of Ca, Cu, Cr and As in milk during the lactation is increased, the differences between the lactation stages were not observed. Concentrations of P, Fe, Ni, Pb and Hg in milk of Dubrovačka ruda did not differ during the lactation. The low concentrations of Cr, Cd, Pb, As, Hg in milk indicate the safety for consumers and preserved environment of Dubrovnik-Neretva County.

  18. Production of protein concentrate and isolate from cashew ...

    African Journals Online (AJOL)

    The protein isolates were obtained by an alkaline extraction-isoelectric precipitation method, which involved aqueous alkaline extraction of the proteins at low temperature, and isoelectric precipitation of the protein fractions; the protein concentrates were obtained using an alkaline extraction-methanol precipitation method, ...

  19. Variations of Precipitation Structure and Microwave Tbs During the Evolution of a Hailstorm from TRMM Observations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, a hailstorm occurring on 9 May 1999 in Huanghuai region was studied by using the combined data from the precipitation radar (PR), microwave image (TMI), and visible infrared scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite. According to the 3-orbit observations of 5-h duration from the TRMM satellite, the variation characteristics of the precipitation structures as well as cloud top temperature and microwave signals of the precipitating cloud were comprehensively analyzed during the evolution of hailstorm. The results show that the precipitation is obviously converted from early hail cloud with strong convection into the later storm cloud with weak convection. For hail cloud, there exists some strong convective cells, and the heavy solid precipitation is shown at the middle-top levels so that the contribution of rainfall amount above the freezing-layer to the column precipitation amount is rather larger than that within the melting-layer. However, for storm cloud, the convective cells are surrounded by the large area of stratiform precipitation, and the precipitation thickness gradually decreases, and the rainfall above the freezing-layer obviously reduces and the contribution of rainfall amount within the melting-layer rapidly increases. Therefore, the larger ratio of rainfall amount above the freezing layer to column precipitation amount is, the more convective the cloud is; reversely, the larger proportion of rainfall below the melting layer is, the more stable the stratiform cloud is. The different changing trends of microwave signals at different precipitation stages show that it is better to consider the structures and stages of precipitating cloud to choose the optimal microwave channels to retrieve surface rainfall.

  20. Irradiation induced precipitation: a thermodynamical approach

    International Nuclear Information System (INIS)

    Bocquet, J.-L.; Martin, Georges.

    1979-02-01

    A binary alloy (A, B) under steady state irradiation is considered as a ternary alloy (A, B, defects) in constrained equilibrium (the constraint represented by the irradiation consists in maintaining a given supersaturation of point defects). All possible two-body interactions (attractive, repulsive) have been checked between the solvent A, the solute B, and the defects C. The conditions of an irradiation corresponds to a low point-defect concentration; the only cases of interest are those where such a low concentration makes new phases precipitate, which are richer in solute than the initial solid-solution. Radiation induced precipitation is expected to occur under the following necessary conditions: - when the binary alloy (A, B) shows ordering or is ideal, a necessary condition is that the binary solute-defects must show ordering. - when the binary alloy (A, B) shows clustering, a necessary condition is that the temperature must be close to the critical mixing temperature Tsub(AB)sup(D). The physical significance of these conditions is discussed [fr

  1. Precipitation patterns during channel flow

    Science.gov (United States)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  2. Seasonal variation of radon daughters concentrations in the atmosphere and in precipitation at the Japanese coast of the Sea of Japan

    International Nuclear Information System (INIS)

    Nishikawa, T.; Okabe, S.; Aoki, M.

    1988-01-01

    The atmospheric radon daughters concentration at Fukui in the Japanese coastal region of the Sea of Japan shows a seasonal variation whose high values appear in summer and low values in winter. On the other hand, the radon daughters concentration in precipitation at Fukui and that in the maritime atmosphere over the Sea of Japan are high in winter and low in summer. It is concluded from these phenomena that the greater part of the continental radon and its daughters are transported by seasonal winds from Siberia and China to Japan across the Sea of Japan in winter. However, when the air masses approach the shore, the cumulonimbus grows and the heavy snowfall scavenges out the radon daughters from the air masses in large quantities at the Japanese coastal region of the Sea of Japan. (author)

  3. a Study of Oxygen Precipitation in Heavily Doped Silicon.

    Science.gov (United States)

    Graupner, Robert Kurt

    Gettering of impurities with oxygen precipitates is widely used during the fabrication of semiconductors to improve the performance and yield of the devices. Since the effectiveness of the gettering process is largely dependent on the initial interstitial oxygen concentration, accurate measurements of this parameter are of considerable importance. Measurements of interstitial oxygen following thermal cycles are required for development of semiconductor fabrication processes and for research into the mechanisms of oxygen precipitate nucleation and growth. Efforts by industrial associations have led to the development of standard procedures for the measurement of interstitial oxygen in wafers. However practical oxygen measurements often do not satisfy the requirements of such standard procedures. An additional difficulty arises when the silicon wafer has a low resitivity (high dopant concentration). In such cases the infrared light used for the measurement is severely attenuated by the electrons of holes introduced by the dopant. Since such wafers are the substrates used for the production of widely used epitaxial wafers, this measurement problem is economically important. Alternative methods such as Secondary Ion Mass Spectroscopy or Gas Fusion Analysis have been developed to measure oxygen in these cases. However, neither of these methods is capable of distinguishing interstitial oxygen from precipitated oxygen as required for precipitation studies. In addition to the commercial interest in heavily doped silicon substrates, they are also of interest for research into the role of point defects in nucleation and precipitation processes. Despite considerable research effort, there is still disagreement concerning the type of point defect and its role in semiconductor processes. Studies of changes in the interstitial oxygen concentration of heavily doped and lightly doped silicon wafers could help clarify the role of point defects in oxygen nucleation and precipitation

  4. Statistical methodology for exploring elevational differences in precipitation chemistry

    International Nuclear Information System (INIS)

    Warren, W.G.; Boehm, M.; Link, D.

    1992-01-01

    A statistical methodology for exploring the relationships between elevation and precipitation chemistry is outlined and illustrated. The methodology utilizes maximum likelihood estimates and likelihood ratio tests with contour ellipses of assumed bivariate lognormal distributions used to assist in interpretation. The approach was illustrated using 12 NADP/NTN sites located in six study areas in the Wyoming and Colorado Rockies. These sites are part of the Rocky Mountain Deposition Monitoring Project (RMDMP), which was initiated in 1986 to investigate the relationships between elevation and the chemistry of precipitation. The results indicate differences in sulfate concentrations between airsheds, between snow and rain, and between higher and lower elevations. In general, sulfate concentrations in snow are greater at lower elevations and this difference is independent of concentration. A similar relationship for rain was not well established. In addition there is evidence that, overall, the sulfate concentrations differed between the six study areas, although pairwise differences were not always significant

  5. Effects of Na4EDTA and EDTA on seeded precipitation of sodium aluminate solution

    Institute of Scientific and Technical Information of China (English)

    吕保林; 陈启元; 尹周澜; 胡慧萍

    2010-01-01

    Na4EDTA and EDTA were adopted as new additives to intensify the seeded precipitation process of sodium aluminate solution. The effects of the two additives at certain concentrations on the seeded precipitation rate of sodium aluminate solution, particle size distribution (PSD) and morphology of precipitated gibbsite were investigated using titration method, particle size analyzer and scanning electron microscope (SEM), respectively. The results show that the two additives can accelerate the seeded precipitation rate of sodium aluminate solution. At relatively high concentration, the facilitative effect of EDTA on sodium aluminate solution is more obvious than that of Na4EDTA. EDTA makes gibbsite particles thinner than Na4EDTA. The Na+ and H+ result in the different effects on the seeded precipitation rate of sodium aluminate solution in spite of the same EDTA anion in the two additives.

  6. Simultaneous precipitation of the carbonato complexes of uranium and plutonium by cationic surfactants

    International Nuclear Information System (INIS)

    Heckmann, K.; Strnad, J.

    1990-01-01

    Concerning the simultaneous precipitation of U and Pu or Th, preliminary experiments were made with various alkyl pyridinium salts and alkyl trimethyl ammonium salts to determine their precipitation properties with regard to carbonato and hydroxo complexes. The first experiments were made with cetyl pyridinium nitrate, with Th and U being precipitated from solutions with different carbonate concentrations. (DG) [de

  7. The production of precipitated calcium carbonate from industrial gypsum wastes

    CSIR Research Space (South Africa)

    De Beer, Morris

    2014-05-01

    Full Text Available -step) process was tested. Although only a low-grade CaCO3 product (86-88 mass% as CaCO3) could be produced, experimental results on the characteristics of CaS in the presence of CO2 in the CaS-H2O-CO2 system showed that the reaction proceeded in two distinct... stages. In the first stage, CaS dissolution took place, with H2S stripping occurring in the second stage. Calcium carbonation and the resulting precipitation of CaCO3 were concurrent with the CaS dissolution and the H2S stripping reactions. Because...

  8. Effects of solution concentration and capping agents on the properties of potassium titanyl phosphate noparticles synthesized using a co-precipitation method

    Science.gov (United States)

    Gharibshahian, E.; Jafar Tafershi, M.; Fazli, M.

    2018-05-01

    In this study, KTiOPO4 (KTP) nanoparticles were synthesized using a co-precipitation method. The effects of the solution concentration (M) and capping agents, such as PVA, oxalic acid, glycine, triethanolamine, and L-alanine, on the structural, microstructural, and optical properties of the products were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. Decreasing the solution concentration decreased the crystallite size from 53.07 nm (for M = 2) to 39.42 nm (for M = 0.5). After applying different capping agents to the sample at the optimum concentration (M = 0.5), the crystallite size decreased again and grains as small as 10.61 nm were obtained. XRD and FTIR analyses indicated the formation of KTP nanoparticles with an orthorhombic structure in all of the samples. The optical band gap increased as the crystallite size decreased. Different morphological patterns such as spherical, needle shaped, polyhedron, and tablet forms were observed in the nanoparticles, which were correlated with the effects of the capping agents employed.

  9. Study of phase decomposition and coarsening of γ′ precipitates in Ni-12 at.% Ti alloy

    International Nuclear Information System (INIS)

    Garay-Reyes, C.G.; Hernández-Santiago, F.; Cayetano-Castro, N.; López-Hirata, V.M.; García-Rocha, J.; Hernández-Rivera, J.L.; Dorantes-Rosales, H.J.; Cruz-Rivera, J.J.

    2013-01-01

    The early stages of phase decomposition, morphological evolution of precipitates, coarsening kinetics of γ′ precipitates and micro-hardness in Ni-12 at.% Ti alloy are studied by transmission electron microscopy (TEM) and Vickers hardness tests (VHN). Disk-shaped specimens are solution treated at 1473 K (1200 °C) and aged at 823, 923 and 1023 K (550, 650 and 750 °C) during several periods of time. TEM results show that a conditional spinodal of order occurs at the beginning of the phase decomposition and exhibit the following decomposition sequence and morphological evolution of precipitates: α sss → γ″ irregular–cuboidal + γ s → γ′ cuboidal–parallelepiped + γ → η plates + γ. In general during the coarsening of γ′ precipitates, the experimental coarsening kinetics do not fit well to the LSW or TIDC (n = 2.281) theoretical models, however the activation energies determined using the TIDC and LSW theories (262.846 and 283.6075 kJ mol −1 , respectively) are consistent with previously reported values. The highest hardness obtained at 823, 923 and 1023 K (550, 650 and 750 °C) is associated with the presence of γ′ precipitates. - Highlights: • It was studied the conditional spinodal during early stages of phase decomposition. • It was obtained decomposition sequence and morphological evolution of precipitates. • It was experimentally evaluated the coarsening kinetics of γ′ precipitates. • The maximum hardness is associated with the γ′ precipitates

  10. Study of phase decomposition and coarsening of γ′ precipitates in Ni-12 at.% Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Garay-Reyes, C.G., E-mail: garay_820123@hotmail.com [Universidad Autónoma de San Luis Potosí, Instituto de Metalurgia, Sierra leona 550, Col. Lomas 2 sección, 78210 S.L.P. (Mexico); Hernández-Santiago, F. [Instituto Politécnico Nacional, ESIME-AZC, Av. de las Granjas 682, col. Sta. Catarina, 02550 D.F. (Mexico); Cayetano-Castro, N. [Instituto Potosino de Investigación Científica y Tecnológica, División de Materiales Avanzados, camino a la Presa San José 2055, Col Lomas 4 sección, 78216 S.L.P. (Mexico); López-Hirata, V.M. [Instituto Politécnico Nacional, ESIQIE-DIM, 118-556, D.F. (Mexico); García-Rocha, J. [Universidad Autónoma de San Luis Potosí, Instituto de Metalurgia, Sierra leona 550, Col. Lomas 2 sección, 78210 S.L.P. (Mexico); Hernández-Rivera, J.L. [Centro de Investigación de Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua (Mexico); Dorantes-Rosales, H.J. [Instituto Politécnico Nacional, ESIQIE-DIM, 118-556, D.F. (Mexico); Cruz-Rivera, J.J. [Universidad Autónoma de San Luis Potosí, Instituto de Metalurgia, Sierra leona 550, Col. Lomas 2 sección, 78210 S.L.P. (Mexico)

    2013-09-15

    The early stages of phase decomposition, morphological evolution of precipitates, coarsening kinetics of γ′ precipitates and micro-hardness in Ni-12 at.% Ti alloy are studied by transmission electron microscopy (TEM) and Vickers hardness tests (VHN). Disk-shaped specimens are solution treated at 1473 K (1200 °C) and aged at 823, 923 and 1023 K (550, 650 and 750 °C) during several periods of time. TEM results show that a conditional spinodal of order occurs at the beginning of the phase decomposition and exhibit the following decomposition sequence and morphological evolution of precipitates: α{sub sss} → γ″ irregular–cuboidal + γ{sub s} → γ′ cuboidal–parallelepiped + γ → η plates + γ. In general during the coarsening of γ′ precipitates, the experimental coarsening kinetics do not fit well to the LSW or TIDC (n = 2.281) theoretical models, however the activation energies determined using the TIDC and LSW theories (262.846 and 283.6075 kJ mol{sup −1}, respectively) are consistent with previously reported values. The highest hardness obtained at 823, 923 and 1023 K (550, 650 and 750 °C) is associated with the presence of γ′ precipitates. - Highlights: • It was studied the conditional spinodal during early stages of phase decomposition. • It was obtained decomposition sequence and morphological evolution of precipitates. • It was experimentally evaluated the coarsening kinetics of γ′ precipitates. • The maximum hardness is associated with the γ′ precipitates.

  11. Tensile behavior of Cu50Zr50 metallic glass nanowire with a B2 crystalline precipitate

    Science.gov (United States)

    Sepulveda-Macias, Matias; Amigo, Nicolas; Gutierrez, Gonzalo

    2018-02-01

    A molecular dynamics study of the effect of a single B2-CuZr precipitate on the mechanical properties of Cu50Zr50 metallic glass nanowires is presented. Four different samples are considered: three with a 2, 4 and 6 nm radii precipitate and a precipitate-free sample. These systems are submitted to uniaxial tensile test up to 25% of strain. The interface region between the precipitate and the glass matrix has high local atomic shear strain, activating shear transformation zones, which concentrates in the neighborhood of the precipitate. The plastic regime is dominated by necking, and no localized shear band is observed for the samples with a 4 and 6 nm radii precipitate. In addition, the yield stress decreases as the size of the precipitate increases. Regarding the precipitate structure, no martensitic phase transformation is observed, since neither the shear band hit the precipitate nor the stress provided by the tensile test is enough to initiate the transformation. It is concluded that, in contrast to the case when multiple precipitates are present in the sample, a single precipitate concentrates the shear strain around its surface, eventually causing the failure of the nanowire.

  12. Precipitation of plutonium oxalate from homogeneous solutions

    International Nuclear Information System (INIS)

    Rao, V.K.; Pius, I.C.; Subbarao, M.; Chinnusamy, A.; Natarajan, P.R.

    1986-01-01

    A method for the precipitation of plutonium(IV) oxalate from homogeneous solutions using diethyl oxalate is reported. The precipitate obtained is crystalline and easily filterable with yields in the range of 92-98% for precipitations involving a few mg to g quantities of plutonium. Decontamination factors for common impurities such as U(VI), Am(III) and Fe(III) were determined. TGA and chemical analysis of the compound indicate its composition as Pu(Csub(2)Osub(4))sub(2).6Hsub(2)O. Data are obtained on the solubility of the oxalate in nitric acid and in mixtures of nitric acid and oxalic acid of varying concentrations. Green PuOsub(2) obtained by calcination of the oxalate has specifications within the recommended values for trace foreign substances such as chlorine, fluorine, carbon and nitrogen. (author)

  13. Impact of Aerosols on Convective Clouds and Precipitation

    Science.gov (United States)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong; Li, Xiaowen

    2012-01-01

    Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics

  14. Improving the Statistical Modeling of the TRMM Extreme Precipitation Monitoring System

    Science.gov (United States)

    Demirdjian, L.; Zhou, Y.; Huffman, G. J.

    2016-12-01

    This project improves upon an existing extreme precipitation monitoring system based on the Tropical Rainfall Measuring Mission (TRMM) daily product (3B42) using new statistical models. The proposed system utilizes a regional modeling approach, where data from similar grid locations are pooled to increase the quality and stability of the resulting model parameter estimates to compensate for the short data record. The regional frequency analysis is divided into two stages. In the first stage, the region defined by the TRMM measurements is partitioned into approximately 27,000 non-overlapping clusters using a recursive k-means clustering scheme. In the second stage, a statistical model is used to characterize the extreme precipitation events occurring in each cluster. Instead of utilizing the block-maxima approach used in the existing system, where annual maxima are fit to the Generalized Extreme Value (GEV) probability distribution at each cluster separately, the present work adopts the peak-over-threshold (POT) method of classifying points as extreme if they exceed a pre-specified threshold. Theoretical considerations motivate the use of the Generalized-Pareto (GP) distribution for fitting threshold exceedances. The fitted parameters can be used to construct simple and intuitive average recurrence interval (ARI) maps which reveal how rare a particular precipitation event is given its spatial location. The new methodology eliminates much of the random noise that was produced by the existing models due to a short data record, producing more reasonable ARI maps when compared with NOAA's long-term Climate Prediction Center (CPC) ground based observations. The resulting ARI maps can be useful for disaster preparation, warning, and management, as well as increased public awareness of the severity of precipitation events. Furthermore, the proposed methodology can be applied to various other extreme climate records.

  15. Cumulative effects of Te precipitates in CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Bolotnikov, A.E.; Camarda, G.S.; Carini, G.A.; Cui, Y.; Li, L.; James, R.B.

    2007-01-01

    High-quality radiation detector-grade CdZnTe material is free from large-scale defects, such as grain boundaries, twins, and large Te or Cd inclusions (>50 μm), although it usually contains high concentrations of uniformly distributed Te inclusions and precipitates, typically of ∼20-μm-diameter size or smaller. We address the effects of the small-size Te precipitates on charge collection in CZT detectors, the significance of which is not yet well characterized. The strong correlation that we earlier found between the high-resolution X-ray maps and IR images proved that even small Te precipitates can trap substantial fractions of charge from the electron cloud. In this work, we modeled the transport of an electron cloud across idealized CZT devices containing Te precipitates to demonstrate that their cumulative effect can explain the degradation of energy resolution and the detection efficiency losses observed in actual CZT devices. Due to lack of experimental data on how the Te precipitates interact with an electron cloud, we developed a simplified (phenomenological) model based on the geometrical aspects of the problem. Despite its simplicity, the model correctly reproduced many experimental facts and gave quantitative predictions on the extent to which the presence of Te precipitates and inclusions can be tolerated. The broadening of the electron cloud due to repulsion and diffusion is at the core of the problem, making even low concentrations of small precipitates important in the device's performance

  16. Kinetics of niobium carbide precipitation in ferrite

    International Nuclear Information System (INIS)

    Gendt, D.

    2001-01-01

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  17. Thermodynamic Assessment of Silica Precipitation in the Primary Coolant of PWR Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dooho; Kwon, Hyukchul; Sung, Kibang [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    Increasing silica concentration has been observed in many plants' reactor coolant system (RCS) following a refueling outage as a result of the cross contamination between the refueling cavity and the spent fuel pool. To have a better understanding of the role of silica on the fuel crud deposition, MULTEQ (MULTiple Equilibrium) calculations were performed in this study to predict high-temperature aqueous and precipitated species such as aluminum, calcium, magnesium, zinc and silica. This thermodynamic study implies that all hardness cations such as aluminum, calcium and magnesium already have precipitates with boron under current normal plant operating conditions. However, In-core boiling can increase the amount of precipitates with silica, such as CaB{sub 2}O{sub 4} and CaMg(SiO{sub 3}){sub 2}. For all cases modeled, a 1 ppm silica concentration will not result in precipitation of SiO{sub 2}.

  18. Computer simulation for the effect of coherent strain on the precipitation progress of binary alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the microscopic elasticity theory and microscopic diffusion equation, the precipitation progress of the binary alloys including coherent strain energy was studied. The results show that coherent strain has obvious effect on the coherent two-phase morphology and precipitation mechanism. With the increase of coherent strain energy, the particles shape changes from the randomly distributed equiaxed particels to elliptical precipitate shapes, their arrangement orientation increases; in the late stage of precipitation, the particle arrangement presents obvious directionality along the [10] and [01] directions, and the precipitation mechanism of alloy changes from typical spinodal decomposition mechanism to the mixture process which possesses the characteristics of both non-classical nucleation growth and spinodal decomposition mechanisms.

  19. Precipitation and measurements of precipitation

    NARCIS (Netherlands)

    Schmidt, F.H.; Bruin, H.A.R. de; Attmannspacher, W.; Harrold, T.W.; Kraijenhoff van de Leur, D.A.

    1977-01-01

    In Western Europe, precipitation is normal phenomenon; it is of importance to all aspects of society, particularly to agriculture, in cattle breeding and, of course, it is a subject of hydrological research. Precipitation is an essential part in the hydrological cycle. How disastrous local

  20. Mechanism of calcium phosphates precipitation in liquid crystals; Mecanisme de precipitation de phosphates de calcium dans des cristaux liquides

    Energy Technology Data Exchange (ETDEWEB)

    Prelot, B.; Zemb, T

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m{sup 2}/g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  1. Characteristics and seasonal variations of precipitation phenomena at Syowa Station

    Directory of Open Access Journals (Sweden)

    Hiroyuki Konishi

    1997-03-01

    Full Text Available Long-term observations of precipitating clouds were carried out by a vertical pointing radar, PPI radar and a 37 GHz microwave radiometer at Syowa Station (69°00′S, 39°35′E, Antarctica in 1989. It is concluded from the observations that precipitation near Syowa Station, Antarctica is mainly brought by cloud vortices associated with extratropical cyclones which advance to high latitude while developing to a mature stage. The seasonal variations of clouds and precipitation were analyzed corresponding to the seasonal changes of air temperature and sea ice area. The occurrence frequencies of cloud vortices which brought snowfall to Syowa Station increased in the fall and spring seasons corresponding to activity of the circumpolar trough. However, the activities of cloud systems that bring precipitation weaken in spring when the sea ice area expands to low latitudes, because of less supply of heat and vapor. In 1989,the amount of precipitation in spring brought by a few snowfall events was as large as the amount of precipitation in fall brought by frequent snowfall events. Radar observations revealed that there were three abundant snowfall seasons at Syowa Station and the amount of snowfall was uniform in all seasons except summer. The amounts of precipitation in fall, winter and spring were 74,74 and 53mm respectively.

  2. Lime, agent to uranium concentration; La chaux comme agent de concentration de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, P; Le Bris, J; Kremer, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Gautier, R [Etablissement Kuhlmann, Service d' Etudes et de Pilotages Industriels (France)

    1958-07-01

    Choice of the process according to health requirements. Description of the process: dissolution of uranium by sulfuric leaching of ores, precipitation of uranium by lime, re-dissolution of the concentrate with nitric ions, purification by T.B.P. finally resulting in pure uranyl nitrate solution containing 400 g/litre. (author)Fren. [French] Les raisons du choix du procede en fonction des imperatifs d'hygiene, sont exposees ainsi que le procede qui consiste en une dissolution de l'uranium des minerais par lixiviation sulfurique, precipitation de l'uranium par la chaux et redissolution du concentre en presence d'ions nitriques, purification par le T.B.P. et obtention d'un concentre final de nitrate d'uranyle pur a 400 g/litre. (auteur)

  3. Tritium in Japanese precipitation following the March 2011 Fukushima Daiichi Nuclear Plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Takuya, E-mail: t.matsumoto@iaea.org [Isotope Hydrology Section, Division of Physical and Chemical Sciences, International Atomic Energy Agency, Vienna International Centre, 1400 Vienna (Austria); Maruoka, Teruyuki [Division of Integrative Environmental Sciences Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572 (Japan); Shimoda, Gen [Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba City, Ibaraki 305-8561 (Japan); Obata, Hajime [Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 (Japan); Kagi, Hiroyuki [Geochemical Research Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Suzuki, Katsuhiko [Japan Agency for Marin-Earth Science and Technology, 2-15, Natsushima, Yokosuka, Kanagawa 237-0061 (Japan); Yamamoto, Koshi [Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Mitsuguchi, Takehiro [215 Ooma Akadoji-cho Konan, 483-8226 (Japan); Usa Marine Biological Institute, Kochi University, 194 Inoshiri, Usa, Tosa, Kochi 781-1164 (Japan); Hagino, Kyoko; Tomioka, Naotaka [Institute for Study of the Earth' s Interior, Okayama University at Misasa, 827 Yamada, Misasa, Tottori 682-0193 (Japan); Sambandam, Chinmaya; Brummer, Daniela; Klaus, Philipp Martin; Aggarwal, Pradeep [Isotope Hydrology Section, Division of Physical and Chemical Sciences, International Atomic Energy Agency, Vienna International Centre, 1400 Vienna (Austria)

    2013-02-15

    Tritium concentrations in Japanese precipitation samples collected after the March 2011 accident at the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) were measured. Values exceeding the pre-accident background were detected at three out of seven localities (Tsukuba, Kashiwa and Hongo) southwest of the FNPP1 at distances varying between 170 and 220 km from the source. The highest tritium content was found in the first rainfall in Tsukuba after the accident; however concentrations were 500 times less than the regulatory limit for tritium in drinking water. Tritium concentrations decreased steadily and rapidly with time, becoming indistinguishable from the pre-accident values within five weeks. The atmospheric tritium activities in the vicinity of the FNPP1 during the earliest stage of the accident was estimated to be 1.5 × 10{sup 3} Bq/m{sup 3}, which is potentially capable of producing rainwater exceeding the regulatory limit, but only in the immediate vicinity of the source. - Highlights: ► We measured the {sup 3}H contents of Japanese rain collected after the Fukushima accident. ► {sup 3}H level became 30 times higher than pre-accident level in the first rain at Tsukuba. ► Some locality within 220 km from the source showed elevated {sup 3}H levels. ► These high {sup 3}H signals disappear in a few weeks. ► Atmospheric {sup 3}H level at the source during the earliest stage was estimated to be 1500 Bq/m{sup 3}.

  4. Recovery of Am-Cm from high-activity waste concentrate by in-canyon-tank precipitation as oxalates

    International Nuclear Information System (INIS)

    Gray, L.W.; Burney, G.A.; Wilson, T.W.; McKibben, J.M.

    1980-01-01

    Savannah River Laboratory and Savannah River Plant have been separating actinides for more than 25 years. Work continues to upgrade processes and to initiate new processes. This report summarizes work on a precipitation process to separate kg amounts of Am and Cm from hundreds of kilograms of NaNO 3 and Al(NO 3 ) 3 . The developed process includes formic acid denitration of the Am-Cm bearing streams for acid adjustment; oxalate precipitation of the Am-Cm; and Mn +2 catalyzed oxidation of oxalate in both the decanted supernate and the precipitated actinides. The new process generates one fourth the radioactive waste as the solvent extraction process which it replaced, and produces a cleaner feed solution for downstream processing to separate the Am and Cm before conversion to their respective oxides

  5. Correlations between TD annihilation and oxygen precipitation in Czochralski-grown silicon

    International Nuclear Information System (INIS)

    Reiche, M.

    1989-01-01

    Results of two-stage annealing experiments are presented including preannealing at T o C (TD formation) and a second annealing step at T=550 to 850 o C in order to study the annihilation of TD's and their influence on the oxygen precipitation. The investigations show that (1) TD's cannot act as nuclei for oxide precipitates and that (2) their annihilation, connected with the increased formation of Si I induced defects (RLD's), proves TD's to consist also of self-interstitials. (author) 11 refs., 4 figs

  6. Albendazole in environment: faecal concentrations in lambs and impact on lower development stages of helminths and seed germination.

    Science.gov (United States)

    Prchal, Lukáš; Podlipná, Radka; Lamka, Jiří; Dědková, Tereza; Skálová, Lenka; Vokřál, Ivan; Lecová, Lenka; Vaněk, Tomáš; Szotáková, Barbora

    2016-07-01

    Albendazole (ABZ), widely used benzimidazole anthelmintic, administered to animals enters via excrements into environment and may impact non-target organisms. Moreover, exposure of lower development stages of helminths to anthelmintics may also encourage the development of drug-resistant strains of helminths. In present project, the kinetics of ABZ (10 mg kg(-1) p.o.) and its metabolite (ABZ.SO, ABZSO2) elimination in faeces from treated Texel lambs were studied using UHPLC/MS/MS with the aim to find out their concentrations achievable in the environment. Consequently, the effect of these compounds on lower development stages of Barber's pole worm (Haemonchus contortus) and on germination of white mustard (Sinapis alba) seeds was evaluated. The results showed that ABZ concentrations in faeces excreted in 4-60 h after treatment were above the concentrations lethal for H. contortus eggs. Moreover, pre-incubation with sub-lethal doses of ABZ and ABZ.SO did not increase the resistance of H. contortus eggs and larvae to anthelmintics. On the other hand, concentrations of ABZ and ABZ.SO in faeces are so high that might have negative influence on non-target soil invertebrates. As neither ABZ nor its metabolites affect the germination of mustard seeds, phytoremediation could be considered as potential tool for detoxification of ABZ in the environment.

  7. DWPF Stage 2: precipitation test program at Mott

    International Nuclear Information System (INIS)

    Schmitz, M.A.

    1981-01-01

    This memorandum covers the results of the test program conducted at Mott Metallurgical to determine cross-flow filter performance on potassium/cesium tetraphenylborate (K/Cs TPB)-sodium titanate slurries. The test program was designed to provide essential basic operating data to supplement the 1000-gallon cold process tests planned at TNX and the shielded cell tests with actual waste supernate planned by Chemical Technology. The specific Mott Metallurgical test objectives are outlined in DPST-81-722. During the Mott Metallurgical test program an average filtrate flow rate of approximately 0.05 gpm/ft 2 was repeatedly demonstrated over an 8-hr run with 0.5 micron filter elements. Initial Fe/Al sludge concentrations up to 150 ppM did not affect filter performance. Rheologies of the K/Cs TPB-sodium titanate slurries up to 13% by weight, the maximum concentration achieved, are summarized. Several recommendations are made to act as a guide for optimal filter performance

  8. Precipitation evidences on X-Band Synthetic Aperture Radar imagery: an approach for quantitative detection and estimation

    Science.gov (United States)

    Mori, Saverio; Marzano, Frank S.; Montopoli, Mario; Pulvirenti, Luca; Pierdicca, Nazzareno

    2017-04-01

    Spaceborne synthetic aperture radars (SARs) operating at L-band and above are nowadays a well-established tool for Earth remote sensing; among the numerous civil applications we can indicate flood areas detection and monitoring, earthquakes analysis, digital elevation model production, land use monitoring and classification. Appealing characteristics of this kind of instruments is the high spatial resolution ensured in almost all-weather conditions and with a reasonable duty cycle and coverage. This result has achieved by the by the most recent generation of SAR missions, which moreover allow polarimetric observation of the target. Nevertheless, atmospheric clouds, in particular the precipitating ones, can significantly affect the signal backscattered from the ground surface (e.g. Ferrazzoli and Schiavon, 1997), on both amplitude and phase, with effects increasing with the operating frequency. In this respect, proofs are given by several recent works (e.g. Marzano et al., 2010, Baldini et al., 2014) using X-Band SAR data by COSMO-SkyMed (CSK) and TerraSAR-X (TSX) missions. On the other hand, this sensitivity open interesting perspectives towards the SAR observation, and eventually quantification, of precipitations. In this respect, a proposal approach for X-SARs precipitation maps production and cloud masking arise from our work. Cloud masking allows detection of precipitation compromised areas. Respect precipitation maps, satellite X-SARs offer the unique possibility to ingest within flood forecasting model precipitation data at the catchment scale. This aspect is particularly innovative, even if work has been done the late years, and some aspects need to still address. Our developed processing framework allows, within the cloud masking stage, distinguishing flooded areas, precipitating clouds together with permanent water bodies, all appearing dark in the SAR image. The procedure is mainly based on image segmentation techniques and fuzzy logic (e.g. Pulvirenti et

  9. Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator

    International Nuclear Information System (INIS)

    Wu, Gang; Zheng, Hongfei; Ma, Xinglong; Kutlu, Cagri; Su, Yuehong

    2017-01-01

    Highlights: • A solar desalination system heated directly by curved Fresnel lens concentrator. • Desalination system is based on the humidification-dehumidification process. • Four-stage multi-effect desalination system is proposed. • Condensation latent heat and residual heat in the brine are recycled and reutilized. • The maximum yield and GOR of the unit can reach 3.4 kg/h and 2.1, respectively. - Abstract: This study demonstrates a multi-stage humidification-dehumidification (HDH) solar desalination system heated directly by a cylindrical Fresnel lens concentrator. In this novel system, the solar radiation is sent directly into desalination unit. That is to say, the solar receiver and the evaporator of the system are a whole in which the black fillers in seawater directly absorb the concentrated solar lights to heat the seawater film to produce the evaporation. The configuration and working processes of the proposed design are described in detail. In order to analyze its performance, a small solar desalination prototype unit incorporated with a cylindrical Fresnel lens concentrator was designed and built in our laboratory. Using three-stage isothermal tandem heating mode, the variation of the fresh water yield rate and the absorber temperature with time were measured experimentally and were compared with theoretical calculations. The experimental results show that the maximum yield of the unit is about 3.4 kg/h, the maximum gained output ratio (GOR) is about 2.1, when the average intensity of solar radiation is about 867 W/m"2. This study indicates that the proposed system has the characteristics of compact structure and GOR high. It still can be improved when the design and operation are optimized further.

  10. Early stage precipitation in aluminum alloys : An ab initio study

    NARCIS (Netherlands)

    Zhang, X.

    2017-01-01

    Multiscale computational materials science has reached a stage where many complicated phenomena or properties that are of great importance to manufacturing can be predicted or explained. The word “ab initio study” becomes commonplace as the development of density functional theory has enabled the

  11. Effect of hydraulic retention time on metal precipitation in sulfate reducing inverse fluidized bed reactors

    KAUST Repository

    Villa-Gómez, Denys Kristalia

    2014-02-13

    BACKGROUND: Metal sulfide recovery in sulfate reducing bioreactors is a challenge due to the formation of small precipitates with poor settling properties. The size of the metal sulfide precipitates with the change in operational parameters such as pH, sulfide concentration and reactor configuration has been previously studied. The effect of the hydraulic retention time (HRT) on the metal precipitate characteristics such as particle size for settling has not yet been addressed. RESULTS: The change in size of the metal (Cu, Zn, Pb and Cd) sulfide precipitates as a function of the HRT was studied in two sulfate reducing inversed fluidized bed (IFB) reactors operating at different chemical oxygen demand concentrations to produce high and low sulfide concentrations. The decrease of the HRT from 24 to 9h in both IFB reactors affected the contact time of the precipitates formed, thus making differences in aggregation and particle growth regardless of the differences in sulfide concentration. Further HRT decrease to 4.5h affected the sulfate reducing activity for sulfide production and hence, the supersaturation level and solid phase speciation. Metal sulfide precipitates affected the sulfate reducing activity and community in the biofilm, probably because of the stronger local supersaturation causing metal sulfides accumulation in the biofilm. CONCLUSIONS: This study shows that the HRT is an important factor determining the size and thus the settling rate of the metal sulfides formed in bioreactors.

  12. Modelling and characterization of chi-phase grain boundary precipitation during aging of Fe-Cr-Ni-Mo stainless steel

    International Nuclear Information System (INIS)

    Xu, W.; San Martin, D.; Rivera Diaz del Castillo, P.E.J.; Zwaag, S. van der

    2007-01-01

    High molybdenum stainless steels may contain the chi-phase precipitate (χ, Fe 36 Cr 12 Mo 10 ) which may lead to undesirable effects on strength, toughness and corrosion resistance. In the present work, specimens of a 12Cr-9Ni-4Mo wt% steel are heat treated at different temperatures and times, and the average particle size and particle size distribution of chi-phase precipitate are studied quantitatively. A computer model based on the KWN framework has been developed to describe the evolution of chi-phase precipitation. The kinetic model takes advantage of the KWN model to describe the precipitate particle size distribution, and is coupled with the thermodynamic software ThermoCalc for calculating the instantaneous local thermodynamic equilibrium condition at the interface and the driving force for nucleation. A modified version of Zener's theory accounting for capillarity effects at early growth stages is implemented in this model. The prediction of the model for chi-phase precipitation at a grain boundary is compared to experimental results and both the average particle size and the particle size distribution are found to be in good agreement with experimental observations at late precipitation stages

  13. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, Richard; Martin, Georges.

    1978-01-01

    The stability of various types of solid solutions under irradiation is studied. In this paper, observations made on AlZn solid solutions under 1 MeV electron irradiation are reported. Al-Zn was chosen as a prototype of solid solutions with a simple miscibility gap. It is shown that under appropriate irradiation conditions undersaturated AnZn solid solutions give rise to a homogeneous precipitation of coherent G.P. zones and of incoherent Zn precipitates the atomic volume of which is smaller than that of the matrix. We propose a more general treatment of solute concentration heterogeneities in solid solutions under irradiation and suggest how it might account for the nucleation of the observed phases. The growth of the observed precipitates is studied

  14. Quantitative investigation of precipitate growth during ageing of Al-(Mg,Si) alloys by energy-filtered electron diffraction

    DEFF Research Database (Denmark)

    Wollgarten, M.; Chang, C. S. T.; Duchstein, Linus Daniel Leonhard

    2011-01-01

    Besides other application fields, light-weight Al-(Mg, Si) (6XXX series) alloys are of substantial importance in automotive industries where they are used for the production of car body panels. The material gains its strength by precipitation of metastable Mg-Si-based phases. Though the general...... accepted that the early stages of precipitate growth are important for the understanding of this peculiar behaviour. During these stages, electron diffraction patterns of Al-(Mg, Si) alloys show diffuse features (Figure 1 (a) and (b)) which can be traced back to originate from β'' Mg5Si6 precipitates [5......-7]. In this paper, we use energy-filtered electron diffraction to determine dimensions of the β'' Mg5Si6 precipitates along their a, b and c-axes as a function of ageing time and alloy composition. In our contribution, we first derive that there is an optimal zone axis - - from the view point of practicability. We...

  15. A new technique for production of yellow cake with double precipitation

    International Nuclear Information System (INIS)

    Li Jianhua; Zeng Yijun; Li Shangyuan; Kong Guiying

    1997-01-01

    The author presents a new technique for production of yellow cake with double precipitation, thus solving a series of problems for precipitating uranium with traditional double precipitation. The new technique can not only remove ferric ions and sulfate radicals but also make solid-liquid separation easy, utilize effectively the sulfuric acid produced in ferric ions precipitation process, and increase uranium concentration of leaching liquor. To take it as producing yellow cake will save investment, simplify operation, and cut down the consumption of raw materials and energies. It is more competitive than ion-exchange or solvent extraction in the process of extracting-purifying and preparing yellow cake

  16. The response of a simulated mesoscale convective system to increased aerosol pollution: Part I: Precipitation intensity, distribution, and efficiency

    Science.gov (United States)

    Clavner, Michal; Cotton, William R.; van den Heever, Susan C.; Saleeby, Stephen M.; Pierce, Jeffery R.

    2018-01-01

    Mesoscale Convective Systems (MCSs) are important contributors to rainfall in the High Plains of the United States and elsewhere in the world. It is therefore of interest to understand how different aerosols serving as cloud condensation nuclei (CCN) may impact the total amount, rates and spatial distribution of precipitation produced by MCSs. In this study, different aerosol concentrations and their effects on precipitation produced by an MCS are examined by simulating the 8 May 2009 "Super-Derecho" MCS using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model (CRM) with sophisticated aerosol and microphysical parameterizations. Three simulations were conducted that differed only in the initial concentration, spatial distribution, and chemical composition of aerosols. Aerosol fields were derived from the output of GEOS-Chem, a 3D chemical transport numerical model. Results from the RAMS simulations show that the total domain precipitation was not significantly affected by variations in aerosol concentrations, however, the pollution aerosols altered the precipitation characteristics. The more polluted simulations exhibited higher precipitation rates, higher bulk precipitation efficiency, a larger area with heavier precipitation, and a smaller area with lighter precipitation. These differences arose as a result of aerosols enhancing precipitation in the convective region of the MCS while suppressing precipitation from the MCS's stratiform-anvil. In the convective region, several processes likely contributed to an increase of precipitation. First, owing to the very humid environment of this storm, the enhanced amount of cloud water available to be collected overwhelmed the reduction in precipitation efficiency associated with the aerosol-induced production of smaller droplets which led to a net increase in the conversion of cloud droplets to precipitation. Second, higher aerosol concentrations led to invigoration of convective updrafts which

  17. Study of various decontamination processes for evaporation concentrates

    International Nuclear Information System (INIS)

    Lefillatre, G.; Cudel, Y.; Rodi, L.

    1968-01-01

    Generally speaking, the evaporation concentrates are in the form of acid solutions of high salt content, about 400 g/l. The specific activity is very variable: from 0.5 mCi/l to many hundreds of Ci/l. Because of the high solubility of these salts, an attempt has been made to render the radio-elements insoluble in the concentrates before their possible coating with bitumen. With this in view, the possibility of fixing them on inorganic products, of precipitating them in the form of insoluble salts, or of adsorbing them on co-precipitates has been considered. In the case of a fixation of radio-elements by natural or synthetic inorganic products with a high absorptive capacity such as clays, diatomaceous earths, synthetic silicates and alumina, 48 products have been tried. Their selective efficiency with respect to 137 Cs, 90 Sr, 106 Ru-Rh, 144 Ce-Pr, 95 Zr-Nb has been determined both with acid concentrates and with neutralized concentrates (precipitation of hydroxides). In the case of the fixation of radio-elements as insoluble salts or their adsorption on co-precipitates, the choice of treatments involved the two most dangerous radio-elements: 137 Cs and 90 Sr. The conventional processing methods were tried. For 90 Sr. calcium carbonate, calcium oxalate, calcium phosphate, strontium phosphate, manganese oxides, barium sulfate. For 137 Cs: the ferrocyanides of nickel, copper, zinc, cobalt and manganese. The technique consists in carrying out the precipitations (hydroxides, specific processes for 90 Sr and 137 Cs) one after the other without separating the precipitates. (authors) [fr

  18. The Contribution of Extreme Precipitation to the Total Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-Qi

    2012-01-01

    Using daily precipitation data from weather stations in China, the variations in the contribution of extreme precipitation to the total precipitation are analyzed. It is found that extreme precipitation accounts for approximately one third of the total precipitation based on the overall mean for China. Over the past half century, extreme precipitation has played a dominant role in the year-to-year variability of the total precipitation. On the decadal time scale, the extreme precipitation makes different contributions to the wetting and drying regions of China. The wetting trends of particular regions are mainly attributed to increases in extreme precipitation; in contrast, the drying trends of other regions are mainly due to decreases in non-extreme precipitation.

  19. Aerosol and precipitation chemistry in the southwestern United States: spatiotemporal trends and interrelationships

    Science.gov (United States)

    Sorooshian, A.; Shingler, T.; Harpold, A.; Feagles, C. W.; Meixner, T.; Brooks, P. D.

    2013-08-01

    This study characterizes the spatial and temporal patterns of aerosol and precipitation composition at six sites across the United States Southwest between 1995 and 2010. Precipitation accumulation occurs mostly during the wintertime (December-February) and during the monsoon season (July-September). Rain and snow pH levels are usually between 5-6, with crustal-derived species playing a major role in acid neutralization. These species (Ca2+, Mg2+, K+, Na+) exhibit their highest concentrations between March and June in both PM2.5 and precipitation due mostly to dust. Crustal-derived species concentrations in precipitation exhibit positive relationships with SO42-, NO3-, and Cl-, suggesting that acidic gases likely react with and partition to either crustal particles or hydrometeors enriched with crustal constituents. Concentrations of particulate SO42- show a statistically significant correlation with rain SO42- unlike snow SO42-, which may be related to some combination of the vertical distribution of SO42- (and precursors) and the varying degree to which SO42--enriched particles act as cloud condensation nuclei versus ice nuclei in the region. The coarse : fine aerosol mass ratio was correlated with crustal species concentrations in snow unlike rain, suggestive of a preferential role of coarse particles (mainly dust) as ice nuclei in the region. Precipitation NO3- : SO42- ratios exhibit the following features with potential explanations discussed: (i) they are higher in precipitation as compared to PM2.5; (ii) they exhibit the opposite annual cycle compared to particulate NO3- : SO42- ratios; and (iii) they are higher in snow relative to rain during the wintertime. Long-term trend analysis for the monsoon season shows that the NO3- : SO42- ratio in rain increased at the majority of sites due mostly to air pollution regulations of SO42- precursors.

  20. Protein concentrate production from the biomass contaminated with radionuclides

    International Nuclear Information System (INIS)

    Nizhko, V.F.; Shinkarenko, M.P.; Polozhaj, V.V.; Krivchik, O.V.

    1992-01-01

    Coefficients of radionuclides accumulation are determined for traditional and rare forage crops grown on contaminated soils. It is shown that with low concentration of radionuclides in soil minimal level of contamination were found in the biomass of lupine (Lupinus luteus L.) and sainfoin (Onobrychis hybridus L.). Relatively high levels of contamination were found in comfrey (Symphytum asperum Lepech.) and bistort (Polygonum divaricatum L.). Comparatively low accumulation coefficients in case of higher density of soil contamination were observed for white and yellow sweetclovers (Melilotus albus Medik. and M. officinalis (L.) Desr.), while higher values of coefficients were found for bird's-foot trefoil (Lotus corniculatus L.), white clover (Trifolium repens L.) and alsike clover (t. hybridum L.). Biomass of white sweet-clover and alsike clover has been processed to produce leaf protein concentrate. It is shown that with biomass contamination of 1 kBq/kg and above conventional technology based on thermal precipitation of the protein does not provide production of pure product. More purified protein concentrates are obtained after two-stage processing of the biomass

  1. Application of physical scaling towards downscaling climate model precipitation data

    Science.gov (United States)

    Gaur, Abhishek; Simonovic, Slobodan P.

    2018-04-01

    Physical scaling (SP) method downscales climate model data to local or regional scales taking into consideration physical characteristics of the area under analysis. In this study, multiple SP method based models are tested for their effectiveness towards downscaling North American regional reanalysis (NARR) daily precipitation data. Model performance is compared with two state-of-the-art downscaling methods: statistical downscaling model (SDSM) and generalized linear modeling (GLM). The downscaled precipitation is evaluated with reference to recorded precipitation at 57 gauging stations located within the study region. The spatial and temporal robustness of the downscaling methods is evaluated using seven precipitation based indices. Results indicate that SP method-based models perform best in downscaling precipitation followed by GLM, followed by the SDSM model. Best performing models are thereafter used to downscale future precipitations made by three global circulation models (GCMs) following two emission scenarios: representative concentration pathway (RCP) 2.6 and RCP 8.5 over the twenty-first century. The downscaled future precipitation projections indicate an increase in mean and maximum precipitation intensity as well as a decrease in the total number of dry days. Further an increase in the frequency of short (1-day), moderately long (2-4 day), and long (more than 5-day) precipitation events is projected.

  2. Nitrate-cancrinite precipitation on quartz sand in simulated Hanford tank solutions.

    Science.gov (United States)

    Bickmore, B R; Nagy, K L; Young, J S; Drexler, J W

    2001-11-15

    Caustic NaNO3 solutions containing dissolved Al were reacted with quartz sand at 89 degrees C to simulate possible reactions between leaked nuclear waste and primary subsurface minerals at the U.S. Department of Energy's Hanford site in Washington. Nitrate-cancrinite began to precipitate onto the quartz after 2-10 days, cementing the grains together. Estimates of the equilibrium constant for the precipitation reaction differ for solutions with 0.1 or 1.0 m OH- (log Keq = 30.4 +/- 0.8 and 36.2 +/- 0.6, respectively). The difference in solubility may be attributable to more perfect crystallinity (i.e., fewer stacking faults) in the higher-pH cancrinite structure. This is supported by electron micrographs of crystal morphology and measured rates of Na volatilization under an electron beam. Precipitate crystallinity may affect radionuclide mobility, because stacking faults in the cancrinite structure can diminish its zeolitic cation exchange properties. The precipitation rate near the onset of nucleation depends on the total Al and Si concentrations in solution. The evolution of experimental Si concentrations was modeled by considering the dependence of quartz dissolution rate on AI(OH)4- activity, cancrinite precipitation, and the reduction of reactive surface area of quartz due to coverage by cancrinite.

  3. Future changes of precipitation characteristics in China

    Science.gov (United States)

    Wu, S.; Wu, Y.; Wen, J.

    2017-12-01

    Global warming has the potential to alter the hydrological cycle, with significant impacts on the human society, the environment and ecosystems. This study provides a detailed assessment of potential changes in precipitation characteristics in China using a suite of 12 high-resolution CMIP5 climate models under a medium and a high Representative Concentration Pathways: RCP4.5 and RCP8.5. We examine future changes over the entire distribution of precipitation, and identify any shift in the shape and/or scale of the distribution. In addition, we use extreme-value theory to evaluate the change in probability and magnitude for extreme precipitation events. Overall, China is going to experience an increase in total precipitation (by 8% under RCP4.5 and 12% under RCP8.5). This increase is uneven spatially, with more increase in the west and less increase in the east. Precipitation frequency is projected to increase in the west and decrease in the east. Under RCP4.5, the overall precipitation frequency for the entire China remains largely unchanged (0.08%). However, RCP8.5 projects a more significant decrease in frequency for large part of China, resulting in an overall decrease of 2.08%. Precipitation intensity is likely increase more uniformly, with an overall increase of 11% for RCP4.5 and 19% for RCP8.5. Precipitation increases for all parts of the distribution, but the increase is more for higher quantiles, i.e. strong events. The relative contribution of small quantiles is likely to decrease, whereas contribution from heavy events is likely to increase. Extreme precipitation increase at much higher rates than average precipitation, and high rates of increase are expected for more extreme events. 1-year events are likely to increase by 15%, but 20-year events are going to increase by 21% under RCP4.5, 26% and 40% respectively under RCP8.5. The increase of extreme events is likely to be more spatially uniform.

  4. Investigation of Cyanide Removal from Aqueous Solution Using Precipitation Process (FeCl3

    Directory of Open Access Journals (Sweden)

    A. Jonidi Jafari

    2013-02-01

    Full Text Available Background and Objectives: Cyanide is a toxic pollutant that is can be discharged from different industries such as iron and steel industry, coal mining and metal plating. Presence of this toxin in water and wastewater is a serious hazard and lead to undesirable effects on both the environment and human. Thus, its concentration control is essential for human health. The aim of this study was investigation of Cyanide Removal from aqueous solution using precipitation process (FeCl3. Material and Methods: This study is an experimental study in lab scale that was carried out in a batch system by jartest. Variations of this study including pH, FeCl3 concentration, reaction time and desired concentration of cyanide were investigated. Data were analyzed using Excel (version 2007 software. Results: The results of this research were showed that Cyanide with initial concentration of 10 mg/l in precipitation process was removed by 40% (conditions pH=90, FeCl3=0.4 g/l and the time 60 minutes. Also, the precipitation process efficiency to cyanide removal decreased of 40 to 23%, by increasing of the initial cyanide concentration of 10 to 15 mg/l. Conclusion: Precipitation process can be considered as a suitable alternative for recovery of cyanide to be re-used. Although, this process has limitations for treat total cyanide to environmental standards level. So, it is better be used in combination with other processes of these contaminants removal.

  5. River flooding due to intense precipitation

    International Nuclear Information System (INIS)

    Lin, James C.

    2014-01-01

    River stage can rise and cause site flooding due to local intense precipitation (LIP), dam failures, snow melt in conjunction with precipitation or dam failures, etc. As part of the re-evaluation of the design basis as well as the PRA analysis of other external events, the likelihood and consequence of river flooding leading to the site flooding need to be examined more rigorously. To evaluate the effects of intense precipitation on site structures, the site watershed hydrology and pond storage are calculated. To determine if river flooding can cause damage to risk-significant systems, structures, and components (SSC), water surface elevations are analyzed. Typically, the amount and rate of the input water is determined first. For intense precipitation, the fraction of the rainfall in the watershed drainage area not infiltrated into the ground is collected in the river and contributes to the rise of river water elevation. For design basis analysis, the Probable Maximum Flood (PMF) is evaluated using the Probable Maximum Precipitation (PMP) based on the site topography/configuration. The peak runoff flow rate and water surface elevations resulting from the precipitation induced flooding can then be estimated. The runoff flow hydrograph and peak discharge flows can be developed using the synthetic hydrograph method. The standard step method can then be used to determine the water surface elevations along the river channel. Thus, the flood water from the local intense precipitation storm and excess runoff from the nearby river can be evaluated to calculate the water surface elevations, which can be compared with the station grade floor elevation to determine the effects of site flooding on risk-significant SSCs. The analysis needs to consider any possible diversion flow and the effects of changes to the site configurations. Typically, the analysis is performed based on conservative peak rainfall intensity and the assumptions of failure of the site drainage facilities

  6. [Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015.

    Science.gov (United States)

    Wang, Zhi Peng; Zhang, Xian Zhou; He, Yong Tao; Li, Meng; Shi, Pei Li; Zu, Jia Xing; Niu, Ben

    2018-01-01

    Precipitation change is an important factor in the inter-annual variation of grassland growth on the Tibetan Plateau. The total amount, distribution pattern and concentration time are three basic characteristics of precipitation change. The temporal and spatial characteristics of precipitation change were analyzed based on climate data of 145 meteorological stations on the Tibetan Plateau and nearby areas from 2000 to 2015. The total precipitation amount was characterized by annual precipitation, distribution pattern of precipitation during the year was characterized by improved precipitation concentration index (PCI), and precipitation centroid (PC) was defined to indicate the change in precipitation concentrated time. To better illustrate the response of grassland to precipitation change, vegetation growth status was characterized by the maximum value of normalized difference vegetation index (NDVI max ). Results indicated that the annual precipitation and PCI had an apparent gradient across the whole plateau and the latest PC occurred in the southern plateau. NDVI max of alpine shrub grassland was significantly correlated with the change of PCI,increased with even distribution of precipitation during growth period, and limited by the total annual precipitation. Alpine meadow did not show significantly correlations with these three indices. The inter-annual variability of NDVI max of steppe was controlled by both PCI and PC. NDVI max of alpine desert grassland was mainly controlled by annual precipitation. In addition to annual total amount of precipitation, the distribution characteristics of precipitation should be further considered when the influence of precipitation change on different types of vegetation on the Qinghai Tibet Plateau was studied.

  7. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation.

    Science.gov (United States)

    Dong, Yuancai; Ng, Wai Kiong; Shen, Shoucang; Kim, Sanggu; Tan, Reginald B H

    2009-06-22

    Due to low aqueous solubility and slow dissolution rate, spironolactone, a synthetic steroid diuretic, has a low and variable oral bioavailability. Nanoparticles were thus prepared by antisolvent precipitation in this work for accelerating dissolution of this kind of poorly water-soluble drugs. Effects of surfactant type/concentration and feed drug concentration on the precipitated particle size were evaluated. It was found that introduction of spironolactone solution in N-methyl-2-pyrrolidone (NMP) to the antisolvent water can produce the particles in the submicron range with hydroxypropyl methylcellulose (HPMC) as the stabilizer. The particle size decreased with the increase of HPMC concentration from 0 to 0.125% (w/v), further increase of which did not affect the size significantly. Increasing feed drug concentration from 10 to 100 mg/ml resulted in the particle size decrease. In comparison with raw drug, the chemical structure of nanosized spironolactone was not changed but the crystallinity was reduced. Dissolution of spironolactone nanoparticles in 0.1M HCl was 2.59 times faster than raw drugs in 60 min.

  8. Environmental monitoring of fluoride emissions using precipitation, dust, plant and soil samples

    International Nuclear Information System (INIS)

    Franzaring, J.; Hrenn, H.; Schumm, C.; Klumpp, A.; Fangmeier, A.

    2006-01-01

    A pollution gradient was observed in precipitation, plants and soils sampled at different locations around a fluoride producing chemical plant in Germany. In all samples the influence of emissions was discernible up to a distance of 500 m from the plant. However, fluoride concentrations in plant bioindicators (leaves of birch and black berry) and in bulk precipitation showed a more pronounced relationship with the distance from the source than fluoride concentrations in soil. Vegetables sampled in the vicinity of the plant also had elevated concentrations of fluoride, but only the consumption of larger quantities of this material would lead to exceedances of recommended daily F-intake. The present study did not indicate the existence of low phytotoxicity thresholds for fluoride in the plant species used in the study. Even at very high fluoride concentrations in leaf tissue (963 ppm) plants did not show injury due to HF. Dust sampling downwind of the chemical plant confirmed that particulate fluoride was of minor importance in the study area. - A pronounced pollution gradient was observed in precipitation, plants and soils sampled at different locations around a fluoride emitting chemical plant in Germany

  9. Precipitation of sparingly soluble salts in packed sandbeds

    Science.gov (United States)

    Pavlakou, Efstathia I.; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    One of the main problems encountered by the oil extraction industry, is the reduction of the local permeability of the rock formation near the extraction wells because of salt deposition in the pores of the rocks during the injection of brine water to displace the trapped oil ganglia within the oil formations. This phenomenon makes the oil recovery less efficient and under extreme cases the well is abandoned with a large amount of oil entrapped. Several detailed studies have been conducted in the past concerning sand bed consolidation using sparingly soluble salts for varying conditions (e.g. temperature, grain size, sand type, salt concentrations etc) and various salts [1]. Nevertheless, salt precipitation in the rock formation pores under the presence of other miscible or immiscible substances with water has not been investigated in details yet. In the present study, salt (CaCO3) precipitation experiments were performed in small beds packed with sea sand mixed with a low amount of CaCO3 seed grains. The experiments were performed using pure solutions (NaHCO3, CaCl2.2H2O) and solutions mixed with Ethylene Glycol in sand beds. Additionally, precipitation experiments were performed using pure solutions in sand beds saturated with oil phase (n-dodecane) for a wide range of solution supersaturation. During the experiments the ionic strength was kept constant. pH and concentration values of calcium ion of the effluent were measured and the precipitated salt crystals were identified using X-ray Diffraction (XRD) method. At the end of each experiment Scanning Electron Microscope (SEM) was conducted using a sample of the precipitated sand to identify the morphology of the precipitated crystals and their cohesion with sand grains. Acknowledgments This research was partially funded by the European Union (European Social Fund-ESF) and Greek National Funds through the Operational program "Education and Lifelong Learning" under the action Aristeia II (Code No 4420). References

  10. The effect of soy protein beverages on serum cell adhesion molecule concentrations in prehypertensive/stage 1 hypertensive individuals.

    Science.gov (United States)

    Dettmer, Michelle; Alekel, D Lee; Lasrado, Joanne A; Messina, Mark; Carriquiry, Alicia; Heiberger, Kevin; Stewart, Jeanne W; Franke, Warren

    2012-04-01

    Prehypertensive and hypertensive individuals are at increased risk of atherosclerotic cardiovascular disease (CVD), in part because hypertension contributes to endothelial dysfunction and increased cell adhesion molecule expression. Soy protein and isoflavones may favorably alter CVD risk factors, and hence the aim of this study was to determine whether intake of cow's milk compared with soy beverage prepared from whole soy bean (WSB) or soy protein isolate (SPI) would lower soluble cell adhesion molecule concentrations as a means of decreasing CVD risk. We enrolled healthy prehypertensive/stage 1 hypertensive men (n = 60; 18-63 years) and premenopausal women (n = 8; 20-48 years). Participants were randomized to 1 of 3 groups for 8 weeks: cow's milk (600 mL/d), SPI beverage (840 mL/d; 30.1 mg total isoflavones/d), or WSB beverage (840 mL/d; 91.4 mg total isoflavones/d). We measured soluble vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), and endothelial-leukocyte adhesion molecule-1 (E-selectin) concentrations at baseline and week 8. Soluble CAM concentrations were not altered by treatment and did not differ between prehypertensive and hypertensive participants. However, analysis of variance indicated a treatment × gender interaction (gender effect) for ICAM-1 (p = 0.0037) but not for E-selectin (p = 0.067) or VCAM-1 (p = 0.16). Men had higher concentrations of ICAM-1 and E-selectin, respectively, at baseline (p = 0.0071, p = 0.049) and week 8 (p = 0.0054, p = 0.038) than women did. Neither intake of cow's milk nor soy beverage for 8 weeks altered soluble CAM concentrations in prehypertensive/stage 1 hypertensive individuals, suggesting that neither type of beverage diminished atherosclerotic CVD risk in mildly hypertensive individuals by way of improving circulating CAM concentrations.

  11. Precipitation scavenging of 7Be and 137Cs radionuclides in air

    International Nuclear Information System (INIS)

    Ioannidou, A.; Papastefanou, C.

    2006-01-01

    Atmospheric depositional fluxes of the naturally occurring 7 Be of cosmogenic origin and 137 Cs from fallout of the Chernobyl accident were measured over a 6-year period (January 1987-December 1992) at Thessaloniki, Greece (40 o 38'N, 22 o 58'E). Total precipitation accumulation during 1987-1992 varied between 33.7 cm and 65.2 cm, reflecting a relatively dry (precipitation-free) climate. The activity concentrations of 7 Be and 137 Cs in rainwater depended on the precipitation rate, being higher for low precipitation rates and lesser for high precipitation rates. 137 Cs was removed by rain and snow more efficiently than 7 Be. Snowfall was more efficient than rainfall in removing the radionuclides from the atmosphere. The annual bulk depositional fluxes of 7 Be varied between 477 and 1133 Bq m -2 y -1 and this variability was attributed to the amount of precipitation and the variations of the atmospheric concentrations of 7 Be. The annual bulk depositional fluxes of 137 Cs showed a significant decrease over time from 1987 to 1992, resulting in a removal half-life of 1.33 years. The presence of 137 Cs in air, and therefore in rainwater and snow, long after the Chernobyl accident (26 April 1986) was mainly due to the resuspension process. The normalized depositional fluxes of both radionuclides showed maximal values during the spring season where the maximum amount of precipitation occurred. The relatively high positive correlation between 7 Be and 137 Cs normalized depositional fluxes indicates that the scavenging process of local precipitation controlled the fluxes of both radionuclides. The dry depositional flux of 7 Be was less than 9.37% of total (wet and dry) depositional flux. The fraction of dry-to-total depositional flux of 137 Cs was much higher than that of 7 Be, due to the resuspended soil

  12. Polymorphism in the Laves-phase precipitates of a quinternary Nb-Mo-Cr-Al-Si alloy

    International Nuclear Information System (INIS)

    Hu Yanling; Vasiliev, Alexandre; Zhang Lichun; Song, Kai; Aindow, Mark

    2009-01-01

    Transmission electron microscopy has been used to study the precipitates that develop in the A2 phase of an Nb-Mo-Cr-Al-Si alloy upon heat treatment. The precipitates include a Laves-phase that adopts the cubic C15 structure initially and the hexagonal C14 structure in the later stages of precipitation. The morphologies, orientation relationships and defect microstructures indicate that the metastable C15 phase arises due to tensile coherency stresses and that a synchroshear polymorphic transformation to the equilibrium C14 phase occurs as these relax

  13. Monitoring of Calcite Precipitation in Hardwater Lakes with Multi-Spectral Remote Sensing Archives

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2017-01-01

    Full Text Available Calcite precipitation is a common phenomenon in calcium-rich hardwater lakes during spring and summer, but the number and spatial distribution of lakes with calcite precipitation is unknown. This paper presents a remote sensing based method to observe calcite precipitation over large areas, which are an important prerequisite for a systematic monitoring and evaluation of restoration measurements. We use globally archived satellite remote sensing data for a retrospective systematic assessment of past multi-temporal calcite precipitation events. The database of this study consists of 205 data sets that comprise freely available Landsat and Sentinel 2 data acquired between 1998 and 2015 covering the Northeast German Plain. Calcite precipitation is automatically identified using the green spectra and the metric BGR area, the triangular area between the blue, green and red reflectance value. The validation is based on field measurements of CaCO3 concentrations at three selected lakes, Feldberger Haussee, Breiter Luzin and Schmaler Luzin. The classification accuracy (0.88 is highest for calcite concentrations ≥0.7 mg/L. False negative results are caused by the choice of a conservative classification threshold. False positive results can be explained by already increased calcite concentrations. We successfully transferred the developed method to 21 other hardwater lakes in Northeast Germany. The average duration of lakes with regular calcite precipitation is 37 days. The frequency of calcite precipitation reaches from single time detections up to detections nearly every year. False negative classification results and gaps in Landsat time series reduce the accuracy of frequency and duration monitoring, but in future the image density will increase by acquisitions of Sentinel-2a (and 2b. Our study tested successfully the transfer of the classification approach to Sentinel-2 images. Our study shows that 15 of the 24 lakes have at least one phase of

  14. Optimization Recovery of Yttrium Oxide in Precipitation, Extraction, and Stripping Process

    Science.gov (United States)

    Perwira, N. I.; Basuki, K. T.; Biyantoro, D.; Effendy, N.

    2018-04-01

    Yttrium oxide can be used as a dopant control rod of nuclear reactors in YSH material and superconductors. Yttrium oxide is obtained in the Xenotime mineral derived from byproduct of tin mining PT Timah Bangka which contain rare earth elements (REE) dominant Y, Dy, and Gd whose content respectively about 29.53%, 7.76%, and 2.58%. Both usage in the field of nuclear and non-nuclear science and technology is need to pure from the impurities. The presence of impurities in the yttrium oxide may affect the characteristic of the material and the efficiency of its use. Thus it needs to be separated by precipitation and extraction-stripping and calcination in the making of the oxide. However, to obtain higher levels of Yttrium oxide, it is necessary to determine the optimum conditions for its separation. The purpose of this research was to determine the optimum pH of precipitation, determine acid media and concentration optimum in extraction and stripping process and determine the efficiency of the separation of Y from REE concentrate. This research was conducted with pH variation in the precipitation process that pHs were 4 - 8, the difference of acid media for the extraction process, i.e., HNO3, HCl and H2SO4 with each concentration of 0,5 M; 1 M; 1,5 M; and 2 M and for stripping process were HNO3, HCl, and H2SO4 with each concentration of 1 M; 2M; and 3 M. Based on the result, the optimum pH of precipitation process was 6,5, the optimumacid media was HNO3 0,5 M, and for stripping process media was HNO3 3 M. The efficiency of precipitation process at pH 6,5 was 69,53 %, extraction process was 96.39% and stripping process was 4,50%. The separation process from precipitation to extraction had increased the purity and the highest efficiency recovery of Y was in the extraction process and obtained Y2O3 purer compared to the feed with the Y2O3 content of 92.87%.

  15. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    1999-01-01

    This report contains the results from a study requested by High Level Waste Division on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na+] increased the rate at which cesium tetraphenylborate (KTPB) in the presence of high [Na+] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice

  16. Mechanism of calcium phosphates precipitation in liquid crystals

    International Nuclear Information System (INIS)

    Prelot, B.; Zemb, T.

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m 2 /g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  17. Salts-based size-selective precipitation: toward mass precipitation of aqueous nanoparticles.

    Science.gov (United States)

    Wang, Chun-Lei; Fang, Min; Xu, Shu-Hong; Cui, Yi-Ping

    2010-01-19

    Purification is a necessary step before the application of nanocrystals (NCs), since the excess matter in nanoparticles solution usually causes a disadvantage to their subsequent coupling or assembling with other materials. In this work, a novel salts-based precipitation technique is originally developed for the precipitation and size-selective precipitation of aqueous NCs. Simply by addition of salts, NCs can be precipitated from the solution. After decantation of the supernatant solution, the precipitates can be dispersed in water again. By means of adjusting the addition amount of salt, size-selective precipitation of aqueous NCs can be achieved. Namely, the NCs with large size are precipitated preferentially, leaving small NCs in solution. Compared with the traditional nonsolvents-based precipitation technique, the current one is simpler and more rapid due to the avoidance of condensation and heating manipulations used in the traditional precipitation process. Moreover, the salts-based precipitation technique was generally available for the precipitation of aqueous nanoparticles, no matter if there were semiconductor NCs or metal nanoparticles. Simultaneously, the cost of the current method is also much lower than that of the traditional nonsolvents-based precipitation technique, making it applicable for mass purification of aqueous NCs.

  18. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  19. Bone char quality and defluoridation capacity in contact precipitation

    DEFF Research Database (Denmark)

    Albertus, J.; Bregnhøj, Henrik; Kongpun, M.

    2002-01-01

    are added as in the contact precipitation process. The results show that the columns are able to remove up to 700 bedvolumes, before the concentration of fluoride in the effluent water breaks through, above 1.5 mg/L. Operational removal capacities observed are 7 and 9 mg/L, depending on contact time...... and the dosage of chemicals. It is discussed that longer contact time and higher dosage of calcium and phosphate may result in longer operation periods in the contact precipitation columns....

  20. Precipitation of hydrated Mg carbonate with the aid of carbonic anhydrase for CO2 sequestration

    Science.gov (United States)

    Power, I. M.; Harrison, A. L.; Dipple, G. M.

    2011-12-01

    Strategies for sequestering CO2 directly from the atmosphere are likely required to achieve the desired reduction in CO2 concentration and avoid the most damaging effects of climate change [1]. Numerous studies have demonstrated the accelerated precipitation of calcium carbonate minerals with the aid of carbonic anhydrase (CA) as a means of sequestering CO2 in solid carbonate form; however, no study has examined precipitation of magnesium carbonate minerals using CA. Precipitation of magnesite (MgCO3) is kinetically inhibited [2]; therefore, Mg2+ must be precipitated as hydrated carbonate minerals. In laboratory experiments, the uptake of atmospheric CO2 into brine solutions (0.1 M Mg) was rate-limiting for the precipitation of dypingite [Mg5(CO3)4(OH)2-5H2O] with initial precipitation requiring 15 days [3]. It was also found that dypingite precipitation outpaced the uptake of CO2 gas into solution. CO2 uptake is limited by the hydration of CO2 to form carbonate ions [4]. Carbonic anhydrase (CA) enzymes are among the fastest known in nature and are able to catalyze the hydration of CO2, i.e., converting CO2(aq) to CO32- and HCO3- [5]. CA plays an important role in the carbon concentrating mechanism of photoautotrophic, chemoautotrophic, and heterotrophic prokaryotes and is involved in pH homeostasis, facilitated diffusion of CO2, ion transport, and the interconversion of CO2 and HCO3- [6]. Introducing CA into buffered Mg-rich solutions should allow for more rapid precipitation of hydrated magnesium carbonate minerals. Batch experiments were conducted using 125 mL flasks containing 100 mL of Millipore deionized water with 0.2 M of MgCl2-6H2O. To buffer pH, 1.0 g of pulverized brucite [Mg(OH)2] or 1.0 g of NaOH was added to the systems, which were amended with Bovine carbonic anhydrase (BCA) (Sigma-Aldrich). Solutions were stirred continuously and kept at room temperature (~22°C) with laboratory air introduced by bubbling. Temperature and pH were measured routinely

  1. Analytical model of radiation-induced precipitation at the surface of dilute binary alloy

    Science.gov (United States)

    Pechenkin, V. A.; Stepanov, I. A.; Konobeev, Yu. V.

    2002-12-01

    Growth of precipitate layer at the foil surface of an undersaturated binary alloy under uniform irradiation is treated analytically. Analytical expressions for the layer growth rate, layer thickness limit and final component concentrations in the matrix are derived for coherent and incoherent precipitate-matrix interfaces. It is shown that the high temperature limit of radiation-induced precipitation is the same for both types of interfaces, whereas layer thickness limits are different. A parabolic law of the layer growth predicted for both types of interfaces is in agreement with experimental data on γ '-phase precipitation at the surface of Ni-Si dilute alloys under ion irradiation. Effect of sputtering on the precipitation rate and on the low temperature limit of precipitation under ion irradiation is discussed.

  2. Sensitivity of precipitation statistics to urban growth in a subtropical coastal megacity cluster.

    Science.gov (United States)

    Holst, Christopher Claus; Chan, Johnny C L; Tam, Chi-Yung

    2017-09-01

    This short paper presents an investigation on how human activities may or may not affect precipitation based on numerical simulations of precipitation in a benchmark case with modified lower boundary conditions, representing different stages of urban development in the model. The results indicate that certain degrees of urbanization affect the likelihood of heavy precipitation significantly, while less urbanized or smaller cities are much less prone to these effects. Such a result can be explained based on our previous work where the sensitivity of precipitation statistics to surface anthropogenic heat sources lies in the generation of buoyancy and turbulence in the planetary boundary layer and dissipation through triggering of convection. Thus only mega cities of sufficient size, and hence human-activity-related anthropogenic heat emission, can expect to experience such effects. In other words, as cities grow, their effects upon precipitation appear to grow as well. Copyright © 2017. Published by Elsevier B.V.

  3. Mechanism of de-activation and clustering of B in Si at extremely high concentration

    International Nuclear Information System (INIS)

    Romano, L.; Piro, A.M.; Privitera, V.; Rimini, E.; Fortunato, G.; Svensson, B.G.; Foad, M.; Grimaldi, M.G.

    2006-01-01

    It is known that B deactivation and clustering occur in the presence of an excess of Si self-interstitials (Is). First principle calculations predicted the path of clusters growth, but the precursor complexes are too small to be visible even by the highest resolution microscopy. Channeling with nuclear reaction analyses allowed to detect the location of small B-Is complexes into the lattice formed as a consequence of the B interaction with the Is. In this work we extend this method to determine the complexes formed during the initial stage of B precipitation in Si doped at extremely high concentration (4 at%) and subjected to thermal treatment. The samples were prepared by excimer laser annealing (ELA) of Si implanted with 1 keV B. The thickness of the molten layer was 100 nm and the B profile was boxlike with a maximum hole concentration of ∼2 x 10 21 cm -3 . The electrical deactivation and carrier mobility of this metastable system has been studied as a function of subsequent annealing in the temperature range between 200 and 850 deg. C. Channeling analyses have been performed to investigate the B lattice location at the initial stage of precipitation. The difference, with respect to previous investigations, is the very small distance (<1 nm) between adjacent B atoms substitutional located in the lattice and the absence of Is that can be released during annealing, since the end of range defects were completely dissolved by ELA. In this way, information on the B complex evolution in a free-of-defects sample have been obtained

  4. Characterization Of Mg(OH)2 Precipitation On MSF Desalination Process

    International Nuclear Information System (INIS)

    Sumijanto

    2000-01-01

    The experiment of Mg(OH) sub.2 precipitation has been carry out. Experiment took please by heating sea water simulation with consist of 142 ppm bicarbonate and magnesium ion at temperature 40, 50, 60, 70, 80, 90, 100, 110, and 120 exp.oC respectively by using autoclave. Sampling has been done periodical for 30 minute in interval 300 minute for each temperature. The calculation of Mg(OH) sub.2 precipitation through the decreasing of magnesium concentration with analysis by AAS. From experiment data have the information that Mg(OH) sub.2 precipitation have been formed since 40 exp.oC. From time variable have been the information that the precipitation formed at 30th minute rapidly. Whether at further time the increasing of precipitation are not significant. This phenomena can explained that at each heating step from 40 exp.oC bicarbonate ion be come decomposition with the result carbonate and hydroxide ion and react with magnesium form Mg(OH) sub.2

  5. Soluble CD44 concentration in the serum and peritoneal fluid samples of patients with different stages of endometriosis.

    Science.gov (United States)

    Mashayekhi, Farhad; Aryaee, Hadis; Mirzajani, Ebrahim; Yasin, Ashraf Ale; Fathi, Abdolsatar

    2015-09-01

    Endometriosis is a gynecological disease defined by the histological presence of endometrial glands and stroma outside the uterine cavity, most commonly implanted over visceral and peritoneal surface within the female pelvis. CD44 is a membrane protein expressed by human endometrial cells, and it has been shown to promote the adhesion of endometrial cells. The aim of this study was to determine the levels of soluble CD44 (sCD44) in the serum and peritoneal fluid (PF) samples of patients with different stages of endometriosis. 39 PF and serum samples from normal healthy and 130 samples from different stages of patients with endometriosis (33 cases of stage I, 38 stage II, 30 stage III and 29 stage IV) were included in this study. Total protein concentration (TPC) and the level of s-cMet in the serum were determined by Bio-Rad protein assay based on the Bradford dye procedure and enzyme-linked immunosorbent assay, respectively. No significant change in the TPC was seen in the serum of patients with endometriosis when compared to normal controls. Results obtained demonstrated that all serum and peritoneal fluid samples, presented sCD44 expression, whereas, starting from stages I to IV endometriosis, a significant increase of sCD44 expression was observed as compared to control group. The results of this study show that a high expression of sCD44 is correlated with advanced stages of endometriosis. It is also concluded that the detection of serum and/or peritoneal fluid sCD44 may be useful in classifying endometriosis.

  6. Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods.

    Science.gov (United States)

    Arroyo, Fátima; Font, Oriol; Fernández-Pereira, Constantino; Querol, Xavier; Juan, Roberto; Ruiz, Carmen; Coca, Pilar

    2009-08-15

    In this study the purity of the germanium end-products obtained by two different precipitation methods carried out on germanium-bearing solutions was evaluated as a last step of a hydrometallurgy process for the recovery of this valuable element from the Puertollano Integrated Gasification Combined Cycle (IGCC) fly ash. Since H(2)S is produced as a by-product in the gas cleaning system of the Puertollano IGCC plant, precipitation of germanium as GeS(2) was tested by sulfiding the Ge-bearing solutions. The technological and hazardous issues that surround H(2)S handling conducted to investigate a novel precipitation procedure: precipitation as an organic complex by adding 1,2-dihydroxy benzene pyrocatechol (CAT) and cetyltrimethylammonium bromide (CTAB) to the Ge-bearing solutions. Relatively high purity Ge end-products (90 and 93% hexagonal-GeO(2) purity, respectively) were obtained by precipitating Ge from enriched solutions, as GeS(2) sulfiding the solutions with H(2)S, or as organic complex with CAT/CTAB mixtures and subsequent roasting of the precipitates. Both methods showed high efficiency (>99%) to precipitate selectively Ge using a single precipitation stage from germanium-bearing solutions.

  7. Spatiotemporal Analysis of Extreme Hourly Precipitation Patterns in Hainan Island, South China

    Directory of Open Access Journals (Sweden)

    Wenjie Chen

    2015-05-01

    Full Text Available To analyze extreme precipitation patterns in Hainan Island, hourly precipitation datasets from 18 stations, for the period from 1967 to 2012, were investigated. Two precipitation concentration indices (PCI and 11 extreme precipitation indices (EPI were chosen. PCI1 indicated a moderate seasonality in yearly precipitation and PCI2 showed that at least 80% of the total precipitation fell in 20% of the rainiest hours. Furthermore, the spatial variations of PCI1 and PCI2 differed. Linear regression indicated increasing trends in 11 of the calculated EPI. Principal component analysis found that the first recalculated principal component represented the 11 EPI. The recalculated principal component revealed an increasing trend in precipitation extremes for the whole island (except the interior section. Trend stability analysis of several of EPI suggested that the southern parts of Hainan Island, and especially the city of Sanya, should receive more attention to establish the drainage facilities necessary to prevent waterlogging.

  8. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa

    Science.gov (United States)

    Hodnebrog, Øivind; Myhre, Gunnar; Forster, Piers M.; Sillmann, Jana; Samset, Bjørn H.

    2016-01-01

    Observations indicate a precipitation decline over large parts of southern Africa since the 1950s. Concurrently, atmospheric concentrations of greenhouse gases and aerosols have increased due to anthropogenic activities. Here we show that local black carbon and organic carbon aerosol emissions from biomass burning activities are a main cause of the observed decline in southern African dry season precipitation over the last century. Near the main biomass burning regions, global and regional modelling indicates precipitation decreases of 20–30%, with large spatial variability. Increasing global CO2 concentrations further contribute to precipitation reductions, somewhat less in magnitude but covering a larger area. Whereas precipitation changes from increased CO2 are driven by large-scale circulation changes, the increase in biomass burning aerosols causes local drying of the atmosphere. This study illustrates that reducing local biomass burning aerosol emissions may be a useful way to mitigate reduced rainfall in the region. PMID:27068129

  9. The effect of Si on precipitation in Al–Cu–Mg alloy with a high Cu/Mg ratio

    International Nuclear Information System (INIS)

    Liu, L.; Chen, J.H.; Wang, S.B.; Liu, C.H.; Yang, S.S.; Wu, C.L.

    2014-01-01

    The precipitations in an Al–5.0Cu–0.3Mg (wt%) alloy and an Al–5.0Cu–0.3Mg–0.3Si (wt%) alloy have been systematically investigated by high-angle annular dark-field scanning transmission electron microscopy. The results are compared to clarify the effect of Si addition. The nucleation and growth process of θ′ (Al 2 Cu) phase in Si-containing alloy during isothermal ageing at 180 °C is revealed in detail. The formation of Q″-type precipitates, on which the θ′ precursors nucleate heterogeneously, contributes to the considerable increase in the ageing kinetics and higher strength at the early ageing stage. The thickening of the θ′ precipitate is largely confined due to the rather small size of fine Q″-type precipitate. As a result, a large proportion of θ′ phase precipitates possess a specific thickness of 2c θ′ and change slightly during the entire observed duration of ageing. The θ′ growth mechanism distinct from the Al–Cu–Mg alloy finally leads to a refined θ′ morphology regarding the thickness and aspect ratio (diameter/thickness). As is counterintuitive, the θ′ precipitate thickness distribution is demonstrated to have little effect on the mechanical property steadiness at the late ageing stage of the Al–Cu–Mg–(Si) alloys

  10. Parametric study on co-precipitation of U/Th in MOX fuel of AHWR

    International Nuclear Information System (INIS)

    Tiwari, S.K.; Swaroopa Lakshmi, Y.; Nath, Baidurjya; Setty, D.S.; Kalyana Krishnan, G.; Saibaba, N.

    2015-01-01

    During manufacturing of Mixed Oxide Fuel (MOX) pellets for Advance Heavy Water Reactor (AHWR-LEU), around 30% rejected MOX pellets are generated in every cycle. These rejected MOX pellets are dissolved in nitric acid for recovery of U/Th. The recovered U/Th is recycled for production of MOX pellets. MOX pellets of varying compositions are used in AHWR fuel. Dissolution of MOX pellets in nitric acid is a challenging task because of its low surface area and longer dissolution times. High normal nitric acid is used in order to increase rate of dissolution, which in turn results in generation of high free acidity solution which influences the precipitation characteristics of Uranium (VI) by oxalic acid. Oxalic acid precipitation helps in generation of nitric acid which can be used for dissolution there by effectively facilitating nil effluent generation. Precipitation by oxalic acid unlike ammonia has advantage of zero liquid effluent discharge by complete recycle of oxalate filtrate to dissolution section. In the present work, the effect of various parameters like free acidity, residence time, concentration of oxalic acid, initial concentration of uranium and thorium etc. on the precipitation of U(VI) and Th(IV) in nitrate media by oxalic acid was carried out. The precipitated powder was subjected to various morphological evaluations like particle size etc. Study of various parameters on the co-precipitation of uranium and thorium by oxalic acid was carried out. It was observed that complete precipitation (> 99.9%) of thorium as oxalate does not depend on free acidity range (1- 6 N). Excess oxalic acid is not required for complete precipitation of thorium oxalate. The precipitation of uranyl oxalate varies with initial free acidity of solution. Uranyl oxalate precipitation does not take place at and above 5 N of free acidity

  11. Sampling of Atmospheric Precipitation and Deposits for Analysis of Atmospheric Pollution

    OpenAIRE

    Skarżyńska, K.; Polkowska, Ż; Namieśnik, J.

    2006-01-01

    This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples.

  12. Ceria powders by homogeneous precipitation technique

    International Nuclear Information System (INIS)

    Ramanathan, S.; Roy, S.K.

    2003-01-01

    Formation of precursors for ceria by two homogeneous precipitation reactions - (cerium chloride + urea at 95 degC - called reaction A and cerium chloride + hexamethylenetetramine at 85 degC - called reaction B) - has been studied. The variation of size of the colloidal particles formed and the zeta potential of the suspensions with progress of reactions exhibited similar trends for both the precipitation processes. Particle size increased from 100 to 300 nm with increasing temperature and extent of reaction. The zeta potential was found to decrease with increasing extent of precipitation in the pH range of 5 to 7. Filtration and drying led to agglomeration of the fine particles in case of the precursor from reaction B. The as-formed precursors were crystalline - a basic carbonate in case of reaction A and hydrous oxide in case of reaction B. It was found that nano-crystalline ceria powders (average crystallite size -10 nm) formed above 400 degC from both these precursors. The agglomerate size (D50) of the precursors and ceria powders formed after calcination at 600 degC varied from 0.7 to 3 μm. Increasing calcination temperature up to 800 degC, increased the crystallite size (50 nm). The zeta potential variation with pH and concentration of an anionic dispersant (Calgon) for the ceria powders formed was studied to determine the ideal conditions for suspension stability. It was found to be maximum (i.e., the suspensions stable) in the pH range of 3 to 4 or Calgon concentration of 0.01 to 0.1 weight percent. (author)

  13. Precipitation behavior and compositional change during the aging process on Type 316 stainless steels

    International Nuclear Information System (INIS)

    Kinoshita, H.; Takahashi, H.; Nagasaki, R.; Ohnuki, S.; Sato, Y.; Mochizuki, S.

    1988-01-01

    The precipitation behavior of two species of the thermally aged SUS316 stainless steels (A and B) were examined. After solution treatment followed by 20 % cold work, the materials were aged at 500∼700deg C for 1000∼18000 hrs. The structures of the aged materials were investigated by means of Transmission Electron Microscope (TEM) and the mean size, the number density and morphology of precipitates were measured. According to these measurements, the mean size increased with the increase in temperature but the number density was only slightly changed above 600deg C. Furthermore the precipitates were identified by using a Energy Dispersive X-ray Spectroscopy (EDS) and electron diffraction technique. From these analysis, the effects of thermal aging conditions on precipitation behavior were discussed, and finally Time-Temperature-Precipitation (TTP) curve was constructed. According to measurements of concentration on Laves phase compared to 600deg C and 700deg C, it was claryfied that the concentration of Mo increased and that of Cr, Ni, Si decreased with the increase in temperature. (author)

  14. IN-SITU CHEMICAL STABILIZATION OF METALS AND RADIONUCLIDES THROUGH ENHANCED ANAEROBIC REDUCTIVE PRECIPITATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher C. Lutes; Angela Frizzell, PG; Todd A. Thornton; James M. Harrington

    2003-08-01

    The objective of this NETL sponsored bench-scale study was to demonstrate the efficacy of enhanced anaerobic reductive precipitation (EARP) technology for precipitating uranium using samples from contaminated groundwater at the Fernald Closure Project (FCP) in Cincinnati, Ohio. EARP enhances the natural biological reactions in the groundwater through addition of food grade substrates (typically molasses) to drive the oxidative-reductive potential of the groundwater to a lower, more reduced state, thereby precipitating uranium from solution. In order for this in-situ technology to be successful in the long term, the precipitated uranium must not be re-dissolved at an unacceptable rate once groundwater geochemical conditions return to their pretreatment, aerobic state. The approach for this study is based on the premise that redissolution of precipitated uranium will be slowed by several mechanisms including the presence of iron sulfide precipitates and coatings, and sorption onto fresh iron oxides. A bench-scale study of the technology was performed using columns packed with site soil and subjected to a continuous flow of uranium-contaminated site groundwater (476 {micro}g/L). The ''treated'' column received a steady stream of dilute food grade molasses injected into the contaminated influent. Upon attainment of a consistently reducing environment and demonstrated removal of uranium, an iron sulfate amendment was added along with the molasses in the influent solution. After a month long period of iron addition, the treatments were halted, and uncontaminated, aerobic, unamended water was introduced to the treated column to assess rebound of uranium concentrations. In the first two months of treatment, the uranium concentration in the treated column decreased to the clean-up level (30 {micro}g/L) or below, and remained there for the remainder of the treatment period. A brief period of resolubilization of uranium was observed as the treated column

  15. Precipitation processes in implanted materials

    International Nuclear Information System (INIS)

    Borders, J.A.

    1978-01-01

    Ion implantation is a nonequilibrium process. It is possible to implant materials with impurities to concentration levels which exceed the solid solubilities. The return of the system to thermodynamic equilibrium is often accomplished by precipitation of the implanted species or a compound involving atoms of both the host and the implanted species. This may involve long time scales when taking place at room temperature or it may take place during the implantation

  16. End point control of an actinide precipitation reactor

    International Nuclear Information System (INIS)

    Muske, K.R.

    1997-01-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements

  17. Contrasting trait responses in plant communities to experimental and geographic variation in precipitation

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Goldstein, Leah; Kraft, Nathan

    2010-01-01

    Patterns of precipitation are likely to change significantly in the coming century, with important but poorly understood consequences for plant communities. Experimental and correlative studies may provide insight into expected changes, but little research has addressed the degree of concordance...... between these approaches. We synthesized results from four experimental water addition studies with a correlative analysis of community changes across a large natural precipitation gradient in the United States. We investigated whether community composition, summarized with plant functional traits......, responded similarly to increasing precipitation among studies and sites. In field experiments, increased precipitation favored species with small seed size,short leaf life span and high leaf nitrogen (N) concentration. However, with increasing precipitation along the natural gradient, community composition...

  18. On the Precipitation and Precipitation Change in Alaska

    Directory of Open Access Journals (Sweden)

    Gerd Wendler

    2017-12-01

    Full Text Available Alaska observes very large differences in precipitation throughout the state; southeast Alaska experiences consistently wet conditions, while northern Arctic Alaska observes very dry conditions. The maximum mean annual precipitation of 5727 mm is observed in the southeastern panhandle at Little Port Arthur, while the minimum of 92 mm occurs on the North Slope at Kuparuk. Besides explaining these large differences due to geographic and orographic location, we discuss the changes in precipitation with time. Analyzing the 18 first-order National Weather Service stations, we found that the total average precipitation in the state increased by 17% over the last 67 years. The observed changes in precipitation are furthermore discussed as a function of the observed temperature increase of 2.1 °C, the mean temperature change of the 18 stations over the same period. This observed warming of Alaska is about three times the magnitude of the mean global warming and allows the air to hold more water vapor. Furthermore, we discuss the effect of the Pacific Decadal Oscillation (PDO, which has a strong influence on both the temperature and precipitation in Alaska.

  19. Computer simulation of hydrogen diffusion and hydride precipitation at Ta/Zr bond interface. Hydrogen embrittlement in SUS304ULC/Ta/Zr explosive bonded joint

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Fujimoto, Tetsuya; Nishimoto, Kazutoshi

    2010-01-01

    The concentration of hydrogen and precipitation of zirconium hydrides in Ta/Zr explosive bonded joint were analysed by computer simulation. Numerical model of hydride precipitation under hydrogen diffusion was simplified by the alternate model coupled the macroscopic hydrogen diffusion with the microscopic hydride precipitation. Effects of the initial hydrogen content in Ta, working degree of Zr and post-bond heat treatment on the hydrogen diffusion and hydride precipitation were investigated. Hydrogen was rapidly diffused from Ta substrate into Zr after explosive bonding and temporarily concentrated at Ta/Zr bond interface. Zirconium hydrides were precipitated and grew at Ta/Zr bond interface, and the precipitation zone of hydrides was enlarged with the lapse of time. The precipitation of zirconium hydrides was promoted when the initial hydrogen content in Ta and working degree of Zr were increased. The concentration of hydrogen and precipitation of hydrides at the bond interface were reduced and diminished by post-bond heat treatment at 373 K. It was deduced that hydrogen embrittlement in Ta/Zr explosive bonded joint was caused by the precipitation of zirconium hydrides and concentration of hydrogen at Ta/Zr bond interface during the diffusion of hydrogen containing in Ta substrate. (author)

  20. Comparative study on precipitation methods of yellow-cake from acid leachate of rock phosphate and Its purification

    International Nuclear Information System (INIS)

    Abow Slama, E. H. Y.

    2009-05-01

    This study was carried-out to leach uranium from rock phosphate using sulphuric acid in presences of potassium chlorate as an oxidant and to investigate the relative purity of different forms of yellow cakes produced with ammonia ((NH 4 ) 2 U 2 O 7 ), magnesia (UO 3 .xH 2 O) and sodium hydroxide (Na 2 U 2 O 7 ) as precipitants, as well as purification of the products with TBP extraction and matching its impurity levels with specification of the commercial products. Alpha-particle spectrometry was for used for determination of activity concentration of uranium isotopes (''2''3''4U and ''2''3''8U) in rock phosphate, resulting green phosphoric acid solution, and in different forms of the yellow cake from which the equivalent mass concentration of uranium was deduced. Likewise, AAS was used for determination of impurities (Pb, Ni, Cd, Fe, Zn, Mn, and Cu). On the average, the activity concentration of uranium in the rock phosphate was 1468±979 Bq/Kg (119.38±79.66 ppm), and 711±252 Bq/L (57.85±20.46 ppm) in the resulting green solution with corresponding percent of dissolution amounting to 48% which is considered low indicating that the experimental conditions (i.e. dissolution container, temperature, PH, retention time) were not optimal. However, the isotopic ratio (''2''3''4U, ''2''3''8U) in all stages of hydrometallurgical process was not much different from unity indicating lack of fractionation. Crude yellow cakes (hydrate uranium trioxide, ammonium diuranate and sodium diuranate) were precipitated from the green solutions prior to separation of iron and once after iron separation. Although, iron was tested using bipyridine and SCN, it was found in all types of crude samples analyzed this might be attributed to either the quality of the reagent used or inhibition of Fe present in the solution by stronger complexing agent. Uranium mass concentration in crude yellow cakes precipitated before iron separation was found following the order: UO 3 .xH 2 O

  1. Production of mixed oxide fuel for fast reactor irradiation test by co-precipitation

    International Nuclear Information System (INIS)

    Todokoro, Akio; Masuda, Sumio; Naruki, Kaoru; Kaya, Akira; Koizumi, Masumichi

    1974-01-01

    Studies were made on the production of homogeneous mixed oxide by co-precipitation. Experiments were made on the effects of the addition rate of ammonia water, precipitation temperature, aging time of co-precipitate, and pH value. Plutonium refined by anion exchange was mixed with solution of uranium. The concentration of free acid in the mixed solution was adjusted to 1.5-2.0 M, and the total volume of the solution was made 3.01. The weight of Pu and U in the solution was 100g. The solution was kept at a definite temperature while being stirred. Concentrated ammonia solution was added to the solution at a definite rate. The precipitate thus formed was filtrated after aging, then dried for 24 hours at 100 +- 2 0 C. Dried co-precipitate was calcinated for 1 hr at 550 0 C. The reduction for 4 hours at 800 0 C gave the mixed powder of PuO 2 and UO 2 . After pressing, the powder was sintered for 2 hours at 1700 0 C. The shrinkage ratio decreased as the activity and tap density of the original powder increased. The activity determined by specific surface area increased as the rate of ammonia water addition increased, and as the precipitation temperature rose. Tap density was independent of the rate of addition of ammonia water. The activity of the powder increased and the tap density decreased as the aging time of precipitate increased. (Fukutomi, T.)

  2. Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media.

    Science.gov (United States)

    Gat, Daniella; Ronen, Zeev; Tsesarsky, Michael

    2017-10-01

    Microbially induced CaCO 3 precipitation (MICP) via urea hydrolysis is an emerging technique for soil amelioration, building materials rehabilitation and pollutants sequestration amongst other various environmental applications. The successful application of MICP requires the sustainability of the precipitated CaCO 3 ; to which the fate of ammonia, the main by-product of ureolysis, is potentially significante. Ammonia volatilization and biological ammonia oxidation both induce a pH decrease, which, in turn, might cause CaCO 3 dissolution. To examine the potential effect of accumulated ammonia on precipitated CaCO 3 , we conducted a long-term MICP batch experiment, using environmental enrichment cultures of ureolytic bacteria. Here we show that CaCO 3 precipitation was completed within 15-27 days, along with a rise in ammonium concentration. Following completion of ureolysis and precipitation, ammonium concentrations decreased, leading to a pH decrease. About 30 days after precipitation was completed, as much as 30% CaCO 3 dissolution, was observed. A two-step model, describing urea hydrolysis followed by the removal of ammonia from the precipitation solution, predicted CaCO 3 dissolution due to ammonia volatilization. We suggest that ureolytic MICP might result in ammonia volatilization, leading to significant CaCO 3 dissolution. These results provide basic insights into the sustainability of ureolytic MICP and should further encourage removal of the accumulated ammonia from the treated site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Glass composition and solution speciation effects on stage III dissolution

    International Nuclear Information System (INIS)

    Trivelpiece, Cory L.; Rice, Jarret A.; Pantano, Carlo G.

    2017-01-01

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  4. Glass composition and solution speciation effects on stage III dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Cory L. [Pennsylvania State Univ., University Park, PA (United States); Rice, Jarret A. [Pennsylvania State Univ., University Park, PA (United States); Pantano, Carlo G. [Pennsylvania State Univ., University Park, PA (United States)

    2017-10-03

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  5. Aerosol and precipitation chemistry in the southwestern United States: spatiotemporal trends and interrelationships

    Science.gov (United States)

    Sorooshian, A.; Shingler, T.; Harpold, A.; Feagles, C. W.; Meixner, T.; Brooks, P. D.

    2013-01-01

    This study characterizes the spatial and temporal patterns of aerosol and precipitation composition at six sites across the United States Southwest between 1995 and 2010. Precipitation accumulation occurs mostly during the wintertime (December–February) and during the monsoon season (July–September). Rain and snow pH levels are usually between 5–6, with crustal-derived species playing a major role in acid neutralization. These species (Ca2+, Mg2+, K+, Na+) exhibit their highest concentrations between March and June in both PM2.5 and precipitation due mostly to dust. Crustal-derived species concentrations in precipitation exhibit positive relationships with SO42−, NO3−, and Cl–, suggesting that acidic gases likely react with and partition to either crustal particles or hydrometeors enriched with crustal constituents. Concentrations of particulate SO42− show a statistically significant correlation with rain SO42− unlike snow SO42−, which may be related to some combination of the vertical distribution of SO42− (and precursors) and the varying degree to which SO42−-enriched particles act as cloud condensation nuclei versus ice nuclei in the region. The coarse : fine aerosol mass ratio was correlated with crustal species concentrations in snow unlike rain, suggestive of a preferential role of coarse particles (mainly dust) as ice nuclei in the region. Precipitation NO3− : SO42− ratios exhibit the following features with potential explanations discussed: (i) they are higher in precipitation as compared to PM2.5; (ii) they exhibit the opposite annual cycle compared to particulate NO3− : SO42− ratios; and (iii) they are higher in snow relative to rain during the wintertime. Long-term trend analysis for the monsoon season shows that the NO3− : SO42− ratio in rain increased at the majority of sites due mostly to air pollution regulations of SO42− precursors. PMID:24432030

  6. Aerosol and precipitation chemistry in the southwestern United States: spatiotemporal trends and interrelationships

    Directory of Open Access Journals (Sweden)

    A. Sorooshian

    2013-08-01

    Full Text Available This study characterizes the spatial and temporal patterns of aerosol and precipitation composition at six sites across the United States Southwest between 1995 and 2010. Precipitation accumulation occurs mostly during the wintertime (December–February and during the monsoon season (July–September. Rain and snow pH levels are usually between 5–6, with crustal-derived species playing a major role in acid neutralization. These species (Ca2+, Mg2+, K+, Na+ exhibit their highest concentrations between March and June in both PM2.5 and precipitation due mostly to dust. Crustal-derived species concentrations in precipitation exhibit positive relationships with SO42−, NO3−, and Cl−, suggesting that acidic gases likely react with and partition to either crustal particles or hydrometeors enriched with crustal constituents. Concentrations of particulate SO42− show a statistically significant correlation with rain SO42− unlike snow SO42−, which may be related to some combination of the vertical distribution of SO42− (and precursors and the varying degree to which SO42−-enriched particles act as cloud condensation nuclei versus ice nuclei in the region. The coarse : fine aerosol mass ratio was correlated with crustal species concentrations in snow unlike rain, suggestive of a preferential role of coarse particles (mainly dust as ice nuclei in the region. Precipitation NO3− : SO42− ratios exhibit the following features with potential explanations discussed: (i they are higher in precipitation as compared to PM2.5; (ii they exhibit the opposite annual cycle compared to particulate NO3− : SO42− ratios; and (iii they are higher in snow relative to rain during the wintertime. Long-term trend analysis for the monsoon season shows that the NO3− : SO42− ratio in rain increased at the majority of sites due mostly to air pollution regulations of SO42− precursors.

  7. Effect of the Reburning Zone Stoichiometry on the Nox Concentration at the Three-Stage Combustion of Pulverized Coal

    Directory of Open Access Journals (Sweden)

    Chernetskaya Nelya

    2016-01-01

    Full Text Available Numerical study of heat and mass transfer taking into account the combustion of coal particles in the furnace at the three-stage combustion of pulverized coal was performed. Analysis of the reburning zone stoichiometry on the concentration of nitrogen oxides at the furnace outlet was made. The values of excess air in the primary and reburning combustion zones, providing for the concentration of nitrogen oxides at the furnace outlet is not more than 350 mg/m3 and unburned carbon not more than 1 % when burning coal with a high content of nitrogen were established.

  8. Acid precipitation literature review

    Energy Technology Data Exchange (ETDEWEB)

    Seip, H M; Andersen, B; Andersson, G; Hov, Oe; Kucera, V; Moseholm, L

    1986-01-01

    There is an increasing number of publications on acid deposition and related phenomena. Interest in these topics has also been reflected in a considerable number of meetings and conferences in this field. The largest of these in 1985 was the ''International Symposium on Acidic Precipitation'' (Muskoka, Ontario). Most work so far has been carried out in North America and Europe. There is, however, an increasing interest in obtaining a better picture of sensitive areas and possible acidification in other parts of the world. Anthropogenic SO/sub 2/ emissions have been estimated to be (in TgSyr/sup -1/): 2.4 (Africa), 4.1 (South America), 0.7 (Ocenia), and 18.3 (Asia). The largest increase during the last decade has been in Asia. Based on Studies of precipitation in remote areas it has been suggested that the natural background concentration for sulphate in many areas should be about 6 ..mu..eq 1/sup -1/. A new study of sulphate and nitrate in Greenland snow showed that both ions increased by a factor of about 2 from 1895 to 1978. The concentrations of SO/sub 2/ at Norwegian rural sites show a decreasing trend since late 1970s, while concentrations of sulphate in air show no clear trend. More reliable models for transformation, transport and deposition of chemicals are being developed, including three-dimensional grid models to describe episodes of elevated pollution levels lasting for a few days. Model calculations indicate that control of hydrocarbon (HC) emissions is much more efficient in reducing the ozone level in southern Scandinavia in episodes influenced by long-range transported pollutants than NO/sub x/ control of combined NO/sub x/ and HC control. 36 refs. (EG).

  9. Concentration of High Level Radioactive Liquid Waste. Basic data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Juvenelle, A.; Masson, M.; Garrido, M.H. [DEN/VRH/DRCP/SCPS/LPCP, BP 17171 - 30207 Bagnols sur Ceze Cedex (France)

    2008-07-01

    Full text of publication follows: In order to enhance its knowledge about the concentration of high level liquid waste (HLLW) from the nuclear fuel reprocessing process, a program of studies was defined by Cea. In a large field of acidity, it proposes to characterize the concentrated solution and the obtained precipitates versus the concentration factor. Four steps are considered: quantification of the salting-out effect on the concentrate acidity, acquisition of solubility data, precipitates characterisation versus the concentration factor through aging tests and concentration experimentation starting from simulated fission products solutions. The first results, reported here, connect the acidity of the concentrated solution to the concentration factor and allow us to precise the field of acidity (4 to 12 N) for the next experiments. In this field, solubility data of various elements (Ba, Sr, Zr...) are separately measured at room temperature, in nitric acid in a first time, then in the presence of various species present in medium (TBP, PO{sub 4}{sup 3-}). The reactions between these various elements are then investigated (formation of insoluble mixed compounds) by following the concentration cations in solution and characterising the precipitates. (authors)

  10. Protamine precipitation of two reovirus particle types from polluted waters.

    OpenAIRE

    Adams, D J; Ridinger, D N; Spendlove, R S; Barnett, B B

    1982-01-01

    Two forms of virus particle are released from reovirus-infected cell cultures, infectious reovirus and potentially infectious reovirus (PIV). PIV particle forms have a complete outer coat and are not infectious until the outer coat is altered or removed. The PIV concentration in polluted waters, however, has not been determined. Protamine sulfate precipitation, using 0.25% fetal bovine serum and 0.005% protamine sulfate for the first precipitation of the sample and 0.0025% for the second, was...

  11. Precipitation and air temperature control the variations of dissolved organic matter along an altitudinal forest gradient, Gongga Mountains, China.

    Science.gov (United States)

    Hu, Zhaoyong; Wang, Genxu; Sun, Xiangyang

    2017-04-01

    Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) contribute significantly to C and N cycling in forest ecosystems. Little information is available on the variations in the DOC and DON concentrations and depositions in bulk and stand precipitation within forests along an altitudinal gradient. To determine the temporal variations in the DOC and DON concentrations and depositions in different forests and the spatial variations along the elevation gradient, the DOC and DON concentrations and depositions were measured in bulk precipitation, throughfall, and stemflow within three forest types, i.e., broadleaf forest (BLF), broadleaf-coniferous forest (BCF), and coniferous forest (CF), during the wet season (May to October) on Gongga Mountain, China, in 2015. The concentrations of bulk precipitation in BLF, BCF, and CF were 3.92, 4.04, and 2.65 mg L -1 , respectively, for DOC and were 0.38, 0.26, and 0.29 mg L -1 , respectively, for DON. BCF had the highest DOC deposition both in bulk precipitation (45.12 kg ha -1 ) and stand precipitation (98.52 kg ha -1 ), whereas the highest DON deposition was in BLF (3.62 kg ha -1 bulk precipitation and 4.11 kg ha -1 stand precipitation) during the study period. The meteorological conditions of precipitation and air temperature significantly influenced the dissolved organic matter (DOM) depositions along the elevation gradient. The leaf area index did not show any correlation with DOM depositions during the growing season.

  12. Forecasting gastrointestinal precipitation and oral pharmacokinetics of dantrolene in dogs using an in vitro precipitation testing coupled with in silico modeling and simulation.

    Science.gov (United States)

    Kambayashi, Atsushi; Dressman, Jennifer B

    2017-10-01

    The aim of the current research was to determine the precipitation kinetics of dantrolene sodium using canine biorelevant in vitro testing and to model the precipitation kinetics by appropriately coupling the data with an in silico tool adapted for dogs. The precipitation profiles of dantrolene sodium solutions were obtained with the in vitro paddle apparatus at a revolution rate of 50rpm. The in silico prediction tool was designed using STELLA software and the predicted plasma concentration profiles of dantrolene using the in vitro precipitation data were compared with the observed in vivo pharmacokinetics in beagle dogs. The plasma profiles of dantrolene, which served as a model weakly acidic drug which precipitates in the upper gastrointestinal tract, was successfully predicted using the in vitro precipitation testing coupled with the in silico modeling and simulation approach. The approach was subsequently used to forecast the effect of pharmaceutical excipients (HPMC/PG) on the ability of the drug to supersaturate in the gut and the resulting pharmacokinetics. The agreement of the simulated pharmacokinetics with the observed values confirms the ability of canine biorelevant media to predict oral performance of enhanced dosage forms in dogs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Study On Precipitation Of UO2 Ex-AUC Powder. Part I: Precipitation Of AUC By (NH4)2CO3 From Uranyl Fluoride Solution

    International Nuclear Information System (INIS)

    Nguyen Trong Hung; Le Ba Thuan; Do Van Khoai; Nguyen Thanh Thuy; Nguyen Van Tung

    2011-01-01

    In this paper, Ammonium Uranyl Carbonate (AUC) powders were prepared by precipitation method in solution. UO 2 F 2 /HF, ammonium carbonate (AC), and ammonium hydroxide solution were used as precursors for precipitation. The influence of C/U ratio (mol/mol), AC concentration (g/L), reaction temperature ( o C), on characteristics of AUC powders was also investigated. Then, the synthesized AUC powders were analyzed (to define) phase composition (X-ray), fluorine content, morphology (by SEM), and specific surface area (BET). (author)

  14. Spatial and temporal variability of precipitation and drought in Portugal

    Directory of Open Access Journals (Sweden)

    D. S. Martins

    2012-05-01

    Full Text Available The spatial variability of precipitation and drought are investigated for Portugal using monthly precipitation from 74 stations and minimum and maximum temperature from 27 stations, covering the common period of 1941–2006. Seasonal precipitation and the corresponding percentages in the year, as well as the precipitation concentration index (PCI, was computed for all 74 stations and then used as an input matrix for an R-mode principal component analysis to identify the precipitation patterns. The standardized precipitation index at 3 and 12 month time scales were computed for all stations, whereas the Palmer Drought Severity Index (PDSI and the modified PDSI for Mediterranean conditions (MedPDSI were computed for the stations with temperature data. The spatial patterns of drought over Portugal were identified by applying the S-mode principal component analysis coupled with varimax rotation to the drought indices matrices. The result revealed two distinct sub-regions in the country relative to both precipitation regimes and drought variability. The analysis of time variability of the PC scores of all drought indices allowed verifying that there is no linear trend indicating drought aggravation or decrease. In addition, the analysis shows that results for SPI-3, SPI-12, PDSI and MedPDSI are coherent among them.

  15. Environmental Assessment for Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

    International Nuclear Information System (INIS)

    1993-06-01

    This Environmental Assessment (EA) has been prepared pursuant to the implementing regulations to the National Environmental Policy Act (NEPA), which require federal agencies to assess the environmental impacts of a proposed action to determine whether that action requires the preparation of an Environmental Impact Statement (EIS) or if a Finding of No Significant Impact (FONSI) can be issued. The Pantex Plant does not possess permanent containerized waste staging facilities with integral secondary containment or freeze protection. Additional deficiencies associated with some existing staging facilities include: no protection from precipitation running across the staging pads; lack of protection against weathering; and facility foundations not capable of containing leaks, spills or accumulated precipitation. These shortcomings have raised concerns with respect to requirements under Section 3001 of the Resource Conservation and Recovery Act (RCRA). Deficiencies for these waste staging areas were also cited by a government audit team (Tiger Team) as Action Items. The provision for the staging of hazardous, mixed, and low level waste is part of the no-action altemative in the Programmatic Environmental Impact Statement for the integrated ER/WM program. Construction of this proposed project will not prejudice whether or not this integration will occur, or how

  16. Selective removal of Cs and Re by precipitation in a Na2CO3-H2O2 solution

    International Nuclear Information System (INIS)

    Eil-Hee Lee; Jae-Gwan Lim; Dong-Yong Chung; Han-Beom Yang; Kwang-Wook Kim

    2010-01-01

    The removal of Cs and Re (as a surrogate for Tc) by selective precipitation from the simulated fission products which were co-dissolved with uranium during the oxidative dissolution of spent fuel in a Na 2 CO 3 -H 2 O 2 solution was investigated in this study. The precipitations of Cs and Re were examined by introducing sodium tetraphenylborate (NaTPB) and tetraphenylohosponium chloride (TPPCl), respectively. The precipitation of Cs by NaTPB and that of Re by TPPCl each took place within 5 min, and an increase in temperature up to 50 deg C and a stirring speed up to 1000 rpm hardly affected their precipitation rates. The most important factor in the precipitation with NaTPB and TPPCl was found to be a pH of the solution after precipitation. Since Mo tends to co-precipitate with Cs or Re at a lower pH, an effective precipitation with NaTPB and TPPCl was done at pH of above 9 without the co-precipitation of Mo. More than 99% of Cs and Re were precipitated when the initial concentration ratio of NaTPB to Cs was above 1 and when that of TPPCl to Re was above 1. The precipitation of Cs and Re was never affected by the concentration of Na 2 CO 3 and H 2 O 2 , even though they were raised up to 1.5 and 1.0 M, respectively. Precipitation yields of Cs and Re in a Na 2 CO 3 -H 2 O 2 solution were found to be dependent on the concentration ratios of [NaTBP]/[Cs] and [TPPCl]/[Re]. (author)

  17. Experimental and computational study of nitride precipitation in a CrMnN austenitic stainless steel

    International Nuclear Information System (INIS)

    Pettersson, Niklas; Frisk, Karin; Fluch, Rainer

    2017-01-01

    The austenitic CrMnN stainless steels are high-strength, tough, and non-magnetic, and are used in oil field applications. The steels have high alloying contents, and precipitation of Cr-nitrides and/or intermetallic phases can occur when cooling through the temperature region 950–700 °C. The nitride precipitates appear in the grain boundaries but can be difficult to observe in the microstructure due to their small size. However, there is an effect of precipitation on corrosion and impact strength and a modelling approach to predict precipitation is valuable for alloy and process development. In the present work precipitation simulations were applied to a CrMnN steel composition, and coupled to experimental investigations after heat treatments at 700 and 800 °C. The early stages, with short heat-treatment times, were studied. The simulations were performed using TC-PRISMA, a software for calculation of multiphase precipitation kinetics, using multicomponent nucleation and growth models. Dedicated thermodynamic and kinetic databases were used for the simulations. The main precipitate was identified by experiments and simulations to be the Cr 2 N nitride, and the precipitation during isothermal heat treatments was investigated. Isothermal precipitation diagrams are simulated, and the influence of precipitation kinetics on toughness is discussed.

  18. Experimental and computational study of nitride precipitation in a CrMnN austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Niklas, E-mail: niklas.pettersson@swerea.se [Swerea KIMAB AB, P.O. Box 7047, 164 07 Kista (Sweden); Frisk, Karin [Swerea KIMAB AB, P.O. Box 7047, 164 07 Kista (Sweden); Fluch, Rainer [Böhler Edelstahl Gmbh, Mariazeller Strasse 25, 8605 Kapfenberg (Austria)

    2017-01-27

    The austenitic CrMnN stainless steels are high-strength, tough, and non-magnetic, and are used in oil field applications. The steels have high alloying contents, and precipitation of Cr-nitrides and/or intermetallic phases can occur when cooling through the temperature region 950–700 °C. The nitride precipitates appear in the grain boundaries but can be difficult to observe in the microstructure due to their small size. However, there is an effect of precipitation on corrosion and impact strength and a modelling approach to predict precipitation is valuable for alloy and process development. In the present work precipitation simulations were applied to a CrMnN steel composition, and coupled to experimental investigations after heat treatments at 700 and 800 °C. The early stages, with short heat-treatment times, were studied. The simulations were performed using TC-PRISMA, a software for calculation of multiphase precipitation kinetics, using multicomponent nucleation and growth models. Dedicated thermodynamic and kinetic databases were used for the simulations. The main precipitate was identified by experiments and simulations to be the Cr{sub 2}N nitride, and the precipitation during isothermal heat treatments was investigated. Isothermal precipitation diagrams are simulated, and the influence of precipitation kinetics on toughness is discussed.

  19. Mucins and calcium phosphate precipitates additively stimulate cholesterol crystallization

    NARCIS (Netherlands)

    van den Berg, A. A.; van Buul, J. D.; Tytgat, G. N.; Groen, A. K.; Ostrow, J. D.

    1998-01-01

    Human biliary mucin and calcium binding protein (CBP) influence formation of both calcium salt precipitates and cholesterol crystals and colocalize in the center of cholesterol gallstones. We investigated how physiological concentrations of these proteins regulate cholesterol crystallization in

  20. Long range transport of air pollutants in Europe and acid precipitation in Norway

    Science.gov (United States)

    Jack Nordo

    1976-01-01

    Observations show that pollutants from large emission sources may cause significant air concentrations 500 to 1000 miles away. Very acid precipitation occurs in such periods. The scavenging is often intensified by the topography. Case studies will be presented, with special emphasis on acid precipitation in Scandinavia. Large scale dispersion models have been developed...

  1. Precipitation scavenging of aerosol particles at a rural site in the Czech Republic

    Science.gov (United States)

    Zikova, Nadezda; Zdimal, Vladimir

    2017-04-01

    Wet deposition is an important removal mechanism of atmospheric aerosol (AA) in the troposphere, transferring AA to the Earth surface in an aqueous form (Seinfeld and Pandis, 1998). Deposition consists of in-cloud (ICS) and below-cloud (BCS) scavenging, both processes depending on the size, chemical composition and concentration of the AA particles (e.g. Laakso et al., 2003; Ladino et al., 2011). Due to the complexity of the processes and high instrumentation and time demands, a complete understanding is still a challenge, although both phenomena have been extensively studied recently (e.g. Andronache et al. 2006; Chate et al. 2011; Collett et al. 2008). In this work, the influence of ICS and BCS, described by the obscurities (mist, fog and shallow fog) and precipitation (drizzle, rain, snow, rain with snow), on submicron atmospheric aerosol particle number size distributions (PNSD) was studied using 5 years of measurements at the rural background station Košetice. The typical PNSD during individual meteorological phenomena were compared, and the change in the concentrations before and after the beginning of the phenomenon, the scavenging coefficient lambda_s, and the rate of change of the AA concentrations with time were computed. It was found that both obscurities and precipitation have a strong influence on the AA concentrations, both on the total number concentrations and on the particle number size distributions. The scavenging not only lowers the total AA concentrations, it even changes the number of modes on the PNSDs. The PNSD main mode is shifted to the larger particles, and the concentrations of particles smaller than 50 nm in diameter are considerably lower. In nucleation mode, however, wet scavenging does not seem to be the main process influencing the AA concentrations, although its considerable effect on the concentration was proved. During obscurities, there is a typical PNSD to which the PNSD converge at any mist/fog/shallow fog event. The

  2. Concentrations of cadmium, mercury and selenium in common eider ducks in the eastern Canadian arctic: Influence of reproductive stage

    International Nuclear Information System (INIS)

    Wayland, Mark; Gilchrist, H. Grant; Neugebauer, Ewa

    2005-01-01

    Concentrations and total organ content of mercury, selenium and cadmium, as well as liver, kidney and body mass were determined in female common eiders from 1997 to 2000 at the East Bay Migratory Bird Sanctuary in the eastern Canadian arctic. In 1997 and 1999, female eiders were collected during the pre-nesting period when they eat copious amounts of food and gain substantial weight in preparation for the rigours of nesting. In 1998 and 1999, female eiders were collected during the mid to late stages of the nesting period when they eat very little, if at all, and, as a consequence undergo dramatic weight loss. Total body mass, liver mass and kidney mass were highest in pre-nesting birds, especially in 1997. They were significantly lower in nesting birds collected in 1998 and 2000. In contrast, mercury and cadmium concentrations were lowest in pre-nesting birds collected in 1997 and 1999 and increased to significantly higher concentrations in nesting birds collected in 1998 and 2000. In contrast to these results, the total contents of mercury in liver and cadmium in kidney did not change significantly over the 4-year period. Hepatic selenium concentrations were relatively stable over the 4-year study period while changes in the total content of selenium in the liver paralleled changes in liver mass and body mass. The results suggest that mercury and cadmium concentrations in female common eiders change in response to normal changes in body and organ mass that occur during the reproductive period. Thus, it may be important to consider body condition or reproductive stage when using common eiders (and perhaps other species of sea ducks) in biomonitoring studies or when interpreting concentrations of metals in tissues in terms of the risk they pose to these ducks

  3. Concentrations of cadmium, mercury and selenium in common eider ducks in the eastern Canadian arctic: influence of reproductive stage.

    Science.gov (United States)

    Wayland, Mark; Gilchrist, H Grant; Neugebauer, Ewa

    2005-12-01

    Concentrations and total organ content of mercury, selenium and cadmium, as well as liver, kidney and body mass were determined in female common eiders from 1997 to 2000 at the East Bay Migratory Bird Sanctuary in the eastern Canadian arctic. In 1997 and 1999, female eiders were collected during the pre-nesting period when they eat copious amounts of food and gain substantial weight in preparation for the rigours of nesting. In 1998 and 1999, female eiders were collected during the mid to late stages of the nesting period when they eat very little, if at all, and, as a consequence undergo dramatic weight loss. Total body mass, liver mass and kidney mass were highest in pre-nesting birds, especially in 1997. They were significantly lower in nesting birds collected in 1998 and 2000. In contrast, mercury and cadmium concentrations were lowest in pre-nesting birds collected in 1997 and 1999 and increased to significantly higher concentrations in nesting birds collected in 1998 and 2000. In contrast to these results, the total contents of mercury in liver and cadmium in kidney did not change significantly over the 4-year period. Hepatic selenium concentrations were relatively stable over the 4-year study period while changes in the total content of selenium in the liver paralleled changes in liver mass and body mass. The results suggest that mercury and cadmium concentrations in female common eiders change in response to normal changes in body and organ mass that occur during the reproductive period. Thus, it may be important to consider body condition or reproductive stage when using common eiders (and perhaps other species of sea ducks) in biomonitoring studies or when interpreting concentrations of metals in tissues in terms of the risk they pose to these ducks.

  4. Concentrations of cadmium, mercury and selenium in common eider ducks in the eastern Canadian arctic: Influence of reproductive stage

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, Mark [Environment Canada, Prairie and Northern Wildlife Research Centre, 115 Perimeter Rd., Saskatoon, SK, S7N 0X4 (Canada)]. E-mail: mark.wayland@ec.gc.ca; Gilchrist, H. Grant [Canadian Wildlife Service, Prairie and Northern Region, Suite 301, 5204-50th St., Yellowknife, NT, X1A 1E2 (Canada); Neugebauer, Ewa [Environment Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6 (Canada)

    2005-12-01

    Concentrations and total organ content of mercury, selenium and cadmium, as well as liver, kidney and body mass were determined in female common eiders from 1997 to 2000 at the East Bay Migratory Bird Sanctuary in the eastern Canadian arctic. In 1997 and 1999, female eiders were collected during the pre-nesting period when they eat copious amounts of food and gain substantial weight in preparation for the rigours of nesting. In 1998 and 1999, female eiders were collected during the mid to late stages of the nesting period when they eat very little, if at all, and, as a consequence undergo dramatic weight loss. Total body mass, liver mass and kidney mass were highest in pre-nesting birds, especially in 1997. They were significantly lower in nesting birds collected in 1998 and 2000. In contrast, mercury and cadmium concentrations were lowest in pre-nesting birds collected in 1997 and 1999 and increased to significantly higher concentrations in nesting birds collected in 1998 and 2000. In contrast to these results, the total contents of mercury in liver and cadmium in kidney did not change significantly over the 4-year period. Hepatic selenium concentrations were relatively stable over the 4-year study period while changes in the total content of selenium in the liver paralleled changes in liver mass and body mass. The results suggest that mercury and cadmium concentrations in female common eiders change in response to normal changes in body and organ mass that occur during the reproductive period. Thus, it may be important to consider body condition or reproductive stage when using common eiders (and perhaps other species of sea ducks) in biomonitoring studies or when interpreting concentrations of metals in tissues in terms of the risk they pose to these ducks.

  5. Influence of chemical composition of precipitation on migration of radioactive caesium in natural soils

    International Nuclear Information System (INIS)

    Thørring, H.; Skuterud, L.; Steinnes, E.

    2014-01-01

    The aim of the present work was to study the impact of the chemical composition of precipitation on radiocaesium mobility in natural soil. This was done through column studies. Three types of precipitation regimes were studied, representing a natural range found in Norway: Acidic precipitation (southernmost part of the country); precipitation rich in marine cations (highly oceanic coastal areas); and low concentrations of sea salts (slightly continental inland areas). After 50 weeks and a total precipitation supply of ∼10 000 L m −2 per column, results indicate that acidic precipitation increased the mobility of 134 Cs added during the experiment. However, depth distribution of already present Chernobyl fallout 137 Cs was not significantly affected by the chemical composition of precipitation. - Highlights: • Mobility of freshly added Cs-134 was higher in soil receiving acidic precipitation. • Depth penetration of Cs-134 was higher in soil profiles with a thicker humus layer. • Depth distribution of Chernobyl Cs-137 was not affected by precipitation type

  6. Development of a process to reduce the uranium concentration of liquid radioactive waste

    International Nuclear Information System (INIS)

    Fuentealba Toro, Edgardo David

    2015-01-01

    The purpose of radioactive waste management is to prevent the discharge of waste into the biosphere, a function carried out in Chile by the Chilean Nuclear Energy Commission (CCHEN), which stores around 500 [L] of these organic and inorganic waste in cans coming from research of Universities and CCHEN' laboratories. Within the inorganic liquid waste are concentrations of Uranyl salts with sulfates, chlorides and phosphates. The purpose of this work is to develop at laboratory level a process to concentrate and precipitate uranium salts (Sulfate and Uranyl Chloride) present in radioactive liquid effluents, because in the case of these very long period wastes in liquid state, the most widely used processes are aimed at concentrating or extracting radioactive compounds through separation processes, for their conditioning and final storage under conditions whose radiological risk is minimized. The selected process is liquid-liquid extraction, being evaluated solvents such as benzene and kerosene with the following extractants: tri-n-octylphosphine oxide (TOPO), di-2-ethylhexyl phosphoric acid (DEHPA) and Cyanex© 923. To determine the extraction conditions, which allow to reduce the concentration of uranium to values lower than 10 ppm, the extractant concentration was modified from 0.05 to 0.41 [M] with solvent volume / residue (VO/VA) ratios of 0.2 to 0.5, at an initial concentration of 8,446 [gU/L] and subsequent precipitation of uranium extracted by a reaction with ammonium carbonate. From these experimental tests the maximum extraction conditions were determined. To the generated effluents, a second stage of extraction was necessary in order to reduce its concentration below 10 [mg / L]. The experimental tests allowed to reduce the concentration under 2.5 [mgU/L], equivalent to 99.97% extraction efficiency. The tests with Cyanex© 923 in replacement of the TOPO, allowed to obtain similar results and even better in some cases, due to the fact that final

  7. The obtaining a high-grade gadolinium concentrate

    International Nuclear Information System (INIS)

    Soltysiak, I.; Ozga, W.

    1982-01-01

    Gadolinium concentrates obtained by the fractional precipitation of lanthanon-potassium double chromates were separated by ion exchange with 0,4 M lactic acid solution in the presence of 0,1 M ammonium nitrate at pH of the medium 2,95-3,4. It was found out, that using the fractional precipitation of lanthanon-potassium double chromates (as the fast and cheap method that does not need special equipment) together with ion exchange separation with lactic acid solution as the eluent gave a highgrade gadolinium concentrate in a quick and economical way. (author)

  8. Separation of thorium (IV) from lanthanide concentrate (LC) and water leach purification (WLP) residue

    International Nuclear Information System (INIS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-01-01

    Thorium (IV) content in industrial residue produced from rare earth elements production industry is one of the challenges to Malaysian environment. Separation of thorium from the lanthanide concentrate (LC) and Water Leach Purification (WLP) residue from rare earth elements production plant is described. Both materials have been tested by sulphuric acid and alkaline digestions. Th concentrations in LC and WLP were determined to be 1289.7 ± 129 and 1952.9±17.6 ppm respectively. The results of separation show that the recovery of Th separation from rare earth in LC after concentrated sulphuric acid dissolution and reduction of acidity to precipitate Th was found 1.76-1.20% whereas Th recovery from WLP was less than 4% after concentrated acids and alkali digestion processes. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) was used to determine Th concentrations in aqueous phase during separation stages. This study indicated that thorium maybe exists in refractory and insoluble form which is difficult to separate by these processes and stays in WLP residue as naturally occurring radioactive material (NORM)

  9. Preparation of β-carotene nanoparticles by antisolvent precipitation under power ultrasound

    International Nuclear Information System (INIS)

    Sheng, Fei; Chow, Pui Shan; Dong, Yuancai; Tan, Reginald B. H.

    2014-01-01

    This work seeks to produce β-carotene nanoparticles by ultrasound-assisted antisolvent precipitation and to understand the influences of the various process parameters on the synthesized nanoparticles. At the active concentration of 5–15 mg/ml, 112–141 nm β-carotene particles were precipitated under 1 min ultrasound (18 W); while precipitation without ultrasound resulted in 144–365 nm particles. Without ultrasound, addition of the active solution to water (antisolvent) produced 241 nm particles while addition of water to active solution led to bigger particles, i.e., 519 nm. When the precipitation was carried out under ultrasound, the particle size had only a small increment from 117 to 132 nm. Furthermore, active/antisolvent volume ratio influenced particle size significantly; the particle size decreased from 432 to 223 nm as the active/antisolvent volume ratio decreased from 1:1 to 1:4 without ultrasound. However, the smallest β-carotene particles (117 nm) were precipitated with active/antisolvent volume ratio at 1:2 under ultrasound. Nanoparticles precipitated under ultrasound showed faster dissolution rate in comparison with the raw active and nanoparticles precipitated without ultrasound

  10. Preparation of β-carotene nanoparticles by antisolvent precipitation under power ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Fei, E-mail: shengf@ices.a-star.edu.sg; Chow, Pui Shan; Dong, Yuancai; Tan, Reginald B. H., E-mail: reginald.tan@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences (Singapore)

    2014-12-15

    This work seeks to produce β-carotene nanoparticles by ultrasound-assisted antisolvent precipitation and to understand the influences of the various process parameters on the synthesized nanoparticles. At the active concentration of 5–15 mg/ml, 112–141 nm β-carotene particles were precipitated under 1 min ultrasound (18 W); while precipitation without ultrasound resulted in 144–365 nm particles. Without ultrasound, addition of the active solution to water (antisolvent) produced 241 nm particles while addition of water to active solution led to bigger particles, i.e., 519 nm. When the precipitation was carried out under ultrasound, the particle size had only a small increment from 117 to 132 nm. Furthermore, active/antisolvent volume ratio influenced particle size significantly; the particle size decreased from 432 to 223 nm as the active/antisolvent volume ratio decreased from 1:1 to 1:4 without ultrasound. However, the smallest β-carotene particles (117 nm) were precipitated with active/antisolvent volume ratio at 1:2 under ultrasound. Nanoparticles precipitated under ultrasound showed faster dissolution rate in comparison with the raw active and nanoparticles precipitated without ultrasound.

  11. The role microbial sulfate reduction in the direct mediation of sedimentary authigenic carbonate precipitation

    Science.gov (United States)

    Turchyn, A. V.; Walker, K.; Sun, X.

    2016-12-01

    The majority of modern deep marine sediments are bathed in water that is undersaturated with respect to calcium carbonate. However, within marine sediments changing chemical conditions, driven largely by the microbial oxidation of organic carbon in the absence of oxygen, lead to supersaturated conditions and drive calcium carbonate precipitation. This sedimentary calcium carbonate is often called `authigenic carbonate', and is found in the form of cements and disseminated crystals within the marine sedimentary pile. As this precipitation of this calcium carbonate is microbially mediated, identifying authigenic carbonate within the geological record and understanding what information its geochemical and/or isotopic signature may hold is key for understanding its importance and what information it may contain past life. However, the modern controls on authigenic carbonate precipitation remain enigmatic because the myriad of microbially mediated reactions occurring within sediments both directly and indirectly impact the proton balance. In this submission we present data from 25 ocean sediment cores spanning the globe where we explore the deviation from the stoichiometrically predicted relationships among alkalinity, calcium and sulfate concentrations. In theory for every mol of organic carbon reduced by sulfate, two mol of alkalinity is produced, and to precipitate subsurface calcium carbonate one mol of calcium is used to consume two mol of alkalinity. We use this data with a model to explore changes in carbonate saturation state with depth below the seafloor. Alkalinity changes in the subsurface are poorly correlated with changes in calcium concentrations, however calcium concentrations are directly and tightly coupled to changes in sulfate concentrations in all studied sites. This suggests a direct role for sulfate reducing bacteria in the precipitation of subsurface carbonate cements.

  12. Observation of the movement of the precipitation by using tritium tracer

    International Nuclear Information System (INIS)

    Jiao, Yurong; Ishida, Sayuri; Takada, Kayoko; Imaizumi, Hiroshi; Kano, Naoki; Saito, Masaaki

    2011-01-01

    Tracer techniques have proven to be one of the most powerful tools to characterize the movement of air mass and pollutant transport in hydrological systems. In order to clarify the behavior of low-level tritium in the rain water, we have employed the measuring method of tritium applying a distillation process and an electrolytic enrichment process. The activity of tritium (T specific activity) in the obtained water was measured by liquid scintillation counter. This procedure was applied to bulk precipitation, imitative ground infiltrated precipitation and short term precipitation collected in Niigata City. Moreover, we investigated the concentrations of cations (Na + , K + , Ca 2+ , and Mg 2+ ) in the precipitation to associate with air mass transport patterns arriving at the place. From the above mentioned, next matters have been clarified: (1) T specific activity in precipitation was found to have a strong dependence on location and season. (2) The chemical components in precipitation during typhoon have notable character of marine air mass. (3) Associated ions in monthly precipitation showed seasonal variation, in fact, the seasonal variation of Ca 2+ and tritium were very similar. (4) Backward trajectory analysis method is useful for the analysis of the behavior of T specific activity and several ions in short-term precipitation. (author)

  13. Mineralization Process of Biocemented Sand and Impact of Bacteria and Calcium Ions Concentrations on Crystal Morphology

    Directory of Open Access Journals (Sweden)

    Guobin Xu

    2017-01-01

    Full Text Available Microbial-induced calcite precipitation (MICP is a sustainable technique used to improve sandy soil. Analysis of the mineralization process, as well as different bacterial suspensions and calcium concentrations on the crystal morphology, revealed that the mineralization process included four stages: self-organised hydrolysis of microorganisms, molecular recognition and interface interaction, growth modulation, and epitaxial growth. By increasing bacterial suspensions and calcium concentrations, the crystal morphology changed from hexahedron to oblique polyhedron to ellipsoid; the best crystal structure occurs at OD600 = 1.0 and [Ca2+] = 0.75 mol/l. It should be noted that interfacial hydrogen bonding is the main force that binds the loose sand particles. These results will help in understanding the mechanism of MICP.

  14. Spatio-temporal trend analysis of precipitation in Guizhou province based on GIS technology

    Science.gov (United States)

    Wu, Jianfeng; Zhang, Fengtai; Pan, Yuanfen; Li, Wei; Cao, Guangjie; An, Youzhi

    2018-02-01

    Precipitation changes are closely related to human production and life. Based on the data of Guizhou Province from 1998 to 2012, the temporal and spatial characteristics of precipitation in Guizhou Province were analyzed from the annual, seasonal and monthly scales by linear trend analysis and ArcGIS kriging spatial interpolation. The results show that the annual precipitation is mainly concentrated in the summer, accounting for 47.6% of the year, followed by spring accounted for 26.9%, autumn accounted for 18.6% in winter accounted for 6.9%. In the time, the precipitation in the study area shows a decreasing trend in the annual scale, seasonal scale and July. The overall spatial precipitation distribution shows a decreasing trend from the east to the west. The precipitation also in the south is higher than the northern region.

  15. Effects of alteration product precipitation on glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Neeway, James J.

    2014-06-01

    Understanding the mechanisms that control the durability of nuclear waste glass is paramount if reliable models are to be constructed so that the glass dissolution rate in a given geological repository can be calculated. Presently, it is agreed that (boro)silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H4SiO4) with higher [H4SiO4] leading to lower dissolution rates. Once the reaction has slowed as a result of the buildup of H4SiO4, another increase in the rate has been observed that corresponds to the precipitation of certain silica-bearing alteration products. However, it has also been observed that the concentration of silica-bearing solution species does not significantly decrease, indicating saturation, while other glass tracer elements concentrations continue to increase, indicating that the glass is still dissolving. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a representative zeolitic silica-bearing alteration product, analcime [Na(AlSi2O6)∙H2O]. To simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH)3), and amorphous silica. The pseudo-equilibrium-constant matrix for amorphous silica was substituted for the glass pseudo-equilibrium-constant matrix because it has been shown that silicate glasses act as a silica-only solid with respect to kinetic considerations. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. From the simulations we conclude, firstly, that the rate of glass dissolution is dependent on the kinetics of

  16. Extraction of rare earth elements from low-grade Bauxite via precipitation reaction

    Science.gov (United States)

    Kusrini, E.; Nurani, Y.; Bahari, ZJ

    2018-03-01

    The aim of this research was to determine the optimum hydrometallurgical parameters to extract the rare earth elements (REE) from low-grade bauxite through acid leaching and precipitation reaction. REE or lanthanide recovery by a precipitation method with sodium sulphate and sodium phosphate as precipitation agents is reported where the effect of pH and recovery of REE are described. The metal composition of REE in low-grade bauxite after treatment were analyzed by ICP-OES. The total recovery values of REE elements at the first precipitation reaction using sodium sulphate as the precipitation agent at pH 3.5 showed ~68.2% of lanthanum, ~18.9% cerium, and ~7.8% yttrium. Lanthanum was the rare-earth element present at the highest concentration in the low-grade bauxite after the series treatments. An optimum pH of 3.5 for precipitation of rare-earth elements using sodium sulphate was demonstrated where this method is recommended for the extraction of REE elements from low-grade bauxite.

  17. Global Analysis of Ecosystem Evapotranspiration Response to Precipitation Deficits

    Science.gov (United States)

    He, Bin; Wang, Haiyan; Guo, Lanlan; Liu, Junjie

    2017-12-01

    Changes in ecosystem evapotranspiration (ET) due to precipitation deficits (PD) can relieve or aggravate soil moisture shortages, thus impacting drought severity. Previous findings have conflicted with regard to response of ET to PD. The present study relies on a global land ET synthesis data set (ETsyn) and observations from eddy-covariance towers (ETobs) to thoroughly examine the sensitivity of ET to PD, which is represented by the standardized precipitation index. There was a contrast in the response to PD between arid and humid ecosystems. ETsyn of arid ecosystems was typically reduced promptly in response to a reduction of precipitation, while ETsyn in humid ecosystems experienced a two-staged change: First, there was an enhancement, and then a reduction associated with persisting PD. Compared with ETsyn, ETobs suggests the occurrence of a more significant ET transition in response to PD. In arid ecosystems, ET typically negatively correlated with low PD, but this was limited by a large PD. Findings from this study are crucial for understanding the role of ET in drought evolution.

  18. Recent and future extreme precipitation over Ukraine

    Science.gov (United States)

    Vyshkvarkova, Olena; Voskresenskaya, Elena

    2014-05-01

    The aim of study is to analyze the parameters of precipitation extremes and inequality over Ukraine in recent climate epoch and their possible changes in the future. Data of observations from 28 hydrometeorological stations over Ukraine and output of GFDL-CM3 model (CMIP5) for XXI century were used in the study. The methods of concentration index (J. Martin-Vide, 2004) for the study of precipitation inequality while the extreme precipitation indices recommended by the ETCCDI - for the frequency of events. Results. Precipitation inequality on the annual and seasonal scales was studied using estimated CI series for 1951-2005. It was found that annual CI ranges vary from 0.58 to 0.64. They increase southward from the north-west (forest zone) and the north-east (forest steppe zone) of Ukraine. CI maxima are located in the coastal regions of the Black Sea and the Sea of Azov. Annual CI spatial distribution indicates that the contribution of extreme precipitation into annual totals is most significant at the boundary zone between steppe and marine regions. At the same time precipitation pattern at the foothill of Carpathian Mountains is more homogenous. The CI minima (0.54) are typical for the winter season in foothill of Ukrainian Carpathians. The CI maxima reach 0.71 in spring at the steppe zone closed to the Black Sea coast. It should be noted that the greatest ranges of CI maximum and CI minimum deviation are typical for spring. It is associated with patterns of cyclone trajectories in that season. The most territory is characterized by tendency to decrease the contribution of extreme precipitation into the total amount (CI linear trends are predominantly negative in all seasons). Decadal and interdecadal variability of precipitation inequality associated with global processes in ocean-atmosphere system are also studied. It was shown that precipitation inequality over Ukraine on 10 - 15 % stronger in negative phase of Pacific Decadal Oscillation and in positive phase

  19. Comparison of precipitation chemistry measurements obtained by the Canadian Air and Precipitation Monitoring Network and National Atmospheric Deposition Program for the period 1995-2004

    Science.gov (United States)

    Wetherbee, Gregory A.; Shaw, Michael J.; Latysh, Natalie E.; Lehmann, Christopher M.B.; Rothert, Jane E.

    2010-01-01

    Precipitation chemistry and depth measurements obtained by the Canadian Air and Precipitation Monitoring Network (CAPMoN) and the US National Atmospheric Deposition Program/National Trends Network (NADP/NTN) were compared for the 10-year period 1995–2004. Colocated sets of CAPMoN and NADP instrumentation, consisting of precipitation collectors and rain gages, were operated simultaneously per standard protocols for each network at Sutton, Ontario and Frelighsburg, Ontario, Canada and at State College, PA, USA. CAPMoN samples were collected daily, and NADP samples were collected weekly, and samples were analyzed exclusively by each network’s laboratory for pH, H + , Ca2+  , Mg2+  , Na + , K + , NH+4 , Cl − , NO−3 , and SO2−4 . Weekly and annual precipitation-weighted mean concentrations for each network were compared. This study is a follow-up to an earlier internetwork comparison for the period 1986–1993, published by Alain Sirois, Robert Vet, and Dennis Lamb in 2000. Median weekly internetwork differences for 1995–2004 data were the same to slightly lower than for data for the previous study period (1986–1993) for all analytes except NO−3 , SO2−4 , and sample depth. A 1994 NADP sampling protocol change and a 1998 change in the types of filters used to process NADP samples reversed the previously identified negative bias in NADP data for hydrogen-ion and sodium concentrations. Statistically significant biases (α = 0.10) for sodium and hydrogen-ion concentrations observed in the 1986–1993 data were not significant for 1995–2004. Weekly CAPMoN measurements generally are higher than weekly NADP measurements due to differences in sample filtration and field instrumentation, not sample evaporation, contamination, or analytical laboratory differences.

  20. Kinetics of copper nanoparticle precipitation in phosphate glass: an isothermal plasmonic approach.

    Science.gov (United States)

    Sendova, Mariana; Jiménez, José A; Smith, Robert; Rudawski, Nicholas

    2015-01-14

    The kinetics of copper nanoparticle (NP) precipitation in melt-quenched barium-phosphate glass has been studied by in situ isothermal optical micro-spectroscopy. A spectroscopically based approximation technique is proposed to obtain information about the activation energies of nucleation and growth in a narrow temperature range (530-570 °C). Pre-plasmonic and plasmonic NP precipitation stages are identified separated in time. The process as a whole is discussed employing classical nucleation/growth theory and the Kolmogorov-Johnson-Mehl-Avrami phase change model. Activation energies of 3.9(7) eV and 2.6(5) eV have been estimated for the pre-plasmonic and plasmonic spectroscopically assessed stages, respectively. High resolution transmission electron microscopy, differential scanning calorimetry, and Raman spectroscopy were used as complementary techniques for studying the nanoparticulate phase and glass host structure. An empirical linear dependence of the diffusion activation energy on the glass transition temperature with broad applicability is suggested.

  1. The roles of auxeticity and volume fraction on γ‧ precipitate microstructures in nickel-base alloys

    Science.gov (United States)

    Ardell, Alan J.

    2017-01-01

    New correlations are found between the elastic constants and late-stage precipitate microstructures in Ni-Al, Ni-Ga, Ni-Ge and Ni-Si alloys. The auxetic behaviour of Poisson's ratio, ν, measured parallel to [0 0 1] or ? in response to [1 1 0] loading, favours the amalgamation of Ni3Al and Ni3Ga precipitates into non-equilibrium shapes along cube directions when δν = (νγ‧ - νγ)/νγ‧ > 0, the superscripts referring to the γ‧ (Ni3X) and γ (Ni-X) phases, respectively. When δν 0 amalgamation of Ni3Al and Ni3Ga occurs readily, primarily producing laths of both phases. The γ‧ volume fraction, f, is also shown to play a role in the late-stage microstructures of Ni-Al alloys, with an increasing tendency to form Ni3Al laths, rather than plates, as f increases. The shapes of elastically soft γ precipitates in inverse Ni-Al and Ni-Ge alloys are different; Ni-Al precipitates are lath shaped, but Ni-Ge precipitates are plate shaped. The Ni-Ge plate shape, in a non-auxetic Ni3Ge matrix (Ni3Ge being the sole non-auxetic Ni3X phase of the four studied), is the only example of persistent plates in any of the Ni-base alloys investigated to date. The combination of an elastically soft precipitate (Ni-Ge) in a non-auxetic matrix suggests a connection between auxeticity and shape.

  2. Impact of location of CaCO3 precipitation on the development of intact anaerobic sludge

    NARCIS (Netherlands)

    Langerak, van E.P.A.; Ramaekers, H.; Wiechers, J.; Veeken, A.H.M.; Hamelers, H.V.M.; Lettinga, G.

    2000-01-01

    The development of intact anaerobic granular sludge was studied in UASB reactors under varying conditions of CaCO3 precipitation and biomass yield. Varying precipitating quantities were obtained using different calcium concentrations in the influent and different biomass yields were obtained by

  3. Precipitation in Madeira island and atmospheric rivers in the winter seasons

    Science.gov (United States)

    Couto, Flavio T.; Salgado, Rui; João Costa, Maria; Prior, Victor

    2016-04-01

    This study aims to analyse the distribution of the daily accumulated precipitation in the Madeira's highlands over a 10-year period, as well as the main characteristics associated with atmospheric rivers (ARs) affecting the island during 10 winter seasons, and their impact in the rainfall amounts recorded near the mountain crest in the south-eastern part of the island. The period between September 2002 and November 2012 is considered for the analysis. The ARs have been identified from the total precipitable water vapour field extracted from the Atmospheric Infrared Sounder (AIRS). The AIRS observations were downloaded for a domain covering large part of the North Atlantic Ocean. The precipitable water vapour field from the European Centre for Medium-range Weather Forecasts (ECMWF) analysis was also used aiming to support the AIRS data when there was no satellite information over the island. The daily accumulated precipitation at surface showed generally drier summers, while the highest accumulated precipitation are recorded mainly during the winter, although some significant events may occur also in autumn and spring seasons. The patterns of the precipitable water vapour field when ARs reach the island were investigated, and even if great part of the atmospheric rivers reaches the island in a dissipation stage, some rivers are heavy enough to reach the Madeira Island. In this situation, the water vapour transport could be observed in two main configurations and transporting significant water vapour amounts toward the Madeira from the tropical region. This study lead to conclude that the atmospheric rivers, when associated to high values of precipitable water vapour over the island can provide favourable conditions to the development of precipitation, sometimes associated with high amounts. However, it was also found that many cases of high to extreme accumulated precipitation at the surface were not associated to this kind of moisture transport.

  4. Atomic bonding of precipitate and phase transformation of Al-Cu-Mg alloy

    International Nuclear Information System (INIS)

    Gao Yingjun; Hou Xianhua; Mo Qifeng; Wei Chengyang; Qin Xiaobing

    2007-01-01

    Atomic bonding of the GPB zone and S'' phase of Al-Cu-Mg alloys in early aging stage are calculated using the empirical electron theory (EET) in solid. The results show that not only the covalence bond-network is very strong in GPB zone, but the whole covalence bond energy of S'' phase is also very large, and all the primary bond-net framework of these precipitates can consolidate the matrix of alloy. Phase transformation from GPB zone to S'' phase is explained reasonably based on atomic bonding and total binding capacity of Al and Cu atoms in these precipitates

  5. Theoretical basis for convective invigoration due to increased aerosol concentration

    Directory of Open Access Journals (Sweden)

    Z. J. Lebo

    2011-06-01

    Full Text Available The potential effects of increased aerosol loading on the development of deep convective clouds and resulting precipitation amounts are studied by employing the Weather Research and Forecasting (WRF model as a detailed high-resolution cloud resolving model (CRM with both detailed bulk and bin microphysics schemes. Both models include a physically-based activation scheme that incorporates a size-resolved aerosol population. We demonstrate that the aerosol-induced effect is controlled by the balance between latent heating and the increase in condensed water aloft, each having opposing effects on buoyancy. It is also shown that under polluted conditions, increases in the CCN number concentration reduce the cumulative precipitation due to the competition between the sedimentation and evaporation/sublimation timescales. The effect of an increase in the IN number concentration on the dynamics of deep convective clouds is small and the resulting decrease in domain-averaged cumulative precipitation is shown not to be statistically significant, but may act to suppress precipitation. It is also shown that even in the presence of a decrease in the domain-averaged cumulative precipitation, an increase in the precipitation variance, or in other words, andincrease in rainfall intensity, may be expected in more polluted environments, especially in moist environments.

    A significant difference exists between the predictions based on the bin and bulk microphysics schemes of precipitation and the influence of aerosol perturbations on updraft velocity within the convective core. The bulk microphysics scheme shows little change in the latent heating rates due to an increase in the CCN number concentration, while the bin microphysics scheme demonstrates significant increases in the latent heating aloft with increasing CCN number concentration. This suggests that even a detailed two-bulk microphysics scheme, coupled to a detailed activation scheme, may not be

  6. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose.

    Science.gov (United States)

    Djerafi, Rania; Swanepoel, Andri; Crampon, Christelle; Kalombo, Lonji; Labuschagne, Philip; Badens, Elisabeth; Masmoudi, Yasmine

    2017-05-01

    Rifampicin-loaded submicron-sized particles were prepared through supercritical anti-solvent process using ethyl cellulose as polymeric encapsulating excipient. Ethyl acetate and a mixture of ethyl acetate/dimethyl sulfoxide (70/30 and 85/15) were used as solvents for both drug and polymeric excipient. When ethyl acetate was used, rifampicin was crystallized separately without being embedded within the ethyl cellulose matrix while by using the ethyl acetate/dimethyl sulfoxide mixture, reduced crystallinity of the active ingredient was observed and a simultaneous precipitation of ethyl cellulose and drug was achieved. The effect of solvent/CO 2 molar ratio and polymer/drug mass ratio on the co-precipitates morphology and drug loading was investigated. Using the solvent mixture, co-precipitates with particle sizes ranging between 190 and 230nm were obtained with drug loading and drug precipitation yield from respectively 8.5 to 38.5 and 42.4 to 77.2% when decreasing the ethyl cellulose/rifampicin ratio. Results show that the solvent nature and the initial drug concentrations affect morphology and drug precipitation yield of the formulations. In vitro dissolution studies revealed that the release profile of rifampicin was sustained when co-precipitation was carried out with the solvent mixture. It was demonstrated that the drug to polymer ratio influenced amorphous content of the SAS co-precipitates. Differential scanning calorimetry thermograms and infrared spectra revealed that there is neither interaction between rifampicin and the polymer nor degradation of rifampicin during co-precipitation. In addition, stability stress tests on SAS co-precipitates were carried out at 75% relative humidity and room temperature in order to evaluate their physical stability. SAS co-precipitates were X-ray amorphous and remained stable after 6months of storage. The SAS co-precipitation process using a mixture of ethyl acetate/dimethyl sulfoxide demonstrates that this strategy can

  7. Stable Isotopes of Precipitation During Tropical Sumatra Squalls in Singapore

    Science.gov (United States)

    He, Shaoneng; Goodkin, Nathalie F.; Kurita, Naoyuki; Wang, Xianfeng; Rubin, Charles Martin

    2018-04-01

    Sumatra Squalls, organized bands of thunderstorms, are the dominant mesoscale convective systems during the intermonsoon and southwest monsoon seasons in Singapore. To understand how they affect precipitation isotopes, we monitored the δ value of precipitation daily and continuously (every second and integrated over 30 s) during all squalls in 2015. We found that precipitation δ18O values mainly exhibit a "V"-shape pattern and less commonly a "W"-shape pattern. Variation in δ18O values during a single event is about 1 to 6‰ with the lowest values mostly observed in the stratiform zone, which agrees with previous observations and modeling simulations. Reevaporation can significantly affect δ values, especially in the last stage of the stratiform zone. Daily precipitation is characterized by periodic negative shifts in δ value, largely associated with the squalls rather than moisture source change. The shifts can be more than 10‰, larger than intraevent variation. Initial δ18O values of events are highly variable, and those with the lowest values also have the lowest initial values. Therefore, past convective activities in the upwind area can significantly affect the δ18O, and convection at the sampling site has limited contribution to isotopic variability. A significant correlation between precipitation δ18O value and regional outgoing longwave radiation and rainfall in the Asian monsoon region and western Pacific suggests that regional organized convection probably drives stable isotopic compositions of precipitation. A drop in the frequency of the squalls in 2015 is related to weak organized convection in the region caused by El Niño.

  8. Theory and uses of electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Descolas, M

    1974-01-01

    Factors influencing the efficiency of electrostatic precipitators, and the principal uses of this type of dust separator are reviewed. The counter-ionization caused by very high resistivity of the dust can be avoided theoretically by increasing the temperature. The resistance of the settled dust layer is determined not only by the inherent resistivity of the dust but also that of impurities adsorbed by the dust particles, such as water vapor and sulfur dioxide, which tend to decrease the resistance. The maximum possible current intensity decreases with increasing temperature. The current intensity decreases with increasing dust concentration in the waste gas. Electrostatic dust precipitators are successfully used in thermal power plants, waste incinerators, open-hearth furnaces, and oxygen converters. In the pulp industry, they are used to recover sodium sulfate and carbonate between the soda lye boiler and the economizer.

  9. Global warming without global mean precipitation increase?

    Science.gov (United States)

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  10. Combinative hardening effects of precipitation in a commercial aged Al–Cu–Li–X alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhongwei, E-mail: chzw@nwpu.edu.cn; Zhao, Kai; Fan, Li

    2013-12-20

    The combinative effects of precipitates on microstructure and hardness of an Al–Cu–Li–X alloy (X=Mg, Zn, Mn, Zr) in artificial ageing of 165 °C were investigated by a transmission electron microscopy and hardness test. Results show that the hardness appears at regression in early ageing stage and increases rapidly during subsequent ageing of 16 h. Hardening effects of as-quenched sample are mainly attributed to β′ (Al{sub 3}Zr) dispersoids, quenched-in vacancies and dislocations. Though most of the fine and uniform precipitates θ′ (Al{sub 2}Cu), δ′ (Al{sub 3}Li), σ (Al{sub 5}Cu{sub 6}Mg{sub 2}) and GP zone came into being in ageing of 0.5 h, annihilation of quenched-in vacancies and reduction of dislocation were ascribed to the hardening regression at early stages of ageing. As further ageing is in progress, all precipitates including T{sub 1} (Al{sub 2}CuLi), σ, δ′ and θ′ have appeared during the ageing of 16 h that follows, and their combinative hardening effects are responsible for the rapid hardness increase at peak-ageing.

  11. Trace metals in bulk precipitation and throughfall in a suburban area of Japan

    Science.gov (United States)

    Hou, H.; Takamatsu, T.; Koshikawa, M. K.; Hosomi, M.

    Throughfall and bulk precipitation samples were collected monthly for 1.5 years over bare land and under canopies of Japanese cedar ( Cryptomeria japonica), Japanese red pine ( Pinus densiflora), Japanese cypress ( Chamaecyparis obtusa), and bamboo-leafed oak ( Quercus myrsinaefolia) in a suburban area of Japan. Samples were analyzed for dissolved Al, Mn, Fe, Cu, Zn, Ag, In, Sn, Sb and Bi by ICP-AES and ICP-MS. The metal concentrations were higher in throughfall, especially that of C. japonica, than bulk precipitation. Enrichment ratios (ERs: ratios of metal concentrations in throughfall to those in bulk precipitation) ranged from 2.5 (Zn) to 5.3 (Ag) (3.9 on average), and ERs for slightly soluble metals were generally higher than those for easily soluble metals. Concentrations of Mn, Fe, Cu, and Zn accounted for 99% of the total concentration of heavy metals in rainwater, whereas those of rare metals such as Ag, In, Sn, and Bi totaled rare metals were 0.002 and 0.010 μg l -1 for Ag, 0.001 and 0.005 μg l -1 for In, 0.062 and 0.21 μg l -1 for Sn, and 0.006 and 0.023 μg l -1 for Bi in bulk precipitation and throughfall, respectively. The metal concentrations in rainwater were negatively correlated to the volume of rainwater, indicating that washout is the main mechanism that incorporates metals into rainwater. From the enrichment factors, that is, (X/Al) rain/(X/Al) crust, metals other than Fe were shown to be more enriched in rainwater than in the Earth's crust, including those present as a result of leaching from soil dust (Mn) and from anthropogenic sources (Cu, Zn, Ag, In, Sn, Sb, and Bi).

  12. The possibility of precipitating thorium soap from aqueous solutions

    International Nuclear Information System (INIS)

    Drathen, H.

    1975-01-01

    The purpose of the analysis was firstly to determine the precipitation process of thorium with soap and the influence of foreign ions, secondly to explain the conditions for the best method of decontaminating waste waters contaminated by thoriuum. The result was that if thorium is precipitated with soap both thorium soaps and thorium hydroxide are formed. The proportion of each substance depends considerably upon the pH value. All the precipitation compounds exist independently. No adsorption or mixed crystal formation took place. By adding bivalent or multivalent cations the one-step decontamination factor increases to more than 20. Quantitatively, the decontamination of thorium contaminated waste waters can be carried out down to a thorium concentration of 10 -5 mol/1. Technical soaps provide the least expensive solution without displaying any qualitative disadvantages. The only disadvantage is that this method cannot be used continuously. Therefore ion exchangers provide a great advantage, although they are very expensive and have a limited capacity. The best solution, then, is a combination of ion exchangers and precipitation with soap. (orig.) [de

  13. Influence of concentration of H2O2 on the phase stability of TiO2-anatase

    International Nuclear Information System (INIS)

    Montanhera, M.A.; Pereira, E.A.; Paula, F.R.; Spada, E.R.; Faria, R.M.

    2014-01-01

    Titanium dioxide (TiO 2 ) is a semiconductor what has attracted increasing attention because of its physical and chemical properties. In this work, we report the preparation of TiO 2 nanoparticles by dissolving of titanium oxysulfate (TiOSO 4 ) in aqueous solution containing hydrogen peroxide (H 2 O 2 ) and subsequent thermal treatment of the precipitated complex. The results of X-ray diffractometry showed that the first stage of heat treatment at 600°C generates the anatase phase at all concentrations of H 2 O 2 investigated. On the other hand, when treated at 825 deg C, prepared samples with lower concentrations of H 2 O 2 (0.009 and 0.017 mol/L) showed only the rutile phase and for concentrations starting from 0.088 mol/L, is obtained only anatase phase. When the heat treatment is performed at 900°C, phase-pure anatase is obtained only for concentrations higher than 0.122 mol/L. The stability of the phase anatase is related to the crystallite size obtained of the first stage of heat treatment. When the heat treatment is performed at 900°C, phase-pure anatase is obtained only at higher concentrations than 0.122 mol/L. The stability of the phase anatase is related to the crystallite sizes obtained in the first step of heat treatment. (author)

  14. Precipitation of yellowcake from pregnant regenerate by various reagents

    International Nuclear Information System (INIS)

    Rychkov, V.N.; Smirnov, A.L.; Skripchenko, S.Yu.; Pastukhov, A.M.

    2017-01-01

    The application of an ammonia solution, sodium hydroxide solution and ammonium carbonate/bicarbonate solution as agents for the uranium precipitation from industrial pregnant regenerate was investigated. The effect various process parameters on the composition and properties of obtained uranium compounds was studied. According to the results, only the yellowcake obtained by precipitation using ammonium carbonate/bicarbonate solution is a high-purity product and meets the specification requirements. The uranium content in this concentrate is 69-72%. The particle mean diameter is 12-16 µm. The use of other neutralizing agents leads to decrease purity of the final product. (author)

  15. Properties of Extreme Precipitation and Their Uncertainties in 3-year GPM Precipitation Radar Data

    Science.gov (United States)

    Liu, N.; Liu, C.

    2017-12-01

    Extreme high precipitation rates are often related to flash floods and have devastating impacts on human society and the environments. To better understand these rare events, 3-year Precipitation Features (PFs) are defined by grouping the contiguous areas with nonzero near-surface precipitation derived using Global Precipitation Measurement (GPM) Ku band Precipitation Radar (KuPR). The properties of PFs with extreme precipitation rates greater than 20, 50, 100 mm/hr, such as the geographical distribution, volumetric precipitation contribution, seasonal and diurnal variations, are examined. In addition to the large seasonal and regional variations, the rare extreme precipitation rates often have a larger contribution to the local total precipitation. Extreme precipitation rates occur more often over land than over ocean. The challenges in the retrieval of extreme precipitation might be from the attenuation correction and large uncertainties in the Z-R relationships from near-surface radar reflectivity to precipitation rates. These potential uncertainties are examined by using collocated ground based radar reflectivity and precipitation retrievals.

  16. Morphology and formation mechanism in precipitation of calcite induced by Curvibacter lanceolatus strain HJ-1

    Science.gov (United States)

    Zhang, Chonghong; Li, Fuchun; Lv, Jiejie

    2017-11-01

    Precipitation of calcium carbobate induced by microbial activities is common occurrence in controlled solution, but the formation mechanism and morphology in precipitation of calcite in solution systems is unclear, and the role of microbes is disputed. Here, culture experiment was performed for 50 days using the Curvibacter lanceolatus strain HJ-1 in a M2 culture medium, and the phase composition and morphology of the precipitates were characterized by the X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) techniques. We show that the precipitation processes in our experiment lead to unusual morphologies of crystals corresponding to different growth stages, and the morphologies of the precipitated crystal aggregates ranging from the main rod-, cross-, star-, cauliflower-like morphologies to spherulitic structure. The complex and unusual morphologies of the precipitated calcite by strain HJ-1 may provide a reference point for better understanding the biomineralization mechanism of calcite, moreover, morphological transition of minerals revealed that the multi-ply crystals-aggregation mechanism for calcite growth in crystallisation media.

  17. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms.

    Science.gov (United States)

    Failor, K C; Schmale, D G; Vinatzer, B A; Monteil, C L

    2017-12-01

    A growing body of circumstantial evidence suggests that ice nucleation active (Ice + ) bacteria contribute to the initiation of precipitation by heterologous freezing of super-cooled water in clouds. However, little is known about the concentration of Ice + bacteria in precipitation, their genetic and phenotypic diversity, and their relationship to air mass trajectories and precipitation chemistry. In this study, 23 precipitation events were collected over 15 months in Virginia, USA. Air mass trajectories and water chemistry were determined and 33 134 isolates were screened for ice nucleation activity (INA) at -8 °C. Of 1144 isolates that tested positive during initial screening, 593 had confirmed INA at -8 °C in repeated tests. Concentrations of Ice + strains in precipitation were found to range from 0 to 13 219 colony forming units per liter, with a mean of 384±147. Most Ice + bacteria were identified as members of known and unknown Ice + species in the Pseudomonadaceae, Enterobacteriaceae and Xanthomonadaceae families, which nucleate ice employing the well-characterized membrane-bound INA protein. Two Ice + strains, however, were identified as Lysinibacillus, a Gram-positive genus not previously known to include Ice + bacteria. INA of the Lysinibacillus strains is due to a nanometer-sized molecule that is heat resistant, lysozyme and proteinase resistant, and secreted. Ice + bacteria and the INA mechanisms they employ are thus more diverse than expected. We discuss to what extent the concentration of culturable Ice + bacteria in precipitation and the identification of a new heat-resistant biological INA mechanism support a role for Ice + bacteria in the initiation of precipitation.

  18. Nitrogen inputs by precipitation in the Nigerian Savanna | Adeniyi ...

    African Journals Online (AJOL)

    Inorganic nitrogen input via direct bulk precipitation was measured, and the relation between the different nitrogen species and rainfall characteristics determined over three rainy seasons at Shagunu, a remote, sparsely populated, non-industrialized site in the northern Guinea savanna of Nigeria. Nitrogen concentration per ...

  19. Optimization of the protein concentration process from residual peanut oil-cake

    Directory of Open Access Journals (Sweden)

    Gayol, M. F.

    2013-12-01

    Full Text Available The objective of this study was to find the best process conditions for preparing protein concentrate from residual peanut oil-cake (POC. The study was carried out on POC from industrial peanut oil extraction. Different protein extraction and precipitation conditions were used: water/ flour ratio (10:1, 20:1 and 30:1, pH (8, 9 and 10, NaCl concentration (0 and 0.5 M, extraction time (30, 60 and 120 min, temperature (25, 40 and 60 °C, extraction stages (1, 2 and 3, and precipitation pH (4, 4.5 and 5. The extraction and precipitation conditions which showed the highest protein yield were 10:1 water/flour ratio, extraction at pH 9, no NaCl, 2 extraction stages of 30 min at 40 °C and precipitation at pH 4.5. Under these conditions, the peanut protein concentrate (PC contained 86.22% protein, while the initial POC had 38.04% . POC is an alternative source of protein that can be used for human consumption or animal nutrition. Therefore, it adds value to an industry residue.El objetivo de este trabajo fue encontrar las mejores condiciones para obtener un concentrado de proteínas a partir de la torta residual de maní (POC. El estudio se llevó a cabo en POC provenientes de la extracción industrial de aceite de maní. Se utilizaron distintas condiciones para la extracción y precipitación de proteínas: relación agua / harina (10:1, 20:1 y 30:1, pH de extracción (8, 9 y 10, concentración de NaCl (0 y 0,5 M, tiempo de extracción (30, 60 y 120 min, temperatura (25, 40 y 60 °C, número de etapas de extracción (1, 2 y 3, y el pH de precipitación (4, 4,5 y 5. Las condiciones de extracción y de precipitación que mostraron mayor rendimiento de proteína fueron: relación de 10:1 en agua / harina, pH de extracción de 9, en ausencia de NaCl, 2 etapas de extracción de 30 min cada una a 40 °C y el pH de precipitación de 4,5. En estas condiciones, el concentrado de proteína de maní (PC fue de 86,22%, mientras que el porcentaje de proteínas de

  20. Effect of Aging on Precipitation Behavior and Pitting Corrosion Resistance of SAF2906 Super Duplex Stainless Steel

    Science.gov (United States)

    Li, Jianchun; Li, Guoping; Liang, Wei; Han, Peide; Wang, Hongxia

    2017-09-01

    The effect of aging temperature and holding time on the precipitation of secondary phases and pitting corrosion resistance of SAF2906 super duplex stainless steel was examined. Chromium nitride and σ phase were observed to preferentially precipitate at the ferrite/austenite interface. An amount of nitrides was also observed within the ferrite grain. The precipitation of chromium nitride occurred before the σ phase. The increase in aging temperature and holding time did not affect the concentration of the nitrides but increased the area fraction of the σ phase at a faster rate. The Cr2N precipitation in SAF2906 is more evident than that of the other duplex stainless steels. The variation tendency of the precipitation concentrations is primarily consistent with the prediction results of Thermo-Calc software. The electrochemical results showed that Cr2N and σ phase significantly reduced the pitting potential. Scanning electron microscope observations revealed that pits appear mainly in regions adjacent to sigma phase and Cr2N.

  1. Particle precipitation in connection with KOH etching of silicon

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Christensen, Carsten; Pedersen, Casper

    2004-01-01

    This paper considers the precipitation of iron oxide particles in connection with the KOH etching of cavities in silicon wafers. The findings presented in this paper suggest that the source to the particles is the KOH pellets used for making the etching solution. Experiments show that the precipi......This paper considers the precipitation of iron oxide particles in connection with the KOH etching of cavities in silicon wafers. The findings presented in this paper suggest that the source to the particles is the KOH pellets used for making the etching solution. Experiments show...... that the precipitation is independent of KOH etching time, but that the amount of deposited material varies with dopant type and dopant concentration. The experiments also suggest that the precipitation occurs when the silicon wafers are removed from the KOH etching solution and not during the etching procedure. When...... not removed, the iron oxide particles cause etch pits on the Si surface when later processed and exposed to phosphoric acid. It has been found that the particles can be removed in an HCl solution, but not completely in an H2SO4- H2O2 solution. The paper discusses the involved precipitation mechanism in terms...

  2. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    2000-01-01

    This report contains the results from a study requested by High Level Waste on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na + ] increased the rate at which cesium tetraphenylborate (CsTPB) precipitates also increases. Serkiz also demonstrated that the precipitation of potassium tetraphenylborate (KTPB) in the presence of high [Na + ] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice. In the crystallographic structure of these three tetraphenylborate salts (Cs,K,NaTPB), the tetraphenylborate ion dominates the size of the crystals. Also, note that the three crystals have nearly identical structures with the exception of two additional peaks in the cesium pattern. Given these similarities, TPB precipitation in the presence of Na + , Cs + and K + likely produces an impure isomorphic crystalline mixture of CsTPB, KTPB and NaTPB. The authors speculate that the primary crystalline structure resembles that of KTPB with NaTPB and CsTPB mixed throughout the crystal structure. The precipitation of NaTPB makes some of the anticipated excess tetraphenylborate relatively unavailable for precipitation of cesium. Thus, the amount of excess tetraphenylborate required to completely precipitate all of the potassium and cesium may increase significantly

  3. Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern Versus Southern Hemisphere Warm Fronts

    Science.gov (United States)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2012-01-01

    Extratropical cyclones are responsible for most of the precipitation and wind damage in the midlatitudes during the cold season, but there are still uncertainties on how they will change in a warming climate. An ubiquitous problem amongst General Circulation Models (GCMs) is a lack of cloudiness over the southern oceans that may be in part caused by a lack of clouds in cyclones. We analyze CloudSat, CALIPSO and AMSR-E observations for 3 austral and boreal cold seasons and composite cloud frequency of occurrence and precipitation at the warm fronts for northern and southern hemisphere oceanic cyclones. We find that cloud frequency of occurrence and precipitation rate are similar in the early stage of the cyclone life cycle in both northern and southern hemispheres. As cyclones evolve and reach their mature stage, cloudiness and precipitation at the warm front increase in the northern hemisphere but decrease in the southern hemisphere. This is partly caused by lower amounts of precipitable water being available to southern hemisphere cyclones, and smaller increases in wind speed as the cyclones evolve. Southern hemisphere cloud occurrence at the warm front is found to be more sensitive to the amount of moisture in the warm sector than to wind speeds. This suggests that cloudiness in southern hemisphere storms may be more susceptible to changes in atmospheric water vapor content, and thus to changes in surface temperature than their northern hemisphere counterparts. These differences between northern and southern hemisphere cyclones are statistically robust, indicating A-Train-based analyses as useful tools for evaluation of GCMs in the next IPCC report.

  4. Formation of radiation induced precipitates in VVER RPV materials

    International Nuclear Information System (INIS)

    Platonov, P.A.; Chernobaeva, A.A.

    2016-01-01

    This paper presents an analysis of experimental results received in course of research of copper-enriched precipitates (Cu-precipitates) and nickel-manganese-silicon clusters (Ni-Mn-Si clusters), which are formed in steels of VVER-type reactor pressure vessels (RPVs) under neutron irradiation. Based on this analysis, a hypothetical model is suggested for cluster formation in course of evolution of a cascade region. The model presumes cluster formation in two stages. At the first stage, in course of cascade region crystallization, a stable cluster is formed in the center of the cascade region, which consists of vacancies and Cu atoms following the mechanism of the inverse Kirkendall effect. At the second stage, diffusion of Ni, Mn and P atoms with a flow of vacancies from the matrix takes place to form a cluster. The size of a cluster is limited by a balance of vacancies' flows entering and leaving the cluster. The paper also considers a possibility of stabilization of atomic-vacancy cluster due to uneven distribution of Ni, Mn and P atoms, which explains dependence of cluster density on the content of these elements. Kinetics of cluster formation and evolution presumed by suggested model is analyzed. It is demonstrated that a fall in cluster density and an increase in their size under high irradiation doses may be caused by a decrease of matrix supersaturation with vacancies resulting from high density of dislocation loops. - Highlights: • The analysis of the mechanism of formation of radiation-induced clusters in RPV steels has been done. • Radiation-induced clusters are formed after the mechanism based on the inverse Kirkendall effect in two stages. • At post-dynamic stage a flow of vacancies moving to the center of the cascade entrains Cu atoms contained and forms a stable atom-vacancies cluster. • At the 2nd stage Cu, Ni, Mn, Si atoms forming complexes with vacancies diffuse into a cluster driving out Fe and Cr atoms from the cluster. • The cluster

  5. Trend of extreme precipitation events over China in last 40 years

    International Nuclear Information System (INIS)

    Zhang Daquan; Hu Jingguo; Feng Guolin

    2008-01-01

    Using the daily precipitation data of 740 stations in China from 1960 to 2000, the analysis on the variations and distributions of the frequency and the percentage of extreme precipitation to the annual rainfall have been performed in this paper. Results indicate that the percentage of heavy rains (above 25mm/day) in the annual rainfall has increased, while on average the day number of heavy rains has slightly reduced during the past 40 years. In the end of 1970s and the beginning of 1980s, both the number of days with extreme precipitation and the percentage of extreme precipitation abruptly changed over China, especially in the northern China. By moving t test, the abrupt change year of extreme precipitation for each station and its spatial distribution over the whole country are also obtained. The abrupt change years concentrated in 1978–1982 for most regions of northern China while occurred at various stations in southern China in greatly different/diverse years. Besides the abrupt change years of extreme precipitation at part stations of Northwest China happened about 5 years later in comparison with that of the country's average

  6. Formation and evolution of the hardening precipitates in a Mg-Y-Nd alloy

    International Nuclear Information System (INIS)

    Barucca, G.; Ferragut, R.; Fiori, F.; Lussana, D.; Mengucci, P.; Moia, F.; Riontino, G.

    2011-01-01

    The formation and evolution of hardening precipitates in a Mg-Y-Nd (WE43) alloy during artificial ageing at 150 and 210 deg. C is followed by small angle X-ray scattering (SAXS) measurements, Vickers microhardness tests and transmission electron microscopy (TEM) observations. A quantitative description of the alloy studied during the early and advanced stages of the precipitation sequence is presented. In situ SAXS evolution at 210 deg. C of the size, volume fraction and number density of the subnanometer and nanometer particles that evolve in the β'' phase was obtained. TEM and microhardness results indicate that the hardening mechanism is based on β'' transformation of pre-precipitates and their growth at 150 deg. C, while at 210 deg. C hardening is mainly associated with β'' → β' transformation.

  7. On the contents of some radionuclides in precipitation (deposits) of Yerevan city, Armenia

    International Nuclear Information System (INIS)

    Ananyan, V.; Appleby, P.; Danagulyan, A.; Nalbandyan, A.

    2004-01-01

    Biosphere is exposed to cosmic and α -, β -, γ -radiation of numerous radionuclides dispersed in rocks, groundwater, terrestrial water of rivers, seas and oceans, air and biota. The main components of natural radiation are 40 K, 238 U, 232 Th and radioactive products of their decay. The goal of this investigation was to determine radionuclide composition of atmospheric precipitation (deposits) of Yerevan city. For sample collection we used sedimentation method, which covers all deposits on 1 m 2: admixtures, dust and sand fractions during wind (precipitation deposits). The dish made of neutral material (50 x 50 cm) was positioned at a height 1,5 m in a selected sampling site. The bottom of the dish was underlain by filtering paper. The samples were taken monthly. After deposit evaporation and ashing at 450 degree C the deposits were weighed. Total weight of such samples made 41 g for 2000 (12 months). For measurements one sample per season was selected (totally 4 samples). Radionuclide measurements were done on a low-background gamma-spectrometer with Hp Ge semiconductor detector. The exposures of sample measurement and background made 117,34 h each. The sample was positioned close to the detector. After removal of background, radionuclide concentrations were determined. Concentrations of all isotopes of uranium family (234 Th,214 Pb, 214 Bi), except 210 Pb in sample are similar (within the limits of error), so in natural environment they stay in equilibrium. The same is relevant also to radionuclides of thorium family. Concentrations of 210 Pb are almost threefold higher, this deserving further detailed research. Among the remaining isotopes, contents of 40 K are the highest as it greatly contributes to natural radioactive background (N RB). Concentrations of 137 Cs were minimal, as this radionuclide derives only from global man-made environmental pollution. Thus, the results have revealed the radionuclide composition of the sample of atmospheric deposits in

  8. Induced and catalysed mineral precipitation in the deep biosphere

    Science.gov (United States)

    Meister, Patrick

    2017-04-01

    Authigenic and early diagenetic minerals provide archives of past (bio)geochemical processes. In particular, isotopic signatures preserved in the diagenetic phases have been shown to document drastic changes of subsurface microbial activity (the deep biosphere) over geological time periods (Contreras et al., 2013; Meister, 2015). Geochemical and isotopic signatures in authigenic minerals may also document surface conditions and past climate. Nevertheless, such use of authigenic mineral phases as (bio)geochemical archives is often hampered by the insufficient understanding of mineral precipitation mechanisms. Accordingly the time, place and rate of mineral precipitation are often not well constrained. Also, element partitioning and isotopic fractionation may be modified as a result of the precipitation mechanism. Early diagenetic dolomite and quartz from drilled sequences in the Pacific were compared with adjacent porewater compositions and isotope signatures to gain fundamental insight into the factors controlling mineral precipitation. The formation of dolomite in carbonate-free organic carbon-rich ocean margin sediments (e.g. Peru Margin; Ocean Drilling Program, ODP, Site 1229; Meister et al., 2007) relies on the alkalinity-increase driven by anaerobic oxidation of methane and, perhaps, by alteration of clay minerals. In contrast, quartz is often significantly oversaturated in marine porewaters as the dissolved silica concentration is buffered by more soluble opal-A. For example, quartz does not form throughout a 400 metre thick sedimentary sequence in the Eastern Equatorial Pacific (ODP Site 1226; Meister et al., 2014) because it is kinetically inhibited. This behaviour can be explained by Ostwald's step rule, which suggests that the metastable phase forms faster. However, hard-lithified quartz readily forms where silica concentration drops sharply below opal-saturation. This violation of Ostwald's step rule must be driven by an auxiliary process, such as the

  9. Anhydrite precipitation in seafloor hydrothermal systems

    Science.gov (United States)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  10. The roles of precipitation regimes on juniper forest encroachment on grasslands in Oklahoma

    Science.gov (United States)

    Wang, J.; Xiao, X.; Qin, Y.

    2017-12-01

    Woody plant encroachment into grasslands has been dominantly explained by fire suppression, grazing and CO2 concentrations in the atmosphere. As different root depths of grasses and trees in soils, increased precipitation intensity was expected to facilitate the woody plant abundance, which was demonstrated by the field precipitation test in a sub-tropical savanna ecosystem. However, it is lacking to compressively examine the roles of precipitation regimes on woody plant encroachment at regional scales based on long-term observation data. This study examined the relationships between changes of precipitation regimes (amounts, frequency and intensity) and dynamics of juniper forest coverage using site-based rainfall data and remote sensing-based juniper forest maps in 1994-2010 over Oklahoma State. Our results showed that precipitation amount and intensity played larger roles than frequency on the juniper forest encroachment into the grassland in Oklahoma, and increased precipitation amount and intensity could facilitate the juniper woody encroachment. This practice based on observation data at the regional scale could be used to support precipitation experiments and model simulations and predicting the juniper forest encroachment.

  11. [Characteristics of precipitation pH and conductivity at Mt. Huang].

    Science.gov (United States)

    Shi, Chun-e; Deng, Xue-liang; Wu, Bi-wen; Hong, Jie; Zhang, Su; Yang, Yuan-jian

    2013-05-01

    To understand the general characteristics of pH distribution and pollution in precipitation at Mt. Huang, statistical analyses were conducted for the routine measurements of pH and conductivity (K) at Mt. Huang during 2006-2011. The results showed that: (1) Over the period of study, the annual volume weighted mean (VWM) precipitation pH varied from 4.81 to 5.57, with precipitation acidity strengthening before 2009 and weakening thereafter. The precipitation acidity showed evident seasonal variations, with the VWM pH lowest in winter (4.78), and highest in summer (5.33). The occurrence frequency of acid rain was 46% , accounting for 45% of total rainfalls and with the most frequent pH falling into weak acid to neutral rain. (2) The annual VWM K varied from 16.91 to 27.84 microS x cm(-1), with no evident trend. As for ions pollution, the precipitation was relatively clean at Mt. Huang, with the most frequent K range being below 15 microS x cm(-1), followed by 15-25 microS x cm(-1). From February 2010 to December 2011, precipitation samples were collected on daily basis for ions analysis, as well as pH and K measurement in lab. Detailed comparisons were conducted between the two sets of pH and K, one set from field measurement and the other from lab measurement. The results indicated: (1) The lab measured pH (K) was highly correlated with the field pH (K); however, the lab pH tended to move towards neutral comparing with the corresponding field pH, and the shift range was closely correlated with the field pH and rainfall. The shift range of K from field to lab was highly correlated with the total ion concentration of precipitation. The field K showed evident negative correlation with the field pH with a correlation coefficient of -0.51. (2) When sampling with nylon-polyethylene bags, the statistics showed smaller bias between two sets of pH, with higher correlation coefficient between two sets of K. Furthermore, the lab K also showed evident negative correlation with

  12. Aqueous electrochemistry of precipitation-hardened nickel base alloys

    International Nuclear Information System (INIS)

    Hosoya, K.; Ballinger, R.; Prybylowski, J.; Hwang, I.S.

    1990-11-01

    An investigation has been conducted to explore the importance of local crack tip electrochemical processes in precipitation-hardened Ni-Cr-Fe alloys driven by galvanic couples between grain boundary precipitates and the local matrix. The electrochemical behavior of γ' [Ni 3 (Al,Ti)] has been determined as a function of titanium concentration, temperature, and solution pH. The electrochemical behavior of Ni-Cr-Fe solid solution alloys has been investigated as a function of chromium content for a series of 10 Fe-variable Cr (6--18%)-balance Ni alloys, temperature, and pH. The investigation was conducted in neutral and pH3 solutions over the temperature range 25--300 degree C. The results of the investigation show that the electrochemical behavior of these systems is a strong function of temperature and composition. This is especially true for the γ' [Ni 3 (Al,Ti)] system where a transition from active/passive behavior to purely active behavior and back again occurs over a narrow temperature range near 100 degree C. Behavior of this system was also found to be a strong function of titanium concentration. In all cases, the Ni 3 (Al,Ti) phase was active with respect to the matrix. The peak in activity near 100 degree C correlates well with accelerated crack growth in this temperature range, observed in nickel-base alloy X-750 heat treated to precipitate γ' on the grain boundaries. 20 refs., 23 figs., 3 tabs

  13. Room temperature ductility of NiAl-strengthened ferritic steels: Effects of precipitate microstructure

    International Nuclear Information System (INIS)

    Teng, Z.K.; Liu, C.T.; Miller, M.K.; Ghosh, G.; Kenik, E.A.; Huang, S.; Liaw, P.K.

    2012-01-01

    Highlights: ► Effects of precipitate microstructure on the ductility were investigated. ► The NiAl precipitates can be systematically characterized by TEM, APT, and USAXS. ► Ductility is a function of the precipitate volume fraction. ► Ductility is closely related to the Al and Ni solubilities in the Fe matrix. ► Ductility is independent of precipitate size and inter-particle spacing. - Abstract: The effects of precipitate microstructure on the room temperature ductility of a series of carefully designed Fe–Al–Ni–Cr–Mo steels were investigated. Transmission electron microscopy (TEM), ultra small angle X-ray scattering (USAXS), and atom probe tomography (APT) were conducted to quantify the nano-scaled precipitates. The accuracy of the characterization results was verified by a numerical analysis. Three point bending tests results demonstrated that ductility was a function of the precipitate volume fraction and the Al and Ni concentrations in the Fe matrix, these relationships were discussed in terms of possible mechanisms. The ductility was also found to be independent of the precipitate size and inter-particle spacing in the studied range, which was validated by a theoretical model.

  14. Effect of indifferent anions on reactions of cadmium ferrocyanide precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Gyunner, Eh A; Mel' nichenko, L M; Vel' mozhnyj, I S [Simferopol' skij Gosudarstvennyj Univ. (Ukrainian SSR)

    1982-08-01

    To clarify the effect of indifferent anions on the processes of cadmium ferrocyanide precipitation the interaction in six systems of the type CdXsub(m)-Msub(4)R-Hsub(2)O (X-Cl/sup -/, CH/sub 3/COO/sup -/, SO/sub 4//sup 2 -/; M-K/sup +/, NH/sub 4//sup +/; R-(Fe(CN)/sub 6/)/sup 4 -/) is studied using the methods of physicochemical analysis (the method of residual concentrations, refractometry). Composition and formation regions of low-soluble interaction products are determined. Effect of anion X nature on interaction character is stated in the series Cl/sup -/, CH/sub 3/COO/sup -/, SO/sub 4//sup 2 -/ in mixtures with incomplete Cd/sup 2 +/ precipitation a tendency for the increase of Cd/sup 2 +/:R/sup 4 -/ ratios in precipitates formed is observed.

  15. Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Yuhki, E-mail: tsukada@silky.numse.nagoya-u.ac.j [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Shiraki, Atsuhiro; Murata, Yoshinori [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Takaya, Shigeru [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai-machi, Higashi-ibaraki-gun, Ibaraki 311-1393 (Japan); Koyama, Toshiyuki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Morinaga, Masahiko [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2010-06-15

    The correlation of defect energies with precipitation of the ferromagnetic phase near M{sub 23}C{sub 6} carbide during creep tests at high temperature in Type 304 austenitic steel was examined by estimating the defect energies near the carbide, based on micromechanics. As one of the defect energies, the precipitation energy was calculated by assuming M{sub 23}C{sub 6} carbide to be a spherical inclusion. The other defect energy, creep dislocation energy, was calculated based on dislocation density data obtained from transmission electron microscopy observations of the creep samples. The dislocation energy density was much higher than the precipitation energy density in the initial stage of the creep process, when the ferromagnetic phase started to increase. Creep dislocation energy could be the main driving force for precipitation of the ferromagnetic phase.

  16. Precipitation of ferromagnetic phase induced by defect energies during creep deformation in Type 304 austenitic steel

    International Nuclear Information System (INIS)

    Tsukada, Yuhki; Shiraki, Atsuhiro; Murata, Yoshinori; Takaya, Shigeru; Koyama, Toshiyuki; Morinaga, Masahiko

    2010-01-01

    The correlation of defect energies with precipitation of the ferromagnetic phase near M 23 C 6 carbide during creep tests at high temperature in Type 304 austenitic steel was examined by estimating the defect energies near the carbide, based on micromechanics. As one of the defect energies, the precipitation energy was calculated by assuming M 23 C 6 carbide to be a spherical inclusion. The other defect energy, creep dislocation energy, was calculated based on dislocation density data obtained from transmission electron microscopy observations of the creep samples. The dislocation energy density was much higher than the precipitation energy density in the initial stage of the creep process, when the ferromagnetic phase started to increase. Creep dislocation energy could be the main driving force for precipitation of the ferromagnetic phase.

  17. Chitosan-Coated Magnetic Nanoparticles Prepared in One Step by Reverse Microemulsion Precipitation

    OpenAIRE

    Hened Saade; Salvador Fernández; Ramón Díaz de León; Gilberto Hurtado; María G. Pineda; Raúl G. López; Darío Bueno

    2013-01-01

    Chitosan-coated magnetic nanoparticles (CMNP) were obtained at 70 ?C and 80 ?C in a one-step method, which comprises precipitation in reverse microemulsion in the presence of low chitosan concentration in the aqueous phase. X-ray diffractometry showed that CMNP obtained at both temperatures contain a mixture of magnetite and maghemite nanoparticles with ?4.5 nm in average diameter, determined by electron microscopy, which suggests that precipitation temperature does not affect the particle si...

  18. Tritium concentrations in tree ring cellulose

    International Nuclear Information System (INIS)

    Kaji, Toshio; Momoshima, Noriyuki; Takashima, Yoshimasa.

    1989-01-01

    Measurements of tritium (tissue bound tritium; TBT) concentration in tree rings are presented and discussed. Such measurement is expected to provide a useful means of estimating the tritium level in the environment in the past. The concentration of tritium bound in the tissue (TBT) in a tree ring considered to reflect the environmental tritium level in the area at the time of the formation of the ring, while the concentration of tritium in the free water in the tissue represents the current environmental tritium level. First, tritium concentration in tree ring cellulose sampled from a cedar tree grown in a typical environment in Fukuoka Prefecture is compared with the tritium concentration in precipitation in Tokyo. Results show that the year-to-year variations in the tritium concentration in the tree rings agree well with those in precipitation. The maximum concentration, which occurred in 1963, is attibuted to atmospheric nuclear testing which was performed frequently during the 1961 - 1963 period. Measurement is also made of the tritium concentration in tree ring cellulose sampled from a pine tree grown near the Isotope Center of Kyushu University (Fukuoka). Results indicate that the background level is higher probably due to the release of tritium from the facilities around the pine tree. Thus, measurement of tritium in tree ring cellulose clearly shows the year-to-year variation in the tritium concentration in the atmosphere. (N.K.)

  19. Disdrometer-based C-Band Radar Quantitative Precipitation Estimation (QPE) in a highly complex terrain region in tropical Colombia.

    Science.gov (United States)

    Sepúlveda, J.; Hoyos Ortiz, C. D.

    2017-12-01

    An adequate quantification of precipitation over land is critical for many societal applications including agriculture, hydroelectricity generation, water supply, and risk management associated with extreme events. The use of rain gauges, a traditional method for precipitation estimation, and an excellent one, to estimate the volume of liquid water during a particular precipitation event, does not allow to fully capture the highly spatial variability of the phenomena which is a requirement for almost all practical applications. On the other hand, the weather radar, an active remote sensing sensor, provides a proxy for rainfall with fine spatial resolution and adequate temporary sampling, however, it does not measure surface precipitation. In order to fully exploit the capabilities of the weather radar, it is necessary to develop quantitative precipitation estimation (QPE) techniques combining radar information with in-situ measurements. Different QPE methodologies are explored and adapted to local observations in a highly complex terrain region in tropical Colombia using a C-Band radar and a relatively dense network of rain gauges and disdrometers. One important result is that the expressions reported in the literature for extratropical locations are not representative of the conditions found in the tropical region studied. In addition to reproducing the state-of-the-art techniques, a new multi-stage methodology based on radar-derived variables and disdrometer data is proposed in order to achieve the best QPE possible. The main motivation for this new methodology is based on the fact that most traditional QPE methods do not directly take into account the different uncertainty sources involved in the process. The main advantage of the multi-stage model compared to traditional models is that it allows assessing and quantifying the uncertainty in the surface rain rate estimation. The sub-hourly rainfall estimations using the multi-stage methodology are realistic

  20. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    Science.gov (United States)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2008-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al ., 2001]." Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 19991. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005

  1. Precipitous Birth

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the management of a precipitous birth in the emergency department (ED. The case is also appropriate for teaching of medical students and advanced practice providers, as well as reviewing the principles of crisis resource management, teamwork, and communication. Introduction: Patients with precipitous birth require providers to manage two patients simultaneously with limited time and resources. Crisis resource management skills will be tested once baby is delivered, and the neonate will require assessment for potential neonatal resuscitation. Objectives: At the conclusion of the simulation session, learners will be able to manage women who have precipitous deliveries, as well as perform neonatal assessment and management. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on precipitous birth management and neonatal evaluation.

  2. Removal of arsenate by ferrihydrite via surface complexation and surface precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiuli [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen (China); Peng, Changjun; Fu, Dun; Chen, Zheng [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Shen, Liang [Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen (China); Li, Qingbiao [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen (China); Ouyang, Tong, E-mail: yz3t@xmu.edu.cn [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Wang, Yuanpeng, E-mail: wypp@xmu.edu.cn [Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen (China)

    2015-10-30

    Graphical abstract: - Highlights: • Surface complexation and surface precipitation of As on ferrihydrite happen at pH 3–6. • The formation of surface precipitation enhanced As(V) adsorption. • The dissolved Fe{sup 3+} had a good linear relationship with the amount of arsenate re-adsorption. - Abstract: In this study, macroscopic and spectroscopic experimental methods accurately modeled the sorption process of arsenate on ferrihydrite. EXAFS, X-ray diffraction and infrared (IR) spectroscopy indicated that the behavior of As(V) adsorption onto ferrihydrite took place mainly via surface complexation and surface precipitation at acidic pH (3.0–6.0), while the surface precipitation was dominated at longer time intervals and higher Fe{sup 3+} concentration. The macroscopic competitive adsorption experiment between arsenate with phosphate indicated two types of adsorption sites existing on the surface of ferrihydrite, i.e., non-exchangeable sites, which are responsible for a rapid surface complex formation; and exchangeable sites for a slow build-up of surface precipitates. In the slow build-up precipitates, the As(V) surface coverage (mmol/g) exhibited a good linear relationship (R{sup 2} = 0.952) with the amount of dissolved Fe{sup 3+}. Three steps are involved during the process of surface precipitation, i.e., (1) an initial uptake of As(V) via surface complexation; (2) re-adsorption of Fe{sup 3+} leaching from ferrihydrite on the surface complex; and (3) As(V) adsorption via surface complexation again and finally forming the surface precipitate.

  3. Co-precipitation of plutonium(IV) and americium(III) from nitric acid-oxalic acid solutions with bismuth oxalate

    International Nuclear Information System (INIS)

    Pius, I.C.; Noronha, D.M.; Chaudhury, Satyajeet

    2017-01-01

    Co-precipitation of plutonium and americium from nitric acid-oxalic acid solutions with bismuth oxalate has been investigated for the removal of these long lived α-active nuclides from waste solutions. Effect of concentration of bismuth and oxalic acid on the co-precipitation of Pu(IV) from 3 M HNO_3 has been investigated. Similar experiments were also carried out from 3.75 M HNO_3 on co-precipitation of Am(III) to optimize the conditions of precipitation. Strong co-precipitation of Pu(IV) and Am(III) with bismuth oxalate indicate feasibility of treatment of plutonium and americium bearing waste solutions. (author)

  4. Precipitation kinetics in binary Fe–Cu and ternary Fe–Cu–Ni alloys via kMC method

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-08-01

    Full Text Available The precipitation kinetics of coherent Cu rich precipitates (CRPs in binary Fe–Cu and ternary Fe–Cu–Ni alloys during thermal aging was modelled by the kinetic Monte Carlo method (kMC. A good agreement of the precipitation kinetics of Fe–Cu was found between the simulation and experimental results, as observed by means of advancement factor and cluster number density. This agreement was obtained owing to the correct description of the fast cluster mobility. The simulation results indicate that the effects of Ni are two-fold: Ni promotes the nucleation of Cu clusters; while the precipitation kinetics appears to be delayed by Ni addition during the coarsening stage. The apparent delayed precipitation kinetics is revealed to be related with the cluster mobility, which are reduced by Ni addition. The reduction effect of the cluster mobility weakens when the CRPs sizes increase. The results provide a view angle on the effects of solute elements upon Cu precipitation kinetics through the consideration of the non-conventional cluster growth mechanism, and kMC is verified to be a powerful approach on that.

  5. Precipitation isoscapes for New Zealand: enhanced temporal detail using precipitation-weighted daily climatology.

    Science.gov (United States)

    Baisden, W Troy; Keller, Elizabeth D; Van Hale, Robert; Frew, Russell D; Wassenaar, Leonard I

    2016-01-01

    Predictive understanding of precipitation δ(2)H and δ(18)O in New Zealand faces unique challenges, including high spatial variability in precipitation amounts, alternation between subtropical and sub-Antarctic precipitation sources, and a compressed latitudinal range of 34 to 47 °S. To map the precipitation isotope ratios across New Zealand, three years of integrated monthly precipitation samples were acquired from >50 stations. Conventional mean-annual precipitation δ(2)H and δ(18)O maps were produced by regressions using geographic and annual climate variables. Incomplete data and short-term variation in climate and precipitation sources limited the utility of this approach. We overcome these difficulties by calculating precipitation-weighted monthly climate parameters using national 5-km-gridded daily climate data. This data plus geographic variables were regressed to predict δ(2)H, δ(18)O, and d-excess at all sites. The procedure yields statistically-valid predictions of the isotope composition of precipitation (long-term average root mean square error (RMSE) for δ(18)O = 0.6 ‰; δ(2)H = 5.5 ‰); and monthly RMSE δ(18)O = 1.9 ‰, δ(2)H = 16 ‰. This approach has substantial benefits for studies that require the isotope composition of precipitation during specific time intervals, and may be further improved by comparison to daily and event-based precipitation samples as well as the use of back-trajectory calculations.

  6. [Removal of high-abundance proteins in plasma of the obese by improved TCA/acetone precipitation method].

    Science.gov (United States)

    Wang, Jun; Feng, Liru; Yu, Wei; Xu, Jian; Yang, Hui; Liu, Xiaoli

    2013-09-01

    To develop an improved trichloroacetic acid (TCA)/acetone precipitation method for removal of high-abundance proteins in plasma of the obese. Volumes of TCA/acetone solution (1, 3, 4, 5, 6, 8, 10 and 20 times of the sample) and concentrations of TCA (10%, 30%, 50%, 60%, 70% TCA/acetone solution) have been investigated to optimize the conditions of sample preparation. SDS-PAGE were used to separate and tested proteins in the supernatant and sediment. The best concentration of the TCA/acetone solution was first determined by SDS-PAGE. The protein in precipitation from 10% TCA/acetone solution processing and the new determined concentration TCA/acetone solution processing were verified by 2-D-SDS-PAGE. And then the digested products of the protein in precipitation and supernatant by trypsin were analyzed by nano HPLC-Chip-MS/MS to verify which is the best concentration to process the plasma. The best volume of TCA/acetone is four times to sample, which less or more TCA/acetone would reduce the removal efficiency of high-abundance proteins. The concentration of TCA in acetone solution should be 60%, which may remove more high-abundance proteins in plasma than 10%, 30%, 50% TCA in acetone solution. If the TCA concentration is more than 60%, the reproducibility will be much poorer due to fast precipitation of proteins. The results of mass identification showed that human plasma prepared with 60% TCA/acetone (4 times sample volume) could be verified more low-abundance proteins than 10%. The most desirable conditions for removal of high-abundance proteins in plasma is 60% TCA/acetone (4 times sample volume), especially for the plasma of obesity.

  7. Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation.

    Science.gov (United States)

    Zu, Yuangang; Sun, Wei; Zhao, Xiuhua; Wang, Weiguo; Li, Yong; Ge, Yunlong; Liu, Ying; Wang, Kunlun

    2014-03-12

    We prepared amphotericin B (AmB) nanoparticles through liquid antisolvent precipitation (LAP) and by freeze-drying to improve the solubility of AmB for oral administration. The LAP was optimized through a single-factor experiment. We determined the effects of surfactants and their concentration, the stirring time, the precipitation temperature, the stirring intensity, the drug concentration and the volume ratio of antisolvent to solvent on the mean particle size (MPS) of the AmB nanoparticles. Increased stirring intensity and precipitation time favored AmB nanoparticles with smaller MPS, but precipitation times exceeding 30 min did not further reduce the MPS. Increased Tween-80 concentration and the drug concentration decreased the MPS of the AmB nanoparticles. Increased precipitation temperature and antisolvent to solvent volume ratio initially decreased the MPS of the AmB nanoparticles, which increased thereafter. Optimum conditions produced AmB nanoparticles with an MPS of 135.1 nm. The AmB nanoparticles were characterized through scanning electron microscopy (SEM), mass spectrometry (MS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermal gravimetric analysis (TG), solvent residue, drug purity test, and dissolution testing. The analyses indicated that the chemical structure of AmB remained unchanged in the nanoparticles, but the structure was changed from crystalline to amorphous. The residual DMSO in the nanoparticles was 0.24% less than the standard set by the International Conference on Harmonization limit for class III solvents. The AmB nanoparticles exhibited 2.1 times faster dissolution rates and 13 times equilibrium solubility compared with the raw drug. The detection results indicate that the AmB nanoparticles potentially improved the oral absorption of AmB. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Cerium oxalate precipitation

    International Nuclear Information System (INIS)

    Chang, T.P.

    1987-02-01

    Cerium, a nonradioactive, common stand-in for plutonium in development work, has been used to simulate several plutonium precipitation processes at the Savannah River Laboratory. There are similarities between the plutonium trifluoride and the cerium oxalate precipitations in particle size and extent of plating, but not particle morphology. The equilibrium solubility, precipitation kinetics, particle size, extent of plating, and dissolution characteristics of cerium oxalate have been investigated. Interpretations of particle size and plating based on precipitation kinetics (i.e., nucleation and crystal growth) are presented. 16 refs., 7 figs., 6 tabs

  9. The kinetics of formation and growth of TiC precipitates in Ti-modified stainless steel studied by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Gopalan, P.; Rajaraman, R.; Viswanathan, B.; Venkadesan, S.

    1998-01-01

    The formation and growth of TiC precipitates in Ti-modified austenitic stainless steel (D-9 alloy) is monitored by positron lifetime spectroscopy. From isochronal annealing studies various recovery stages are identified. TiC precipitates are found to be more stable in 20% cold worked alloy than in a 17.5% cold worked sample. From the isothermal annealing studies, it is found that TiC precipitation is controlled by dislocations. The limited temperature dependence of dislocation controlled TiC precipitation is governed by an apparent activation energy of 1.6 eV. In 20% cold worked alloy, TiC precipitates are found to be stable against growth even after 1000 h of annealing at 923 K. For higher annealing temperatures, TiC precipitate coarsening occurs due to recrystallisation. (orig.)

  10. Investigations of early stage precipitation in a tungsten-rich nickel-base superalloy using SAXS and SANS

    Czech Academy of Sciences Publication Activity Database

    Gilles, R.; Mukherji, D.; Eckerlebe, H.; Karge, L.; Staron, P.; Strunz, Pavel; Lippmann, T.

    2014-01-01

    Roč. 612, NOV (2014), s. 90-97 ISSN 0925-8388 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389005 Keywords : high temperature alloys * precipitation * synchrotron radiation * neutron scattering * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.999, year: 2014

  11. Nonimaging concentrators for solar thermal energy

    Science.gov (United States)

    Winston, R.; Gallagher, J. J.

    1980-03-01

    A small experimental solar collector test facility was used to explore applications of nonimaging optics for solar thermal concentration in three substantially different configurations: a single stage system with moderate concentration on an evacuated absorber (a 5.25X evacuated tube Compound Parabolic Concentrator or CPC), a two stage system with high concentration and a non-evacuated absorber (a 16X Fresnel lens/CPC type mirror) and moderate concentration single stage systems with non-evacuated absorbers for lower temperature (a 3X and a 6.5X CPC). Prototypes of each of these systems were designed, built and tested. The performance characteristics are presented.

  12. Arsenic precipitation from metallurgical effluents; Precipitacion de arsenico desde efluentes metalurgicos

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.; Vargas, C.; Araya, E.; Martin, I.; Alguacil, F. J.

    2004-07-01

    In the mining-metallurgical companies different liquid effluents are produced, which can contain a series of dissolved elements that are considered dangerous from an environmental point of view. One of these elements is the arsenic, especially in the state of oxidation +5 that can be precipitated as calcium or iron arsenate. To fulfil the environmental requests it should have in solution a content of arsenic lower than 0,5 mg/l and the obtained solid product should be very stable under the condition in which it will be stored. this work looks for the best conditions of arsenic precipitation, until achieving contents in solution lower than such mentioned concentration. Also, the stability of the precipitates was studied. (Author) 7 refs.

  13. Formation and evolution of the hardening precipitates in a Mg-Y-Nd alloy

    Energy Technology Data Exchange (ETDEWEB)

    Barucca, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Ferragut, R. [Dipartimento di Fisica, LNESS and CNISM, Politecnico di Milano, Via Anzani 42, I-22100 Como (Italy); Fiori, F. [Dipartimento SAIFET, Sezione di Scienze Fisiche, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Lussana, D. [Dipartimento di Chimica IFM and NIS Centre, Universita di Torino, Via P. Giuria 9, I-10125 Torino (Italy); Mengucci, P., E-mail: p.mengucci@univpm.it [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Moia, F. [Dipartimento di Fisica, LNESS and CNISM, Politecnico di Milano, Via Anzani 42, I-22100 Como (Italy); Riontino, G. [Dipartimento di Chimica IFM and NIS Centre, Universita di Torino, Via P. Giuria 9, I-10125 Torino (Italy)

    2011-06-15

    The formation and evolution of hardening precipitates in a Mg-Y-Nd (WE43) alloy during artificial ageing at 150 and 210 deg. C is followed by small angle X-ray scattering (SAXS) measurements, Vickers microhardness tests and transmission electron microscopy (TEM) observations. A quantitative description of the alloy studied during the early and advanced stages of the precipitation sequence is presented. In situ SAXS evolution at 210 deg. C of the size, volume fraction and number density of the subnanometer and nanometer particles that evolve in the {beta}'' phase was obtained. TEM and microhardness results indicate that the hardening mechanism is based on {beta}'' transformation of pre-precipitates and their growth at 150 deg. C, while at 210 deg. C hardening is mainly associated with {beta}'' {yields} {beta}' transformation.

  14. Metal transport and remobilisation in a basin affected by acid mine drainage: the role of ochreous amorphous precipitates.

    Science.gov (United States)

    Consani, Sirio; Carbone, Cristina; Dinelli, Enrico; Balić-Žunić, Tonci; Cutroneo, Laura; Capello, Marco; Salviulo, Gabriella; Lucchetti, Gabriella

    2017-06-01

    Metal-polluted mine waters represent a major threat to the quality of waters and sediments in a downstream basin. At the confluence between acidic mine waters and the unpolluted waters of the Gromolo Torrent (Liguria, North-West Italy), the massive formation of an ochreous amorphous precipitate takes place. This precipitate forms a soft blanket that covers the torrent bed and can be observed down to its mouth in the sea. The aim of this work is to evaluate the dispersion of metals in the Gromolo Torrent basin from the abandoned Cu-Fe sulphide mine of Libiola to the Ligurian Sea and to assess the metal remobilisation from the amorphous precipitates. The mineralogy of the superficial sediments collected in the torrent bed and the concentrations of different elements of environmental concern (Cu, Zn, Cd, Co, Cr, Mn, Ni, Pb, As, and Sb) were therefore analysed. The results showed that the precipitates contain high concentration of Fe, Al, Cu, and Zn, significantly modifying the bulk chemistry of the Gromolo Torrent sediments. In order to evaluate the possible remobilisation of ecotoxic elements from the amorphous precipitates, bulk leaching tests were performed with both deionised and seawater. Bulk leaching tests with deionised water mobilised primarily high Pb amounts, but also relatively high concentrations of Fe, Al, Cu, and Zn are released in the leachate. In seawater tests, Fe, Al, Cu, and Zn were released in smaller amounts, while other elements like Mn, Cd, Co, and Ni increased in the released fraction. Pb was still strongly released as in deionised water experiments. The results show that the interaction of precipitates and seawater can remobilise high concentrations of metals, thus affecting the surrounding environment.

  15. Trends in atmospheric ammonium concentrations in relation to atmospheric sulfate and local agriculture.

    Science.gov (United States)

    Kelly, Victoria R; Lovett, Gary M; Weathers, Kathleen C; Likens, Gene E

    2005-06-01

    Ammonium (NH(4)(+)) concentrations in air and precipitation at the Institute of Ecosystem Studies (IES) in southeastern New York, USA declined over an 11-year period from 1988 to 1999, but increased from 1999 to 2001. These trends in particulate NH(4)(+) correlated well with trends in particulate SO(4)(2-) over the 1988-2001 period. The NH(4)(+) trends were not as well correlated with local cattle and milk production, which declined continuously throughout the period. This suggests that regional transport of SO(4)(2-) may have a greater impact on concentrations of NH(4)(+) and subsequent deposition than local agricultural emissions of NH(3). Ammonium concentrations in precipitation correlated significantly with precipitation SO(4)(2-) concentrations for the 1984-2001 period although NH(4)(+) in precipitation increased after 1999 and SO(4)(2-) in precipitation continued to decline after 1999. The correlation between NH(4)(+) and SO(4)(2-) was stronger for particulates than for precipitation. Particulate NH(4)(+) concentrations were also correlated with particulate SO(4)(2-) concentrations at 31 of 35 eastern U.S. CASTNet sites that had at least 10 years of data. Air concentrations of NH(4)(+) and SO(4)(2-) were more strongly correlated at the sites that were located within an agricultural landscape than in forested sites. At most of the sites there was either no trend or a decrease in NH(4)(+) dry deposition during the 1988-2001 period. The sites that showed an increasing trend in NH(4)(+) dry deposition were generally located in the southeastern U.S. The results of this study suggest that, in the northeastern U.S., air concentrations of NH(4)(+) and subsequent deposition may be more closely linked to SO(4)(2-) and thus SO(2) emissions than with NH(3) emissions. These results also suggest that reductions in S emissions have reduced NH(4)(+) transport to and NH(4)(+)-N deposition in the Northeast.

  16. Biomediated Precipitation of Calcium Carbonate in a Slightly Acidic Hot Spring

    Science.gov (United States)

    Jiang, L.

    2015-12-01

    A slightly acidic hot spring named "Female Tower" (T=73.5 °C, pH=6.64) is located in the Jifei Geothermal Field, Yunnan Province, Southwest China. The precipitates in the hot spring are composed of large amounts of calcite, aragonite, and sulfur. Scanning electron microscopy (SEM) analyses revealed that the microbial mats were formed of various coccoid, rod-shaped, and filamentous microbes. Transmission electron microscopy (TEM) showed that the intracellular sulfur granules were commonly associated with these microbes. A culture-independent molecular phylogenetic analysis demonstrated that the majority of the bacteria in the spring were sulfur-oxidizing bacteria. In the spring water, H2S concentration was up to 60 ppm, while SO42- concentration was only about 10 ppm. We speculated that H2S might be utilized by sulfur-oxidizing bacteria in this hot spring water, leading to the intracellular formation of sulfur granules. In the meantime, this reaction increased the pH in the micron-scale microdomains, which fostered the precipitation of calcium carbonate in the microbial mats. The results of this study indicated that the sulfur-oxidizing bacteria could play an important role in calcium carbonate precipitation in slightly acidic hot spring environments.

  17. Improvement of humidity resistance of water soluble core by precipitation method

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2011-05-01

    Full Text Available Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels; however, the soluble core can absorb water easily from the air at room temperature. To improve the humidity resistance of the water soluble core and optimize the process parameters applied in manufacturing of the water soluble core, a precipitation method and a two-level-three-full factorial central composite design were used, respectively. The properties of the cores treated by the precipitation method were compared with that without any treatment. Through a systematical study by means of both an environmental scanning electron microscope (ESEM and an energy dispersive X-ray (EDX analyzer, the results indicate that the hygroscopicity can be reduced by 20% and the obtained optimal process conditions for three critical control factors affecting the hygroscopicity are 0.2 g·mL-1 calcium chloride concentration, 4% water concentration and 0 min ignition time. The porous surface coated by calcium chloride and the high humidity resistance products generated in the precipitation reaction between calcium chloride and potassium carbonate may contribute to the lower hygroscopicity.

  18. Effects of Low Ozone Concentrations and Short Exposure Times on the Mortality of Immature Stages of the Indian Meal Moth, Plodia Interpunctella (Lepidoptera: Pyralidae

    Directory of Open Access Journals (Sweden)

    Keivanloo Ensieh

    2014-07-01

    Full Text Available In Iran, the Indian meal moth, Plodia interpunctella (Hübner, is one of the most important pests of such stored products as date fruits and pistachio nuts. Ozone was applied as a gas at four concentrations (0, 2, 3, and 5 ppm for four different periods (30, 60, 90, and 120 min on the immature stages of P. interpunctella. The results indicated that by increasing the concentration and exposure time, the rate of mortality increased for all tested stages. This study showed that 12-day-old larvae were more susceptible than other stages when exposed to 5 ppm ozone for 120 min. The next in order of susceptibility were pupae, then 5-day-old larvae, and 17-dayold larvae had the highest sensitivity to ozonation. At the highest concentration of ozone, for the longest time, the least mortality rate was recorded for one-day-old eggs. According to the results, a reduction in the population density of P. interpunctella in laboratory experiments is promising. However, validation studies will be necessary to fully determine the potential of ozone as a replacement for the current post harvest chemical control of P. interpunctella on either pistachio nuts or date fruits.

  19. Effect of iron II on hydroxyapatite dissolution and precipitation in vitro.

    Science.gov (United States)

    Delbem, A C B; Alves, K M R P; Sassaki, K T; Moraes, J C S

    2012-01-01

    The aim of this study was to evaluate the effect of iron II on the dissolution and precipitation of synthetic hydroxyapatite (HA). HA powder was suspended in solutions of iron (0.84 µg/ml, Fe0.84; 18.0 µg/ml, Fe18; 70.0 µg/ml, Fe70), fluoride (1,100 µg/ml, F1,100), and deionized water and submitted to pH cycling. After pH cycling, the samples were analyzed by infrared spectroscopy and X-ray diffraction. The concentrations of fluoride, calcium, phosphorus, and iron were also analyzed. The data were submitted to ANOVA, and analyzed by Tukey's test (p iron. The intensity of the phosphate bands increased and that of the hydroxyl bands decreased in the group F1,100. It was observed that there was a higher concentration of Ca in the group F1,100, with no significant difference between the groups Fe18 and Fe70 (p > 0.05). There was an increase in Fe concentration in the HA directly related to the Fe concentration of the treatment solutions. Results show that the presence of Fe causes the precipitation of apatite with high solubility. Copyright © 2012 S. Karger AG, Basel.

  20. Precipitation and soil impacts on partitioning of subsurface moisture in Avena barbata: Observations from a greenhouse experiment

    Energy Technology Data Exchange (ETDEWEB)

    Salve, R.; Torn, M.S.

    2011-03-01

    The primary objective of this study was to assess the impact of two grassland soils and precipitation regimes on soil-moisture dynamics. We set up an experiment in a greenhouse, and monitored soil moisture dynamics in mesocosms planted with Avena barbata, an annual species found in California grasslands. By repeating the precipitation input at regular intervals, we were able to observe plant manipulation of soil moisture during well-defined periods during the growing season. We found that the amount of water partitioned to evapotranspiration, seepage, and soil storage varied among different growth stages. Further, both soil type and precipitation regimes had a significant impact on redistributing soil moisture. Whereas in the low-precipitation treatments most water was released to the atmosphere as evapotranspiration, major losses from the high-precipitation treatment occurred as gravity drainage. Observations from this study emphasize the importance of understanding intra-seasonal relationships between vegetation, soil, and water.

  1. Atmospheric pollen season in Zagreb (Croatia) and its relationship with temperature and precipitation

    Science.gov (United States)

    Peternel, Renata; Srnec, Lidija; Čulig, Josip; Zaninović, Ksenija; Mitić, Božena; Vukušić, Ivan

    . The number of individuals allergic to plant pollen has recently been on a constant increase, especially in large cities and industrial areas. Therefore, monitoring of airborne pollen types and concentrations during the pollen season is of the utmost medical importance. The research reported in this paper aims to determine the beginning, course and end of the pollen season for the plants in the City of Zagreb, to identify allergenic plants, and to assess the variation in airborne pollen concentration as a function of temperature and precipitation changes for the year 2002. A volumetric Hirst sampler was used for airborne pollen sampling. Qualitative and quantitative pollen analysis was performed under a light microscope (magnification ×400). In the Zagreb area, 12 groups of highly allergenic plants (alder, hazel, cypress, birch, ash, hornbeam, grasses, elder, nettles, sweet chestnut, artemisia and ambrosia) were identified. Birch pollen predominated in spring, the highest concentrations being recorded in February and March. Grass pollen prevailed in May and June, and pollen of herbaceous plants of the genus Urtica (nettle) and of ambrosia in July, August and September. Air temperature was mostly higher or considerably higher than the annual average in those months, which resulted in a many days with high and very high airborne pollen concentrations. The exception was April, when these concentrations were lower because of high levels of precipitation. This also held for the first half of August and the second half of September. Pollen-sensitive individuals were at high risk from February till October because of the high airborne pollen concentrations, which only showed a transient decrease when the temperature fell or there was precipitation.

  2. Behavior of arsenic impurity at antimony electric precipitation

    International Nuclear Information System (INIS)

    Kim, G.N.; Rakhmanov, A.

    2001-01-01

    In the paper the arsenic impurity electrochemical behavior and it purification from antimony by electric precipitation out of fluoride solutions was studied. For this the arsenic sample with mass 0.003-0.006 g has been irradiated at the WWR-SM nuclear reactor during 3-5 hour in the thermal neutron flux 10 13 n/cm 2 s, after 24 h keeping the sample has being dissolved in the concentrated nitric acid, and then it has been evaporated several times with distillation water addition up to wet precipitation state. It is shown, that arsenic impurity behavior character in the antimony electric precipitation out to fluoride electrolyte depends on the electrolyte content, electrolysis conditions, arsenic valency state in arsenic impurity existence in the five-valency state its joint electric reduction with antimony is practically not observing. In the case the arsenic being in three-valency state, it joint electric reduction with antimony is taking place. In this time the electrolytic antimony contents arsenic impurities less in dozen time than initial material

  3. Application of a precipitation method for uranium recovery from abu-zaabal phosphoric acid plant, Egypt

    International Nuclear Information System (INIS)

    El-hazek, N.M.T.; Hussein, E.M.

    1995-01-01

    Current industrial recovery of uranium from 30% phosphoric acid-produced by the dihydrate process-is based on solvent extraction method. Uranium recovery from concentrated phosphoric acid (45-52% p o5 ) produced by evaporation of the 30% acid or directly produced by the hemihydrate process, by solvent extraction is difficult to apply in practice. In addition to possible contamination of the acid by the organic solvents and/or their deterioration. This paper investigates the possibility of applying a precipitation method (Weterings and Janssen, 1985) for uranium recovery from both low (28% P 2 O 5 ) and high (48% P 2 O 5 ) concentration phosphoric acids produced by abu-zaabal phosphoric acid plant (Abuzaabal fertilizers and chemicals Co., Egypt). The 28% acid produced by H 2 SO 4 dihydrate method and the 48% acid produced by evaporation of the 28% acid The applied precipitation method depends on using NH 4 F as a uranium precipitant from both low and high concentration phosphoric acids in presence of acetone as a dispersing agent. All the relevant factors have been studied

  4. Trends in bromide wet deposition concentrations in the contiguous United States, 2001-2016.

    Science.gov (United States)

    Wetherbee, Gregory A; Lehmann, Christopher M B; Kerschner, Brian M; Ludtke, Amy S; Green, Lee A; Rhodes, Mark F

    2018-02-01

    Bromide (Br - ) and other solute concentration data from wet deposition samples collected and analyzed by the National Atmospheric Deposition Program (NADP) from 2001 to 2016, were statistically analyzed for trends both geographically and temporally by precipitation type. Analysis was limited to NADP sites in the contiguous 48 United States. The Br - concentrations for this time period had a high number of values censored at the detection limits with greater than 86 percent of sample concentrations below analytical detection. Bromide was more frequently detected at NADP sites in coastal regions. Analysis using specialized statistical techniques for censored data revealed that Br - concentrations varied by precipitation type with higher concentrations usually observed in liquid versus precipitation containing snow. Negative temporal trends in Br - wet deposition concentrations were observed at a majority of NADP sites; approximately 25 percent of these trend values were statistically significant at less than 0.05 to 0.10 significance levels. Potential causes for the negative trends were explored, including annual and seasonal changes in precipitation depth, reduced emissions of methyl bromide (CH 3 Br) from coastal wetlands, and declining industrial use of bromine compounds. The results indicate that Br - in non-coastal wet-deposition comes mainly from long-range transport, not local sources. Correlations between Br - , chloride, and nitrate concentrations also were evaluated. Published by Elsevier Ltd.

  5. Field evaluation of a new particle concentrator- electrostatic precipitator system for measuring chemical and toxicological properties of particulate matter

    Directory of Open Access Journals (Sweden)

    Pakbin Payam

    2008-11-01

    Full Text Available Abstract Background A newly designed electrostatic precipitator (ESP in tandem with Versatile Aerosol Concentration Enrichment System (VACES was developed by the University of Southern California to collect ambient aerosols on substrates appropriate for chemical and toxicological analysis. The laboratory evaluation of this sampler is described in a previous paper. The main objective of this study was to evaluate the performance of the new VACES-ESP system in the field by comparing the chemical characteristics of the PM collected in the ESP to those of reference samplers operating in parallel. Results The field campaign was carried out in the period from August, 2007 to March, 2008 in a typical urban environment near downtown Los Angeles. Each sampling set was restricted to 2–3 hours to minimize possible sampling artifacts in the ESP. The results showed that particle penetration increases and ozone concentration decreases with increasing sampling flow rate, with highest particle penetration observed between 100 nm and 300 nm. A reference filter sampler was deployed in parallel to the ESP to collect concentration-enriched aerosols, and a MOUDI sampler was used to collect ambient aerosols. Chemical analysis results showed very good agreement between the ESP and MOUDI samplers in the concentrations of trace elements and inorganic ions. The overall organic compound content of PM collected by the ESP, including polycyclic aromatic hydrocarbons (PAHs, hopanes, steranes, and alkanes, was in good agreement with that of the reference sampler, with an average ESP -to -reference concentration ratio of 1.07 (± 0.38. While majority of organic compound ratios were close to 1, some of the semi-volatile organic species had slightly deviated ratios from 1, indicating the possibility of some sampling artifacts in the ESP due to reactions of PM with ozone and radicals generated from corona discharge, although positive and negative sampling artifacts in the

  6. The Gibbs-Thomson equation for a spherical coherent precipitate with applications to nucleation

    International Nuclear Information System (INIS)

    Rottman, C.; Voorhees, P.W.; Johnson, W.C.

    1988-01-01

    The conditions for interfacial thermodynamic equilibrium form the basis for the derivation of a number of basic equations in materials science, including the various forms of the Gibbs-Thomson equation. The equilibrium conditions pertaining to a curved interface in a two-phase fluid system are well-known. In contrast, the conditions for thermodynamic equilibrium at a curved interface in nonhydrostatically stressed solids have only recently been examined. These conditions can be much different from those at a fluid interface and, as a result, the Gibbs-Thomson equation appropriate to coherent solids is likely to be considerably different from that for fluids. In this paper, the authors first derive the conditions necessary for thermodynamic equilibrium at the precipitate-matrix interface of a coherent spherical precipitate. The authors' derivation of these equilibrium conditions includes a correction to the equilibrium conditions of Johnson and Alexander for a spherical precipitate in an isotropic matrix. They then use these conditions to derive the dependence of the interfacial precipitate and matrix concentrations on precipitate radius (Gibbs-Thomson equation) for a such a precipitate. In addition, these relationships are then used to calculate the critical radius for the nucleation of a coherent misfitting precipitate

  7. Vacancy enhanced formation and phase transition of Cu-rich precipitates in α - iron under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lv, G. C. [Basic Experimental Center of Natural Science, University of Science and Technology Beijing, Beijing, 100083 (China); Corrosion and Protection Center, Key Laboratory of Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing, 100083 (China); Zhang, H. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada, T6G2V4 (Canada); He, X. F.; Yang, W. [China Institute of Atomic Energy, Beijing, 102413 (China); Su, Y. J., E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory of Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing, 100083 (China)

    2016-04-15

    In this paper, we employed both molecular statics and molecular dynamics simulation methods to investigate the role of vacancies in the formation and phase transition of Cu-rich precipitates in α-iron. The results indicated that vacancies promoted the diffusion of Cu atoms to form Cu-rich precipitates. After Cu-rich precipitates formed, they further trapped vacancies. The supersaturated vacancy concentration in the Cu-rich precipitate induced a shear strain, which triggered the phase transition from bcc to fcc structure by transforming the initial bcc (110) plane into fcc (111) plane. In addition, the formation of the fcc-twin structure and the stacking fault structure in the Cu-rich precipitates was observed in dynamics simulations.

  8. Tailoring particle size and morphology of colloidal Ag particles via chemical precipitation for Ag-BSCCO composites

    International Nuclear Information System (INIS)

    Medendorp, N.W. Jr.; Bowman, K.J.; Trumble, K.P.

    1996-01-01

    The chemical precipitation of silver particles is an effective method for tailoring the particle size and morphology. This article investigates a chemical precipitation method for producing silver colloids, and how processing parameters affected particle size, morphology and adherence. Decreasing the silver nitrate concentration during precipitation with sodium borohydride decreased the colloidal silver particle size. Decreasing the addition rate of the reducing agent produced faceted particles. Reversing the reactant addition order also changed the particle size and the morphology. Precipitated colloids demonstrated a difference between the growth-dominated and the equilibrium structures. Co-dispersing Bi-based superconducting platelets during precipitation allowed Ag colloids to preferentially nucleate on the platelets and to remain adhered even after the additional processing. (orig.)

  9. Experimental observations of boric acid precipitation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Vaghetto, R., E-mail: r.vaghetto@tamu.edu; Childs, M., E-mail: masonchilds@tamu.edu; Jones, P., E-mail: pgjones87@tamu.edu; Lee, S., E-mail: sayalee@tamu.edu; Kee, E., E-mail: erniekee@gmail.com; Hassan, Y.A., E-mail: y-hassan@tamu.edu

    2017-02-15

    During a Loss of Coolant Accident (LOCA) in Light Water Reactors (LWR), borated water is injected into the core through the safety injection system. The continuous vaporization of the water from the core may increase the concentration of boric acid in the core that, under certain conditions may reach the solubility limit and precipitate. This includes scenarios where the liquid water supply to the core is affected by possible blockages due to debris accumulation. Questions have been raised on the effects of the precipitate in the core on the flow behavior, including the possibility of additional blockages produced by precipitate accumulation. A simple experimental facility was constructed to perform experimental observations of the behavior of borated water under the combined effects of the boiling and the boric acid precipitation (BAP). The facility consists of a transparent polycarbonate vertical pipe where forty-five heated rods have been installed to supply the power to the water to reach the saturation temperature, and maintain a desired boil-off rate. The layout and geometry of the experimental apparatus were conceived to emulate a simplified core of a Pressurized Water Reactor (PWR). Experimental observations have been conducted under two different conditions. Preliminary tests were conducted to observe the behavior of the water and the boric acid precipitate during a boil-off scenario without borated water addition (decreasing water level). During the main test runs, borated water was constantly injected from the top of the test section to maintain a constant mixture level in the test section. Both tests assumed no flow from the bottom of the test section which may be the case of PWR LOCA scenarios in presence of debris-generated core blockage. The observations performed with a set of cameras installed around the test section showed interesting effects of the vapor bubbles on the boric acid precipitate migration and accumulation in the test section. The

  10. Inhibition of salt precipitation, corrosion and corrosion fatigue of steel in neutral environments

    International Nuclear Information System (INIS)

    Mikhajlovskij, V.Ya.; Slobodyan, Z.V.; Soprunyuk, N.G.; Ivanov, A.M.

    1983-01-01

    Processes of salt precipitation, corrosion under dynamic and static conditions, are studied as well as corrosion fatigue of 20 and 40Kh steels in neutral aqueous media without and with the addition of compounds of several classes. The solution of calcium bicarbonate with the initial concentration [Ca(HCO 3 ) 2 ]=1.3 g/l and 3% NaCl solution in distilled water are used for investigation. The effectiveness index of salt precipitation inhibitor is determined by the change in the rate of calcium bicarbonate transformation into carbonate. The combination of results obtained permits to make the conclusion that tripolyphosphate and pyrophosphoric acid are rather perspective inhibitors of complex effect with low protective concentrations

  11. Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa

    Science.gov (United States)

    Guo, Junming; Kang, Shichang; Huang, Jie; Zhang, Qianggong; Tripathee, Lekhendra; Sillanpää, Mika

    2015-02-01

    Precipitation samples were collected from March 2010 to August 2012 at an urban site in Lhasa, the capital and largest city of Tibet. The volume weighted mean (VWM) concentrations of 17 trace elements in precipitation were higher during the non-monsoon season than in the monsoon season, but inverse seasonal variations occurred for wet deposition fluxes of most of the trace elements. Concentrations for most of trace elements were negatively correlated with precipitation amount, indicating that below-cloud scavenging of trace elements was an important mechanism contributing to wet deposition of these elements. The elements Al, Sc, V, Cr, Mn, Fe, Mn, Ni, and U displayed low crustal enrichment factors (EFs), whereas Co, Cu, Zn, As, Cd Sn, Pb, and Bi showed high EF values in precipitation, suggesting that anthropogenic activities might be important contributors of these elements at Lhasa. However, this present work indicates a much lower anthropogenic emission at Lhasa than in seriously polluted regions. Our study will not only provide insights for assessing the current status of the atmospheric environment in Lhasa but also enhance our understanding for updating the baseline for environmental protection over the Tibetan Plateau.

  12. Separation and purification of uranium product from thorium in thorex process by precipitation technique

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Mukherjee, A.; Dhumwad, R.K.

    1989-01-01

    A sequential precipitation technique is reported for the separation of uranium and thorium present in the uranium product stream of a single cycle 5 per cent TBP Thorex Process. It involves the precipitation of thorium as oxalate in 1M HNO 3 medium at 60-70degC and after filtration, precipitation of uranium as ammonium diuranate at 80-90degC from the oxalate supernatant. This technique has several advantages over the ion-exchange process normally used for treating these products. In order to meet the varying feed conditions, this method has been tested for feeds containing 10 g/1 uranium and 1-50 g/1 thorium in 1-6M HNO 3 . Various parameters like feed acidities, uranium and thorium concentrations, excess oxalic acid concentrations in the oxalate supernatant, precipitation temperatures, precipitate wash volumes etc. have been optimised to obtain more than 99 per cent recovery of thorium and uranium as their oxides with less than 50 ppm uranium losses to ammonium diuranate filtrate. The distribution patterns of different fission products and stainless steel corrosion products during various steps of this procedure have also been studied. For simulating the actual Thorex plant scale operation, experiments have been conducted with 25g and 100g lots of uranium per batch. (author). 6 tabs., 8 figs., 22 refs

  13. Nonlinear regression and ARIMA models for precipitation chemistry in East Central Florida from 1978 to 1997

    International Nuclear Information System (INIS)

    Nickerson, David M.; Madsen, Brooks C.

    2005-01-01

    Continuous monitoring of precipitation in East Central Florida has occurred since 1978 at a sampling site located on the University of Central Florida (UCF) campus. Monthly volume-weighted average (VWA) concentration for several major analytes that are present in precipitation samples was calculated from samples collected daily. Monthly VWA concentration and wet deposition of H + , NH 4 + , Ca 2+ , Mg 2+ , NO 3 - , Cl - and SO 4 2- were evaluated by a nonlinear regression (NLR) model that considered 10-year data (from 1978 to 1987) and 20-year data (from 1978 to 1997). Little change in the NLR parameter estimates was indicated among the 10-year and 20-year evaluations except for general decreases in the predicted trends from the 10-year to the 20-year fits. Box-Jenkins autoregressive integrated moving average (ARIMA) models with linear trend were considered as an alternative to the NLR models for these data. The NLR and ARIMA model forecasts for 1998 were compared to the actual 1998 data. For monthly VWA concentration values, the two models gave similar results. For the wet deposition values, the ARIMA models performed considerably better. - Autoregressive integrated moving average models of precipitation data are an improvement over nonlinear models for the prediction of precipitation chemistry composition

  14. Response of surface water chemistry to reduced levels of acid precipitation: Comparison of trends in two regions of New York, USA

    Science.gov (United States)

    Burns, Douglas A.; McHale, M.R.; Driscoll, C.T.; Roy, K.M.

    2006-01-01

    In light of recent reductions in sulphur (S) and nitrogen (N) emissions mandated by Title IV of the Clean Air Act Amendments of 1990, temporal trends and trend coherence in precipitation (1984-2001 and 1992-2001) and surface water chemistry (1992-2001) were determined in two of the most acid-sensitive regions of North America, i.e. the Catskill and Adirondack Mountains of New York. Precipitation chemistry data from six sites located near these regions showed decreasing sulphate (SO42-), nitrate (NO3-), and base cation (CB) concentrations and increasing pH during 1984-2001, but few significant trends during 1992-2001. Data from five Catskill streams and 12 Adirondack lakes showed decreasing trends in SO42- concentrations at all sites, and decreasing trends in NO3-, CB, and H+ concentrations and increasing trends in dissolved organic carbon at most sites. In contrast, acid-neutralizing capacity (ANC increased significantly at only about half the Adirondack lakes and in one of the Catskill streams. Flow correction prior to trend analysis did not change any trend directions and had little effect on SO42- trends, but it caused several significant non-flow-corrected trends in NO3- and ANC to become non-significant, suggesting that trend results for flow-sensitive constituents are affected by flow-related climate variation. SO42- concentrations showed high temporal coherence in precipitation, surface waters, and in precipitation-surface water comparisons, reflecting a strong link between S emissions, precipitation SO42- concentrations, and the processes that affect S cycling within these regions. NO3- and H+ concentrations and ANC generally showed weak coherence, especially in surface waters and in precipitation-surface water comparisons, indicating that variation in local-scale processes driven by factors such as climate are affecting trends in acid-base chemistry in these two regions. Copyright ?? 2005 John Wiley & Sons, Ltd.

  15. Precipitation behavior and effect of new precipitated β phase in AZ80 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; HAN En-hou; XU Yong-bo; LIU Lu

    2006-01-01

    Granular precipitate that was a new kind of β-Mg17Al12 phase found in aged AZ80 wrought Mg alloy at all aging temperature was studied. The structure and precipitation behavior of this granular β-Mg17Al12 precipitate were studied by environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM). The effect of the granular precipitate on mechanical properties of AZ80 alloy was also studied. The new precipitate that was granular and nucleated both on grain boundaries (GBs) and twin boundaries, has the same crystal structure and lattice parameter as those of the continuous or discontinuous precipitated β-Mg17Al12. And the nucleation and growth of the granular precipitate are faster than those of the other two precipitates at higher temperatures (above 583 K), but are suppressed at lower temperatures (below 423 K). At lower temperatures, the discontinuous β-Mg17Al12 precipitates firstly and the granular β-Mg17Al12 precipitates after aged more than 40 h. The crack is easily nucleated on the phase boundaries of granular phase and matrix because of the weak binding force. As a result, the strength and ductility of AZ80 Mg alloy are decreased by the granular β-Mg17Al12 precipitate.

  16. Scrubber-Integrated Wet Electrostatic Precipitator; Skrubberintegrerat vaatt elektrofilter, WESP

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven; Baefver, Linda; Davidsson, Kent; Pettersson, Jens; Schmidt, Hans; Strand, Michael; Yngvesson, Johan

    2011-07-01

    sulphur dominated the composition of the dust. The concentration of droplet carry-over from the scrubber stage and droplet separation in the WESP was calculated by adding LiBr tracer to the scrubber liquid and using a mass balance for Li. The droplet concentration was thus estimated at 33 mg/Nm{sup 3} dg. upstream of the WESP and <0.023 mg/Nm{sup 3} dg. downstream, corresponding to a removal efficiency of > 99.9% for the droplets from the scrubber. On-line-measurement of number concentration and size distribution (0.007-7 {mu}m) was performed using two ELPI (Electrical Low Pressure Impactor) operating at <40 deg C. In order to cool the gas while avoiding condensing, a sampling system was developed and verified. The ELPI measurements enabled the removal efficiency to be determined as a function of WESP electrode voltage, which means that the energy consumption can be optimised by controlling the WESP voltage. The WESP showed high removal efficiencies, low emission levels, stable operation and was found to have the lowest energy consumption of the studied dust removal technologies. Visual inspection of the FRP collector showed no signs of impact from 10 weeks of continuous operation. WESP is applicable to Waste-to-Energy plants, but should also be suitable for combustion of biomass and hazardous waste and for chemical industry. The project has resulted in a commercially available product Keywords: Wet Electrostatic Precipitator, dust removal, flue gas cleaning, submicron particles.

  17. Impact of parameter fluctuations on the performance of ethanol precipitation in production of Re Du Ning Injections, based on HPLC fingerprints and principal component analysis.

    Science.gov (United States)

    Sun, Li-Qiong; Wang, Shu-Yao; Li, Yan-Jing; Wang, Yong-Xiang; Wang, Zhen-Zhong; Huang, Wen-Zhe; Wang, Yue-Sheng; Bi, Yu-An; Ding, Gang; Xiao, Wei

    2016-01-01

    The present study was designed to determine the relationships between the performance of ethanol precipitation and seven process parameters in the ethanol precipitation process of Re Du Ning Injections, including concentrate density, concentrate temperature, ethanol content, flow rate and stir rate in the addition of ethanol, precipitation time, and precipitation temperature. Under the experimental and simulated production conditions, a series of precipitated resultants were prepared by changing these variables one by one, and then examined by HPLC fingerprint analyses. Different from the traditional evaluation model based on single or a few constituents, the fingerprint data of every parameter fluctuation test was processed with Principal Component Analysis (PCA) to comprehensively assess the performance of ethanol precipitation. Our results showed that concentrate density, ethanol content, and precipitation time were the most important parameters that influence the recovery of active compounds in precipitation resultants. The present study would provide some reference for pharmaceutical scientists engaged in research on pharmaceutical process optimization and help pharmaceutical enterprises adapt a scientific and reasonable cost-effective approach to ensure the batch-to-batch quality consistency of the final products. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  18. Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Lee, Tae-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Heo, Yoon-Uk [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongbuk 790-784 (Korea, Republic of); Han, Young-Soo [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kang, Jun-Yun; Ha, Heon-Young [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Suh, Dong-Woo [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongbuk 790-784 (Korea, Republic of)

    2015-10-01

    The precipitation sequence during ageing of Fe–14Cr–20Ni–0.9Nb–2.5Al based alumina-forming austenitic (AFA) steel was explored through a transmission electron microscopy analysis and a small angle neutron scattering experiment. The samples were aged at 700 °C for up to 504 h. Particles of NbC, M{sub 23}C{sub 6} and Ni{sub 3}Al-type L1{sub 2} were observed in the early stage of ageing. Metastable L1{sub 2} particles were formed both in grain interior and along grain boundary. M{sub 23}C{sub 6} carbides precipitated along grain boundary accompanied with precipitation of L1{sub 2} particles. After ageing for longer than 48 h, particles of B2-NiAl and Laves-Fe{sub 2}Nb were newly formed. We suggest the possibility of phase transition from L1{sub 2} to B2 with increase in ageing time. Finally, this study examined the change of mechanical properties during ageing through a Gleeble hot tension test and a Vickers hardness test, and then the relationship between precipitation behavior and mechanical properties was carefully investigated and discussed in terms of precipitation behavior.

  19. Improvements to the gridding of precipitation data across Europe under the E-OBS scheme

    Science.gov (United States)

    Cornes, Richard; van den Besselaar, Else; Jones, Phil; van der Schrier, Gerard; Verver, Ge

    2016-04-01

    Gridded precipitation data are a valuable resource for analyzing past variations and trends in the hydroclimate. Such data also provide a reference against which model simulations may be driven, compared and/or adjusted. The E-OBS precipitation dataset is widely used for such analyses across Europe, and is particularly valuable since it provides a spatially complete, daily field across the European domain. In this analysis, improvements to the E-OBS precipitation dataset will be presented that aim to provide a more reliable estimate of grid-box precipitation values, particularly in mountainous areas and in regions with a relative sparsity of input station data. The established three-stage E-OBS gridding scheme is retained, whereby monthly precipitation totals are gridded using a thin-plate spline; daily anomalies are gridded using indicator kriging; and the final dataset is produced by multiplying the two grids. The current analysis focuses on improving the monthly thin-plate spline, which has overall control on the final daily dataset. The results from different techniques are compared and the influence on the final daily data is assessed by comparing the data against gridded country-wide datasets produced by various National Meteorological Services

  20. Seasonal variations of ochreous precipitates in mine effluents in Finland

    International Nuclear Information System (INIS)

    Kumpulainen, Sirpa; Carlson, Liisa; Raeisaenen, Marja-Liisa

    2007-01-01

    Ochreous precipitate and water samples were collected from the surroundings of seven closed sulphide mines in Finland. In the Hammaslahti Zn-Cu-Au mine, Otravaara pyrite mine and Paroistenjaervi Cu-W-As mine, the collection was repeated in different seasons to study mineralogical and geochemical variations of precipitates. The sampling was done in 1999-2002 from the ditches and drainage ponds of the tailings and waste rock piles that are susceptible to seasonal changes. Mineralogy of the precipitates was evaluated by X-ray diffraction (XRD) and infrared spectroscopy (IR), and precipitate geochemistry was examined by selective extractions. Schwertmannite (Fe 8 O 8 (OH) 6 SO 4 ) was the most typical Fe hydroxide mineral found. Goethite was almost as common as schwertmannite, was often poorly ordered, and contained up to 10 wt.% of SO 4 . Goethite and schwertmannite were commonly found as mixtures, and they occurred in similar pH and SO 4 concentrations. Ferrihydrite (nominally Fe 5 HO 8 . 4H 2 O) was typically found in areas not influenced by acid mine drainage, and also in acid mine waters with high organic matter or As content. Jarosite (KFe 3 (SO 4 ) 2 (OH) 6 ) was found only in one site. In addition, some gypsum (CaSO 4 . 2H 2 O) and aluminous sulphate precipitates (presumably basaluminite, Al 4 (SO 4 )(OH) 10 . 5H 2 O) were identified. Selective extractions showed that acid extracts Fe tot /S tot -ratios of schwertmannite and goethite samples were similar, but the ratio of oxalate-extractable to total Fe, Fe ox /Fe tot , of goethite samples were lower than those of the schwertmannite samples. Only Al, Si and As were bound to precipitates in substantial amounts, up to several wt.%. In schwertmannites and goethites, Al, Cu, Co, Mn and Zn were mostly structural, substituting for Fe in an Fe oxyhydroxide structure or bound to surface adsorption sites in pores limited by diffusion. In ferrihydrites, heavy metals were also partly bound in adsorbed form dissolving in

  1. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments.

    Science.gov (United States)

    Wilcox, Kevin R; Shi, Zheng; Gherardi, Laureano A; Lemoine, Nathan P; Koerner, Sally E; Hoover, David L; Bork, Edward; Byrne, Kerry M; Cahill, James; Collins, Scott L; Evans, Sarah; Gilgen, Anna K; Holub, Petr; Jiang, Lifen; Knapp, Alan K; LeCain, Daniel; Liang, Junyi; Garcia-Palacios, Pablo; Peñuelas, Josep; Pockman, William T; Smith, Melinda D; Sun, Shanghua; White, Shannon R; Yahdjian, Laura; Zhu, Kai; Luo, Yiqi

    2017-10-01

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change

  2. Three-decade changes in chemical composition of precipitation in Guangzhou city, southern China: has precipitation recovered from acidification following sulphur dioxide emission control?

    Directory of Open Access Journals (Sweden)

    Yunting Fang

    2013-09-01

    Full Text Available We examined if precipitation had recovered from acidification in Guangzhou, the third biggest city in China, and if sulphur deposition in precipitation had decreased, and to what extent if yes, following abatement strategies in sulphur dioxide (SO2 emission and energy use implemented since 2001. SO2 emissions were decreasing steadily since 2001, but a marked recovery of precipitation acidity occurred only since 2005; precipitation pH values decreased from 4.65 in 2001 to 4.34 in 2005 and then increased to 5.08 in 2010, while in the same period acid rain (pH<5.6 frequency increased from 70% to 81% and then decreased to 48%. During this period, the change in pH value and sulphate concentration more reflected the patterns of SO2 emission at provincial and national scales than at the local scale, suggesting that precipitation chemical composition was largely controlled by the emissions of pollutants from surrounding areas of the study city. Since 2001, sulphate deposition in precipitation decreased significantly (by 40% but nitrogen deposition remained unaltered. More importantly, the current sulphur (43 kg S ha−1 yr−1 as sulphate and nitrogen depositions (35 kg N ha−1 yr−1 as ammonium plus nitrate in 2010 were still among the highest in China. These results highlight the fact that ambient sulphur and nitrogen deposition still pose a threat to the health of both terrestrial and aquatic ecosystems. Precipitation may become more acidified in the future because the deposition of alkaline dusts containing calcium is also likely to decrease with stricter SO2 emission control policy and reduced construction activities. Additionally, we recommend that a reduction of emissions of nitrogen and chlorine bearing pollutants is urgently required for complete control on acid deposition.

  3. Trends in precipitation and streamwater chemistry in East Creek watershed in southwestern British Columbia, 1971–2008

    Directory of Open Access Journals (Sweden)

    Michael C. FELLER

    2010-08-01

    Full Text Available Bulk precipitation and streamwater in a small, undisturbed, forested watershed in southwestern British Columbia were sampled regularly and analyzed for dissolved chemical constituents from 1971 to 2008. Concentrations and fluxes of most chemicals in precipitation and streamwater have exhibited considerable yearly variation. Temporal trends, when they have occurred, have rarely been consistent for the entire 1972–2008 time period. Precipitation has exhibited a decline in electrical conductivity, a decline in NH4, inorganic-N, and total-N concentrations and fluxes since the 1980s, an increase in pH, a decline in acid H fluxes since ~1990, and a decrease in SO4 concentrations and fluxes from 1980 until the late 1990s. Streamwater has exhibited an increase in NO3 concentrations and fluxes until the late 1990s, an increase in pH and decrease in acid H fluxes since the early 1990s, a decrease in SO4 concentrations and fluxes from ~1980 until ~2000, and increases in Na and Cl concentrations and fluxes until ~2000. Critical precipitation SO4 and inorganic-N loads have probably been exceeded for most years. East Ck. watershed has continuously experienced net inflows of all forms of N and acid H, and net outflows of dissolved Si, Na, Mg, and Ca. Net inflows of inorganic forms of N and total-N have decreased since the early 1980s. Net acid H inflows have decreased since the early 1990s, while net Na and Cl outflows increased until ~2000. The contribution of nutrient cycling processes within the watershed to the changes is currently unknown.

  4. Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western US

    Energy Technology Data Exchange (ETDEWEB)

    Creamean, Jessie; Suski, Kaitlyn; Rosenfeld, Daniel; Cazorla, Alberto; DeMott, Paul J.; Sullivan, Ryan C.; White, Allen B.; Ralph, F. M.; Minnis, Patrick; Comstock, Jennifer M.; Tomlinson, Jason M.; Prather, Kimberly

    2013-03-29

    Winter storms in California’s Sierra Nevada increase seasonal snowpack and provide critical water resources for the state. Thus, the mechanisms influencing precipitation in this region have been the subject of research for decades. Previous studies suggest Asian dust enhances cloud ice and precipitation (1), while few studies consider biological aerosols as an important global source of ice nuclei (IN). Here, we show that dust and biological aerosols transported from as far as the Sahara were present in glaciated high-altitude clouds coincident with elevated IN concentrations and ice-induced precipitation. This study presents the first direct cloud and precipitation measurements showing that Saharan and Asian dust and biological aerosols likely serve as IN and play an important role in orographic precipitation processes over the western United States.

  5. L12 ordering and δ′ precipitation in Al-Cu-Li

    KAUST Repository

    Neibecker, Pascal

    2017-06-06

    The precipitation mechanism of the δ\\' (Al3Li) phase in Al-Li alloys has been controversially discussed in recent decades, specifically with respect to a conjectured congruent ordering process. However, kinetics in the Al-Li system does not allow to resolve the intermediate stages of precipitation and hence to experimentally clarify this issue. In this paper, we are revisiting the subject in ternary Al-Cu-Li alloys with pronouncedly slower kinetics, employing Transmission Electron Microscopy, High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy, Differential Scanning Calorimetry and Atom Probe Tomography. The results show clear evidence for congruent ordering in a selected compositional range, revealing an already strongly L12 ordered microstructure after natural aging with a chemically homogeneous Li distribution and a decomposition of the alloy upon annealing at elevated temperatures. The presented study of the δ\\' precipitation evaluates the reaction pathway of this process and compares it to the predictions of the Bragg-Williams-Gorsky model with respect to decomposition and ordering in this alloy system.

  6. L12 ordering and δ′ precipitation in Al-Cu-Li

    KAUST Repository

    Neibecker, Pascal; Leitner, Michael; Kushaim, Muna; Boll, Torben; Anjum, Dalaver H.; Al-Kassab, Tala’ at; Haider, Ferdinand

    2017-01-01

    The precipitation mechanism of the δ' (Al3Li) phase in Al-Li alloys has been controversially discussed in recent decades, specifically with respect to a conjectured congruent ordering process. However, kinetics in the Al-Li system does not allow to resolve the intermediate stages of precipitation and hence to experimentally clarify this issue. In this paper, we are revisiting the subject in ternary Al-Cu-Li alloys with pronouncedly slower kinetics, employing Transmission Electron Microscopy, High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy, Differential Scanning Calorimetry and Atom Probe Tomography. The results show clear evidence for congruent ordering in a selected compositional range, revealing an already strongly L12 ordered microstructure after natural aging with a chemically homogeneous Li distribution and a decomposition of the alloy upon annealing at elevated temperatures. The presented study of the δ' precipitation evaluates the reaction pathway of this process and compares it to the predictions of the Bragg-Williams-Gorsky model with respect to decomposition and ordering in this alloy system.

  7. The role of cold cues at different life stages on germination and flowering phenology.

    Science.gov (United States)

    Rubin, Matthew J; Friedman, Jannice

    2018-04-23

    The timing of major phenological transitions is critical to lifetime fitness, and life history theory predicts differences for annual and perennial plants. To correctly time these transitions, many plants rely on environmental cues such as exposure to extended periods of cold, which may occur at different stages throughout their lifetime. We studied the role of cold at different life stages, by jointly exposing seed (stratification) and rosettes (vernalization) to cold. We used 23 populations of Mimulus guttatus, which vary from annuals to perennials, and investigated how cold at one or both stages affected germination, flowering, growth, and biomass. We found that stratification and vernalization interact to affect life cycle transitions, and that cold at either stage could synchronize flowering phenology. For perennials, either stratification or vernalization is necessary for maximum flowering. We also found that germination timing covaried with later traits. Moreover, plants from environments with dissimilar climates displayed different phenological responses to stratification or vernalization. In general, cold is more important for seed germination in annuals and plants from environments with warm temperatures and variable precipitation. In contrast, cold is more important for flowering in perennials: it accelerates flowering in plants from lower precipitation environments, and it increases flowering proportion in plants from cooler, more stable precipitation environments. We discuss our findings in the context of the variable environments plants experience within a population and the variation encountered across the biogeographic native range of the species. © 2018 Botanical Society of America.

  8. Metals and metalloids in precipitation collected during CHINARE campaign from Shanghai, China, to Zhongshan Station, Antarctica: Spatial variability and source identification

    Science.gov (United States)

    Shi, G.; Teng, J.; Ma, H.; Li, Y.; Sun, B.

    2015-06-01

    Metals and metalloids in continental precipitation have been widely observed, but the data over open oceans are still very limited. Investigation of metals and metalloids in marine precipitation is of great significance to understand global transport of these elements in the atmosphere and their input fluxes to the oceans. So shipboard sampling of precipitation was conducted during a Chinese National Antarctic Research Expedition campaign from Shanghai, China, to Zhongshan Station, East Antarctica, and 22 samples (including 17 rainfall and 5 snowfall events) were collected and analyzed for concentrations of Pb, Ni, Cr, Cu, Co, Hg, As, Cd, Sb, Se, Zn, Mn, and Ti. Results show that concentrations of both metals and metalloids vary considerably along the cruise, with higher concentrations at coastal sites and lower values on the south Indian Ocean. Although only soluble fractions were determined for elements, concentrations in this study are generally comparable to the reported values of marine rain. Enrichment factor analysis shows that most of metals and metalloids are enriched versus crustal sources, even in the samples collected from remote south Indian Ocean. In addition, metals and metalloids in precipitation are also very enriched above sea-salt abundance, indicating that impacts of sea-salt aerosols on their concentrations are negligible. Main sources of metals and metalloids were explored with the aid of multivariate statistical analyses. The results show that human emissions have far-reaching distribution, which may exert an important influence on the solubility of elements in precipitation. This investigation provides valuable information on spatial variation and possible sources of trace elements in precipitation over the open oceans corresponding to understudied region.

  9. Highly Efficient Interception and Precipitation of Uranium(VI) from Aqueous Solution by Iron-Electrocoagulation Combined with Cooperative Chelation by Organic Ligands.

    Science.gov (United States)

    Li, Peng; Zhun, Bao; Wang, Xuegang; Liao, PingPing; Wang, Guanghui; Wang, Lizhang; Guo, Yadan; Zhang, Weimin

    2017-12-19

    A new strategy combining iron-electrocoagulation and organic ligands (OGLs) cooperative chelation was proposed to screen and precipitate low concentrations (0-18.52 μmol/L) of uranium contaminant in aqueous solution. We hypothesized that OGLs with amino, hydroxyl, and carboxyl groups hydrophobically/hydrophilically would realize precuring of uranyl ion at pH electrocoagulation would achieve faster and more efficient uranium precipitation. Experimentally, the strategy demonstrated highly efficient uranium(VI) precipitation efficiency, especially with hydrophilic macromolecular OGLs. The uranium removal efficiency at optimized experimental condition reached 99.65%. The decrease of zeta potential and the lattice enwrapping between U-OGLs chelates and flocculation precursor were ascribed to the enhanced uranium precipitation activity. Uranium was precipitated as oxides of U(VI) or higher valences that were easily captured in aggregated micelles under low operation current potential. The actual uranium tailing wastewater was treated, and a satisfied uranium removal efficiency of 99.02% was discovered. After elution of the precipitated flocs, a concentrated uranium solution (up to 106.52 μmol/L) with very few other metallic impurities was obtained. Therefore, the proposed strategy could remove uranium and concentrate it concurrently. This work could provide new insights into the purification and recovery of uranium from aqueous solutions in a cost-effective and environmentally friendly process.

  10. Interannual variation of annual precipitation and urban effect on precipitation in the Beijing region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The large scale character of the interannual variation of precipitation and the urban effect on local annual precipitation anomaly are investigated in this paper based on the 1960-2000 annual precipitation observations at 20 stations in the Beijing region. The results show that: the annual precipitation in the Beijing region possesses the large scale variation character with the linear trend of - 1.197/10 yr, which corresponds to a total reduction of 27.82 mm in annual precipitation in the 41 years; the local annual precipitation anomalies (percent of the normal 1960-2000) show a positive center near the urban area, i.e. urban precipitation island (UPI), whose intensity increases with the linear trend of 0. 6621%/10 yr, opposite to the interannual trend of large scale precipitation over the Beijing region; changes in the UPI are also associated with the intensity of synoptic processes of precipitation, and when the synoptic processes are strong (wet years), the intensity of UPI strengthens, while the synoptic processes are weak (dry years), and the UPI disappears in the Beijing region.

  11. Toxicity of dissolved and precipitated aluminium to marine diatoms.

    Science.gov (United States)

    Gillmore, Megan L; Golding, Lisa A; Angel, Brad M; Adams, Merrin S; Jolley, Dianne F

    2016-05-01

    Localised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as aluminium exposure varied between diatom species. C. closterium was the most sensitive species (10% inhibition of growth rate (72-h IC10) of 80 (55-100)μg Al/L (95% confidence limits)) while M. polymorphus (540 (460-600)μg Al/L) and P. tricornutum (2100 (2000-2200)μg Al/L) were less sensitive (based on measured total aluminium). Dissolved aluminium was the primary contributor to toxicity in C. closterium, while a combination of dissolved and precipitated aluminium forms contributed to toxicity in M. polymorphus. In contrast, aluminium toxicity to the most tolerant diatom P. tricornutum was due predominantly to precipitated aluminium. Preliminary investigations revealed the sensitivity of C. closterium and M. polymorphus to aluminium was influenced by initial cell density with aluminium toxicity significantly (paluminium toxicity to diatoms do not involve compromising the plasma membrane. These results indicate that marine diatoms have a broad range in sensitivity to aluminium with toxic mechanisms related to both dissolved and precipitated aluminium. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites

    International Nuclear Information System (INIS)

    Cui, Yajuan; Fang, Ruimei; Shang, Hongyan; Shi, Zhonghua; Gong, Maochu; Chen, Yaoqiang

    2015-01-01

    Highlights: • The crystallite size of precipitate increases as the precipitation temperature rises. • The stack of large crystallite can form nanoparticles with big pore size. • Big pore sizes are advantageous to improve the thermal stability. • Phase segregation is restricted in CZ solid solution precipitated at 70 °C. • The reducibility and OSC of the solid solution precipitated at 70 °C are improved. - Abstract: The ceria–zirconia composites (CZ) with a Ce/Zr mass ratio of 1/1 were synthesized by a back-titration method, in which the influence of precipitation temperature on the properties of ceria–zirconia precipitates was investigated. The resulting precipitation and mixed oxides at different precipitation temperatures were then characterized by a range of techniques, including textural properties, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR) as well as oxygen storage capacity (OSC) measurement. The results revealed that ceria–zirconia composites were formed as solid solution and such structure is favored of thermostability and texture properties. In particular, the composite CZ-70 synthesized at 70 °C exhibited prominent thermostability with a surface area of 32 m 2 /g as well as a pore volume of 0.15 cc/g after aging treatment at 1000 °C for 5 h. And this was found to be associated with the wider pore size distribution which maybe owed to the formation of large crystal at the primary stage of precipitation. Additionally, the composite CZ-70 showed excellent reduction property and OSC benefiting from stable texture and structure

  13. Short communication: The effect of changing temperature and agar concentration at proliferation stage in the final success of Aleppo pine somatic embryogenesis

    Directory of Open Access Journals (Sweden)

    Catia Pereira

    2018-01-01

    Full Text Available Aim of the study: The effect of physical and chemical conditions at proliferation stage was evaluated in order to elucidate if this stage is the determinant phase to induce a marked effect in Pinus halepensis somatic embryogenesis. Area of study: The study was conducted in research laboratories of Neiker (Arkaute, Spain. Material and methods: Pinus halepensis embryonal masses from ten embryogenic cell lines subjected to nine treatments (tissues cultured at three temperatures on media supplemented with three agar concentrations at proliferation stage. Main results: Significant differences were observed among different proliferation conditions months later at the end of maturation, germination and acclimatization stages. Research highlights: Aleppo pine embryonal masses are cultured under standard conditions on a culture medium supplemented with 4.5 g/L Gelrite® at 23ºC. However, better results in terms of plantlet production can be obtained proliferating the embryonal masses at 18ºC in a culture media with significantly lower water availability.

  14. In vivo analysis of supersaturation/precipitation/absorption behavior after oral administration of pioglitazone hydrochloride salt; determinant site of oral absorption.

    Science.gov (United States)

    Tanaka, Yusuke; Sugihara, Masahisa; Kawakami, Ayaka; Imai, So; Itou, Takafumi; Murase, Hirokazu; Saiki, Kazunori; Kasaoka, Satoshi; Yoshikawa, Hiroshi

    2017-08-30

    The purpose of this study was to evaluate in vivo supersaturation/precipitation/absorption behavior in the gastrointestinal (GI) tract based on the luminal concentration-time profiles after oral administration of pioglitazone (PG, a highly permeable lipophilic base) and its hydrochloride salt (PG-HCl) to rats. In the in vitro precipitation experiment in the classic closed system, while the supersaturation was stable in the simulated gastric condition, PG drastically precipitated in the simulated intestinal condition, particularly at a higher initial degree of supersaturation. Nonetheless, a drastic and moderate improvement in absorption was observed in vivo at a low and high dose of PG-HCl, respectively. Analysis based on the luminal concentration of PG after oral administration of PG-HCl at a low dose revealed that most of the dissolved PG emptied from the stomach was rapidly absorbed before its precipitation in the duodenum. At a high dose of PG-HCl, PG partly precipitated in the duodenum but was absorbed to some extent. Therefore, the extent of the absorption was mainly dependent on the duodenal precipitation behavior. Furthermore, a higher-than expected absorption after oral administration of PG-HCl from in vitro precipitation study may be due to the absorption process in the small intestine, which suppresses the precipitation by removal of the drug. This study successfully clarify the impact of the absorption process on the supersaturation/precipitation/absorption behavior and key absorption site for a salt formulation of a highly permeable lipophilic base based on the direct observation of in vivo luminal concentration. Our findings may be beneficial in developing an ideal physiologically based pharmacokinetic model and in vitro predictive dissolution tools and/or translating the in silico and in vitro data to the in vivo outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Precipitation in an Al-Zn-Mg-Cu alloy during isothermal aging: Atomic-scale HAADF-STEM investigation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xuesong; Zheng, Jingxu; Li, Zhi; Luo, Ruichun [School of Materials Science and Engineering, Shanghai Jiao Tong University (China); Frontier Research Center for Materials Structure, Shanghai Jiao Tong University (China); Chen, Bin, E-mail: steelboy@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University (China); Frontier Research Center for Materials Structure, Shanghai Jiao Tong University (China)

    2017-04-13

    The present study, using advanced Cs-corrected high-angle annular dark field – scanning transmission electron microscopy (HAADF-STEM), reports on a comprehensive investigation into the precipitate structures in an Al-Zn-Mg-Cu alloy aged at 150 ℃, including GP zones, η’ and η precipitates. In the nucleation stage, Zn atoms enrich on the {111}{sub Al}-planes abutting spherical Mg clusters that are approximately 3–6 nm in diameter. In the subsequent growth, the as-nucleated structures extend with an increasing diameter and a constant width along [111]{sub Al} and grow into platelet precipitates. η’ is proved to be a group of metastable structures existing in the transition from FCC Al to HCP MgZn{sub 2} (η). Some metastable structures are assembled by local-ordered rhombohedral units and orthorhombic units as building blocks. Subsequently, the precipitates evolve into η phases with stacking faults.

  16. Recent changes in the oxidized to reduced nitrogen ratio in atmospheric precipitation

    Science.gov (United States)

    Kurzyca, Iwona; Frankowski, Marcin

    2017-10-01

    In this study, the characteristics of precipitation in terms of various nitrogen forms (NO3-, NO2-, NH4+, Norganic, Ntotal) is presented. The samples were collected in the areas of different anthropogenic pressure (urban area vs. ecologically protected woodland area, ∼30 km distant from each other; Wielkopolska region, Poland). Based on the Nox and Nred emission profiles (Nox/Nred ratio), temporal and spatial comparison was carried out. For both sites, during a decade of observation, more than 60% of samples had higher contribution of N-NH4+ than N-NO3-, the amount of N-NO2- was negligible, and organic nitrogen amounted to 30% of total nitrogen content which varied up to 16 mg/l. The precipitation events w ith high concentration of nitrogen species were investigated in terms of possible local and remote sources of nitrogen (synoptic meteorology), to indicate the areas which can act as potential sources of N-compounds. Based on the chemometric analysis, it was found that Nred implies Nox and vice versa, due to interactions between them in the atmosphere. Taking into account the analysis of precipitation occurring simultaneously in both locations (about 50% of all rainfall episodes), it was observed that such factor as anthropogenic pressure differentiates but does not determine the chemical composition of precipitation in the investigated areas (urban vs. woodland area; distance of ∼30 km). Thermodynamics of the atmosphere had a significant impact on concentrations of N-NO3- and N-NH4+ in precipitation, as well as the circulation of air masses and remote N sources responsible for transboundary inflow of pollutants.

  17. Effect of Terbuthylazine-2-hydroxy at Environmental Concentrations on Early Life Stages of Common Carp (Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Josef Velisek

    2014-01-01

    Full Text Available The aim of the study was to investigate effects of the triazine’s herbicide terbuthylazine-2-hydroxy on early life stage of common carp (Cyprinus carpio L. through antioxidant indices, mortality, growth, development, and histopathology. Based on accumulated mortality in the experimental groups, lethal concentrations of terbuthylazine-2-hydroxy were estimated at 35-day LC50 = 10.9 mg/L terbuthylazine-2-hydroxy. By day 15, fish were exposed to 3.5 mg/L and by day 26, fish were exposed to 0.0029 mg/L; real environmental concentration in Czech rivers, 0.07 mg/L, 1.4 mg/L, and 3.5 mg/L terbuthylazine-2-hydroxy, showed significantly lower mass and total length compared with controls. Based on inhibition of growth in the experimental groups, lowest observed effect concentration (LOEC = 0.002 mg/L terbuthylazine-2-hydroxy and no observed effect concentration (NOEC = 0.0001 mg/L terbuthylazine-2-hydroxy. No significant negative effects on hatching or embryo viability were demonstrated at the concentrations tested, but significant differences in early ontogeny among groups were noted. Fish from the two highest tested concentrations showed a dose-related delay in development compared with the controls. Total superoxide dismutase (SOD activity was significant lower in all groups testedly for terbuthylazine-2-hydroxy compared with the control group. At concentrations of 1.4 and 3.5 mg/L damage to caudal kidney tubules when compared to control fish was found.

  18. Kinetics of struvite to newberyite transformation in the precipitation system MgCl2-NH4H2PO4NaOH-H2O.

    Science.gov (United States)

    Babić-Ivancić, Vesna; Kontrec, Jasminka; Brecević, Ljerka; Kralj, Damir

    2006-10-01

    The influence of the initial reactant concentrations on the composition of the solid phases formed in the precipitation system MgCl(2)-NH(4)H(2)PO(4)-NaOH-H(2)O was investigated. The precipitation diagram constructed shows the approximate concentration regions within which struvite, newberyite, and their mixtures exist at 25 degrees C and an aging time of 60 min. It was found that immediately after mixing the reactant solutions, struvite (MgNH(4)PO(4).6H(2)O) precipitated in nearly the whole concentration area, while newberyite (MgHPO(4).3H(2)O) appeared mostly within the region of the excess of magnesium concentration. It was also found that after aging time of 60 min the precipitation domain of struvite alone is much broader than that of newberyite or the domain of their coexistence, and shows that struvite is more abundant in the systems in which the initial concentration of ammonium phosphate is higher than that of magnesium. The kinetics of struvite to newberyite transformation (conversion) was systematically studied under the conditions of different initial reactant concentrations and different initial pH in the systems in which a mixture of both phases precipitated spontaneously. The struvite to newberyite conversion period was found to be strongly related to the ratio of initial supersaturations, S(N)/S(S), rather than to the any particular physical quantity that can describe and predict the behavior of the precipitation system. Experimental data suggest a solution-mediated process as a most possible transformation mechanism. Along with a continuous monitoring of the changes in the liquid phase, the content of struvite in the solid phase was estimated by means of a Fourier transform infrared (FT-IR) method, developed for this particular precipitation system.

  19. Research on a pellet co-precipitation micro-filtration process for the treatment of liquid waste containing strontium

    International Nuclear Information System (INIS)

    Xin Luo; North China Institute of Science and Technology, Beijing; Guanghui Zhang; Xue Wang; Ping Gu

    2013-01-01

    The chemical precipitation method for radioactive wastewater treatment has the advantages of being simple and cost-effective. However, difficulties with the solid–liquid separation and sludge concentration restrict the application of this method. In this paper, a pellet co-precipitation micro-filtration (PCM) process was studied for treating strontium-containing wastewater on a laboratory scale. The seed was prepared by CaCO 3 powders. Sr 2+ and CO 3 2- were constantly crystallised on the seed surface, with Na 2 CO 3 as the precipitating agent in the pellet reactor. The following membrane separator with the addition of FeCl 3 enhanced the treatment effect. The average strontium concentrations in the raw water and in the effluent were 12.0 and 0.0220 mg/L, respectively. The strontium decontamination factor (DF) increased with the operation time, with an average value of 577. The precipitate particles formed gradually grew larger, with good sedimentation properties. When the experiment was complete, the formed precipitate was separated easily from the liquid phase and directly discharged. The concentration factor (CF) was 1,958. In the PCM process, crystallisation was the main mechanism for strontium removal, with the influent strontium level playing an important role. Membrane pore blockage and cake layer formation could help to further intercept the strontium crystallites. Furthermore, ferric chloride coagulation in the membrane separator also contributed to strontium removal. The PCM process has potential for wider application in the removal of strontium from wastewater. (author)

  20. Irradiation-induced precipitates in a neutron irradiated 304 stainless steel studied by three-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, T., E-mail: ttoyama@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Nozawa, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Van Renterghem, W. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Matsukawa, Y.; Hatakeyama, M.; Nagai, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Al Mazouzi, A. [EDF R and D, Avenue des Renardieres Ecuelles, 77818 Moret sur Loing Cedex (France); Van Dyck, S. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium)

    2011-11-15

    Highlights: > Irradiation-induced precipitates in a 304 stainless steel were investigated by three-dimensional atom probe. > The precipitates were found to be {gamma}' precipitates (Ni{sub 3}Si). > Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening. - Abstract: Irradiation-induced precipitates in a 304 stainless steel, neutron-irradiated to a dose of 24 dpa at 300 deg. C in the fuel wrapper plates of a commercial pressurized water reactor, were investigated by laser-assisted three-dimensional atom probe. A high number density of 4 x 10{sup 23} m{sup -3} of Ni-Si rich precipitates was observed, which is one order of magnitude higher than that of Frank loops. The average diameter was {approx}10 nm and the average chemical composition was 40% Ni, 14% Si, 11% Cr and 32% Fe in atomic percent. Over a range of Si concentrations, the ratio of Ni to Si was {approx}3, close to that of {gamma}' precipitate (Ni{sub 3}Si). In some precipitates, Mn enrichment inside the precipitate and P segregation at the interface were observed. Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening.

  1. Determination of trifluoroacetic acid in 1996--1997 precipitation and surface waters in California and Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wujcik, C.E.; Cahill, T.M.; Seiber, J.N. [Univ. of Nevada, Reno, NV (United States)

    1999-05-15

    The atmospheric degradation of three chlorofluorocarbon (CFC) replacement compounds, namely HFC-134a, HCFC-123, and HCFC-124, results in the formation of trifluoroacetic acid (TFA). Concentrations of TFA were determined in precipitation and surface water samples collected in California and Nevada during 1996--1997. Terminal lake systems were found to have concentrations 4--13 times higher than their calculated yearly inputs, providing evidence for accumulation. The results support dry deposition as the primary contributor of TFA to surface waters in arid and semiarid environments. Precipitation samples obtained from three different locations contained 20.7--1530 ng/L with significantly higher concentrations in fogwater over rainwater. Elevated levels of TFA were observed for rainwater collected in Nevada over those collected in California, indicating continual uptake and concentration as clouds move from a semiarid to arid climate. Thus several mechanisms exist, including evaporative concentration, vapor-liquid phase partitioning, lowered washout volumes of atmospheric deposition water, and dry deposition, which may lead to elevated concentrations of TFA in atmospheric and surface waters above levels expected from usual rainfall washout.

  2. Two-stage combined treatment of acid mine drainage and municipal wastewater.

    Science.gov (United States)

    Deng, Dongyang; Lin, Lian-Shin

    2013-01-01

    This study examined the feasibility of the combined treatment of field-collected acid mine drainages (AMD, pH = 4.2 ± 0.9, iron = 112 ± 118 mg/L, sulfate = 1,846 ± 594 mg/L) and municipal wastewater (MWW, avg. chemical oxygen demand (COD) = 234-333 mg/L) using a two-stage process. The process consisted of batch mixing of the two wastes to condition the mixture solutions, followed by anaerobic biological treatment. The mixings performed under a range of AMD/MWW ratios resulted in phosphate removal of 9 to ∼100%, the mixture pH of 6.2-7.9, and COD/sulfate concentration ratio of 0.05-5.4. The biological treatment consistently removed COD and sulfate by >80% from the mixture solutions for COD/sulfate ratios of 0.6-5.4. Alkalinity was produced in the biological treatment causing increased pH and further removal of metals from the solutions. Scanning electron microscopy of produced sludge with energy dispersion analysis suggested chemical precipitation and associated adsorption and co-precipitation as the mechanisms for metal removal (Fe: >99%, Al: ∼100%, Mn: 75 to ∼100%, Ca: 52-81%, Mg: 13-76%, and Na: 56-76%). The study showed promising results for the treatment method and denoted the potential of developing innovative technologies for combined management of the two wastes in mining regions.

  3. Chemical characteristics, deposition fluxes and source apportionment of precipitation components in the Jiaozhou Bay, North China

    Science.gov (United States)

    Xing, Jianwei; Song, Jinming; Yuan, Huamao; Li, Xuegang; Li, Ning; Duan, Liqin; Qu, Baoxiao; Wang, Qidong; Kang, Xuming

    2017-07-01

    To systematically illustrate the chemical characteristics, deposition fluxes and potential sources of the major components in precipitation, 49 rainwater and snow water samples were collected in the Jiaozhou Bay from June 2015 to May 2016. We determined the pH, electric conductivity (EC) and the concentrations of main ions (Na+, K+, Ca2 +, Mg2 +, NH4+, SO42 -, NO3-, Cl- and F-) as well as analyzed their source contributions and atmospheric transport. The results showed that the precipitation samples were severely acidified with an annual volume-weighted mean (VWM) pH of 4.77. The frequency of acid precipitation (pH pollution level over the Jiaozhou Bay. Surprisingly, NH4+ (40.4%), which is higher than Ca2 + (29.3%), is the dominant species of cations, which is different from that in most areas of China. SO42 - was the most abundant anions, and accounted for 41.6% of the total anions. The wet deposition fluxes of sulfur (S) was 12.98 kg ha- 1 yr- 1. Rainfall, emission intensity and long-range transport of natural and anthropogenic pollutants together control the concentrations and wet deposition fluxes of chemical components in the precipitation. Non-sea-salt SO42 - and NO3- were the primary acid components while NH4+ and non-sea-salt Ca2 + were the dominating neutralizing constituents. The comparatively lower rainwater concentration of Ca2 + in the Jiaozhou Bay than that in other regions in Northern China likely to be a cause for the strong acidity of precipitation. Based on the combined enrichment factor and correlation analysis, the integrated contributions of sea-salt, crustal and anthropogenic sources to the total ions of precipitation were estimated to be 28.7%, 14.5% and 56.8%, respectively. However, the marine source fraction of SO42 - may be underestimated as the contribution from marine phytoplankton was neglected. Therefore, the precipitation components in the Jiaozhou Bay present complex chemical characteristics under the combined effects of natural

  4. Identifying Patterns in Extreme Precipitation Risk and the Related Impacts

    Science.gov (United States)

    Schroeer, K.; Tye, M. R.

    2017-12-01

    Extreme precipitation can harm human life and assets through flooding, hail, landslides, or debris flows. Flood risk assessments typically concentrate on river or mountain torrent channels, using water depth, flow velocity, and/or sediment deposition to quantify the risk. In addition, extreme events with high recurrence intervals are often the main focus. However, damages from short-term and localized convective showers often occur away from watercourses. Also, damages from more frequent small scale extremes, although usually less disastrous, can accumulate to considerable financial burdens. Extreme convective precipitation is expected to intensify in a warmer climate, and vulnerability patterns might change in tandem with changes in the character of precipitation and flood types. This has consequences for adaptation planners who want to establish effective protection measures and reduce the cost from natural hazards. Here we merge hydrological and exposure data to identify patterns of risk under varying synoptic conditions. Exposure is calculated from a database of 76k damage claims reported to the national disaster fund in 480 municipalities in south eastern Austria from 1990-2015. Hydrological data comprise sub-daily precipitation (59 gauges) and streamflow (62 gauges) observations. We use synoptic circulation types to identify typical precipitation patterns. They indicate the character of precipitation even if a gauge is not in close proximity, facilitating potential future research with regional climate model data. Results show that more claims are reported under synoptic conditions favouring convective precipitation (on average 1.5-3 times more than on other days). For agrarian municipalities, convective precipitation damages are among the costliest after long low-intensity precipitation events. In contrast, Alpine communities are particularly vulnerable to convective high-intensity rainfall. In addition to possible observational error, uncertainty is present

  5. Cluster Analysis of Monthly Precipitation over the Western Maritime Continent under Climate Change

    Directory of Open Access Journals (Sweden)

    Saurabh K Singh

    2017-11-01

    Full Text Available Changes in climate because of global warming during the 20th and 21st centuries have a direct impact on the hydrological cycle as driven by precipitation. However, studying precipitation over the Western Maritime Continent (WMC is a great challenge, as the WMC has a complex topography and weather system. Understanding changes in precipitation patterns and their groupings is an important aspect of planning mitigation measures to minimize flood and drought risk as well as of understanding the redistribution of precipitation arising from climate change. This paper employs Ward’s hierarchical clustering on regional climate model (RCM-simulated monthly precipitation gridded data over 42 approximately evenly distributed grid stations from the years 2030 to 2060. The aim was to investigate spatial and temporal groupings over the four major landmasses in the WMC and to compare these with historical precipitation groupings. The results showed that the four large-scale islands of Java, Sumatra, Peninsular Malaysia and Borneo would experience a significant spatial redistribution of precipitation over the years 2030 to 2060, as compared to historical patterns from 1980 to 2005. The spatial groups were also compared for two future forcing scenarios, representative concentration pathways (RCPs 4.5 and 8.5, and different groupings over the Borneo region were observed.

  6. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model

    Directory of Open Access Journals (Sweden)

    Akio Kitoh

    2016-03-01

    Full Text Available High-resolution modeling is necessary to project weather and climate extremes and their future changes under global warming. A global high-resolution atmospheric general circulation model with grid size about 20 km is able to reproduce climate fields as well as regional-scale phenomena such as monsoonal rainfall, tropical and extratropical cyclones, and heavy precipitation. This 20-km mesh model is applied to project future changes in weather and climate extremes at the end of the 21st century with four different spatial patterns in sea surface temperature (SST changes: one with the mean SST changes by the 28 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5 under the Representative Concentration Pathways (RCP-8.5 scenario, and the other three obtained from a cluster analysis, in which tropical SST anomalies derived from the 28 CMIP5 models were grouped. Here we focus on future changes in regional precipitation and its extremes. Various precipitation indices averaged over the Twenty-two regional land domains are calculated. Heavy precipitation indices (maximum 5-day precipitation total and maximum 1-day precipitation total increase in all regional domains, even where mean precipitation decrease (Southern Africa, South Europe/Mediterranean, Central America. South Asia is the domain of the largest extreme precipitation increase. In some domains, different SST patterns result in large precipitation changes, possibly related to changes in large-scale circulations in the tropical Pacific.

  7. New pathway of stratocumulus to cumulus transition via aerosol-cloud-precipitation interaction

    Science.gov (United States)

    Yamaguchi, T.; Feingold, G.; Kazil, J.

    2017-12-01

    The stratocumulus to cumulus transition (SCT) is typically considered to be a slow, multi-day process, caused primarily by dry air entrainment associated with overshooting cumulus rising under stratocumulus, with minor influence of precipitation. In this presentation, we show rapid SCT induced by a strong precipitation-induced modulation with Lagrangian SCT large eddy simulations. A large eddy model is coupled with a two-moment bulk microphysics scheme that predicts aerosol and droplet number concentrations. Moderate aerosol concentrations (100-250 cm-3) produce little to no drizzle from the stratocumulus deck. Large amounts of rain eventually form and wash out stratocumulus and much of the aerosol, and a cumulus state appears for approximately 10 hours. Initiation of strong rain formation is identified in penetrative cumulus clouds which are much deeper than stratocumulus, and they are able to condense large amounts of water. We show that prediction of cloud droplet number is necessary for this fast SCT since it is a result of a positive feedback of collision-coalescence induced aerosol depletion enhancing drizzle formation. Simulations with fixed droplet concentrations that bracket the time varying aerosol/drop concentrations are therefore not representative of the role of drizzle in the SCT.

  8. Precipitation of uranium peroxide from the leach liquor of uranium ores

    International Nuclear Information System (INIS)

    Gao Xizhen; Lin Sirong; Guo Erhua; Lu Shijie

    1995-06-01

    A chemical precipitation process of recovering uranium from the leach liquor of uranium ores was investigated. The process primarily includes the precipitation of iron with lime, the preprocessing of the slurry of iron hydroxides and the precipitation of uranium with H 2 O 2 . The leach liquor is neutralized by lime milk to pH 3.7 to precipitate the iron hydroxides which after flocculation and settle is separated out and preprocessed at 170 degree C in an autoclave. H 2 O 2 is then used to precipitate uranium in the leach liquor free of iron, and the pH of process for uranium precipitation adjusted by adding MgO slurry to 3.5. The barren solution can be used to wash the filter cakes of leach tailing. The precipitated slurry of iron hydroxides after being preprocessed is recycled to leaching processes for recovering uranium in it. This treatment can not only avoid the filtering of the slurry of iron hydroxides, but also prevent the iron precipitate from redissolving and consequently the increase of iron concentration in the leach liquor. The results of the investigation indicate that lime, H 2 O 2 and MgO are the main chemical reagents used to obtain the uranium peroxide product containing over 65% uranium from the leach liquor, and they also do not cause environmental pollution. In accordance with the uranium content in the liquor, the consumption of chemical reagent for H 2 O 2 (30%) and MgO are 0.95 kg/kgU and 0.169 kg/kgU, respectively. (1 fig., 8 tabs., 7 refs.)

  9. The global precipitation response to volcanic eruptions in the CMIP5 models

    International Nuclear Information System (INIS)

    Iles, Carley E; Hegerl, Gabriele C

    2014-01-01

    We examine the precipitation response to volcanic eruptions in the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations compared to three observational datasets, including one with ocean coverage. Global precipitation decreases significantly following eruptions in CMIP5 models, with the largest decrease in wet tropical regions. This also occurs in observational land data, and ocean data in the boreal cold season. Monsoon rainfall decreases following eruptions in both models and observations. In response to individual eruptions, the ITCZ shifts away from the hemisphere with the greater concentration of aerosols in CMIP5. Models undergo a longer-lasting ocean precipitation response than over land, but the response in the short satellite record is too noisy to confirm this. We detect the influence of volcanism on precipitation in all three datasets in the cold season, although the models underestimate the size of the response. In the warm season the volcanic influence is only marginally detectable. (letter)

  10. Analysis on Climatic Characteristics of the Precipitation Anomaly in Southwest China in Recent 60 Years

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Rong; PANG; Jing; QIN; Jun

    2012-01-01

    [Objective]The research aimed to analyze temporal-spatial distribution characteristics of the precipitation anomaly in southwest China from 1951 to 2010. [Method] Based on monthly precipitation data at 44 stations of southwest China and 160 stations of China from 1951 to 2010, by using EOF analysis, wavelet analysis and composite analysis, monthly and seasonal change rules of the precipitation in southwest China were analyzed. Corresponding spatial-temporal distribution characteristics of the precipitation in drought and flood years were studied. Temporal-spatial distribution characteristics of the precipitation anomaly in southwest China in recent 60 years were revealed. [Result]Seasonal distribution of the precipitation in southwest China was uneven and was typical single-peak type. Precipitation concentrated from May to September, and peak appeared in July. In recent years, rainfall in autumn significantly became less, while that in other seasons had no obvious change. Precipitation in summer had the cycle of 14 years, another for 6 years and 3-4 years of periodic oscillations. In wet years, precipitation in southwest China had same phase with that in southern China, and anti-phase with that in the junction of Qinghai, Gansu, Xinjiang and Tibet. In dry years, precipitation in southwest China had same phase with that in the eastern part of northwest China and northern China. [Conclusion]The research provided reference basis for prediction and pre-warning of the precipitation in the zone.

  11. Increasing importance of precipitation variability on global livestock grazing lands

    Science.gov (United States)

    Sloat, Lindsey L.; Gerber, James S.; Samberg, Leah H.; Smith, William K.; Herrero, Mario; Ferreira, Laerte G.; Godde, Cécile M.; West, Paul C.

    2018-03-01

    Pastures and rangelands underpin global meat and milk production and are a critical resource for millions of people dependent on livestock for food security1,2. Forage growth, which is highly climate dependent3,4, is potentially vulnerable to climate change, although precisely where and to what extent remains relatively unexplored. In this study, we assess climate-based threats to global pastures, with a specific focus on changes in within- and between-year precipitation variability (precipitation concentration index (PCI) and coefficient of variation of precipitation (CVP), respectively). Relating global satellite measures of vegetation greenness (such as the Normalized Difference Vegetation Index; NDVI) to key climatic factors reveals that CVP is a significant, yet often overlooked, constraint on vegetation productivity across global pastures. Using independent stocking data, we found that areas with high CVP support lower livestock densities than less-variable regions. Globally, pastures experience about a 25% greater year-to-year precipitation variation (CVP = 0.27) than the average global land surface area (0.21). Over the past century, CVP has generally increased across pasture areas, although both positive (49% of pasture area) and negative (31% of pasture area) trends exist. We identify regions in which livestock grazing is important for local food access and economies, and discuss the potential for pasture intensification in the context of long-term regional trends in precipitation variability.

  12. A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium

    International Nuclear Information System (INIS)

    Robson, J.D.

    2004-01-01

    A model has been developed to predict precipitation of ternary Al 3 (Sc, Zr) dispersoids in aluminium alloys containing zirconium and scandium. The model is based on the classical numerical method of Kampmann and Wagner, extended to predict precipitation of a ternary phase. The model has been applied to the precipitation of dispersoids in scandium containing AA7050. The dispersoid precipitation kinetics and number density are predicted to be sensitive to the scandium concentration, whilst the dispersoid radius is not. The dispersoids are predicted to enrich in zirconium during precipitation. Coarsening has been investigated in detail and it has been predicted that a steady-state size distribution is only reached once coarsening is well advanced. The addition of scandium is predicted to eliminate the dispersoid free zones observed in scandium free 7050, greatly increasing recrystallization resistance

  13. Recovery of nickel and cobalt as MHP from limonitic ore leaching solution: Kinetics analysis and precipitate characterization

    Science.gov (United States)

    Safitri, Nina; Mubarok, M. Zaki; Winarko, Ronny; Tanlega, Zela

    2018-05-01

    In the present study, precipitation of nickel and cobalt as mixed hydroxide precipitate (MHP) from pregnant leach solution of nickel limonite ore from Soroako after iron removal stage was carried out. A series of MHP precipitation experiments was conducted by using MgO slurry as neutralizing agent and the effects of pH, temperature, duration of precipitation and the addition of MHP seed on the precipitation behavior of nickel, cobalt, as well as iron and manganese was studied. Characterization of MHP product was performed by particle size analyzer (PSA) as well as X-Ray Fluorescence (XRF), X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM) analyses. Kinetics analysis was made by using differential-integral method for the rate of homogenous reaction. Precipitation at pH 7, temperature 50°C for 30 minute, without seed addition resulted in nickel and cobalt recoveries of 82.8% and 92%, respectively with co-precipitated iron and manganese of 70% and 24.2%, respectively. The seed addition increases nickel and cobalt precipitations significantly to 99.9% and 99.1%, respectively. However, the addition of seed into led to a significant increase of manganese co-precipitation from 24.2% without seed addition to 39.5% at the addition of 1 g seed per 200 mL of PLS. Kinetics analysis revealed that Ni precipitation to form MHP follows the second-order reaction kinetics with activation energy of 94.6 kJ/mol.

  14. Hydromagnesite precipitation in the Alkaline Lake Dujiali, central Qinghai-Tibetan Plateau: Constraints on hydromagnesite precipitation from hydrochemistry and stable isotopes

    International Nuclear Information System (INIS)

    Lin, Yongjie; Zheng, Mianping; Ye, Chuanyong

    2017-01-01

    The mineral hydromagnesite, Mg 5 (CO 3 ) 4 (OH) 2 ·4H 2 O, is a common form of hydrated Mg-carbonate in alkaline lakes, yet the processes involved in its formation are not well understood. This study focuses on Dujiali Lake, in the central Qinghai-Tibetan Plateau (QTP), which is one of the few environments on the earth's surface with extensive Holocene precipitation of hydromagnesite. The hydrogeochemistry of surface waters, and the mineralogical, stable isotope (δ 13 C and δ 18 O), and radiogenic isotope content of hydromagnesite deposits were analyzed to investigate formation mechanisms. The chemical composition of surface water around Dujiali Lake evolved from the rock-weathering-type waters of T1 (Ca−Mg−HCO 3 water type) to more concentrated sodic waters of T2 (Na−SO 4 −Cl water type) due to evaporation. XRD results show that the mineralogical composition of samples is pure hydromagnesite. Analysis of oxygen isotopes in the hydromagnesite indicates that supergene formation with authigenic carbonate crystallization from evaporation water is the dominant precipitation process. Combined carbon-oxygen isotope analysis suggests atmospheric CO 2 provided a carbon source for the precipitation of hydromagnesite. These findings suggest that hydromagnesite precipitation at Lake Dujiali is mainly inorganic in nature, and the greenhouse gas, CO 2 , is trapped and stored in the hydromagnesite directly from the atmosphere. AMS radiocarbon dating of samples indicates CO 2 was sequestered between 5845 ± 30 to 6090 ± 25 cal a BP in the Dujiali Lake hydromagnesite deposit. The study contributes to improved understanding of hydromagnesite formation in modern and ancient playas. - Highlights: • The stable isotopes, radiogenic isotope data are firstly obtained from the hydromagnesite deposits of Lake Dujiali in QTP. • Hydromagnesite precipitation at Lake Dujiali is mainly inorganic. • δ 18 O indicates supergene formation with authigenic carbonate

  15. Isotopic evidence of boron in precipitation originating from coal burning in Asian continent

    International Nuclear Information System (INIS)

    Sakata, Masahiro; Natsumi, Masahiro; Tani, Yukinori

    2010-01-01

    The boron concentration and isotopic composition (δ 11 B) of precipitation collected from December 2002 to March 2006 at three sites on the Japan Sea coast were measured. Those sites have been considerably affected by the long-range transport of air pollutants from the Asian continent during winter and spring when the airflows from the Asian continent are predominant. The boron concentration in the precipitation increased primarily during winter whereas the δ 11 B decreased during winter or spring. It is assumed that this decrease in δ 11 B is not associated with a Rayleigh distillation process, because the previous δD values of the precipitation collected at a site on the Japan Sea coast did not decrease in the same manner. A weak correlation (r 2 =0.13-0.24, P 11 B and the nonsea-salt sulfate (nss-SO 4 2- )/B ratio at each site, suggesting that boron in the precipitation originate primarily from two sources. The first source, which is characterized by high δ 11 B and nss-SO 4 2- /B=0, is seawater. At the northern site, the enrichment factor for boron in the precipitation relative to seawater approached unity during winter. This implies that much of the boron in the precipitation is derived from unfractionated sea salts rather than gaseous boron evaporated from seawater. The second source is characterized by low δ 11 B and high nss-SO 4 2- /B ratio. Most of the nss-SO 4 2- in the precipitation originates from anthropogenic combustion activities in the Asian continent based on the previous model calculations. Coal accounts for a major portion of the total primary energy supply in China. Moreover, coal enriches boron and represents generally negative δ 11 B values. Hence, we propose that the emission of boron from coal burning is the most likely second source. Thus, boron isotopes may be useful as tracers of coal-burning plumes from the Asian continent. (author)

  16. Silver precipitation from electrolytic effluents; Precipitacion de plata de efluentes electroliticos

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, I.; Patino, F.; Cruells, M.; Roca, A.; Vinals, J.

    2004-07-01

    The recovery of silver contained in electrolytic effluents is attractive due to its high economic value. These effluents are considered toxic wastes and it is not possible to dump them directly without any detoxification process. One of the most important way for silver recovery is the precipitation with sodium ditionite, sodium borohidride or hydrazine monohidrate. In this work, the most significant aspects related to the use of these reagents is presented. Results of silver precipitation with sodium ditionite from effluents containing thiosulfate without previous elimination of other species are also presented. silver concentration in the final effluents w <1 ppm. (Author) 15 refs.

  17. Procedure for reducing hydrogen ion concentration in acidic anion eluate

    International Nuclear Information System (INIS)

    Parobek, P.; Baloun, S.; Plevac, S.

    1992-01-01

    A procedure is suggested for reducing the concentration of hydrogen ions in the acidic anionic eluate formed during the separation of uranium. The procedure involves anex elution, precipitation, filtration, precipitate rinsing, and anex rinsing. The procedure is included in the uranium elution process and requires at least one ion exchanger column and at least one tank in the continuous or discontinuous mode. Sparing the neutralizing agent by reducing the hydrogen ion concentration in the acidic anionic eluate is a major asset of this procedure. (Z.S.). 1 fig

  18. Determination of the radioactive concentration of 137Cs in soil

    International Nuclear Information System (INIS)

    1987-01-01

    According to the latest Hungarian standard valid from January 1987 the activity concentration of 137 Cs in soil is determined based on the measurement of beta disintegration rate following the radiochemical separation of cesium ion. Soil samples are destructed with strong acid. Dissolved cesium is retained selectively by ammonium-molybdo-phosphate in a batch process. The inorganic ion-exchanger is dissoled with concentrated sodium-hydroxide, and, finally, cesium ion is precipitated with hexa-chloro-platinate. In the course of beta detection self-absoprtion of the precipitate must be corrected. (V.N.)

  19. Apparatus and methods for regeneration of precipitating solvent

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang; Bonsu, Alexander

    2015-08-25

    A regenerator that can handle rich loaded chemical solvent containing precipitated absorption reaction products is disclosed. The invention is particularly suitable for separating CO.sub.2 from large gas streams that are typical of power plant processes. The internally circulating liquid stream in the regenerator (ICLS regenerator) rapidly heats-up the in-coming rich solvent stream in a downcomer standpipe as well as decreases the overall concentration of CO.sub.2 in the mixed stream. Both these actions lead to dissolution of precipitates. Any remaining precipitate further dissolves as heat is transferred to the mixed solution with an inverted bayonet tube heat exchanger in the riser portion of the regenerator. The evolving CO.sub.2 bubbles in the riser portion of the regenerator lead to substantial gas hold-up and the large density difference between the solutions in the downcomer standpipe and riser portions promotes internal circulation of the liquid stream in the regenerator. As minor amounts of solvent components present in the exit gas stream are condensed and returned back to the regenerator, pure CO.sub.2 gas stream exits the disclosed regenerator and condenser system.

  20. Production of Protein Concentrate and 1,3-Propanediol by Wheat-Based Thin Stillage Fermentation.

    Science.gov (United States)

    Ratanapariyanuch, Kornsulee; Shim, Youn Young; Emami, Shahram; Reaney, Martin J T

    2017-05-17

    Fermentation of wheat with yeast produces thin stillage (W-TS) and distiller's wet grains. A subsequent fermentation of W-TS (two-stage fermentation, TSF) with endemic bacteria at 25 and 37 °C decreased glycerol and lactic acid concentrations, while 1,3-propanediol (1,3-PD) and acetic acid accumulated with greater 1,3-PD and acetic acid produced at 37 °C. During TSF, W-TS colloids coagulated and floated in the fermentation medium producing separable liquid and slurry fractions. The predominant endemic bacteria in W-TS were Lactobacillus panis, L. gallinarum, and L. helveticus, and this makeup did not change substantially as fermentation progressed. As nutrients were exhausted, floating particles precipitated. Protein contents of slurry and clarified liquid increased and decreased, respectively, as TSF progressed. The liquid was easily filtered through an ultrafiltration membrane. These results suggested that TSF is a novel method for W-TS clarification and production of protein concentrates and 1,3-PD from W-TS.