WorldWideScience

Sample records for concentrate fuel alcohol

  1. Control device of air-fuel ratio of alcohol-gasoline mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazuo

    1987-08-19

    Concerning alcohol-gasoline mixed fuel, even the same amount of the fuel shows different air-fuel ratio depending upon alcohol concentration in the fuel, accordingly it is required to know the alcohol concentration when it is intended to make the air-fuel ratio to be the same as the predetermined ratio. Although a sensor which can detect in quick response and exactly the alcohol concentration has not been developed, the alcohol concentration in gasoline can be detected by detecting the concentration of the water in exhaust gas and many hygrometers which can detect the concentration of the water with high precision are available. With regard to an internal combustion engine equipped with a fuel supply device in order to supply alcohol-gasoline mixed fuel into an engine suction passage, this invention offers an air-fuel ratio control device to control the amount of the fuel to be supplied from the fuel supply device by detecting the concentration of alcohol in the gasoline from among the output signals of the main hygrometer and the auxiliary hygrometer. The former hygrometer to detect the concentration of the water in the exhaust gas is set in the engine exhaust gas passage and the latter is installed to detect the concentration of the water in the air. (4 figs)

  2. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-08-17

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines. Utilizing higher-molecular-weight alcohols as fuels requires careful analysis of their fuel properties. ASTM standards provide fuel property requirements for spark-ignition (SI) and compression-ignition (CI) engines such as the stability, lubricity, viscosity, and cold filter plugging point (CFPP) properties of blends of higher alcohols. Important combustion properties that are studied include laminar and turbulent flame speeds, flame blowout/extinction limits, ignition delay under various mixing conditions, and gas-phase and particulate emissions. The chapter focuses on the combustion of higher alcohols in reciprocating SI and CI engines and discusses higher alcohol performance in SI and CI engines. Finally, the chapter identifies the sources, production pathways, and technologies currently being pursued for production of some fuels, including n-butanol, iso-butanol, and n-octanol.

  3. Fuel alcohol opportunities for Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Greenglass, Bert

    1980-08-01

    Prepared at the request of US Senator Birch Bayh, Chairman of the National Alcohol Fuels Commission, this study may be best utilized as a guidebook and resource manual to foster the development of a statewide fuel alcohol plan. It examines sectors in Indiana which will impact or be impacted upon by the fuel alcohol industry. The study describes fuel alcohol technologies that could be pertinent to Indiana and also looks closely at how such a fuel alcohol industry may affect the economic and policy development of the State. Finally, the study presents options for Indiana, taking into account the national context of the developing fuel alcohol industry which, unlike many others, will be highly decentralized and more under the control of the lifeblood of our society - the agricultural community.

  4. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-01-01

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines

  5. Alcohol fuels for developing countries

    International Nuclear Information System (INIS)

    Bhattacharya, Partha

    1993-01-01

    The importance of alcohol as an alternative fuel has been slowly established. In countries such as Brazil, they are already used in transport and other sectors of economy. Other developing countries are also trying out experiments with alcohol fuels. Chances of improving the economy of many developing nations depends to a large extent on the application of this fuel. The potential for alcohol fuels in developing countries should be considered as part of a general biomass-use strategy. The final strategies for the development of alcohol fuel will necessarily reflect the needs, values, and conditions of the individual nations, regions, and societies that develop them. (author). 5 refs

  6. Alcohol fuels program technical review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-07-01

    The last issue of the Alcohol Fuels Process R/D Newsletter contained a work breakdown structure (WBS) of the SERI Alcohol Fuels Program that stressed the subcontracted portion of the program and discussed the SERI biotechnology in-house program. This issue shows the WBS for the in-house programs and contains highlights for the remaining in-house tasks, that is, methanol production research, alcohol utilization research, and membrane research. The methanol production research activity consists of two elements: development of a pressurized oxygen gasifier and synthesis of catalytic materials to more efficiently convert synthesis gas to methanol and higher alcohols. A report is included (Finegold et al. 1981) that details the experimental apparatus and recent results obtained from the gasifier. The catalysis research is principally directed toward producing novel organometallic compounds for use as a homogeneous catalyst. The utilization research is directed toward the development of novel engine systems that use pure alcohol for fuel. Reforming methanol and ethanol catalytically to produce H/sub 2/ and CO gas for use as a fuel offers performance and efficiency advantages over burning alcohol directly as fuel in an engine. An application of this approach is also detailed at the end of this section. Another area of utilization is the use of fuel cells in transportation. In-house researchers investigating alternate electrolyte systems are exploring the direct and indirect use of alcohols in fuel cells. A workshop is being organized to explore potential applications of fuel cells in the transportation sector. The membrane research group is equipping to evaluate alcohol/water separation membranes and is also establishing cost estimation and energy utilization figures for use in alcohol plant design.

  7. The alcohol fuels in Guatemala

    International Nuclear Information System (INIS)

    2000-01-01

    This presentation shows the antecedents of the production of alcohol fuel in Guatemala as an alternative to imported gasoline, also presents current statistics of consumption, importation of liquid fossil fuels, production of alcohol fuel, consumption, and trends of consumption mixed with gasoline and yield data

  8. 27 CFR 19.997 - Withdrawal of fuel alcohol.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Withdrawal of fuel alcohol. 19.997 Section 19.997 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... and Transfers § 19.997 Withdrawal of fuel alcohol. For each shipment or other removal of fuel alcohol...

  9. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion

    International Nuclear Information System (INIS)

    Masurier, J.-B.; Foucher, F.; Dayma, G.; Dagaut, P.

    2015-01-01

    Highlights: • Ozone was useful to control combustion phasing of alcohol fuels in HCCI engine. • Ozone helps to improve the combustion and advance its phasing. • Butanol is more impacted by ozone than methanol and ethanol. • HCCI combustion parameters may be controlled by managing ozone concentration. • Kinetics demonstrates that alcohol fuels are initially oxidized by O-atoms. - Abstract: The present investigation examines the impact of seeding the intake of an HCCI engine with ozone, one of the most oxidizing chemical species, on the combustion of three alcohol fuels: methanol, ethanol and n-butanol. The research was performed through engine experiments and constant volume computations. The results showed that increasing the ozone concentration led to an improvement in combustion coupled with a combustion advance. It was also observed, by comparing the results for each fuel selected, that n-butanol is the most impacted by ozone seeding and methanol the least. Further analyses of the experimental results showed that the alcohol fuel combustion can be controlled with ozone, which presents an interesting potential. Finally, computation results confirmed the experimental results observed. They also showed that in presence of ozone, alcohol fuels are not initially oxidized by molecular oxygen but by O-atoms coming from the ozone decomposition.

  10. The potential role of alcohol fuels in reducing carbon dioxide emissions

    International Nuclear Information System (INIS)

    Duff, S.J.B.

    1991-01-01

    Atmospheric concentrations of CO 2 have increased from 280 to 350 mg/l over the past two hundred years. One of the principal causes has been the increased reliance on combustion of fossil fuels to generate energy. Higher CO 2 levels have been historically correlated with warming of the earth. While attempts have been made to quantify and model the relationships between carbon dioxide emissions, atmospheric CO 2 concentrations, and global climate changes, the state of the current knowledge base is such that large uncertainties persist. It is precisely these uncertainties which has evoked justifiable concern among the scientific community. The use of biomass fuels such as alcohols can provide a partial solution to the problem of increasing emissions of CO 2 . Combustion of biomass fuels releases carbon previously sequestered from the atmosphere during growth. There is a cycling of carbon, with net additions to the atmosphere resulting only from losses, or the use of fossil fuels for process energy. Alcohol fuels can make their biggest impact in the transportation sector, which, in industrial nations, contributes up to 32% of CO 2 emissions. While not the complete answer, alcohol fuels can make a significant impact, and will no doubt be one factor in a multidimensional approach to reducing CO 2 emissions. 17 refs., 4 figs., 10 tabs

  11. 26 CFR 48.4041-18 - Fuels containing alcohol.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Fuels containing alcohol. 48.4041-18 Section 48... EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Special Fuels § 48.4041-18 Fuels containing alcohol..., of any liquid fuel described in section 4041(a) (1) or (2) which consists of at least 10% alcohol by...

  12. Esters of ricebran oil with short chain alcohols as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    F.A. Zaher

    2016-06-01

    Full Text Available The potential of ricebran oil as a feedstock for the production of a fuel for diesel engines alternative to regular diesel fuel has been assessed. Esterification rate of crude ricebran oil with methyl alcohol was studied using different volumetric ratios of alcohol to oil, different catalyst loads and catalyst types. Catalysts used were sulfuric acid at a concentration of 2% of the oil/alcohol mixture in addition to hydrochloric acid and Amberlite IR-120 cation exchange resin at the same molar concentration of H+ as in case of sulfuric acid. The reaction was fastest using sulfuric acid which has been then used to prepare esters of ricebran oil with methyl, ethyl, propyl and butyl alcohols. The four products have been evaluated as a fuel for diesel engines according to their fuel properties compared to regular diesel fuel. These properties include the calorific value, flash point, viscosity, pour point, cetane number, sulfur content and ASTM distillation characteristics. The results have shown that the methyl as well as the ethyl esters have the closest properties to those of regular diesel fuel. Diesel engine performance using blends of regular diesel fuel with methyl and ethyl esters of ricebran oil have been tested and compared to that using regular diesel fuel. The results have shown that the engine performance using a blend of 50% regular diesel fuel and 50% methyl esters of ricebran oil is better than that using regular diesel fuel. The brake thermal efficiency at full load was 30.2% using the fuel blend compared to 27.5% in case of regular fuel.

  13. Device for measuring the alcohol concentration in alcohol/petroleum mixtures. Vorrichtung zur Messung von Alkoholkonzentration in Alkohol-Benzin-Gemischen

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, G

    1983-09-01

    In a device for measuring the alcohol concentration in alcohol/petroleum mixtures, a selective diaphragm for polar and/or non-polar components of the fuel mixture is provided. This diaphragm covers the opening of the tank or the fuel pipe with one surface. It is closed by a chamber on the other side. The chamber has a fresh air inlet and is connected to a subpressure pipe to draw off the gas mixture formed in the chamber. A sensor with connected signal processing is provided near the subpressure pipe in the chamber.

  14. Minimally refined biomass fuel. [carbohydrate-water-alcohol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, R.K.; Hirschfeld, T.B.

    1981-03-26

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water-solubilizes the carbohydrate; and the alcohol aids in the combustion of the carbohydrate and reduces the viscosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  15. Atmospheric alcohols and aldehydes concentrations measured in Osaka, Japan and in Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Nguyen, Ha Thi-Hoang; Takenaka, Norimichi; Bandow, Hiroshi; Maeda, Yasuaki; Oliva, S.T. de; Botelho, M.M.; Tavares, T.M.

    2001-01-01

    The use of alcohol fuel has received much attention since the 1980s. In Brazil, ethanol-fuelled vehicles have been currently used on a large scale. This paper reports the atmospheric methanol and isoproponal concentrations which were measured from May to December 1997, in Osaka, Japan, where alcohol fuel was not used and from 3 to 9 February 1998 in Sao Paulo, Brazil, where ethanol was used. The alcohols were determined by the alkyl nitrite formation reaction using gas chromatography (GC-ECD) analysis. The concentration of atmospheric alcohols, especially ethanol, measured in Sao Paulo were significantly higher than those in Osaka. In Osaka, the average concentrations of atmospheric methanol, ethanol, and isopropanol were 5.8 ± 3.8, 8.2 ± 4.6, and 7.2 ± 5.9ppbv, respectively. The average ambient levels of methanol, ethanol, and isopropanol measured in Sao Paulo were 34.1± 9.2, 176.3 ± 38.1, and 44.2 ± 13.7ppbv, respectively. The ambient levels of aldehydes, which were expected to be high due to the use of alcohol fuel, were also measured at these sampling sites. The atmospheric formaldehyde average measured in Osaka was 1.9± 0.9ppbv, and the average acetaldehyde concentration was 1.5 ± 0.8ppbv. The atmospheric formaldehyde and acetaldehyde average concentrations measured in Sao Paulo were 5.0 ± 2.8 and 5.4 ± 2.8ppbv, respectively. The C 2 H 5 OH/CH 3 OH and CH 3 CHO/HCHO were compared between the two measurement sites and elsewhere in the world, which have already been reported in the literature. Due to the use of ethanol-fuelled vehicles, these ratios, especially C-2H 5 OH/CH 3 OH, are much higher in Brazil than those measured elsewhere in the world. (Author)

  16. 40 CFR 600.206-93 - Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol...

    Science.gov (United States)

    2010-07-01

    ... EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures... equivalent petroleum-based fuel economy value exists for an electric vehicle configuration, all values for... values for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual...

  17. Fuel and Chemicals from Renewable Alcohols

    DEFF Research Database (Denmark)

    Hansen, Jeppe Rass

    2008-01-01

    The present work entitled Fuel and Chemicals from Renewable Alcohols covers the idea of developing routes for producing sustainable fuel and chemicals from biomass resources. Some renewable alcohols are already readily available from biomass in significant amounts and thus the potential...... for these renewable alcohols, together with other primary renewable building blocks, has been highlighted in the introductory chapter. While the first chapter covers the general potential of a renewable chemical industry, the other chapters deal with particular possibilities. It is shown how ethanol and glycerol can...... be converted into hydrogen by steam reforming over nickel or ruthenium based catalysts. This process could be important in a future hydrogen society, where hydrogen can be utilized in high efficiency fuel cells. Hydrogen produced from biofeedstocks can also be used directly in the chemical industry, where...

  18. Certification for copper concentration in reference material for fuel anhydro ethylic alcohol; Certificacao da concentracao de cobre em material de referencia para alcool etilico anidro combustivel (AEC)

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Lindomar Augusto dos; Rocha, Marcia Silva da; Mesko, Marcia Foster; Silva, Fagner Francisco da; Quaresma, Maria Cristina Baptista; Araujo, Thiago Oliveira [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (DIMCI/INMETRO), Duque de Caxias, RJ (Brazil). Diretoria de Metrologia Cientifica e Industrial], E-mail: lareis@inmetro.gov.br

    2009-07-01

    This work aiming to obtain the first certified reference material for fuel anhydro ethylic alcohol relative to the copper concentration, which has his maximum limit determined by the in force legislation providing traceability and reliability for the measurement results.

  19. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    Energy Technology Data Exchange (ETDEWEB)

    Blaser, Richard

    1980-11-01

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

  20. Perspectives of the alcohol fuels in Guatemala

    International Nuclear Information System (INIS)

    2002-01-01

    This presentation overviews the following aspects: antecedents of the production of alcohol fuel in Guatemala as an alternative to imported fuels, also presents current statistics of consumption, importation of liquid fossil fuels, production of alcohol, consumption, trends of consumption mixed with gasoline and yield data. Also problems with environmental impact of CO and CO2 are discussed and possible solutions, incentives to private sector for trading, tax reductions and legislation to support the production are included

  1. Third international symposium on alcohol fuels technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    At the opening of the Symposium, Dr. Sharrah, Senior Vice President of Continental Oil Company, addressed the attendees, and his remarks are included in this volume. The Symposium was concluded by workshops which addressed specific topics. The topical titles are as follows: alcohol uses; production; environment and safety; and socio-economic. The workshops reflected a growing confidence among the attendees that the alcohols from coal, remote natural gas and biomass do offer alternatives to petroleum fuels. Further, they may, in the long run, prove to be equal or superior to the petroleum fuels when the aspects of performance, environment, health and safety are combined with the renewable aspect of the biomass derived alcohols. Although considerable activity in the production and use of alcohols is now appearing in many parts of the world, the absence of strong, broad scale assessment and support for these fuels by the United States Federal Government was a noted point of concern by the attendees. The environmental consequence of using alcohols continues to be more benign in general than the petroleum based fuels. The exception is the family of aldehydes. Although the aldehydes are easily suppressed by catalysts, it is important to understand their production in the combustion process. Progress is being made in this regard. Of course, the goal is to burn the alcohols so cleanly that catalytic equipment can be eliminated. Separate abstracts are prepared for the Energy Data Base for individual presentations.

  2. Ambiguities of fighting inflation: structure of alcohol fuel prices

    International Nuclear Information System (INIS)

    Nastari, Plinio Mario

    1993-01-01

    The control of consumer prices of alcohol fuel and gasoline has been used by the Brazilian government as a tool for fighting inflation. The production of alcohol fuel from biomass and the use of its by-products is one of the few strategies that will permit economic development and environmental preservation at the same time. While the pricing policy continues to determine the energy policy, it will be almost impossible to promote the production and the use of alcohol fuel in the country

  3. Recent advances on Zeolite modification for direct alcohol fuel cells (DAFCs)

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-03-01

    The increase of energy demand and global warming issues has driven studies of alternative energy sources. The polymer electrolyte membrane fuel cell (PEMFC) can be an alternative energy source by (partially) replacing the use of fossil fuel which is in line with the green technology concept. However, the usage of hydrogen as a fuel has several disadvantages mainly transportation and storage related to its safety aspects. Recently, alcohol has gained attention as an energy source for fuel cell application, namely direct alcohol fuel cell (DAFC). Among alcohols, high-mass energy density methanol and ethanol are widely used as direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC), respectively. Currently, the performance of DMFC is still rudimentary. Furthermore, the use of ethanol gives some additional privileges such as non-toxic property, renewable, ease of production in great quantity by the fermentation of sugar-containing raw materials. Direct alcohol fuel cell (DAFC) still has weakness in the low proton conductivity and high alcohol crossover. Therefore, to increase the performance of DAFC, modification using zeolite has been performed to improve proton conductivity and decrease alcohol crossover. Zeolite also has high thermal resistance properties, thereby increasing DAFC performance. This paper will discuss briefly about modification of catalyst and membrane for DAFC using zeolite. Zeolite modification effect on fuel cell performance especially proton conductivity and alcohol crossover will be presented in detail.

  4. Fumed Silica Nanoparticles Incorporated in Quaternized Poly(Vinyl Alcohol Nanocomposite Membrane for Enhanced Power Densities in Direct Alcohol Alkaline Fuel Cells

    Directory of Open Access Journals (Sweden)

    Selvaraj Rajesh Kumar

    2015-12-01

    Full Text Available A nanocomposite polymer membrane based on quaternized poly(vinyl alcohol/fumed silica (QPVA/FS was prepared via a quaternization process and solution casting method. The physico-chemical properties of the QPVA/FS membrane were investigated. Its high ionic conductivity was found to depend greatly on the concentration of fumed silica in the QPVA matrix. A maximum conductivity of 3.50 × 10−2 S/cm was obtained for QPVA/5%FS at 60 °C when it was doped with 6 M KOH. The permeabilities of methanol and ethanol were reduced with increasing fumed silica content. Cell voltage and peak power density were analyzed as functions of fumed silica concentration, temperature, methanol and ethanol concentrations. A maximum power density of 96.8 mW/cm2 was achieved with QPVA/5%FS electrolyte using 2 M methanol + 6 M KOH as fuel at 80 °C. A peak power density of 79 mW/cm2 was obtained using the QPVA/5%FS electrolyte with 3 M ethanol + 5 M KOH as fuel. The resulting peak power densities are higher than the majority of published reports. The results confirm that QPVA/FS exhibits promise as a future polymeric electrolyte for use in direct alkaline alcoholic fuel cells.

  5. Effects of Concentration of Organically Modified Nanoclay on Properties of Sulfonated Poly(vinyl alcohol Nanocomposite Membranes

    Directory of Open Access Journals (Sweden)

    Apiradee Sanglimsuwan

    2011-01-01

    Full Text Available Electrolyte nanocomposite membranes for proton exchange membrane fuel cells and direct methanol fuel cells were prepared by carrying out a sulfonation of poly(vinyl alcohol with sulfosuccinic acid and adding a type of organically modified montmorillonite (layered silicate nanoclay commercially known as Cloisite 93A. The effects of the different concentrations (0, 2, 4, 6, 8 wt. % of the organoclay in the membranes on water uptake, ion exchange capacity (IEC, proton conductivity, and methanol permeability were measured, respectively, via gravimetry, titration, impedance analysis, and gas chromatography techniques. The IEC values remained constant for all concentrations. Water uptakes and proton conductivities of the nanocomposite membranes changed with the clay content in a nonlinear fashion. While all the nanocomposite membranes had lower methanol permeability than Nafion115, the 6% concentration of Cloisite 93A in sulfonated poly(vinyl alcohol membrane displayed the greatest proton conductivity to methanol permeability ratio.

  6. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D S; Lee, D S [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C Y [Seoul National University, Seoul (Korea, Republic of); and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  7. High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels

    Science.gov (United States)

    Canada, G. S.

    1974-01-01

    Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.

  8. Comparison of spectroscopically measured tissue alcohol concentration to blood and breath alcohol measurements

    Science.gov (United States)

    Ridder, Trent D.; Ver Steeg, Benjamin J.; Laaksonen, Bentley D.

    2009-09-01

    Alcohol testing is an expanding area of interest due to the impacts of alcohol abuse that extend well beyond drunk driving. However, existing approaches such as blood and urine assays are hampered in some testing environments by biohazard risks. A noninvasive, in vivo spectroscopic technique offers a promising alternative, as no body fluids are required. The purpose of this work is to report the results of a 36-subject clinical study designed to characterize tissue alcohol measured using near-infrared spectroscopy relative to venous blood, capillary blood, and breath alcohol. Comparison of blood and breath alcohol concentrations demonstrated significant differences in alcohol concentration [root mean square of 9.0 to 13.5 mg/dL] that were attributable to both assay accuracy and precision as well as alcohol pharmacokinetics. A first-order kinetic model was used to estimate the contribution of alcohol pharmacokinetics to the differences in concentration observed between the blood, breath, and tissue assays. All pair-wise combinations of alcohol assays were investigated, and the fraction of the alcohol concentration variance explained by pharmacokinetics ranged from 41.0% to 83.5%. Accounting for pharmacokinetic concentration differences, the accuracy and precision of the spectroscopic tissue assay were found to be comparable to those of the blood and breath assays.

  9. Assessment of ether and alcohol fuels from coal. Volume 2. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A unique route for the indirect liquefaction of coal to produce transportation fuel has been evaluated. The resultant fuel includes alkyl tertiary alkyl ethers and higher alcohols, all in the gasoline boiling range. When blended into gasoline, the ether fuel provides several advantages over the lower alcohols: (1) lower chemical oxygen content, (2) less-severe water-separation problems, and (3) reduced front-end volatility effects. The ether fuel also has high-octane quality. Further, it can be utilized as a gasoline substitute in all proportions. Production of ether fuel combines several steps, all of which are or have been practiced on an industrial scale: (1) coal gasification, (2) gas cleanup and shift to desired H/sub 2/:CO ratio, (3) conversion of synthesis gas to isobutanol, methanol, and higher alcohols, (4) separation of alcohols, (5) chemical dehydration of isobutanol to isobutylene, and (6) etherification of isobutylene with methanol. A pilot-plant investigation of the isobutanol synthesis step was performed. Estimates of ether-fuel manufacturing costs indicate this process route is significantly more costly than synthesis of methanol. However, the fuel performance features provide incentive for developing the necessary process and catalyst improvements. Co-production of higher-molecular-weight co-solvent alcohols represents a less-drastic form of methanol modification to achieve improvement in the performance of methanol-gasoline blends. Costs were estimated for producing several proportions of methanol plus higher alcohols from coal. Estimated fuel selling price increases regularly but modestly with higher alcohol content.

  10. Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Eileen Hao Yu

    2010-08-01

    Full Text Available Direct alkaline alcohol fuel cells (DAAFCs have attracted increasing interest over the past decade because of their favourable reaction kinetics in alkaline media, higher energy densities achievable and the easy handling of the liquid fuels. In this review, principles and mechanisms of DAAFCs in alcohol oxidation and oxygen reduction are discussed. Despite the high energy densities available during the oxidation of polycarbon alcohols they are difficult to oxidise. Apart from methanol, the complete oxidation of other polycarbon alcohols to CO2 has not been achieved with current catalysts. Different types of catalysts, from conventional precious metal catalyst of Pt and Pt alloys to other lower cost Pd, Au and Ag metal catalysts are compared. Non precious metal catalysts, and lanthanum, strontium oxides and perovskite-type oxides are also discussed. Membranes like the ones used as polymer electrolytes and developed for DAAFCs are reviewed. Unlike conventional proton exchange membrane fuel cells, anion exchange membranes are used in present DAAFCs. Fuel cell performance with DAAFCs using different alcohols, catalysts and membranes, as well as operating parameters are summarised. In order to improve the power output of the DAAFCs, further developments in catalysts, membrane materials and fuel cell systems are essential.

  11. Mixing ratio sensor of alcohol mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Shigeru; Matsubara, Yoshihiro

    1987-08-07

    In order to improve combustion efficiency of an internal combustion engine using gasoline-alcohol mixed fuel and to reduce harmful substance in its exhaust gas, it is necessary to control strictly the air-fuel ratio to be supplied and the ignition timing and change the condition of control depending upon the mixing ratio of the mixed fuel. In order to detect the mixing ratio of the mixed fuel, the above mixing ratio has so far been detected by casting a ray of light to the mixed fuel and utilizing a change of critical angle associated with the change of the composition of the fluid of the mixed fuel. However, in case when a light emitting diode is used for the light source above, two kinds of sensors are further needed. Concerning the two kinds of sensors above, this invention offers a mixing ratio sensor for the alcohol mixed fuel which can abolish a temperature sensor to detect the environmental temperature by making a single compensatory light receiving element deal with the compensation of the amount of light emission of the light emitting element due to the temperature change and the compensation of the critical angle caused by the temperature change. (6 figs)

  12. Proceedings of the international symposium on alcohol fuel technology: methanol and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The papers presented dealt with the following topics: international situation and economic and political aspects, use of alcohol fuels as automotive fuels, production of methanol and methyl fuels, production of ethanol, methanol application and modeling, alcohol fuel optimization, and environmental considerations. Each paper was prepared for introduction into the EDB data base. (JSR)

  13. Biobutanol as fuel for direct alcohol fuel cells - Investigation of Sn-modified Pt catalyst for butanol electro-oxidation

    OpenAIRE

    Puthiyapura, Vinod Kumar; Dan J. L. Brett,; Andrea E. Russell,; Wen-Feng Lin,; Hardacre, Chris

    2016-01-01

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies ...

  14. Alcohol fuels in New Zealand's energy future

    Energy Technology Data Exchange (ETDEWEB)

    Titchener, A.L. (Liquid Fuels Trust Board, Wellington, New Zealand); Walker, B.V.

    1980-01-01

    This paper reviews the structure of energy planning, research, and development in New Zealand, and the resource bases on which future energy supplies may be expected to depend. It addresses the problem of imported liquid fuels and the means of substituting for them. Recent decisions taken by the government are outlined. New Zealand is economically and strategically vulnerable to the supply of oil. A problem of increasing importance will be the supply of middle distillate fuels, especially diesel. In the longer term, and in the absence of discovery of indigenous oil or additional gas, the resource bases for synthetic liquid fuels in New Zealand will be coal or biomass or both. Prima facie the most obvious synthetic liquid fuels are liquid hydrocarbons. However, the alcohols have a number of advantages over synthetic hydrocarbon liquids, the most important of which are higher conversion efficiency (especially when used in spark-ignition engines) and known and relatively simple conversion technology. The present programme aimed at investigating means of substituting for imported liquid fuels is planned to embrace all reasonable options. Consequently it includes a significant body of research into the alcohols as engine fuels. The present paper has reviewed this research programme. Decisions on whether to move towards alcohol fuels must be ragarded as some way in the future. (DMC)

  15. Conversion of hydrocarbons and alcohols for fuel cells

    Science.gov (United States)

    Joensen, Finn; Rostrup-Nielsen, Jens R.

    The growing demand for clean and efficient energy systems is the driving force in the development of fuel processing technology for providing hydrogen or hydrogen-containing gaseous fuels for power generation in fuel cells. Successful development of low cost, efficient fuel processing systems will be critical to the commercialisation of this technology. This article reviews various reforming technologies available for the generation of such fuels from hydrocarbons and alcohols. It also briefly addresses the issue of carbon monoxide clean-up and the question of selecting the appropriate fuel(s) for small/medium scale fuel processors for stationary and automotive applications.

  16. The Brazilian experience with alcohol fuel: microeconomic and environmental issues

    International Nuclear Information System (INIS)

    Seroa da Motta, R.

    1990-01-01

    Producers and consumers in Brazil are not longer regarding alcohol (ethanol) as a valuable fuel choice. Although the falling of oil prices has contributed to this situation, the lack of concern on microeconomic behaviour has also played an important role. Furthermore, environmental gains derived from the use of a mixture of alcohol and gasoline have been forgotten when alcohol fuel is evaluated. From the Brazilian experience some fruitful lessons can be learnt, to support research efforts for renewable energy programmes in Europe and the U.S.A. (author)

  17. North America markets for alcohol and alcohol-derived motor fuels and need for tax incentives

    International Nuclear Information System (INIS)

    Haigwood, B.

    1991-01-01

    The U.S. fuel alcohol and ether industry has grown from its infancy in 1979 to approximately 2.9 billion gallons of production capacity in 1991. With the emphasis on clean air, the uncertainties in the Middle East, and fluctuating oil prices, IRI believes the demand for alcohol-derived motor fuels is poised to begin a second phase of expansion. Historically, the two primary alcohol-derived motor fuels sold in the U.S. have been methyl tertiary butyl ether (MTBE) and ethanol. There is also a limited but growing use of methanol as 85% blendstock for gasoline. Since 1978, fuel ethanol has provided the U.S. petroleum industry with an additional source of supply, octane, and profit. Its price was based on the price of wholesale gasoline plus available federal and state tax incentives. These incentives allowed ethanol, with production costs of $1.00 to $1.25 per gallon, to compete with gasoline at prices of 40 to 65 per gallon. Without the federal and state tax incentives, it would not be economically feasible to sell or manufacture fuel ethanol. On the other hand, the largest consumption of methanol has been as a feedstock for the production of MTBE, the world's fastest growing chemical over the past seven years. MTBE prices are based on the cost of raising the octane level of gasoline, and this commodity does not receive subsidies. Beginning in 1992, IRI predicts the price relationship between ethanol, MTBE, and gasoline will change as U.S. refiners and marketers are required to include oxygenated fuels (alcohol-derived) in their gasoline. In total, over 60 billion gallons of gasoline will need to be reformulated by the year 2000. The increased demand for oxygen will result in a 2.5-billion gallon deficit of MTBE and 1.2-billion gallon deficit of ethanol by the year 2000. 2 tabs

  18. Performance of direct alcohol fuel cells fed with mixed methanol/ethanol solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wongyao, N. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand); Therdthianwong, A., E-mail: apichai.the@kmutt.ac.t [Fuel Cell and Hydrogen Research and Engineering Center, Clean Energy System Group, PDTI, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand); Therdthianwong, S. [Department of Chemical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand)

    2011-07-15

    Research highlights: {yields} We examined the performance of direct alcohol fuel cells fed with mixed alcohol. {yields} PtRu-PtSn/C and PtRu/C as catalysts for mixed alcohol electrooxidation reaction. {yields} Misplace adsorption of ethanol on PtRu/C caused the cell performance drop. {yields} PtRu/C showed higher performance than PtRu-PtSn/C for mixed alcohol fuel. -- Abstract: In combining the advantages of both methanol and ethanol, direct alcohol fuel cells fed with mixed alcohol solutions (1 M methanol and 1 M ethanol in varying volume ratios) were tested for performance. Employing a PtRu-PtSn/C catalyst as anode, cell performance was found to diminish rapidly even at 2.5% by volume ethanol mixture. Further increase of ethanol exceeded 10%, the cell performance gradually decreased and finally approached that of direct ethanol fuel cells. The causes of the decrease in the cell performance were the slow electro-oxidation of ethanol and the misplaced adsorption of ethanol on PtRu/C. By comparing the PtRu-PtSn/C cell with the PtRu/C cell operated with mixed alcohol solutions, the cell using PtRu/C as an anode catalyst provided higher power density since more PtRu/C surface was available for methanol oxidation reaction and less ohmic resistance of PtRu/C than that of PtRu-PtSn/C. In order to reach optimization of DAFC performance fed with mixed alcohol, the electrocatalyst used for the anode must selectively adsorb an alcohol, especially ethanol.

  19. Performance of direct alcohol fuel cells fed with mixed methanol/ethanol solutions

    International Nuclear Information System (INIS)

    Wongyao, N.; Therdthianwong, A.; Therdthianwong, S.

    2011-01-01

    Research highlights: → We examined the performance of direct alcohol fuel cells fed with mixed alcohol. → PtRu-PtSn/C and PtRu/C as catalysts for mixed alcohol electrooxidation reaction. → Misplace adsorption of ethanol on PtRu/C caused the cell performance drop. → PtRu/C showed higher performance than PtRu-PtSn/C for mixed alcohol fuel. -- Abstract: In combining the advantages of both methanol and ethanol, direct alcohol fuel cells fed with mixed alcohol solutions (1 M methanol and 1 M ethanol in varying volume ratios) were tested for performance. Employing a PtRu-PtSn/C catalyst as anode, cell performance was found to diminish rapidly even at 2.5% by volume ethanol mixture. Further increase of ethanol exceeded 10%, the cell performance gradually decreased and finally approached that of direct ethanol fuel cells. The causes of the decrease in the cell performance were the slow electro-oxidation of ethanol and the misplaced adsorption of ethanol on PtRu/C. By comparing the PtRu-PtSn/C cell with the PtRu/C cell operated with mixed alcohol solutions, the cell using PtRu/C as an anode catalyst provided higher power density since more PtRu/C surface was available for methanol oxidation reaction and less ohmic resistance of PtRu/C than that of PtRu-PtSn/C. In order to reach optimization of DAFC performance fed with mixed alcohol, the electrocatalyst used for the anode must selectively adsorb an alcohol, especially ethanol.

  20. Alcohol Fuels Program technical review, Spring 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The alcohol fuels program consists of in-house and subcontracted research for the conversion of lignocellulosic biomass into fuel alcohols via thermoconversion and bioconversion technologies. In the thermoconversion area, the SERI gasifier has been operated on a one-ton per day scale and produces a clean, medium-Btu gas that can be used to manufacture methanol with a relatively small gas-water shift reaction requirement. Recent research has produced catalysts that make methanol and a mixture of higher alcohols from the biomass-derived synthetic gas. Three hydrolysis processes have emerged as candidates for more focused research. They are: a high-temperature, dilute-acid, plug-flow approach based on the Dartmouth reactor; steam explosion pretreatment followed by hydrolysis using the RUT-C30 fungal organism; and direct microbial conversion of the cellulose to ethanol using bacteria in a single or mixed culture. Modeling studies, including parametric and sensitivity analyses, have recently been completed. The results of these studies will lead to a better definition of the present state-of-the-art for these processes and provide a framework for establishing the research and process engineering issues that still need resolution. In addition to these modeling studies, economic feasibility studies are being carried out by commercial engineering firms. Their results will supplement and add commercial validity to the program results. The feasibility contractors will provide input at two levels: Technical and economic assessment of the current state-of-the-art in alcohol production from lignocellulosic biomass via thermoconversion to produce methanol and higher alcohol mixtures and bioconversion to produce ethanol; and identification of research areas having the potential to significantly reduce the cost of production of alcohols.

  1. Addendum: Tenth International Symposium on Alcohol Fuels, The road to commercialization

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Tenth International Symposium on ALCOHOL FUELS ``THE ROAD TO COMMERCIALIZATION`` was held at the Broadmoor Hotel, Colorado Springs, Colorado, USA November 7--10, 1993. Twenty-seven papers on the production of alcohol fuels, specifications, their use in automobiles, buses and trucks, emission control, and government policies were presented. Individual papers have been processed separately for entry into the data base.

  2. The economic production of alcohol fuels from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  3. Plasma carnitine concentrations after chronic alcohol intoxication 

    Directory of Open Access Journals (Sweden)

    Alina Kępka

    2013-05-01

    Full Text Available Background: Carnitine transports fatty acids from the cytoplasm to the mitochondrial matrix, where the fatty acids are oxidized. Chronic alcohol consumption reduces the concentration of carnitine and interferes with oxidative processes occurring in the cell.Aim: The assessment of carnitine concentrations in plasma of chronically intoxicated alcohol dependent persons in a 49-day abstinence period.Material/Methods: The study included 31 patients (5 women and 27 men aged from 26 to 60 years (44.6± 8.9 and 32 healthy subjects (15 women and 17 men aged 22-60 years (39.8± 9.4. The patients’ alcohol dependence ranged from 2 to 30 years (13.6± 7.5. Examined subjects consumed 75-700 g of ethanol/day (226.9± 151.5. Plasma concentrations of free and total carnitine were measured three times: at the first (T0, 30th (T30 and 49th (T49 day of hospital detoxification. Free (FC and total (TC carnitine were determined by the spectrophotometric method. Plasma acylcarnitine (AC concentration was calculated from the difference between TC and FC; then the AC/FC ratio was calculated. To determine statistically significant differences for related variables, Student’s t-test was used.Results: At T0, alcoholics had significantly lower concentration of FC and TC (p < 0.05 in plasma, as compared to the control group. In comparison to controls, at T30, plasma TC and FC (p < 0.01 as well as AC (p < 0.001 were reduced. The lowest concentration of TC, FC and AC (p < 0.001was found at T49. The ratio of AC/FC at T0 had a tendency to be higher in alcoholics than in the control group (p = 0.05, whereas at T49 it was significantly lower in alcoholics as compared to the control subjects (p < 0.05.Conclusions: Chronic alcohol intoxication causes a plasma deficiency of carnitine. Forty-nine days of abstinence showed a significant decrease in the concentration of TC, FC and AC. Further research is necessary to clarify whether a low level of plasma carnitine

  4. Long Term Performance Study of a Direct Methanol Fuel Cell Fed with Alcohol Blends

    Directory of Open Access Journals (Sweden)

    Eleuterio Mora

    2013-01-01

    Full Text Available The use of alcohol blends in direct alcohol fuel cells may be a more environmentally friendly and less toxic alternative to the use of methanol alone in direct methanol fuel cells. This paper assesses the behaviour of a direct methanol fuel cell fed with aqueous methanol, aqueous ethanol and aqueous methanol/ethanol blends in a long term experimental study followed by modelling of polarization curves. Fuel cell performance is seen to decrease as the ethanol content rises, and subsequent operation with aqueous methanol only partly reverts this loss of performance. It seems that the difference in the oxidation rate of these alcohols may not be the only factor affecting fuel cell performance.

  5. Effect of the ethanol concentration in the anode on the direct ethanol fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Belchor, Pablo Martins; Loeser, Neiva; Forte, Maria Madalena de Camargo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Carpenter, Deyse [Fundacao Universidade Regional de Blumenau (FURB), Blumenau, SC (Brazil)], Email: rafarstv@hotmail.com

    2010-07-01

    Changes in the climate, sources and development of renewable energy are issues that have gain greater importance, and fuel cells have been investigated as an alternative source to produce energy through electrochemical reactions. Among the fuel cells types the Proton Exchange Membrane (PEMFC), fed with pure hydrogen at the anode and oxygen at the cathode, seen be the more promising ones as an electrolyte for portable, mobile and stationary applications due to its low emissions, low operating temperature, high power density and quick configuration. To avoid inconvenience of storage and transportation of pure hydrogen a PEMFC fed with alcohols has been developed, named Direct Alcohol Fuel Cells (DAFC). One way to increase the performance of DAFC is added water in the alcohol inserted into the anode, because the water keeps the membrane hydrated. In this work, the performance of a DAFC was evaluated by following the loss in the polarization curve and cell power by varying the ethanol/water ratio. The aim of this study was determine the optimal water/ethanol ratio to be feed in a DEFC prototype mounted in the lab. By the results it was possible to point that the best concentration of ethanol aqueous solution for the DEFC tested was around 1 mol.L-1. (author)

  6. Future of alcohol fuels programs in Brasil

    Science.gov (United States)

    Carvalho, A. V., Jr.; Rechtschaffen, E.; Goldstein, L., Jr.

    An updating is given of the Brazilian National Alcohol Program's production and utilization achievements to date in the substitution of ethanol and methanol for imported oil products. A series of Eucalyptus forestry and processing-industry projections are made for fuel output and jobs creation that may be expected by the year 2000. With few exceptions, methanol produced from wood grown on poorer soils than can now be used for sugarcane substitute for oil products and result in jobs creation several orders of magnitude higher than petroleum fuels.

  7. Using Alcohols as an Alternative Fuel in Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Salih ÖZER

    2014-04-01

    Full Text Available This study summarizes the studies on alcohol use in internal combustion engines nature. Nowadays, alcohol is used in internal combustion engines sometimes in order to reduce emissions and sometimes as an alternative fuel. Even vehicle manufacturers are producing and launching vehicles that are running directly with alcohol. Many types of pure alcohol that can be used on vehicles are available on the world. Using all of these types of alcohol led to the formation of engine emissions and power curves. The studies reveal that these changes are because of the physical and chemical characteristics of alcohols. Thıs study tries to explain what kind of conclusions the physical and chemical properties cause

  8. Long Term Performance Study of a Direct Methanol Fuel Cell Fed with Alcohol Blends

    OpenAIRE

    Teresa J. Leo; Miguel A. Raso; Emilio Navarro; Eleuterio Mora

    2013-01-01

    The use of alcohol blends in direct alcohol fuel cells may be a more environmentally friendly and less toxic alternative to the use of methanol alone in direct methanol fuel cells. This paper assesses the behaviour of a direct methanol fuel cell fed with aqueous methanol, aqueous ethanol and aqueous methanol/ethanol blends in a long term experimental study followed by modelling of polarization curves. Fuel cell performance is seen to decrease as the ethanol content rises, and subsequent opera...

  9. Ambiguities of fighting inflation: structure of alcohol fuel prices; Os equivocos do combate a inflacao

    Energy Technology Data Exchange (ETDEWEB)

    Nastari, Plinio Mario [Fundacao Getulio Vargas (FGV), Sao Paulo, SP (Brazil)

    1993-12-31

    The control of consumer prices of alcohol fuel and gasoline has been used by the Brazilian government as a tool for fighting inflation. The production of alcohol fuel from biomass and the use of its by-products is one of the few strategies that will permit economic development and environmental preservation at the same time. While the pricing policy continues to determine the energy policy, it will be almost impossible to promote the production and the use of alcohol fuel in the country 8 figs.

  10. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    Science.gov (United States)

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  11. Fabrication of fuel elements on the basis of increased concentration fuel composition

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    2004-01-01

    As a part of Russian Program RERTR Reduced Enrichment for Research and Test Reactors), at NCCP, Inc. jointly with the State Scientific Centre VNIINM the mastering in industrial environment of design and fabrication process of fuel elements (FE) with increased concentration fuel compositions is performed. Fuel elements with fuel composition on the basis of dioxide uranium with nearly 4 g/cm 3 fuel concentration have been produced thus confirming the principal possibility of fuel enrichment reduction down to 20% for research reactors which were built up according to the projects of the former USSR, by increasing the oxide fuel concentration in fuel assemblies (FAs). The form and geometrical dimensions of FEs and FAs shall remain unchanged, only uranium mass in FA shall be increased. (author)

  12. Alcohol intoxication at Swedish football matches: A study using biological sampling to assess blood alcohol concentration levels among spectators.

    Directory of Open Access Journals (Sweden)

    Natalie Durbeej

    Full Text Available Alcohol use and alcohol-related problems, including accidents, vandalism and violence, at sporting events are of increased concern in Sweden and other countries. The relationship between alcohol use and violence has been established and can be explained by the level of intoxication. Given the occurrence of alcohol use and alcohol-related problems at sporting events, research has assessed intoxication levels measured through biological sampling among spectators. This cross-sectional study aimed to assess the level of alcohol intoxication among spectators at football matches in the Swedish Premier Football League. Spectators were randomly selected and invited to participate in the study. Alcohol intoxication was measured with a breath analyser for Blood Alcohol Concentration levels, and data on gender, age, and recent alcohol use were gathered through a face-to-face interview. Blood Alcohol Concentration samples from 4420 spectators were collected. Almost half (46.8% had a positive Blood Alcohol Concentration level, with a mean value of 0.063%, while 8.9% had a Blood Alcohol Concentration level ≥ 0.1%, with a mean value of 0.135%. Factors that predicted a higher Blood Alcohol Concentration level included male gender (p = 0.005, lower age (p < 0.001, attending a local derby (p < 0.001, alcohol use prior to having entered the arena (p < 0.001, attending a weekend match (p < 0.001, and being a spectator at supporter sections (p < 0.001. About half of all spectators at football matches in the Swedish Premier Football League drink alcohol in conjunction with the match. Approximately one tenth have a high level of alcohol intoxication.

  13. A novel membrane-less direct alcohol fuel cell

    Science.gov (United States)

    Yi, Qingfeng; Chen, Qinghua; Yang, Zheng

    2015-12-01

    Membrane-less fuel cell possesses such advantages as simplified design and lower cost. In this paper, a membrane-less direct alcohol fuel cell is constructed by using multi-walled carbon nanotubes (MWCNT) supported Pd and ternary PdSnNi composites as the anode catalysts and Fe/C-PANI composite, produced by direct pyrolysis of Fe-doped polyaniline precursor, as the oxygen reduction reaction (ORR) catalyst. The alcohols investigated in the present study are methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol and sec-butanol. The cathode catalyst Fe/C-PANI is electrochemically inactive to oxidation of the alcohols. The performance of the cell with various alcohols in 1 mol L-1 NaOH solution on either Pd/MWCNT or PdSnNi/MWCNT catalyst has been evaluated. In any case, the performance of the cell using the anode catalyst PdSnNi/MWCNT is considerably better than Pd/MWCNT. For the PdSnNi/MWCNT, the maximum power densities of the cell using methanol (0.5 mol L-1), ethanol (0.5 mol L-1), n-propanol (0.5 mol L-1), iso-propanol (0.5 mol L-1), n-butanol (0.2 mol L-1), iso-butanol (0.2 mol L-1) and sec-butanol (0.2 mol L-1) are 0.34, 1.03, 1.07, 0.44, 0.50, 0.31 and 0.15 mW cm-2, respectively.

  14. Mixing ratio sensor for alcohol mixed fuel

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Shigeru; Matsubara, Yoshihiro

    1987-08-24

    In order to improve the combustion efficiency of an internal combustion engine using gasoline-alcohol mixed fuel and to reduce harmful substance in its exhaust gas, it is necessary to control strictly the air-fuel ratio to be supplied and the ignition timing. In order to detect the mixing ratio of the mixed fuel, a mixing ratio sensor has so far been proposed to detect the above mixing ratio by casting a ray of light to the mixed fuel and utilizing a change of critical angle associated with the change of the composition of the fluid of the mixed fuel. However, because of the arrangement of its transparent substance in the fuel passage with the sealing material in between, this sensor invited the leakage of the fluid due to deterioration of the sealing material, etc. and its cost became high because of too many parts to be assembled. In view of the above, in order to reduce the number of parts, to lower the cost of parts and the assembling cost and to secure no fluid leakage from the fuel passage, this invention formed the above fuel passage and the above transparent substance both concerning the above mixing ratio sensor in an integrated manner using light transmitting resin. (3 figs)

  15. Alcohols/Ethers as Oxygenates in Diesel Fuel: Properties of Blended Fuels and Evaluation of Practiacl Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.; Aakko, P. [TEC Trans Energy Consulting Ltd (Finland); Niemi, S.; Paanu, T. [Turku Polytechnic (Finland); Berg, R. [Befri Konsult (Sweden)

    2005-03-15

    Oxygenates blended into diesel fuel can serve at least two purposes. Components based on renewable feedstocks make it possible to introduce a renewable component into diesel fuel. Secondly, oxygenates blended into diesel fuel might help to reduce emissions. A number of different oxygenates have been considered as components for diesel fuel. These oxygenates include various alcohols, ethers, esters and carbonates. Of the oxygenates, ethanol is the most common and almost all practical experiences have been generated from the use of diesel/ethanol blends (E-diesel). Biodiesel was not included in this study. Adding ethanol to diesel will reduce cetane, and therefore, both cetane improver and lubricity additives might be needed. Diesel/ethanol emulsions obtained with emulsifiers or without additives are 'milky' mixtures. Micro-emulsions of ethanol and diesel can be obtained using additives containing surfactants or co-solvents. The microemulsions are chemically and thermodynamically stable, they are clear and bright blends, unlike the emulsions. Storage and handling regulations for fuels are based on the flash point. The problem with, e.g., ethanol into diesel is that ethanol lowers the flash point of the blend significantly even at low concentrations. Regarding safety, diesel-ethanol blends fall into the same category as gasoline. Higher alcohols are more suitable for diesel blending than ethanol. Currently, various standards and specifications set rather tight limits for diesel fuel composition and properties. It should be noted that, e.g., E-diesel does not fulfil any current diesel specification and it cannot, thus, be sold as general diesel fuel. Some blends have already received approvals for special applications. The critical factors of the potential commercial use of these blends include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions

  16. Alcohols/Ethers as Oxygenates in Diesel Fuel: Properties of Blended Fuels and Evaluation of Practiacl Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N; Aakko, P [TEC Trans Energy Consulting Ltd (Finland); Niemi, S; Paanu, T [Turku Polytechnic (Finland); Berg, R [Befri Konsult (Sweden)

    2005-03-15

    Oxygenates blended into diesel fuel can serve at least two purposes. Components based on renewable feedstocks make it possible to introduce a renewable component into diesel fuel. Secondly, oxygenates blended into diesel fuel might help to reduce emissions. A number of different oxygenates have been considered as components for diesel fuel. These oxygenates include various alcohols, ethers, esters and carbonates. Of the oxygenates, ethanol is the most common and almost all practical experiences have been generated from the use of diesel/ethanol blends (E-diesel). Biodiesel was not included in this study. Adding ethanol to diesel will reduce cetane, and therefore, both cetane improver and lubricity additives might be needed. Diesel/ethanol emulsions obtained with emulsifiers or without additives are 'milky' mixtures. Micro-emulsions of ethanol and diesel can be obtained using additives containing surfactants or co-solvents. The microemulsions are chemically and thermodynamically stable, they are clear and bright blends, unlike the emulsions. Storage and handling regulations for fuels are based on the flash point. The problem with, e.g., ethanol into diesel is that ethanol lowers the flash point of the blend significantly even at low concentrations. Regarding safety, diesel-ethanol blends fall into the same category as gasoline. Higher alcohols are more suitable for diesel blending than ethanol. Currently, various standards and specifications set rather tight limits for diesel fuel composition and properties. It should be noted that, e.g., E-diesel does not fulfil any current diesel specification and it cannot, thus, be sold as general diesel fuel. Some blends have already received approvals for special applications. The critical factors of the potential commercial use of these blends include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also

  17. Estimation of Alcohol Concentration of Red Wine Based on Cole-Cole Plot

    Science.gov (United States)

    Watanabe, Kota; Taka, Yoshinori; Fujiwara, Osamu

    To evaluate the quality of wine, we previously measured the complex relative permittivity of wine in the frequency range from 10 MHz to 6 GHz with a network analyzer, and suggested a possibility that the maturity and alcohol concentration of wine can simultaneously be estimated from the Cole-Cole plot. Although the absolute accuracy has not been examined yet, this method will enable one to estimate the alcohol concentration of alcoholic beverages without any distillation equipment simply. In this study, to investigate the estimation accuracy of the alcohol concentration of wine by its Cole-Cole plots, we measured the complex relative permittivity of pure water and diluted ethanol solution from 100 MHz to 40 GHz, and obtained the dependence of the Cole-Cole plot parameters on alcohol concentration and temperature. By using these results as calibration data, we estimated the alcohol concentration of red wine from the Cole-Cole plots, which was compared with the measured one based on a distillation method. As a result, we have confirmed that the estimated alcohol concentration of red wine agrees with the measured results in an absolute error by less than 1 %.

  18. Feedback controlled fuel injection system can accommodate any alcohol-gasoline blend

    Energy Technology Data Exchange (ETDEWEB)

    Pefley, R K; Pullman, J B; Suga, T P; Espinola, S

    1980-01-01

    A fuel metering system has been adapted and permits operation on all blends of alcohols and gasoline ranging from pure gasoline to pure ethanol and methanol. It is a closed loop electronic feedback controlled fuel injection system (EFI) with exhaust oxygen sensor. The system is used by Toyota Motor Company in their Supra and Cressida models in conjunction with a 3-way catalytic exhaust system. These models meet California exhaust and evaporative emission standards. An unmodified model has been tested on alcohol gasoline blends from pure gasoline to 50% ethanol-50% gasoline and 30% methanol-70% gasoline and found to meet all exhaust and evaporative emissions standards. A Cressida with modified EFI system is currently being tested. It is capable of operating on pure gasoline, pure methanol or ethanol and all intermediate blends. The testing to date shows that the vehicle meets all exhaust emissions standards while operating over the blend range from pure gasoline to pure ethanol while maintaining driveability and energy based fuel economy. The paper will present the total test evidence for all gasoline-alcohol blends. This will include exhaust and evaporative emissions, fuel economy and driveability as determined in accordance with United States Federal Test Procedures. Additionally, the paper will report experiences accumulated from road operation of the vehicle over a six-month period.

  19. Exhaust emissions of low level blend alcohol fuels from two-stroke and four-stroke marine engines

    Science.gov (United States)

    Sevik, James M., Jr.

    The U.S. Renewable Fuel Standard mandates that by 2022, 36 billion gallons of renewable fuels must be produced on a yearly basis. Ethanol production is capped at 15 billion gallons, meaning 21 billion gallons must come from different alternative fuel sources. A viable alternative to reach the remainder of this mandate is iso-butanol. Unlike ethanol, iso-butanol does not phase separate when mixed with water, meaning it can be transported using traditional pipeline methods. Iso-butanol also has a lower oxygen content by mass, meaning it can displace more petroleum while maintaining the same oxygen concentration in the fuel blend. This research focused on studying the effects of low level alcohol fuels on marine engine emissions to assess the possibility of using iso-butanol as a replacement for ethanol. Three marine engines were used in this study, representing a wide range of what is currently in service in the United States. Two four-stroke engine and one two-stroke engine powered boats were tested in the tributaries of the Chesapeake Bay, near Annapolis, Maryland over the course of two rounds of weeklong testing in May and September. The engines were tested using a standard test cycle and emissions were sampled using constant volume sampling techniques. Specific emissions for two-stroke and four-stroke engines were compared to the baseline indolene tests. Because of the nature of the field testing, limited engine parameters were recorded. Therefore, the engine parameters analyzed aside from emissions were the operating relative air-to-fuel ratio and engine speed. Emissions trends from the baseline test to each alcohol fuel for the four-stroke engines were consistent, when analyzing a single round of testing. The same trends were not consistent when comparing separate rounds because of uncontrolled weather conditions and because the four-stroke engines operate without fuel control feedback during full load conditions. Emissions trends from the baseline test to each

  20. An evaluation of the volume and concentration of alcoholic ...

    African Journals Online (AJOL)

    Alasia Datonye

    objective of this study was to evaluate the volume and alcohol concentration of ... Keywords: Alcohol content, Standard drink measure,. Sales regulation, Port .... 1993. 9. Stockwell T, Blaze-Temple D, Walker C. The effect of. 'standard drink' ...

  1. Biobutanol as Fuel for Direct Alcohol Fuel Cells-Investigation of Sn-Modified Pt Catalyst for Butanol Electro-oxidation.

    Science.gov (United States)

    Puthiyapura, Vinod Kumar; Brett, Dan J L; Russell, Andrea E; Lin, Wen-Feng; Hardacre, Christopher

    2016-05-25

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the

  2. Improvement of performance and reduction of pollutant emissions of a four-stroke spark ignition engine fuelled with a mixture of hydrogen and methane as a supplementary fuel to alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Al-Bagdhadi, M.A.-R.S. [University of Babylon (Iraq). College of Engineering

    2004-05-01

    Owing to the energy crisis and pollution problems of today, investigations have concentrated on decreasing fuel consumption and on lowering the concentration of toxic components in combustion products by using non-petroleum, renewable, sustainable and non-polluting fuels. While conventional energy sources such as natural gas, oil and coal are non-renewable, hydrogen and alcohol can be coupled to renewable and sustainable energy sources. The usage of a mixture of hydrogen and methane as a supplementary fuel to an alcohol-air mixture for spark ignition engines results in a considerable improvement in engine performance and in the reduction of the toxic components in exhaust gases in comparison with the conventional spark ignition gasoline engine. In tests, the gas comprising 40 per cent H, and 60 per cent CH{sub 4} by volume was added to alcohol as 0, 2, 4, 6, 8, 10 and 12 per cent by mass. Operating test results for a range of compression ratio (CR) and equivalent ratio are presented. Gasoline fuel was used as a basis for comparison. The important improvement in methane addition reduced the specific fuel consumption (s.f.c.) and CO emission of alcohol engines. The performance of the engine is enhanced when relatively small amounts of hydrogen are present with methane. This improvement in performance, which is especially pronounced at operational equivalence ratios that are much leaner than the stoichiometric value, can be attributed largely to the faster and cleaner burning characteristics of hydrogen in comparison with methane or alcohol. Moreover, the addition of hydrogen decreases the s.f.c. of the engine. The possibility of an engine power quality adjustment has also been studied. (author)

  3. Blood alcohol concentration testing and reporting by the states : traffic tech.

    Science.gov (United States)

    2012-08-01

    Accurate and complete data on blood alcohol concentration : (BAC) levels for drivers in fatal crashes are critical in monitoring : alcohol-impaired-driving rates across the country, developing : alcohol-impaired-driving programs, and evaluating : the...

  4. Mixtures of methanol and 2-propanol as a potential fuel for direct alcohol fuel cells

    Directory of Open Access Journals (Sweden)

    S. LJ. GOJKOVIC

    2007-12-01

    Full Text Available The electrochemical oxidation of methanol, 2-propanol, and their mixtures was investigated on a Pt/C thin film electrode in acid solution. It was confirmed that the oxidation of 2-propanol commences at less positive potentials than that of methanol and exhibits significantly higher oxidation current densities at low potentials. When both methanol and 2-propanol were present in the solution, the onset of the oxidation current was the same as for the oxidation of pure 2-propanol. Although both alcohols inhibit the oxidation reaction of each other to a certain extent, steady-state polarization measurements showed that their mixture provides higher current densities than single alcohols over the entire potential region from the hydrogen region to oxide formation on the Pt surface. This implies that the addition of 2-propanol into the fuel may extend the operational range of direct methanol fuel cells.

  5. Plastic Optical Fiber Sensing of Alcohol Concentration in Liquors

    OpenAIRE

    Masayuki Morisawa; Shinzo Muto

    2012-01-01

    A simple optical fiber sensing system of alcohol concentration in liquors has been studied. In this sensor head, a mixture polymer of novolac resin and polyvinylidenefluoride (PVDF) with a ratio of 9 : 1 was coated as a sensitive cladding layer on the plastic fiber core made of polystyrene-(PS-)coated polycarbonate (PC). Using this sensor head and a green LED light source, it was confirmed that alcohol concentration in several kinds of liquors from beer to whisky can easily be measured with a...

  6. Methanol and ethanol from lignocellulosic Swedish wood fuels. Appendices. Comparison of the costs of alcohols from biomass

    International Nuclear Information System (INIS)

    Elam, N.; Ekstroem, C.; Oestman, A.; Rensfelt, E.

    1994-01-01

    Swedish wood fuel has a considerable volume and, apart from the utilization today, its use in year 2010 is estimated to amount to 75 TWh/year. Wood fuel can be converted to the alcohols methanol or ethanol and, as such, can be utilized as fuels or components capable of replacing petrol or diesel. This comparison of costs in producing methanol or ethanol from 250 000 tonnes DM of wood fuel using technology available today, or similar levels of technology, shows that methanol can be produced for about 2 SEK/1 (about 450 SEK/MWh) and ethanol for about 4,85 SEK/1 (825 SEK/MWh). The world market price today is around 1 SEK/1 for methanol and 2.60-2.80 SEK/1 for ethanol. Investment and production costs for the two types of production plants do not differ to any particular extent. The investment cost in the methanol plant is about 20 per cent higher, whereas production and maintenance costs are more than 20 per cent higher for ethanol. The explanation of considerable difference in production costs is, instead, primarily the difference in alcohol yield and secondarily the difference in the total efficiency. The valuation of secondary products, particularly lignin fuel from the ethanol process, is also important. The alcohols can be used as propellant fuels in several different ways as admixture components or as pure fuels. It is concluded that there are quality differences between the alcohols that can influence the driving capacity, emissions and which also affect the value of the alcohols. Among the uncertainties that particularly require more penetrating studies are questions dealing with health aspects related to the higher emissions of formaldehyde when used as an engine fuel, total environmental and health influence of ethanol emission, and the contents of polluting substances in lignin fuel that affect its range of use and its value

  7. Plastic Optical Fiber Sensing of Alcohol Concentration in Liquors

    Directory of Open Access Journals (Sweden)

    Masayuki Morisawa

    2012-01-01

    Full Text Available A simple optical fiber sensing system of alcohol concentration in liquors has been studied. In this sensor head, a mixture polymer of novolac resin and polyvinylidenefluoride (PVDF with a ratio of 9 : 1 was coated as a sensitive cladding layer on the plastic fiber core made of polystyrene-(PS-coated polycarbonate (PC. Using this sensor head and a green LED light source, it was confirmed that alcohol concentration in several kinds of liquors from beer to whisky can easily be measured with a fast response time less than 1 minute.

  8. Alcohol consumption is associated with high concentrations of urinary hydroxytyrosol.

    Science.gov (United States)

    Schröder, Helmut; de la Torre, Rafael; Estruch, Ramón; Corella, Dolores; Martínez-González, Miguel Angel; Salas-Salvadó, Jordi; Ros, Emilio; Arós, Fernando; Flores, Gemma; Civit, Ester; Farré, Magí; Fiol, Miguel; Vila, Joan; Fernandez-Crehuet, Joaquín; Ruiz-Gutiérrez, Valentina; Lapetra, Jose; Sáez, Guillermo; Covas, María-Isabel

    2009-11-01

    Previously, we reported the presence of hydroxytyrosol in red wine and higher human urinary recovery of total hydroxytyrosol than that expected after a single red wine intake. We hypothesized that the alcohol present in wine could promote endogenous hydroxytyrosol generation. The objective was to assess the relation between alcohol consumption and urinary hydroxytyrosol concentrations. This was a cross-sectional study with baseline data from a subsample of the PREvención con DIeta MEDiterránea (PREDIMED) trial, an intervention study directed at testing the efficacy of the Mediterranean diet on the primary prevention of cardiovascular disease. Participants included 1045 subjects, aged 55-80 y, who were at high cardiovascular risk. Alcohol consumption was estimated through a validated food-frequency questionnaire. Urinary hydroxytyrosol and ethyl glucuronide, a biomarker of alcohol consumption, were measured. Urinary ethyl glucuronide concentrations were directly related to alcohol and wine consumption (P logistic regression analyses showed a significant linear trend (P 20 g (2 drinks)/d and >10 g (1 drink)/d alcohol in men and women, respectively, were associated (P wine as a source of hydroxytyrosol and alcohol as an indirect promoter of endogenous hydroxytyrosol generation. This trial was registered at controlled-trials.com/isrctn/ as ISRCTN 35739639.

  9. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Splitter, Derek A [ORNL; Szybist, James P [ORNL

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  10. The need for blood alcohol concentration (BAC) legislation in Nigeria

    African Journals Online (AJOL)

    The pharmacology, clinical and sports implications of indulgence in alcohol and the debate on its legal status are highlighted in this article. The information presented could offer both clinical and safety benefits to psychomotor tasks executors and road safety professionals. Keywords: Blood alcohol concentration (BAC), ...

  11. Longitudinal study of alcohol consumption and HDL concentrations: a community-based study.

    Science.gov (United States)

    Huang, Shue; Li, Junjuan; Shearer, Gregory C; Lichtenstein, Alice H; Zheng, Xiaoming; Wu, Yuntao; Jin, Cheng; Wu, Shouling; Gao, Xiang

    2017-04-01

    Background: In cross-sectional studies and short-term clinical trials, it has been suggested that there is a positive dose-response relation between alcohol consumption and HDL concentrations. However, prospective data have been limited. Objective: We sought to determine the association between total alcohol intake, the type of alcohol-containing beverage, and the 6-y (2006-2012) longitudinal change in HDL-cholesterol concentrations in a community-based cohort. Design: A total of 71,379 Chinese adults (mean age: 50 y) who were free of cardiovascular diseases and cancer and did not use cholesterol-lowering agents during follow-up were included in the study. Alcohol intake was assessed via a questionnaire in 2006 (baseline), and participants were classified into the following categories of alcohol consumption: never, past, light (women: 0-0.4 servings/d; men: 0-0.9 servings/d), moderate (women: 0.5-1.0 servings/d; men: 1-2 servings/d), and heavy (women: >1.0 servings/d; men: >2 servings/d). HDL-cholesterol concentrations were measured in 2006, 2008, 2010, and 2012. We used generalized estimating equation models to examine the associations between baseline alcohol intake and the change in HDL-cholesterol concentrations with adjustment for age, sex, smoking, physical activity, obesity, hypertension, diabetes, liver function, and C-reactive protein concentrations. Results: An umbrella-shaped association was observed between total alcohol consumption and changes in HDL-cholesterol concentrations. Compared with never drinkers, past, light, moderate, and heavy drinkers experienced slower decreases in HDL cholesterol of 0.012 mmol · L -1 · y -1 (95% CI: 0.008, 0.016 mmol · L -1 · y -1 ), 0.013 mmol · L -1 · y -1 (95% CI: 0.010, 0.016 mmol · L -1 · y -1 ), 0.017 mmol · L -1 · y -1 (95% CI: 0.009, 0.025 mmol · L -1 · y -1 ), and 0.008 mmol · L -1 · y -1 (95% CI: 0.005, 0.011 mmol · L -1 · y -1 ), respectively ( P alcohol consumption was associated with the

  12. Urine ethanol concentration and alcohol hangover severity

    NARCIS (Netherlands)

    Brookhuis, Karel; Van De Loo, Aurora; Mackus, M.; Verster, Joris

    Background The aim of this study was to examine the relationship between urine ethanol concentration and alcohol hangover severity. Methods N = 36 healthy social drinkers participated in a naturalistic study, comprising a hangover day and a control day. N = 18 of them have regular hangovers (the

  13. Design report small-scale fuel alcohol plant. Volume 2: Detailed construction information

    Science.gov (United States)

    1980-12-01

    The objectives are to provide potential alcohol producers with a reference design and provide a complete, demonstrated design of a small scale fuel alcohol plant. The plant has the capability for feedstock preparation, cooking, saccharification, fermentation, distillation, by-product dewatering, and process steam generation. An interesting feature is an instrumentation and control system designed to allow the plant to run 24 hours per day with only four hours of operator attention.

  14. The protective role of low-concentration alcohol in high-fructose induced adverse cardiovascular events in mice.

    Science.gov (United States)

    Wu, Xiaoqi; Pan, Bo; Wang, Ying; Liu, Lingjuan; Huang, Xupei; Tian, Jie

    2018-01-01

    Cardiovascular disease remains a worldwide public health issue. As fructose consumption is dramatically increasing, it has been demonstrated that a fructose-rich intake would increase the risk of cardiovascular disease. In addition, emerging evidences suggest that low concentration alcohol intake may exert a protective effect on cardiovascular system. This study aimed to investigate whether low-concentration alcohol consumption would prevent the adverse effects on cardiovascular events induced by high fructose in mice. From the results of hematoxylin-eosin staining, echocardiography, heart weight/body weight ratio and the expression of hypertrophic marker ANP, we found high-fructose result in myocardial hypertrophy and the low-concentration alcohol consumption would prevent the cardiomyocyte hypertrophy from happening. In addition, we observed low-concentration alcohol consumption could inhibit mitochondria swollen induced by high-fructose. The elevated levels of glucose, triglyceride, total cholesterol in high-fructose group were reduced by low concentration alcohol. Low expression levels of SIRT1 and PPAR-γ induced by high-fructose were significantly elevated when fed with low-concentration alcohol. The histone lysine 9 acetylation (acH3K9) level was decreased in PPAR-γ promoter in high-fructose group but elevated when intake with low concentration alcohol. The binding levels of histone deacetylase SIRT1 were increased in the same region in high-fructose group, while the low concentration alcohol can prevent the increased binding levels. Overall, our study indicates that low-concentration alcohol consumption could inhibit high-fructose related myocardial hypertrophy, cardiac mitochondria damaged and disorders of glucose-lipid metabolism. Furthermore, these findings also provide new insights into histone acetylation-deacetylation mechanisms of low-concentration alcohol treatment that may contribute to the prevention of cardiovascular disease induced by high

  15. The safe operation zone of the spark ignition engine working with dual renewable supplemented fuels (hydrogen+ethyl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Maher Abdul-Resul Sadiq [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2001-04-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emission of a four-stroke spark ignition engine has been studied. The results of the study show that all engine performance parameters have been improved when operating the gasoline spark ignition engine with dual addition of hydrogen and ethyl alcohol. The important improvements of alcohol addition are to reduce the NOx emission while increasing the higher useful compression ratio and output power of hydrogen-supplemented engine. An equation has been derived from experimental data to specify the least quantity of ethyl alcohol blended with gasoline and satisfying constant NOx emission when hydrogen is added. A chart limiting the safe operation zone of the engine fueled with dual renewable supplemented fuel, (hydrogen and ethyl alcohol) has been produced. The safe zone provides lower NOx and CO emission, lower s.f.c. and higher brake power compared to an equivalent gasoline engine. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporized, and this causes a reduction in both brake power and efficiency. (Author)

  16. Methanol and ethanol from lignocellulosic Swedish wood fuels - Main report. Comparison of the costs of alcohols from biomass

    International Nuclear Information System (INIS)

    Elam, N.; Ekstroem, C.; Oestman, A.; Rensfelt, E.

    1994-06-01

    Swedish wood fuel has a considerable volume and, apart from the utilization today, its use in year 2010 is estimated to amount to 75 TWh/year. Wood fuel can be converted to the alcohols methanol or ethanol and, as such, can be utilized as fuels or components capable of replacing petrol or diesel. This comparison of costs in producing methanol or ethanol from 250 000 tonnes DM of wood fuel using technology available today, or similar levels of technology, shows that methanol can be produced for about 2 SEK/1 (about 450 SEK/MWh) and ethanol for about 4,85 SEK/1 (825 SEK/MWh). The world market price today is around 1 SEK/1 for methanol and 2.60-2.80 SEK/1 for ethanol. Investment and production costs for the two types of production plants do not differ to any particular extent. The investment cost in the methanol plant is about 20 per cent higher, whereas production and maintenance costs are more than 20 per cent higher for ethanol. The explanation of considerable difference in production costs is, instead, primarily the difference in alcohol yield and secondarily the difference in the total efficiency. The valuation of secondary products, particularly lignin fuel from the ethanol process, is also important. The alcohols can be used as propellant fuels in several different ways as admixture components or as pure fuels. It is concluded that there are quality differences between the alcohols that can influence the driving capacity, emissions and which also affect the value of the alcohols. Among the uncertainties that particularly require more penetrating studies are questions dealing with health aspects related to the higher emissions of formaldehyde when used as an engine fuel, total environmental and health influence of ethanol emission, and the contents of polluting substances in lignin fuel that affect its range of use and its value. 25 figs, 29 tabs

  17. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, J.A.B.; Durazzo, M.

    2010-01-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm 3 by using the U 3 Si 2 -Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm 3 for the U 3 Si 2 -Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  18. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de; Durazzo, Michelangelo, E-mail: jasouza@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 g U/c m3 by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 g U/c m3 for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian- Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  19. Quantitative determination of caffeine and alcohol in energy drinks and the potential to produce positive transdermal alcohol concentrations in human subjects.

    Science.gov (United States)

    Ayala, Jessica; Simons, Kelsie; Kerrigan, Sarah

    2009-01-01

    The purpose of this study was to determine whether non-alcoholic energy drinks could result in positive "alcohol alerts" based on transdermal alcohol concentration (TAC) using a commercially available electrochemical monitoring device. Eleven energy drinks were quantitatively assayed for both ethanol and caffeine. Ethanol concentrations for all of the non-alcoholic energy drinks ranged in concentration from 0.03 to 0.230% (w/v) and caffeine content per 8-oz serving ranged from 65 to 126 mg. A total of 15 human subjects participated in the study. Subjects consumed between 6 and 8 energy drinks over an 8-h period. The SCRAM II monitoring device was used to determine TACs every 30 min before, during, and after the study. None of the subjects produced TAC readings that resulted in positive "alcohol alerts". TAC measurements for all subjects before, during and after the energy drink study period (16 h total) were study consumed a quantity of non-alcoholic energy drink that greatly exceeds what would be considered typical. Based on these results, it appears that energy drink consumption is an unlikely explanation for elevated TACs that might be identified as potential drinking episodes or "alcohol alerts" using this device.

  20. Technical development of fuel alcohol

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    Research and development of a technology for biologically manufacturing alcohol from agricultural and forestry wastes has been conducted according to an eight year-program beginning in 1983. This paper presents the findings in FY 1987 and the future schedule. Exploration and breeding of superior bacteria are the basic subject through the eight years. In FY 1987, preparation and evaluation of hybrid plasmids into which Zymomonas, BETA-glucosidase gene and CM case gene are inserted, improvement of variation to enhance the salt resistance of Zymomonas and screening of Cm-and Sm-resistant bacteria to develop thermophilic, anaerobic cellulose were made. In addition, the total process combining the cell adhesion method as the immobilization technique with the flash technique is continuously studied. Improvement of the salt-resistance of Zymomonas by increasing the density with photosetting resin, the upper concentration of alcohol and effect of pulverzing treatment in a small apparatus were investigated. A test plant was designed and constructed. (3 photos.)

  1. Combinatorial investigation of Pt-Ru-Sn alloys as an anode electrocatalysts for direct alcohol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Young Hwan [Department of New Energy.Resource Engineering, College of Science and Engineering, Sangji University, 124, Sangjidae-gil, Wonju-si, Gangwon-Do 220-702 (Korea); Shul, Yong Gun [Department of Chemical and Biomolecular Engineering, Yonsei University, 134, Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea)

    2010-10-15

    Low-temperature direct alcohol fuel cells fed with different kinds of alcohol (methanol, ethanol and 2-propanol) have been investigated by employing ternary electrocatalysts (Pt-Ru-Sn) as anode catalysts. Combinatorial chemistry has been applied to screen the 66-PtRuSn-anode arrays at the same time to reduce cost, time, and effort when we select the optimum composition of electrocatalysts for DAFCs (Direct Alcohol Fuel Cells). PtRuSn (80:20:0) showed the lowest onset potential for methanol electro-oxidation, PtRuSn (50:0:50) for ethanol, and PtRuSn (20:70:10) for 2-propanol in CV results respectively, and single cell performance test indicated that Ru is more suitable for direct methanol fuel cell system, Sn for direct ethanol fuel cell system, and 2-propanol could be applied as fuel with low platinum composition anode electrocatalyst. The single cell performance results and electrochemical results (CV) were well matched with the combinatorial electrochemical results. As a result, we could verify the availability of combinatorial chemistry by comparing the results of each extreme electrocatalysts compositions as follows: PtRuSn (80:20:0) for methanol, PtRuSn (50:0:50) for ethanol and PtRuSn (20:70:10) for 2-propanol. (author)

  2. Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration

    Directory of Open Access Journals (Sweden)

    Youngseung Na

    2015-09-01

    Full Text Available Most of the R&D on fuel cells for portable applications concentrates on increasing efficiencies and energy densities to compete with other energy storage devices, especially batteries. To improve the efficiency of direct methanol fuel cell (DMFC systems, several modifications to system layouts and operating strategies are considered in this paper, rather than modifications to the fuel cell itself. Two modified DMFC systems are presented, one with an additional inline mixer and a further modification of it with a separate tank to recover condensed water. The set point for methanol concentration control in the solution is determined by fuel efficiency and varies with the current and other process variables. Feedforward concentration control enables variable concentration for dynamic loads. Simulation results were validated experimentally with fuel cell systems.

  3. Taking alcohol by deception: an analysis of ethanol concentration of "paraga" an alcoholic herbal mixture in Nigeria

    Directory of Open Access Journals (Sweden)

    Kehinde Oluwadiya S

    2012-03-01

    Full Text Available Abstract Background Alcohol related road traffic injuries are on the rise in Nigeria. A sizable proportion of the alcohol intake is disguised as herbal medicines which are commonly available at motor parks in most urban centres. This study aims to determine the ethanol concentration of the herbal preparations and the vendors' knowledge about their preparation and use. Twenty-eight samples of the paraga mixtures were obtained for analysis from 22 paraga vendors. The vendors were interviewed in the motor parks using a semi-structured questionnaire. Results All the paraga outlets were located in or near motor parks. Commercial motor drivers and motorcyclists accounted for most customers. There were no formal recipes, production involved no calibrations or weighing and thus the components and concentration of different batches varied. The alcohol by volume (ABV of the samples ranged between 1.20% and 20.84%. Nine samples were weaker than beers (Alcohol By Volume (ABV of 1-3.1%. Ten were equivalent to beer (ABV:3-8% and the rest were equivalent to wine (ABV:8-12% or stronger (ABV: 18-20%. Conclusions Paraga should be classified as alcoholic beverages, and its sale restricted as such. The production should come under scrutiny, because the haphazard ways they are prepared may pose other health risks apart from those due to their alcoholic contents.

  4. Distribution of motor-alcohols

    International Nuclear Information System (INIS)

    Brandberg, Aa.; Saevbark, B.

    1996-10-01

    The study is made on the assumption that Sweden, as a first step, will substitute alcohol fuels for five percent of the gasoline and diesel consumption, i.e. 700-900,000 m 3 alcohol/year, and later increase the alcohol share. Alcohol will be mixed into all gasoline, and one new fuel quality (85 percent alcohol) will be introduced during a ten year period. The cost for adapting the distribution system to alcohol fuels, and for building new service stations etc are also estimated. 15 refs

  5. Concentration measurements of biodiesel in engine oil and in diesel fuel

    International Nuclear Information System (INIS)

    Mäder, A; Eskiner, M; Burger, C; Rossner, M; Krahl, J; Ruck, W

    2012-01-01

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  6. Alcohol consumption reduces HbA1c and glycated albumin concentrations but not 1,5-anhydroglucitol.

    Science.gov (United States)

    Inada, Shinya; Koga, Masafumi

    2017-11-01

    Background The effect of alcohol consumption on glycaemic control indicators is not well known. In this study, we studied the effect of alcohol consumption on the plasma glucose and glycaemic control indicators in non-diabetic men. Methods The study enrolled 300 non-diabetic men who received a complete medical checkup (age: 52.8 ± 6.5 years, body mass index: 24.4 ± 2.8 kg/m 2 ). The subjects were divided into four groups by the amount of alcohol consumed, and the plasma glucose, HbA1c, glycated albumin (GA) and 1,5-anhydroglucitol (1,5-AG) concentrations of the groups were compared. Results As the level of alcohol consumption increased, significantly high concentrations of fasting plasma glucose (FPG) were observed, and the oral glucose tolerance test 2-h plasma glucose concentrations tended to rise. While no significant effect of alcohol consumption on HbA1c, 1,5-AG, and the 1,5-AG/FPG ratio was observed, the HbA1c/FPG ratio, GA and the GA/FPG ratio exhibited significantly low values as the level of alcohol consumption increased. In stepwise multivariate regression analysis, alcohol consumption was a significant negative independent variable for HbA1c and GA, but not for 1,5-AG. Conclusions As the level of alcohol consumption increased, the plasma glucose concentrations rose, but the HbA1c and GA concentrations were lower compared with the plasma glucose concentrations. These findings suggest that alcohol consumption may reduce HbA1c and GA concentrations, but not 1,5-AG.

  7. Turning to alcohol?

    International Nuclear Information System (INIS)

    Reiboro, S.K.

    1998-01-01

    Brazil is examining whether turning to alcohol could solve its problems. The fuel alcohol producers are lobbying hard for the government to increase the use of alcohol to fuel the country's cars. Not only does using alcohol reduce CO 2 , runs the argument, but the Kyoto agreement might just attract international financing for the project. (author)

  8. Recalculation of measured fuel nuclide concentrations

    International Nuclear Information System (INIS)

    Moeller, W.

    1984-01-01

    The concentrations and concentration ratios of heavy fuel nuclides determined in the Central Institute for Nuclear Research Rossendorf on the basis of destructive burnup measurements are compared with the results of microburnup calculations. The possibility is discussed to improve the results by taking into account the spectral characteristics at the positions of the measuring samples. (author)

  9. Alcoholic fermentation by immobilized yeast at high sugar concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holcberg, I.B.; Margalith, P.

    1981-01-01

    Glucose fermentation by Saccharomyces cerevisiae immobilized by entrapment in agar, carrageenan, alginate and polyacrylamide gels, was compared to that of freely suspended cells at concentration of 10-50% (w.w.) sugar. The rate of ethanol production by the entrapped cells was 20-25% higher than that of the free cells. Concentrations of up to 14.5% w/w ethanol (30% glucose initial concentration) could be obtained. A number of hypotheses for the improved alcoholic fermentation are discussed.

  10. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  11. Serum testosterone concentrations in men with alcoholic cirrhosis

    DEFF Research Database (Denmark)

    Gluud, C

    1987-01-01

    Median serum testosterone concentration of men with alcoholic cirrhosis (n = 216) did not differ significantly from normal controls (n = 51), but serum testosterone concentrations varied by a factor 43.9 in patients compared to 3.2 in controls (P less than .001). Nineteen percent of the patients...... had serum testosterone concentrations above 30 nmol/L. Serum concentrations of sex-hormone-binding globulin (SHBG) were significantly (P less than .001) raised, and serum concentrations of calculated nonprotein-bound and non-SHBG-bound testosterone were significantly (P less than .001) decreased...... in patients compared to normal control values. A number of background variables were analyzed with reference to serum testosterone concentrations by means of multiple regression techniques after having divided the patients into groups (A, B, C) with decreasing liver function by a modification of the Child...

  12. Direct alcohol fuel cells: Increasing platinum performance by modification with sp-group metals

    Science.gov (United States)

    Figueiredo, Marta C.; Sorsa, Olli; Doan, Nguyet; Pohjalainen, Elina; Hildebrand, Helga; Schmuki, Patrik; Wilson, Benjamin P.; Kallio, Tanja

    2015-02-01

    By using sp group metals as modifiers, the catalytic properties of Pt can be improved toward alcohols oxidation. In this work we report the performance increase of direct alcohol fuel cells (DAFC) fuelled with ethanol or 2-propanol with platinum based anode electrodes modified with Bi and Sb adatoms. For example, by simply adding Sb to the Pt/C based anode ink during membrane electrode assembly fabrication of a direct ethanol fuel cell (DEFC) its performance is improved three-fold, with more than 100 mV increase in the open circuit potential. For the fuel cell fuelled with 2-propanol high power densities are obtained at very high potentials with these catalyst materials suggesting a great improvement for practical applications. Particularly in the case of Pt/C-Bi, the improvement is such that within 0.6 V (from 0.7 to 0.1 V) the power densities are between 7 and 9 mW/cm2. The results obtained with these catalysts are in the same range as those obtained with other bimetallic catalysts comprising of PtRu and PtSn, which are currently considered to be the best for these type of fuel cells and that are obtained by more complicated (and consequently more expensive) methods.

  13. Adding fuel to the fire: alcohol's effect on the HIV epidemic in Sub-Saharan Africa.

    Science.gov (United States)

    Hahn, Judith A; Woolf-King, Sarah E; Muyindike, Winnie

    2011-09-01

    Alcohol consumption adds fuel to the HIV epidemic in sub-Saharan Africa (SSA). SSA has the highest prevalence of HIV infection and heavy episodic drinking in the world. Alcohol consumption is associated with behaviors such as unprotected sex and poor medication adherence, and biological factors such as increased susceptibility to infection, comorbid conditions, and infectiousness, which may synergistically increase HIV acquisition and onward transmission. Few interventions to decrease alcohol consumption and alcohol-related sexual risk behaviors have been developed or implemented in SSA, and few HIV or health policies or services in SSA address alcohol consumption. Structural interventions, such as regulating the availability, price, and advertising of alcohol, are challenging to implement due to the preponderance of homemade alcohol and beverage industry resistance. This article reviews the current knowledge on how alcohol impacts the HIV epidemic in SSA, summarizes current interventions and policies, and identifies areas for increased research and development.

  14. Application of Alcohols to Dual - Fuel Feeding the Spark-Ignition and Self-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2014-10-01

    Full Text Available This paper concerns analysis of possible use of alcohols for the feeding of self - ignition and spark-ignition engines operating in a dual- fuel mode, i.e. simultaneously combusting alcohol and diesel oil or alcohol and petrol. Issues associated with the requirements for application of bio-fuels were presented with taking into account National Index Targets, bio-ethanol production methods and dynamics of its production worldwide and in Poland. Te considerations are illustrated by results of the tests on spark- ignition and self- ignition engines fed with two fuels: petrol and methanol or diesel oil and methanol, respectively. Te tests were carried out on a 1100 MPI Fiat four- cylinder engine with multi-point injection and a prototype collector fitted with additional injectors in each cylinder. Te other tested engine was a SW 680 six- cylinder direct- injection diesel engine. Influence of a methanol addition on basic operational parameters of the engines and exhaust gas toxicity were analyzed. Te tests showed a favourable influence of methanol on combustion process of traditional fuels and on some operational parameters of engines. An addition of methanol resulted in a distinct rise of total efficiency of both types of engines at maintained output parameters (maximum power and torque. In the same time a radical drop in content of hydrocarbons and nitrogen oxides in exhaust gas was observed at high shares of methanol in feeding dose of ZI (petrol engine, and 2-3 fold lower smokiness in case of ZS (diesel engine. Among unfavourable phenomena, a rather insignificant rise of CO and NOx content for ZI engine, and THC and NOx - for ZS engine, should be numbered. It requires to carry out further research on optimum control parameters of the engines. Conclusions drawn from this work may be used for implementation of bio-fuels to feeding the combustion engines.

  15. Polyvinyl alcohol (PVA) and sulfonated polyetheretherketone (SPEEK) anion exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-31

    Full Text Available less than proton exchange membrane systems using alcohol as fuel. Many anion exchange membranes based on quaternised polymers have been developed and studied for AMFC3-5. The quaternary ammonium functional groups are the anion conductors...

  16. Application of impedance spectroscopy method for analysis of benzanol fuels

    Directory of Open Access Journals (Sweden)

    Mamykin A. V.

    2015-06-01

    Full Text Available The authors have developed a method for express control of three component «gasoline-alcohol-water» fuel mixtures based on the spectral impedance investigation of benzanol mixture in the frequency range of 500 Hz — 10 kHz. A correlation dependence between the dielectric constant and the specific resistance of the fuel mixture on content of ethanol and water in the mixture has been found. On the basis of this dependence a calibration nomogram to quantify the gasoline and water-alcohol components content in the test benzanol fuel in the actual range of concentrations has been formed. The nomogram allows determining the water-alcohol and gasoline parts in the analyzed fuel with an error of no more than 1% vol., while the strength of water-alcohol solution is determined with an error of no more than 0.8% vol. The obtained nomogram can also give information about critical water content in the benzanol fuel to prevent its eventual phase separation. It is shown that the initial component composition of different gasoline brands has no significant effect on the electrical characteristics of the studied benzanol fuels, which makes the evaluation of alcohol and water content in the fuel sufficiently accurate. for practical applications.

  17. Results of fuel elements fabrication on the basis of increased concentration dioxide fuel for research reactors

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    1996-01-01

    According to the Russian Reduced Enrichment for Research and Test Reactors (RERTR) program, that were constructed under the Russian projects, at the Novosibirsk Chemical Concentrates Plant the pilot series of different configuration (WR-M2, MR, IRT-4M) fuel elements, based on increased concentration uranium dioxide fuel, have been fabricated for reactor tests. Comprehensive fabricated fuel elements quality estimation has been carried out. (author)

  18. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2003-01-01

    Vegetable oil fuels have not been acceptable because they were more expensive than petroleum fuels. With recent increases in petroleum prices and uncertainties concerning petroleum availability, there is renewed interest in vegetable oil fuels for Diesel engines. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, but some engine performance problems still exist. The purpose of the transesterification process is to lower the viscosity of the oil. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative Diesel engine fuel. Methyl and ethyl esters of vegetable oils have several outstanding advantages among other new renewable and clean engine fuel alternatives. The main factors affecting transesterification are the molar ratio of glycerides to alcohol, catalyst, reaction temperature and pressure, reaction time and the contents of free fatty acids and water in oils. The commonly accepted molar ratios of alcohol to glycerides are 6:1-30:1

  19. Even low alcohol concentrations affect obstacle avoidance reactions in healthy senior individuals.

    NARCIS (Netherlands)

    Hegeman, J.; Weerdesteijn, V.G.M.; Bemt, B.J.F van den; Nienhuis, B.; Limbeek, J. van; Duysens, J.E.J.

    2010-01-01

    BACKGROUND: Alcohol is a commonly used social drug and driving under influence is a well-established risk factor for traffic accidents1. To improve road safety, legal limits are set for blood alcohol concentration (BAC) and driving, usually at 0.05% (most European countries) or 0.08% (most US

  20. 76 FR 82320 - Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports

    Science.gov (United States)

    2011-12-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 332-288] Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports AGENCY: United States International Trade Commission. [[Page 82321

  1. Fortification and Elevated Alcohol Concentration Affect the Concentration of Rotundone and Volatiles in Vitis vinifera cv. Shiraz Wine

    Directory of Open Access Journals (Sweden)

    Pangzhen Zhang

    2017-06-01

    Full Text Available Rotundone is a key aromatic compound for cool-climate Shiraz. This compound is produced in the skin of grape berries and extracted into wine during fermentation. This project investigated the influence of fermentation techniques on the concentration of rotundone in the resultant wine. Wine was fortified with ethanol and sucrose on the 1st and 5th days of fermentation and rotundone, volatile aroma compounds and colour were assessed in the resultant wine. The relationship between the concentration of rotundone and alcoholic strength during fermentation process was also investigated. Wine alcoholic strength and skin–wine contact time were two factors affecting rotundone extraction rate from grapes into wine. Fortification significantly enhanced rotundone extraction rate, and improved wine colour and phenolics and affects the concentration of ethyl acetate, 3-methylbutyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, methyl nonanoate, isopentanol and phenylethyl alcohol in the resultant wine. Understanding how ethanol produced during fermentation can change the extraction of skin-bound aroma compounds and the colour and flavour of wine allows greater control of fermentation parameters to produce quality wine.

  2. Effects of different blood alcohol concentrations and post-alcohol impairment on driving behavior and task performance.

    Science.gov (United States)

    Liu, Yung-Ching; Ho, Chin Heng

    2010-08-01

    A study using simulator methodology was conducted to investigate the effects of (1) different blood alcohol concentrations (BAC) of 0, 0.05, 0.08, and 0.10 percent and (2) post-alcohol impairment (where BAC approximately 0%) on driving behavior and subsidiary cognitive task performance. Two driving sessions were investigated, that is, drunk driving and post-alcohol driving, with each requiring approximately 20 min of driving. In addition to driving safely, participants were instructed to perform the critical flicker fusion (CFF) test and completed the NASA-TLX mental workload questionnaire. Eight licensed drivers (6 males, 2 females) participated in this 2 (road complexities) x 2 (simulated driving sessions) x 4 (levels of BAC) within-subjects experiment. The study revealed that higher BAC levels were associated with lower performing driving behavior. The driver's mental workload reached the highest values in the post-alcohol session. In terms of tasks involving divided attention, the traffic sign distance estimation showed significant deterioration with increased BAC levels. The relationship between drunk-driving behavior and alcohol dosage was supported in this study. Noticeably, no significant difference was found between drunk driving and post-alcohol driving, indicating that even in the post-alcohol situation, the impairment still remained significant enough to jeopardize traffic safety as much as it does in the case of drunk driving. In real-life situations, adopting a rest-time strategy to avoid post-alcohol impairment effects may not be the most appropriate solution by drivers; rather, drivers should be given some tests to verify the probability of post-alcohol effects on driving.

  3. The virucidal spectrum of a high concentration alcohol mixture

    NARCIS (Netherlands)

    van Engelenburg, F. A. C.; Terpstra, F. G.; Schuitemaker, H.; Moorer, W. R.

    2002-01-01

    The virucidal spectrum of a high concentration alcohol mixture (80% ethanol and 5% isopropanol) was determined for a broad series of lipid-enveloped (LE) and non-lipid-enveloped (NLE) viruses covering all relevant blood-borne viruses. LE viruses were represented by human immunodeficiency virus

  4. Bacterial Membrane Depolarization-Linked Fuel Cell Potential Burst as Signal for Selective Detection of Alcohol.

    Science.gov (United States)

    Kaushik, Sharbani; Goswami, Pranab

    2018-06-06

    The biosensing application of microbial fuel cell (MFC) is hampered by its long response time, poor selectivity, and technical difficulty in developing portable devices. Herein, a novel signal form for rapid detection of ethanol was generated in a photosynthetic MFC (PMFC). First, a dual chambered (100 mL each) PMFC was fabricated by using cyanobacteria-based anode and abiotic cathode, and its performance was examined for detection of alcohols. A graphene-based nanobiocomposite matrix was layered over graphite anode to support cyanobacterial biofilm growth and to facilitate electron transfer. Injection of alcohols into the anodic chamber caused a transient potential burst of the PMFC within 60 s (load 1000 Ω), and the magnitude of potential could be correlated to the ethanol concentrations in the range 0.001-20% with a limit of detection (LOD) of 0.13% ( R 2 = 0.96). The device exhibited higher selectivity toward ethanol than methanol as discerned from the corresponding cell-alcohol interaction constant ( K i ) of 780 and 1250 mM. The concept was then translated to a paper-based PMFC (p-PMFC) (size ∼20 cm 2 ) wherein, the cells were merely immobilized over the anode. The device with a shelf life of ∼3 months detected ethanol within 10 s with a dynamic range of 0.005-10% and LOD of 0.02% ( R 2 = 0.99). The fast response time was attributed to the higher wettability of ethanol on the immobilized cell surface as validated by the contact angle data. Alcohols degraded the cell membrane on the order of ethanol > methanol, enhanced the redox current of the membrane-bound electron carrier proteins, and pushed the anodic band gap toward more negative value. The consequence was the potential burst, the magnitude of which was correlated to the ethanol concentrations. This novel approach has a great application potential for selective, sensitive, rapid, and portable detection of ethanol.

  5. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.

    Science.gov (United States)

    Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco

    2015-02-01

    A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd  cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Influence of repeated permanent coloring and bleaching on ethyl glucuronide concentrations in hair from alcohol-dependent patients.

    Science.gov (United States)

    Crunelle, Cleo L; Yegles, Michel; De Doncker, Mireille; Dom, Geert; Cappelle, Delphine; Maudens, Kristof E; van Nuijs, Alexander L N; Covaci, Adrian; Neels, Hugo

    2015-02-01

    Ethyl glucuronide (EtG), a minor metabolite of alcohol, is used as a sensitive marker in hair to detect the retrospective consumption of alcohol. The proximal 0-3 cm hair segment is often used for analysis, providing information on alcohol consumption over the past 3 months. Using more distal segments would allow the detection of alcohol consumption over longer time periods, thereby addressing the chronicity of the consumption. In view of this, permanent coloring and bleaching were shown in vitro to alter EtG concentrations in hair, but no in vivo studies are available to prove or disprove this. To investigate the influence of repeated bleaching and permanent coloring on EtG concentrations in vivo and to assess the stability of EtG concentrations in distal compared to proximal hair segments. Hair samples from alcohol-dependent patients with uncolored/unbleached (N=4), permanent coloration (N=5) and bleached hair (N=5) were analyzed in two to six 3 cm long segments for EtG concentrations, and alcohol consumption and hair cosmetic treatments were assessed. We observed that hair bleaching and permanent coloring reduces EtG concentrations by 82±11% and 65±24%, respectively, with correlations between the number of cosmetic treatments and the decrease in EtG concentrations. EtG remained stable in untreated hair samples up to 18 cm. EtG is a sensitive marker to assess chronic alcohol consumption up to 18 months in alcohol-dependent patients with no cosmetic hair treatments. However, in alcohol-dependent patients who color or bleach their hair, care should be taken when interpreting EtG measurements. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Determining concentrations of 2-bromoallyl alcohol and dibromopropene in ground water using quantitative methods

    Science.gov (United States)

    Panshin, Sandra Y.

    1997-01-01

    A method for determining levels of 2-bromoallyl alcohol and 2,3-dibromopropene from ground-water samples using liquid/liquid extraction followed by gas chromatography/mass spectrometry is described. Analytes were extracted from the water using three aliquots of dichloromethane. The aliquots were combined and reduced in volume by rotary evaporation followed by evaporation using a nitrogen stream. The extracts were analyzed by capillary-column gas chromatography/mass spectrometry in the full-scan mode. Estimated method detection limits were 30 nanograms per liter for 2-bromoallyl alcohol and 10 nanograms per liter for 2,3-dibromopropene. Recoveries were determined by spiking three matrices at two concentration levels (0.540 and 5.40 micrograms per liter for 2-bromoallyl alcohol; and 0.534 and 5.34micro-grams per liter for dibromopropene). For seven replicates of each matrix at the high concentration level, the mean percent recoveries ranged from 43.9 to 64.9 percent for 2-bromoallyl alcohol, and from 87.5 to 99.3 percent for dibromopropene. At the low concentration level, the mean percent recoveries ranged from 43.8 to 95.2 percent for 2-bromoallyl alcohol, and from 71.3 to 84.9 percent for dibromopropene.

  8. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    OpenAIRE

    Iwasita Teresa

    2002-01-01

    Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH). In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishi...

  9. Heterogeneous catalytic process for alcohol fuels from syngas

    Energy Technology Data Exchange (ETDEWEB)

    Minahan, D.M.; Nagaki, D.A.

    1995-12-31

    This project is focused on the discovery and evaluation of novel heterogeneous catalyst for the production of oxygenated fuel enhancers from synthesis gas. Catalysts have been studied and optimized for the production of methanol and isobutanol mixtures which may be used for the downstream synthesis of MTBE or related oxygenates. Higher alcohols synthesis (HAS) from syngas was studied; the alcohols that are produced in this process may be used for the downstream synthesis of MTBE or related oxygenates. This work has resulted in the discovery of a catalyst system that is highly selective for isobutanol compared with the prior art. The catalysts operate at high temperature (400{degrees}C), and consist of a spinel oxide support (general formula AB{sub 2}O{sub 4}, where A=M{sup 2+} and B = M{sup 3+}), promoted with various other elements. These catalysts operate by what is believed to be an aldol condensation mechanism, giving a product mix of mainly methanol and isobutanol. In this study, the effect of product feed/recycle (methanol, ethanol. n-propanol, isopropanol, carbon dioxide and water) on the performance of 10-DAN-55 (spinel oxide based catalyst) at 400{degrees}C, 1000 psi, GHSV = 12,000 and syngas (H{sub 2}/CO) ratio = 1:2 (alcohol addition) and 1:1 (carbon dioxide and water addition) was studied. The effect of operation at high temperatures and pressures on the performance of an improved catalyst formulation was also examined.

  10. Carbon composites with metal nanoparticles for Alcohol fuel cells

    Science.gov (United States)

    Ventrapragada, Lakshman; Siddhardha, R. S.; Podilla, Ramakrishna; Muthukumar, V. S.; Creager, Stephen; Rao, A. M.; Ramamurthy, Sai Sathish

    2015-03-01

    Graphene due to its high surface area and superior conductivity has attracted wide attention from both industrial and scientific communities. We chose graphene as a substrate for metal nanoparticle deposition for fuel cell applications. There are many chemical routes for fabrication of metal-graphene composites, but they have an inherent disadvantage of low performance due to the usage of surfactants, that adsorb on their surface. Here we present a design for one pot synthesis of gold nanoparticles and simultaneous deposition on graphene with laser ablation of gold strip and functionalized graphene. In this process there are two natural advantages, the nanoparticles are synthesized without any surfactants, therefore they are pristine and subsequent impregnation on graphene is linker free. These materials are well characterized with electron microscopy to find their morphology and spectroscopic techniques like Raman, UV-Vis. for functionality. This gold nanoparticle decorated graphene composite has been tested for its electrocatalytic oxidation of alcohols for alkaline fuel cell applications. An electrode made of this composite showed good stability for more than 200 cycles of operation and reported a low onset potential of 100 mV more negative, an important factor for direct ethanol fuel cells.

  11. Evaluation method for change of concentration of nuclear fuel material

    International Nuclear Information System (INIS)

    Kiyono, Takeshi; Ando, Ryohei.

    1997-01-01

    The present invention provides a method of evaluating the change of concentration of compositions of nuclear fuel element materials loaded to a reactor along with neutron irradiation based on analytic calculation not relying on integration with time. Namely, the method of evaluating the change of concentration of nuclear fuel materials comprises evaluating the changing concentration of nuclear fuel materials based on nuclear fission, capturing of neutrons and radioactive decaying along with neutron irradiation. In this case, an optional nuclide on a nuclear conversion chain is determined as a standard nuclide. When the main fuel material is Pu-239, it is determined as the standard nuclide. The ratio of the concentration of the standard nuclide to that of the nuclide as an object of the evaluation can be expressed by the ratio of the cross sectional area of neutron nuclear reaction of the standard nuclide to the cross sectional area of the neutron nuclear reaction of the nuclide as the object of the evaluation. Accordingly, the concentration of the nuclide as the object of the evaluation can be expressed by an analysis formula shown by an analysis function for the ratio of the concentration of the standard nuclide to the cross section of the neutron nuclear reaction. As a result, by giving an optional concentration of the standard nuclide to the analysis formula, the concentration of each of other nuclides can be determined analytically. (I.S.)

  12. Even low alcohol concentrations affect obstacle avoidance reactions in healthy senior individuals

    Directory of Open Access Journals (Sweden)

    Nienhuis Bart

    2010-09-01

    Full Text Available Abstract Background Alcohol is a commonly used social drug and driving under influence is a well-established risk factor for traffic accidents1. To improve road safety, legal limits are set for blood alcohol concentration (BAC and driving, usually at 0.05% (most European countries or 0.08% (most US states, Canada and UK. In contrast, for walking there are no legal limits, yet there are numerous accounts of people stumbling and falling after drinking. Alcohol, even at these low concentrations, affects brain function and increases fall risk. An increased fall risk has been associated with impaired obstacle avoidance skills. Low level BACs are likely to affect obstacle avoidance reactions during gait, since the brain areas that are presumably involved in these reactions have been shown to be influenced by alcohol. Therefore we investigated the effect of low to moderate alcohol consumption on such reactions. Thirteen healthy senior individuals (mean(SD age: 61.5(4.4 years, 9 male were subjected to an obstacle avoidance task on a treadmill after low alcohol consumption. Fast stepping adjustments were required to successfully avoid suddenly appearing obstacles. Response times and amplitudes of the m. biceps femoris, a prime mover, as well as avoidance failure rates were assessed. Findings After the first alcoholic drink, 12 of the 13 participants already had slower responses. Without exception, all participants' biceps femoris response times were delayed after the final alcoholic drink (avg ± sd:180 ± 20 ms; p r = 0.6; p Conclusions The present results clearly show that even with BACs considered to be safe for driving, obstacle avoidance reactions are inadequate, late, and too small. This is likely to contribute to an increased fall risk. Therefore we suggest that many of the alcohol-related falls are the result of the disruptive effects of alcohol on the online corrections of the ongoing gait pattern when walking under challenging conditions.

  13. Developments in National Fuel Alcohol (biofuel) Programs: implications for world sugar trade. Rev. ed.

    International Nuclear Information System (INIS)

    1998-01-01

    This paper focuses on developments in the national fuel alcohol programmes of Brazil, the European Union and USA with the main emphasis on Brazil. A brief history of Brazil's alcohol production is given, and the deregulation of the alcohol sector in Brazil, the impacts of partial liberalisation of Brazil's alcohol sector, government delays in further liberalisation and attempts to manage supply, the PROALCOOL programme, the government's actions to boost ethanol demand, the slump in ethanol output in 1998/1999, and the increase in sugar output are examined. The long term goal of increasing reliance on biofuels in the European Union, the EU's alcohol industry, and ethanol production in France are considered. Market factors affecting ethanol production in the US, the US government's extension of its ethanol tax incentive, the US ethanol sector, and the future demand for ethanol in the US are discussed. The short and medium-term implications for sugar in Brazil, the EU and the US are assessed. (UK)

  14. Study of alcohol fuel of butanol and ethanol effect on the compression ignition (CI) engine performance, combustion and emission characteristic

    Science.gov (United States)

    Aziz, M. A.; Yusop, A. F.; Mat Yasin, M. H.; Hamidi, M. A.; Alias, A.; Hussin, H.; Hamri, S.

    2017-10-01

    Diesel engine which is one of the larger contributors to total consumption for petroleum is an attractive power unit used widely in many fields. However, diesel engines are among the main contributors to air pollutions for the large amount of emissions, such as CO, CO2 and NOx lead to an adverse effect on human health. Many researches have been done to find alternative fuels that are clean and efficient. Biodiesel is preferred as an alternative source for diesel engine which produces lower emission of pollutants. This study has focused on the evaluation of diesel and alcohol-diesel fuel properties and also the performance, combustion and exhaust emission from diesel engine fuelled with diesel and alcohol. Butanol and ethanol is blend with diesel fuel at 1:9 ratio. There are three test fuel that is tested which Diesel (100% diesel), D90BU10 (10% Butanol and 90% diesel) and D90E10 (10% Ethanol and 90% diesel). The comparison between diesel and alcohol-diesel blend has been made in terms of fuel properties characterization, engine performance such as brake power (BP) and brake specific fuel consumption (BSFC) also the in cylinder maximum pressure characteristic. Thus, exhaust gas emission of CO, CO2, NOx and O2 emission also has been observed at constant load of 50% but in different operating engine speed (1100 rpm, 1400 rpm, 1700 rpm, 2000 rpm and 2300 rpm). The results show the addition of 10% of each butanol and ethanol to diesel fuel had decreased the fuel density about 0.3% to 0.5% compared to mineral diesel. In addition, viscosity and energy content are also decrease. The addition of 10% butanol had improved the fuel cetane number however the ethanol blends react differently. In term of engine performance, as the engine speed increased, BP output also increase respectively. Hence, the alcohol blends fuel generates lower BP compared to diesel, plus BSFC for all test fuel shows decreasing trend at low and medium speed, however increased gradually at higher engine

  15. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  16. Study of a Fuel Supply Pump with a Piezoelectric Effect for Microdirect Alcohol Fuel Cells

    OpenAIRE

    Ma, Hsiao-Kang; Wang, Jyun-Sheng; Cheng, Wei-Yang; Huang, Shin-Han

    2011-01-01

    A novel design for an ethanol injection system has been proposed, which consists of one pump chamber, two valves, and one central-vibrating piezoelectric device. The system uses a microdiaphragm pump with a piezoelectric device for microdirect alcohol fuel cells. The diameters of the pump chamber are 31 mm and 23 mm, and the depths of the chamber are 1 mm and 2 mm. When the piezoelectric device actuates for changing pump chamber volume, the valves will be opened/closed, and the ethanol will b...

  17. Investigation and demonstration of a rich combustor cold-start device for alcohol-fueled engines

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, J W; Irick, D K [Univ. of Tennessee, Knoxville, TN (United States)

    1998-04-01

    The authors have completed a study in which they investigated the use of a rich combustor to aid in cold starting spark-ignition engines fueled with either neat ethanol or neat methanol. The rich combustor burns the alcohol fuel outside the engine under fuel-rich conditions to produce a combustible product stream that is fed to the engine for cold starting. The rich combustor approach significantly extends the cold starting capability of alcohol-fueled engines. A design tool was developed that simulates the operation of the combustor and couples it to an engine/vehicle model. This tool allows the user to determine the fuel requirements of the rich combustor as the vehicle executes a given driving mission. The design tool was used to design and fabricate a rich combustor for use on a 2.8 L automotive engine. The system was tested using a unique cold room that allows the engine to be coupled to an electric dynamometer. The engine was fitted with an aftermarket engine control system that permitted the fuel flow to the rich combustor to be programmed as a function of engine speed and intake manifold pressure. Testing indicated that reliable cold starts were achieved on both neat methanol and neat ethanol at temperatures as low as {minus}20 C. Although starts were experienced at temperatures as low as {minus}30 C, these were erratic. They believe that an important factor at the very low temperatures is the balance between the high mechanical friction of the engine and the low energy density of the combustible mixture fed to the engine from the rich combustor.

  18. Circulating immune complexes and complement concentrations in patients with alcoholic liver disease

    DEFF Research Database (Denmark)

    Gluud, C; Jans, H

    1982-01-01

    A prospective evaluation of circulating immune complexes (CIC) and the activity of the complement system was undertaken in 53 alcoholic patients just before diagnostic liver biopsy. Circulating immune complexes were detected in 39% of patients with alcoholic steatosis (n = 26), 58% of patients...... with alcoholic hepatitis (n = 12), and 60% of patients with alcoholic cirrhosis (n = 15). No significant difference was found between the three group of patients. The activity of the complement system was within reference limits in the majority of patients and only slight differences were detected between...... the three groups. No significant differences were observed in liver biochemistry and complement concentrations in CIC-positive and CIC-negative patients. Detection of CIC in patients with alcoholic liver disease does not seem to be of any diagnostic value or play any pathogenic role. The high prevalence...

  19. Dimension Health: Ignored in Alcohol Fuel Politics (PAC in Colombia?

    Directory of Open Access Journals (Sweden)

    Héctor García-Lozada

    2009-07-01

    Full Text Available The worldwide debate about global warming of the atmosphere, and the recognition of the decisive contribution of fossil fuels to gas emissions that intensify this phenomenon, have allowed the resurgence of energy options such as biomass, with the goal of reducing carbon emissions and provide benefits to farmers. These suppositions, currently quite controversial, leave out considerations about potential impacts on ecosystems and public health, due to the emission of high-risk substances, such is the case when ethanol mixed with gasoline is burned. This article examines how Alcohol Fuel politics are surging in the country and the way that the public health dimension is contemplated in those politics; through the use of the “multiple streams” model proposed by Kingdon and a narrative method to understand the process as well as the context of political decisions.

  20. Alcohol concentration and risk of oral cancer in Puerto Rico.

    Science.gov (United States)

    Huang, Wen-Yi; Winn, Deborah M; Brown, Linda M; Gridley, Gloria; Bravo-Otero, Eleuterio; Diehl, Scott R; Fraumeni, Joseph F; Hayes, Richard B

    2003-05-15

    Alcohol consumption is a major risk factor for cancers of the mouth and pharynx (oral cancer), but the differential risks by beverage type are unclear. In this 1992-1995 study, the authors examined oral cancer risk in Puerto Rico, comparing alcohol intake among 286 male cases aged 21-79 years and 417 population-based male controls, frequency matched by age. Heavy consumers of liquor (>/=43 drinks per week) had strongly increased risks of oral cancer (odds ratio = 6.4, 95% confidence interval: 2.4, 16.8); beer/wine showed only modest effects. Among liquor drinkers, risks were consistently greater for those who drank straight (undiluted) liquor than for those who usually drank mixed (diluted) liquor (odds ratio = 4.0, 95% confidence interval: 2.4, 6.7). Risks associated with combined exposure to tobacco were also more pronounced when subjects drank liquor straight. The elevated risks associated with drinking homemade rum were similar to those for other types of liquor. These results suggest that alcohol concentration is a risk factor for oral cancer independent of the total quantity of alcohol consumed.

  1. Performance study of sugar-yeast-ethanol bio-hybrid fuel cells

    Science.gov (United States)

    Jahnke, Justin P.; Mackie, David M.; Benyamin, Marcus; Ganguli, Rahul; Sumner, James J.

    2015-05-01

    Renewable alternatives to fossil hydrocarbons for energy generation are of general interest for a variety of political, economic, environmental, and practical reasons. In particular, energy from biomass has many advantages, including safety, sustainability, and the ability to be scavenged from native ecosystems or from waste streams. Microbial fuel cells (MFCs) can take advantage of microorganism metabolism to efficiently use sugar and other biomolecules as fuel, but are limited by low power densities. In contrast, direct alcohol fuel cells (DAFCs) take advantage of proton exchange membranes (PEMs) to generate electricity from alcohols at much higher power densities. Here, we investigate a novel bio-hybrid fuel cell design prepared using commercial off-the-shelf DAFCs. In the bio-hybrid fuel cells, biomass such as sugar is fermented by yeast to ethanol, which can be used to fuel a DAFC. A separation membrane between the fermentation and the DAFC is used to purify the fermentate while avoiding any parasitic power losses. However, shifting the DAFCs from pure alcohol-water solutions to filtered fermented media introduces complications related to how the starting materials, fermentation byproducts, and DAFC waste products affect both the fermentation and the long-term DAFC performance. This study examines the impact of separation membrane pore size, fermentation/fuel cell byproducts, alcohol and salt concentrations, and load resistance on fuel cell performance. Under optimized conditions, the performance obtained is comparable to that of a similar DAFC run with a pure alcohol-water mixture. Additionally, the modified DAFC can provide useable amounts of power for weeks.

  2. Impairment due to combined sleep restriction and alcohol is not mitigated by decaying breath alcohol concentration or rest breaks.

    Science.gov (United States)

    Manousakis, Jessica E; Anderson, Clare

    2017-09-01

    Epidemiological and laboratory-based driving simulator studies have shown the detrimental impact of moderate, legal levels of alcohol consumption on driving performance in sleepy drivers. As less is known about the time course of decaying alcohol alongside performance impairment, our study examined impairment and recovery of performance alongside decaying levels of alcohol, with and without sleep restriction. Sixteen healthy young males (18-27 years) underwent 4 counterbalanced conditions: Baseline, Alcohol (breath alcohol concentration [BrAC] batteries commenced 1 hr after consumption and were completed every 30 min for 2 hr (1:30 p.m.-3:30 p.m.). The Combined condition impaired subjective and objective sleepiness. Here, performance deficits peaked 90 min after alcohol consumption or 30 min after the BrAC peak. Performance did not return to baseline levels until 2.5 hr following consumption, despite receiving rest breaks in between testing. These findings suggest that (a) falling BrACs are an inadequate guide for performance/safety and (b) rest breaks without sleep are not a safety measure for mitigating performance impairment when consuming alcohol following restricted sleep. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    Science.gov (United States)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  4. Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2007-08-01

    Full Text Available Sugars and sugar-alcohols are demonstrated to be important constituents of the ambient aerosol water-soluble organic carbon fraction, and to be tracers for primary biological aerosol particles (PBAP. In the present study, levels of four sugars (fructose, glucose, sucrose, trehalose and three sugar-alcohols (arabitol, inositol, mannitol in ambient aerosols have been quantified using a novel HPLC/HRMS-TOF (High Performance Liquid Chromatography in combination with High Resolution Mass Spectrometry – Time of Flight method to assess the contribution of PBAP to PM>sub>10 and PM2.5. Samples were collected at four sites in Norway at different times of the year in order to reflect the various contributing sources and the spatial and seasonal variation of the selected compounds.

    Sugars and sugar-alcohols were present at all sites investigated, underlining the ubiquity of these highly polar organic compounds. The highest concentrations were reported for sucrose, reaching a maximum concentration of 320 ng m−3 in PM10 and 55 ng m−3 in PM2.5. The mean concentration of sucrose was up to 10 times higher than fructose, glucose and the dimeric sugar trehalose. The mean concentrations of the sugar-alcohols were typically lower, or equal, to that of the monomeric sugars and trehalose. Peak concentrations of arabitol and mannitol did not exceed 30 ng m−3 in PM10, and for PM2.5 all concentrations were below 6 ng m−3.

    Sugars and sugar-alcohols were associated primarily with coarse aerosols except during wintertime at the suburban site in Elverum, where a shift towards sub micron aerosols was observed. It is proposed that this shift was due to the intensive use of wood burning for residential heating at this site during winter, confirmed by high concurrent concentrations of levoglucosan. Elevated concentrations of sugars in PM2

  5. 78 FR 9938 - Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports

    Science.gov (United States)

    2013-02-12

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 332-288] Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports AGENCY: United States International Trade Commission. ACTION... the statutory requirement that the Commission make such determinations. Section 423(c) of the Tax...

  6. Ethanol and ethyl glucuronide urine concentrations after ethanol-based hand antisepsis with and without permitted alcohol consumption.

    Science.gov (United States)

    Gessner, Stephan; Below, Elke; Diedrich, Stephan; Wegner, Christian; Gessner, Wiebke; Kohlmann, Thomas; Heidecke, Claus-Dieter; Bockholdt, Britta; Kramer, Axel; Assadian, Ojan; Below, Harald

    2016-09-01

    During hand antisepsis, health care workers (HCWs) are exposed to alcohol by dermal contact and by inhalation. Concerns have been raised that high alcohol absorptions may adversely affect HCWs, particularly certain vulnerable individuals such as pregnant women or individuals with genetic deficiencies of aldehyde dehydrogenase. We investigated the kinetics of HCWs' urinary concentrations of ethanol and its metabolite ethyl glucuronide (EtG) during clinical work with and without previous consumption of alcoholic beverages by HCWs. The median ethanol concentration was 0.7 mg/L (interquartile range [IQR], 0.5-1.9 mg/L; maximum, 9.2 mg/L) during abstinence and 12.2 mg/L (IQR, 1.5-139.6 mg/L; maximum, 1,020.1 mg/L) during alcohol consumption. During abstinence, EtG reached concentrations of up to 958 ng/mL. When alcohol consumption was permitted, the median EtG concentration of all samples was 2,593 ng/mL (IQR, 890.8-3,576 ng/mL; maximum, 5,043 ng/mL). Although alcohol consumption was strongly correlated with both EtG and ethanol in urine, no significant correlation for the frequency of alcoholic hand antisepsis was observed in the linear mixed models. The use of ethanol-based handrub induces measurable ethanol and EtG concentrations in urine. Compared with consumption of alcoholic beverages or use of consumer products containing ethanol, the amount of ethanol absorption resulting from handrub applications is negligible. In practice, there is no evidence of any harmful effect of using ethanol-based handrubs as much as it is clinically necessary. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  7. The environmental performance of three alcohol fuel plants producers of small, medium and big scale

    International Nuclear Information System (INIS)

    Borrero, Manuel Antonio Valdes; Pereira, Jose Tomaz Vieira; Miranda, Evaristo Eduardo de

    1999-01-01

    The article discusses the following issues of alcohol fuel plants producers: sizing; performance; natural resources; environmental aspects; and electric power generation. The environmental performance concept is introduced and a performance evaluation methodology are presented and applied. The results are also presented and criticized

  8. Changes in concentration of visfatin during four weeks of inpatient treatment of alcohol dependent males

    Directory of Open Access Journals (Sweden)

    Damian Czarnecki

    2015-09-01

    Conclusions: The dynamic of change in the concentration of visfatin during four weeks of abstinence is not associated with a reduction in craving for alcohol at the time and is associated with alcohol drinking and liver functioning.

  9. Influence of Uranium and Polivinyl Alcohol Concentration in the Feed of Sol Gel Process on the Gel Spherical Product

    International Nuclear Information System (INIS)

    Indra Suryawan; Endang Susiantini

    2007-01-01

    The gel particles have been made at various uranium and polyvinyl alcohol concentration in the sol gel process. The variables of uranium concentration were 0.3; 0.5; 0.7; 0.9; 1.1; 1.3; 1.5; 1.7; 1.9 and 2.1 M The variables of polyvinyl alcohol concentration were 0.3; 0.6; 0.9; 1.2; 1.5; 1.8; 2.1 and 2.4 M After drying the sol gel process products were heated at 300, 500 and 750°C during 4 hours. The gel particles were characterized using an optic microscope to know the shape and condition morphology of gel. From experimental result using uranium concentration of 0.3 until 2.1 M and polyvinyl alcohol of 1.8 until 2.4 M spherical and gel was formed elastic, after heating at 750°C it was unbreakable. At the concentration of polyvinyl alcohol from 0.3 to 0.5 M, the gel product was soft and broken after being dried. At the concentration of polyvinyl alcohol from 0.6 to 0.8 M, the dried gel product was not perfect. At the concentration of polyvinyl alcohol from 0.9 to 1.7 M, the gel product of gelation process was spherical and it was broken after being heated up to 300°C. (author)

  10. Diffusion Profiles of Health Beneficial Components from Goji Berry (Lyceum barbarum Marinated in Alcohol and Their Antioxidant Capacities as Affected by Alcohol Concentration and Steeping Time

    Directory of Open Access Journals (Sweden)

    Yang Song

    2013-01-01

    Full Text Available The fruit (goji berry of Lycium barbarum, a traditional Chinese medicine, has been widely used in health diets due to its potential role in the prevention of chronic diseases. One of the most popular applications of goji berry is to make goji wine in China by steeping goji berry in grain liquor. However, how the steeping process affects antioxidant capacities and phytochemicals of goji berry is not yet fully understood. Therefore, to provide scientific data for the utilization of goji berry in the nutraceutical industry, the diffusion rate of betaine, β-carotene, phenolic compounds in goji berry and their antioxidant capacities affected by alcohol concentration and steeping time were determined by UV-Visible spectrophotometer. The results showed that low alcohol concentration (15% or 25% would promote the diffusion of betaine and increase antioxidant activity, while high concentration (55% or 65% would generally increase the diffusion of flavonoids and reduce antioxidant activity. The steeping time had no significant effect on the diffusion of phenolic compounds and antioxidant activities. However, all goji berry wine steeped for 14 days with different alcohol concentrations exhibited the highest betaine concentration. Current findings provide useful information for the nutraceutical industries to choose proper steeping time and alcohol concentration to yield desired health promotion components from goji.

  11. Diffusion Profiles of Health Beneficial Components from Goji Berry (Lyceum barbarum) Marinated in Alcohol and Their Antioxidant Capacities as Affected by Alcohol Concentration and Steeping Time

    Science.gov (United States)

    Song, Yang; Xu, Baojun

    2013-01-01

    The fruit (goji berry) of Lycium barbarum, a traditional Chinese medicine, has been widely used in health diets due to its potential role in the prevention of chronic diseases. One of the most popular applications of goji berry is to make goji wine in China by steeping goji berry in grain liquor. However, how the steeping process affects antioxidant capacities and phytochemicals of goji berry is not yet fully understood. Therefore, to provide scientific data for the utilization of goji berry in the nutraceutical industry, the diffusion rate of betaine, β-carotene, phenolic compounds in goji berry and their antioxidant capacities affected by alcohol concentration and steeping time were determined by UV-Visible spectrophotometer. The results showed that low alcohol concentration (15% or 25%) would promote the diffusion of betaine and increase antioxidant activity, while high concentration (55% or 65%) would generally increase the diffusion of flavonoids and reduce antioxidant activity. The steeping time had no significant effect on the diffusion of phenolic compounds and antioxidant activities. However, all goji berry wine steeped for 14 days with different alcohol concentrations exhibited the highest betaine concentration. Current findings provide useful information for the nutraceutical industries to choose proper steeping time and alcohol concentration to yield desired health promotion components from goji. PMID:28239094

  12. Inexpensive on-line alcohol sensor for fermentation monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Birch, S W; Turner, A P.F.; Ashby, R E

    1987-01-01

    An inorganic electrochemical fuel cell sensor was interfaced to a microcomputer and used to measure on-line the alcohol concentration in the off-gas of a fermentor. A calibration curve was obtained for methanol (linear range 0-9 g/l) and ethanol (linear range 0-6 g/l) to relate the alcohol concentration in the fermentor liquid with that in the off-gas. The consumption of methanol in a batch fermentation of the methylotroph Ps.BB1 was monitored (sampling frequency of 5 minutes) and compared with samples taken for off-line analysis by GLC. On-line control of the methanol concentration in a fed-batch fermentation was achieved by proportional and integral control. 24 references.

  13. Recent progress in synthetic biology for microbial production of C3-C10 alcohols

    Directory of Open Access Journals (Sweden)

    Edna N. Lamsen

    2012-06-01

    Full Text Available The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. While microbial ethanol production is well established, higher chain alcohols possess chemical properties that are more similar to gasoline. Unfortunately, these alcohols (except 1-butanol are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. Synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of these advanced biofuels. This review concentrates on recent developments in synthetic biology to produce higher-chain alcohols as viable renewable replacements for traditional fuel.

  14. Synthesis of biodiesel fuel from safflower oil using various reaction parameters.

    Science.gov (United States)

    Meka, Pavan Kumar; Tripathi, Vinay; Singh, R P

    2006-01-01

    Biodiesel fuel is gaining more and more importance because of the depletion and uncontrollable prices of fossil fuel resources. The use of vegetable oil and their derivatives as alternatives for diesel fuel is the best answer and as old as Diesel Engine. Chemically biodiesel fuel is the mono alkyl esters of fatty acids derived from renewable feed stocks like vegetable oils and animal fats. Safflower oil contains 75-80% of linoleic acid; the presence of this unsaturated fatty acid is useful in alleviating low temperature properties like pour point, cloud point and cold filter plugging point. In this paper we studied the effect of various parameters such as temperature, molar ratio (oil to alcohol), and concentration of catalyst on synthesis of biodiesel fuel from safflower oil. The better suitable conditions of 1:6 molar ratio (oil to alcohol), 60 degrees C temperature and catalyst concentration of 2% (by wt. of oil) were determined. The finally obtained biodiesel fuel was analyzed for fatty acid composition by GLC and some other properties such as flash point, specific gravity and acid value were also determined. From the results it was clear that the produced biodiesel fuel was with in the recommended standards of biodiesel fuel with 96.8% yield.

  15. Feasibility study of fuel grade ethanol plant for Alcohol Fuels of Mississippi, Inc. , Vicksburg, Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The results are presented of a feasibility study performed to determine the technical and economic viability of constructing an alcohol plant utilizing the N.Y.U. continuous acid hydrolysis process to convert wood wastes to fuel grade alcohol. The following is a summary of the results: (1) The proposed site in the Vicksburg Industrial Foundation Corporation Industrial Park is adequate from all standpoints, for all plant capacities envisioned. (2) Local hardwood sawmills can provide adequate feedstock for the facility. The price per dry ton varies between $5 and $15. (3) Sale of fuel ethanol would be made primarily through local distributors and an adequate market exists for the plant output. (4) With minor modifications to the preparation facilities, other waste cellulose materials can also be utilized. (5) There are no anticipated major environmental, health, safety or socioeconomic risks related to the construction and operation of the proposed facility. (6) The discounted cash flow and rate of return analysis indicated that the smallest capacity unit which should be built is the 16 million gallon per year plant, utilizing cogeneration. This facility has a 3.24 year payback. (7) The 25 million gallon per year plant utilizing cogeneration is an extremely attractive venture, with a zero interest break-even point of 1.87 years, and with a discounted rate of return of 73.6%. (8) While the smaller plant capacities are unattractive from a budgetary viewpoint, a prudent policy would dictate that a one million gallon per year plant be built first, as a demonstration facility. This volume contains process flowsheets and maps of the proposed site.

  16. 75 FR 82069 - Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports

    Science.gov (United States)

    2010-12-29

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 332-288] Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports AGENCY: United States International Trade Commission. ACTION: Notice of determination. SUMMARY: Section 423(c) of the Tax Reform Act of 1986, as amended (19 U.S.C...

  17. Breath alcohol of anesthesiologists using alcohol hand gel and the "five moments for hand hygiene" in routine practice.

    Science.gov (United States)

    Lindsay, Helen A; Hannam, Jacqueline A; Bradfield, Charles N; Mitchell, Simon J

    2016-08-01

    Appropriate hand hygiene reduces hospital-acquired infections. Anesthesiologists work in environments with numerous hand hygiene opportunities (HHOs). In a prospective observational study, we investigated the potential for an anesthesiologist to return a positive alcohol breath test during routine practice when using alcohol hand gel. We observed ten volunteer anesthesiologists over four hours while they implemented the World Health Organization (WHO) "five moments for hand hygiene" using our hospital's adopted standard 70% ethanol hand gel. We measured the expired alcohol concentration at shift start and every fifteen minutes thereafter with a fuel cell breathalyzer calibrated to measure the percentage of blood alcohol concentration (BAC). Blood alcohol specimens (analyzed with gas chromatography) were collected at shift start and, when possible, immediately after a participant's first positive breathalyzer test. Of the 130 breathalyzer tests obtained, there were eight (6.2%) positive breath alcohol results from six of the ten participants, all within two minutes of a HHO. The highest value breathalyzer BAC recorded was 0.064%, with an overall mean (SD) of 0.023 (0.017)%. Five (62.5%) of the positive breathalyzer tests returned to zero in less than seven minutes. All of three blood specimens obtained immediately after a positive breathalyzer reading tested negative for alcohol. Anesthesia practitioners using alcohol hand gel in a manner that conforms with recommended hand hygiene can test positive for alcohol on a breathalyzer assay. Positive tests probably arose from inhalation of alcohol vapour into the respiratory dead space following gel application. If workplace breath testing for alcohol is implemented, it should be completed more than 15 min after applying alcohol hand gel. Positive results should be verified with a BAC test.

  18. Drinking behaviours and blood alcohol concentration in four European drinking environments: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Hughes Karen

    2011-12-01

    Full Text Available Abstract Background Reducing harm in drinking environments is a growing priority for European alcohol policy yet few studies have explored nightlife drinking behaviours. This study examines alcohol consumption and blood alcohol concentration (BAC in drinking environments in four European cities. Methods A short questionnaire was implemented among 838 drinkers aged 16-35 in drinking environments in four European cities, in the Netherlands, Slovenia, Spain and the UK. Questions included self-reported alcohol use before interview and expected consumption over the remainder of the night. Breathalyser tests were used to measured breath alcohol concentration (converted to BAC at interview. Results Most participants in the Dutch (56.2%, Spanish (59.6% and British (61.4% samples had preloaded (cf Slovenia 34.8%. In those drinking 5 h. In other nationalities, BAC increases were less pronounced or absent. High BAC (> 0.08% was associated with being male, aged > 19, British and having consumed spirits. In all cities most participants intended to drink enough alcohol to constitute binge drinking. Conclusions Different models of drinking behaviour are seen in different nightlife settings. Here, the UK sample was typified by continued increases in inebriation compared with steady, more moderate intoxication elsewhere. With the former being associated with higher health risks, European alcohol policy must work to deter this form of nightlife.

  19. Influence of lactose hydrolysis and solids concentration on alcohol production by yeast in acid whey ultrafiltrate

    Energy Technology Data Exchange (ETDEWEB)

    O' leary, V S; Sutton, C; Bencivengo, M; Sullivan, B; Holsinger, V H

    1977-11-01

    Alcohol yields of 6.5 percent were obtained with Saccharomyces cerevisiae in lactase-hydrolyzed acid whey permeate containing 30 to 35 percent total solids. Maximum alcohol yields obtained with Kluyveromyces fragilis were 4.5 percent in lactase-hydrolyzed acid whey permeate at a solids concentration of 20 percent and 3.7 percent in normal permeate at a solids concentration of 10 percent. Saccharomyces cerevisiae efficiently converted the glucose present in lactase-hydrolyzed whey permeates containing 5 to 30 percent total solids (2 to 13 percent glucose) to alcohol. However, the galactose, which comprised about half the available carbohydrate in lactase-hydrolyzed whey, was not utilized by S. cerevisiae, so that even though alcohol yields were higher when this organism was used, the process was wasteful in that a substantial proportion of the substrate was not fermented. For the process to become commercially feasible, an efficient means of rapidly converting both the galactose and glucose to alcohol must be found.

  20. Performance study of a four-stroke spark ignition engine working with both of hydrogen and ethyl alcohol as supplementary fuel

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, M.A.-R.S. [Babylon Univ. (Iraq). Dept. of Mechanical Engineering

    2000-10-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emission of a four-stroke spark ignition engine has been studied. The results of the study show that all engine performance parameters have been improved when operating the gasoline spark ignition engine with dual addition of hydrogen and ethyl alcohol. The important improvements of alcohol addition are to reduce the NO{sub x} emission with increase in the higher useful compression ratio and output power of hydrogen-supplemented engine. The addition of 8 mass% of hydrogen, with 30 vol% of ethyl alcohol into a gasoline engine operating at 9 compression ratio and 1500 rpm causes a 48.5% reduction in CO emission, 31.1% reduction in NO{sub x} emission and 58.5% reduction in specific fuel consumption. Moreover, the engine thermal efficiency and output power increased by 10.1 and 4.72%, respectively. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporized, and this causes a reduction in both the break power and efficiency. (Author)

  1. Influence of alcohol containing and alcohol free cosmetics on FAEE concentrations in hair. A performance evaluation of ethyl palmitate as sole marker, versus the sum of four FAEEs.

    Science.gov (United States)

    Dumitrascu, C; Paul, R; Kingston, R; Williams, Rachel

    2018-02-01

    Fatty acid ethyl esters (FAEE) are direct metabolites of ethanol and have been shown to be suitable markers for the evaluation of alcohol consumption. Previous research has suggested that the regular use of alcohol containing cosmetic products can influence the concentration of FAEE detected in hair. In this study we investigated the influence of alcohol containing and alcohol free hair cosmetics (hairspray and waxes) on the FAEE concentrations in hair. The effect of cosmetic treatment was measured against the impact on ethyl palmitate in isolation as compared to the sum of four esters. 10 volunteers treated part of their scalp with cosmetic products every day during a 2 month period (alcohol free hairspray n=2, hairspray containing alcohol (42% by volume) n=3, alcohol free wax n=2, wax containing alcohol (11% by volume) n=3). After the 2 month period of cosmetic application hair samples from volunteers were collected from both sides of the scalp. Hair samples were washed with n-heptane, and then cut finely into small pieces. All samples were subjected to clean-up by HS-SPME and then GC PCI-MS/MS for analysis of FAEEs. Comparison of FAEE concentrations between treated and untreated hair showed in some instances that application of hair spray or wax products caused an increase in FAEE levels. Products containing alcohol caused a more substantial increase in alcohol metabolite concentrations in hair when compared to alcohol free products. Three volunteers using an alcohol based hairspray in the study experienced a significant increase in FAEE levels (+27.4%, +205.5%, and +1287.5%), with one of the volunteers showing levels below the cut off for 'abstinence' in the untreated scalp portion, and levels above the cut off for 'chronic excessive consumption' in the treated scalp portion. Performance evaluation of ethyl palmitate as sole marker, compared to the sum of four esters approach suggested that the two quantification approaches react in a very similar manner to the

  2. Serum Concentrations of Selected Heavy Metals in Patients with Alcoholic Liver Cirrhosis from the Lublin Region in Eastern Poland

    Directory of Open Access Journals (Sweden)

    Andrzej Prystupa

    2016-06-01

    Full Text Available According to the WHO report, alcohol is the third most significant health risk factor for the global population. There are contrary reports about heavy metals concentrations in patients with alcoholic liver cirrhosis. The aim of this study was to investigate serum concentrations of selected heavy metals in patients with alcoholic liver cirrhosis living in the eastern part of Poland according to cirrhosis stage. The participants came from various hospitals of the Lublin region were enrolled. The study group included 46 male and 16 female patients. The control group consisted of 18 healthy individuals without liver disease. High Performance Ion Chromatography was used to determine the concentrations of metal ions (Cd, Zn, Cu, Ni, Co, Mn, and Pb in serum samples. The concentrations of copper, zinc, nickel, and cobalt were found to be significantly lower in patients with alcoholic liver cirrhosis compared to the control group. The serum concentration of cadmium was significantly higher in patients with advanced alcoholic liver cirrhosis compared to the control group. We hypothesize that disorders of metabolism of heavy metals seem to be the outcome of impaired digestion and absorption, which are common in cirrhosis, improper diet, environmental and occupational exposure.

  3. Avoiding the ingestion of cytotoxic concentrations of ethanol may reduce the risk of cancer associated with alcohol consumption.

    Science.gov (United States)

    Guillén-Mancina, Emilio; Calderón-Montaño, José Manuel; López-Lázaro, Miguel

    2018-02-01

    Alcohol consumption is a known risk factor for cancer. Almost 6% of all cancers worldwide are attributable to alcohol use. Approximately half of them occur in tissues highly exposed to ethanol, such as the oral cavity, pharynx, upper larynx and esophagus. However, since ethanol is not mutagenic and the mutagenic metabolite of ethanol (acetaldehyde) is mainly produced in the liver, it is unclear why alcohol consumption preferentially exerts a local carcinogenic effect. Recent findings indicate that the risk of cancer in a tissue is strongly correlated with the number of stem cell divisions accumulated by the tissue; the accumulation of stem cell divisions leads to the accumulation of cancer-promoting errors such as mutations occurring during DNA replication. Since cell death activates the division of stem cells, we recently proposed that the possible cytotoxicity of ethanol on the cells lining the tissues in direct contact with alcoholic beverages could explain the local carcinogenic effect of alcohol. Here we report that short-term exposures (2-3 s) to ethanol concentrations between 10% and 15% start to cause a marked cytotoxic effect on human epithelial keratinocytes in a concentration-dependent manner. We propose that choosing alcoholic beverages containing non-cytotoxic concentrations of ethanol, or diluting ethanol to non-cytotoxic concentrations, may be a simple and effective way to reduce the risk of cancers of the oral cavity, pharynx, larynx and esophagus in alcohol users. This preventive strategy may also reduce the known synergistic effect of alcohol drinking and tobacco smoking on the risk of these cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Student drinking patterns and blood alcohol concentration on commercially organised pub crawls in the UK.

    Science.gov (United States)

    Quigg, Zara; Hughes, Karen; Bellis, Mark A

    2013-12-01

    Commercial student pub crawls are associated with high levels of alcohol consumption, and are of growing concern amongst public health and student bodies. However, little is currently known about drinking behaviours whilst participating in these events. A questionnaire was implemented amongst 227 students attending commercial pub crawls across three UK events. Questions established alcohol consumption patterns up to the point of interview and throughout the remaining night out, and pub crawl experience. Breathalyser tests were used to measure breath alcohol concentration (converted to blood alcohol concentration [BAC]) at interview. Analyses used chi squared, Mann-Whitney U, Kruskal-Wallis and logistic regression. 94.3% of participants had consumed alcohol, 90.9% of whom reported preloading. Drinkers reported consuming a median of 10.0 alcohol units (80g of pure alcohol) up to the point of interview (range one-40.6), with estimated total consumption over the evening exceeding 16units (range three-70.6). Median BAC of drinkers at the time of interview was 0.10%BAC (range 0.00-0.27). High BAC (>0.08%; at interview) was associated with having not eaten food in the four hours prior (AOR 4.8, palcohol consumption before and during commercial pub crawls should aim to alter drinking behaviours such as preloading and rapid and excessive drinking. Organisers, local authorities, universities and students should all be involved in ensuring the effective management of pub crawls, including implementation of harm prevention measures. © 2013.

  5. Baseline concentrations of nuclear fuel waste nuclides in the environment

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1992-04-01

    Protection of the environment is a key issue in the disposal of long-lived radioactive wastes. To assess the implications of undergound disposal, transport models are commonly used to predict radionuclide concentrations in soil and water. However, an appropriate framework needs to be established to ensure that the predicted concentrations do not impose unacceptable environmental impacts. Here, we suggest baseline environmental concentrations of the most important radionuclides in nuclear fuel waste. We summarize background concentrations of the nuclides in soil and surface water, and suggest Environmental Increments (EI) that could be added to soil and water without causing detectable effects. The EI values are based mostly on natural variability, but some alternative methods are used for radionuclides that are very rare in nature. The background concentrations and EI values are most useful as a screening tool to help identify potentially unacceptable concentrations arising from a disposal concept. When available, we also report data on concentrations that have been measured in the environment without causing an observable effect. This review focuses especially on concentrations applicable to the Canadian Precambrian Shield, as part of the Canadian concept of nuclear fuel waste disposal in a deep, stable geological formation

  6. Improving the electrocatalytic properties of Pd-based catalyst for direct alcohol fuel cells: effect of solid solution.

    Science.gov (United States)

    Wen, Cuilian; Wei, Ying; Tang, Dian; Sa, Baisheng; Zhang, Teng; Chen, Changxin

    2017-07-07

    The tolerance of the electrode against the CO species absorbed upon the surface presents the biggest dilemma of the alcohol fuel cells. Here we report for the first time that the inclusion of (Zr, Ce)O 2 solid solution as the supporting material can significantly improve the anti-CO-poisoning as well as the activity of Pd/C catalyst for ethylene glycol electro-oxidation in KOH medium. In particular, the physical origin of the improved electrocatalytic properties has been unraveled by first principle calculations. The 3D stereoscopic Pd cluster on the surface of (Zr, Ce)O 2 solid solution leads to weaker Pd-C bonding and smaller CO desorption driving force. These results support that the Pd/ZrO 2 -CeO 2 /C composite catalyst could be used as a promising effective candidate for direct alcohol fuel cells application.

  7. Preparation of Biofuel Using Acetylatation of Jojoba Fatty Alcohols and Assessment as a Blend Component in Ultra Low Sulfur Diesel Fuel

    Science.gov (United States)

    The majority of biodiesel fuels are produced from vegetable oils or animal fats by transesterification of oil with alcohol in the presence of a catalyst. In this study, a new class of biofuel is explored by acetylation of fatty alcohols from Jojoba oil. Recently, we reported Jojoba oil methyl este...

  8. An Electricity-Alcohol Transportation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Morris, David [Inst. for Local Self-Reliance, Minneapolis (United States)

    2006-07-15

    In the United States, a dual fuel system may be emerging as a consensus strategy for a rapid transition to an oil free transportation system. The energy source for the vehicles will be a combination of electricity and alcohols. The technology will be a plug-in hybrid electric vehicle whose batteries can be charged from the national grid system, and a backup flexible fueled engine, primarily fueled by alcohols.

  9. Effect of borax concentration on the structure of Poly(Vinyl Alcohol) gels

    Science.gov (United States)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2012-06-01

    Poly(Vinyl Alcohol) hydrogels cross-linked with varying concentrations of borax have been studied using Small-Angle Neutron Scattering and X-Ray Diffraction. The intensity of scattering increases with borax concentration from 1 mg/ml up to 2 mg/ml and falls thereafter for 4 mg/ml, increasing again for a concentration of 10 mg/ml. The mesoscopic structural changes that cause these trends in the SANS data are in keeping with the variations in the X-ray diffraction patterns pertaining to structures within the PVA chains.

  10. Present crisis and the future of alcohol programs in Brazil

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1993-01-01

    After the oil shortages of the 1970s, an intensive program to enhance the use of alcohol as an automotive fuel substitute was instigated in Brazil. This program was successfully developed during the 1980s decade, to the extent that 90% of the demand for new automobiles has been carried by alcohol cars. Since 1989 the paradox of a current gasoline surplus and alcohol shortage has caused the sales of alcohol cars to plummet. The technical solutions presented by the authors for the alcohol crisis include changing the relative pricing of fuels and vehicles, reaching an equilibrium between fuel demand and production, and obtaining a recovery of alcohol credibility. Together, these factors may help improve sales of the alcohol-fueled car

  11. Development of an instantaneous local fuel-concentration measurement probe: an engine application

    Science.gov (United States)

    Guibert, P.; Boutar, Z.; Lemoyne, L.

    2003-11-01

    This work presents a new tool which can deliver instantaneous local measurements of fuel concentration in an engine cylinder with a high temporal resolution, particularly during compression strokes. Fuel concentration is represented by means of equivalence fuel-air ratio, i.e. the real engine mass ratio of fuel to air divided by the same ratio in ideal stoichiometry conditions. Controlling the mixture configuration for any strategy in a spark ignition engine and for auto-ignition combustion has a dominant effect on the subsequent processes of ignition, flame propagation and auto-ignition combustion progression, pollutant formation under lean or even stoichiometric operating conditions. It is extremely difficult, under a transient operation, to control the equivalence air/fuel ratio precisely at a required value and at the right time. This requires the development of a highly accurate equivalence air/fuel ratio control system and a tool to measure using crank angle (CA) resolution. Although non-intrusive laser techniques have considerable advantages, they are most of the time inappropriate due to their optical inaccessibility or the complex experimental set-up involved. Therefore, as a response to the demand for a relatively simple fuel-concentration measurement system a probe is presented that replaces a spark plug and allows the engine to run completely normally. The probe is based on hot-wire like apparatus, but involves catalytic oxidation at the wire surface. The development, characteristics and calibration of the probe are presented followed by applications to in-cylinder engine measurements.

  12. OPT-TWO: Calculation code for two-dimensional MOX fuel models in the optimum concentration distribution

    International Nuclear Information System (INIS)

    Sato, Shohei; Okuno, Hiroshi; Sakai, Tomohiro

    2007-08-01

    OPT-TWO is a calculation code which calculates the optimum concentration distribution, i.e., the most conservative concentration distribution in the aspect of nuclear criticality safety, of MOX (mixed uranium and plutonium oxide) fuels in the two-dimensional system. To achieve the optimum concentration distribution, we apply the principle of flattened fuel importance distribution with which the fuel system has the highest reactivity. Based on this principle, OPT-TWO takes the following 3 calculation steps iteratively to achieve the optimum concentration distribution with flattened fuel importance: (1) the forward and adjoint neutron fluxes, and the neutron multiplication factor, with TWOTRAN code which is a two-dimensional neutron transport code based on the SN method, (2) the fuel importance, and (3) the quantity of the transferring fuel. In OPT-TWO, the components of MOX fuel are MOX powder, uranium dioxide powder and additive. This report describes the content of the calculation, the computational method, and the installation method of the OPT-TWO, and also describes the application method of the criticality calculation of OPT-TWO. (author)

  13. The composition of surrogate and illegal alcohol products in Estonia.

    Science.gov (United States)

    Lang, Katrin; Väli, Marika; Szucs, Sándor; Adány, Róza; McKee, Martin

    2006-01-01

    To identify the composition of illegal and surrogate alcohol products consumed in Estonia. The initial source of information was a series of visits made in August 2005 to a soup kitchen in central Tartu, Estonia. Individuals were asked for brief details of their personal circumstances, what they normally drank, and in addition they were asked to bring samples of the substances they usually consumed. In other cases, the substances identified were purchased by the investigators or from informal contacts in north-eastern part of Estonia, an area that is well known for illegal alcohol consumption. Samples were tested for chemical contents. We identified a range of alcohol-containing substances that are consumed, although, not intended for consumption. These comprised medicinal products, aftershaves, illegally produced spirits, and fire-lighting fuel. The medicinal compounds contained, on average, 67% ethanol by volume; the aftershaves contained slightly less. Both were typically pure, with a few containing detectable quantities of isoamyl alcohol. The illegally produced alcohol contained, on average, 43% ethanol by volume, ranging from 32 to 53%. However, many also contained detectable quantities of long chain alcohols. These substances are half the price or less of commercial vodka, with fire lighting fuels especially inexpensive. There is in Estonia a range of alcohol-containing substances easily available at low cost. Some contain substantially higher concentrations of ethanol than commercial spirits and others also contain toxic long chain alcohols.

  14. Absorption and peak blood alcohol concentration after drinking beer, wine, or spirits.

    Science.gov (United States)

    Mitchell, Mack C; Teigen, Erin L; Ramchandani, Vijay A

    2014-05-01

    Both the amount and the rate of absorption of ethanol (EtOH) from alcoholic beverages are key determinants of the peak blood alcohol concentration (BAC) and exposure of organs other than gut and liver. Previous studies suggest EtOH is absorbed more rapidly in the fasting than in the postprandial state. The concentration of EtOH and the type of beverage may determine gastric emptying/absorption of EtOH. The pharmacokinetics of EtOH were measured in 15 healthy men after consumption of 0.5 g of EtOH/kg body weight. During this 3-session crossover study, subjects consumed in separate sessions, beer (5.1% v/v), white wine (12.5% v/v), or vodka/tonic (20% v/v) over 20 minutes following an overnight fast. BAC was measured by gas chromatography at multiple points after consumption. Peak BAC (Cmax ) was significantly higher (p wine (61.7 ± 10.8 mg/dl) or beer (50.3 ± 9.8 mg/dl) and was significantly higher (p wine than beer. The time to Cmax occurred significantly earlier (p wine (54 ± 14 minutes) or beer (62 ± 23 minutes). Six subjects exceeded a Cmax of 80 mg/dl after vodka/tonic, but none exceeded this limit after beer or wine. The area under the concentration-time curve (AUC) was significantly greater after drinking vodka/tonic (p wine or beer. Comparison of AUCs indicated the relative bioavailability of EtOH was lower after drinking beer. Findings indicate that BAC is higher after drinking vodka/tonic than beer or wine after fasting. A binge pattern is significantly more likely to result in BAC above 80 mg/dl after drinking vodka/tonic than beer or wine. Men drinking on an empty stomach should know BAC will vary depending on beverage type and the rate and amount of EtOH. © 2014 The Authors. Alcoholism: Clinical and Experimental Research published by Wiley Periodicals, Inc. on behalf of Research Society on Alcoholism.

  15. Tailoring the key fuel properties using different alcohols (C2–C6) and their evaluation in gasoline engine

    International Nuclear Information System (INIS)

    Masum, B.M.; Masjuki, H.H.; Kalam, M.A.; Palash, S.M.; Wakil, M.A.; Imtenan, S.

    2014-01-01

    Highlights: • Optimized C 2 –C 6 alcohols–gasoline blends achieved better properties than E15. • Optimum blends improved torque and reduced BSFC than that of E15 fuel. • Higher peak in-cylinder pressure obtained for alcohol gasoline blends. • Compared to E15, optimum blends reduced BSCO, BSHC and BSNOx emission. - Abstract: The use of ethanol as a fuel for internal combustion engines has been given much attention mostly because of its possible environmental and long-term economical advantages over fossil fuel. Higher carbon number alcohols, such as propanol, butanol, pentanol and hexanol also have the potential to use as alternatives as they have higher energy content, octane number and can displace more petroleum gasoline than that of ethanol. Therefore, this study focuses on improvement of different physicochemical properties using multiple alcohols at different ratios compared to that of the ethanol–gasoline blend (E10/E15). To optimize the properties of multiple alcohol–gasoline blends, properties of each fuel were measured. An optimization tool of Microsoft Excel “Solver” was used to find out the optimum blend. Three optimum blends with maximum heating value (MaxH), maximum research octane number (MaxR) and maximum petroleum displacement (MaxD) are selected for testing in a four cylinder gasoline engine. Tests were conducted under the wide open throttle condition with varying speeds and compared results with that of E15 (Ethanol 15% with gasoline 85%) as well as gasoline. Optimized blends have shown higher brake torque than gasoline. In the terms of BSFC (Brake specific fuel consumption), optimized blends performed better than that of E15. In-cylinder pressure started to rise earlier for all alcohol–gasoline blends than gasoline. The peak in-cylinder pressure and peak heat release rate obtained higher for alcohol gasoline blend than that of gasoline. On the other hand, the use of optimized blends reduces BSCO (Brake specific carbon

  16. Alloy catalysts for fuel cell-based alcohol sensors

    Science.gov (United States)

    Ghavidel, Mohammadreza Zamanzad

    Direct ethanol fuel cells (DEFCs) are attractive from both economic and environmental standpoints for generating renewable energy and powering vehicles and portable electronic devices. There is a great interest recently in developing DEFC systems. The cost and performance of the DEFCs are mainly controlled by the Pt-base catalysts used at each electrode. In addition to energy conversion, DEFC technology is commonly employed in the fuel-cell based breath alcohol sensors (BrAS). BrAS is a device commonly used to measure blood alcohol concentration (BAC) and enforce drinking and driving laws. The BrAS is non-invasive and has a fast respond time. However, one of the most important drawback of the commercially available BrAS is the very high loading of Pt employed. One well-known and cost effective method to reduce the Pt loading is developing Pt-alloy catalysts. Recent studies have shown that Pt-transition metal alloy catalysts enhanced the electroactivity while decreasing the required loadings of the Pt catalysts. In this thesis, carbon supported Pt-Mn and Pt-Cu electrocatalysts were synthesized by different methods and the effects of heat treatment and structural modification on the ethanol oxidation reaction (EOR) activity, oxygen reduction reaction (ORR) activity and durability of these samples were thoroughly studied. Finally, the selected Pt-Mn and Pt-Cu samples with the highest EOR activity were examined in a prototype BrAS system and compared to the Pt/C and Pt 3Sn/C commercial electrocatalysts. Studies on the Pt-Mn catalysts produced with and without additives indicate that adding trisodium citrate (SC) to the impregnation solution improved the particle dispersion, decreased particle sizes and reduced the time required for heat treatment. Further studies show that the optimum weight ratio of SC to the metal loading in the impregnation solution was 2:1 and optimum results achieved at pH lower than 4. In addition, powder X-ray diffraction (XRD) analyses indicate

  17. Brain GABA and Glutamate Concentrations Following Chronic Gabapentin Administration: A Convenience Sample Studied During Early Abstinence From Alcohol

    Directory of Open Access Journals (Sweden)

    Dieter J. Meyerhoff

    2018-03-01

    Full Text Available Gabapentin (GBP, a GABA analog that may also affect glutamate (Glu production, can normalize GABA and Glu tone during early abstinence from alcohol, effectively treating withdrawal symptoms and facilitating recovery. Using in vivo magnetic resonance spectroscopy, we tested the degree to which daily GBP alters regional brain GABA and Glu levels in short-term abstinent alcohol-dependent individuals. Regional metabolite levels were compared between 13 recently abstinent alcohol-dependent individuals who had received daily GBP for at least 1 week (GBP+ and 25 matched alcohol-dependent individuals who had not received GBP (GBP−. Magnetic resonance spectra from up to five different brain regions were analyzed to yield absolute GABA and Glu concentrations. GABA and Glu concentrations in the parieto-occipital cortex were not different between GBP− and GBP+. Glu levels in anterior cingulate cortex, dorsolateral prefrontal cortex, and basal ganglia did not differ between GBP− and GBP+. However, in a subgroup of individuals matched on age, sex, and abstinence duration, GBP+ had markedly lower Glu in the frontal white matter (WM than GBP−, comparable to concentrations found in light/non-drinking controls. Furthermore, lower frontal WM Glu in GBP+ correlated with a higher daily GBP dose. Daily GBP treatment at an average of 1,600 mg/day for at least 1 week was not associated with altered cortical GABA and Glu concentrations during short-term abstinence from alcohol, but with lower Glu in frontal WM. GBP for the treatment of alcohol dependence may work through reducing Glu in WM rather than increasing cortical GABA.

  18. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  19. Determination of alcohol and extract concentration in beer samples using a combined method of near-infrared (NIR) spectroscopy and refractometry.

    Science.gov (United States)

    Castritius, Stefan; Kron, Alexander; Schäfer, Thomas; Rädle, Matthias; Harms, Diedrich

    2010-12-22

    A new approach of combination of near-infrared (NIR) spectroscopy and refractometry was developed in this work to determine the concentration of alcohol and real extract in various beer samples. A partial least-squares (PLS) regression, as multivariate calibration method, was used to evaluate the correlation between the data of spectroscopy/refractometry and alcohol/extract concentration. This multivariate combination of spectroscopy and refractometry enhanced the precision in the determination of alcohol, compared to single spectroscopy measurements, due to the effect of high extract concentration on the spectral data, especially of nonalcoholic beer samples. For NIR calibration, two mathematical pretreatments (first-order derivation and linear baseline correction) were applied to eliminate light scattering effects. A sample grouping of the refractometry data was also applied to increase the accuracy of the determined concentration. The root mean squared errors of validation (RMSEV) of the validation process concerning alcohol and extract concentration were 0.23 Mas% (method A), 0.12 Mas% (method B), and 0.19 Mas% (method C) and 0.11 Mas% (method A), 0.11 Mas% (method B), and 0.11 Mas% (method C), respectively.

  20. A broad model for demand forecasting of gasoline and fuel alcohol; Um modelo abrangente para a projecao das demandas de gasolina e alcool carburante

    Energy Technology Data Exchange (ETDEWEB)

    Buonfiglio, Antonio [PETROBRAS, Paulinia, SP (Brazil). Dept. Industrial; Bajay, Sergio Valdir [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica

    1992-12-31

    Formulating a broad, mixed: econometric/end-use, demand forecasting model for gasoline and fuel alcohol is the main objective of this work. In the model, the gasoline and hydrated alcohol demands are calculated as the corresponding products if their fleet by the average car mileage, divided by the average specific mileage. Several simulations with the proposed forecasting model are carried out, within the context of alternative scenarios for the development of these competing fuels in the Brazilian market. (author) 4 refs., 1 fig., 3 tabs.

  1. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell

    Science.gov (United States)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lee, Kuo-Tong; Chien, Wen-Chen; Lin, Che-Tseng; Huang, Ching-An

    The novel poly(vinyl alcohol)/titanium oxide (PVA/TiO 2) composite polymer membrane was prepared using a solution casting method. The characteristic properties of the PVA/TiO 2 composite polymer membrane were investigated by thermal gravimetric analysis (TGA), a scanning electron microscopy (SEM), a micro-Raman spectroscopy, a methanol permeability measurement and the AC impedance method. An alkaline direct alcohol (methanol, ethanol and isopropanol) fuel cell (DAFC), consisting of an air cathode based on MnO 2/C inks, an anode based on PtRu (1:1) black and a PVA/TiO 2 composite polymer membrane, was assembled and examined for the first time. The results indicate that the alkaline DAFC comprised of a cheap, non-perfluorinated PVA/TiO 2 composite polymer membrane shows an improved electrochemical performances. The maximum power densities of alkaline DAFCs with 4 M KOH + 2 M CH 3OH, 2 M C 2H 5OH and 2 M isopropanol (IPA) solutions at room temperature and ambient air are 9.25, 8.00, and 5.45 mW cm -2, respectively. As a result, methanol shows the highest maximum power density among three alcohols. The PVA/TiO 2 composite polymer membrane with the permeability values in the order of 10 -7 to 10 -8 cm 2 s -1 is a potential candidate for use on alkaline DAFCs.

  2. Replacement of diesel oil by hydrous ethyl alcohol in direct burning: a comparison; Substituicao do oleo diesel por alcool etilico hidratado na queima direta: uma comparacao

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Edgar Paz; Carvalho Junior, Joao Andrade de; Carrocci, Luiz Roberto [Universidade Estadual Paulista (FEG/UNESP), Guaratingueta, SP (Brazil). Fac. de Engenharia], Emails: edgarpaz@feg.unesp.br, joao@feg.unesp.br, carrocci@feg.unesp.br

    2006-07-01

    This article presents a study of the substitution of diesel fuel by ethyl alcohol in direct burning. The investigation is concentrated in the physical-chemical properties of the fuels, the combustion thermodynamics, the atomization, and the pollutants formation. Results show that hydrated ethyl alcohol can be an attractive alternative for diesel fuel, mainly by the benefits in the combustion process and the pollutants formation. Nevertheless, care must be taken in the substitution to prevent losses by evaporation, fire risks and material damage by corrosion. (author)

  3. Design and Operation of an Electrochemical Methanol Concentration Sensor for Direct Methanol Fuel Cell Systems

    Science.gov (United States)

    Narayanan, S. R.; Valdez, T. I.; Chun, W.

    2000-01-01

    The development of a 150-Watt packaged power source based on liquid feed direct methanol fuel cells is being pursued currently at the Jet propulsion Laboratory for defense applications. In our studies we find that the concentration of methanol in the fuel circulation loop affects the electrical performance and efficiency the direct methanol fuel cell systems significantly. The practical operation of direct methanol fuel cell systems, therefore, requires accurate monitoring and control of methanol concentration. The present paper reports on the principle and demonstration of an in-house developed electrochemical sensor suitable for direct methanol fuel cell systems.

  4. The effects of breath alcohol concentration on postural control.

    Science.gov (United States)

    Fiorentino, Dary D

    2018-05-19

    Two of the 3 standardized field sobriety tests that U.S. law enforcement uses at roadside checks have a postural equilibrium component to them. Those tests have been validated to detect impairment caused by blood alcohol concentrations (BACs) of 0.08 g/dL or above. Many medical and traffic safety associations support a lower limit, and one state, Utah, has passed a law to lower the limit to 0.05 g/dL. Many studies have examined the effects of alcohol on postural control (of which postural equilibrium is a component), with a consensus emerging that impairment is usually found at BACs greater than 0.06 g/dL. Most of these studies, however, had a relatively small number of subjects, usually between 10 and 30. The current study collected data from a much larger sample. The objective of this study was to provide additional evidence that posture control is negatively affected at BACs greater than 0.06 g/dL or breath alcohol concentrations (BrACs) of 0.06 g/210 L. This was a between-subjects study, with BrAC group as the independent variable (5 levels: 0.00, 0.04, 0.06, 0.08, and 0.10 g/210 L); 4 measures of postural control as the dependent variables; and age, height, and weight as the covariates. Posture control was measured with a force-sensing platform connected to a computer. The feet's center of pressure (CoP) on the platform was recorded and the corresponding movement of the body in the anterior-posterior and lateral planes was derived. Participants (N = 96) were randomly assigned to one of the BrAC groups. Positive BrAC groups were compared to the zero BrAC group. Data were examined with hierarchical multiple regression. Adjusted for age, height, and weight, the main effect of lateral CoP with eyes open was not statistically significant. There was a statistically significant main effect of alcohol on anterior-posterior CoP excursion with eyes open and with eyes closed and lateral CoP excursion with eyes closed. For all 3 of those variables, only BrACs of 0

  5. Emissions characteristics of higher alcohol/gasoline blends

    International Nuclear Information System (INIS)

    Gautam, M.; Martin, D.W.; Carder, D.

    2000-01-01

    An experimental investigation was conducted to determine the emissions characteristics of higher alcohols and gasoline (UTG96) blends. While lower alcohols (methanol and ethanol) have been used in blends with gasoline, very little work has been done or reported on higher alcohols (propanol, butanol and pentanol). Comparisons of emissions and fuel characteristics between higher alcohol/gasoline blends and neat gasoline were made to determine the advantages and disadvantages of blending higher alcohols with gasoline. All tests were conducted on a single-cylinder Waukesha Cooperative Fuel Research engine operating at steady state conditions and stoichiometric air-fuel (A/F) ratio. Emissions test were conducted at the optimum spark timing-knock limiting compression ratio combination for the particular blend being tested. The cycle emission [mass per unit time (g/h)] of CO, CO 2 and organic matter hydrocarbon equivalent (OMHCE) from the higher alcohol/gasoline blends were very similar to those from neat gasoline. Cycle emissions of NO x from the blends were higher than those from neat gasoline. However, for all the emissions species considered, the brake specific emissions (g/kW h) were significantly lower for the higher alcohol/gasoline blends than for neat gasoline. This was because the blends had greater resistance to knock and allowed higher compression ratios, which increased engine power output. The contribution of alcohols and aldehydes to the overall OMHCE emissions was found to be minimal. Cycle fuel consumption (g/h) of higher alcohol/gasoline blends was slightly higher than with neat gasoline due to the lower stoichiometric A/F ratios required by the blends. However, the brake specific fuel consumption (g/kW h) for the blends was significantly lower than that for neat gasoline. (Author)

  6. Full Load Performance of a Spark Ignition Engine Fueled with Gasoline-Isobutanol Blends

    Directory of Open Access Journals (Sweden)

    Adrian Irimescu

    2009-10-01

    Full Text Available With fossil fuels reserves coming ever closer to depletion and the issue of air pollution caused by automotive transport becoming more and more important, mankind has looked for various solutions in the field of internal combustion engines. One of these solutions is using biofuels, and while the internal combustion engine will most likely disappear along with the last fossil fuel source, studying biofuels and their impact on automotive power-trains is a necessity even if only on a the short term basis. While engines built to run on alcohol-gasoline blends offer good performance levels even at high concentrations of alcohol, unmodified engines fueled with blends of biofuels and fossil fuels can exhibit a drop in power. The object of this study is evaluating such phenomena when a spark ignition engine is operated at full load.

  7. Triglyceride concentration and waist circumference influence alcohol-related plasminogen activator inhibitor-1 activity increase in black South Africans.

    Science.gov (United States)

    Pieters, Marlien; de Lange, Zelda; Hoekstra, Tiny; Ellis, Suria M; Kruger, Annamarie

    2010-12-01

    We investigated the association between alcohol consumption and plasminogen activator inhibitor-1 activity (PAI-1act) and fibrinogen concentration in a black South African population presenting with lower PAI-1act and higher fibrinogen than what is typically observed in white populations. We, furthermore, wanted to investigate the effect of urbanization, sex, central obesity, increased triglycerides, 4G/5G polymorphism (PAI-1 only) and BMI on the association of alcohol with PAI-1act and fibrinogen. Data from 2010 apparently healthy, randomly collected black South African volunteers from the Prospective Urban and Rural Epidemiological (PURE) study were cross-sectionally analyzed. Alcohol consumption was recorded using quantitative food frequency questionnaires and fasting blood samples were collected for biochemical analysis including PAI-1act and fibrinogen. Heavy alcohol consumption is associated with significantly increased PAI-1act, in the total population as well as in the women separately, and tended to be so in men. This alcohol-related PAI-1act increase was observed in volunteers with increased triglycerides and central obesity but not in volunteers with normal levels and waist circumference. Urbanization, the 4G/5G polymorphism and BMI did not affect the association of alcohol with PAI-1act. Moderate alcohol consumption is associated with decreased fibrinogen concentration. Sex and level of urbanization did not affect the association of alcohol with fibrinogen. Fibrinogen decreased in normal and overweight volunteers but not in obese and centrally obese volunteers following moderate alcohol consumption. Triglyceride levels and waist circumference influence alcohol-related PAI-1act increase potentially through modulating adipocyte and triglyceride-induced PAI-1 production. Obesity prevented alcohol-related fibrinogen decrease possibly by counteracting the anti-inflammatory effect of moderate alcohol consumption.

  8. Renewable fuels - a growing future?

    International Nuclear Information System (INIS)

    Blackledge, C.

    1997-01-01

    The production of ethanol fuels, industrial alcohol, vodka, and gasoline additives from barley and corn by Commercial Alcohols and Alberta Bioclean is reported. The reformulated gasoline market, the reduced emission with ethanol fuels, plans for a new alcohol plant, sale of byproduct high protein animal feed and carbon dioxide, and the encouragement offered by the Canadian government are discussed. (UK)

  9. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    Directory of Open Access Journals (Sweden)

    Iwasita Teresa

    2002-01-01

    Full Text Available Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH. In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishing the reaction intermediates and products and the dependence of the amount of species on the applied potential. FTIR and scanning tunneling microscopy contribute to understand the effects of the surface structure on the rate of reaction. Examples are presented for methanol and ethanol oxidation at pure and modified Pt catalysts.

  10. A single sip of a strong alcoholic beverage causes exposure to carcinogenic concentrations of acetaldehyde in the oral cavity.

    Science.gov (United States)

    Linderborg, Klas; Salaspuro, Mikko; Väkeväinen, Satu

    2011-09-01

    The aim of this study was to explore oral exposure to carcinogenic (group 1) acetaldehyde after single sips of strong alcoholic beverages containing no or high concentrations of acetaldehyde. Eight volunteers tasted 5 ml of ethanol diluted to 40 vol.% with no acetaldehyde and 40 vol.% calvados containing 2400 μM acetaldehyde. Salivary acetaldehyde and ethanol concentrations were measured by gas chromatography. The protocol was repeated after ingestion of ethanol (0.5 g/kg body weight). Salivary acetaldehyde concentration was significantly higher after sipping calvados than after sipping ethanol at 30s both with (215 vs. 128 μmol/l, psipping of the alcoholic beverages. Carcinogenic concentrations of acetaldehyde are produced from ethanol in the oral cavity instantly after a small sip of strong alcoholic beverage, and the exposure continues for at least 10 min. Acetaldehyde present in the beverage has a short-term effect on total acetaldehyde exposure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Estimating BrAC from transdermal alcohol concentration data using the BrAC estimator software program.

    Science.gov (United States)

    Luczak, Susan E; Rosen, I Gary

    2014-08-01

    Transdermal alcohol sensor (TAS) devices have the potential to allow researchers and clinicians to unobtrusively collect naturalistic drinking data for weeks at a time, but the transdermal alcohol concentration (TAC) data these devices produce do not consistently correspond with breath alcohol concentration (BrAC) data. We present and test the BrAC Estimator software, a program designed to produce individualized estimates of BrAC from TAC data by fitting mathematical models to a specific person wearing a specific TAS device. Two TAS devices were worn simultaneously by 1 participant for 18 days. The trial began with a laboratory alcohol session to calibrate the model and was followed by a field trial with 10 drinking episodes. Model parameter estimates and fit indices were compared across drinking episodes to examine the calibration phase of the software. Software-generated estimates of peak BrAC, time of peak BrAC, and area under the BrAC curve were compared with breath analyzer data to examine the estimation phase of the software. In this single-subject design with breath analyzer peak BrAC scores ranging from 0.013 to 0.057, the software created consistent models for the 2 TAS devices, despite differences in raw TAC data, and was able to compensate for the attenuation of peak BrAC and latency of the time of peak BrAC that are typically observed in TAC data. This software program represents an important initial step for making it possible for non mathematician researchers and clinicians to obtain estimates of BrAC from TAC data in naturalistic drinking environments. Future research with more participants and greater variation in alcohol consumption levels and patterns, as well as examination of gain scheduling calibration procedures and nonlinear models of diffusion, will help to determine how precise these software models can become. Copyright © 2014 by the Research Society on Alcoholism.

  12. Blood (Breath) Alcohol Concentration Rates of College Football Fans on Game Day

    Science.gov (United States)

    Glassman, Tavis; Braun, Robert; Reindl, Diana M.; Whewell, Aubrey

    2011-01-01

    The purpose of this study was to determine the Blood (breath) Alcohol Concentration (BrAC) rates of college football fans on game day. Researchers employed a time-series study design, collecting data at home football games at a large university in the Midwest. Participants included 536 individuals (64.4% male) ages 18-83 (M = 28.44, SD = 12.32).…

  13. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Viktor Johánek

    2016-01-01

    Full Text Available The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc. on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed subjected to a wide range of conditions.

  14. Investigation of emissions characteristics of secondary butyl alcohol-gasoline blends in a port fuel injection spark ignition engine

    Directory of Open Access Journals (Sweden)

    Yusri I.M.

    2017-01-01

    Full Text Available Exhaust emissions especially from light duty gasoline engine are a major contributor to air pollution due to the large number of vehicles on the road. The purpose of this study is to experimentally analyse the exhaust pollutant emissions of a four-stroke port fuel spark ignition engines operating using secondary butyl alcohol–gasoline blends by percentage volume of 5% (GBu5, 10% (GBu10 and 15% (GBu15 of secondary butyl- alcohol (2-butanol additives in gasoline fuels at 50% of wide throttle open. The exhaust emissions characteristics of the engine using blended fuels was compared to the exhaust emissions of the engine with gasoline fuels (G100 as a reference fuels. Exhaust emissions analysis results show that all of the blended fuels produced lower CO by 8.6%, 11.6% and 24.8% for GBu5, GBu10 and GBu15 respectively from 2500 to 4000 RPM, while for HC, both GBu10 and GBu15 were lower than that G100 fuels at all engine speeds. In general, when the engine was operated using blended fuels, the engine produced lower CO and HC, but higher CO2.

  15. Direct synthesis of Pt-free catalyst on gas diffusion layer of fuel cell and usage of high boiling point fuels for efficient utilization of waste heat

    International Nuclear Information System (INIS)

    Nandan, Ravi; Goswami, Gopal Krishna; Nanda, Karuna Kar

    2017-01-01

    Graphical abstract: Direct-grown boron-doped carbon nanotubes on gas-diffusion layer as efficient Pt-free cathode catalyst for alcohol fuel cells, high boiling point fuels used to obtain hot fuels for the enhancement of cell performance that paves the way for the utilization of waste heat. Display Omitted -- Highlights: •One-step direct synthesis of boron-doped carbon nanotubes (BCNTs) on gas diffusion layer (GDL). •Home built fuel-cell testing using BCNTs on GDL as Pt-free cathode catalyst. •BCNTs exhibit concentration dependent oxygen reduction reaction and the cell performance. •Effective utilization of waste heat to raise the fuel temperature. •Fuel selectivity to raise the fuel temperature and the overall performance of the fuel cells. -- Abstract: Gas diffusion layers (GDL) and electrocatalysts are integral parts of fuel cells. It is, however, a challenging task to grow Pt-free robust electrocatalyst directly on GDL for oxygen reduction reaction (ORR) – a key reaction in fuel cells. Here, we demonstrate that boron-doped carbon nanotubes (BCNTs) grown directly on gas-diffusion layer (which avoid the need of ionomer solution used for catalyst loading) can be used as efficient Pt-free catalyst in alcohol fuel cells. Increase in boron concentration improves the electrochemical ORR activity in terms of onset and ORR peak positions, half-wave potentials and diffusion-limited current density that ensure the optimization of the device performance. The preferential 4e − pathway, excellent cell performance, superior tolerance to fuel crossover and long-term stability makes directly grown BCNTs as an efficient Pt-free cathode catalyst for cost-effective fuel cells. The maximum power density of the fuel cell is found to increase monotonically with boron concentration. In addition to the application of BCNTs in fuel cell, we have introduced the concept of hot fuels so that waste heat can effectively be used and external power sources can be avoided. The fuel

  16. Future automotive fuels

    International Nuclear Information System (INIS)

    Lepik, M.

    1993-01-01

    There are several important factors which are fundamental to the choice of alternative automobile fuels: the chain of energetic efficiency of fuels; costs; environmental friendliness; suitability for usual engines or adapting easiness; existing reserves of crude oil, natural gas or the fossil energy sources; and, alternatively, agricultural potentiality. This paper covers all these factors. The fuels dealt with in this paper are alcohol, vegetable oil, gaseous fuel, hydrogen and ammonia fuels. Renewable fuels are the most valuable forms of renewable energy. In addition to that rank, they can contribute to three other problem areas: agricultural surpluses, environmental degradation, and conservation of natural resources. Due to the competitive utilization of biomass for food energy production, bio-fuels should mainly be produced in those countries where an energy shortage is combined with a food surplus. The fuels arousing the most interest are alcohol and vegetable oil, the latter for diesel engines, even in northern countries. (au)

  17. Longitudinal study of alcohol consumption and high-density lipoprotein concentrations: A community-based study

    Science.gov (United States)

    Background: In cross-sectional studies and short-term clinical trials, it has been suggested that there is a positive dose-response relation between alcohol consumption and HDL concentrations. However, prospective data have been limited. Objective: We sought to determine the association between tota...

  18. Use of phyllosilicates in electrochemical devices: possible use of sepiolite as a support of catalysts in direct alcohol fuel cells (DAFC)

    International Nuclear Information System (INIS)

    Parra-Silva, J.; Silva, A.C.; Mello-Castanho, S.R.H.; Cerpa, A.

    2014-01-01

    Direct alcohol Fuel cells (DAFC) are interesting to use Brazil for reasons of fuel logistics and availability. The catalysts used in these devices to promote the oxidation of alcohol at the anode need to be fixed on a substrate which must provide high specific surface area, porosity, chemical and thermal resistance, this target can be achieved with the characteristics sepiolite. This paper proposes sepiolite as catalyst support for DAFC. Sepiolite is a phyllosilicate with double layered tetrahedral silicon cells and fibrillar structure. Catalysts (Pt / Sb / Sn) were prepared by cation substitution method and tested by cyclic voltammetry. Techniques as XRD and FT-IR were also used for characterizing materials. Was obtained up to 35 mA / g (Pt) peak current (redox ethanol) indicating the possibility of sepiolite technology development to use un proposed purpose. (author)

  19. Lack of effects of a "sobering" product, "Eezup!", on the blood ethanol and congener alcohol concentration.

    Science.gov (United States)

    Wunder, Cora; Hain, Sarah; Koelzer, Sarah C; Paulke, Alexander; Verhoff, Marcel A; Toennes, Stefan W

    2017-09-01

    The lifestyle product 'Eezup!' appeared on the German market and promised to normalize energy metabolism. Among vitamins (B 1 , B 2 , B 6 , C, E and zinc), rice protein and fructose the addition of alcohol dehydrogenase and catalase enzymes is a novel approach. The product was advertised as capable of boosting the rate of alcohol elimination. Seventeen subjects (11 men, 6 women, 19-58 years old), participated in a two-way crossover drinking study. Unfiltered wheat beer (4.4g% alcohol content) was drank within one hour to reach blood alcohol concentrations of 1‰ (1g/kg whole blood). On one day "Eezup!" was taken according to the manufacturer's instructions before and after drinking which was substituted for a placebo on the second test day. Blood samples were taken during 9h and ethanol and congener alcohols were determined. A comparison of C max , t max , area under the curve (AUC) for ethanol and congener alcohols, and the hourly elimination rate of ethanol (β 60 ) was performed to investigate an effect of Eezup!. Ethanol concentrations (Cmax) were in the range of 0,63-1,00‰ (median 0,85‰) and 0.62-1.22‰ (median 0.84‰) in the placebo and "Eezup!" condition, respectively, and not statistically different. Also t max (1-2.5h) and AUCs did not differ. The ethanol elimination rates were 0.16‰/h (0.14-0.19‰/h) and 0.17‰/h (0.14-0.22 ‰/h) in the placebo and "Eezup!" condition without significant difference. The pharmacokinetic parameters of the congener alcohols (1-propanol, isobutanol, 3-methyl-1-butanol, 2-methyl-1-butanol) as well as of methanol did also not differ. The results of the present study failed to show any effect of the sobering product "Eezup!" on the amount of ethanol and congener alcohols absorbed (C max , t max, AUC) and on the ethanol elimination rate (β 60 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag 2 S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm -2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  1. A selective electrocatalyst–based direct methanol fuel cell operated at high concentrations of methanol

    Science.gov (United States)

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-01-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm−2 at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol. PMID:28695199

  2. Waste cooking oil as source for renewable fuel in Romania

    Science.gov (United States)

    Allah, F. Um Min; Alexandru, G.

    2016-08-01

    Biodiesel is non-toxic renewable fuel which has the potential to replace diesel fuel with little or no modifications in diesel engine. Waste cooking oil can be used as source to produce biodiesel. It has environmental and economic advantages over other alternative fuels. Biodiesel production from transesterification is affected by water content, type f alcohol, catalyst type and concentration, alcohol to oil ratio, temperature, reaction rate, pH, free fatty acid (FFA) and stirrer speed. These parameters and their effect on transesterification are discussed in this paper. Properties of biodiesel obtained from waste cooking oil are measured according to local standards by distributor and their comparison with European biodiesel standard is also given in this paper. Comparison has shown that these properties lie within the limits of the EN 14214 standard. Furthermore emission performance of diesel engine for biodiesel-diesel blends has resulted in reduction of greenhouse gas emissions. Romanian fuel market can ensure energy security by mixing fuel share with biodiesel produced from waste cooking oil. Life cycle assessment of biodiesel produced from waste cooking oil has shown its viability economically and environmentally.

  3. Synthesis of fuels and feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Andrew D.; Brooks, Ty; Jenkins, Rhodri; Moore, Cameron; Staples, Orion

    2017-10-10

    Disclosed herein are embodiments of a method for making fuels and feedstocks from readily available alcohol starting materials. In some embodiments, the method concerns converting alcohols to carbonyl-containing compounds and then condensing such carbonyl-containing compounds together to form oligomerized species. These oligomerized species can then be reduced using by-products from the conversion of the alcohol. In some embodiments, the method further comprises converting saturated, oligomerized, carbonyl-containing compounds to aliphatic fuels.

  4. An experimental investigation of concentrated slop combustion characteristics in cyclone furnace

    Science.gov (United States)

    Panpokha, Suphaopich; Wongwuttanasatian, Tanakorn; Tangchaichit, Kiatfa

    2018-02-01

    Slop is a by-product in alcoholic industries requiring costly waste management. An idea of using slop as a fuel in a boiler for the industries was proposed. Due to high content of ash, a cyclone furnace was designed to combust the slop. This study aims to examine the concentrated slop combustion in a designed cyclone furnace, consisting of combustion temperature and exhaust gases. The tests were carried out under 4 different air-fuel ratios. Fuels injected into the furnace were 3 g/s of concentrated slop and 1 g/s of diesel. The air-fuel ratios were corresponding to 100, 120, 140 and 160 percent theoretical air. The results demonstrated that combustion of concentrated slop can gave temperature of 800-1000°C and a suitable theoretical air was 100%-120%, because the combustion temperature was higher than that of other cases. In cyclone combustion, excess air is not recommended because it affects a reduction in overall temperature inside the cyclone furnace. It is expected that utilization of the concentrated slop (by-product) will be beneficial in the development of green and zero waste factory.

  5. Contribution to the microeconomics of fuel alcohol from agricultural crops

    Energy Technology Data Exchange (ETDEWEB)

    Koegl, H.

    1984-01-01

    A comprehensive evaluation of the economic viability of renewable resources presumes that at first micro- and macroeconomic aspects have been analysed. For this purpose the paper deals from a microeconomic point of view with one aspect that is the economics of supply of fuel alcohol. For those crops, which are currently of interest, the costs of production and conversion and the revenues from by-products are investigated. As the results suggest, the economics of supply are mostly affected by the following facts: at the crop production stage: output per unit of area, production management, utilization of crop by-products; at the plant stage: plant design, use of plant capacity, scale effects; at the stage of waste disposal: type of crop, type of processing, utilization. The partial economic analysis indicates that the minimum prices of ethanol are in the range from 1.06 to 1.38 DM per litre. This is higher than the prices of fossil fuel and ethylene. In the long run the competitiveness of renewable resources will depend on the change in price relations between agricultural raw materials and fossil energy, substitution possibilities and on the rate of technical progress. But already now another assessment of the competitiveness of renewable resources might be possible if the overall economic efficient use of renewable resources has been investigated.

  6. Chronic fuel oil toxicity in American mink (Mustela vison): systemic and hematological effects of ingestion of a low-concentration of bunker C fuel oil

    International Nuclear Information System (INIS)

    Schwartz, Julie A.; Aldridge, Brian M.; Lasley, Bill L.; Snyder, Paul W.; Stott, Jeff L.; Mohr, F. Charles

    2004-01-01

    Petroleum oil enters the coastal marine environment through various sources; marine mammals such as sea otters that inhabit this environment may be exposed to low concentrations of petroleum hydrocarbons through ingestion of contaminated prey. The inability to perform controlled studies in free-ranging animals hinders investigations of the effects of chronic petroleum oil exposure on sea otter morbidity and mortality, necessitating the development of a reliable laboratory model. We examined the effects of oral exposure to 500 ppm bunker C fuel oil over 113-118 days on American mink, a species phylogenetically related to the sea otter. Hematological parameters and organs were examined for fuel oil-associated changes. Hepatic cytochrome P4501A1 mRNA expression and fecal cortisol concentrations were also measured. Ingestion of fuel oil was associated with a decrease in erythrocyte count, hemoglobin concentration (Hgb), hematocrit (HCT), and an increase in mean corpuscular volume (MCV). Total leukocytes were elevated in the fuel oil group from increases in neutrophils, lymphocytes, and monocytes. Significant interactions between fuel oil and antigen challenge were found for erythrocyte parameters, monocyte and lymphocyte counts. Liver and adrenal weights were increased although mesenteric lymph node weights were decreased in the fuel oil group. Hepatic cytochrome P4501A1 mRNA was elevated in the fuel oil group. Fecal cortisol concentration did not vary between the two groups. Our findings show that fuel oil exposure alters circulating leukocyte numbers, erythrocyte homeostasis, hepatic metabolism and adrenal physiology and establish a framework to use mink as a model for sea otters in studying the systemic effects of marine contaminants

  7. Alternatives to traditional transportation fuels 1994. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    In this report, alternative and replacement fuels are defined in accordance with the EPACT. Section 301 of the EPACT defines alternative fuels as: methanol, denatured ethanol, and other alcohols; mixtures containing 85% or more (or such other percentage, but not less than 70%, as determined by the Secretary of Energy, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. The EPACT defines replacement fuels as the portion of any motor fuel that is methanol, ethanol, or other alcohols, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels (other than alcohol) derived from biological materials, electricity (including electricity from solar energy), ethers, or any other fuel the Secretary of Energy determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. This report covers only those alternative and replacement fuels cited in the EPACT that are currently commercially available or produced in significant quantities for vehicle demonstration purposes. Information about other fuels, such as hydrogen and biodiesel, will be included in later reports as those fuels become more widely used. Annual data are presented for 1992 to 1996. Data for 1996 are based on plans or projections for 1996.

  8. Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells.

    Science.gov (United States)

    Asensio, Y; Fernandez-Marchante, C M; Lobato, J; Cañizares, P; Rodrigo, M A

    2016-08-01

    This manuscript focuses on the evaluation of the use of different types and dosages of fuels in the performance of double-compartment microbial fuel cell equipped with carbon felt electrodes and cationic membrane. Five types of fuels (ethanol, glycerol, acetate, propionate and fructose) have been tested for the same organic load (5,000 mg L(-1) measured as COD) and for one of them (acetate), the range of dosages between 500 and 20,000 mg L(-1) of COD was also studied. Results demonstrate that production of electricity depends strongly on the fuel used. Carboxylic acids are much more efficient than alcohols or fructose for the same organic load and within the range 500-5,000 mg L(-1) of acetate the production of electricity increases linearly with the amount of acetate fed but over these concentrations a change in the population composition may explain a worse performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Study of a Fuel Supply Pump with a Piezoelectric Effect for Microdirect Alcohol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Hsiao-Kang Ma

    2011-01-01

    Full Text Available A novel design for an ethanol injection system has been proposed, which consists of one pump chamber, two valves, and one central-vibrating piezoelectric device. The system uses a microdiaphragm pump with a piezoelectric device for microdirect alcohol fuel cells. The diameters of the pump chamber are 31 mm and 23 mm, and the depths of the chamber are 1 mm and 2 mm. When the piezoelectric device actuates for changing pump chamber volume, the valves will be opened/closed, and the ethanol will be delivered into DAFC system due to the pressure variation. The chamber dimensions, vibrating frequencies of the piezoelectric device, and valve thickness are used as important parameters for the performance of the novel ethanol injection system. The experimental results show that the ethanol flow rate can reach 170 mL/min at a vibrating frequency of 75 Hz. In addition, the ethanol flow rate is higher than the water flow rate.

  10. L'auto adaptation à des mélanges essence/alcool utilisés comme carburant automobile: le moteur souple The Self-Adapting of Gasoline/Alcohol Mixtures Used As Automotive Fuel: the Flexible Engine

    Directory of Open Access Journals (Sweden)

    Dorbon M.

    2006-11-01

    Full Text Available Le moteur souple est un moteur susceptible d'être alimenté par des carburants constitués de mélanges d'une essence classique et d'un alcool léger (méthanol ou éthanol; si la concentration de chacun des composants de ces mélanges varie, les réglages nécessaires au bon fonctionnement du véhicule se font automatiquement. Dans cet article, sont tout d'abord exposées les propriétés caractéristiques en tant que carburant automobile de l'un de ces alcools légers, le méthanol. Puis viennent les descriptions des dispositifs qui font le moteur souple c'est-à-dire d'une part les systèmes de reconnaissance du carburant et d'autre part les appareillages susceptibles de modifier les réglages du moteur (alimentation et allumage en fonction de la qualité du mélange consommé. A flexible engine is one capable of running on fuels consisting of mixtures of conventional gasoline and a light alcohol (methanol or ethanol. If the concentration of each of these components of such mixtures varies, the tuning required for the proper running of the vehicle takes place automatically. This article begins by describing the characteristic properties of one of these light alcohols (methanol as an automotive fuel. Then the equipment is described that makes an engine flexible, i. e. both the fuel recognition systems and the equipment capable of changing engine tuning (feed and ignition as a function of the quality of the mixture burned.

  11. Improving the characteristics of liquid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sakan, T

    1983-02-04

    In order to improve the operational characteristics of a light boiler fuel (LKT) (based on analogous characteristics for a fuel for an internal combustion engine (DVS)) it is proposed to add ether and alcohol to it. The additive of ether improves the viscosity of the fuel, but reduces the heat creating capability. The addition of ether and alcohol (a 3 to 1 ratio by volume) increases the stability of the mixture. With mixing of 75 total percent of the light boiler fuel (a heat creativity of 9,500 kilocalories per liter and a viscosity of 10 centistokes per 30 degrees) with 25 total percent ether produced a fuel with a heat producing capability of 8,690 kilocalories per liter and a viscosity of 2.3 centistokes. With mixing of 70 total percent light boiler oil and 18 total percent ether and 7 total percent alcohol a fuel with a heat creativity of 8,640 kilocalories per liter and a viscosity of 2.7 centistokes was produced.

  12. [Alcohol].

    Science.gov (United States)

    Zima, T

    1996-07-14

    Alcohol is one of the most widely used addictive substances. It can be assumed that everybody encounters alcohol--ethanol in various forms and concentrations in the course of their lives. A global and social problem of our civilization is alcohol consumption which has a rising trend. Since 1989 the consumption of alcoholic beverages is rising and the mean annual consumption of concentrated ethanol per head is cea 10 litres. In ethanol abuse the organism is damaged not only by ethanol alone but in particular by substances formed during its metabolism. Its detailed knowledge is essential for the knowledge and investigations of the metabolic and toxic effect of ethanol on the organism. Ingested alcohol is in 90-98% eliminated from the organism by three known metabolic pathways: 1-alcohol dehydrogenase, 2-the microsomal ethanol oxidizing system and 3-catalase. Alcohol is a frequent important risk factor of serious "diseases of civilization" such as IHD, hypertension, osteoporosis, neoplastic diseases. Cirrhosis of the liver and chronic pancreatitis are the well known diseases associated with alcohol ingestion and also their most frequent cause. It is impossible to list all organs and diseases which develop as a result of alcohol consumption. It is important to realize that regular and "relatively" small amounts in the long run damage the organism and may be even fatal.

  13. [Diuretics and their potential effect on breath-alcohol concentration--a case report].

    Science.gov (United States)

    Schmitt, Georg; Skopp, Gisela

    2015-01-01

    Many objections were raised to breath-alcohol analysis upon its introduction in the field of traffic law enforcement in Germany, but in the meantime this issue has become less relevant in forensic routine work. In the present case, the defending lawyer claimed that the ethanol concentration in the blood and hence in the breath of his client, which was 0.35 mg/l according to the Dräger Alcotest 7110® Evidential and thus above the legal limit of 0.25 mg/l, had been changed by diuretics taken 4 hours before the breath alcohol test, viz. 10 mg of torasemide, a loop diuretic, and 50 mg of spironolactone, a competitive aldosterone antagonist. According to the literature, the maximum urinary output in healthy subjects within the first 4 hours after 10 mg torasemide was 1450 ml. In patients suffering from heart failure, the urinary volume was reduced by a factor of 2.5-3; after chronic intake of torasemide, water loss did not differ from placebo. Spironolactone, which acts on the distal tubule, has little effect on urinary output. In a publication, the loss of water in excess within 24 hours was 90 ml. Co-administration of 100 mg spironolactone and 20 mg furosemide, which roughly compares to 10 mg torasemide, resulted in a mean urinary volume of 1566 ml within the first 4 hours. In terms of the reported case and provided that no compensatory fluid had been taken, a purely theoretical maximum shift of 0.007 mg/ may occur in the breath-alcohol concentration due to the smaller distribution volume even considering maximum urinary excretion values. On the other hand, already mild levels of dehydration may be associated with negative symptoms affecting driving ability.

  14. Study I: effects of 0.06% and 0.10% blood alcohol concentration on human postural control.

    Science.gov (United States)

    Modig, F; Patel, M; Magnusson, M; Fransson, P A

    2012-03-01

    Alcohol intoxication causes many accidental falls presented at emergency departments, with the injury severity often related to level of blood alcohol concentration (BAC). One way to evaluate the decline in postural control and the fall risk is to assess standing stability when challenged. The study objective was to comprehensively investigate alcohol-related impairments on postural control and adaptive motor learning at specific BAC levels. Effects of alcohol intoxication at 0.06% and 0.10% BAC were examined with posturography when unperturbed or perturbed by calf vibration. Twenty-five participants (mean age 25.1 years) were investigated standing with either eyes open or closed. Our results revealed several significant findings: (1) stability declined much faster from alcohol intoxication between 0.06% and 0.10% BAC (60-140%) compared with between 0.0% and 0.06% BAC (30%); (2) sustained exposure to repeated balance perturbations augmented the alcohol-related destabilization; (3) there were stronger effects of alcohol intoxication on stability in lateral direction than in anteroposterior direction; and (4) there was a gradual degradation of postural control particularly in lateral direction when the balance perturbations were repeated at 0.06% and 0.10% BAC, indicating adaptation deficits when intoxicated. To summarize, alcohol has profound deteriorating effects on human postural control, which are dose dependent, time dependent and direction specific. The maximal effects of alcohol intoxication on physiological performance might not be evident initially, but may be revealed first when under sustained sensory-motor challenges. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Response of a direct methanol fuel cell to fuel change

    Energy Technology Data Exchange (ETDEWEB)

    Leo, T.J. [Dpto de Sistemas Oceanicos y Navales- ETSI Navales, Univ. Politecnica de Madrid, Avda Arco de la Victoria s/n, 28040 Madrid (Spain); Raso, M.A.; de la Blanca, E. Sanchez [Dpto de Quimica Fisica I- Fac. CC. Quimicas, Univ. Complutense de Madrid, Avda Complutense s/n, 28040 Madrid (Spain); Navarro, E.; Villanueva, M. [Dpto de Motopropulsion y Termofluidodinamica, ETSI Aeronauticos, Univ. Politecnica de Madrid, Pza Cardenal Cisneros 3, 28040 Madrid (Spain); Moreno, B. [Instituto de Ceramica y Vidrio, Consejo Superior de Investigaciones Cientificas, C/Kelsen 5, Campus de la UAM, 28049 Cantoblanco, Madrid (Spain)

    2010-10-15

    Methanol and ethanol have recently received much attention as liquid fuels particularly as alternative 'energy-vectors' for the future. In this sense, to find a direct alcohol fuel cell that able to interchange the fuel without losing performances in an appreciable way would represent an evident advantage in the field of portable applications. In this work, the response of a in-house direct methanol fuel cell (DMFC) to the change of fuel from methanol to ethanol and its behaviour at different ambient temperature values have been investigated. A corrosion study on materials suitable to fabricate the bipolar plates has been carried out and either 316- or 2205-duplex stainless steels have proved to be adequate for using in direct alcohol fuel cells. Polarization curves have been measured at different ambient temperature values, controlled by an experimental setup devised for this purpose. Data have been fitted to a model taking into account the temperature effect. For both fuels, methanol and ethanol, a linear dependence of adjustable parameters with temperature is obtained. Fuel cell performance comparison in terms of open circuit voltage, kinetic and resistance is established. (author)

  16. Production of alcohols and other oxygenates from fossil fuels and renewables : final report for IEA Alternative Motor Fuels Agreement Program of research and development on alternative motor fuels, Annex 4/Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Vancea, L. (comp.) [Natural Resources Canada, Ottawa, ON (Canada)

    1995-07-01

    The objective of the International Energy Agency's (IEA's) Alternative Motor Fuels Agreement Program was to exchange information on the production of alcohols and other oxygenates between 6 participating countries including Canada, Italy, Japan, New Zealand, Sweden and the United States. Various production methods were reviewed in an effort to identify potential areas of cooperative research programs. The original scope was to examine the production of alcohols and other oxygenates from fossil fuels only, but some participants examined their production from renewables. This report provided a brief description of the Annex and the list of participants. It presented the Operating Agent's Report and contained a summary of the contributions submitted by participating countries by topic. In Canada, Iogen of Ottawa, Ontario has conducted a study on the energy, carbon and economic budgets estimated for wheat grain, corn grain, wheat straw, and switchgrass. Iogen has developed a process for fermenting wheat straw and switchgrass into ethanol. Most research has focused on enzymatic hydrolysis processes because of the low yields inherent in dilute acid hydrolysis processes. Enzymes hydrolyze the cellulose to glucose without producing any degradation products, thereby yielding high quantity products with no toxicity. Future bioethanol production will probably be cellulosic-based rather than grain-based. refs., tabs., figs.

  17. Production of alcohols and other oxygenates from fossil fuels and renewables : final report for IEA Alternative Motor Fuels Agreement Program of research and development on alternative motor fuels, Annex 4/Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Vancea, L [Natural Resources Canada, Ottawa, ON (Canada)

    1995-07-01

    The objective of the International Energy Agency's (IEA's) Alternative Motor Fuels Agreement Program was to exchange information on the production of alcohols and other oxygenates between 6 participating countries including Canada, Italy, Japan, New Zealand, Sweden and the United States. Various production methods were reviewed in an effort to identify potential areas of cooperative research programs. The original scope was to examine the production of alcohols and other oxygenates from fossil fuels only, but some participants examined their production from renewables. This report provided a brief description of the Annex and the list of participants. It presented the Operating Agent's Report and contained a summary of the contributions submitted by participating countries by topic. In Canada, Iogen of Ottawa, Ontario has conducted a study on the energy, carbon and economic budgets estimated for wheat grain, corn grain, wheat straw, and switchgrass. Iogen has developed a process for fermenting wheat straw and switchgrass into ethanol. Most research has focused on enzymatic hydrolysis processes because of the low yields inherent in dilute acid hydrolysis processes. Enzymes hydrolyze the cellulose to glucose without producing any degradation products, thereby yielding high quantity products with no toxicity. Future bioethanol production will probably be cellulosic-based rather than grain-based. refs., tabs., figs.

  18. Honeybee males use highly concentrated nectar as fuel for mating flights.

    Science.gov (United States)

    Hayashi, Masaki; Nakamura, Jun; Sasaki, Ken; Harano, Ken-Ichi

    Honeybees use nectar held in the crop as their main source of energy for flight but the mass of the crop nectar load may be a cost burden. This study investigated whether males of the honeybee Apis mellifera adjust their nectar fuel load and concentration to enhance the success of mating flights. When the crop content was compared between males staying in the hive and those departing, the latter group had the larger volume (median, 5.0μl; range, 0.0-17.8μl) and higher concentration (median, 71.6%; range, 49.0%-77.6%), indicating that departing males load concentrated nectar as fuel before mating flights. Moreover, the crop nectar concentration was significantly higher in departing males than in departing workers. These results suggest that concentrated nectar is advantageous to males because it provides more sugar for energy at lower mass and secures longer or more effective mating flights for higher chance of reproductive success. No significant effect of age was detected in crop volume, and concentration and amount of dissolved sugars in the crop content. In addition, laboratory experiments showed that males had only about 5μl of nectar in the crop soon after feeding, irrespective of fed volume (5-15μl), suggesting they do not hold much nectar in the crop but send it rapidly to the midgut, unlike workers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Challenge for lowering concentration polarization in solid oxide fuel cells

    Science.gov (United States)

    Shimada, Hiroyuki; Suzuki, Toshio; Yamaguchi, Toshiaki; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    In the scope of electrochemical phenomena, concentration polarization at electrodes is theoretically inevitable, and lowering the concentration overpotential to improve the performance of electrochemical cells has been a continuing challenge. Electrodes with highly controlled microstructure, i.e., high porosity and uniform large pores are therefore essential to achieve high performance electrochemical cells. In this study, state-of-the-art technology for controlling the microstructure of electrodes has been developed for realizing high performance support electrodes of solid oxide fuel cells (SOFCs). The key is controlling the porosity and pore size distribution to improve gas diffusion, while maintaining the integrity of the electrolyte and the structural strength of actual sized electrode supports needed for the target application. Planar anode-supported SOFCs developed in this study realize 5 μm thick dense electrolyte (yttria-stabilized zirconia: YSZ) and the anode substrate (Ni-YSZ) of 53.6 vol.% porosity with a large median pore diameter of 0.911 μm. Electrochemical measurements reveal that the performance of the anode-supported SOFCs improves with increasing anode porosity. This Ni-YSZ anode minimizes the concentration polarization, resulting in a maximum power density of 3.09 W cm-2 at 800 °C using humidified hydrogen fuel without any electrode functional layers.

  20. Heterogeneous catalytic process for alcohol fuels from syngas. Fifteenth quarterly technical progress report, July--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The principal objectives of this project are to discover and evaluate novel heterogeneous catalysts for conversion of syngas to oxygenates having use as fuel enhancers, to explore novel reactor and process concepts applicable in this process, and to develop the best total process for converting syngas to liquid fuels. The previous best catalysts consisted of potassium-promoted Pd on a Zn/Cr spinel oxide prepared via controlled pH precipitation. The authors have now examined the effect of cesium addition to the Zn/Cr spinel oxide support. Surprisingly, cesium levels required for optimum performance are similar to those for potassium on a wt% basis. The addition of 3 wt% cesium gives isobutanol rates > 170 g/kg-hr at 440 C and 1,500 psi with selectivity to total alcohols of 77% and with a methanol/isobutanol mole ratio of 1.4: this performance is as good as their best Pd/K catalyst. The addition of both cesium and palladium to a Zn/Cr spinel oxide support gives further performance improvements. The 5 wt% cesium, 5.9 wt% Pd formulation gives isobutanol rates > 150 g/kg-hr at 440 C and only 1,000 psi with a selectivity to total alcohols of 88% and with a methanol/isobutanol mole ratio of 0.58: this is their best overall performance to date. The addition of both cesium and palladium to a Zn/Cr/Mn spinel oxide support that contains excess Zn has also been examined. This spinel was the support used in the synthesis of 10-DAN-54, the benchmark catalyst. Formulations made on this support show a lower overall total alcohol rate than those using the spinel without Mn present, and require less cesium for optimal performance.

  1. Relationships between serum selenium and zinc concentrations versus profibrotic and proangiogenic cytokines (FGF-19 and endoglin) in patients with alcoholic liver cirrhosis.

    Science.gov (United States)

    Prystupa, Andrzej; Kiciński, Paweł; Luchowska-Kocot, Dorota; Błażewicz, Anna; Kurys-Denis, Ewa; Niedziałek, Jarosław; Sak, Jarosław; Panasiuk, Lech

    2017-09-21

    Liver cirrhosis is a disease involving the liver parenchyma, which is characterised by fibrosis and impaired architectonics of the parenchyma with regenerative nodules. The aim of the study was to determine the relationship between stage of alcoholic liver cirrhosis, concentrations of selenium, zinc and profibrotic and proangiogenic cytokines (FGF-19, ENG). The study included 99 patients with alcoholic cirrhosis and 20 healthy subjects. Ion chromatography with UV/VIS detection was used for determination of zinc ions in the previously mineralized serum samples. The measurements of selenium were performed with the ContrAA700 high-resolution continuum source graphite tube atomic absorption spectrometer. ELISA was used to determine concentration of FGF-19 and ENG in serum samples. Concentrations of zinc and selenium were significantly decreased in cirrhotic patients (pselenium in serum of patients with alcoholic liver cirrhosis are not independently related to concentrations of FGF-19 and ENG.

  2. Brazil: good news for oil is bad news for alcohol

    International Nuclear Information System (INIS)

    Knight, Patrick

    1999-01-01

    The impact of the doubling of oil prices and the devaluation of the Brazilian currency on the alcohol fuel programme is examined in this article, and the recent discovery by the Brazilian oil company, Petrobras, of a major new offshore oil field, the government's efforts to boost the consumption of alcohol fuel with subsidies and cheap loans, and the lower costs of running alcohol powered cars are discussed. Details of a major restructuring of the alcohol industry, the production of alcohol between 1994-1999, the boom in sugar exports, the glut of sugar cane, the falling confidence of motorists in alcohol powered cars, and the general move away from subsidies spearheaded by the World Trade Organisation are considered. (UK)

  3. Performance and emissions assessment of n-butanol–methanol–gasoline blends as a fuel in spark-ignition engi

    Directory of Open Access Journals (Sweden)

    Ashraf Elfasakhany

    2016-09-01

    Full Text Available The sleek of using alternatives to gasoline fuel in internal combustion engines becomes a necessity as the environmental problems of fossil fuels as well as their depleted reserves. This research presents an experimental investigation into a new blended fuel; the effects of n-butanol–methanol–gasoline fuel blends on the performance and pollutant emissions of an SI (spark-ignition engine were examined. Four test fuels (namely 0, 3, 7 and 10 volumetric percent of n-butanol–methanol blends at equal rates, e.g., 0%, 1.5%, 3.5% and 5% for n-butanol and methanol, in gasoline were investigated in an engine speed range of 2600–3400 r/min. In addition, the dual alcohol (methanol and n-butanol–gasoline blends were compared with single alcohol (n-butanol–gasoline blends (for the first time as well as with the neat gasoline fuel in terms of performance and emissions. The experimental results showed that the addition of low content rates of n-butanol–methanol to neat gasoline adversely affects the engine performance and exhaust gas emissions as compared to the results of neat gasoline and single alcohol–gasoline blends; in particular, a reduction in engine volumetric efficiency, brake power, torque, in-cylinder pressure, exhaust gas temperature and CO2 emissions and an increase in concentrations of CO and UHC (unburned hydrocarbons emissions were observed for the dual alcohols. However, higher rates of n-butanol–methanol blended in gasoline were observed to improve the SI engine performance parameters and emission concentration. Oppositely the higher rates of single alcohol–gasoline blends were observed to provide adverse results, e.g., higher emissions and lower performance than those of lower rates of single alcohol. Finally, dual alcohol–gasoline blends could exceed (i.e. provide higher performance and lower emissions single alcohol–gasoline blends and pure gasoline at higher rates (>10 vol.% in the blend and, in turn, it is

  4. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    Science.gov (United States)

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Measuring the energy security implications of fossil fuel resource concentration

    International Nuclear Information System (INIS)

    Lefevre, Nicolas

    2010-01-01

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies-France and the United Kingdom-looking at the evolution of both indexes to 2030.

  6. Measuring the energy security implications of fossil fuel resource concentration

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Nicolas [Woodrow Wilson School of Public and International Affairs, Princeton University, New Jersey (United States)

    2010-04-15

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies - France and the United Kingdom - looking at the evolution of both indexes to 2030. (author)

  7. The Influences of Uranium Concentration and Polyvinyl Alcohol on the Quality UO2 Microsphere for Fuel of High Temperature Reactor

    International Nuclear Information System (INIS)

    Damunir; Sukarsono; Bangun-Wasito; Endang Nawangsih

    2000-01-01

    The influences of uranium concentration and PVA on the quality of UO 2 microspheres for fuel of high temperature reactor have been investigated. The UO 2 particles were prepared by gel precipitation using internal gelation process. Uranyl nitrate solution containing uranium of 100 g/l was neutralized using NH 4 OH 1 M. The solution was changed into sol by adding 60 g PVA/l solution while stirred and heated up to 80 o C for 20 minutes. In order to find gels in spherical shape, the sol solution was dropped into 5 M NH 4 OH medium. The formed gels were small spheres, was washed, screened and heated up to 120 o C. After that, the gels were calcined at 800 o C for 4 hours, resulting in U 3 O 8 spheres. The U 3 O 8 particles were reduced using H 2 gas in a N 2 media at 800 o C for 4 hours, yielded in UO 2 spheres. Using a similar procedure, the influence of uranium concentration of 150-250 g/l and PVA 40-80 g/l were studied. The qualities of UO 2 particles were obtained by their physical properties, i.e. density, specific surface area, total volume of pores and pore radius using surface area meter and N 2 gas used as absorbent, and the particle size was observed using optical microscope. The result showed that the changing of uranium and PVA concentrations on the internal gelation affected the density, specific surface area, total volume of pores and pore radius of UO 2 particles. (author)

  8. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  9. Alcohol cosurfactants in hydrate antiagglomeration.

    Science.gov (United States)

    York, J Dalton; Firoozabadi, Abbas

    2008-08-28

    Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at

  10. A comparative study of blood alcohol concentrations in Australian night-time entertainment districts.

    Science.gov (United States)

    Miller, Peter; Pennay, Amy; Droste, Nicolas; Butler, Erin; Jenkinson, Rebecca; Hyder, Shannon; Quinn, Brendan; Chikritzhs, Tanya; Tomsen, Stephen; Wadds, Phillip; Jones, Sandra C; Palmer, Darren; Barrie, Lance; Lam, Tina; Gilmore, William; Lubman, Dan I

    2014-07-01

    There is little research describing how intoxication levels change throughout the night in entertainment districts. This research aims to describe levels of alcohol intoxication across multiple Australian metropolitan and regional nightlife districts. This study was conducted in the night-time entertainment districts of three metropolitan cities (Sydney, Melbourne and Perth) and two regional cities (Wollongong and Geelong) in Australia. Data collection occurred approximately fortnightly in each city on a Friday or Saturday night between 8 pm and 5 am. Brief structured interviews (3-10 min) and breathalyser tests were undertaken in busy thoroughfares over six months. Of the 7037 individuals approached to participate in the study, 6998 [61.8% male, mean age 24.89 years (standard deviation 6.37; range 18-73)] agreed to be interviewed. There was a linear increase in blood alcohol concentration (BAC) levels throughout the night. Post hoc testing revealed significantly more highly intoxicated participants (i.e. BAC above 0.10 mg of alcohol per 100 mL of blood) after midnight (P gender differences disappeared by 3 am. There was no age differences in intoxication earlier in the night, but after midnight, patrons over the age of 21 showed increasing BAC levels. There is a consistent trend across the cities of high to very high levels of intoxication later in the night, with trends after midnight being significantly different to those before. © 2014 Australasian Professional Society on Alcohol and other Drugs.

  11. A New Concept of Dual Fuelled SI Engines Run on Gasoline and Alcohol

    Science.gov (United States)

    Stelmasiak, Zdzisław

    2011-06-01

    The paper discusses tests results of dual-fuel spark ignition engine with multipoint injection of alcohol and gasoline, injected in area of inlet valve. Fuelling of the engine was accomplished via prototype inlet system comprising duplex injectors controlled electronically. Implemented system enables feeding of the engine with gasoline only or alcohol only, and simultaneous combustion of a mixture of the both fuels with any fraction of alcohol. The tests were performed on four cylinders, spark ignition engine of Fiat 1100 MPI type. The paper presents comparative results of dual-fuel engine test when the engine runs on changing fraction of methyl alcohol. The tests have demonstrated an advantageous effect of alcohol additive on efficiency and TCH and NOx emission of the engine, especially in case of bigger shares of the alcohol and higher engine loads.

  12. Experience in the use of low concentration gadolinia as a PWR fuel burnable absorber

    International Nuclear Information System (INIS)

    Mildrum, C.M.; Segovia, M.A.

    2001-01-01

    A description is provided of the low concentration gad design being used in the Spanish 3-loop 17 x 17 fueled PWR's. This design uses a relatively small number of high concentration gadolinia fuel rods (6 and 8 w/o Gd2O3) with a large number of low concentration gad rods (2 w/o Gd2O3). The 2 w/o gad rods substitute, in part, the high concentration gad rods, thereby helping reduce the end of cycle reactivity penalty from the residual absorption in the gadolinium. The low concentration gad design is advantageous for long cycles (more than 18 months) and plant up-rating scenarios in that the soluble boron concentration increases that would otherwise result for these situations are avoided. These boron concentration increases could have potentially adverse effects on the plant, since the moderator temperature coefficient (MTC) is made less negative, the effectiveness of the boron shutdown safety systems is reduced, and the safety margins are eroded for some accidents, such as for boron dilution events. This paper also reviews the APA nuclear design code system performance for the low concentration gad design. (author)

  13. Petroleum, alcohol, and energy substitution in Brazil: Theoretical and empirical issues

    International Nuclear Information System (INIS)

    Biller, D.

    1991-01-01

    As in other Latin American nations, the petroleum industry has always been surrounded by controversy in Brazil. Issues related to exploration, exploitation, and import of crude have received special attention by Brazilian decision makers. In the past decade, an additional relevant issue was brought into play by the oil crisis. An import substitution program for energy was implemented by the development of alternative indigenous energy sources. Among these sources, sugarcane was viewed as a reliable renewable resource for the production of fuel alcohol and, very recently, of electricity. Brazil engaged in a gigantic program of fuel substitution, which is now facing severe problems due to the fall of petroleum prices. This study analyzes the recent energy import substitution program in Brazil, specifically concentrating on microeconomic and environmental aspects of fuel substitution

  14. Determination of safety margins for whole blood concentrations of alcohol and nineteen drugs in driving under the influence cases.

    Science.gov (United States)

    Kristoffersen, Lena; Strand, Dag Helge; Liane, Veronica Horpestad; Vindenes, Vigdis; Tvete, Ingunn Fride; Aldrin, Magne

    2016-02-01

    Legislative limits for driving under the influence of 20 non-alcohol drugs were introduced in Norway in February 2012. Per se limits corresponding to blood alcohol concentrations (BAC) of 0.2g/kg were established for 20 psychoactive drugs, and limits for graded sanctions corresponding to BACs of 0.5 and 1.2g/kg were determined for 13 of these drugs. This new legislation made it possible for the courts to make sentences based on the analytical results, similar to the situation for alcohol. To ensure that the reported concentration is as least as high as the true concentration, with a 99% safety level, safety margins had to be calculated for each of the substances. Diazepam, tetrahydrocannabinol (THC) and alcohol were used as model substances to establish a new model for estimating the safety margins. The model was compared with a previous used model established several years ago, by a similar yet much simpler model, and they were found to be in agreement. The measurement uncertainties depend on the standard batch used, the work list and the measurements' replicate. A Bayesian modelling approach was used to determine the parameters in the model, using a dataset of 4700 diazepam positive specimens and 5400 THC positive specimens. Different safety margins were considered for low and high concentration levels of diazepam (≤2μM (0.6mg/L) and >2μM) and THC (≤0.01μM (0.003mg/L) and >0.01μM). The safety margins were for diazepam 19.5% (≤2μM) and 34% (>2μM), for THC 19.5% (≤0.01μM) and 24.9% (>0.01μM). Concentration dependent safety margins for BAC were based on a dataset of 29500 alcohol positive specimens, and were in the range 10.4% (0.1g/kg) to 4.0% (4.0g/kg) at a 99% safety level. A simplified approach was used to establish safety margins for the compounds amphetamine, MDMA, methamphetamine, alprazolam, phenazepam, flunitrazepam, clonazepam, nitrazepam, oxazepam, buprenorphine, GHB, methadone, ketamine, cocaine, morphine, zolpidem and zopiclone. The

  15. Renewable energy from biomass: a sustainable option? - Hydrogen production from alcohols

    Science.gov (United States)

    Balla, Zoltán; Kith, Károly; Tamás, András; Nagy, Orsolya

    2015-04-01

    in the case, than the same volume of ethanol-water mixture can be prepared. The renewal of alcohol, the alcohol-water mixture is then passed through the catalytic reformer into a preheater. The exhaust gas contains a relatively large number of carbon monoxide, which would spoil the fuel cell, so the carbon monoxide concentration to a high and a low temperature water-gas reaction is reduced. This increases the hydrogen production. The last step of the carbon monoxide content to eliminate preferential oxidation. The alcohol reforming catalyst for the precious metals spread most of what arose from high activity and stability. However, the precious metals are very expensive, so a non-precious metal catalysts is the design and development of objective activity and stability which reaches the precious metal catalysts of. Using the new reaction catalysts opportunities are created, which are smaller than the activation energy than the non-catalytic process. The basic objective of the technological developments more active at lower temperatures, the selective target product, long-life, low cost design catalysts.

  16. Experience in the use of low concentration gadolinia as a PWR fuel burnable absorber

    International Nuclear Information System (INIS)

    Mildrum, C.M.; Segovia, M.A.

    2001-01-01

    A description is provided of the low concentration gad design being used in the Spanish 3-loop 17 x 17 fueled PWR's. This design uses a relatively small number of high concentration gadolinia fuel rods (6 and 8 w/o Gd 2 O 3 ) with a large number of low concentration gad rods (2 w/o Gd 2 O 3 ). The 2 w/o gad rods substitute, in part, the high concentration gad rods, thereby helping reduce the end of cycle reactivity penalty from the residual absorption in the gadolinium. The low concentration gad design is advantageous for long cycles (18+ months) and plant up-rating scenarios in that the soluble boron concentration increases that would otherwise result for these situations are avoided. These boron concentration increases could have potentially adverse effects on the plant, since the moderator temperature coefficient (MTC) is made less negative, the effectiveness of the boron shutdown safety systems is reduced, and the safety margins are eroded for some accidents, such as for boron dilution events. These increases in the boron concentration would also require the plant to operate at higher lithium (Li) concentrations in the coolant in order to maintain the pH level at the desired value. Operation at the higher Li concentrations is undesirable because of the concerns over the potential impact on the fuel assembly material performance (e.g., crud and corrosion). This paper also reviews the APA (Alpha/Phoenix-P/ANC) nuclear design code system performance for the low concentration gad design. The design system performance for the reload cores that have or are employing this design has been completely satisfactory. The performance and accuracy of the nuclear design methodology is found to be as good for this design as for the reload cores that use exclusively high gad concentrations, or those that use WABA's - the discrete burnable absorber (BA) used prior to its substitution for gadolinium. (authors)

  17. Fission product concentration evolution in sodium pool following a fuel subassembly failure in an LMFBR

    International Nuclear Information System (INIS)

    Natesan, K.; Velusamy, K.; Selvaraj, P.; Kasinathan, N.; Chellapandi, P.; Chetal, S.; Bhoje, S.

    2003-01-01

    During a fuel element failure in a liquid metal cooled fast breeder reactor, the fission products originating from the failed pins mix into the sodium pool. Delayed Neutron Detectors (DND) are provided in the sodium pool to detect such failures by way of detection of delayed neutrons emitted by the fission products. The transient evolution of fission product concentration is governed by the sodium flow distribution in the pool. Transient hydraulic analysis has been carried out using the CFD code PHOENICS to estimate fission product concentration evolution in hot pool. k- ε turbulence model and zero laminar diffusivity for the fission product concentration have been considered in the analysis. Times at which the failures of various fuel subassemblies (SA) are detected by the DND are obtained. It has been found that in order to effectively detect the failure of every fuel SA, a minimum of 8 DND in hot pool are essential

  18. Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol

    International Nuclear Information System (INIS)

    Irimescu, Adrian

    2012-01-01

    Highlights: ► Iso-butanol use in a port injection spark ignition engine. ► Fuel conversion efficiency calculated based on chassis dynamometer measurements. ► Combined study of engine efficiency and air–fuel mixture temperature. ► Excellent running characteristics with minor fuel system modifications. ► Up to 11% relative drop in part load efficiency due to incomplete fuel vaporization. -- Abstract: Alcohols are increasingly used as fuels for spark ignition engines. While ethanol is most commonly used, long chain alcohols such as butanol feature several advantages like increased heating value and reduced corrosive action. This study investigated the effect of fueling a port injection engine with iso-butanol, as compared to gasoline operation. Performance levels were maintained within the same limits as with the fossil fuel without modifications to any engine component. An additional electronic module was used for increasing fuel flow by extending the injection time. Fuel conversion efficiency decreased when the engine was fueled with iso-butanol by up to 9% at full load and by up to 11% at part load, calculated as relative values. Incomplete fuel evaporation was identified as the factor most likely to cause the drop in engine efficiency.

  19. Genotyping and phenotyping of CYP2D6 and CYP3A isoenzymes in patients with alcohol use disorder: correlation with haloperidol plasma concentration.

    Science.gov (United States)

    Sychev, Dmitry A; Zastrozhin, Mikhail S; Miroshnichenko, Igor I; Baymeeva, Natalia V; Smirnov, Valery V; Grishina, Elena A; Ryzhikova, Kristina A; Mirzaev, Karin B; Markov, Dmitry D; Skryabin, Valentin Y; Snalina, Nataliya E; Nosikova, Polina G; Savchenko, Ludmila M; Bryun, Evgeny A

    2017-09-26

    Haloperidol is used for the treatment of alcohol use disorders in patients with signs of alcohol-related psychosis. Haloperidol therapy poses a high risk of adverse drug reactions (ADR). Contradictory data, which include the effects of genetic polymorphisms in genes encoding the elements of haloperidol biotransformation system on haloperidol metabolism rate and plasma drug concentration ratio, are described in patients with different genotypes. The primary objective of this study was to investigate the effects of CYP2D6 and CYP3A5 genetic polymorphisms on haloperidol equilibrium concentration in patients with alcohol use disorder. The study included 69 male patients with alcohol use disorder. Genotyping was performed using the allele-specific real-time PCR. CYP2D6 and CYP3A were phenotyped with HPLC-MS using the concentration of endogenous substrate of the enzyme and its urinary metabolites [6-hydroxy-1,2,3,4-tetrahydro-β-carboline(6-HO-THBC) to pinoline ratio for CYP2D6 and 6-β-hydroxycortisol to cortisol ratio for CYP3A]. The equilibrium plasma concentration was determined using LC-MS-MS. Results indicated that both C/D indexes and equilibrium concentration levels depend on CYP2D6 genetic polymorphism, but only in patients receiving haloperidol intramuscular injections [0.26 (0.09; 0.48) vs. 0.54 (0.44; 0.74), p=0.037]. The study demonstrates that CYP2D6 genetic polymorphism (1846G>A) can affect haloperidol concentration levels in patients with alcohol use disorder.

  20. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jo, Young Suk [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lewis, Raymond [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bromberg, Leslie [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-01-29

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving the efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.

  1. Blood alcohol concentration in drivers of Liege area (Belgium): a 5-year analysis.

    Science.gov (United States)

    Deville, M; Charlier, C

    2015-10-01

    The objective of the study was to describe 'the results of the blood alcohol determinations made on drivers from the Liege area between 2007 and 2012. The results were interpreted according to the sex, to the age, to the circumstances and temporal variation of the test. Statistical analysis was performed using R® software. 2725 determinations were done, mainly after crashes. The mean blood alcohol concentration (BAC) was 1.69 g/L, and 2132 drivers were above the legal threshold. A majority of offenders were men, but the mean BAC did not differ significantly between men and women. A correlation between age and mean BAC can be observed on the positive cases. Lowest and highest mean BACs are observed during the daytime and during the night, respectively, but no significant difference can be observed between the week and the weekend. Finally, no significant difference in BAC was observed over years.

  2. Distillate Fuel Trends: International Supply Variations and Alternate Fuel Properties

    Science.gov (United States)

    2013-01-31

    fuel in NATO countries will have some amount of FAME present. There is some work being done on hydrocarbon alternatives but the regulatory structure ... synthesis or hydrotreatment – Requirements and test methods.” According to the specification, paraffinic diesel fuel does not meet the current requirements...or international specification for triglyceride based fuel oils (straight vegetable oil / raw vegetable oil). The same holds true for alcohol-based

  3. Flex cars and the alcohol price

    International Nuclear Information System (INIS)

    Ferreira, Alex Luiz; Da Silveira, Jaylson Jair; De Almeida Prado, Fernando Pigeard

    2009-01-01

    We build a model that incorporates the effect of the innovative 'flex' car, an automobile that is able to run with either gasoline or alcohol, on the dynamics of fuel prices in Brazil. Our model shows that differences regarding fuel prices will now depend on the proportions of alcohol, gasoline and flex cars in the total stock. Conversely, the demand for each type of car will also depend on the expected future prices of alcohol and gasoline (in addition to the car prices). The model reflects our findings that energy prices are tied in the long run and that causality runs stronger from gasoline to alcohol. The estimated error correction parameter is stable, implying that the speed of adjustment towards equilibrium remains unchanged. The latter result is probably due to a still small fraction of flex cars in the total stock (approx. 5%), despite the fact that its sales nearly reached 100% in 2006. (author)

  4. Changes in driving behavior and cognitive performance with different breath alcohol concentration levels.

    Science.gov (United States)

    Liu, Yung-Ching; Fu, Shing-Mei

    2007-06-01

    This study examines the changes in driving behavior and cognitive performance of drivers with different breath alcohol concentration (BrAC) levels. Eight licensed drivers, aged between 20 and 30 years, with BrAC levels of 0.00, 0.25, 0.4 and 0.5 mg/l performed simulated driving tests under high- and low-load conditions. Subjects were asked to assess their subjective psychological load at specified intervals and perform various tasks. The outcome was measured in terms of reaction times for task completion, accuracy rates, and driver's driving behavior. The effects of BrAC vary depending on the task. Performance of tasks involving attention shift, information processing, and short-term memory showed significant deterioration with increasing BrAC, while dangerous external vehicle driving behavior occurred only when the BrAC reached 0.4 mg/l and the deterioration was marked. We can conclude that the cognitive faculty is the first to be impaired by drinking resulting in deteriorated performance in tasks related to divided attention, short-term memory, logical reasoning, followed by visual perception. On the other hand, increasing alcohol dose may not pose an immediate impact on the external vehicle driving behavior but may negatively affect the driver's motor behavior even at low BrAC levels. Experience and will power could compensate for the negative influence of alcohol enabling the drivers to remain in full steering control. This lag between alcohol consumption and impaired driving performance may mislead the drivers in thinking that they are still capable of safe steering and cause them to ignore the potential dangers of drunk driving.

  5. Development of a BMW flexible fuel vehicle. Entwicklung eines BMW-Fahrzeuges fuer flexiblen Benzin-Methanol-Mischbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Muhl, W; Petra, H

    1992-02-01

    A standard BMW 6-cylinder engine with 4 valves was converted for methanol flexible fuel operation. New performance characteristics of air/fuel mixture and ignition timing were determined for different methanol concentrations (M20, M50, M85). The recognition of the methanol concentration was made by means of a capacitive alcohol sensor and the adaptive Lambda Control. Without any modification of the catalyst the HC emission was reduced about 40% in US-test cycle. The efficiency of M85 was upgraded about 8% under vehicle operation conditions. Under any method concentration the driveability of the car was as well as operated with pure gasoline. Operating with M85 the engine increased torque and power by 11%. (orig.).

  6. Effect of the polymer concentration on the ON/OFF states of a TN-LCD: polyvinyl alcohol vs. soy lecithin

    Science.gov (United States)

    de Coss Martinez, Romeo; Gonzalez Murguia, Jose Luis

    2011-03-01

    In this work we study the response of a Twisted Nematic Liquid Crystal Display (TN-LCD) by varying both the concentration and the polymer used for the microgroove. We compare the performance of two polymers: polyvinyl alcohol and soy lecithin. In particular, the light transmission for the ON/OFF states is evaluated. The polyvinyl alcohol is a polymer widely used in LCDs while lecithin soy is a natural polymer.

  7. A novel approach for estimating sugar and alcohol concentrations in wines using refractometer and hydrometer.

    Science.gov (United States)

    Son, H S; Hong, Y S; Park, W M; Yu, M A; Lee, C H

    2009-03-01

    To estimate true Brix and alcoholic strength of must and wines without distillation, a novel approach using a refractometer and a hydrometer was developed. Initial Brix (I.B.), apparent refractometer Brix (A.R.), and apparent hydrometer Brix (A.H.) of must were measured by refractometer and hydrometer, respectively. Alcohol content (A) was determined with a hydrometer after distillation and true Brix (T.B.) was measured in distilled wines using a refractometer. Strong proportional correlations among A.R., A.H., T.B., and A in sugar solutions containing varying alcohol concentrations were observed in preliminary experiments. Similar proportional relationships among the parameters were also observed in must, which is a far more complex system than the sugar solution. To estimate T.B. and A of must during alcoholic fermentation, a total of 6 planar equations were empirically derived from the relationships among the experimental parameters. The empirical equations were then tested to estimate T.B. and A in 17 wine products, and resulted in good estimations of both quality factors. This novel approach was rapid, easy, and practical for use in routine analyses or for monitoring quality of must during fermentation and final wine products in a winery and/or laboratory.

  8. Carbon-Supported PtRuMo Electrocatalysts for Direct Alcohol Fuel Cells

    Directory of Open Access Journals (Sweden)

    José L.G. Fierro

    2013-10-01

    Full Text Available The review article discusses the current status and recent findings of our investigations on the synthesis and characterization of carbon-supported PtRuMo electrocatalysts for direct alcohol fuel cells. In particular, the effect of the carbon support and the composition on the structure, stability and the activity of the PtRuMo nanoparticles for the electrooxidation of CO, methanol and ethanol have been studied. Different physicochemical techniques have been employed for the analysis of the catalysts structures: X-ray analytical methods (XRD, XPS, TXRF, thermogravimetry (TGA and transmission electron microscopy (TEM, as well as a number of electrochemical techniques like CO adsorption studies, current-time curves and cyclic voltammetry measurements. Furthermore, spectroscopic methods adapted to the electrochemical systems for in situ studies, such as Fourier transform infrared spectroscopy (FTIRS and differential electrochemical mass spectrometry (DEMS, have been used to evaluate the oxidation process of CO, methanol and ethanol over the carbon-supported PtRuMo electrocatalysts.

  9. Army Alternative Ground Fuels Qualification

    Science.gov (United States)

    2012-05-31

    Jet Fuel-Like Product Lignocellulose corn stover forest waste switchgrass sugarcane Fermentation Genetically Engineered Microbes Jet...Fuel-Like Product Bio-Crude Pyrolysis Dehydration Hydroprocessing Synthetic Biology Pyrolysis Alcohol Oligomerization Conventional

  10. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process

    Directory of Open Access Journals (Sweden)

    Idris Atadashi Musa

    2016-03-01

    Full Text Available The nature of alcohol and alcohol to oil molar ratio plays an important role on the method of biodiesel production. As a result, this paper examined different alcohols commonly used for the production of biodiesel fuel with more emphasis on methanol and ethanol. Further the different alcohol to oil molar ratios used for the production of biodiesel have been extensively discussed and reported. Also the effects of alcohol to molar ratios on biodiesel refining process and its physicochemical properties were investigated.

  11. Preliminary evaluation of supply decentralization of fuels

    International Nuclear Information System (INIS)

    Trindade, C.O.C. da.

    1990-03-01

    Energy policy in Brazil has been made in a centralized way. The total transportation costs for liquid fuel were calculated the local production of an alternative fuel was examined. It was concluded that locally produced alcohol, although is not competitive with diesel, can substitute, at this moment, the alcohol imported from other regions and approaches competitiveness with gasoline. (author)

  12. Catalytic synthesis of alcoholic fuels for transportation from syngas

    Energy Technology Data Exchange (ETDEWEB)

    Qiongxiao Wu

    2012-12-15

    consequently on the catalytic activity. (3) Addition of 3 mol % CO{sub 2} to the H2/CO feed stream leads to a significant loss of activity for the Cu-Ni/SiO2 catalyst contrary to the case for the Cu/ZnO/Al2O3 catalyst. DFT calculations show in accordance with previous surface science studies that oxygen on the surface could lead to an enrichment of the Ni-content in the surface. (4) Silica supported bimetallic Cu-Ni catalysts with different ratios of Cu to Ni have been prepared by impregnation. In situ reduction of Cu-Ni alloys with combined synchrotron XRD and XAS reveal a strong interaction between Cu and Ni, resulting in improved reducibility of Ni as compared to monometallic Ni. At high nickel concentrations silica supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower nickel contents, copper and nickel are separately aggregated and form metallic Cu and Cu-Ni alloy phases. At the same reduction conditions, the particle sizes of reduced Cu-Ni alloys decrease with increasing in Ni content. A maximum methanol productivity of 0.66 kg kgcat-1 h-1 with methanol selectivity up to 99.2 mol % has been achieved for a Cu-Ni/SiO2 catalyst prepared by the deposition-co-precipitation method. There is no apparent catalyst deactivation observed during the tested time on stream (40-100 h), contrary to the observation for the industrial Cu/ZnO/Al2O3 catalyst. For higher alcohol synthesis, the main work has been performed on CO hydrogenation over supported Mo2C. Mo2C supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over supported Mo2C are significantly higher compared to bulk Mo2C. The CO conversion reaches a maximum, when about 20 wt % Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active

  13. Experiments and simulations of NOx formation in the combustion of hydroxylated fuels

    KAUST Repository

    Bohon, Myles

    2015-06-01

    This work investigates the influence of molecular structure in hydroxylated fuels (i.e. fuels with one or more hydroxyl groups), such as alcohols and polyols, on NOx formation. The fuels studied are three lower alcohols (methanol, ethanol, and n-propanol), two diols (1,2-ethanediol and 1,2-propanediol), and one triol (1,2,3-propanetriol); all of which are liquids at room temperature and span a wide range of thermophysical properties. Experimental stack emissions measurements of NO/NO2, CO, and CO2 and flame temperature profiles utilizing a rake of thermocouples were obtained in globally lean, swirling, liquid atomized spray flames inside a refractory-lined combustion chamber as a function of the atomizing air flow rate and swirl number. These experiments show significantly lower NOx formation with increasing fuel oxygen content despite similarities in the flame temperature profiles. By controlling the temperature profiles, the contribution to NOx formation through the thermal mechanism were matched, and variations in the contribution through non-thermal NOx formation pathways are observed. Simulations in a perfectly stirred reactor, at conditions representative of those measured within the combustion region, were conducted as a function of temperature and equivalence ratio. The simulations employed a detailed high temperature chemical kinetic model for NOx formation from hydroxylated fuels developed based on recent alcohol combustion models and extended to include polyol combustion chemistry. These simulations provide a qualitative comparison to the range of temperatures and equivalence ratios observed in complex swirling flows and provide insight into the influence of variations in the fuel decomposition pathways on NOx formation. It is observed that increasing the fuel bound oxygen concentration ultimately reduces the formation of NOx by increasing the proportion of fuel oxidized through formaldehyde, as opposed to acetylene or acetaldehyde. The subsequent

  14. Prevalence of alcohol and other drugs and the concentrations in blood of drivers killed in road traffic crashes in Sweden.

    Science.gov (United States)

    Ahlner, Johan; Holmgren, Anita; Jones, Alan Wayne

    2014-03-01

    Drunk or drug-impaired drivers represent a major public health and societal problem worldwide. Because over 95% of drivers killed on the roads in Sweden are autopsied, reliable information is available about the use of alcohol and/or other drug before the crash. This retrospective 4-year study (2008-2011) used a forensic toxicology database (TOXBASE) to evaluate the concentrations of alcohol and other drugs in blood samples from drivers killed in road-traffic crashes. The mean age of all victims (N = 895) was 48 ± 20 years, and the majority were male (86%). In 504 drivers (56%), the results of toxicological analysis were negative and these victims were older; mean age (± SD) 47 ± 20 years, than alcohol positive cases (35 ± 14 years) and illicit drug users (34 ± 15 years). In 21% of fatalities, blood-alcohol concentration (BAC) was above the statutory limit for driving (0.2 g/L), although the median BAC was appreciably higher (1.72 g/L). Illicit drugs (mainly amphetamine and cannabis) were identified in ~7% of victims, either alone (2.5%), together with alcohol (1.8%) or a prescription drug (2%). The psychoactive prescription drugs identified were mainly benzodiazepines, z-hypnotics and tramadol, which were found in the blood of 7.6% of crash victims. The high median BAC in fatally-injured drivers speaks strongly towards alcohol-induced impairment as being responsible for the crash. Compared with alcohol, the prevalence of illicit and psychoactive prescription drugs was fairly low despite a dramatic increase in the number of drug-impaired drivers arrested by the police after a zero-tolerance law was introduced in 1999.

  15. Development of the alcohol waste processing equipment

    International Nuclear Information System (INIS)

    Obara, Kiyoshi; Ooyama, Etsuo; Suzuki, Toshiaki; Oohara, Norikazu

    2004-01-01

    In the experimental fast Reactor JOYO, gripper of Fuel Handling Machine and Ex-Vessel Transfer Machine that the sodium adhered is being washed with alcohol. This radioactive alcohol waste that was used to the washing is stored to the tank. If it is able to separate the alcohol and sodium in the alcohol waste it becomes possible to dispose of the alcohol waste. Japan Nuclear Institute and Fuji Electric Systems CO., LTD. Developed the device that adds carbonic acid gas to the alcohol waste and cause the sodium in the alcohol waste separated as carbonate and remove this carbonate by using the thin film evaporator. (author)

  16. Improvement of performance and reduction of pollutant emission of a four stroke spark ignition engine fueled with hydrogen-gasoline fuel mixture

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Maher Abdul-Resul Sadiq; Al-Janabi, Haroun Abdul-Kadim Shahad [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2000-07-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emissions of a four stroke spark ignition engine has been studied. A detailed model to simulate a four stroke cycle of a spark ignition engine fueled with hydrogen-ethyl alcohol-gasoline has been used to study the effect of hydrogen and ethyl alcohol blending on the thermodynamic cycle of the engine. The results of the study show that all engine performance parameters have been improved when operating the gasoline S.I.E. with dual addition of hydrogen and ethyl alcohol. It has been found that 4% of hydrogen and 30% of ethyl alcohol blending causes a 49% reduction in CO emission, a 39% reduction in NO{sub x} emission, a 49% reduction in specific fuel consumption and increases in the thermal efficiency and output power by 5 and 4%, respectively. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporised, and this causes a reduction in both the brake power and efficiency. (Author)

  17. Highly Zeolite-Loaded Polyvinyl Alcohol Composite Membranes for Alkaline Fuel-Cell Electrolytes

    Directory of Open Access Journals (Sweden)

    Po-Ya Hsu

    2018-01-01

    Full Text Available Having a secure and stable energy supply is a top priority for the global community. Fuel-cell technology is recognized as a promising electrical energy generation system for the twenty-first century. Polyvinyl alcohol/zeolitic imidazolate framework-8 (PVA/ZIF-8 composite membranes were successfully prepared in this work from direct ZIF-8 suspension solution (0–45.4 wt % and PVA mixing to prevent filler aggregation for direct methanol alkaline fuel cells (DMAFCs. The ZIF-8 fillers were chosen for the appropriate cavity size as a screening aid to allow water and suppress methanol transport. Increased ionic conductivities and suppressed methanol permeabilities were achieved for the PVA/40.5% ZIF-8 composites, compared to other samples. A high power density of 173.2 mW cm−2 was achieved using a KOH-doped PVA/40.5% ZIF-8 membrane in a DMAFC at 60 °C with 1–2 mg cm−2 catalyst loads. As the filler content was raised beyond 45.4 wt %, adverse effects resulted and the DMAFC performance (144.9 mW cm−2 was not improved further. Therefore, the optimal ZIF-8 content was approximately 40.5 wt % in the polymeric matrix. The specific power output was higher (58 mW mg−1 than most membranes reported in the literature (3–18 mW mg−1.

  18. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    Science.gov (United States)

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    2000-01-01

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.

  19. Reformulated and alternative fuels: modeled impacts on regional air quality with special emphasis on surface ozone concentration.

    Science.gov (United States)

    Schell, Benedikt; Ackermann, Ingmar J; Hass, Heinz

    2002-07-15

    The comprehensive European Air Pollution and Dispersion model system was used to estimate the impacts of the usage of reformulated and alternative fuels on regional air quality with special emphasis on surface ozone concentrations. A severe western European summer smog episode in July 1994 has been used as a reference, and the model predictions have been evaluated for this episode. A forecast simulation for the year 2005 (TREND) has been performed, including the future emission development based on the current legislation and technologies available. The results of the scenario TREND are used as a baseline for the other 2005 fuel scenarios, including fuel reformulation, fuel sulfur content, and compressed natural gas (CNG) as an alternative fuel. Compared to the year 1994, significant reductions in episode peak ozone concentrations and ozone grid hours are predicted for the TREND scenario. These reductions are even more pronounced within the investigated alternative and reformulated fuel scenarios. Especially, low sulfur fuels are appropriate for an immediate improvement in air quality, because they effect the emissions of the whole fleet. Furthermore, the simulation results indicate that the introduction of CNG vehicles would also enhance air quality with respect to ozone.

  20. Combustor with two stage primary fuel tube with concentric members and flow regulating

    Science.gov (United States)

    Parker, David Marchant; Whidden, Graydon Lane; Zolyomi, Wendel

    1999-01-01

    A combustor for a gas turbine having a centrally located fuel nozzle and inner, middle and outer concentric cylindrical liners, the inner liner enclosing a primary combustion zone. The combustor has an air inlet that forms two passages for pre-mixing primary fuel and air to be supplied to the primary combustion zone. Each of the pre-mixing passages has a circumferential array of swirl vanes. A plurality of primary fuel tube assemblies extend through both pre-mixing passages, with each primary fuel tube assembly located between a pair of swirl vanes. Each primary fuel tube assembly is comprised of two tubular members. The first member supplies fuel to the first pre-mixing passage, while the second member, which extends through the first member, supplies fuel to the second pre-mixing passage. An annular fuel manifold is divided into first and second chambers by a circumferentially extending baffle. The proximal end of the first member is attached to the manifold itself while the proximal end of the second member is attached to the baffle. The distal end of the first member is attached directly to the second member at around its mid-point. The inlets of the first and second members are in flow communication with the first and second manifold chambers, respectively. Control valves separately regulate the flow of fuel to the two chambers and, therefore, to the two members of the fuel tube assemblies, thereby allowing the flow of fuel to the first and second pre-mixing passages to be separately controlled.

  1. Progress and recent trends in biodiesel fuels

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    Fossil fuel resources are decreasing daily. Biodiesel fuels are attracting increasing attention worldwide as blending components or direct replacements for diesel fuel in vehicle engines. Biodiesel fuel typically comprises lower alkyl fatty acid (chain length C 14 -C 22 ), esters of short-chain alcohols, primarily, methanol or ethanol. Various methods have been reported for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsification, pyrolysis, and transesterification. Among these, transesterification is an attractive and widely accepted technique. The purpose of the transesterification process is to lower the viscosity of the oil. The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil and the reaction temperature. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages over other new-renewable and clean engine fuel alternatives. Biodiesel fuel is a renewable substitute fuel for petroleum diesel or petrodiesel fuel made from vegetable or animal fats; it can be used in any mixture with petrodiesel fuel, as it has very similar characteristics, but it has lower exhaust emissions. Biodiesel fuel has better properties than petrodiesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future; it has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification

  2. New, innovative and sustainable transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lassi, U. (Univ. of Oulu, Dept. of Chemistry (Finland)). email: ulla.lassi@oulu.fi; Keiski, R. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)); Kordas, K. (Univ. of Oulu, Microelectronics and Materials Physics Laboratories (Finland)); Mikkola, J.-P. (Aabo Akademi Univ., Lab. of Industrial Chemistry and Reaction Engineering, Turku (Finland))

    2009-07-01

    Secondary products from the industry - e.g. by-products of food and paper/pulp industry - can be used to manufacture new liquid biofuels or fuel components. A particularly interesting alternative is provided by butanol, which can be produced from biomass, since it seems to be most suitable for replacing petrol as fuel in gasoline engines. Besides, it is very energy efficient and also suitable to be produced on an industrial scale. Production of biobutanol and other higher alcohols is studied in the research project 'New, innovative sustainable transportation fuels for mobile applications; from biocomponents to flexible liquid fuels (SusFuFlex)'. The project is carried out as a joint project between the University of Oulu and Aabo Akademi University. It is financied by the Academy of Finland in 2008-2011, within the research programme for Sustainable Energy. Research focuses on the production of higher bioalcohols and other compounds suitable as oxygenates (e.g. butanol, pentanol, mixed alcohols; e.g. glycerine ethers, glycerol carbonate). The objectives of the research are (1) to evaluate the old and novel procedures for microbiological production of butanol, higher alcohols and oxygenates as fossil fuel substitutes, (2) to develop and optimize catalytic materials and chemical reaction routes for the production of higher alcohols and other bio-derived compounds applicable as gasoline fuel and its additives, (3) to conduct a sustainability analysis of the processes to be developed, to analyze the atom economy of the new processes and to make a preliminary economical analysis, and (4) to integrate the processes and know-how developed by the research groups

  3. [Experimental research on alcohols, aldehydes, aromatic hydrocarbons and olefins emissions from alcohols fuelled vehicles].

    Science.gov (United States)

    Zhang, Fan; Wang, Jian-Hai; Wang, Xiao-Cheng; Wang, Jian-Xin

    2013-07-01

    Using two vehicles fuelled with pure gasoline, M15, M30 and pure gasoline, E10, E20 separately, 25 degrees C normal temperature type I emission test, -7 degrees C low temperature type VI emission test and type IV evaporation emission test were carried out. FTIR, HPLC and GC-MS methods were utilized to measure alcohols, aldehydes, aromatic hydrocarbons and olefins emissions. The test results indicate that at the low as well as normal ambient temperature, as the alcohols proportion increasing in the fuel, unburned methanol, formaldehyde, acetaldehyde increase proportionally, benzene, toluene, ethylene, propylene, 1,3-butadiene and isobutene decrease slightly. The unregulated emissions at the low ambient temperature are significantly higher than those at the normal ambient temperature. The difference of HC emissions in the entire process of evaporative emission tests of E10, gasoline and M15 fuels is slight. There is a small difference of unregulated emissions in the diurnal test of three fuels.

  4. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C{sub 2} to C{sub 5+}) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline.

  5. Alcohol: view 2000 - comparative analysis gasoline versus alcohol

    International Nuclear Information System (INIS)

    Rocha, P.G. da; Vasconcelos, C.R. de

    1990-01-01

    The comparative analysis between alcohol and gas reveals the pros and the cons of the use of each one of those energy sources, taking as a basis an analysis of the world supply and demand of oil, and of PETROBRAS sceneries, including price expectancies for next decade, and the repercussion of PROALCOOL during its existence in the country. Regarding competitiveness, gas and the energy substitute hydrous alcohol are analyzed jointly, as an energy policy for carburetant fuels, taking into account aspects related with both the direct and the indirect cost of each energy source, as well as the benefits provided by then both. (author)

  6. Utilization of alternative fuels in diesel engines

    Science.gov (United States)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  7. 78 FR 26849 - Model Specifications for Breath Alcohol Ignition Interlock Devices (BAIIDs)

    Science.gov (United States)

    2013-05-08

    ... requirements, and asked whether the Model Specifications should limit sensor technology to alcohol-specific sensors (such as fuel cell technology based on electrochemical oxidation of alcohol) or other emerging... have demanded alcohol- specific sensor technology. [Interlocks that] are not alcohol-specific...

  8. Alcohol Fuel in Passenger Car

    Directory of Open Access Journals (Sweden)

    Adam Polcar

    2016-01-01

    Full Text Available The present article studies the effects of combustion of high-percentage mixture of bioethanol and gasoline on the output parameters of a passenger car engine. The car engine has not been structurally modified for the combustion of fuels with higher ethanol content. The mixture used consisted of E85 summer blend and Natural 95 gasoline in a ratio of 50:50. The parameters monitored during the experiment included the air-fuel ratio in exhaust gasses, the power output and torque of the engine and also the specific energy consumption and efficiency of the engine. As is apparent from the results, E85+N95 (50:50 mixture combustion results in lean-burn (λ > 1 due to the presence of oxygen in bioethanol. The lean-burn led to a slight decrease in torque and power output of the engine. However, due to the positive physicochemical properties of bioethanol, the decrease has not been as significant as would normally be expected from the measured air-fuel ratio. These findings are further confirmed by the calculated energy required to produce 1 kWh of energy, and by the higher efficiency of the engine during the combustion of a 50% bioethanol mixture.

  9. A microfluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels

    International Nuclear Information System (INIS)

    Wu, Q X; Zhao, T S; Chen, R; Yang, W W

    2010-01-01

    Conventional direct methanol fuel cells (DMFCs) have to operate with excessively diluted methanol solutions to limit methanol crossover and its detrimental consequences. Operation with such diluted methanol solutions not only results in a significant penalty in the specific energy of the power pack, limiting the runtime of this type of fuel cell, but also lowers the cell performance and operating stability. In this paper, a microfluidic-structured anode flow field for passive DMFCs with neither liquid pumps nor gas compressors/blowers is developed. This flow field consists of plural micro flow passages. Taking advantage of the liquid methanol and gas CO 2 two-phase counter flow, the unique fluidic structure enables the formation of a liquid–gas meniscus in each flow passage. The evaporation from the small meniscus in each flow passage can lead to an extremely large interfacial mass-transfer resistance, creating a bottleneck of methanol delivery to the anode CL. The fuel cell tests show that the innovative flow field allows passive DMFCs to achieve good cell performance with a methanol concentration as high as 18.0 M, increasing the specific energy of the DMFC system by about five times compared with conventional designs.

  10. Investigation of concentration overpotential distribution in a polymer electrolyte fuel cell. Paper no. IGEC-1-081

    International Nuclear Information System (INIS)

    Tajiri, K.; Yang, X.-G.; Wang, C.-Y.; Shinohara, K.

    2005-01-01

    Simultaneous measurement of current and high frequency resistance (HFR) distributions has been performed using a segmented polymer electrolyte fuel cell operated with H 2 /air. Each flow plate consisted of twelve segments along a serpentine flow field. Two types of gas diffusion layer (GDL), a treated hydrophobic carbon cloth coated with a microporous layer (MPL) on one side, and an untreated hydrophilic carbon cloth without MPL, were studied and contrasted. The total voltage loss is divided into three overpotentials: the activation, ohmic and concentration; and the concentration overpotential and its distribution are analyzed in detail. While the fuel cell using the GDL with MPL features a nearly uniform concentration overpotential profile, the one without-MPL shows an increase in concentration overpotential along the cathode flow. When the local concentration overpotential is plotted against the local oxygen concentration, the carbon cloth GDL without MPL showed a steeply increasing concentration overpotential with decreasing oxygen concentration, indicating a high sensitivity to the oxygen content. The same trend was observed for the GDL without MPL under lower relative humidity gases. It is thus found that the increase in concentration overpotential with decreasing oxygen concentration is related to the absence of MPL. (author)

  11. Experimental and computation method for determination of burnup and isotopic composition of the WWER-440 fuel using the 134Cs and 137Cs concentrations

    International Nuclear Information System (INIS)

    Babichev, B.A.; Kozharin, V.V.

    1990-01-01

    An experimental and computational method for determination of burnup and actinoid concentrations in WWER fuel elements using 134 Cs and 137 Cs concentrations in fuel is considered. It is shown that the error in calculation of fuel burnup and U and Pu isotope concentrations in WWER-440 fuel elements is 1.3-4.9% provided that the error in 134 Cs and 137 Cs concentration measurements does not exceed 1.7 and 1.2%. 9 refs.; 10 figs.; 4 tabs

  12. The use of methanol as a fuel for transportation

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, K E [Luleaa Univ. of Technology (Sweden); Walsh, M P [Arlington, VA (United States); Westerholm, R [Stockholm Univ. (Sweden)

    1997-06-01

    The aim of the project was to collect and report international experiences concerning the use of methanol as an automotive fuel. The method has been to study the literature which covers the subject and most of the information has been collected that way. The project started with a participation in a conference and a visit to people who have been involved in activities concerning the use of automotive alcohols. Car manufacturers, environmental authorities and users of alcohol fuels i.e. representatives of bus companies, were interviewed. The different applications for the use of methanol as an automotive fuel has been described in the report as well as the production of methanol. Some results, mostly in form of emission data and other experiences derived from the use of alcohol fuels, have also been presented. The use of ethanol and methanol has been compared and based on information from engine manufacturers and users of alcohol fueled vehicles there seems to be a preference for the use of ethanol. However, the question `methanol or ethanol` has not been answered as the decision which of the two is to be used seems to depend more on economic factors, such as cost of the production of the fuel etc., than on other factors. 165 refs, 15 figs, 14 tabs

  13. Optimization through experiment planning for determination of experimental conditions which guarantees the metrological reliability for analysis of chloride and sulfate in fuel alcohol; Otimizacao via planejamento de experimento para determinar as condicoes experimentais que garantam confiabilidade metrologica para analise de cloreto e sulfato em alcool combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Souza e Silva, Renata; Araujo, Thiago de Oliveira [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (INMETRO), Duque de Caxias, RJ (Brazil)], Emails: rsouza@inmetro.gov.br, toaraujo@inmetro.gov.br; Aguiar, Paula Fernandes de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)], E-mail: pfaguiar@ufrj.br

    2009-07-01

    This work presents a method of analysis to determine chloride and sulfate in fuel alcohol which allowed eliminate or minimized the matrix effect in sample of fuel alcohol, using the Doehlert planning for the stage of optimization.

  14. The influence of oxygen concentration on the combustion of a fuel/oxidizer mixture

    Energy Technology Data Exchange (ETDEWEB)

    Biteau, H. [School of Engineering and Electronics, BRE Centre for Fire Safety Engineering, The University of Edinburgh, Edinburgh EH9 3JL (United Kingdom); Institut National de l' Environnement Industriel et des Risques, Parc Technologique Alata, Verneuil en Halatte (France); Fuentes, A. [Institut Universitaire des Systemes Thermiques Industriels (CNRS UMR 6595), Universite de Provence, 13453 Marseille Cedex 13 (France); Marlair, G. [Institut National de l' Environnement Industriel et des Risques, Parc Technologique Alata, Verneuil en Halatte (France); Torero, J.L. [School of Engineering and Electronics, BRE Centre for Fire Safety Engineering, The University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2010-04-15

    The aim of the present study is to investigate the influence of the O{sub 2} concentration on the combustion behaviour of a fuel/oxidizer mixture. The material tested is a ternary mixture of lactose, starch, and potassium nitrate, which has already been used in an attempt to estimate heat release rate using the FM-Global Fire Propagation Apparatus. It provides a well-controlled combustion chamber to study the evolution of the combustion products when varying the O{sub 2} concentration, between air and low oxidizer conditions. Different chemical behaviours have been exhibited. When the O{sub 2} concentration was reduced beyond 18%, large variations were observed in the CO{sub 2} and CO concentrations. This critical O{sub 2} concentration seems to be the limit before which the material only uses its own oxidizer to react. On the other hand, mass loss did not highlight this change in chemical reactions and remained similar whatever the test conditions. This presumes that the oxidation of CO into CO{sub 2} are due to reactions occurring in the gas phase especially for large O{sub 2} concentrations. This actual behaviour can be verified using a simplified flammability limit model adapted for the current work. Finally, a sensitivity analysis has been carried out to underline the influence of CO concentration in the evaluation of heat release rate using typical calorimetric methods. The results of this study provide a critical basis for the investigation of the combustion of a fuel/oxidizer mixture and for the validation of future numerical models. (author)

  15. Alcohol and Breastfeeding

    DEFF Research Database (Denmark)

    Haastrup, Maija Bruun; Pottegård, Anton; Damkier, Per

    2014-01-01

    While the harmful effects of alcohol during pregnancy are well-established, the consequences of alcohol intake during lactation have been far less examined. We reviewed available data on the prevalence of alcohol intake during lactation, the influence of alcohol on breastfeeding......, the pharmacokinetics of alcohol in lactating women and nursing infants and the effects of alcohol intake on nursing infants. A systematic search was performed in PubMed from origin to May 2013, and 41 publications were included in the review. Approximately half of all lactating women in Western countries consume...... alcohol while breastfeeding. Alcohol intake inhibits the milk ejection reflex, causing a temporary decrease in milk yield. The alcohol concentrations in breast milk closely resemble those in maternal blood. The amount of alcohol presented to nursing infants through breast milk is approximately 5...

  16. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998; FINAL

    International Nuclear Information System (INIS)

    1999-01-01

    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C(sub 2) to C(sub 5+)) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline

  17. Adsorption of aliphatic alcohols on ruthenium

    International Nuclear Information System (INIS)

    Shapovalova, L.B.; Zakumbaeva, G.D.

    1977-01-01

    The adsorption is studied of allyl-, propyl- and propargyl alcohols on a ruthenium catalyst-electrode at 20, 30 and 40 deg C in H 2 SO 4 in helium. Above adsorption has been found to grow with increased concentration of the alcohols in the solution. In solutions with the same concentration, propargyl alcohol has been noted to show highest sorptive capacity, followed by that of allyl- and propyl alcohols. With variations in the ruthenium electrode potential, alcohol adsorption occurs via maximum at potential = 0.18

  18. Alcohol and malnutrition in the pathogenesis of experimental alcoholic cardiomyopathy.

    Science.gov (United States)

    Rossi, M A

    1980-02-01

    In this study, the morphology and the catecholamine levels of the myocardium in both well-nourished and malnourished alcohol-fed rats were examined. Alcohol has been administered to rats for 16 weeks. Rats fed a diet containing alcohol corresponding to 40 per cent. of total calorific intake and inadequate amounts of calories and nutrients developed morphological changes in the heart, while the controls did not. In addition, an increase in cardiac noradrenaline concentration and heart: body weight ratio could be observed. There were no differences in myocardial morphology and catecholamine concentration between well-nourished rats fed alcohol as 35 per cent. of the calorific intake and pair-fed controls. A dispute exists about whether alcohol is directly toxic to the heart or indirectly injurious due to associated dietary deficiency. The present results, taken together, make the theory of cardiotoxicity of alcohol an unlikely one, at least in the case of the rat; and they offer considerable support for the hypothesis that the association between chronic consumption of alcoholic beverages and cardiomyopathy is a result of a primary multifactorial nutritional deficiency, resulting from displacement of nutrient-associated calories by the "empty" calories--devoid of protein, vitamins, and minerals--of alcohol, and/or a secondary nutritional deficiency due to injurious effects of alcohol on the liver, pancreas and intestine. It is suggested that continued exposure to high levels of catecholamine, directly related to malnutrition, may play a role in the development of myocardial pathology.

  19. Recent advances on the production and utilization trends of bio-fuels: A global perspective

    International Nuclear Information System (INIS)

    Demirbas, M.F.; Balat, Mustafa

    2006-01-01

    Bio-fuels are important because they replace petroleum fuels. There are many benefits for the environment, economy and consumers in using bio-fuels. Bio-oil can be used as a substitute for fossil fuels to generate heat, power and/or chemicals. Upgrading of bio-oil to a transportation fuel is technically feasible, but needs further development. Bio-fuels are made from biomass through thermochemical processes such as pyrolysis, gasification, liquefaction and supercritical fluid extraction or biochemical. Biochemical conversion of biomass is completed through alcoholic fermentation to produce liquid fuels and anaerobic digestion or fermentation, resulting in biogas. In wood derived pyrolysis oil, specific oxygenated compounds are present in relatively large amounts. Basically, the recovery of pure compounds from the complex bio-oil is technically feasible but probably economically unattractive because of the high costs for recovery of the chemical and its low concentration in the oil

  20. Examination of breath alcohol concentration (BrAC) levels, alcohol use disorders identification test (AUDIT-C) classification, and intended plans for getting home among bar-attending college students.

    Science.gov (United States)

    Martin, Ryan J; Chaney, Beth H; Cremeens-Matthews, Jennifer

    2015-06-01

    The college student population is one of the heaviest drinking demographic groups in the US and impaired driving is a serious alcohol-related problem. The objective of this study is to better understand the relationship between alcohol-related behaviors and "plans to get home" among a sample of college students. We conducted four anonymous field studies to examine associations between breath alcohol concentration (BrAC) levels, Alcohol Use Disorders Identification Test (AUDIT-C) classification, and plans for getting home among a sample of bar-attending college students (N = 713). The vast majority of participants in our sample (approximately 95%) were not intending to drive and the average BrAC% of those intending to drive was .041. Our one-way ANOVAs indicated that (1) participants classified by the AUDIT-C as not having an alcohol problem had a significantly lower BrAC% than those classified as having a potential problem and (2) participants planning to drive had a significantly lower BrAC% than those with a plan that did not involve them driving and those without a plan to get home. Although it is encouraging that most of our sample was not intending to drive, it is important to continue to attempt to reduce impaired driving in this population. This study helps college health professionals and administrators to better understand the relationship between alcohol-related behaviors and plans to get home among college students. © American Academy of Addiction Psychiatry.

  1. PHYSICOCHEMICAL PROPERTIES OF THE GASOLINE AND ALCOHOL BIOFUEL MIXTURES

    Directory of Open Access Journals (Sweden)

    I. Povar

    2011-12-01

    Full Text Available The influence of added alcohols, ethanol and butanol, on the main biofuel properties, such as the specific gravity, Reid saturated vapour pressure and distillation curves have been investigated. These properties are intimately related to the fuel composition and their prediction relies on the knowledge of its components characteristics. This research proves the possibility of obtaining fuels with different levels of resistance to detonation, using gasoline with different chemical components and various fractions of alcohols.

  2. Effects of substitution on counterflow ignition and extinction of C3 and C4 alcohols

    KAUST Repository

    Alfazazi, Adamu

    2016-06-17

    Dwindling reserves and inherent uncertainty in the price of conventional fuels necessitates a search for alternative fuels. Alcohols represent a potential source of energy for the future. The structural features of an alcohol fuel have a direct impact on combustion properties. In particular, substitution in alcohols can alter the global combustion reactivity. In this study, experiments and numerical simulations were conducted to investigate the critical conditions of extinction and autoignition of n-propanol, 1-butanol, iso-propanol and iso-butanol in non-premixed diffusion flames. Experiments were carried out in the counterflow configuration, while simulations were conducted using a skeletal chemical kinetic model for the C3 and C4 alcohols. The fuel stream consists of the pre-vaporized fuel diluted with nitrogen, while the oxidizer stream is air. The experimental results show that autoignition temperatures of the tested alcohols increase in the following order: iso-propanol > iso-butanol > 1-butanol ≈ n-propanol. The simulated results for the branched alcohols agree with the experiments, while the autoignition temperature of 1-butanol is slightly higher than that of n-propanol. For extinction, the experiments show that the extinction limits of the tested fuels increase in the following order: n-propanol ≈ 1-butanol > iso-butanol > iso-propanol. The model suggests that the extinction limits of 1-butanol is slightly higher than n-propanol with extinction strain rate of iso-butanol and iso-propanol maintaining the experimentally observed trend. The transport weighted enthalpy (TWE) and radical index (Ri) concepts were utilized to rationalize the observed reactivity trends for these fuels.

  3. Effects of substitution on counterflow ignition and extinction of C3 and C4 alcohols

    KAUST Repository

    Alfazazi, Adamu; Niemann, Ulrich; Selim, Hatem; Cattolica, Robert J.; Sarathy, Mani

    2016-01-01

    Dwindling reserves and inherent uncertainty in the price of conventional fuels necessitates a search for alternative fuels. Alcohols represent a potential source of energy for the future. The structural features of an alcohol fuel have a direct impact on combustion properties. In particular, substitution in alcohols can alter the global combustion reactivity. In this study, experiments and numerical simulations were conducted to investigate the critical conditions of extinction and autoignition of n-propanol, 1-butanol, iso-propanol and iso-butanol in non-premixed diffusion flames. Experiments were carried out in the counterflow configuration, while simulations were conducted using a skeletal chemical kinetic model for the C3 and C4 alcohols. The fuel stream consists of the pre-vaporized fuel diluted with nitrogen, while the oxidizer stream is air. The experimental results show that autoignition temperatures of the tested alcohols increase in the following order: iso-propanol > iso-butanol > 1-butanol ≈ n-propanol. The simulated results for the branched alcohols agree with the experiments, while the autoignition temperature of 1-butanol is slightly higher than that of n-propanol. For extinction, the experiments show that the extinction limits of the tested fuels increase in the following order: n-propanol ≈ 1-butanol > iso-butanol > iso-propanol. The model suggests that the extinction limits of 1-butanol is slightly higher than n-propanol with extinction strain rate of iso-butanol and iso-propanol maintaining the experimentally observed trend. The transport weighted enthalpy (TWE) and radical index (Ri) concepts were utilized to rationalize the observed reactivity trends for these fuels.

  4. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  5. Fuel formula for lighters

    Energy Technology Data Exchange (ETDEWEB)

    Iwayama, I.; Iwayama, A.

    1982-04-10

    A fuel formula that includes a homogenous mixture of benzine, aromatic ether oils, perfume and other perfuming agents, as well as the lowest possible aliphatic alcohol as a component solvent, surfactant, and possibly, a soluble pigment that colors the formula an appropriate color. This formula is used as an aromatic fuel for cigarette lights. The ether oils can be musk, amber, camomille, lavender, mint, anise, rose, camphor, and other aromatic oils; the perfuming agents are: geraniol, linalool, menthol, camphor, benzyl or phenetyl alcohols, phenylacetaldehyde, vanillin, coumarin, and so forth; the pigments are: beta-carotene, sudan dyes, etc.; the low aliphatic alcohols are EtOH, iso-PrOH. Example: 70 parts benzine, 10 parts EtOH, 15 parts oxide mezithylene and 5 parts borneol form a clear liquid that has a camphor aroma when it is lit.

  6. Silage alcohols in dairy cow nutrition

    DEFF Research Database (Denmark)

    Raun, Birgitte Marie Løvendahl

    Corn silages with high propanol concentrations has been suspected to cause reduced feed intake and health problems for dairy cows in the post-pattum transition period. With the increasing use of hetero fermentative inoculants to support corn silage fermentation it is likely that silage concentrat......Corn silages with high propanol concentrations has been suspected to cause reduced feed intake and health problems for dairy cows in the post-pattum transition period. With the increasing use of hetero fermentative inoculants to support corn silage fermentation it is likely that silage...... of alcohols will lead to high alcohol concentrations in peripheral bood for a considerable period. Increased hepatic NEFA uptake in the postpartum transition period may result in even further decreased hepatic capacity for alcohol metabolism making post-partum transition cows especially vulnerable to high...... alcohol intakes. In order to evaluate the impact of alcohol fermentation in corn silages on dairy cow performance, the main purpose of this thesis was first to investigate the concentrations and composition of alcohols in typical field corn silages, and second to study how transition and lactating dairy...

  7. Effects of different concentrations of sugarcane alcohol on food intake and nutritional status of male and female periadolescent rats.

    Science.gov (United States)

    Gonçalves de Orange, Luciana; Bion, Francisca Martins; Rolim de Lima, Cybelle

    2009-03-01

    The present study evaluated the effects of food and alcohol intake on the nutritional and metabolic status of male and female periadolescent rats submitted to single (15%) and multiple (10%, 20%, 30%) concentrations of hydroalcoholic solutions of sugar-based alcohol associated with a feed mixture. Thirty-six periadolescent Wistar rats were used and randomly arranged into three groups: Group A (control; 0% ethanol; six males and six females), Group B (15% ethanol; six males and six females), and Group C (10%, 20%, and 30% ethanol; six males and six females). Food consumption, body weight, water intake (mL), ethanol intake (g/kg/day), ethanol preference in relation to water and different concentrations, and serum biochemical dosages (glucose, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein (HDL) cholesterol, very low-density lipoprotein fraction, triglycerides, cholesterol/HDL [CT/HDL], albumin) were analyzed. Males from Group C ingested more feed than females, which consumed reducing amounts throughout the weeks studied. Males also had heavier body weight, which increased throughout the experimental period. The animals ingested more water (females ingested more than males) in the first experimental week. Group C had a higher ethanol intake and greater preference for ethanol over water in both genders than Group B, which decreased over the subsequent weeks. Serum glucose was lower in Group A, whereas the CT/HDL ratio was lower in Group C. These findings allow the conclusion that nutritional and metabolic impact resulting from alcohol intake is different between genders and between the different forms in which the drug is offered. It is important to warn the population about the concentrations of alcohol intake, which may influence the growth and development of adolescents, thereby compromising their quality of life.

  8. Factors influencing the formation of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine: Temperature, alcoholic degree, and amino acids concentration.

    Science.gov (United States)

    Bordiga, M; Lorenzo, C; Pardo, F; Salinas, M R; Travaglia, F; Arlorio, M; Coïsson, J D; Garde-Cerdán, T

    2016-04-15

    The validation of a HPLC-PDA-MS/MS chromatographic method for the quali/quantitative characterization of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine has been described and discussed. Four standards showed a good linearity with high correlation coefficient values (over 0.9989) and LOD and LOQ were 0.001-0.015 mg/L and 0.004-0.045 mg/L, respectively. Furthermore, this study reported how factors such as temperature, alcoholic degree, and amino acids concentration are able to influence the formation of these four alcohols in Monastrell wines. The quantification values of these alcohols has been detected both at the half and end of alcoholic fermentation, and at the end of malolactic fermentation. In relation to interactions between factors, several significant variations emerged (p ⩽ 0.001). The impact of amino acids supplementation in Monastrell must it has been demonstrated, mainly in regards to histaminol and tryptophol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Ethanol concentration in breastmilk after the consumption of non-alcoholic beer.

    Science.gov (United States)

    Schneider, Claudia; Thierauf, Annette; Kempf, Jürgen; Auwärter, Volker

    2013-06-01

    During lactation, the consumption of ethanol is discussed controversially. After women drink alcoholic beverages, ethanol can be found in breastmilk with a time lag. To abstain from ethanol, but not from the taste of alcoholic beverages, in particular, non-alcoholic beer has become popular in recent years. According to regulations in the United States and most European countries, these "alcohol-free" beverages may still contain ethanol up to 1.2% by volume. To determine how much of this ethanol may reach the breastfed child, a drinking experiment with non-alcoholic beer was performed. Fifteen healthy breastfeeding women participated in the study. After at least 5 days of abstinence from ethanol and the donation of a void breastmilk sample, they were asked to drink 1.5 L of non-alcoholic beer within 1 hour. Breastmilk samples were collected using electronic breast pumps immediately after the end of drinking as well as 1 and 3 hours later. The milk was analyzed for ethanol by headspace-gas chromatography-flame ionization detection using a fully validated method. In two women, trace amounts of ethanol (up to 0.0021 g/L) were found in the samples gained immediately after the drinking period. In the other samples ethanol could not be detected (limit of detection=0.0006 g/L). The mother's consumption of non-alcoholic beer is likely innocuous for the breastfed infant.

  10. JP-8 and Other Military Fuels

    Science.gov (United States)

    2011-12-01

    Fermentation Jet Fuel-Like Product sugarcane Alcohol Oligomerization Conventional Refinery ProcessesSugar switchgrass Dehydration Pyrolysis Fermentation...PolymerizationOlefins Lignocellulose corn stover forest waste Jet Fuel-Like ProductBio-CrudePyrolysis Hydroprocessing Unclassified Back Up Slides

  11. [Confrontation of knowledge on alcohol concentration in blood and in exhaled air].

    Science.gov (United States)

    Bauer, Miroslav; Bauerová, Jiřina; Šikuta, Ján; Šidlo, Jozef

    2015-01-01

    The authors of the paper give a brief historical overview of the development of experimental alcohology in the former Czechoslovakia. Enhanced attention is paid to tests of work quality control of toxicological laboratories. Information on results of control tests of blood samples using the method of gas chromatography in Slovakia and within a world-wide study "Eurotox 1990" is presented. There are pointed out the pitfalls related to objective evaluation of the analysis results interpreting alcohol concentration in biological materials and the associated need to eliminate a negative influence of the human factor. The authors recommend performing analyses of alcohol in biological materials only at accredited workplaces and in the case of samples storage to secure a mandatory inhibition of phosphorylation process. There are analysed the reasons of numerical differences of analyses while taking evidence of alcohol in blood and in exhaled air. The authors confirm analysis accuracy using the method of gas chromatography along with breath analysers of exhaled air. They highlight the need for making the analysis results more objective also through confrontation with the results of clinical examination and with examined circumstances. The authors suggest a method of elimination of the human factor, the most frequently responsible for inaccuracy, to a tolerable level (safety factor) and the need of sample analysis by two methods independent of each other or the need of analysis of two biological materials.

  12. Bioelectrochemical fuel cell and sensor based on quinoprotein alcohol dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G; Hill, H A.O.; Aston, W J; Higgins, I J; Turner, A P.F.

    1983-09-01

    A biofuel cell, yielding a stable and continuous low-power output, based on the enzymatic oxidation of methanol to formic acid has been designed and investigated. The homogeneous kinetics of the electrochemically-coupled enzymatic oxidation reaction were investigated and optimized. The biofuel cell also functioned as a sensitive method for the detection of primary alcohols. A method for medium-scale preparation of the enzyme alcohol dehydrogenase (alcohol: (acceptor) oxidoreductase, EC 1.1.99.8) is described. (Refs. 14).

  13. Pharmacologically Counteracting a Phenotypic Difference in Cerebellar GABAA Receptor Response to Alcohol Prevents Excessive Alcohol Consumption in a High Alcohol-Consuming Rodent Genotype.

    Science.gov (United States)

    Kaplan, Josh Steven; Nipper, Michelle A; Richardson, Ben D; Jensen, Jeremiah; Helms, Melinda; Finn, Deborah Ann; Rossi, David James

    2016-08-31

    Cerebellar granule cell GABAA receptor responses to alcohol vary as a function of alcohol consumption phenotype, representing a potential neural mechanism for genetic predilection for alcohol abuse (Kaplan et al., 2013; Mohr et al., 2013). However, there are numerous molecular targets of alcohol in the cerebellum, and it is not known how they interact to affect cerebellar processing during consumption of socially relevant amounts of alcohol. Importantly, direct evidence for a causative role of the cerebellum in alcohol consumption phenotype is lacking. Here we determined that concentrations of alcohol that would be achieved in the blood after consumption of 1-2 standard units (9 mm) suppresses transmission through the cerebellar cortex in low, but not high, alcohol consuming rodent genotypes (DBA/2J and C57BL/6J mice, respectively). This genotype-selective suppression is mediated exclusively by enhancement of granule cell GABAA receptor currents, which only occurs in DBA/2J mice. Simulating the DBA/2J cellular phenotype in C57BL/6J mice by infusing the GABAA receptor agonist, 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol hydrochloride, into cerebellar lobules IV-VI, in vivo, significantly reduced their alcohol consumption and blood alcohol concentrations achieved. 4,5,6,7-Tetrahydroisoxazolo-[5,4-c]pyridine-3-ol hydrochloride infusions also significantly decreased sucrose consumption, but they did not affect consumption of water or general locomotion. Thus, genetic differences in cerebellar response to alcohol contributes to alcohol consumption phenotype, and targeting the cerebellar GABAA receptor system may be a clinically viable therapeutic strategy for reducing excessive alcohol consumption. Alcohol abuse is a leading cause of preventable death and illness; and although alcohol use disorders are 50%-60% genetically determined, the cellular and molecular mechanisms of such genetic influences are largely unknown. Here we demonstrate that genetic differences in

  14. High Temperature PEM Fuel Cells - Degradation and Durability

    DEFF Research Database (Denmark)

    Araya, Samuel Simon

    for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich...... be stored in liquid alcohols such as methanol, which can be sources of hydrogen for fuel cell applications. In addition, fuel cells unlike other technologies can use a variety of other fuels that can provide a source of hydrogen, such as biogas, methane, butane, etc. More fuel flexibility combined....... On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed...

  15. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    Science.gov (United States)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  16. Influence of drugs of abuse and alcohol upon patients admitted to acute psychiatric wards: physician's assessment compared to blood drug concentrations.

    Science.gov (United States)

    Mordal, Jon; Medhus, Sigrid; Holm, Bjørn; Mørland, Jørg; Bramness, Jørgen G

    2013-06-01

    In acute psychiatric services, rapid and accurate detection of psychoactive substance intake may be required for appropriate diagnosis and intervention. The aim of this study was to investigate the relationship between (a) drug influence as assessed by physicians and (b) blood drug concentrations among patients admitted to acute psychiatric wards. We also explored the possible effects of age, sex, and psychotic symptoms on physician's assessment of drug influence. In a cross-sectional study, the sample comprised 271 consecutive admissions from 2 acute psychiatric wards. At admission, the physician on call performed an overall judgment of drug influence. Psychotic symptoms were assessed with the positive subscale of the Positive and Negative Syndrome Scale. Blood samples were screened for a wide range of psychoactive substances, and quantitative results were used to calculate blood drug concentration scores. Patients were judged as being under the influence of drugs and/or alcohol in 28% of the 271 admissions. Psychoactive substances were detected in 56% of the blood samples. Altogether, 15 different substances were found; up to 8 substances were found in samples from 1 patient. Markedly elevated blood drug concentration scores were estimated for 15% of the patients. Physician's assessment was positively related to the blood drug concentration scores (r = 0.52; P < 0.001), to symptoms of excitement, and to the detection of alcohol, cannabis, and amphetamines. The study demonstrates the major impact of alcohol and drugs in acute psychiatric settings and illustrates the challenging nature of the initial clinical assessment.

  17. The Western Canada Fuel Cell Initiative (WCFCI)

    International Nuclear Information System (INIS)

    Birss, V.; Chuang, K.

    2006-01-01

    Vision: Western Canada will become an international centre for stationary power generation technology using high temperature fuel cells that use a wide variety of fossil and biomass fuels. Current research areas of investigation: 1. Clean efficient use of hydrocarbons 2. Large-scale electricity generation 3. CO2 sequestration 4. Direct alcohol fuel cells 5. Solid oxide fuel cells. (author)

  18. Hidrocarbonetos policíclicos aromáticos (HPAS em cachaça, rum, uísque e álcool combustível Polycyclic aromatic hydrocarbons (PAHS in cachaça, rum, whiskey and alcohol fuel

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Galinaro

    2009-01-01

    Full Text Available The concentration of 15 polycyclic aromatic hydrocarbons (PAHs in 57 samples of distillates (cachaça, rum, whiskey, and alcohol fuel has been determined by HPLC-Fluorescence detection. The quantitative analytical profile of PAHs treated by Partial Least Square - Discriminant Analysis (PLS-DA provided a good classification of the studied spirits based on their PAHs content. Additionally, the classification of the sugar cane derivatives according to the harvest practice was obtained treating the analytical data by Linear Discriminant Analysis (LDA, using naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benz[b]fluoranthene, and benz[g,h,i]perylene, as a chemical descriptors.

  19. 75 FR 61820 - Model Specifications for Breath Alcohol Ignition Interlock Devices (BAIIDs)

    Science.gov (United States)

    2010-10-06

    ... technology to alcohol-specific sensors (such as fuel cell technology based on electro-chemical oxidation of alcohol) or other emerging sensor technologies? Or, should NHTSA not specify the sensor technology and... require alcohol- specific technology in the Model Specifications, but that the particular sensor design...

  20. Ethanol Fuels Reference Guide: A Decision-Makers Guide to Ethanol Fuels

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-01

    This guide is a compendium of information on alcohol fuel production and use. Chapter titles are: facts about ethanol; gasohol-answers to the basic questions; feedstocks and their coproducts; ethanol production processes; and vehicle fuel use and performance. In addition, there are 8 appendices which include fermentation guides for common grains and potatoes, component and enzyme manufacturers, and information on regulations and permits. (DMC)

  1. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements; Procedimentos de fabricacao de elementos combustiveis a base de dispersoes com alta concentracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.A.B.; Durazzo, M., E-mail: jasouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm{sup 3} by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm{sup 3} for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  2. Final report of the safety assessment of Alcohol Denat., including SD Alcohol 3-A, SD Alcohol 30, SD Alcohol 39, SD Alcohol 39-B, SD Alcohol 39-C, SD Alcohol 40, SD Alcohol 40-B, and SD Alcohol 40-C, and the denaturants, Quassin, Brucine Sulfate/Brucine, and Denatonium Benzoate.

    Science.gov (United States)

    2008-01-01

    Alcohol Denat. is the generic term used by the cosmetics industry to describe denatured alcohol. Alcohol Denat. and various specially denatured (SD) alcohols are used as cosmetic ingredients in a wide variety of products. Many denaturants have been previously considered, on an individual basis, as cosmetic ingredients by the Cosmetic Ingredient Review (CIR) Expert Panel, whereas others, including Brucine and Brucine Sulfate, Denatonium Benzoate, and Quassin, have not previously been evaluated. Quassin is a bitter alkaloid obtained from the wood of Quassia amara. Quassin has been used as an insect antifeedant and insecticide and several studies demonstrate its effectiveness. At oral doses up to 1000 mg/kg using rats, Quassin was not toxic in acute and short-term tests, but some reversible piloerection, decrease in motor activity, and a partial loss of righting reflex were found in mice at 500 mg/kg. At 1000 mg/kg given intraperitoneally (i.p.), all mice died within 24 h of receiving treatment. In a cytotoxicity test with brine shrimp, 1 mg/ml of Quassin did not possess any cytotoxic or antiplasmodial activity. Quassin administered to rat Leydig cells in vitro at concentrations of 5-25 ng/ml inhibited both the basal and luteinizing hormone (LH)-stimulated testosterone secretion in a dose-related fashion. Quassin at doses up to 2.0 g/kg in drinking water using rats produced no significant effect on the body weights, but the mean weights of the testes, seminal vesicles, and epididymides were significantly reduced, and the weights of the anterior pituitary glands were significantly increased. The sperm counts and levels of LH, follicle-stimulating hormone (FSH), and testosterone were significantly lower in groups treated with Quassin. Brucine is a derivative of 2-hydroxystrychnine. Swiss-Webster mice given Brucine base, 30 ml/kg, had an acute oral LD(50) of 150 mg/kg, with central nervous system depression followed by convulsions and seizures in some cases. In those

  3. Predictors of detection of alcohol use episodes using a transdermal alcohol sensor.

    Science.gov (United States)

    Barnett, Nancy P; Meade, E B; Glynn, Tiffany R

    2014-02-01

    The objective of this investigation was to establish the ability of the Secure Continuous Remote Alcohol Monitoring (SCRAM) alcohol sensor to detect different levels of self-reported alcohol consumption, and to determine whether gender and body mass index, alcohol dependence, bracelet version, and age of bracelet influenced detection of alcohol use. Heavy drinking adults (N = 66, 46% female) wore the SCRAM for 1-28 days and reported their alcohol use in daily Web-based surveys. Participant reports of alcohol use were matched with drinking episodes identified from bracelet readings. On days when bracelets were functional, 690 drinking episodes were reported and 502 of those episodes (72.8%) were detected using sensor data. Using generalized estimating equations, we found no gender differences in detection of reported drinking episodes (77% for women, 69% for men). In univariate analyses, at the level of fewer than 5 drinks, women's episodes were more likely to be detected, likely because of the significantly higher transdermal alcohol concentration levels of these episodes, whereas at the level of 5 or more drinks, there was no gender difference in detection (92.6% for women, 93.4% for men). In multivariable analyses, no variables other than number of drinks significantly predicted alcohol detection. In summary, the SCRAM sensor is very good at detecting 5 or more drinks; performance of the monitor below this level was better among women because of their higher transdermal alcohol concentration levels. Individual person characteristics and bracelet features were not related to detection after number of drinks was included. Minimal bracelet malfunctions were noted.

  4. A new field test kit for the rapid determination of diesel fuel in soil

    International Nuclear Information System (INIS)

    Schabron, J.F.; Niss, N.D.; Hart, B.K.; Hart, J.K.

    1995-01-01

    A new test kit is available for evaluating diesel and other fuel contamination in soils. While the Freon extraction/infrared method estimates fuel concentration by measuring aliphatic C-H stretch, approaches designed to replace this such as the immunoassay method and the method involving a Fridel-Crafts alkylation reaction measure the aromatic component of fuel mixtures. Both of these methods measure aromatic content indirectly with visible color development. The new method measures the aromatic components directly with a 254 nm portable field photometer. The method is very simple since it does not involve complicated color development steps, and does not require the use of highly toxic reagents. It involves a 3-minute extraction of soil with a 10:1 ratio of isopropyl alcohol. Prior to extraction, the soil is treated with an agent to minimize the extraction of humic materials which can interfere. The extract solution is passed through a syringe filter and the absorbance is read at 254 nm. The fuel concentration is calculated based on average relative response factors. Alternatively, the actual contaminant fuel can be used as a standard if it is known. The quantitation limit is about 75 mg/kg diesel in soil. The method has been tested with a variety of soils and fuel types

  5. Complete utilization of whey for alcohol and methane production

    Energy Technology Data Exchange (ETDEWEB)

    Reesen, L; Strube, R

    1978-01-01

    The quality of the rectified alcohol obtained by 2-stage fermentation of whey permeate with Kluyveromyces fragilis followed by distillation was similar to that of rectified alcohol from molasses, though composition in terms of fusel oils, aldehydes, and diacetyls was varied. A contact process of anaerobic biological treatment reduced the COD of the effluent from 7000 to 350 and 1000 mg/L in laboratory and full-scale plant experiments respectively. The gas drawn off from this process contained 63% CH/sub 4/ and was almost odorless because of the low S content in the whey permeate; it had an energy value of 1.8 kg fuel oil/m/sup 3/ permeate and was able to replace 17 to 20% of the fuel oil used at the plant. The alcohol yield was 80% of the theoretical yield, and corresponded to the use of 42 L of whey permeate containing 4.4% lactose for production of 1 L of 100% alcohol and the total energy gain was 30%.

  6. Comparative exergy analysis of direct alcohol fuel cells using fuel mixtures

    OpenAIRE

    Leo Mena, Teresa de Jesus; Raso García, Miguel Ángel; Navarro Arevalo, Emilio; Sánchez de la Blanca, Emilia

    2011-01-01

    Within the last years there has been increasing interest in direct liquid fuel cells as power sources for portable devices and, in the future, power plants for electric vehicles and other transport media as ships will join those applications. Methanol is considerably more convenient and easy to use than gaseous hydrogen and a considerable work is devoted to the development of direct methanol fuel cells. But ethanol has much lower toxicity and from an ecological viewpoint ethanol is exceptiona...

  7. Palladium-alloy catalysts as ethanol tolerant cathodes for direct alcohol fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie; Varela, F.J.R. [Centro de Investigacion y de Estudios Avanzados, Coahuila (Mexico). Unidad Saltillo

    2008-07-01

    Recent studies have demonstrated that electroactive palladium (Pd) and Pd-alloy catalysts prepared using a sputtering technique possess a similar degree of activity as platinum (Pt) electrodes. This study demonstrated that Pd and Pd-alloys show a high degree of tolerance to ethanol during oxygen reduction reaction (ORR) processes. The onset potential of the ORR process in the presence of 0.5M of ethanol decreased by only 33 mV and 18 mV on Pd and Pd-cobalt (Co) catalysts. Linear sweep voltammetry experiments showed that no peak current density caused by the electro-oxidation of ethanol was observed in the Pd-based catalysts. The selective behaviour of the Pd and Pd-Co catalysts was attributed to a slow rate of adsorption of the ethanol as well as the presence of reaction intermediates on the catalytic surface. Results suggested that the Pd and Pd-Co catalysts are suitable candidates for direct alcohol fuel cell applications. 10 refs., 2 figs.

  8. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.

    Science.gov (United States)

    Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping

    2015-09-07

    Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Circulating immune complexes and complement concentrations in patients with alcoholic liver disease

    DEFF Research Database (Denmark)

    Gluud, C; Jans, H

    1982-01-01

    A prospective evaluation of circulating immune complexes (CIC) and the activity of the complement system was undertaken in 53 alcoholic patients just before diagnostic liver biopsy. Circulating immune complexes were detected in 39% of patients with alcoholic steatosis (n = 26), 58% of patients...... with alcoholic hepatitis (n = 12), and 60% of patients with alcoholic cirrhosis (n = 15). No significant difference was found between the three group of patients. The activity of the complement system was within reference limits in the majority of patients and only slight differences were detected between...

  10. Combustion of pulverized fuel under oxycoal conditions at low oxygen concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Toporov D.; Foerster M.; Kneer R. [RWTH Aachen University, Aachen (Germany). Institute of Heat and Mass Transfer

    2007-07-01

    Oxycoal combustion followed by post-combustion CO{sub 2} sequestration has gained justified interest as an option for significant and relatively quick reduction of emissions from fossil fuel power generation, while taking advantage of the existing power plant infrastructure. Burning pulverised coal in a mixture of CO{sub 2}/O{sub 2} instead of air, however, will lead to modified distributions of temperature, species, and radiation fluxes inside the combustion chamber causing a retroaction on the homogeneous and heterogeneous reactions. Utilizing a burner design, which was optimised for coal combustion in air, for oxycoal combustion will lead to flame instability and poor burnout. Stabilisation of the combustion process can be obtained by: i) an increased oxygen concentration (more than 21% vol.) in the oxidiser mixture, thus achieving similar reaction rates and temperature levels to a pulverised fuel-air flame without significant changes to the flame aerodynamics. ii) modifications to the burner aerodynamics, as presented here. The results in this study are obtained in the frame of OXYCOAL-AC, the research project, having the aim to burn a pulverised coal in a CO{sub 2}/O{sub 2}-atmosphere with oxygen, produced from high-temperature ceramic membrane thus leading to higher efficiency of the whole oxycoal process. Numerical and experimental investigations of a stable oxycoal flame, obtained with {le} 21% oxygen concentration in the burning mixture at the RWTH test facility are reported. Two different burner designs are considered, conclusions concerning the achievement of a stable oxycoal flame at O{sub 2} volume concentrations equal and less to the one of oxygen in air are derived. 8 refs., 7 figs., 1 tab.

  11. Impact of a New Law to Reduce the Legal Blood Alcohol Concentration Limit - A Poisson Regression Analysis and Descriptive Approach.

    Science.gov (United States)

    Nistal-Nuño, Beatriz

    2017-03-31

    In Chile, a new law introduced in March 2012 lowered the blood alcohol concentration (BAC) limit for impaired drivers from 0.1% to 0.08% and the BAC limit for driving under the influence of alcohol from 0.05% to 0.03%, but its effectiveness remains uncertain. The goal of this investigation was to evaluate the effects of this enactment on road traffic injuries and fatalities in Chile. A retrospective cohort study. Data were analyzed using a descriptive and a Generalized Linear Models approach, type of Poisson regression, to analyze deaths and injuries in a series of additive Log-Linear Models accounting for the effects of law implementation, month influence, a linear time trend and population exposure. A review of national databases in Chile was conducted from 2003 to 2014 to evaluate the monthly rates of traffic fatalities and injuries associated to alcohol and in total. It was observed a decrease by 28.1 percent in the monthly rate of traffic fatalities related to alcohol as compared to before the law (Plaw (Plaw implemented in 2012 in Chile. Chile experienced a significant reduction in alcohol-related traffic fatalities and injuries, being a successful public health intervention.

  12. Sodium removal from the grapples of the fuel handling facility of Joyo

    Energy Technology Data Exchange (ETDEWEB)

    Mukaibo, R; Matsuno, Y; Sato, I; Yoneda, Y; Sato, H [O-arai Engineering Centre, PNC, Ibaraki-ken, Tokio (Japan)

    1978-08-01

    Sodium removal from the grapples of the fuel handling facility of 'JOYO' is done in alcohol. The operations of the cleaning facility started as the functional tests of the fuel handling facility began. Since then, criticality test and low power tests had been done and during this period, sodium removal from the grapples, after a certain amount of time in use, were done. In order to lessen the time for the cleaning process for the grapples of the machines inside the containment vessel, demineralized water concentration in the alcohol was gained to as much as 10% and good results were obtained. On the other hand, there were very small amounts of sodium on the grapples of the machine used outside the containment vessel and direct charging of demineralized water into the cleaning pot was done experimentally, also with good results. In this report, the sodium removal experience of the grapples before power up tests and some remarks on the improvements of the facility for the future are presented. (author)

  13. Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

    KAUST Repository

    Waqas, Muhammad Umer

    2018-04-03

    Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock quality of a fuel through blending of high-octane fuel with a low octane fuel. Previous studies on Octane-on-Demand highlighted efficiency benefits depending on the combination of low octane fuel with high octane booster. The author recently published works with ethanol and methanol as high-octane fuels. The results of this work showed that the composition and octane number of the low octane fuel is significant for the blending octane number of both ethanol and methanol. This work focuses on toluene as the high octane fuel (RON 120). Aromatics offers anti-knock quality and with high octane number than alcohols, this work will address if toluene can provide higher octane enhancement. Our aim is to investigate the impact of three gasoline-like fuels and two Primary Reference Fuels (PRFs). More specifically, fuels are FACE (Fuels for Advanced Combustion Engines) I, FACE J, FACE A, PRF 70 and PRF 84. A CFR engine was used to conduct the experiments in HCCI mode. For this combustion mode, the engine operated at four specific conditions based on RON and MON conditions. The octane numbers corresponding to four HCCI numbers were obtained for toluene concentration of 0, 2, 5, 10, 15 and 20%. Results show that the blending octane number of toluene varies non-linearly and linearly with the increase in toluene concentration depending on the base fuel, experimental conditions and the concentration of toluene. As a result, the blending octane number can range from close to 150 with a small fraction of toluene to a number closer to that of toluene, 120, with larger fractions.

  14. Effects of temperature and solvent concentration on the solvent crystallization of palm-based dihydroxystearic acid with isopropyl alcohol

    Institute of Scientific and Technical Information of China (English)

    Gregory F.L.Koay; Teong-Guan Chuah; Sumaiya Zainal-Abidin; Salmiah Ahmad; Thomas S.Y.Choong

    2012-01-01

    Palm-based dihydroxystearic acid of 69.55% purity was produced in a 500-kg-per-batch operation pilot plant and purified through solvent crystallization in a custom fabricated simultaneous batch crystallizer unit.The effects of temperature and solvent concentration on yield,particle size distribution and purity were studied.The purity was higher,while the yield and particle size were lower and smaller,respectively,at higher temperature and solvent concentration.The solvent crystallization process efficiency was rated at 66-69% when carried out with 70-80% isopropyl alcohol at 20 ℃.

  15. The use of isotopic correlation technique for determination of sup(241)Am and sup(243)Am concentration in nuclear irradiated fuels

    International Nuclear Information System (INIS)

    Souza Sarkis, J.E. de.

    1990-01-01

    In the last years the isotopic correlation technique is emerging as a powerful tool for the determination of concentration and isotopic composition of heavy nuclides in the nuclear fuel cycle. Accordingly, this technique has gained significant importance for the safeguard of the nuclear materials as well as for the accounting and build up of actinides elements in the irradiated nuclear fuels. In this work 42 isotopic correlations between the nuclides sup(241)Am and sup(243)Am and post irradiation isotopic data of 7 samples from fuel element BE-124 and 1 sample from fuel element BE-120 from the Obrigheim pressurized water nuclear power reactor, Federal Republic of Germany, were proposed. These isotopic correlations allowed to estimate the isotopic concentrations of sup(241)Am and sup(243)Am with an average deviation, relative to the experimental data obtained from isotopic dilution mass spectrometry technique, of 10%. These results are more precise than those found using the computer code ORIGEN 2 demonstrating the great potential of this technique for the determination of isotopic concentration and build up of those nuclides in irradiated nuclear fuels. The analytical and other experimental aspects of the post irradiation isotopic analysis of nuclear fuels are also discussed. (author)

  16. Grain alcohol study: summary

    Energy Technology Data Exchange (ETDEWEB)

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentation demand; the optimizaton of value of agricultural crops; and the efficiencies of combining related industries. Ahydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grain can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural- environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  17. Grain alcohol study: summary

    Energy Technology Data Exchange (ETDEWEB)

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (Ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentaton demand; the optimization of value of agricultureal crops; and the efficiencies of combining related industries. Anhydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grains can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural-environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  18. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    Science.gov (United States)

    Tedder, Daniel W.

    1985-05-14

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  19. Radionuclide concentration in fuels and ash products from biofuel heating plants

    International Nuclear Information System (INIS)

    Erlandsson, B.; Hedvall, R.; Mattsson, S.

    1995-01-01

    The activity concentration of the radionuclides K-40, Ac-228, Pa-234, Mn-54, Co-60, Zr-95, Ru-106, Ag-110m, Sb-125, Cs-134, Cs-137 and Ce-144 have been investigated in peat wood chips and ash products from 13 Swedish district heating plants during the winter seasons of 1986/1987, 1988/89, 1989/90 and 1990/91. There is a significant decrease in the activity concentration of Cs-137 in the fuel which is especially pronounced between the first two seasons, 86/87 and 88/89 after the Chernobyl accident. In spite of the varying deposition of Cs-137 over the country it has been possible to give a relation between the activity concentration in the peat and wood chips as a function of the deposition. The Swedish biofuel heating plants of which 35-40 are burning peat and 70-75 chips have been divided in three groups according to the activity concentration in the ash products. The mean Cs-137 concentration in ash and the total activity 'produced' per year in Sweden have been calculated. The maximum concentration in air at ground level and the corresponding effective dose rate of inhaled Cs-137 as a function of the emission rates of flue gases from stacks with varying heights and during different weather conditions has been calculated. 16 refs, 18 tabs, 4 figs

  20. Measurement of particle size distribution and mass concentration of nuclear fuel aerosols

    International Nuclear Information System (INIS)

    Pickering, S.

    1982-01-01

    The particle size distribution and particle mass concentration of a nuclear fuel aerosol is measured by admitting the aerosol into a vertically-extending container, positioning an alpha particle detector within the container so that its window is horizontal and directed vertically, stopping the admission of aerosol into the container, detecting the alpha-activity of the particles of the aerosol sedimenting onto the detector window (for example in a series of equal time intervals until a constant level is reached), and converting the alpha-activity measurements into particle size distribution and/or particle mass concentration measurements. The detector is attached to a pivotted arm and by raising a counterweight can be lowered from the container for cleaning. (author)

  1. Alcohol fuels bibliography, 1901-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    This annotated bibliography is subdivided by subjects, as follows: general; feedstocks-general; feedstocks-sugar; feedstocks-starch; feedstocks-cellulose crops and residues; production; coproducts; economics; use as vehicle fuel; government policies; and environmental effects and safety. (MHR)

  2. The effect of ethanol concentration on the direct ethanol fuel cell performance and products distribution: A study using a single fuel cell/attenuated total reflectance - Fourier transform infrared spectroscopy

    Science.gov (United States)

    Assumpção, M. H. M. T.; Nandenha, J.; Buzzo, G. S.; Silva, J. C. M.; Spinacé, E. V.; Neto, A. O.; De Souza, R. F. B.

    2014-05-01

    The effect of ethanol concentration on the direct ethanol fuel cell (DEFC) performance and products distribution were studied in situ using a single fuel cell/ATR-FTIR setup. The experiments were performed at 80 °C using commercial Pt3Sn/C as anodic catalyst and the concentrations of ethanol solution were varied from 0.1 to 2.0 mol L-1. An increase in power density was observed with the increase of ethanol concentration to 1.0 mol L-1, while the band intensities analysis in the FTIR spectra revealed an increase of acetic acid/acetaldehyde ratio with the increase of ethanol concentration. Also, from FTIR spectra results, it could be concluded that the acetic acid production follow parallel mechanisms; that is, it does not require the presence of acetaldehyde as an intermediate.

  3. Critical Filler Concentration in Sulfated Titania-Added Nafion™ Membranes for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Mirko Sgambetterra

    2016-04-01

    Full Text Available In this communication we present a detailed study of Nafion™ composite membranes containing different amounts of nanosized sulfated titania particles, synthesized through an optimized one-step synthesis procedure. Functional membrane properties, such as ionic exchange capacity and water uptake (WU ability will be described and discussed, together with thermal analysis, atomic force microscopy and Raman spectroscopy data. Also electrochemical properties such as proton conductivity and performances in hydrogen fuel cells will be presented. It has been demonstrated that a critical concentration of filler particles can boost the fuel cell performance at low humidification, exhibiting a significant improvement of the maximum power and current density delivered under 30% low-relative humidity (RH and 70 °C with respect to bare Nafion™-based systems.

  4. State Blood Alcohol Concentration (BAC) Testing and Reporting for Drivers Involved in Fatal Crashes : Current Practices, Results, and Strategies, 1997-2009

    Science.gov (United States)

    2012-08-01

    This report documents current State blood alcohol concentration (BAC) testing and reporting practices and results for drivers involved in fatal crashes. It summarizes known BAC results by State for the years 1997 to 2009 for both fatally injured and ...

  5. Cogeneration of electricity and organic chemicals using a polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Yuan, X.; Ma, Z.; Bueb, H.; Drillet, J.-F.; Hagen, J.; Schmidt, V.M.

    2005-01-01

    Several unsaturated organic alcohols (allyl alcohol, propargyl alcohol, 2-butin-1,4-diol, 2- buten-1,4-diol) and acids (maleic acid, acrylic acid, crotonic acid, acetylendicarboxylic acid) were used as oxidants together with hydrogen as fuel in a polymer electrolyte fuel cell (PEFC). The standard free enthalpies (Δ R G θ ) of the overall fuel cell reactions H 2 /oxidant were calculated to be negative and the equilibrium voltages of such systems are in the range of U 00 = 0.4-0.6 V. In this way, the cogeneration of electric energy and desired hydrogenated products in a fuel cell reactor is apparent. Nafion[reg] 117, as polymer electrolyte, and commercial gas diffusion electrodes (ETEK) with carbon supported Pt were used in a PEFC reactor. The aqueous solutions of unsaturated alcohols and organic acids (c = 1-2 mol dm -3 ) were pumped under ambient pressure through the cathode compartment of the cell whereas hydrogen was fed into the cell at p 0.15 MPa. The open circuit voltages were measured to be in the range of 0.1-0.25 V. Current densities up to 50 mA cm -2 and maximum power densities of around 1 mW cm -2 has been achieved in the case of allyl alcohol, 2-butene-1,4-diol and acrylic acid. HPLC analysis indicates that the double or triple bond in unsaturated alcohols and organic acids is selectively hydrogenated. In addition, the electrochemical behaviour of the alcohols and acids was studied by means of cyclic voltammetry at a smooth polycrystalline Pt electrode in H 2 SO 4 . Reduction reactions were observed at potentials of E < 200 mV versus RHE. It was found that the onset potential for electrochemical hydrogenation of the double and triple bond in the cyclic voltamogram correlates well with the fuel cell performances using these compounds as oxidants

  6. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey); Aydin, Kadir [Engineering and Architectural Faculty, Cukurova University, 01330 Adana (Turkey)

    2008-04-15

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  7. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Guerue, Metin; Altiparmak, Duran; Aydin, Kadir

    2008-01-01

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  8. Utilization of agricultural raw material as an energy source - a case study on the alcohol industry in Sao Paulo state, Brazil

    International Nuclear Information System (INIS)

    Zabel, M.

    1990-01-01

    The Brazilian National Alcohol Programme (Proalcool) can well be considered the world's largest technical effort to replace petroleum with fuels from plant biomass: 11.5 billion liters of alcohol for fuel and industrial use were produced in the harvest of 1987/88. About 3.7 million of the 13 million Brazilian cars run on straight hydrous alcohol, the rest on gasohol (gasoline blend with up to 22% anhydrous alcohol). The following survey is focused on Sao Paulo State, which is responsible for 64% of Brazil's alcohol production (7.33 billion liters). In this state alcohol from sugarcane is produced in the largest (average 370.000 1/day) and technically most effective production units, at lowest production costs. This paper attempts to estimate via simulation the future productivity and cost of fuel alcohol, and evaluates its market position compared to energy of fossil origin. (author)

  9. Inhibition of MMPs by alcohols

    Science.gov (United States)

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Hoshika, Tomohiro; Uchiyama, Toshikazu; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; Thompson, Jeremy M.; McCracken, Courtney E.; Looney, Stephen W.; Tay, Franklin R.; Pashley, David H.

    2011-01-01

    Objectives While screening the activity of potential inhibitors of matrix metalloproteinases (MMPs), due to the limited water solubility of some of the compounds, they had to be solubilized in ethanol. When ethanol solvent controls were run, they were found to partially inhibit MMPs. Thus, the purpose of this study was to compare the MMP-inhibitory activity of a series of alcohols. Methods The possible inhibitory activity of a series of alcohols was measured against soluble rhMMP-9 and insoluble matrix-bound endogenous MMPs of dentin in completely demineralized dentin. Increasing concentrations (0.17, 0.86, 1.71 and 4.28 moles/L) of a homologous series of alcohols (i.e. methanol, ethanol, propanols, butanols, pentanols, hexanols, the ethanol ester of methacrylic acid, heptanols and octanol) were compared to ethanediol, and propanediol by regression analysis to calculate the molar concentration required to inhibit MMPs by 50% (i.e. the IC50). Results Using two different MMP models, alcohols were shown to inhibit rhMMP-9 and the endogenous proteases of dentin matrix in a dose-dependent manner. The degree of MMP inhibition by alcohols increased with chain length up to 4 methylene groups. Based on the molar concentration required to inhibit rhMMP-9 fifty percent, 2-hydroxyethylmethacrylate (HEMA), 3-hexanol, 3-heptanol and 1-octanol gave the strongest inhibition. Significance The results indicate that alcohols with 4 methylene groups inhibit MMPs more effectively than methanol or ethanol. MMP inhibition was inversely related to the Hoy's solubility parameter for hydrogen bonding forces of the alcohols (i.e. to their hydrophilicity). PMID:21676453

  10. Radiation decomposition of alcohols and chloro phenols in micellar systems; Descomposicion por irradiacion de alcoholes y clorofenoles en sistemas micelares

    Energy Technology Data Exchange (ETDEWEB)

    Moreno A, J

    1999-12-31

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  11. Radiation decomposition of alcohols and chloro phenols in micellar systems; Descomposicion por irradiacion de alcoholes y clorofenoles en sistemas micelares

    Energy Technology Data Exchange (ETDEWEB)

    Moreno A, J

    1998-12-31

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  12. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements; Procedimentos de fabricacao de elementos combustiveis a base de dispersoes com alta concentracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de

    2011-07-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm{sup 3} for U{sub 3}Si{sub 2}-Al dispersion-based and 2.3 gU/cm{sup 3} for U{sub 3}O{sub 8}-Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm{sup 3} in U{sub 3}Si{sub 2}-Al dispersion and 3.2 gU/cm{sup 3} U{sub 3}O{sub 8}-Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U{sub 3}Si{sub 2}-Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U{sub 3}O{sub 8}-Al dispersion fuel plates with 3.2 gU/cm{sup 3} showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U{sub 3}Si{sub 2} production at 4.8 gU/cm{sup 3}, with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  13. Fuel assemblies

    International Nuclear Information System (INIS)

    Nagano, Mamoru; Yoshioka, Ritsuo

    1983-01-01

    Purpose: To effectively utilize nuclear fuels by increasing the reactivity of a fuel assembly and reduce the concentration at the central region thereof upon completion of the burning. Constitution: A fuel assembly is bisected into a central region and a peripheral region by disposing an inner channel box within a channel box. The flow rate of coolants passing through the central region is made greater than that in the peripheral region. The concentration of uranium 235 of the fuel rods in the central region is made higher. In such a structure, since the moderating effect in the central region is improved, the reactivity of the fuel assembly is increased and the uranium concentration in the central region upon completion of the burning can be reduced, fuel economy and effective utilization of uranium can be attained. (Kamimura, M.)

  14. studies dielectric behaviour of some long chain alcohols and their mixtures with a non-polar solvent at various concentration

    International Nuclear Information System (INIS)

    Yaqub, M.; Ahmed, S.S.; Hussain, A.

    2006-01-01

    Dielectric constant, refractive index and the Kirkwood linear correlation factor of 1-propanol, 1-butanol and 1-pentanol in mixtures with carbon tetrachloride at various concentration have been measured at fixed frequency (100 KHz) at 303.15 K. For the study of dielectric properties of polar molecules in a non-polar solvent at different concentrations, polarization per unit volume and excess free-energy of mixing were evaluated at this temperature. In order to study the association of polar molecules in such a non-polar solvent, the Kirkwood correlation factor (g) between molecular pairs, which exists due to the hydrogen bond association suggesting the presence of some dimension in the liquid phase with a number of dimmers, was determined. The refractive index and dielectric constant measurements are expected to shed some light on the configuration of molecules in various mixtures, and give some idea about the specific interactions between components, which decrese with the increase in the concentration of alcohol. All the three mixtures showed different behaviour for the value of correlation factor (g) as a function of concentration. The response of 1-pentanol was broadly identical to that of small chain alcohols. The different behaviour of the correlation factor (g) was interpreted in terms of the Kirkwood-Frohlich theory, as it takes into account, explicitly, such type of short and long range interactions of a mixture of polar molecules with non-polar solvents. (author)

  15. A three-color absorption/scattering imaging technique for simultaneous measurements on distributions of temperature and fuel concentration in a spray

    Science.gov (United States)

    Qi, Wenyuan; Zhang, Yuyin

    2018-04-01

    A three-color imaging technique was proposed for simultaneous measurements on distributions of fuel/air mixture temperature and fuel vapor/liquid concentrations in evaporating sprays. The idea is based on that the vapor concentration is proportional to the absorption of vapor to UV light, the liquid-phase concentration is related to the light extinction due to scattering of droplet to visible light, and the mixture temperature can be correlated to the absorbance ratio at two absorbing wavelengths or narrow bands. For verifying the imaging system, the molar absorption coefficients of p-xylene at the three narrow bands, which were centered respectively at 265, 289, and 532 nm with FWHM of 10 nm, were measured in a specially designed calibration chamber at different temperatures (423-606 K) and pressure of 3.6 bar. It was found that the ratio of the molar absorption coefficients of p-xylene at the two narrow bands centered at the two UV wavelengths is sensitive to the mixture temperature. On the other hand, the distributions of fuel vapor/liquid concentrations can be obtained by use of absorbance due to ultraviolet absorption of vapor and visible light scattering of droplets. Combining these two methods, a simultaneous measurement on distributions of mixture temperature and fuel vapor/liquid concentrations can be realized. In addition, the temperature field obtained from the ratio of the two absorbing narrow bands can be further used to improve the measurement accuracy of vapor/liquid concentrations, because the absorption coefficients depend on temperature. This diagnostic was applied to an evaporating spray inside a high-temperature and high-pressure constant volume chamber.

  16. Geothermal source potential and utilization for alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Austin, J.C.

    1981-11-01

    A study was conducted to assess the technical and economic feasibility of using a potential geothermal source to drive a fuel grade alcohol plant. Test data from the well at the site indicated that the water temperature at approximately 8500 feet should approach 275/sup 0/F. However, no flow data was available, and so the volume of hot water that can be expected from a well at this site is unknown. Using the available data, numerous fuel alcohol production processes and various heat utilization schemes were investigated to determine the most cost effective system for using the geothermal resource. The study found the direct application of hot water for alcohol production based on atmospheric processes using low pressure steam to be most cost effective. The geothermal flow rates were determined for various sizes of alcohol production facility using 275/sup 0/F water, 235/sup 0/F maximum processing temperature, 31,000 and 53,000 Btu per gallon energy requirements, and appropriate process approach temperatures. It was determined that a 3 million gpy alcohol plant is the largest facility that can practically be powered by the flow from one large geothermal well. An order-of-magnitude cost estimate was prepared, operating costs were calculated, the economic feasibility of the propsed project was examined, and a sensitivity analysis was performed.

  17. Production costs of liquid fuels from biomass

    International Nuclear Information System (INIS)

    Bridgwater, A.V.; Double, J.M.

    1994-01-01

    This project was undertaken to provide a consistent and thorough review of the full range of processes for producing liquid fuels from biomass to compare both alternative technologies and processes within those technologies in order to identify the most promising opportunities that deserve closer attention. Thermochemical conversion includes both indirect liquefaction through gasification, and direct liquefaction through pyrolysis and liquefaction in pressurized solvents. Biochemical conversion is based on a different set of feedstocks. Both acid and enzyme hydrolysis are included followed by fermentation. The liquid products considered include gasoline and diesel hydrocarbons and conventional alcohol fuels of methanol and ethanol. Results are given both as absolute fuel costs and as a comparison of estimated cost to market price. In terms of absolute fuel costs, thermochemical conversion offers the lowest cost products, with the least complex processes generally having an advantage. Biochemical routes are the least attractive. The most attractive processes from comparing production costs to product values are generally the alcohol fuels which enjoy a higher market value. (author)

  18. Stakeholder perceptions of lowering the blood alcohol concentration standard in the United States.

    Science.gov (United States)

    Molnar, Lisa J; Eby, David W; Kostyniuk, Lidia P; St Louis, Renée M; Zanier, Nicole

    2017-12-01

    This study sought to better understand the past change in the legal blood alcohol concentration (BAC) standard from 0.10% to 0.08% in the United States, as well as explore stakeholder perceptions about potential health and other impacts of further lowering the standard below 0.08%. In-depth interviews were conducted with representatives of 20 organizations considered to have an interest and investment in the potential impacts of strategies to decrease alcohol-impaired related crashes and injuries. Interviews were conducted by a trained moderator, using a structured guide. Themes from the interviews are presented for several discussion topics explored for both the earlier change in the legal BAC limit from 0.10% to 0.08% and a potential lowering of the limit below 0.08%. Topics included arguments for and against change; organizational position on the change; stakeholders on both sides of the issue; strategies to support or oppose the change; health and economic impacts; and enforcement and adjudication challenges. Collectively, results suggest that moving the BAC standard below the current level will require considerable effort and time. There was strong, but not complete, agreement that it will be difficult, and maybe infeasible in the short-term, for states to implement a BAC standard lower than 0.08%. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Altiparmak, D.; Keskin, A.; Koca, A. [Gazi University, Ankara (Turkey). Technical Education Faculty; Guru, M. [Gazi University, Ankara (Turkey). Engineering and Architectural Faculty

    2007-01-15

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load conditions. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO{sub x} emissions increased up to 30% with the new fuel blends. The smoke capacity did not vary significantly. (author)

  20. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    Science.gov (United States)

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  1. An intercomparison experiment on isotope dilution thermal ionisation mass spectrometry using plutonium-239 spike for the determination of plutonium concentration in dissolver solution of irradiated fuel

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Shah, P.M.; Saxena, M.K.; Jain, H.C.; Gurba, P.B.; Babbar, R.K.; Udagatti, S.V.; Moorthy, A.D.; Singh, R.K.; Bajpai, D.D.

    1996-01-01

    Determination of plutonium concentration in the dissolver solution of irradiated fuel is one of the key measurements in the nuclear fuel cycle. This report presents the results of an intercomparison experiment performed between Fuel Chemistry Division (FCD) at BARC and PREFRE, Tarapur for determining plutonium concentration in dissolver solution of irradiated fuel using 239 Pu spike in isotope dilution thermal ionisation mass spectrometry (ID-TIMS). The 239 Pu spike method was previously established at FCD as viable alternative to the imported enriched 242 Pu or 244 Pu; the spike used internationally for plutonium concentration determination by IDMS in dissolver solution of irradiated fuel. Precision and accuracy achievable for determining plutonium concentration are compared under the laboratory and the plant conditions using 239 Pu spike in IDMS. For this purpose, two different dissolver solutions with 240 Pu/ 239 Pu atom ratios of about 0.3 and 0.07 corresponding, respectively, to high and low burn-up fuels, were used. The results of the intercomparison experiment demonstrate that there is no difference in the precision values obtained under the laboratory and the plant conditions; with mean precision values of better than 0.2%. Further, the plutonium concentration values determined by the two laboratories agreed within 0.3%. This exercise, therefore, demonstrates that ID-TIMS method using 239 Pu spike can be used for determining plutonium concentration in dissolver solution of irradiated fuel, under the plant conditions. 7 refs., 8 tabs

  2. Fuel property effects on Navy aircraft fuel systems

    Science.gov (United States)

    Moses, C. A.

    1984-01-01

    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  3. Ketogenic Diet Suppresses Alcohol Withdrawal Syndrome in Rats.

    Science.gov (United States)

    Dencker, Ditte; Molander, Anna; Thomsen, Morgane; Schlumberger, Chantal; Wortwein, Gitta; Weikop, Pia; Benveniste, Helene; Volkow, Nora D; Fink-Jensen, Anders

    2018-02-01

    Alcohol use disorder is underdiagnosed and undertreated, and up to 50% of alcohol-abstinent patients diagnosed with alcohol dependence relapse within the first year of treatment. Current treatments for the maintenance of alcohol abstinence in patients with alcohol use disorder have limited efficacy, and there is an urgent need for novel treatment strategies. Decreased cerebral glucose metabolism and increased brain uptake of acetate were recently reported in heavy drinkers, relative to controls. Given the switch of metabolic fuel from glucose to acetate in the alcohol-dependent brain, we investigated the potential therapeutic benefit of a ketogenic diet in managing alcohol withdrawal symptoms during detoxification. Male Sprague Dawley rats fed either ketogenic or regular diet were administered ethanol or water orally, twice daily for 6 days while the diet conditions were maintained. Abstinence symptoms were rated 6, 24, 48, and 72 hours after the last alcohol administration. Maintenance on a ketogenic diet caused a significant decrease in the alcohol withdrawal symptoms' "rigidity" and "irritability." Our preclinical pilot study suggests that a ketogenic diet may be a novel approach for treating alcohol withdrawal symptoms in humans. Copyright © 2017 by the Research Society on Alcoholism.

  4. Blood haemoglobin concentrations are higher in smokers and heavy alcohol consumers than in non-smokers and abstainers-should we adjust the reference range?

    DEFF Research Database (Denmark)

    Milman, N.; Pedersen, Agnes N.

    2009-01-01

    The blood haemoglobin concentration is one of the most frequently used laboratory parameters in clinical practice. There is evidence that haemoglobin levels are influenced by tobacco smoking. The objective of this study was to evaluate the impact of smoking and alcohol consumption on haemoglobin.......001) and women (r = 0.08, p = 0.05). In non-smokers, alcohol consumption > 14 drinks/week and more than seven drinks/week for men and women, respectively, increased mean haemoglobin by 1.3% in men and by average 1.9% in women compared with those consuming a parts per thousand currency sign14 and less than...... small changes in haemoglobin do not justify the use of separate reference ranges in smokers and alcohol consumers....

  5. Performance of direct ethanol and methanol fuel cells as function of alcohol concentration applied to the anode of those cells; Desempenho de celulas a combustivel com alimentacao direta de etanol (CCADE) e celulas a combustivel com alimentacao direta de metanol (CCADM) em funcao da concentracao do alcool aplicado ao anodo destas celulas

    Energy Technology Data Exchange (ETDEWEB)

    Belchor, P.M.; Forte, M.M.C. [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Correa, J.P.; Kuhn, C.K.; Carpenter, D. [FURB -Fundacao Universidade Regional de Blumenau, SC (Brazil)

    2010-07-01

    This paper aimed to compare the performance of a CCADE and a CCADM as function of diminishing of concentration of alcohol applied top the anode of each cell. As result, reaching a diminishing the concentration of each alcohol through the mix of each one with the deionized water, one obtained a improved humidification and sensible reduction of the permeability of cationic membrane, generating a gain of performance of the functioning both cells. (author)

  6. Resin bead-thermal ionization mass spectrometry for determination of plutonium concentration in irradiated fuel dissolver solution

    International Nuclear Information System (INIS)

    Paul, Sumana; Shah, R.V.; Aggarwal, S.K.; Pandey, A.K.

    2015-01-01

    Determination of isotopic composition (IC) and concentration of plutonium (Pu) is necessary at various stages of nuclear fuel cycle which involves analysis of complex matrices like dissolver solution of irradiated fuel, nuclear waste stream etc. Mass spectrometry, e.g. thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS) are commonly used for determination of IC and concentration of plutonium. However, to circumvent matrix interferences, efficient separation as well as preconcentration of Pu is required prior to mass spectrometric analysis. Purification steps employing ion-exchange resins are widely used for the separation of Pu from dissolver solution or from mixture of other actinides e.g. U, Am. However, an alternative way is to selectively preconcentrate Pu on a resin bead, followed by direct loading of the bead on the filament of thermal ionization mass spectrometer

  7. Menopausal age and sex hormones in postmenopausal women with alcoholic and non-alcoholic liver disease

    DEFF Research Database (Denmark)

    Becker, U; Gluud, C; Farholt, S

    1991-01-01

    In order to evaluate age at menopause and serum sex hormone profiles in postmenopausal women with stable chronic liver disease, six non-cirrhotic alcoholics, 13 with alcoholic cirrhosis, eight with non-alcoholic cirrhosis, and 46 healthy controls were studied. In all three groups, patients were...... and dehydroepiandrosterone sulphate (DHAS) (p less than 0.05). The observed changes may be a consequence of liver disease since similar changes were observed in patients with alcoholic and non-alcoholic liver disease, but an additional effect of alcohol cannot be excluded....... significantly (p less than 0.05) younger at the time of natural menopause than controls. Compared to controls, non-cirrhotic alcoholic women had significantly (p less than 0.05) reduced levels of DHAS, significantly (p less than 0.05) more alcoholic cirrhotic women had detectable oestradiol concentrations...

  8. Estimation of subcriticality and fuel concentration by using 'pattern matching' of neutron flux distribution under non uniformed system

    International Nuclear Information System (INIS)

    Ishitani, Kazuki; Yamane, Yoshihiro

    1999-01-01

    In nuclear fuel reprocessing plants, monitoring the spatial profile of neutron flux to infer subcriticality and distribution of fuel concentration using detectors such as PSPC, is very beneficial in sight of criticality safety. In this paper a method of subcriticality and fuel concentration estimation which is supposed to use under non-uniformed system is proposed. Its basic concept is the pattern matching between measured neutron flux distribution and beforehand calculated one. In any kind of subcriticality estimation, we can regard that measured neutron counts put any kind of black box, and then this black box outputs subcriticality. We proposed the use of artificial neural network or 'pattern matching' as black box which have no theoretical clear base. These method are wholly based on the calculated value as recently advancement of computer code accuracy for criticality safety. The most difference between indirect bias estimation method and our method is that our new approach target are the unknown non-uniform system. (J.P.N.)

  9. Determination of uranium metal concentration in irradiated fuel storage basin sludge using selective dissolution

    International Nuclear Information System (INIS)

    Delegard, C.H.; Sinkov, S.I.; Chenault, J.W.; Schmidt, A.J.; Pool, K.N.; Welsh, T.L.

    2014-01-01

    Irradiated uranium metal fuel was stored underwater in the K East and K West storage basins at the US Department of Energy Hanford Site. The uranium metal under damaged cladding reacted with water to generate hydrogen gas, uranium oxides, and spalled uranium metal particles which intermingled with other particulates to form sludge. While the fuel has been removed, uranium metal in the sludge remains hazardous. An expeditious routine method to analyze 0.03 wt% uranium metal in the presence of >30 wt% total uranium was needed to support safe sludge management and processing. A selective dissolution method was designed based on the rapid uranium oxide dissolution but very low uranium metal corrosion rates in hot concentrated phosphoric acid. The uranium metal-bearing heel from the phosphoric acid step then is rinsed before the uranium metal is dissolved in hot concentrated nitric acid for analysis. Technical underpinnings of the selective dissolution method, including the influence of sludge components, were investigated to design the steps and define the reagents, quantities, concentrations, temperatures, and times within the selective dissolution analysis. Tests with simulant sludge proved the technique feasible. Tests with genuine sludge showed a 0.0028 ± 0.0037 wt% (at one standard deviation) uranium metal analytical background, a 0.011 wt% detection limit, and a 0.030 wt% quantitation limit in settled (wet) sludge. In tests using genuine K Basin sludge spiked with uranium metal at concentrations above the 0.030 wt% ± 25 % (relative) quantitation limit, uranium metal recoveries averaged 99.5 % with a relative standard deviation of 3.5 %. (author)

  10. Sensor for mixing ratio of gasoline and alcohol or the like

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Shigeru; Matsubara, Yoshihiro

    1992-01-14

    An improved sensor is disclosed which is capable of continuously measuring a ratio of alcohol and gasoline with high precision, irrespective of the ambient temperature, in order to obtain the most appropriate timing of ignition and injection when employed, for example, in an internal combustion engine. The sensor has a cylindrical enclosure having both inlet and outlet openings to act as a passage through which the liquid fuel mixture flows. A transparent column is concentrically disposed in the enclosure, an outer surface of which is at least in partial contact with the fuel mixture. A light emitting diode is placed at one end of the column so that light from the diode enters the column to reach a boundary between the column and the fuel mixture. A photo diode at the other end of the column receives light beams totally reflected back at the boundary to produce an output, the magnitude of which depends on the mixing ratio of the fuel mixture. A temperature compensation means is also provided in the form of a temperature compensation photo diode and an amplifier, in order to maintain a uniform intensity of light beams emitted from the light emitting diode irrespective of changes in ambient temperature. 8 figs.

  11. Sedimentary Fatty Alcohols in Kapas Island, Terengganu

    International Nuclear Information System (INIS)

    Noor Farahin Amiruddin; Mohamad Iznul Muazim Mohamad Zabidi; Nurul Fathihah Mt Nanyan; Masni Mohd Ali; Masni Mohd Ali

    2015-01-01

    A geochemical study was carried out to identify the composition and sources of fatty alcohols in Kapas Island, Terengganu, Malaysia. Fatty alcohols in surface sediments were extracted and analyzed using Gas Chromatography - Mass Spectrometry (GC-MS). A total of 23 fatty alcohol compounds were identified in the Kapas Island sediment. Total concentrations of fatty alcohols ranged from 0.53 to 21.31 ng/ g dry weight and the highest total concentration was found at S2, which is probably due to its location profile that is located north of Kapas Island which is close to several small islands. The short chain/ long chain fatty alcohol ratio and alcohol source index (ASI) were used together to identify the dominant input in Kapas Island. Kapas Island sediments contained a mixture of organic sources, of which terrestrial sources were indicated to be the most abundant sources in these marine sediments. (author)

  12. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    International Nuclear Information System (INIS)

    Haryadi,; Sugianto, D.; Ristopan, E.

    2015-01-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm −1 and 3300 cm −1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10 −2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant

  13. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Science.gov (United States)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  14. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi,, E-mail: haryadi@polban.ac.id; Sugianto, D.; Ristopan, E. [Department of Chemical Engineering, Politeknik Negeri Bandung Jl. Gegerkalong Hilir, Ds. Ciwaruga, Bandung West Java (Indonesia)

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  15. Human Health Assessment of Alcohol To Jet (ATJ) Synthetic Kerosenes

    Science.gov (United States)

    2016-07-30

    workplace . 15. SUBJECT TERMS Jet fuels, alternative fuels, synthetic kerosene, JP-8, biobased/bio-based, toxicity/toxicology, alcohol-to-jet, toxicity...ATJ fuels alone, or in a blend with petroleum-derived JP-8, is unlikely to increase human health risks in the military workplace . Therefore, the... pregnancy rate, gestation length, or number of pups per litter. The female-only exposure did result in decreased pup weights in the highest dose group

  16. Moderate alcohol consumption is associated with improved insulin sensitivity, reduced basal insulin secretion rate and lower fasting glucagon concentration in healthy women

    DEFF Research Database (Denmark)

    Bonnet, F; Disse, E; Laville, M

    2012-01-01

    Moderate alcohol consumption is associated with a reduced risk of type 2 diabetes with a stronger effect in women. As the underlying mechanisms remain poorly characterised, we investigated its relationship with insulin resistance, insulin secretion, clearance of insulin and glucagon concentration....

  17. Free radicals in alcoholic myopathy: indices of damage and preventive studies.

    Science.gov (United States)

    Preedy, Victor R; Adachi, Junko; Asano, Migiwa; Koll, Michael; Mantle, David; Niemela, Onni; Parkkila, Seppo; Paice, Alistair G; Peters, Timothy; Rajendram, Rajkumar; Seitz, Helmut; Ueno, Yasuhiro; Worrall, Simon

    2002-04-15

    Chronic alcoholic myopathy affects up to two-thirds of all alcohol misusers and is characterized by selective atrophy of Type II (glycolytic, fast-twitch, anaerobic) fibers. In contrast, the Type I fibers (oxidative, slow-twitch, aerobic) are relatively protected. Alcohol increases the concentration of cholesterol hydroperoxides and malondialdehyde-protein adducts, though protein-carbonyl concentration levels do not appear to be overtly increased and may actually decrease in some studies. In alcoholics, plasma concentrations of alpha-tocopherol may be reduced in myopathic patients. However, alpha-tocopherol supplementation has failed to prevent either the loss of skeletal muscle protein or the reductions in protein synthesis in alcohol-dosed animals. The evidence for increased oxidative stress in alcohol-exposed skeletal muscle is thus inconsistent. Further work into the role of ROS in alcoholic myopathy is clearly warranted.

  18. Isotopic Tracing of Particulate Matter from a Compression Ignition Engine Fueled with Ethanol-in-Diesel Blends

    International Nuclear Information System (INIS)

    Cheng, A.S.; Dibble, R.W.; Buchholz, B.

    1999-01-01

    Accelerator Mass Spectrometry (AMS) was used to investigate the relative contribution to diesel engine particulate matter (PM) from the ethanol and diesel fractions of blended fuels. Four test fuels along with a diesel fuel baseline were investigated. The test fuels were comprised of 14 C depleted diesel fuel mixed with contemporary grain ethanol (>400 the 14 C concentration of diesel). An emulsifier (Span 85) or cosolvent (butyl alcohol) was used to facilitate mixing. The experimental test engine was a 1993 Cummins B5.9 diesel rated at 175 hp at 2500 rpm. Test fuels were run at steady-state conditions of 1600 rpm and 210 ft-lbs, and PM samples were collected on quartz filters following dilution of engine exhaust in a mini-dilution tunnel. AMS analysis of the filter samples showed that the ethanol contributed less to PM relative to its fraction in the fuel blend. For the emulsified blends, 6.4% and 10.3% contributions to PM were observed for 11.5% and 23.0% ethanol fuels, respectively. For the cosolvent blends, even lower contributions were observed (3.8% and 6.3% contributions to PM for 12.5% and 25.0% ethanol fuels, respectively)

  19. Alcohol dehydrogenase-1B genotype (rs1229984) is a strong determinant of the relationship between body weight and alcohol intake in Japanese alcoholic men.

    Science.gov (United States)

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2013-07-01

    The calories in alcoholic beverages consumed by alcoholics are a major energy source and a strong modifier of their body weight. Genetic polymorphisms of alcohol dehydrogenase-1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) affect susceptibility to alcoholism and may affect body weight via gene-associated differences in fuel utilization in alcoholics. We evaluated associations between ADH1B/ALDH2 genotypes and the body weight and body mass index (BMI) of 1,301 Japanese alcoholic men at the time of their first visit to an addiction center. Median (25th to 75th) caloric intake in the form of alcoholic beverages was 864 (588 to 1,176) kcal/d. Age-adjusted caloric intake did not differ according to ADH1B/ALDH2 genotypes. The body weight and BMI values showed that the ADH1B*2/*2 and *1/*2 carriers (n = 939) were significantly leaner than the ADH1B*1/*1 carriers (n = 362) irrespective of age, drinking, smoking, and dietary habits. The age-adjusted body weight values of the ADH1B*2/*2, ADH1B*1/*2, and ADH1B*1/*1 carriers were 58.4 ± 0.4, 58.7 ± 0.5, and 63.6 ± 0.5 kg, respectively (ADH1B*2 vs. ADH1B*1/*1 carriers, p strong determinant of body weight in the alcoholics. The more rapid EtOH elimination associated with the ADH1B*2 allele may result in less efficient utilization of EtOH as an energy source in alcoholics. Copyright © 2013 by the Research Society on Alcoholism.

  20. Biomass conversion to hydrocarbon fuels using the MixAlco™ process at a pilot-plant scale

    International Nuclear Information System (INIS)

    Taco Vasquez, Sebastian; Dunkleman, John; Chaudhuri, Swades K.; Bond, Austin; Holtzapple, Mark T.

    2014-01-01

    Texas A and M University has built a MixAlco™ pilot plant that converts biomass to hydrocarbons (i.e., jet fuel, gasoline) using the following steps: fermentation, descumming, dewatering, thermal ketonization, distillation, hydrogenation, and oligomerization. This study describes the pilot plant and reports results from an 11-month production campaign. The focus was to produce sufficient jet fuel to be tested by the U.S. military. Because the scale was relatively small, energy-saving features were not included in the pilot plant. Further, the equipment was operated in a manner to maximize productivity even if yields were low. During the production campaign, a total of 6.015 Mg of shredded paper and 120 kg of chicken manure (dry basis) were fermented to produce 126.5 m 3 of fermentation broth with an average concentration of 12.5 kg m −3 . A total of 1582 kg of carboxylate salts were converted to 587 L of raw ketones, which were distilled and hydrogenated to 470 L of mixed alcohols ranging from C3 to C12. These alcohols, plus 300 L of alcohols made by an industrial partner (Terrabon, Inc.) were shipped to an independent contractor (General Electric) and transformed to jet fuel (∼100 L) and gasoline (∼100 L) byproduct. - Highlights: • We produce hydrocarbons from paper and chicken manure in a pilot-scale production using the MixAlco™ process. • About 100 L of jet fuel were produced for military testing. • High production rates and good product quality were preferred rather than high yields or energy efficiency. • The MixAlco™ process converted successfully lignocellulosic biomass to hydrocarbons and viable for commercial-scale production

  1. Constant strength fuel-fuel cell

    International Nuclear Information System (INIS)

    Vaseen, V.A.

    1980-01-01

    A fuel cell is an electrochemical apparatus composed of both a nonconsumable anode and cathode; and electrolyte, fuel oxidant and controls. This invention guarantees the constant transfer of hydrogen atoms and their respective electrons, thus a constant flow of power by submergence of the negative electrode in a constant strength hydrogen furnishing fuel; when said fuel is an aqueous absorbed hydrocarbon, such as and similar to ethanol or methnol. The objective is accomplished by recirculation of the liquid fuel, as depleted in the cell through specific type membranes which pass water molecules and reject the fuel molecules; thus concentrating them for recycle use

  2. Metabolic Engineering of Microorganisms for the Production of Higher Alcohols

    Science.gov (United States)

    Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin

    2014-01-01

    ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. PMID:25182323

  3. Indoor concentrations of nitrogen dioxide and sulfur dioxide from burning solid fuels for cooking and heating in Yunnan Province, China

    NARCIS (Netherlands)

    Seow, Wei Jie; Downward, George S; Wei, Hu; Rothman, Nathaniel; Reiss, Boris; Xu, Jun; Bassig, Bryan A; Li, Jihua; He, Jun; Hosgood, H Dean; Wu, Guoping; Chapman, Robert S; Tian, Linwei; Wei, Fusheng; Caporaso, Neil E; Vermeulen, Roel; Lan, Qing

    2016-01-01

    The Chinese national pollution census has indicated that the domestic burning of solid fuels is an important contributor to nitrogen dioxide (NO2 ) and sulfur dioxide (SO2 ) emissions in China. To characterize indoor NO2 and SO2 air concentrations in relation to solid fuel use and stove ventilation

  4. Blind Deconvolution for Distributed Parameter Systems with Unbounded Input and Output and Determining Blood Alcohol Concentration from Transdermal Biosensor Data.

    Science.gov (United States)

    Rosen, I G; Luczak, Susan E; Weiss, Jordan

    2014-03-15

    We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.

  5. Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material.

    Science.gov (United States)

    Robel, Martin; Kristo, Michael J

    2008-11-01

    The problem of identifying the provenance of unknown nuclear material in the environment by multivariate statistical analysis of its uranium and/or plutonium isotopic composition is considered. Such material can be introduced into the environment as a result of nuclear accidents, inadvertent processing losses, illegal dumping of waste, or deliberate trafficking in nuclear materials. Various combinations of reactor type and fuel composition were analyzed using Principal Components Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLSDA) of the concentrations of nine U and Pu isotopes in fuel as a function of burnup. Real-world variation in the concentrations of (234)U and (236)U in the fresh (unirradiated) fuel was incorporated. The U and Pu were also analyzed separately, with results that suggest that, even after reprocessing or environmental fractionation, Pu isotopes can be used to determine both the source reactor type and the initial fuel composition with good discrimination.

  6. Kitchen PM2.5 concentrations and child acute lower respiratory infection in Bhaktapur, Nepal: The importance of fuel type.

    Science.gov (United States)

    Bates, Michael N; Pokhrel, Amod K; Chandyo, Ram K; Valentiner-Branth, Palle; Mathisen, Maria; Basnet, Sudha; Strand, Tor A; Burnett, Richard T; Smith, Kirk R

    2018-02-01

    Globally, solid fuels are used by about 3 billion people for cooking and a smaller number use kerosene. These fuels have been associated with acute lower respiratory infection (ALRI) in children. Previous work in Bhaktapur, Nepal, showed comparable relationships of biomass and kerosene cooking fuels with ALRI in young children, compared to those using electricity for cooking. We examine the relationship of kitchen PM 2.5 concentrations to ALRI in those households. ALRI cases and age-matched controls were enrolled from a cohort of children 2-35 months old. 24-h PM 2.5 was measured once in each participant's kitchen. The main analysis was carried out with conditional logistic regression, with PM 2.5 measures specified both continuously and as quartiles. In the kitchens of 393 cases and 431 controls, quartiles of increasing PM 2.5 concentration were associated with a monotonic increase in odds ratios (OR): 1.51 (95% CI: 1.00, 2.27), 2.22 (1.47, 3.34), 2.48 (1.63, 3.77), for the 3 highest exposure quartiles. The general kitchen concentration-response shape across all stoves was supralinear. There was evidence for increased risk with biomass stoves, but the slope for kerosene stoves was steeper, the highest quartile OR being 5.36 (1.35, 21.3). Evidence for increased risk was also found for gas stoves. Results support previous reports that biomass and kerosene cooking fuels are both ALRI risk factors, but suggests that PM 2.5 from kerosene is more potent on a unit mass basis. Further studies with larger sample sizes and preferably using electricity as the baseline fuel are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Young people's blood alcohol concentration and the alcohol consumption city law, Brazil Alcoholemia de jóvenes y la ley contra consumo de alcohol, Brasil Alcoolemia de jovens e lei contra o consumo de álcool

    Directory of Open Access Journals (Sweden)

    Raquel De Boni

    2008-12-01

    Full Text Available The paper assesses blood alcohol concentration and risk behaviors for traffic accidents before and after the implementation of a law which prohibits the use of alcoholic beverages on city gas stations. In Porto Alegre, Southern Brazil, young people go out at night and drive to gas station convenience stores to buy alcoholic beverages which are consumed on the premises of parking lots in gas stations. Data were obtained from self-administered questionnaires and breath analyzers in two cross-sectional collections with purposive samples of youngsters in May and July 2006 (n=62, and n=50, respectively. There were no significant differences between the groups before and after the city law was passed. Blood alcohol concentration greater than 0.06% was found in 35.5% of pre-law group and 40% of post-law group (p=0.62. Results point out heavy alcohol use in both groups, which did not change after the law was passed.En el artículo se analizaron la alcoholemia y los comportamientos de riesgo de accidentes de transito en jóvenes antes y después de la implementación de la ley que prohíbe el consumo de bebidas alcohólicas en puestos de gasolina. En Puerto Alegre (Sur de Brasil, los jóvenes acostumbran salir de noche y conducir hasta las tiendas de conveniencia de puestos de gasolina para comprar y consumir bebidas alcohólicas en los estacionamientos dentro de los puestos. Los datos fueron obtenidos de encuestas auto-aplicables y alcoholímetro en dos colectas transversales realizadas con jóvenes, abordados en mayo y julio de 2006 con muestreo intencional (n=62 y n=50, respectivamente. No hubo diferencia significativa entre los grupos entrevistados. Alcoholemia > 0,06% fue encontrada en 35,5% y 40% de los individuos antes y después de la ley, respectivamente (p=0,62. Los resultados señalan el uso pesado de alcohol en ambos grupos, inalterado por la implementación de la ley.No artigo foram analisados a alcoolemia e comportamentos de risco para

  8. Development of a test method for distillation of diesel-biodiesel-alcohols mixtures at reduced pressure

    Science.gov (United States)

    Niculescu, R.; Iosub, I.; Clenci, A.; Zaharia, C.; Iorga-Simăn, V.

    2017-10-01

    Increased environmental awareness and depletion of fossil petroleum resources are driving the automotive industry to seek out and use alternative fuels. For instance, the biofuel is a major renewable energy source to supplement declining fossil fuel resources. The addition of alcohols like methanol and ethanol is practical in biodiesel blends due to its miscibility with the pure biodiesel. Alcohols also improve physico-chemical properties of biodiesel blends, which lead to improved combustion efficiency. Proper volatility of fuels is critical to the operation of internal combustion engines with respect to both performance and emissions. Volatility may be characterised by various measurements, the most common of which are vapour pressure, distillation and the vapour/liquid ratio. The presence of ethanol or other oxygenates may affect these properties and, as a result, performance and emissions, as well. However, in the case of diesel-biodiesel-alcohols mixtures, the variance of component volatility makes difficult the analysis of the overall volatility. Thus, the paper presents an experimental method of distilling diesel-biodiesel-alcohols mixtures by adjusting the boiler pressure of an i-Fischer Dist equipment.

  9. Optimization in the nuclear fuel cycle II: Concentration of alpha emitters in the air

    International Nuclear Information System (INIS)

    Pereira, W.S.; Silva, A.X.; Lopes, J.M.; Carmo, A.S.; Mello, C.R.; Fernandes, T.S.; Kelecom, A.

    2017-01-01

    Optimization is one of the bases of radioprotection and aims to move doses away from the dose limit that is the borderline of acceptable radiological risk. The work aims to use the monitoring of the concentration of alpha emitters in the air as a tool of the optimization process. We analyzed 27 sampling points of airborne alpha concentration in a nuclear fuel cycle facility. The monthly averages were considered statistically different, the highest in the month of February and the lowest in the month of August. All other months were found to have identical mean activity concentration values. Regarding the sampling points, the points with the highest averages were points 12, 15 and 9. These points were indicated for the beginning of the optimization process. Analysis of the production of the facility should be performed to verify possible correlations between production and concentration of alpha emitters in the air

  10. Alcohol Policies and Alcohol-Involved Homicide Victimization in the United States.

    Science.gov (United States)

    Naimi, Timothy S; Xuan, Ziming; Coleman, Sharon M; Lira, Marlene C; Hadland, Scott E; Cooper, Susanna E; Heeren, Timothy C; Swahn, Monica H

    2017-09-01

    The purpose of this study was to examine the associations between the alcohol policy environment and alcohol involvement in homicide victims in the United States, overall and by sociodemographic groups. To characterize the alcohol policy environment, the presence, efficacy, and degree of implementation of 29 alcohol policies were used to determine Alcohol Policy Scale (APS) scores by state and year. Data about homicide victims from 17 states from 2003 to 2012 were obtained from the National Violent Death Reporting System. APS scores were used as lagged exposure variables in generalized estimating equation logistic regression models to predict the individual-level odds of alcohol involvement (i.e., blood alcohol concentration [BAC] > 0.00% vs. = 0.00% and BAC ≥ 0.08% vs. ≤ 0.079%) among homicide victims. A 10 percentage point increase in APS score (representing a more restrictive policy environment) was associated with reduced odds of alcohol-involved homicide with BAC greater than 0.00% (adjusted odds ratio [AOR] = 0.89, 95% CI [0.82, 0.99]) and BAC of 0.08% or more (AOR = 0.91, 95% CI [0.82, 1.02]). In stratified analyses of homicide victims, more restrictive policy environments were significantly protective of alcohol involvement at both BAC levels among those who were female, ages 21-29 years, Hispanic, unmarried, victims of firearm homicides, and victims of homicides related to intimate partner violence. More restrictive alcohol policy environments were associated with reduced odds of alcohol-involved homicide victimization overall and among groups at high risk of homicide. Strengthening alcohol policies is a promising homicide prevention strategy.

  11. Change in size, shape and radiocolloid uptake of the alcoholic liver during alcohol withdrawal, as demonstrated by single photon emission computed tomography

    International Nuclear Information System (INIS)

    Blomquist, L.; Yansen Wang; Jacobsson, H.; Kimiaei, S.

    1994-01-01

    The volume of the total liver and separate right and left lobes was studied before and after 1 week of alcohol withdrawal in 16 consecutive alcoholics by means of single photon emission computed tomography after intravenous injection of 99 Tc m -human albumin colloid; the relative tissue distribution of radioactivity was also followed. The left liver lobe increased in volume more than the right lobe during drinking and decreased more rapidly after alcohol withdrawal. Median volume reductions during 1 week of alcohol withdrawal were: total liver 12%, left lob 26%, and right lobe 8%, indicating that half of the reduction to values of a control group was achieved during this first week. The volume of the right but not of the left lobe was significantly correlated to body size in alcoholics and in controls. The left lobe had a lower capacity to concentrate the radiocolloid than the right lobe in alcoholics and in controls. The liver/spleen, liver/bone marrow and liver/background radioactivity concentration ratios in the alcoholics increased during alcohol withdrawal We conclude that heavy drinking causes both an increased total liver volume and a change in liver shape, with a relatively more enlarged left right lobe, as well as a decreased capacity to concentrate radiocolloid. These changes are rapidly reversible during abstinence from alcohol. (au) (26 refs.)

  12. Fuel cell research: Towards efficient energy

    CSIR Research Space (South Africa)

    Rohwer, MB

    2008-11-01

    Full Text Available fuel cells by optimising the loading of catalyst (being expensive noble metals) and ionomer; 2) Improving conventional acidic direct alcohol fuel cells by developing more efficient catalysts and by investigating other fuels than methanol; 3... these components add significantly to the overall cost of a PEMFC. 1 We focused our research activities on: 1) The effect of the loading of catalytic ink on cell performance; 2) The effect of the ionomer content in the catalytic ink; 3) Testing...

  13. Alcohol from whey

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    A process for ethanol production from whey is described. The lactose is fermented into alcohol via glucose and galactose of yeast. The whey must be pasteurized before fermentation in order to reduce the concentration of microorganisms in the protein fraction. The protein is separated by ultrafiltration. The whey, which is now rather free of bacteria, is introduced into the fermentation unit where yeast cultures are added to it. After fermentation, the yeast slurry is separated and processed into feeding yeast while the mash is passed on to the distillation unit. The alcohol thus produced is of very high quality and may be added to alcoholic beverages.

  14. Microbial community composition during anaerobic mineralization of tert-butyl alcohol (TBA) in fuel-contaminated aquifer material.

    Science.gov (United States)

    Wei, Na; Finneran, Kevin T

    2011-04-01

    Anaerobic mineralization of tert-butyl alcohol (TBA) and methyl tert-butyl ether (MTBE) were studied in sediment incubations prepared with fuel-contaminated aquifer material. Microbial community compositions in all incubations were characterized by amplified ribosomal DNA restriction analysis (ARDRA). The aquifer material mineralized 42.3±9.9% of [U-(14)C]-TBA to 14CO2 without electron acceptor amendment. Fe(III), sulfate, and Fe(III) plus anthraquinone-2,6-disulfonate addition also promoted U-[14C]-TBA mineralization at levels similar to those of the unamended controls. Nitrate actually inhibited TBA mineralization relative to unamended controls. In contrast to TBA, [U-(14)C]-MTBE was not significantly mineralized in 400 days regardless of electron acceptor amendment. Microbial community analysis indicated that the abundance of one dominant clone group correlated closely with anaerobic TBA mineralization. The clone was phylogenetically distinct from known aerobic TBA-degrading microorganisms, Fe(III)- or sulfate-reducing bacteria. It was most closely associated with organisms belonging to the alphaproteobacteria. Microbial communities were different in MTBE and TBA amended incubations. Shannon indices and Simpson indices (statistical community comparison tools) both demonstrated that microbial community diversity decreased in incubations actively mineralizing TBA, with distinct "dominant" clones developing. These data contribute to our understanding of anaerobic microbial transformation of fuel oxygenates in contaminated aquifer material and the organisms that may catalyze the reactions.

  15. Driving under the influence of alcohol.

    NARCIS (Netherlands)

    2011-01-01

    Driving under the influence of alcohol is a threat to road safety. In 2013, the estimated number of road deaths in the Netherlands due to alcohol was between 60 and 135. The legal limit for novice drivers in the Netherlands is a blood alcohol concentration (BAC) of 0.2 g/l and a BAC of 0.5 g/l for

  16. Combustion, gaseous and particulate emission of a diesel engine fueled with n-pentanol (C5 alcohol) blended with waste cooking oil biodiesel

    International Nuclear Information System (INIS)

    Zhu, Lei; Xiao, Yao; Cheung, C.S.; Guan, Chun; Huang, Zhen

    2016-01-01

    Highlights: • BP blends have fast combustion process at high temperature. • BP blends improve brake thermal efficiency of biodiesel. • Particle mass and number concentration could be reduced by pentanol addition. • Diameter of the primary particle is minimized by pentanol addition. • The addition of 10% pentanol is recommended as a suitable replacement ratio. - Abstract: The combustion, gaseous and particulate emissions of a diesel engine fueled with biodiesel–pentanol (BP) blends were investigated under different engine loads. The results indicate that with the increased pentanol fraction, the start of combustion is delayed. All of the BP blends provide faster combustion than biodiesel and diesel fuel from CA10 to CA90. The faster combustion of BP blends leads to a higher BTE than that of biodiesel and diesel fuel in most cases. The particle mass and number concentrations are reduced by the addition of pentanol in biodiesel in most test conditions, due to the higher oxygen concentration for the fuel/air stoichiometry, longer ignition delay for fuel/air mixing, and lower viscosity for the improvement of atomization. The R−(C=O)O−R′ group in biodiesel is less efficient in suppressing the soot precursor’s formation than the R−OH group in pentanol. The diameter of the primary particles is reduced with the increased addition of pentanol. The particulate emission of BP10 have higher oxidation reactivity that that of BP20 and BP30. Base on this study, pentanol–biodiesel can be considered as an acceptable alternative fuel for diesel engines due to its improved combustion performance and reduced particulate emissions.

  17. Judgement of Breath Alcohol Concentration Levels Among Pedestrians in the Night-Time Economy-A Street-Intercept Field Study.

    Science.gov (United States)

    Cameron, M P; Roskruge, M J; Droste, N; Miller, P G

    2018-05-01

    To evaluate how well people in the night-time economy can assess their own breath alcohol concentration (BrAC), in the context of a change in breath alcohol limits for driving. We conducted a field study of 242 participants over 5 nights in the central business district of a university town in New Zealand. Participants completed a short survey, which included questions on their self-reported level of intoxication and the self-estimated BrAC. At the conclusion of the interview each participant was breath-tested. We compared actual and self-estimated BrAC using a scatter plot and multiple regression methods. The average BrAC error was 61.7 μg/l, meaning that on average participants overestimate their BrAC. Participants with a BrAC below 487 μg/l tended to overestimate their BrAC on average, and those with a BrAC above 487 μg/l tended to underestimate their BrAC on average. Regression results supported this observation, but also found that men who are not 'out on a typical night' overestimate their BrAC by more. Drinkers in this naturalistic setting have little idea of their level of intoxication, as measured by BrAC. However, this uncertainty may be advantageous to public health outcomes, since if drinkers are uncertain about their level of intoxication relative to the legal limit, this may lead them to avoid drunk driving. A field study of drinkers in the night-time economy of a New Zealand university town was conducted to evaluate how well drinkers can assess their breath alcohol concentration (BrAC). Drinkers in this setting inaccurately estimate their intoxication, and those with higher BrAC tended to underestimate their BrAC on average.

  18. Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells

    Science.gov (United States)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Chien, Wen-Chen; Chiu, Sheng-Shin

    The quaternized poly(vinyl alcohol)/alumina (designated as QPVA/Al 2O 3) nanocomposite polymer membrane was prepared by a solution casting method. The characteristic properties of the QPVA/Al 2O 3 nanocomposite polymer membranes were investigated using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), micro-Raman spectroscopy, and AC impedance method. Alkaline direct methanol fuel cell (ADMFC) comprised of the QPVA/Al 2O 3 nanocomposite polymer membrane were assembled and examined. Experimental results indicate that the DMFC employing a cheap non-perfluorinated (QPVA/Al 2O 3) nanocomposite polymer membrane shows excellent electrochemical performances. The peak power densities of the DMFC with 4 M KOH + 1 M CH 3OH, 2 M CH 3OH, and 4 M CH 3OH solutions are 28.33, 32.40, and 36.15 mW cm -2, respectively, at room temperature and in ambient air. The QPVA/Al 2O 3 nanocomposite polymer membranes constitute a viable candidate for applications on alkaline DMFC.

  19. Performance of denitrifying microbial fuel cell subjected to variation in pH, COD concentration and external resistance.

    Science.gov (United States)

    Li, Jin-Tao; Zhang, Shao-Hui; Hua, Yu-Mei

    2013-01-01

    The effects of pH, chemical oxygen demand (COD) concentration and external resistance on denitrifying microbial fuel cell were evaluated in terms of electricity generation characteristics and pollutant removal performance. The results showed that anodic influent with weakly alkaline or neutral pH and cathodic influent with weakly acidic pH favored pollutant removal and electricity generation. The suitable influent pH of the anode and cathode were found to be 7.5-8.0 and 6.0-6.5, respectively. In the presence of sufficient nitrate in the cathode, higher influent COD concentration led to more electricity generation and greater pollutant removal rates. With an anodic influent pH of 8.0 and a cathodic influent pH of 6.0, an influent COD concentration of 400 mg/L was deemed to be appropriate. Low external resistance favored nitrate and COD removal. The results suggest that operation of denitrifying microbial fuel cell at a lower external resistance would be desirable for pollutant removal but not electricity generation.

  20. Driving under the influence of alcohol. [Formerly known as: Driving under the influence of alcohol and drugs.

    NARCIS (Netherlands)

    2006-01-01

    Driving under the influence of alcohol is a threat to road safety. In 2015, the estimated number of road deaths in the Netherlands due to alcohol was between 75 and 140. The legal limit for novice drivers in the Netherlands is a blood alcohol concentration (BAC) of 0.2 g/l and a BAC of 0.5 g/l for

  1. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-02-24

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecular structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.

  2. The alcohol program

    International Nuclear Information System (INIS)

    Moreira, Jose R.; Goldemberg, Jose

    1999-01-01

    The rationale for the launching of the Alcohol Program from sugarcane in Brazil in the mid-1970s is described as an answer to the first ''oil crisis'' as well as a solution to the problem of the fluctuating sugar prices in the international market. The technical characteristics of ethanol as a fuel are given as well as a discussion of the evolution of the cost of production, environmental and social consequences. Regarding costs, ethanol production was close to 100 dollars a barrel in the initial stages of the Program in 1980 falling rapidly due to economies of scale and technological progress to half that value in 1990, followed by a slower decline in recent years. Considering the hard currency saved by avoiding oil importation through the significant displacement of gasoline by ethanol and the decrease in the amount of external debt that the displaced oil importation was able to provide it is possible to demonstrate that the Alcohol Program has been an efficient way of exchanging dollar debt by national currency subsidies which are paid by the liquid fossil fuel users. Even with this economic gains for society, the continuity of the Program is difficult to maintain. Two solutions to this problem are discussed: internal expansion of the use of ethanol and exports to industrialized countries where it could be used as an octane enhancer. The main attractiveness of the Program - the reduction of CO 2 emissions as compared to fossil fuels - is stressed, mainly as a solution for industrialized countries to fulfill their commitments with the United Nations Framework Climate Change Convention. (Author)

  3. The concentration of the global alcohol industry and its penetration in the African region.

    Science.gov (United States)

    Jernigan, David H; Babor, Thomas F

    2015-04-01

    To describe the penetration and expansion of the global alcohol industry into the African region, as a context for exploring the implications for public health. Source materials for this study came primarily from market research and the business press. This was supplemented by industry sources (from websites, company annual reports), World Health Organization reports and the scientific literature. Drinking in Africa is characterized by high rates of abstention and a high prevalence of heavy episodic consumption among those who drink. Much of the region is currently experiencing a rapid rise in consumption. Rising populations and income and the rapid pace of urbanization make Africa very attractive to the global alcohol industry, and industry leaders have identified Africa as a key area for growth. The shift from collaboration to competition in Africa among the global alcohol companies has prompted increasing alcohol production, promotion, new product development, pricing schemes and stakeholder lobbying. Beer consumption has increased across most of the continent, and global brewers view themselves as legitimate players at the alcohol policy table. Weak alcohol policy environments may be compromised further in terms of public health protections by alcohol industry opposition to effective measures such as marketing regulations, availability controls and taxation. © 2014 Society for the Study of Addiction.

  4. Study on fuel supplying method and methanol concentration sensor for the high efficient operation of methanol fuel cells. Methanol nenryo denchi no unten ni okeru nenryo kyokyu hoho no kento to methanol nodo sensor no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tsukui, Tsutomu; Doi, Ryota; Yasukawa, Saburo; Kuroda, Osamu [Hirachi, Ltd., Tokyo, (Japan)

    1990-01-20

    A fuel supplying method was studied and demonstrated, essential to the high efficient operation of methanol fuel cells. Methanol and water were supplied independently from each tank to an anordic electrolyte tank in a circulating system, detecting a methanol concentration and liquid level of anordic electrolyte by each sensor, respectively. A methanol sensor was also developed to detect accurately the concentration based on electrochemical reaction under a constant voltage. A detection control circuit was insulated from a constant-voltage power supply to prevent external noises. The methanol sensor output was compensated for temperature, and a new level sensing method was adopted to send out a command comparing different responses to electrolyte shortage. As the methanol fuel cell was operated with this fuel supplying system, the stable characteristics of the cell were obtained within the variation of {plus minus} 0.1mol/l from the specified methanol concentration. 6 refs., 17 figs., 1 tab.

  5. Pt-Ni and Pt-M-Ni (M = Ru, Sn Anode Catalysts for Low-Temperature Acidic Direct Alcohol Fuel Cells: A Review

    Directory of Open Access Journals (Sweden)

    Ermete Antolini

    2017-01-01

    Full Text Available In view of a possible use as anode materials in acidic direct alcohol fuel cells, the electro-catalytic activity of Pt-Ni and Pt-M-Ni (M = Ru, Sn catalysts for methanol and ethanol oxidation has been widely investigated. An overview of literature data regarding the effect of the addition of Ni to Pt and Pt-M on the methanol and ethanol oxidation activity in acid environment of the resulting binary and ternary Ni-containing Pt-based catalysts is presented, highlighting the effect of alloyed and non-alloyed nickel on the catalytic activity of these materials.

  6. The environmental performance of three alcohol fuel plants producers of small, medium and big scale; O desempenho eco-ambiental de tres usinas produtoras de alcool combustivel de pequeno, medio e grande porte

    Energy Technology Data Exchange (ETDEWEB)

    Borrero, Manuel Antonio Valdes; Pereira, Jose Tomaz Vieira [Universidade Estadual de Campinas, SP (Brazil); Miranda, Evaristo Eduardo de [Empresa Brasileira de Pesquisa Agropecuaria, Campinas, SP (Brazil). Nucleo de Monitoramento Ambiental e de Recursos Naturais por Satelite

    1999-07-01

    The article discusses the following issues of alcohol fuel plants producers: sizing; performance; natural resources; environmental aspects; and electric power generation. The environmental performance concept is introduced and a performance evaluation methodology are presented and applied. The results are also presented and criticized.

  7. Alternative Fuels for use in DoD/Army Tactical Ground Systems

    Science.gov (United States)

    2011-02-03

    Jet Fuel-Like Product Lignocellulose corn stover forest waste switchgrass sugarcane Fermentation Genetically Engineered Microbes Jet Fuel-Like...Product Bio-CrudePyrolysis Dehydration Hydroprocessing Synthetic Biology Pyrolysis Alcohol Oligomerization Conventional Refinery ProcessesSugar

  8. Technical development of alcohol for fuel. Inspection and breeding of superior bacteria

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    Heat- and alcohol-resistant bacteria for alcoholic fermentation were separated from the soils in Japan and abroad and the performance was evaluated to develop superior bacteria for ethanol fermentation. The superior bacteria pertinent to alcoholic fermentation were bred by domestication, variation treatment, cell fusion and gene manipulation. The productivity of ethanol was increased by controlling pH of thermophilic, aerobic cellulase and culturing the mixture of added nutrients. CMC ase and Beta-glucosidase genes, the component enzymes of cellulase, were successfully developed by Zymomonas sp. A promotor selecting vector of Zymomonas was produced for developing xylolase gene to acquire an active promotor.

  9. Effects of low-molecular weight alcohols on bacterial viability

    Directory of Open Access Journals (Sweden)

    Man Adrian

    2017-10-01

    Full Text Available Alcohol based solutions are among the most convenient and wide spread aid in the prevention of nosocomial infections. The current study followed the efficacy of several types and isomers of alcohols on different bacterial species. Seven alcohols (ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl alcohol, and ethylene glycol were used to evaluate their minimal inhibitory and bactericidal effects by microdilution method on bacteria that express many phenotypical characteristics: different cell-wall structure (Gram positive/negative bacteria, capsule production (Klebsiella pneumoniae, antibiotic resistance (MRSA vs MSSA or high environmental adaptability (Pseudomonas aeruginosa. Results: The best inhibitory effect was noticed for n-propyl, followed by iso-propyl, n-butyl, and iso-butyl alcohols with equal values. Ethylene glycol was the most inefficient alcohol on all bacteria. In K. pneumoniae and P. aeruginosa, the bactericidal concentrations were higher than the inhibitory one, and to a level similar to that encountered for most of the Gram-positive bacteria. Among Gram-positive cocci, E. faecalis presented the lowest susceptibility to alcohols. Conclusions: All alcohols presented good effect on bacteria, even in low concentrations. Compared to ethanol as standard, there are better alternatives that can be used as antimicrobials, namely longer-chain alcohols such as propyl or butyric alcohols and their iso- isomers. Ethylene glycol should be avoided, due to its toxicity hazard and low antimicrobial efficacy. Bacterial phenotype (highly adaptable bacteria, biofilm formation and structure (cell wall structure, presence of capsule may drastically affect the responsiveness to the antimicrobial activity of alcohols, leading to higher bactericidal than inhibitory concentrations.

  10. Effect of hair care and hair cosmetics on the concentrations of fatty acid ethyl esters in hair as markers of chronically elevated alcohol consumption.

    Science.gov (United States)

    Hartwig, Sven; Auwärter, Volker; Pragst, Fritz

    2003-01-28

    Fatty acid ethyl esters (FAEE) can be used as alcohol markers in hair. It was investigated in this study whether this diagnostic method is disturbed by hair care and hair cosmetics. Traces of ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate were detected in all of 49 frequently applied hair care products by headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The highest concentration was 0.003% in a hair wax. From experiments with separated hair samples of alcoholics as well as from the evaluation of the FAEE concentrations and the data about hair care of 75 volunteers (alcoholics, social drinkers and teetotalers) follows that usual shampooing, permanent wave, dyeing, bleaching or shading are of minor importance as compared to the drinking amount and other individual features. However, false positive results were found after daily treatment with a hair lotion containing 62.5% ethanol, with a deodorant and with a hair spray. As an explanation, it is assumed that FAEE are formed in the sebum glands also after regular topical application of products with a higher ethanol content.

  11. The electricity cogeneration in sugar mills and alcohol and the reduction of emissions of greenhouse gases

    International Nuclear Information System (INIS)

    Valdés Delgado, Antonio

    2015-01-01

    Electric power in Cuba currently produces -in high proportion- plants employing fossil fuel. The price of fossil fuels and the negative influence on the environment by emissions of greenhouse gases, has indicated the need to develop other energy sources. Biomass sugarcane provides ample opportunities to produce this energy with positive economic and environmental results. The technological process for the production of sugar requires the use of mechanical energy, low power consumption compared to thermal energy requirements and their use at low pressures determine the possibility of implementing a cogeneration system of mechanical, thermal and electrical energy. The power consumption for the driving equipment of a factory is about 15-30 kw-kr / ton rod. The amount of electrical energy generated in a sugar cane factory is sufficient to meet their own needs, being able to obtain an additional amount for supply to the public network and meet the needs of other productions as is alcohol. Agricultural crop residues (RAC) and sugarcane bagasse and a liquid fuel: alcohol and gaseous fuel: different energy possibilities derived from the sugar industry reflected in the disposal of solid fuels such as is the biogas. The preparation of solid, liquid and gaseous fuels from sugar and alcohol production avoids the use of fossil fuels such as gasoline and fuel oil and gas enables not be sent into the atmosphere that impact on the greenhouse effect. (full text)

  12. Driving performance on the descending limb of blood alcohol concentration (BAC) in undergraduate students: a pilot study.

    Science.gov (United States)

    Tremblay, Mathieu; Gallant, François; Lavallière, Martin; Chiasson, Martine; Silvey, Dustin; Behm, David; Albert, Wayne J; Johnson, Michel J

    2015-01-01

    Young drivers are overrepresented in collisions resulting in fatalities. It is not uncommon for young drivers to socially binge drink and decide to drive a vehicle a few hours after consumption. To better understand the risks that may be associated with this behaviour, the present study has examined the effects of a social drinking bout followed by a simulated drive in undergraduate students on the descending limb of their BAC (blood alcohol concentration) curve. Two groups of eight undergraduate students (n = 16) took part in this study. Participants in the alcohol group were assessed before drinking, then at moderate and low BAC as well as 24 hours post-acute consumption. This group consumed an average of 5.3 ± 1.4 (mean ± SD) drinks in an hour in a social context and were then submitted to a driving and a predicted crash risk assessment. The control group was assessed at the same time points without alcohol intake or social context.; at 8 a.m., noon, 3 p.m. and 8 a.m. the next morning. These multiple time points were used to measure any potential learning effects from the assessment tools (i.e. driving simulator and useful field of view test (UFOV)). Diminished driving performance at moderate BAC was observed with no increases in predicted crash risk. Moderate correlations between driving variables were observed. No association exists between driving variables and UFOV variables. The control group improved measures of selective attention after the third assessment. No learning effect was observed from multiple sessions with the driving simulator. Our results show that a moderate BAC, although legal, increases the risky behaviour. Effects of alcohol expectancy could have been displayed by the experimental group. UFOV measures and predicted crash risk categories were not sensitive enough to predict crash risk for young drivers, even when intoxicated.

  13. THE EFFECT OF SULPHURIC ACID CONCENTRATION ON SOLVENT EXTRACTION OF ReO4 - BY THE LONG-CHAIN ALIPHATIC TERTIARY AMINES AND ALCOHOLS

    Directory of Open Access Journals (Sweden)

    Aleksander G. Kasikov

    2010-06-01

    Full Text Available The effect of sulphuric acid concentration on solvent extraction of ReO4- by the long-chain aliphatic tertiary amines and alcohols in a wide range of H2SO4 concentrations in initial solutions is discussed. It has been established that the influence of the sulphuric acid concentration on rhenium solvent extraction is largely due to the extraction process mechanism. In the case of the anion-exchange mechanism, ReO4- is best extracted from weakly acidic solutions, whereas when the hydrate-solvate mechanism takes place – from solutions containing 4-7 mole/l H2SO4.

  14. Sensing methanol concentration in direct methanol fuel cell with total harmonic distortion: Theory and application

    International Nuclear Information System (INIS)

    Mao Qing; Krewer, Ulrike

    2012-01-01

    The nonlinear frequency response of a direct methanol fuel cell (DMFC) is studied by analyzing the total harmonic distortion (THD) spectra. The dependence of the THD spectra on methanol concentration and methanol oxidation kinetics is investigated by means of both simulation and experiment. Simulation using a continuous stirred tank reactor network model suggests that the methanol concentration profile in the anode has a strong impact on the THD spectra. The experimentally observed nonlinear behavior of the DMFC anode can be qualitatively reproduced with a model containing a three-step methanol oxidation mechanism with Kauranen–Frumkin/Temkin kinetics. Both experiment and simulation results show that THD value has a monotonic correlation with methanol concentration at certain frequencies and its sensitivity to concentration is improved with increased current amplitude. The monotonic relationship enables the THD to sense the methanol concentration level by the DMFC itself, which is of mayor interest for the portable application as an external sensor for the system can be omitted.

  15. Alcohol-Induced Blackout

    Directory of Open Access Journals (Sweden)

    Dai Jin Kim

    2009-11-01

    Full Text Available For a long time, alcohol was thought to exert a general depressant effect on the central nervous system (CNS. However, currently the consensus is that specific regions of the brain are selectively vulnerable to the acute effects of alcohol. An alcohol-induced blackout is the classic example; the subject is temporarily unable to form new long-term memories while relatively maintaining other skills such as talking or even driving. A recent study showed that alcohol can cause retrograde memory impairment, that is, blackouts due to retrieval impairments as well as those due to deficits in encoding. Alcoholic blackouts may be complete (en bloc or partial (fragmentary depending on severity of memory impairment. In fragmentary blackouts, cueing often aids recall. Memory impairment during acute intoxication involves dysfunction of episodic memory, a type of memory encoded with spatial and social context. Recent studies have shown that there are multiple memory systems supported by discrete brain regions, and the acute effects of alcohol on learning and memory may result from alteration of the hippocampus and related structures on a cellular level. A rapid increase in blood alcohol concentration (BAC is most consistently associated with the likelihood of a blackout. However, not all subjects experience blackouts, implying that genetic factors play a role in determining CNS vulnerability to the effects of alcohol. This factor may predispose an individual to alcoholism, as altered memory function during intoxication may affect an individual‟s alcohol expectancy; one may perceive positive aspects of intoxication while unintentionally ignoring the negative aspects. Extensive research on memory and learning as well as findings related to the acute effects of alcohol on the brain may elucidate the mechanisms and impact associated with the alcohol- induced blackout.

  16. Perception of intoxication in a field study of the night-time economy: Blood alcohol concentration, patron characteristics, and event-level predictors.

    Science.gov (United States)

    Kaestle, Christine E; Droste, Nicolas; Peacock, Amy; Bruno, Raimondo; Miller, Peter

    2018-01-01

    Determine the relationship of subjective intoxication to blood alcohol concentration (BAC) and examine whether patron and event-level characteristics modify the relationship of BAC to subjective intoxication. An in-situ systematic random sample of alcohol consumers attending night-time entertainment districts between 10pm and 3am on Friday and Saturday nights in five Australian cities completed a brief interview (n=4628). Participants reported age, sex, and pre-drinking, energy drink, tobacco, illicit stimulant and other illicit drug use that night, and their subjective intoxication and BAC were assessed. Male and female drinkers displayed equally low sensitivity to the impact of alcohol consumption when self-assessing their intoxication (BAC only explained 19% of variance). The marginal effect of BAC was not constant. At low BAC, participants were somewhat sensitive to increases in alcohol consumption, but at higher BAC levels that modest sensitivity dissipated (actual BAC had less impact on self-assessed intoxication). The slope ultimately leveled out to be non-responsive to additional alcohol intake. Staying out late, pre-drinking, and being young introduced biases resulting in higher self-assessed intoxication regardless of actual BAC. Further, both energy drinks and stimulant use modified the association between BAC and perceived intoxication, resulting in more compressed changes in self-assessment as BAC varies up or down, indicating less ability to perceive differences in BAC level. The ability of intoxicated patrons to detect further intoxication is impaired. Co-consumption of energy drinks and/or stimulant drugs is associated with impaired intoxication judgment, creating an additional challenge for the responsible service and consumption of alcohol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fuels demand by light vehicles and motorcycles In Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jose Manoel Antelo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    The purpose of this paper is to analyze the consumption of gasoline, alcohol and natural gas vehicle (NGV) by light vehicles and motorcycles in Brazil. Through the estimation of fleets per consumption class, in an environment influenced by a new engine technology (flex-fuel), this exercise estimates the fleet-elasticity of cars (and motorcycles) powered by gasoline, hydrated alcohol, natural gas vehicle (NGV) and flex-fuel, in addition to the income elasticity within the period from January, 2000 to December, 2008. This paper uses an alternative variable as income proxy and estimates the five different fleets through the combination of vehicles sales and scrapping curves. This paper's conclusion is that given specific issues of the Brazilian fuel market, in special prices and technological innovations, the fleets' equations for the consumption of the three fuels represent in a more significant manner the relationships expected between supply and demand variables than the commonly used functions of prices and income. (author)

  18. Fuels demand by light vehicles and motorcycles In Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Jose Manoel Antelo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2010-07-01

    The purpose of this paper is to analyze the consumption of gasoline, alcohol and natural gas vehicle (NGV) by light vehicles and motorcycles in Brazil. Through the estimation of fleets per consumption class, in an environment influenced by a new engine technology (flex-fuel), this exercise estimates the fleet-elasticity of cars (and motorcycles) powered by gasoline, hydrated alcohol, natural gas vehicle (NGV) and flex-fuel, in addition to the income elasticity within the period from January, 2000 to December, 2008. This paper uses an alternative variable as income proxy and estimates the five different fleets through the combination of vehicles sales and scrapping curves. This paper's conclusion is that given specific issues of the Brazilian fuel market, in special prices and technological innovations, the fleets' equations for the consumption of the three fuels represent in a more significant manner the relationships expected between supply and demand variables than the commonly used functions of prices and income. (author)

  19. Radiation decomposition of alcohols and chloro phenols in micellar systems

    International Nuclear Information System (INIS)

    Moreno A, J.

    1998-01-01

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  20. Nectar loads as fuel for collecting nectar and pollen in honeybees: adjustment by sugar concentration.

    Science.gov (United States)

    Harano, Ken-Ichi; Nakamura, Jun

    2016-06-01

    When honeybee foragers leave the nest, they receive nectar from nest mates for use as fuel for flight or as binding material to build pollen loads. We examined whether the concentration of nectar carried from the nest changes with the need for sugar. We found that pollen foragers had more-concentrated nectar (61.8 %) than nectar foragers (43.8 %). Further analysis revealed that the sugar concentration of the crop load increased significantly with waggle duration, an indicator of food-source distance, in both groups of foragers. Crop volume also increased with waggle duration. The results support our argument that foragers use concentrated nectar when the need for sugar is high and suggest that they precisely adjust the amount of sugar in the crop by altering both volume and nectar concentrations. We also investigated the impact of the area where foragers receive nectar on the crop load concentration at departure. Although nectar and pollen foragers tend to load nectar at different areas in the nest, area did not have a significant effect on crop load concentration. Departing foragers showed an average of 2.2 momentary (nectar with inappropriate concentrations during these contacts.

  1. Preliminary observation of dynamic changes in alcohol concentration in the human brain with proton magnetic resonance spectroscopy on a 3T MR instrument

    International Nuclear Information System (INIS)

    Kubo, Hitoshi; Harada, Masafumi; Sakama, Minoru; Otsuka, Hideki; Matsuda, Tsuyoshi

    2013-01-01

    Our purposes were to establish suitable conditions for proton magnetic resonance spectroscopy (MRS) to measure dynamic changes in alcohol concentration in the human brain, to evaluate these changes, and to compare the findings with data from analysis of breath vapor and blood samples. We evaluated 4 healthy volunteers (mean age 26.5 years; 3 males, one female) with no neurological findings. All studies were performed with 3-tesla clinical equipment using an 8-channel head coil. We applied our modified single-voxel point-resolved spectroscopy (PRESS) sequence. Continuous measurements of MRS, breath vapor, and blood samples were conducted before and after the subjects drank alcohol with a light meal. The obtained spectra were quantified by LCModel Ver. 6.1, and the accuracy of the MRS measurements was estimated using the estimated standard deviation expressed in percentage (% standard deviation (SD)) as a criterion. Alcohol peaks after drinking were clearly detected at 1.2 ppm for all durations of measurement. Good correlations between breath vapor or blood sample and MRS were found by sub-minute MRS measurement. The continuous measurement showed time-dependent changes in alcohol in the brain and various patterns that differed among subjects. The clinical 3 T equipment enables direct evaluation of sub-minute changes in alcohol metabolism in the human brain. (author)

  2. Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.

    Science.gov (United States)

    Kannan, Padmanathan Karthick; Saraswathi, Ramiah

    2014-11-01

    A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Driving simulator sickness: Impact on driving performance, influence of blood alcohol concentration, and effect of repeated simulator exposures.

    Science.gov (United States)

    Helland, Arne; Lydersen, Stian; Lervåg, Lone-Eirin; Jenssen, Gunnar D; Mørland, Jørg; Slørdal, Lars

    2016-09-01

    Simulator sickness is a major obstacle to the use of driving simulators for research, training and driver assessment purposes. The purpose of the present study was to investigate the possible influence of simulator sickness on driving performance measures such as standard deviation of lateral position (SDLP), and the effect of alcohol or repeated simulator exposure on the degree of simulator sickness. Twenty healthy male volunteers underwent three simulated driving trials of 1h's duration with a curvy rural road scenario, and rated their degree of simulator sickness after each trial. Subjects drove sober and with blood alcohol concentrations (BAC) of approx. 0.5g/L and 0.9g/L in a randomized order. Simulator sickness score (SSS) did not influence the primary outcome measure SDLP. Higher SSS significantly predicted lower average speed and frequency of steering wheel reversals. These effects seemed to be mitigated by alcohol. Higher BAC significantly predicted lower SSS, suggesting that alcohol inebriation alleviates simulator sickness. The negative relation between the number of previous exposures to the simulator and SSS was not statistically significant, but is consistent with habituation to the sickness-inducing effects, as shown in other studies. Overall, the results suggest no influence of simulator sickness on SDLP or several other driving performance measures. However, simulator sickness seems to cause test subjects to drive more carefully, with lower average speed and fewer steering wheel reversals, hampering the interpretation of these outcomes as measures of driving impairment and safety. BAC and repeated simulator exposures may act as confounding variables by influencing the degree of simulator sickness in experimental studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Alcohol and airways function in health and disease.

    Science.gov (United States)

    Sisson, Joseph H

    2007-08-01

    The volatility of alcohol promotes the movement of alcohol from the bronchial circulation across the airway epithelium and into the conducting airways of the lung. The exposure of the airways through this route likely accounts for many of the biologic effects of alcohol on lung airway functions. The effect of alcohol on lung airway functions is dependent on the concentration, duration, and route of exposure. Brief exposure to mild concentrations of alcohol may enhance mucociliary clearance, stimulates bronchodilation, and probably attenuates the airway inflammation and injury observed in asthma and chronic obstructive pulmonary disease (COPD). Prolonged and heavy exposure to alcohol impairs mucociliary clearance, may complicate asthma management, and likely worsens outcomes including lung function and mortality in COPD patients. Nonalcohol congeners and alcohol metabolites act as triggers for airway disease exacerbations especially in atopic asthmatics and in Asian populations who have a reduced capacity to metabolize alcohol. Research focused on the mechanisms of alcohol-mediated changes in airway functions has identified specific mechanisms that mediate alcohol effects within the lung airways. These include prominent roles for the second messengers calcium and nitric oxide, regulatory kinases including PKG and PKA, alcohol- and acetaldehyde-metabolizing enzymes such as aldehyde dehydrogenase 2. The role alcohol may play in the pathobiology of airway mucus, bronchial blood flow, airway smooth muscle regulation, and the interaction with other airway exposure agents, such as cigarette smoke, represents opportunities for future investigation.

  5. Effect of sulphuric acid concentration on electroosmotic flow through polymer electrolyte membranes in PEM fuel cells. Paper no. IGEC-1-061

    International Nuclear Information System (INIS)

    Karimi, G.; Li, X.

    2005-01-01

    Polymer electrolyte membrane (PEM) fuel cells are highly efficient and environmentally clean, and hence one of the most promising power sources for both stationary and mobile applications. The operations of PEM fuel cells are complicated by the electroosmotic flow of water from anode to cathode through the polymer electrolyte membrane leading to the membrane dehydration and fuel cell performance degradations. In this study, electro osmotic flow in polymer electrolyte membranes is modeled by incorporating the electro kinetic effects in the presence of euphoric acid. The governing Poisson-Boatman and the Nervier-Stokes equations were solved numerically for a single membrane pore to determine the electro osmotic flow distributions through the membrane over a wide range of acid concentrations. The presence of euphoric acid modifies the protons distribution in the membrane and hence alters the driving force for electroosmotic drag. Numerical results indicate that the electro osmotic flow increases steadily with acid concentration. The water transport due to electro osmosis is almost doubled at 2 M acid concentration compared with that of non-doped membrane. The value of electroosmotic drag coefficient however falls steadily with acid concentration due to the presence of a larger number of protons in the electrolyte. (author)

  6. Alcohol as international commodity; Alcool como 'commodity' internacional

    Energy Technology Data Exchange (ETDEWEB)

    Negrao, Luiz Celso Parisi [Ministerio do Desenvolvimento, Industria e Comercio Exterior, Brasilia, DF (Brazil). Secretaria de Tecnologia Industrial]. E-mail: luiz.negrao@desenvolvimento.gov.br; Urban, Maria Lucia de Paula

    2004-12-15

    The ethanol is able to reduce the gas emissions, mainly in CO2 balance which gives a strong contribution for this fact. Using the alcohol rather than fossil fuels is a natural choice as a important renewable energy source. Also, to have the alcohol as international environmental commodity is the goal of all interested in this matter, since the entry into force the Kyoto protocol, with the Russian approval.

  7. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  8. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schäfer, C.; Schütz, Tanja

    2000-01-01

    BACKGROUND/AIMS: No information is yet available about the influence of alcohol abuse on the translocation of larger molecules (Mr>1200) through the intestinal mucosa in man. The present study aimed to determine the intestinal permeability to macromolecules in patients with chronic alcohol abuse...... and mild to more advanced stages of liver disease, and to measure the concentration of endotoxins in the plasma, as these compounds derive from the intestinal flora and are suspected to contribute to the development of alcoholic liver disease (ALD). METHODS: The permeability to polyethylene glycol Mr 400......, Mr 1500, Mr 4000, and Mr 10,000 and endotoxin plasma concentrations were measured in 54 patients with alcoholic liver disease, 19 of them with cirrhosis, and in 30 non-alcoholic healthy controls. RESULTS: Permeability to polyethylene glycol Mr 400 was found to be unchanged in patients with ALD...

  9. Sodium removal by alcohol process: Basic tests and its application

    International Nuclear Information System (INIS)

    Nakai, S.; Yamamoto, S.; Akai, M.; Yatabe, T.

    1997-01-01

    We have various methods for sodium removal; an alcohol cleaning process, a steam cleaning process and a direct burning process. Sodium removal by the alcohol process has a lot of advantages, such as causing no alkali corrosion to steel, short processing time and easy operation. Therefore the alcohol process was selected for the 1MWt double wall tube straight type steam generator. We have already had some experiences of the alcohol process, while still needed to confirm the sodium removal rate in the crevice and to develop an on-line sodium concentration monitoring method in alcohol during sodium removal. We have conducted the small scale sodium removal test with flowing alcohol where the sodium removal rate in the crevice and the alcohol conductivity were measured as functions of sodium concentration in alcohol and alcohol temperature. The sodium removal of the DWTSG was conducted by the devised alcohol process safely and efficiently. The process hour was about 1 day. Visual inspection during dismantling of the DWTSG showed no evidence of any un-reacted sodium. (author)

  10. Blood Alcohol Concentration-Related Lower Performance in Immediate Visual Memory and Working Memory in Adolescent Binge Drinkers

    Directory of Open Access Journals (Sweden)

    Concepción Vinader-Caerols

    2017-10-01

    Full Text Available The binge drinking (BD pattern of alcohol consumption is prevalent during adolescence, a period characterized by critical changes to the structural and functional development of brain areas related with memory and cognition. There is considerable evidence of the cognitive dysfunctions caused by the neurotoxic effects of BD in the not-yet-adult brain. Thus, the aim of the present study was to evaluate the effects of different blood alcohol concentrations (BAC on memory during late adolescence (18–19 years old in males and females with a history of BD. The sample consisted of 154 adolescents (67 males and 87 females that were classified as refrainers if they had never previously drunk alcoholic drinks and as binge drinkers if they had drunk six or more standard drink units in a row for men or five or more for women at a minimum frequency of three occasions in a month, throughout the previous 12 months. After intake of a high acute dose of alcohol by binge drinkers or a control refreshment by refrainers and binge drinkers, subjects were distributed into four groups for each gender according to their BAC: BAC0-R (0 g/L, in refrainers, BAC0-BD (0 g/L, in binge drinkers, BAC1 (0.3 – 0.5 g/L, in binge drinkers or BAC2 (0.54 – 1.1 g/L, in binge drinkers. The subjects’ immediate visual memory and working memory were then measured according to the Wechsler Memory Scale (WMS-III. The BAC1 group showed lower scores of immediate visual memory but not of working memory, while lower performance in both memories were found in the BAC2 group. Therefore, the brain of binge drinkers with moderate BAC could be employing compensatory mechanisms from additional brain areas to perform a working memory task adequately, but these resources would be undermined when BAC is higher (>0.5 g/L. No gender differences were found in BAC-related lower performance in immediate visual memory and working memory. In conclusion, immediate visual memory is more sensitive than

  11. Blood Alcohol Concentration-Related Lower Performance in Immediate Visual Memory and Working Memory in Adolescent Binge Drinkers.

    Science.gov (United States)

    Vinader-Caerols, Concepción; Duque, Aránzazu; Montañés, Adriana; Monleón, Santiago

    2017-01-01

    The binge drinking (BD) pattern of alcohol consumption is prevalent during adolescence, a period characterized by critical changes to the structural and functional development of brain areas related with memory and cognition. There is considerable evidence of the cognitive dysfunctions caused by the neurotoxic effects of BD in the not-yet-adult brain. Thus, the aim of the present study was to evaluate the effects of different blood alcohol concentrations (BAC) on memory during late adolescence (18-19 years old) in males and females with a history of BD. The sample consisted of 154 adolescents (67 males and 87 females) that were classified as refrainers if they had never previously drunk alcoholic drinks and as binge drinkers if they had drunk six or more standard drink units in a row for men or five or more for women at a minimum frequency of three occasions in a month, throughout the previous 12 months. After intake of a high acute dose of alcohol by binge drinkers or a control refreshment by refrainers and binge drinkers, subjects were distributed into four groups for each gender according to their BAC: BAC0-R (0 g/L, in refrainers), BAC0-BD (0 g/L, in binge drinkers), BAC1 (0.3 - 0.5 g/L, in binge drinkers) or BAC2 (0.54 - 1.1 g/L, in binge drinkers). The subjects' immediate visual memory and working memory were then measured according to the Wechsler Memory Scale (WMS-III). The BAC1 group showed lower scores of immediate visual memory but not of working memory, while lower performance in both memories were found in the BAC2 group. Therefore, the brain of binge drinkers with moderate BAC could be employing compensatory mechanisms from additional brain areas to perform a working memory task adequately, but these resources would be undermined when BAC is higher (>0.5 g/L). No gender differences were found in BAC-related lower performance in immediate visual memory and working memory. In conclusion, immediate visual memory is more sensitive than working memory to

  12. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  13. Direct α-alkylation of ketones with alcohols in water.

    Science.gov (United States)

    Xu, Guoqiang; Li, Qiong; Feng, Jiange; Liu, Qiang; Zhang, Zuojun; Wang, Xicheng; Zhang, Xiaoyun; Mu, Xindong

    2014-01-01

    The direct α-alkylation of ketones with alcohols has emerged as a new green protocol to construct C-C bonds with H2 O as the sole byproduct. In this work, a very simple and convenient Pd/C catalytic system for the direct α-alkylation of ketones with primary alcohols in pure water is developed. Based on this catalytic system, aqueous mixtures of dilute acetone, 1-butanol, and ethanol (mimicking ABE fermentation products) can be directly transformed into C5 -C11 or longer-chain ketones and alcohols, which are precursors to fuels. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Motives for mixing alcohol with energy drinks and other nonalcoholic beverages, and consequences for overall alcohol consumption.

    Science.gov (United States)

    Verster, Joris C; Benson, Sarah; Scholey, Andrew

    2014-01-01

    The aim of this survey was to assess the motives for energy drink consumption, both alone and mixed with alcohol, and to determine whether negative or neutral motives for consuming alcohol mixed with energy drinks (AMED) have a differential effect on overall alcohol consumption. Demographics, alcohol and energy drink consumption-related questions, and motives for the consumption of energy drinks (alone or mixed with alcohol) were assessed. The motives to mix alcohol with energy drinks were compared with those for mixing alcohol with other nonalcoholic beverages. A total of 2,329 students who completed the study consumed energy drinks. The motives for consuming energy drinks (without alcohol) included "I like the taste" (58.6%), "To keep me awake" (54.3%), "It gives me energy" (44.3%), "It helps concentrating when studying" (33.9%), "It increases alertness" (28.8%), "It helps me concentrate better" (20.6%), and "It makes me less sleepy when driving" (14.2%). A total of 1,239 students reported occasionally consuming AMED (AMED group). The most frequent motives included "I like the taste" (81.1%), "I wanted to drink something else" (35.3%), and "To celebrate a special occasion" (14.6%). No relevant differences in motives were observed for using an energy drink or another nonalcoholic beverage as a mixer. A minority of students (21.6%) reported at least one negative motive to consume AMED. Despite these negative motives, students reported consuming significantly less alcohol on occasions when they consumed AMED compared to alcohol-only occasions. The majority of students who consume energy drinks (without alcohol) do so because they like the taste, or they consume these drinks to keep them awake and give them energy. AMED consumption is more frequently motivated by neutral as opposed to negative motives. No relevant differences in drinking motives and overall alcohol consumption were observed between the occasions when energy drinks or other nonalcoholic beverages were

  15. Alcohol consumption, blood alcohol concentration level and guideline compliance in hospital referred patients with minimal, mild and moderate head injuries

    DEFF Research Database (Denmark)

    Harr, Marianne Efskind; Heskestad, Ben; Ingebrigtsen, Tor

    2011-01-01

    In 2000 the Scandinavian Neurotrauma Committee published guidelines for safe and cost-effective management of minimal, mild and moderate head injured patients.The aims of this study were to investigate to what extent the head injury population is under the influence of alcohol, and to evaluate...... whether the physicians' compliance to the guidelines is affected when patients are influenced by alcohol....

  16. Acute Alcohol Consumption Elevates Serum Bilirubin, an Endogenous Antioxidant

    Science.gov (United States)

    O’Malley, Stephanie S.; Gueorguieva, Ralitza; Wu, Ran; Jatlow, Peter I.

    2015-01-01

    Background Moderate alcohol consumption has been associated with both negative and favorable effects on health. The mechanisms responsible for reported favorable effects remain unclear. Higher (not necessarily elevated) concentrations of serum bilirubin, an antioxidant, have also been associated with reduced risk of cardiovascular disease and all-cause mortality. This study tests the hypothesis that single dose alcohol consumption elevates bilirubin providing a potential link between these observations. Methods 18 healthy individuals (8 cigarette smokers) were administered alcohol, calibrated to achieve blood concentrations of 20, 80 and 120 mg/dL, in random order in 3 laboratory sessions separated by a week. Each session was preceded by and followed by 5–7 days of alcohol abstinence. Serum bilirubin was measured at 7:45 am prior to drinking, at 2 pm, and at 7:45 the next morning. Mixed effects regression models compared baseline and 24 hr. post-drinking bilirubin concentrations. Results Total serum bilirubin (sum of indirect and direct) concentration increased significantly after drinking from baseline to 24 hours in non-smokers (from Mean=0.38, SD=0.24 to Mean=0.51 SD=0.30, F(1, 32.2) =24.24, pbilirubin concentration and the ratio of indirect (unconjugated) to direct (conjugated) bilirubin also increased significantly. Conclusions Alcohol consumption leads to increases in serum bilirubin in nonsmokers. Considering the antioxidant properties of bilirubin, our findings suggest one possible mechanism for the reported association between alcohol consumption and reduced risk of some disorders that could be tested in future longitudinal studies. PMID:25707709

  17. Continuous alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Smidrkal, M; Nejedly, A

    1956-01-01

    Results are given of investigations on the continuous production of ethanol on a laboratory and on a semi-commercial scale. The suggested devices are particularly described. Under constant conditions the production cycle required 12 to 17 days, the acidity being 4.0 to 415 ml. 0.1 N NaOH/100 ml and the concentration of fermented wort 10.5 to 11%. The maximum production from 1 h of fermentation space during 24 h was 8.67 l of absolute alcohol when the efflux was divided into several basins; when the efflux of sweet wort was collected into one basin only, the maximum production was 7.20 l of absolute alcohol. The amount of alcohol produced was 62.20 l/100 kg sugar.

  18. Upper limits to americium concentration in large sized sodium-cooled fast reactors loaded with metallic fuel

    International Nuclear Information System (INIS)

    Zhang, Youpeng; Wallenius, Janne

    2014-01-01

    Highlights: • The americium transmutation capability of Integral Fast Reactor was investigated. • The impact from americium introduction was parameterized by applying SERPENT Monte Carlo calculations. • Higher americium content in metallic fuel leads to a power penalty, preserving consistent safety margins. - Abstract: Transient analysis of a large sized sodium-cooled reactor loaded with metallic fuel modified by different fractions of americium have been performed. Unprotected loss-of-offsite power, unprotected loss-of-flow and unprotected transient-over-power accidents were simulated with the SAS4A/SASSYS code based on the geometrical model of an IFR with power rating of 2500 MW th , using safety parameters obtained with the SERPENT Monte Carlo code. The Ti-modified austenitic D9 steel, having higher creep rupture strength, was considered as the cladding and structural material apart from the ferritic/martensitic HT9 steel. For the reference case of U–12Pu–1Am–10Zr fuel at EOEC, the margin to fuel melt during a design basis condition UTOP is about 50 K for a maximum linear rating of 30 kW/m. In order to maintain a margin of 50 K to fuel failure, the linear power rating has to be reduced by ∼3% and 6% for 2 wt.% and 3 wt.% Am introduction into the fuel respectively. Hence, an Am concentration of 2–3 wt.% in the fuel would lead to a power penalty of 3–6%, permitting a consumption rate of 3.0–5.1 kg Am/TW h th . This consumption rate is significantly higher than the one previously obtained for oxide fuelled SFRs

  19. Utilization of Renewable Oxygenates as Gasoline Blending Components

    Energy Technology Data Exchange (ETDEWEB)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  20. hydrogel membrane as electrolyte for direct borohydride fuel cells

    Indian Academy of Sciences (India)

    A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol) hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB5 Misch metal alloy as anode and a goldplated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous ...

  1. Experimental Studies on Four Stroke Diesel Engine Fuelled with Tamarind Seed Oil as Potential Alternate Fuel for Sustainable Green Environment

    Directory of Open Access Journals (Sweden)

    V. Dhana Raju

    2018-01-01

    Full Text Available The main objective of this present novel work is to investigate the performance, combustion and emission characteristics of biodiesel derived from the tamarind seed through the transesterification process as potential alternative feedstock for the diesel engine. The physio-chemical properties of tamarind seed methyl ester (TSME were evaluated experimentally and compared with the base fuel. Test fuels were prepared in 3 concentrations such as B10 (10% tamarind seed oil and 90% diesel, B20 and B30.Experiments were conducted at a constant speed, the injection timing of 23° crank angle and compression ratio 17.5:1 with varying load conditions to investigate the diesel engine characteristics. TSME 20 shown better thermal efficiency (34.41% over diesel which is 1.17 % higher and also it produces lower emissions of CO, HC, and smoke opacity. N-Amyl alcohol (NAA is used as a fuel additive for the optimum blend of TSME20; added in 5% and 10% concentration on the volume basis. From the analysis of experimental data, the use of fuel additives significantly reduces the smoke opacity by 29.49 % for TSME20 NAA 10% blend in addition to the reduction of carbon monoxide and hydrocarbons emissions; however, the specific fuel consumption and the oxides of nitrogen were marginally increased.

  2. Contingency management for alcohol use reduction: a pilot study using a transdermal alcohol sensor.

    Science.gov (United States)

    Barnett, Nancy P; Tidey, Jennifer; Murphy, James G; Swift, Robert; Colby, Suzanne M

    2011-11-01

    Contingency management (CM) has not been thoroughly evaluated as a treatment for alcohol abuse or dependence, in part because verification of alcohol use reduction requires frequent in-person breath tests. Transdermal alcohol sensors detect alcohol regularly throughout the day, providing remote monitoring and allowing for rapid reinforcement of reductions in use. The purpose of this study was to evaluate the efficacy of CM for reduction in alcohol use, using a transdermal alcohol sensor to provide a continuous measure of alcohol use. Participants were 13 heavy drinking adults who wore the Secure Continuous Remote Alcohol Monitoring (SCRAM) bracelet for three weeks and provided reports of alcohol and drug use using daily web-based surveys. In Week 1, participants were asked to drink as usual; in Weeks 2 and 3, they were reinforced on an escalating schedule with values ranging from $5 to $17 per day on days when alcohol use was not reported or detected by the SCRAM. Self-reports of percent days abstinent and drinks per week, and transdermal measures of average and peak transdermal alcohol concentration and area under the curve declined significantly in Weeks 2-3. A nonsignificant but large effect size for reduction in days of tobacco use also was found. An adjustment to the SCRAM criteria for detecting alcohol use provided an accurate but less conservative method for use with non-mandated clients. Results support the efficacy of CM for alcohol use reductions and the feasibility of using transdermal monitoring of alcohol use for clinical purposes. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Contingency Management for Alcohol Use Reduction: A Pilot Study using a Transdermal Alcohol Sensor*

    Science.gov (United States)

    Barnett, Nancy P.; Tidey, Jennifer; Murphy, James G.; Swift, Robert; Colby, Suzanne M.

    2011-01-01

    Background Contingency management (CM) has not been thoroughly evaluated as a treatment for alcohol abuse or dependence, in part because verification of alcohol use reduction requires frequent in-person breath tests. Transdermal alcohol sensors detect alcohol regularly throughout the day, providing remote monitoring and allowing for rapid reinforcement of reductions in use. Methods The purpose of this study was to evaluate the efficacy of CM for reduction in alcohol use, using a transdermal alcohol sensor to provide a continuous measure of alcohol use. Participants were 13 heavy drinking adults who wore the Secure Continuous Remote Alcohol Monitoring (SCRAM) bracelet for three weeks and provided reports of alcohol and drug use using daily web-based surveys. In Week 1, participants were asked to drink as usual; in Weeks 2 and 3, they were reinforced on an escalating schedule with values ranging from $5-$17 per day on days when alcohol use was not reported or detected by the SCRAM. Results Self-reports of percent days abstinent and drinks per week, and transdermal measures of average and peak transdermal alcohol concentration and area under the curve declined significantly in Weeks 2-3. A nonsignificant but large effect size for reduction in days of tobacco use also was found. An adjustment to the SCRAM criteria for detecting alcohol use provided an accurate but less conservative method for use with non-mandated clients. Conclusion Results support the efficacy of CM for alcohol use reductions and the feasibility of using transdermal monitoring of alcohol use for clinical purposes. PMID:21665385

  4. Review of cell performance in anion exchange membrane fuel cells

    Science.gov (United States)

    Dekel, Dario R.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) have recently received increasing attention since in principle they allow for the use of non-precious metal catalysts, which dramatically reduces the cost per kilowatt of power in fuel cell devices. Until not long ago, the main barrier in the development of AEMFCs was the availability of highly conductive anion exchange membranes (AEMs); however, improvements on this front in the past decade show that newly developed AEMs have already reached high levels of conductivity, leading to satisfactory cell performance. In recent years, a growing number of research studies have reported AEMFC performance results. In the last three years, new records in performance were achieved. Most of the literature reporting cell performance is based on hydrogen-AEMFCs, although an increasing number of studies have also reported the use of fuels others than hydrogen - such as alcohols, non-alcohol C-based fuels, as well as N-based fuels. This article reviews the cell performance and performance stability achieved in AEMFCs through the years since the first reports in the early 2000s.

  5. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Science.gov (United States)

    Jana, Rajkumar; Peter, Sebastian C.

    2016-10-01

    Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be 3.2 and 2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.

  6. Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells.

    Science.gov (United States)

    Tang, Haolin; Pan, Mu; Jiang, San Ping

    2011-05-21

    A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H(3)PW(12)O(40), abbreviated as HPW or PWA)-silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively charged silica precursor and negatively charged PW(12)O(40)(3-) species. The self-assembled HPW-silica nanocomposites were characterized by small-angle XRD, TEM, nitrogen adsorption-desorption isotherms, ion exchange capacity, proton conductivity and solid-state (31)P NMR. The results show that highly ordered and uniform nanoarrays with long-range order are formed when the HPW content in the nanocomposites is equal to or lower than 25 wt%. The mesoporous structures/textures were clearly presented, with nanochannels of 3.2-3.5 nm in diameter. The (31)P NMR results indicates that there are (≡SiOH(2)(+))(H(2)PW(12)O(40)(-)) species in the HPW-silica nanocomposites. A HPW-silica (25/75 w/o) nanocomposite gave an activation energy of 13.0 kJ mol(-1) and proton conductivity of 0.076 S cm(-1) at 100 °C and 100 RH%, and an activation energy of 26.1 kJ mol(-1) and proton conductivity of 0.05 S cm(-1) at 200 °C with no external humidification. A fuel cell based on a 165 μm thick HPW-silica nanocomposite membrane achieved a maximum power output of 128.5 and 112.0 mW cm(-2) for methanol and ethanol fuels, respectively, at 200 °C. The high proton conductivity and good performance demonstrate the excellent water retention capability and great potential of the highly ordered HPW-silica mesoporous nanocomposites as high-temperature proton exchange membranes for direct alcohol fuel cells (DAFCs).

  7. Chemosensory responsiveness to ethanol and its individual sensory components in alcohol-preferring, alcohol-nonpreferring and genetically heterogeneous rats.

    Science.gov (United States)

    Brasser, Susan M; Silbaugh, Bryant C; Ketchum, Myles J; Olney, Jeffrey J; Lemon, Christian H

    2012-03-01

    Alcohol activates orosensory circuits that project to motivationally relevant limbic forebrain areas that control appetite, feeding and drinking. To date, limited data exists regarding the contribution of chemosensory-derived ethanol reinforcement to ethanol preference and consumption. Measures of taste reactivity to intra-orally infused ethanol have not found differences in initial orofacial responses to alcohol between alcohol-preferring (P) and alcohol-non-preferring (NP) genetically selected rat lines. Yet, in voluntary intake tests, P rats prefer highly concentrated ethanol upon initial exposure, suggesting an early sensory-mediated attraction. Here, we directly compared self-initiated chemosensory responding for alcohol and prototypic sweet, bitter and oral trigeminal stimuli among selectively bred P, NP and non-selected Wistar (WI) outbred lines to determine whether differential sensory responsiveness to ethanol and its putative sensory components are phenotypically associated with genetically influenced alcohol preference. Rats were tested for immediate short-term lick responses to alcohol (3-40%), sucrose (0.01-1 M), quinine (0.01-3 mM) and capsaicin (0.003-1 mM) in a brief-access assay designed to index orosensory-guided behavior. P rats exhibited elevated short-term lick responses to both alcohol and sucrose relative to NP and WI lines across a broad range of concentrations of each stimulus and in the absence of blood alcohol levels that would produce significant post-absorptive effects. There was no consistent relationship between genetically mediated alcohol preference and orosensory avoidance of quinine or capsaicin. These data indicate that enhanced initial chemosensory attraction to ethanol and sweet stimuli are phenotypes associated with genetic alcohol preference and are considered within the framework of downstream activation of oral appetitive reward circuits. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of

  8. Outlook on Standardization of Alternative Vehicle Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Rehnlund, B [Atrax Energi AB (Sweden)

    2008-10-15

    The use of fossil but in first hand biobased alternative fuels in transportation has increased over the last decades. This change is primarily driven by concerns about climate change that is caused by emissions of fossil carbon dioxide and other greenhouse gases, but also by the impact on health and environment, caused by emissions of regulated as well as non-regulated emissions from the transport sector. Most alternative fuels will help to reduce the emissions of regulated and non-regulated emissions, while alternative fuels based on biomass also will contribute to reduced net emissions of carbon dioxide. Since the mid 1990s, the use of biomass based fuels such as ethanol and biodiesel has reached levels high enough in for example Europe, Brazil and the U.S. to motivate national or regional specifications/standards. Especially from the vehicle/engine manufacturer's point of view standards are of high importance. From early 2000 onwards, the international trade of biofuels (for example from Brazil to the U.S. and Europe) has grown, and this has created a need for common international specifications/standards. This report presents information about national and regional standards for alternative fuels, but also, when existing and reported, standards on a global level are described and discussed. Ongoing work concerning new or revised standards on alternative fuels on national, regional or global level is also discussed. In this report we have covered standards on all kind of alternative fuels, exemplified below. However, the focus is on liquid biofuels for diesel engines and Otto engines. 1) Liquid fuels for diesel engines (compression ignition engines), such as Fatty Acid Methyl Esters (FAME), Fatty Acid Ethyl Esters (FAEE), alcohols, alcohol derivates and synthetic diesel fuels. 2) Liquid fuels for Otto engines (spark ignition engines), such as alcohols, ethers and synthetic gasoline. 3) Liquefied fossil petroleum gas (LPG). 4) Di-Methyl Ether (DME). 5) Fossil

  9. Outlook on Standardization of Alternative Vehicle Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Rehnlund, B. [Atrax Energi AB (Sweden)

    2008-10-15

    The use of fossil but in first hand biobased alternative fuels in transportation has increased over the last decades. This change is primarily driven by concerns about climate change that is caused by emissions of fossil carbon dioxide and other greenhouse gases, but also by the impact on health and environment, caused by emissions of regulated as well as non-regulated emissions from the transport sector. Most alternative fuels will help to reduce the emissions of regulated and non-regulated emissions, while alternative fuels based on biomass also will contribute to reduced net emissions of carbon dioxide. Since the mid 1990s, the use of biomass based fuels such as ethanol and biodiesel has reached levels high enough in for example Europe, Brazil and the U.S. to motivate national or regional specifications/standards. Especially from the vehicle/engine manufacturer's point of view standards are of high importance. From early 2000 onwards, the international trade of biofuels (for example from Brazil to the U.S. and Europe) has grown, and this has created a need for common international specifications/standards. This report presents information about national and regional standards for alternative fuels, but also, when existing and reported, standards on a global level are described and discussed. Ongoing work concerning new or revised standards on alternative fuels on national, regional or global level is also discussed. In this report we have covered standards on all kind of alternative fuels, exemplified below. However, the focus is on liquid biofuels for diesel engines and Otto engines. 1) Liquid fuels for diesel engines (compression ignition engines), such as Fatty Acid Methyl Esters (FAME), Fatty Acid Ethyl Esters (FAEE), alcohols, alcohol derivates and synthetic diesel fuels. 2) Liquid fuels for Otto engines (spark ignition engines), such as alcohols, ethers and synthetic gasoline. 3) Liquefied fossil petroleum gas (LPG). 4) Di-Methyl Ether (DME). 5

  10. College Students' Underestimation of Blood Alcohol Concentration from Hypothetical Consumption of Supersized Alcopops: Results from a Cluster-Randomized Classroom Study.

    Science.gov (United States)

    Rossheim, Matthew E; Thombs, Dennis L; Krall, Jenna R; Jernigan, David H

    2018-05-30

    Supersized alcopops are a class of single-serving beverages popular among underage drinkers. These products contain large quantities of alcohol. This study examines the extent to which young adults recognize how intoxicated they would become from consuming these products. The study sample included 309 undergraduates who had consumed alcohol within the past year. Thirty-two sections of a college English course were randomized to 1 of 2 survey conditions, based on hypothetical consumption of supersized alcopops or beer of comparable liquid volume. Students were provided an empty can of 1 of the 2 beverages to help them answer the survey questions. Equation-calculated blood alcohol concentrations (BACs)-based on body weight and sex-were compared to the students' self-estimated BACs for consuming 1, 2, and 3 cans of the beverage provided to them. In adjusted regression models, students randomized to the supersized alcopop group greatly underestimated their BAC, whereas students randomized to the beer group overestimated it. The supersized alcopop group underestimated their BAC by 0.04 (95% confidence interval [CI]: 0.034, 0.053), 0.09 (95% CI: 0.067, 0.107), and 0.13 g/dl (95% CI: 0.097, 0.163) compared to the beer group. When asked how much alcohol they could consume before it would be unsafe to drive, students in the supersized alcopop group had 7 times the odds of estimating consumption that would generate a calculated BAC of at least 0.08 g/dl, compared to those making estimates based on beer consumption (95% CI: 3.734, 13.025). Students underestimated the intoxication they would experience from consuming supersized alcopops. Revised product warning labels are urgently needed to clearly identify the number of standard drinks contained in a supersized alcopop can. Moreover, regulations are needed to limit alcohol content of single-serving products. Copyright © 2018 by the Research Society on Alcoholism.

  11. Characterization of Catalyst Materials for Production of Aerospace Fuels

    Science.gov (United States)

    Best, Lauren M.; De La Ree, Ana B.; Hepp, Aloysius F.

    2012-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  12. Biological production of liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  13. Effect of oral testosterone treatment on serum concentrations of sex steroids gonadotrophins and prolactin in alcoholic cirrhotic men. Copenhagen Study Group for Liver Diseases

    DEFF Research Database (Denmark)

    Gluud, C; Bennett, Patrick; Svenstrup, Bo

    1988-01-01

    The aim of this study was to examine the serum concentrations of sex steroids and pituitary hormones in a randomly selected group of alcoholic cirrhotic men participating in a randomized, placebo-controlled study on the efficacy of oral testosterone treatment on the liver. Before treatment...

  14. Comparative TEA for Indirect Liquefaction Pathways to Distillate-Range Fuels via Oxygenated Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric; Snowden-Swan, Lesley J.; Talmadge, Michael; Dutta, Abhijit; Jones, Susanne; Ramasamy, Karthikeyan; Gray, Michael; Dagle, Robert; Padmaperuma, Asanga; Gerber, Mark; Sahir, Asad; Tao, Ling; Zhang, Yanan

    2017-03-03

    This paper presents a comparative techno-economic analysis of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates (derived either via thermochemical or biochemical conversion steps). The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates, followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. We show that the emerging pathways via oxygenated intermediates have the potential to be cost competitive with the conventional Fischer-Tropsch process. The evaluated pathways and the benchmark process generally exhibit similar fuel yields and carbon conversion efficiencies. The resulting minimum fuel selling prices are comparable to the benchmark at approximately $3.60 per gallon-gasoline equivalent, with potential for two new pathways to be more economically competitive. Additionally, the coproduct values can play an important role in the economics of the processes with oxygenated intermediates derived via syngas fermentation. Major cost drivers for the integrated processes are tied to achievable fuel yields and conversion efficiency of the intermediate steps, i.e., the production of oxygenates/alcohols from syngas and the conversion of oxygenates/alcohols to hydrocarbon fuels.

  15. Motives for mixing alcohol with energy drinks and other nonalcoholic beverages, and consequences for overall alcohol consumption

    Directory of Open Access Journals (Sweden)

    Verster JC

    2014-06-01

    Full Text Available Joris C Verster,1,2 Sarah Benson,2 Andrew Scholey21Utrecht Institute for Pharmaceutical Sciences, Division of Pharmacology, Utrecht University, Utrecht, the Netherlands; 2Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, AustraliaIntroduction: The aim of this survey was to assess the motives for energy drink consumption, both alone and mixed with alcohol, and to determine whether negative or neutral motives for consuming alcohol mixed with energy drinks (AMED have a differential effect on overall alcohol consumption.Methods: Demographics, alcohol and energy drink consumption-related questions, and motives for the consumption of energy drinks (alone or mixed with alcohol were assessed. The motives to mix alcohol with energy drinks were compared with those for mixing alcohol with other nonalcoholic beverages.Results: A total of 2,329 students who completed the study consumed energy drinks. The motives for consuming energy drinks (without alcohol included "I like the taste" (58.6%, “To keep me awake” (54.3%, “It gives me energy” (44.3%, "It helps concentrating when studying" (33.9%, "It increases alertness" (28.8%, “It helps me concentrate better” (20.6%, and “It makes me less sleepy when driving” (14.2%. A total of 1,239 students reported occasionally consuming AMED (AMED group. The most frequent motives included “I like the taste” (81.1%, “I wanted to drink something else” (35.3%, and “To celebrate a special occasion” (14.6%. No relevant differences in motives were observed for using an energy drink or another nonalcoholic beverage as a mixer. A minority of students (21.6% reported at least one negative motive to consume AMED. Despite these negative motives, students reported consuming significantly less alcohol on occasions when they consumed AMED compared to alcohol-only occasions.Conclusion: The majority of students who consume energy drinks (without alcohol do so because they like the taste

  16. Autoantibodies and immunoglobulins in alcoholic steatosis and cirrhosis

    DEFF Research Database (Denmark)

    Gluud, C; Tage-Jensen, Ulrik Viggo

    1983-01-01

    increased (p less than 0.005) concentrations of immunoglobulins G, A, and M when compared to patients with steatosis. These results indicate that the degree of liver damage has more effect than chronic alcoholism on the humoral immune system. Whether this influence is direct or indirect remains......Antinuclear antibodies were significantly more prevalent (p less than 0.01) in 143 patients with alcoholic cirrhosis than in 64 patients with alcoholic steatosis and in 94 controls. Smooth muscle antibodies were significantly more prevalent (p less than 0.05) in patients with alcoholic steatosis...... and cirrhosis than in controls. The prevalence of antimitochondrial antibodies and IgG liver membrane antibodies did not differ significantly between the three groups. Immunoglobulin G, A, and M concentrations were only occasionally increased in patients with steatosis. Patients with cirrhosis had significantly...

  17. CADMIUM, COPPER, LEAD AND ZINC CONCENTRATIONS IN LOW QUALITY WINES AND ALCOHOL CONTAINING DRINKS FROM ITALY, BULGARIA AND POLAND

    Directory of Open Access Journals (Sweden)

    Renata Muchacka

    2012-02-01

    Full Text Available We studied Cu, Cd, Pb and Zn concentrations in low quality wines produced in Bulgaria and Italy and in alcohol containing multi-fruit drinks produced in Poland. All the metals were present in tested products. Cadmium was not detected in Italian and Polish products. In one of the Bulgarian wines cadmium was detected in concentration of 0.004 mg•l-1. Italian wines were not contaminated with Pb. Its concentration was the highest in Polish drinks (0.88±0.52 mg•l-1. The largest and statistically significant differences occurred between Cu and Zn contents. Both metals had the highest concetrations in Italian wines (Cu - 0.13±0.05 mg•l-1; Zn - 0.83±0.56 mg•l-1, and the lowest in Polish products (Cu - 0.04±0.001 mg•l-1; Zn -0.18±0.16 mg•l-1.

  18. The diuretic action of weak and strong alcoholic beverages in elderly men

    NARCIS (Netherlands)

    Polhuis, Kristel C.M.M.; Wijnen, Annemarthe H.C.; Sierksma, Aafje; Calame, Wim; Tieland, Michael

    2017-01-01

    With ageing, there is a greater risk of dehydration. This study investigated the diuretic effect of alcoholic beverages varying in alcohol concentration in elderly men. Three alcoholic beverages (beer (AB), wine (AW), and spirits (S)) and their non-alcoholic counterparts (non-alcoholic beer (NAB),

  19. Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Qingwen Wang

    2013-09-01

    Full Text Available Crude bio-oil from pine chip fast pyrolysis was upgraded with olefins (1-octene, cyclohexene, 1,7-octadiene, and 2,4,4-trimethylpentene plus 1-butanol (iso-butanol, t-butanol and ethanol at 120 °C using a silica sulfuric acid (SSA catalyst that possesses a good catalytic activity and stability. Gas chromatography-mass spectrometry (GC-MS, Fourier transform infrared spectroscopy (FT-IR and proton nuclear magnetic resonance (1H-NMR analysis showed that upgrading sharply increased ester content and decreased the amounts of levoglucosan, phenols, polyhydric alcohols and carboxylic acids. Upgrading lowered acidity (pH value rose from 2.5 to >3.5, removed the unpleasant odor and increased hydrocarbon solubility. Water content dramatically decreased from 37.2% to about 7.0% and the heating value increased from 12.6 MJ·kg−1 to about 31.9 MJ·kg−1. This work has proved that bio-oil upgrading with a primary olefin plus 1-butanol is a feasible route where all the original heating value of the bio-oil plus the added olefin and alcohol are present in the resulting fuel.

  20. Mathematical modeling of methyl ester concentration distribution in a continuous membrane tubular reactor and comparison with conventional tubular reactor

    Science.gov (United States)

    Talaghat, M. R.; Jokar, S. M.; Modarres, E.

    2017-10-01

    The reduction of fossil fuel resources and environmental issues made researchers find alternative fuels include biodiesels. One of the most widely used methods for production of biodiesel on a commercial scale is transesterification method. In this work, the biodiesel production by a transesterification method was modeled. Sodium hydroxide was considered as a catalyst to produce biodiesel from canola oil and methanol in a continuous tubular ceramic membranes reactor. As the Biodiesel production reaction from triglycerides is an equilibrium reaction, the reaction rate constants depend on temperature and related linearly to catalyst concentration. By using the mass balance for a membrane tubular reactor and considering the variation of raw materials and products concentration with time, the set of governing equations were solved by numerical methods. The results clearly show the superiority of membrane reactor than conventional tubular reactors. Afterward, the influences of molar ratio of alcohol to oil, weight percentage of the catalyst, and residence time on the performance of biodiesel production reactor were investigated.

  1. 46 CFR 147.50 - Fuel for cooking, heating, and lighting.

    Science.gov (United States)

    2010-10-01

    ... cargo vessels. (b) Fluid alcohol is prohibited for cooking, heating, or lighting on ferry vessels. Fluid... 46 Shipping 5 2010-10-01 2010-10-01 false Fuel for cooking, heating, and lighting. 147.50 Section... SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.50 Fuel for cooking...

  2. (Lead concentration in the blood and aminolevulinic acid dehydratase (ALAD) activity in the erythrocytes depending on sex, age, tobacco smoking and alcohol drinking in the group of persons exposed to industrial dust)

    Energy Technology Data Exchange (ETDEWEB)

    Kuliczkowski, K

    1981-01-01

    A population of 399 persons (180 women and 219 men) has been examined. Anamnesis included detailed inquiries about smoking habit and alcohol drinking. In the laboratory, lead concentration in blood and ALAD activity in erythrocytes have been determined on empty stomach. No differences have been found in the mean lead concentration determined by sex, whereas the mean ALAD activity is higher in women than in men. The subjects' age has affected the test parameters neither in men nor women. In smoking men no changes in the mean lead concentration in blood and mean ALAD activity in erythrocytes have been found. In smoking women, the mean lead concentration is not changed, but the mean ALAD activity is lower. Alcohol drinking in men does not change the values of the test parameters, whereas drinking women have revealed higher mean blood lead concentration.

  3. Improved moulding material for addition to nuclear fuel particles to produce nuclear fuel elements

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1976-01-01

    A suggestion is made to improve the moulding materials used to produce carbon-contained nuclear fuel particles by a coke-reducing added substance. The nuclear fuel particles are meant for the formation of fuel elements for gas-cooled high-temperature nuclear reactors. The moulding materials are above all for the formation of coated particles which are burnt in situ in nuclear fuel element chambers out of 'green' nuclear fuel bodies. The added substance improves the shape stability of the particles forming and prevents a stiding or bridge formation between the particles or with the surrounding walls. The following are named as added substances: 1) Polystyrene and styrene-butadiene-Co polymers (mol. wt. between 5oo and 1,000,000), 2) aromatic compounds (mol. wt. 75 to 300), 3) saturated hydrocarbon polymers (mol. wt. 5,000 to 1,000,000). Additional release agents further improve the properties in the same direction (e.g. alcohols, fatty acids, amines). (orig.) [de

  4. Influences of ignition improver additive on ternary (diesel-biodiesel-higher alcohol) blends thermal stability and diesel engine performance

    International Nuclear Information System (INIS)

    Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Alabdulkarem, Abdullah; Rashed, M.M.; Ashraful, A.M.

    2016-01-01

    Highlights: • Ignition improver additives makes the biodiesel-alcohol blends more thermally stable. • Density and cetane number improved significantly with EHN mixing. • BP and BSFC improved by adding ignition improver additives. • Nitric oxides and smoke of the EHN treated blends decreased. • CO and HC increased slightly with EHN addition. - Abstract: Pentanol is a long chain alcohol produced from renewable sources and considered as a promising biofuel as a blending component with diesel or biodiesel blends. However, the lower cetane number of alcohols is a limitation, and it is important to increase the overall cetane number of biodiesel fuel blends for efficient combustion and lower emission. In this consideration, ignition improver additive 2-ethylhexyl nitrate (EHN) were used at a proportion of 1000 and 2000 ppm to diesel-biodiesel-pentanol blends. Experiments were conducted in a single cylinder; water-cooled DI diesel engine operated at full throttle and varying speed condition. The thermal stability of the modified ternary fuel blends was evaluated through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis, and the physic-chemical properties of the fuel as well as engine characteristics were studied and compared. The addition of EHN to ternary fuel blends enhanced the cetane number significantly without any significant adverse effect on the other properties. TGA and DSC analysis reported about the improvement of thermal characteristics of the modified blends. It was found that, implementing ignition improver make the diesel-biodiesel-alcohol blends more thermally stable. Also, the brake specific fuel consumption (BSFC), nitric oxides (NO) and smoke emission reduced remarkably with the addition of EHN. Introducing EHN to diesel-biodiesel-alcohol blends increased the cetane number, shorten the ignition delay by increasing the diffusion rate and improve combustion. Hence, the NO and BSFC reduced while, carbon

  5. The Effect of Alcohol-Based Hand Sanitizer Vapors on Evidential Breath Alcohol Test Results.

    Science.gov (United States)

    Strawsine, Ellen; Lutmer, Brian

    2017-11-16

    This study was undertaken to determine if the application of alcohol-based hand sanitizers (ABHSs) to the hands of a breath test operator will affect the results obtained on evidential breath alcohol instruments (EBTs). This study obtained breath samples on three different EBTs immediately after application of either gel or foam ABHS to the operator's hands. A small, but significant, number of initial analyses (13 of 130, 10%) resulted in positive breath alcohol concentrations, while 41 samples (31.5%) resulted in a status code. These status codes were caused by ethanol vapors either in the room air or their inhalation by the subject, thereby causing a mouth alcohol effect. Replicate subject samples did not yield any consecutive positive numeric results. As ABHS application can cause a transitory mouth alcohol effect via inhalation of ABHS vapors, EBT operators should forego the use of ABHS in the 15 min preceding subject testing. © 2017 American Academy of Forensic Sciences.

  6. [Alcohol intake--a two-edged sword. Part 1: metabolism and pathogenic effects of alcohol].

    Science.gov (United States)

    Ströhle, Alexander; Wolters, Maike; Hahn, Andreas

    2012-08-01

    From the biomedical point of view alcohol is a Janus-faced dietary component with a dose-dependent effect varying from cardiovascular protection to cytotoxicity. Alcohol is absorbed in the upper gastrointestinal tract by passive diffusion, is quickly distributed throughout body water and is mostly eliminated through oxidation. The enzymatically-catalyzed oxidative degradation to acetaldehyde and further to acetate is primarily localized in the liver. In case of a low blood alcohol concentration (0.5 per thousand) are increasingly oxidized by the microsomal ethanoloxidizing system (MEOS). Alcohol consumption induces several metabolic reactions as well as acute effects on the central nervous system. Chronic alcohol consumption to some extent irreparably damages nearly every organ with the liver being particularly concerned. There are three stages of alcohol-induced liver disease (fatty liver, alcohol hepatitis, liver cirrhosis) and the liver damages mainly result from reaction products of alcohol degradation (acetaldehyde, NADH and reactive oxygen species). An especially dreaded clinical complication of the alcohol-induced liver disease is the hepatic encephalopathy. Its pathogenesis is a multifactorial and self-perpetuating process with the swelling of astrocytes being a crucial point. Swollen astrocytes induce several reactions such as oxidative/nitrosative stress, impaired signal transduction, protein modifications and a modified gene expression profile. The swelling of astrocytes and the change in neuronal activity are attributed to several neurotoxins, especially ammonia and aromatic amino acids. In alcohol addicted subjects multiple micronutrient deficiencies are common. The status of folic acid, thiamine, pyridoxine and zinc is especially critical.

  7. The policymaking process for creating competitive assets for the use of biomass energy: the Brazilian alcohol programme

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.A. Puppim de [Getulio Vargas Foundation - FGV/EBAPE, Rio de Janeiro (Brazil)

    2002-07-01

    Public policies are fundamental to spur the use of biomass and make it competitive to face traditional commercial fossil fuels. This article analyzes the policymaking process of the Brazilian National Alcohol Policy (Proalcool). Proalcool is one of the world's most ambitious efforts to produce a renewable biomass fuel as an oil substitute. In the 1970s, after the oil crisis and the sharp increase in fuel prices, the Brazilian government started intensifying its policy to substitute sugarcane alcohol for gasoline in automobile use. Through a set of governmental interventions to increase alcohol demand and supply, Brazil created some competitive assets that made Proalcool a relative success in terms of developing institutional and technological capabilities for using renewable energy in large scale. Several key actors influenced the policy directions, such as the central and state governments, military groups, the alcohol industry, sugarcane agricultural aristocracy, bureaucrats, researchers and the media. Instead of thinking of Proalcool as a government decision based only on economic rationale or interests of few decision-makers, the elaboration and implementation of this alcohol policy could be thought of as the result of a policymaking process where the different stakeholders involved in the process with their values, interests and knowledge interacted with each other according to the political, social, technological and economic situation. (Author)

  8. Radioactivity concentration and heavy metal content in fuel oil and oil-ashes in Venezuela

    International Nuclear Information System (INIS)

    Barros, H.; Sajo-Bohus, L.; Abril, J.M.; Greaves, E.D.

    2004-01-01

    During the last years an intensive national program was developed to determine the environmental radioactivity levels in Venezuela. Gamma dose and the radon concentrations indoors, in drinking water, in caves and in artificial cavities including the effect of radon transported to the surface with the earth gas have been studied. To continue this project the oil and other natural energy resource should be considered. It is expected that the environmental radiation level is modified in regions where the oil industrial activity is more aggressive such as in the Zulia State and the Faja Petrolifera del Orinoco, (Central Region). In these regions Venezuela is producing 1.750 thousand barrels of oil from the near-to-the- surface or deep oil drilling. Petroleum constitutes an important source of energy and as the majority of natural source contains radionuclides and their disintegration products, being U, Ra, Pb, Bi, Po and K the most often encountered. The combustion of petroleum concentrate in the ashes those radioelements, and later enter the environment by different ways producing adverse effects on the quality of man life. The concentration of radioelements varies greatly between oil fields, then we still requiring local survey studies in this area. Moreover due to the recent national interest in recycling processes, it becomes important to take precaution in the selection of materials that may contain by-products of industrial origin, including oil. In fact the oil ashes, oil slurry and other mining by-products are thought to be employable in the building industry. The concentration of radioactivity in the ash from thermoelectric power plants that use petroleum as a primary energy source was determined. The analysis include the two major thermoelectric power plants in Venezuela, Ricardo Zuluaga on the northern sea side of Caracas and Planta Centro on the littoral of Carabobo State. The study cover different samples: fuel oil No 6, ashes, heavy and medium petroleum

  9. Breast-feeding and alcoholism

    DEFF Research Database (Denmark)

    Goodwin, D W; Gabrielli, W F; Penick, E C

    1999-01-01

    OBJECTIVE: The authors' goal was to determine whether early termination of breast-feeding contributes to later alcohol dependence, as proposed more than 200 years ago by the British physician Thomas Trotter. METHOD: In 1959-1961, a multiple-specialty group of physicians studied 9, 182 consecutive...... deliveries in a Danish hospital, obtaining data about prepartum and postpartum variables. The present study concentrates on perinatal variables obtained from 200 of the original babies who participated in a 30-year high-risk follow-up study of the antecedents of alcoholism. RESULTS: Of the 27 men who were...... diagnosed as alcohol dependent at age 30, 13 (48%) came from the group weaned from the breast before the age of 3 weeks; only 33 (19%) of the 173 non-alcohol-dependent subjects came from the early weaning group. When challenged by other perinatal variables in a multiple regression analysis, early weaning...

  10. Ethanol affects acylated and total ghrelin levels in peripheral blood of alcohol-dependent rats.

    Science.gov (United States)

    Szulc, Michal; Mikolajczak, Przemyslaw L; Geppert, Bogna; Wachowiak, Roman; Dyr, Wanda; Bobkiewicz-Kozlowska, Teresa

    2013-07-01

    There is a hypothesis that ghrelin could take part in the central effects of alcohol as well as function as a peripheral indicator of the changes which occur during long-term alcohol consumption. The aim of this study was to determine a correlation between alcohol concentration and acylated and total form of ghrelin after a single administration of alcohol (intraperitoneal, i.p.) (experiment 1) and prolonged ethanol consumption (experiment 2). The study was performed using Wistar alcohol preferring (PR) and non-preferring (NP) rats and rats from inbred line (Warsaw High Preferring, WHP; Warsaw Low Preferring, WLP). It was found that ghrelin in ethanol-naive WHP animals showed a significantly lower level when compared with the ethanol-naive WLP or Wistar rats. After acute ethanol administration in doses of 1.0; 2.0 and 4.0 g/kg, i.p., the simple (WHP) or inverse (WLP and Wistar) relationship between alcohol concentration and both form of ghrelin levels in plasma were found. Chronic alcohol intake in all groups of rats led to decrease of acylated ghrelin concentration. PR and WHP rats, after chronic alcohol drinking, had lower levels of both form of ghrelin in comparison with NP and WLP rats, respectively, and the observed differences in ghrelin levels were in inverse relationship with their alcohol intake. In conclusion, it is suggested that there is a strong relationship between alcohol administration or intake, ethanol concentration in blood and both active and total ghrelin level in the experimental animals, and that ghrelin plasma concentration can be a marker of alcohol drinking predisposition. © 2013 The Authors, Addiction Biology © 2013 Society for the Study of Addiction.

  11. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses

    International Nuclear Information System (INIS)

    Rios, Ilka Antonia

    2013-01-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  12. Amplification of hofmeister effect by alcohols.

    Science.gov (United States)

    Xu, Yun; Liu, Guangming

    2014-07-03

    We have demonstrated that Hofmeister effect can be amplified by adding alcohols to aqueous solutions. The lower critical solution temperature behavior of poly(N-isopropylacrylamide) has been employed as the model system to study the amplification of Hofmeister effect. The alcohols can more effectively amplify the Hofmeister effect following the series methanol alcohols and following the series d-sorbitol ≈ xylitol ≈ meso-erythritol alcohols. Our study reveals that the relative extent of amplification of Hofmeister effect is determined by the stability of the water/alcohol complex, which is strongly dependent on the chemical structure of alcohols. The more stable solvent complex formed via stronger hydrogen bonds can more effectively differentiate the anions through the anion-solvent complex interactions, resulting in a stronger amplification of Hofmeister effect. This study provides an alternative method to tune the relative strength of Hofmeister effect besides salt concentration.

  13. Cerebrospinal fluid monocyte chemoattractant protein-1 in alcoholics: support for a neuroinflammatory model of chronic alcoholism.

    Science.gov (United States)

    Umhau, John C; Schwandt, Melanie; Solomon, Matthew G; Yuan, Peixiong; Nugent, Allison; Zarate, Carlos A; Drevets, Wayne C; Hall, Samuel D; George, David T; Heilig, Markus

    2014-05-01

    Liver inflammation in alcoholism has been hypothesized to influence the development of a neuroinflammatory process in the brain characterized by neurodegeneration and altered cognitive function. Monocyte chemoattractant protein-1/chemokine (C-C motif) ligand 2 (MCP-1/CCL2) elevations have been noted in the alcoholic brain at autopsy and may have a role in this process. We studied cerebrospinal fluid (CSF) levels of MCP-1 as well as interleukin-1β and tumor necrosis factor-α in 13 healthy volunteers and 28 alcoholics during weeks 1 and 4 following detoxification. Serum liver enzymes were obtained as markers of alcohol-related liver inflammation. Compared to healthy volunteers, MCP-1 levels were significantly higher in alcoholics both on day 4 and day 25 (p alcohol-induced liver inflammation, as defined by peripheral concentrations of GGT and AST/GOT. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  14. 27 CFR 28.147 - Return of beer or beer concentrate.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Return of beer or beer... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Removal of Beer and Beer Concentrate...-Trade Zone § 28.147 Return of beer or beer concentrate. Beer or beer concentrate removed without payment...

  15. Assessment of PM10 concentrations from domestic biomass fuel combustion in two rural Bolivian highland villages

    International Nuclear Information System (INIS)

    Albalak, R.; Haber, M.

    1999-01-01

    PM 10 concentrations were measured in two contrasting rural Bolivian villages that cook with biomass fuels. In one of the villages, cooking was done exclusively indoors, and in the other, it was done primarily outdoors. Concentrations in all potential microenvironments of exposure (i.e., home, kitchen, and outdoors) were measured for a total of 621 samples. Geometric mean kitchen PM 10 concentrations were 1830 and 280 microg/m 3 and geometric mean home concentrations were 280 and 440 microg/m 3 for the indoor and outdoor cooking villages, respectively. An analysis of pollutant concentrations using generalized estimating equation techniques showed significant effects of village location, and interaction of village and location on log-transformed PM 10 concentrations. Pollutant concentrations and activity pattern data were used to estimate total exposure using the indirect method of exposure assessment. Daily exposure for women during the nonwork season was 15 120 and 6240 microg h -1 m -3 for the indoor and outdoor cooking villages, respectively. Differences in exposure to pollution between the villages were not as great as might be expected based on kitchen concentration alone. This study underscores the importance of measuring pollutant concentrations in all microenvironments where people spend time and of shifting the focus of air pollution studies to include rural populations in developing countries

  16. Insomnia, platelet serotonin and platelet monoamine oxidase in chronic alcoholism.

    Science.gov (United States)

    Nenadic Sviglin, Korona; Nedic, Gordana; Nikolac, Matea; Mustapic, Maja; Muck-Seler, Dorotea; Borovecki, Fran; Pivac, Nela

    2011-08-18

    Insomnia is a common sleep disorder frequently occurring in chronic alcoholic patients. Neurobiological basis of insomnia, as well as of alcoholism, is associated with disrupted functions of the main neurotransmitter systems, including the serotonin (5-hydroxytryptamine, 5-HT) system. Blood platelets are considered a limited peripheral model for the central 5-HT neurons, since both platelets and central 5-HT synaptosomes have similar dynamics of 5-HT. Platelet 5-HT concentration and platelet monoamine oxidase type B (MAO-B) are assumed to represent biomarkers for particular symptoms and behaviors in psychiatric disorders. The hypothesis of this study was that platelet 5-HT concentration and platelet MAO-B activity will be altered in chronic alcoholic patients with insomnia compared to comparable values in patients without insomnia. The study included 498 subjects: 395 male and 103 female medication-free patients with alcohol dependence and 502 healthy control subjects: 325 men and 177 women. The effects of early, middle and late insomnia (evaluated using the Hamilton Depression Rating Scale), as well as sex, age and smoking on platelet 5-HT concentration and platelet MAO-B activity were evaluated using one-way ANOVA and multiple regression analysis by the stepwise method. Platelet 5-HT concentration, but not platelet MAO-B activity, was significantly reduced in alcoholic patients with insomnia compared to patients without insomnia. Multiple regression analysis revealed that platelet 5-HT concentration was affected by middle insomnia, smoking and sex, while platelet MAO activity was affected only by sex and age. The present and previous data suggest that platelet 5-HT concentration might be used, after controlling for sex and smoking, as a biomarker for insomnia in alcoholism, PTSD and in rotating shift workers. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. An Evaluation of the Use of Biomass as an Energy Source: The Brazilian Alcohol Programme

    OpenAIRE

    Ferreira, Leo da Rocha; Tourinho, Octavio A.F.

    1987-01-01

    This paper discusses the prehmmaiy results of Brazil's Economic and Social Planmng lnst1tute's BIOMASS linear programming model with emphasis on three aspects: temporal and spatial crop mix patterns along the analysis horizon; evaluation of the social cost of alcohol fuel; and the impact of alcohol production on the balance of payments. Brazil's national alcohol programme (PROALCOOL) increases domestic costs but its impact on the balance of payments is positive and substantial.

  18. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells

    KAUST Repository

    Chen, Guang

    2013-09-01

    High-performance microbial fuel cell (MFC) air cathodes were constructed using a combination of inexpensive materials for the oxygen reduction cathode catalyst and the electrode separator. A poly(vinyl alcohol) (PVA)-based electrode separator enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output. MFCs with AC cathodes and PVA separators had CEs (43%-89%) about twice those of AC cathodes lacking a separator (17%-55%) or cathodes made with platinum supported on carbon catalyst (Pt/C) and carbon cloth (CE of 20%-50%). Similar maximum power densities were observed for AC-cathode MFCs with (840 ± 42 mW/m2) or without (860 ± 10 mW/m2) the PVA separator after 18 cycles (36 days). Compared to MFCs with Pt-based cathodes, the cost of the AC-based cathodes with PVA separators was substantially reduced. These results demonstrated that AC-based cathodes with PVA separators are an inexpensive alternative to expensive Pt-based cathodes for construction of larger-scale MFC reactors. © 2013 Elsevier B.V. All rights reserved.

  19. Effects of vehicle ventilation system, fuel type, and in-cabin smoking on the concentration of toluene and ethylbenzene in Pride cars

    Directory of Open Access Journals (Sweden)

    Masoud Rismanchian

    2013-01-01

    Conclusion: The ventilation condition, fuel type, and in-cabin smoking were not significantly impressive on the toluene and ethylbenzene concentrations inside the cars. However, simultaneous usage of the vehicle ventilation system and natural ventilation (windows could lead to little decrease in toluene concentration levels inside the car, while smoking consumption by passengers can increase them.

  20. LUSH-based SPR sensor for the detection of alcohols and pheromone

    Science.gov (United States)

    Lau, Hui-Chong; Lee, Yeon-Kyung; Kwon, Jae-Young; Sohn, Young-Soo; Lim, Jeong Ok

    2013-05-01

    Protein is a widely used sensing substrate in the biosensing technology. In the study conducted here, we used odorant binding protein, LUSH from Drosophila as a biosensing substrate in a miniaturized surface plasmon resonance (SPR) sensor. LUSH contains the specific alcohols binding sites, which mediates the detection of alcohols and pheromone. We first modified the surface of the gold sensor chip using the self assembled monolayer in the chloroform solution. The saturated concentration was determined prior to the detection of alcohols and pheromone at various concentrations. The results showed that the LUSH was saturated at 1000 μg/ml on the gold sensor chip. The detection response of LUSH was significant at higher concentration of alcohols. LUSH detected ethanol at concentration >=50% propanol was detected at >=25% whereas pheromone was detected at >=1.25 μg/μl. The results provide some fundamental information on the potential use of LUSH-based SPR as a simple and easy protein-based sensor in the near future.

  1. Using the second law of thermodynamics for enrichment and isolation of microorganisms to produce fuel alcohols or hydrocarbons.

    Science.gov (United States)

    Kohn, Richard A; Kim, Seon-Woo

    2015-10-07

    Fermentation of crops, waste biomass, or gases has been proposed as a means to produce desired chemicals and renewable fuels. The second law of thermodynamics has been shown to determine the net direction of metabolite flow in fermentation processes. In this article, we describe a process to isolate and direct the evolution of microorganisms that convert cellulosic biomass or gaseous CO2 and H2 to biofuels such as ethanol, 1-butanol, butane, or hexane (among others). Mathematical models of fermentation elucidated sets of conditions that thermodynamically favor synthesis of desired products. When these conditions were applied to mixed cultures from the rumen of a cow, bacteria that produced alcohols or alkanes were isolated. The examples demonstrate the first use of thermodynamic analysis to isolate bacteria and control fermentation processes for biofuel production among other uses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Research on bioorganic fuels as power sources

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Markku J.; Spets, Jukka-Pekka [Aalto University, Department of Energy Technology-TKK, Applied Thermodynamics, PO Box 4400, FI-02201 TKK (Finland); Kiros, Yohannes [Royal Institute of Technology-KTH, Department of Chemical Engineering and Technology, S100-44 Stockholm (Sweden); Anttila, Tomi [Oy Hydrocell Ltd, Minkkikatu 1-3, 04430 Jaervenpaeae (Finland)

    2010-11-15

    This paper deals with the kind of the bioorganic fuel cells that are equipped with or without ion exchange membranes. The bioorganic materials of interest are alcohols (methanol, ethanol) and glucose, which are obtained from renewable energy sources such as biomass. The operation temperatures of the direct fuel cells cover from room temperature up to 150 C. The direct bioorganic fuel cells belong to the subject area of 'Advanced fuel cells' of the Working group 4 in the EU COST Action 543 among the collaborating Universities and Institutes. Bioorganic fuel cells are suitable for application in small portable power sources, such as backups, battery chargers and in electronic devices. A number of current and earlier works are summarised and advances are highlighted in this area with special emphasis on glucose as a fuel. (author)

  3. Nuclear magnetic resonance spectroscopic investigation of anode exhaust of direct methanol fuel cells without isotope enrichment

    International Nuclear Information System (INIS)

    Byun, Young Seok; Hwang, Reo Yun; Han, Ochee

    2016-01-01

    Fuel cells are devices that electrochemically convert the chemical energy of fuels such as natural gas, gasoline, and methanol, into electricity. Fuel cells more efficiently use energy than internal combustion engines and do not produce undesirable pollutants, such as NO_x ,SO_x and particulates. Fuel cells can be distinguished from one another by their electrolytes. Among the various direct alcohol fuel cells, direct methanol fuel cells (DMFCs) have been developed most. However, DMFCs have several practical problems such as methanol crossove r from an anode to a cathode and slow methanol oxidation reaction rates. Therefore, understanding the electrochemical reaction mechanisms of DMFCs may provide clues to solve these problems, and various analytical methods have been employed to examine these mechanisms. We demonstrated that "1H and "1"3C NMR spectroscopy can be used for analyzing anode exhausts of DMFCs operated with methanol without any isotope enrichment. However, the low sensitivity of NMR spectroscopy hindered our efforts to detect minor reaction intermediates. Therefore, sensitivity enhancement techniques such as dynamic nuclear polarization (DNP) NMR methods and/or presaturation methods to increase the dynamic range of the proton spectra by pre-saturating large water signals, are expected to be useful to detect low-concentration species

  4. Nuclear magnetic resonance spectroscopic investigation of anode exhaust of direct methanol fuel cells without isotope enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Young Seok; Hwang, Reo Yun; Han, Ochee [Western Seoul Center, Korea Basic Science Institute, Seoul (Korea, Republic of)

    2016-12-15

    Fuel cells are devices that electrochemically convert the chemical energy of fuels such as natural gas, gasoline, and methanol, into electricity. Fuel cells more efficiently use energy than internal combustion engines and do not produce undesirable pollutants, such as NO{sub x} ,SO{sub x} and particulates. Fuel cells can be distinguished from one another by their electrolytes. Among the various direct alcohol fuel cells, direct methanol fuel cells (DMFCs) have been developed most. However, DMFCs have several practical problems such as methanol crossove r from an anode to a cathode and slow methanol oxidation reaction rates. Therefore, understanding the electrochemical reaction mechanisms of DMFCs may provide clues to solve these problems, and various analytical methods have been employed to examine these mechanisms. We demonstrated that {sup 1}H and {sup 13}C NMR spectroscopy can be used for analyzing anode exhausts of DMFCs operated with methanol without any isotope enrichment. However, the low sensitivity of NMR spectroscopy hindered our efforts to detect minor reaction intermediates. Therefore, sensitivity enhancement techniques such as dynamic nuclear polarization (DNP) NMR methods and/or presaturation methods to increase the dynamic range of the proton spectra by pre-saturating large water signals, are expected to be useful to detect low-concentration species.

  5. Feasibility of Trace Alcohol Congener Detection and Identification Using Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Zhang Jialiang; Wang Shangmin; Zhao Lixian; Liu Liying; Wang Dezhen

    2014-01-01

    In this paper, a feasible scheme is reported for the detection and identification of trace alcohol congeners that have identical elemental composition using laser-induced breakdown spectroscopy (LIBS). In the scheme, an intensive pulsed laser is used to break down trace alcohol samples and the optical emission spectra of the induced plasma are collected for the detection and identification of alcohol molecules. In order to prepare trace alcohol samples, pure ethanol or methanol is bubbled by argon carrier gas and then mixed into matrix gases. The key issue for the scheme is to constitute indices from the LIBS data of the alcohol samples. Two indices are found to be suitable for alcohol detection and identification. One is the emission intensity ratio (denoted as H/C) of the hydrogen line (653.3 nm) to the carbon line (247.9 nm) for identification and the other is the ratio of the carbon line (as C/Ar) or the hydrogen line (as H/Ar) to the argon lines (866.7 nm) for quantitative detection. The calibration experiment result shows that the index H/C is specific for alcohol congeners while almost being independent of alcohol concentration. In detail, the H/C keeps a specific constant of 34 and 23 respectively for ethanol and methanol. In the meanwhile, the C/Ar and H/Ar indices respond almost linearly to the alcohol concentration below 1300 ppm, and are therefore competent for concentration measurement. With the indices, trace alcohol concentration measurement achieves a limit of 140 ppm using a laser pulse energy of 300 mJ. (plasma technology)

  6. Alcoholism and Alcohol Abuse

    Science.gov (United States)

    ... their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or alcohol dependence, is a disease that causes ... the liver, brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the ...

  7. Alcohol biosensing by polyamidoamine (PAMAM)/cysteamine/alcohol oxidase-modified gold electrode.

    Science.gov (United States)

    Akin, Mehriban; Yuksel, Merve; Geyik, Caner; Odaci, Dilek; Bluma, Arne; Höpfner, Tim; Beutel, Sascha; Scheper, Thomas; Timur, Suna

    2010-01-01

    A highly stable and sensitive amperometric alcohol biosensor was developed by immobilizing alcohol oxidase (AOX) through Polyamidoamine (PAMAM) dendrimers on a cysteamine-modified gold electrode surface. Ethanol determination is based on the consumption of dissolved oxygen content due to the enzymatic reaction. The decrease in oxygen level was monitored at -0.7 V vs. Ag/AgCl and correlated with ethanol concentration. Optimization of variables affecting the system was performed. The optimized ethanol biosensor showed a wide linearity from 0.025 to 1.0 mM with 100 s response time and detection limit of (LOD) 0.016 mM. In the characterization studies, besides linearity some parameters such as operational and storage stability, reproducibility, repeatability, and substrate specificity were studied in detail. Stability studies showed a good preservation of the bioanalytical properties of the sensor, 67% of its initial sensitivity was kept after 1 month storage at 4 degrees C. The analytical characteristics of the system were also evaluated for alcohol determination in flow injection analysis (FIA) mode. Finally, proposed biosensor was applied for ethanol analysis in various alcoholic beverage as well as offline monitoring of alcohol production through the yeast cultivation. Copyright 2010 American Institute of Chemical Engineers

  8. Fatty Alcohol Variations in Surface Sediments of Sungai Sepang Besar, Sepang, Selangor

    International Nuclear Information System (INIS)

    Masni Mohd Ali; Norfariza Humrawali; Ying, P.Q.; Mohd Talib Latif; Mohamad Pauzi Zakaria

    2011-01-01

    Composition of fatty alcohols from 19 surface sediment samples collected along Sungai Sepang Besar, Sepang, Selangor were determined. The sediments were extracted and analysed using the Gas Chromatography-Mass Spectrometry (GC-MS) technique. A total of 19 fatty alcohols from C 12 to C 30 including 4 branched compounds were identified with concentrations in the range 0.02 μg/ g - 9.01 μg/ g dry weight. C 26 fatty alcohols dominated most sampling stations with concentrations ranging from 0.29 to 5.43 μg/ g dry weight and constituted 15.5 % of total fatty alcohols. According to individual compounds of fatty alcohols and the [Σ(C 12 - C 20 )/ Σ(C 22 - C 30 )] ratio, Sungai Sepang Besar has a high composition of short-chain fatty alcohols (C 12 - C 20 ) which mainly originate from marine organisms. However, the Alcohol Sources Index (ASI) showed that terrestrial derived fatty alcohols dominated the area due to high concentration of C 26 compounds in most sampling stations. The value of (odd chain length)/ (even chain length) ratios were high for almost all the sampling stations due to high bacterial activities. It can be concluded that the surface sediments of Sungai Sepang Besar contained organic materials from marine, terrestrial and bacterial sources. (author)

  9. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    Science.gov (United States)

    Menendez-Mora, Christian L.

    High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus

  10. Metabolic Engineering of Oleaginous Yeasts for Fatty Alcohol Production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Wei, Hui; Knoshaug, Eric; Van Wychen, Stefanie; Xu, Qi; Himmel, Michael E.; Zhang, Min

    2016-04-25

    To develop pathways for advanced biological upgrading of sugars to hydrocarbons, we are seeking biological approaches to produce high carbon efficiency intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels. In this study, we successfully demonstrated fatty alcohol production by oleaginous yeasts Yarrowia lipolytica and Lipomyces starkeyi by expressing a bacteria-derived fatty acyl-CoA reductase (FAR). Moreover, we find higher extracellular distribution of fatty alcohols produced by FAR-expressing L. starkeyi strain as compared to Y. lipolytica strain, which would benefit the downstream product recovery process. In both oleaginous yeasts, long chain length saturated fatty alcohols were predominant, accounting for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Taken together, our work demonstrates that in addition to Y. lipolytica, L. starkeyi can also serve as a platform organism for production of fatty acid-derived biofuels and bioproducts via metabolic engineering. We believe strain and process development both will significantly contribute to our goal of producing scalable and cost-effective fatty alcohols from renewable biomass.

  11. 27 CFR 25.263 - Production of concentrate and reconstitution of beer.

    Science.gov (United States)

    2010-04-01

    ... and reconstitution of beer. 25.263 Section 25.263 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Beer Concentrate § 25.263 Production of concentrate and reconstitution of beer. (a) Operations at brewery. A brewer may concentrate beer...

  12. An Investigation of Chitosan-Grafted-Poly(vinyl alcohol as an Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Panu Danwanichakul

    2013-01-01

    Full Text Available The membrane of chitosan-grafted-poly(vinyl alcohol/poly(vinyl alcohol (CS-g-PVA/PVA was investigated along with chitosan (CS, PVA, CS/PVA, and Nafion 117 membranes for transport properties of water and methanol, mechanical properties, and ionic conductivity. The ionic conductivity, σ, of the crosslinked CS-g-PVA/PVA membrane was about 4.37 mS cm−1 and the methanol permeability, PS, was 1.8×10−7 cm2s−1. These gave the selectivity, σ/PS, of 23.95 mS·s·cm−3 compared with 16.35 mS·s·cm−3 of Nafion 117 membrane. The conductivity of the crosslinked CS-g-PVA/PVA membrane was greater than others including Nafion 117 when the membranes were saturated with methanol solution of which concentration was greater than 20%. This fact and that the mechanical properties of the wet crosslinked CS-g-PVA/PVA membrane were comparable to those of other membranes made it a promising material to be used as an electrolyte membrane in a direct methanol fuel cell.

  13. Electrochemical device for syngas and liquid fuels production

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Robert J.; Becker, William L.; Penev, Michael

    2017-04-25

    The invention relates to methods for creating high value liquid fuels such as gasoline, diesel, jet and alcohols using carbon dioxide and water as the starting raw materials and a system for using the same. These methods combine a novel solid oxide electrolytic cell (SOEC) for the efficient and clean conversion of carbon dioxide and water to hydrogen and carbon monoxide, uniquely integrated with a gas-to-liquid fuels producing method.

  14. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells.

    Science.gov (United States)

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-08-15

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  15. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jiyoung Kim

    2016-08-01

    Full Text Available Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC. The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR activities and the electrochemical double layer compared with common carbon black (CB. To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  16. The global alcohol industry: an overview.

    Science.gov (United States)

    Jernigan, David H

    2009-02-01

    To describe the globalized sector of the alcoholic beverage industry, including its size, principal actors and activities. Market research firms and business journalism are the primary sources for information about the global alcohol industry, and are used to profile the size and membership of the three main industry sectors of beer, distilled spirits and wine. Branded alcoholic beverages are approximately 38% of recorded alcohol consumption world-wide. Producers of these beverages tend to be large multi-national corporations reliant on marketing for their survival. Marketing activities include traditional advertising as well as numerous other activities, such as new product development, product placement and the creation and promotion of social responsibility programs, messages and organizations. The global alcohol industry is highly concentrated and innovative. There is relatively little public health research evaluating the impact of its many marketing activities.

  17. Nondestructive, energy-dispersive, x-ray fluorescence analysis of actinide stream concentrations from reprocessed nuclear fuels

    International Nuclear Information System (INIS)

    Camp, D.C.; Ruhter, W.D.

    1979-01-01

    In one plan for reprocessing LWR spent fuel, after separation from fission products and transplutonics, part of the U and all of the Pu in a nitrate solution will form a coprocessed stream which is then evaporated and sent to a hold tank for accounting. The remaining U fraction will be purified and sent to a separate storage tank. These two streams can be monitored using x-ray fluorescence analysis. This report discusses equipment, spectra, cell calibration, and dynamic concentration measurements. 7 figures

  18. Precursor concentration and temperature controlled formation of polyvinyl alcohol-capped CdSe-quantum dots

    Directory of Open Access Journals (Sweden)

    Chetan P. Shah

    2010-12-01

    Full Text Available Polyvinyl alcohol-capped CdSe quantum dots, with a size within their quantum confinement limit, were prepared in aqueous solution at room temperature, by a simple and environmentally friendly chemical method. The size of the CdSe quantum dots was found to be dependent on the concentrations of the precursors of cadmium and selenium ions, as well as on the aging time and the reaction temperature; all of which could be used conveniently for tuning the size of the particles, as well as their optical properties. The synthesized quantum dots were characterized by optical absorption spectroscopy, fluorescence spectroscopy, X-ray diffraction, atomic force microscopy and transmission electron microscopy. The samples were fluorescent at room temperature; the green fluorescence was assigned to band edge emission, and the near-infrared fluorescence peaks at about 665 and 865 nm were assigned to shallow and deep trap states emissions, respectively. The quantum dots were fairly stable up to several days.

  19. Continuous alcoholic fermentation of blackstrap molasses

    Energy Technology Data Exchange (ETDEWEB)

    Borzani, W; Aquarone, E

    1957-01-01

    The sugar concentration and the fermentation-cycle time can be related by an equation, theoretically justified, if it is assumed that the sugar consumption has a reaction rate of -1. Agitation is probably the rate-determining factor for continous alcohol fermentation. Penicillin increases the efficiency by preventing contamination. After 30 hours of fermentation, the penicillin concentration was 25 to 60% of the initial antibiotic concentration. Laboratory and plant-scale fermentations with 1.0 unit/ml of penicillin were studied and found favorable. An increase in the alcohol yield (4.8 to 19.5%) and a reduction of the acid production (17.0 to 66.6%) were observed. Penicillin did not affect the final yeast count or the fermentation time, and Leuconostoc contamination was inhibited by 8.0 units/ml.

  20. Effect of nonuniform fuel distribution

    International Nuclear Information System (INIS)

    Katakura, Jun-ichi

    1987-01-01

    In order to ensure the subcriticality of nuclear fuel, the method of controlling the mass, form or dimensions below the limit values and the method of confirming subcriticality by calculation are taken, but at this time, it is often assumed that the concentration of fuel is constant in a fuel region, or fuel rods are arranged at constant intervals. However, in the extraction process in fuel reprocessing or in fuel storage vessels, the concentration distribution may arise in fuel regions even though temporarily. Even if subcriticality is expected in a uniform system, when concentration distribution arises, and an uneven system results in, criticality may occur. Therefore, it is important to grasp the effect of uneven fuel distribution for ensuring the safety against criticality. In this paper, the effect of uneven fuel distribution is discussed, centering around the critical mass. The examples in literatures and the examples of calculation of uneven fuel distribution are shown. As the result of calculation in Japan Atomic Energy Research Institute, in a high enrichment U-235-water system, the critical mass decreased by about 7 % due to uneven distribution, which nearly agreed with the result of Clark of about 6 %. As for a low enrichment system, the conspicuous decrease of the critical mass was not observed. (Kako, I.)

  1. Reverse osmosis influence over the content of metals and organic acids in low alcoholic beverages

    Directory of Open Access Journals (Sweden)

    Andrieş Mitică Tiberiu

    2017-01-01

    Full Text Available Wine is defined as an alcoholic beverage resulted from fermentation of grape must, having ethanol content higher than 8.5% (v/v. Wine consumption has health benefits related to the high concentration of polyphenolic compounds with antioxidant activity and cardiovascular protection effects. However, the alcohol content restricts wine consumption, but wines with low-alcohol content can be obtained with the help of the dealcoholisation process, after it was produced through alcoholic fermentation. The purpose of this work is to evaluate the organic acid concentration, metal content and other physical-chemical parameters of low alcoholic beverages obtained from grape must by a process which involves reverse osmosis, mixing in a variable ratio the permeate and concentrate and then fermentation. For the experiments, a Muscat Ottonel grape must from Iaşi vineyard was used. There were ten variants of beverages (wines with low alcoholic concentration, by mixing known quantities of the two phases resulting from the reverse osmosis process. These beverages (wines had an alcoholic concentration starting from 2.5% (v/v in the first variant, up to 7% (v/v in the tenth variant. Alcoholic concentration varies for each variant by 0.5% (v/v. After fermentation in 50 L stainless steel tanks, the samples were filtered with 0.45μm sterile membrane and bottled in 0.75 L glass bottles. After 2 months of storage at constant temperature, the beverage samples were analyzed to determine the metal content (AAS method, organic acids concentration (HPLC method, and other physical-chemical characteristics (OIV standard methods. The results obtained indicate that the very complex physical-chemical composition of the low alcoholic beverages analyzed is influenced by the specific chemical composition of a given grape must, as well as by the use of products obtained from reverse osmosis.

  2. Effect of alcohols on filamentation, growth, viability and biofilm development in Candida albicans.

    Science.gov (United States)

    Chauhan, Nitin M; Shinde, Ravikumar B; Karuppayil, S Mohan

    2013-12-01

    In this study we report the potential of alcohols as morphogenetic regulators in Candida albicans. All the alcohols tested influenced various modes of growth like planktonic as well as biofilm forms. Viability was affected at high concentrations. Among the alcohols, the response of C. albicans to amyl alcohol (pentanol) was noteworthy. Amyl alcohol at a concentration 0.5% which was not inhibitory to growth and viability specifically inhibited morphogenetic switching from yeast to hyphal forms. It also inhibited normal biofilm development favoring yeast dominated biofilms. Based on this study we hypothesize that alcohols produced under anaerobic conditions may not favor biofilm development and support dissemination of yeast cells. Since anaerobic conditions are not found to favor production of quorum sensing molecules like farnesol, the alcohols may play a role in morphogenetic regulation.

  3. Permeability of EVOH Barrier Material Used in Automotive Applications: Metrology Development for Model Fuel Mixtures

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2015-02-01

    Full Text Available EVOH (Ethylene-Vinyl Alcohol materials are widely used in automotive applications in multi-layer fuel lines and tanks owing to their excellent barrier properties to aromatic and aliphatic hydrocarbons. These barrier materials are essential to limit environmental fuel emissions and comply with the challenging requirements of fast changing international regulations. Nevertheless, the measurement of EVOH permeability to model fuel mixtures or to their individual components is particularly difficult due to the complexity of these systems and their very low permeability, which can vary by several orders of magnitude depending on the permeating species and their relative concentrations. This paper describes the development of a new automated permeameter capable of taking up the challenge of measuring minute quantities as low as 1 mg/(m2.day for partial fluxes for model fuel mixtures containing ethanol, i-octane and toluene at 50°C. The permeability results are discussed as a function of the model fuel composition and the importance of EVOH preconditioning is emphasized for accurate permeability measurements. The last part focuses on the influence of EVOH conditioning on its mechanical properties and its microstructure, and further illustrates the specific behavior of EVOH in presence of ethanol oxygenated fuels. The new metrology developed in this work offers a new insight in the permeability properties of a leading barrier material and will help prevent the consequences of (bioethanol addition in fuels on environmental emissions through fuel lines and tanks.

  4. When does alcohol hurt? A driving simulator study.

    Science.gov (United States)

    Vollrath, Mark; Fischer, Josefine

    2017-12-01

    World-wide, alcohol is still a major cause of traffic accidents. The dose-related accident risk function has been found in a large number of risk studies. A plethora of laboratory studies has examined the effect of alcohol with regard to different information processing capabilities of drivers. Summarizing the results, alcohol effects occur at lower blood alcohol concentrations (BAC) the more complex the tasks get. However, in contrast, typical alcohol-related crashes are frequently single vehicle crashes but not so often crashes in complex situations like at intersections. It may be that the subjective assessment of the traffic situation and the adaptation of behavior under the influence of alcohol plays a major role in accident causation. In order to examine this hypothesis, two driving simulator studies were conducted at a target BAC of 0.5g/l comparing two (alcohol vs. placebo; n=48, Experiment 1) and three (sober, placebo and alcohol; n=63, Experiment 2) groups of subjects in two critical scenarios. The first scenario was a seemingly easy traffic situation and was supposed to lead to a relaxed driving behavior under alcohol. The second scenario involved a complex intersection situation where especially drivers under the influence of alcohol should try to concentrate and compensate their experienced alcohol effects. In all scenarios, a critical object appeared suddenly and the driver had to react fast in order to prevent a (simulated) accident. Overall, the results support the hypothesis. Accidents were more frequent for alcohol drivers as compared to placebo/sober drivers in the easy scenario, but not the complex one. The initial speed of the driver when entering the scenario seems to play a major role in the accident causation. Drivers under the influence of alcohol seem to lower their speed in complex scenarios, possibly to thus counteract alcohol effects. In seemingly easy scenarios this does not seem necessary for them and the arousing effect of alcohol

  5. Phagocytosis and production of reactive oxygen species by peripheral blood phagocytes in patients with different stages of alcohol-induced liver disease: effect of acute exposure to low ethanol concentrations

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schäfer, C.; Paulus, S. B.

    2003-01-01

    BACKGROUND: In rodents, the development of alcoholic liver disease (ALD) after chronic alcohol feeding was shown to depend on the activity of enzymes that are necessary for production of reactive oxygen species (ROS) in phagocytes. The aim of this study was to determine the formation of ROS...... by resting and challenged phagocytes of patients with different stages of ALD in the presence of ethanol concentrations commonly found in the blood of alcohol abusers. PATIENTS AND METHODS: The release of ROS and the phagocytosis of bacteria by neutrophils and monocytes obtained from 60 patients, who were...... produced significantly more ROS than those of healthy controls. Basal values of ROS production from neutrophils correlated closely to markers of the severity of ALD. ROS formation was depressed dose-dependently by ethanol in the healthy controls but not in alcohol abusers. CONCLUSIONS: Changes in the ROS...

  6. Numerical analysis of a downsized spark-ignition engine fueled by butanol/gasoline blends at part-load operation

    International Nuclear Information System (INIS)

    Scala, F.; Galloni, E.; Fontana, G.

    2016-01-01

    Highlights: • Bio-fuels will reduce the overall CO_2 emission. • The properties of butanol/gasoline–air mixtures have been determined. • A 1-D model of a SI engine has been calibrated and validated. • The butanol content reduces the combustion duration. • The optimal ignition timing slightly changes. - Abstract: In this paper, the performance of a turbocharged SI engine, firing with butanol/gasoline blends, has been investigated by means of numerical simulations of the engine behavior. When engine fueling is switched from gasoline to alcohol/gasoline mixture, engine control parameters must be adapted. The main necessary modifications in the Electronic Control Unit have been highlighted in the paper. Numerical analyses have been carried out at partial load operation and at two different engine speeds (3000 and 4000 rpm). Several n-butanol/gasoline mixtures, differing for the alcohol contents, have been analyzed. Such engine performances as torque and indicated efficiency have been evaluated. Both these characteristics decrease with the alcohol contents within the mixtures. On the contrary, when the engine is fueled by neat n-butanol, torque and efficiency reach values about 2% higher than those obtained with neat gasoline. Furthermore, the optimal spark timing, for alcohol/gasoline mixture operation, must be retarded (up to 13%) in comparison with the correspondent values of the gasoline operation. In general, engine performance and operation undergo little variations when fuel supplying is switched from gasoline to alcohol/gasoline blends.

  7. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  8. Lignocellulosic Biobutanol as Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Martin Pexa

    2016-05-01

    Full Text Available Energy recovery of lignocellulosic waste material in the form of liquid fractions can yield alcohol-based fuels such as bioethanol or biobutanol. This study examined biobutanol derived from lignocellulosic material that was then used as an additive for diesel engines. Biobutanol was used in fuel mixtures with fatty acid methyl ester (FAME obtained by esterification of animal fat (also a waste material in the amounts of 10%, 30%, and 50% butanol. 100% diesel and 100% FAME were used as reference fuels. The evaluation concerned the fuel’s effect on the external speed characteristics, harmful exhaust emissions, and fuel consumption while using the Non-Road Steady Cycle test. When the percentage of butanol was increased, the torque and the power decreased and the brake specific fuel consumption increased. The main advantage of using biobutanol in fuel was its positive effect on reducing the fuel’s viscosity.

  9. Strontium-90 concentrations in pronghorn antelope bones near a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Markham, O.D.; Halford, D.K.

    1980-01-01

    Metacarpal bones were collected from pronghorn antelope near a nuclear fuel reprocessing plant and adjacent areas on the Idaho National Engineering Laboratory (INEL) Site in Southeastern Idaho. Control bones were collected from offsite animals at higher elevations. Average concentrations in metacarpals were 9.6+-2.8(SE) pCi/g(ash) within 10 km of the Idaho Chemical Processing Plant (ICPP), 4.0+-0.9pCi/g for animals on the remainder of the INEL Site and 5.5+-1.0pCi/g for control animals. ICPP atmospheric releases of 90 Sr appeared to have caused a significant (P 90 Sr concentrations in antelope bones within 10 km of the ICPP as compared to bones of other INEL antelope. However, the ICPP antelope bone 90 Sr concentrations were not statistically different from that occurring in bones of the control animals from higher elevations. Antelope near the ICPP received approximately double the radiation dose to bone compared to doses received by other INEL antelope as a result of 90 Sr in bone. Strontium-90 in bone from both fallout and ICPP sources resulted in an estimated average radiation dose of 40 mrad/yr to edosteal cells and 20 mrad/yr to active bone marrow. (author)

  10. The brazilian alcohol program in the national energy context

    International Nuclear Information System (INIS)

    Oliveira, A. de; Araujo, J.L.R.H. de

    1987-01-01

    The new national as well as international energy context demands revision of the Brazilian Alcohol Program. This revision should aim at the preservation of alcohol as an energy source while reducing subsidies. To this end a moratorium on new distilleries should be enforced till the middle of the next decade, accompanied by a policy focusing on cost reductions and improvements in productivity aimed at making alcohol competitive in the middle term, as well as a motor fuel policy which acts on demand and makes this moratorium viable while preserving the existing production structure. Concrete mechanisms to implement such a policy are proposed which segment the market for new vehicles and preserve the stability of alcohol and gasoline markets for existing vehicles. The effects of this policy were analyzed through simulation of 7 scenarios through the year 2005, which showed its feasibility; the continuation of the present policy, on the other hand, implies heavy additional subsidies. (author)

  11. Biodiesel production by direct esterification of fatty acids with propyl and butyl alcohols

    Directory of Open Access Journals (Sweden)

    Ferial A. Zaher

    2015-12-01

    Full Text Available The expected depletion of natural petroleum resources in the near future and pollution of the environment due to excessive carbon dioxide emissions by fossil fuel and its adverse effect on global warming constitute two major problems facing the whole world. In view of these problems, much research work is now directed worldwide to find fuels alternative to those derived from petroleum which should be renewable and more environmentally friendly fuels. Biodiesel fuel which is a blend of fatty acid esters with alcohols is considered the most suitable alternative fuel for diesel engines. In this scope of research work, a previous study (Soliman et al., 2013 has been made to explore the opportunity of utilizing the fatty acids that can be obtained from the waste of edible oil industry in Egypt to produce biodiesel fuel by direct esterification with methanol as well as ethanol in the presence of sulfuric acid as a catalyst. This paper is a continuation of that work where two other alcohols of a chain length longer than ethanol have been used being propanol and butanol. The performance of a diesel engine running using a 50% blend of regular diesel fuel and each of the two biodiesels prepared was compared to that using regular diesel fuel. The results have shown that the brake specific fuel consumption (BSFC and the brake thermal efficiency at full engine loading were almost the same in all cases. This indicates that the produced fuel could be used as an efficient fuel substitute for diesel engines. By comparing the results of the present work to those reported in our previous work, it appeared that methanol which has the shortest carbon chain length is the most recommended in view of the brake thermal efficiency of a diesel engine at full loading.

  12. Effect of alcohol dehydrogenase-1B and -7 polymorphisms on blood ethanol and acetaldehyde concentrations in healthy subjects with a history of moderate alcohol consumption.

    Science.gov (United States)

    Pastorino, Roberta; Iuliano, Luigi; Vecchioni, Alessia; Arzani, Dario; Milic, Mirta; Annunziata, Francesca; Zerbinati, Chiara; Capoluongo, Ettore; Bonassi, Stefano; McKay, James D; Boccia, Stefania

    2018-03-01

    This study aims to evaluate the effect of ADH1B and ADH7 genotypes on blood acetaldehyde and ethanol levels after alcohol ingestion, and to measure the genotoxic effect of smoking and ethanol on the buccal cells, also controlling for ADH variants. We recruited healthy Italian subjects with at least a moderate history of alcohol consumption. All subjects were given an alcoholic drink of 0.4 g ethanol /kg of body weight. Blood venous samples were collected at baseline, and 30, 60, 90, and 120 minutes after ingestion. Buccal cells were collected before ethanol ingestion. Sixty subjects were enrolled in the study. Individuals with the ADH1B GG genotype had median ethanol levels of 5.0mM (IQR 3.4-7.2), and those with the ADH1B GT/TT genotype had 4.7mM (IQR 4.2-4.8). Corresponding acetaldehyde levels were 1.5μM (IQR 0.7-2.6) for ADH1B GG genotype and 1.6μM (IQR 1.5-1.7) for ADH1B CG/GG genotype. Individuals with the ADH7 CC genotype had median ethanol levels of 5.0mM (IQR 3.3-7.2), while 5.0mM (IQR 4.7-5.6) was in those with the ADH7 CG/GG genotype. Corresponding acetaldehyde levels were 1.5 μM (IQR 0.7-2.6) for ADH7 CC genotype and 1.5 μM (IQR 1.4-1.6) for ADH7 CG/GG genotypes. A non-significant increase in the frequency of karyolitic and pyknotic cells was found in the group of heavy drinkers and current smokers, when compared to the moderate drinkers and the non-smokers. Our study does not support the hypothesis that ADH1B and ADH7 genotypes affect blood ethanol and acetaldehyde concentration. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Highly Active PdNi/RGO/Polyoxometalate Nanocomposite Electrocatalyst for Alcohol Oxidation.

    Science.gov (United States)

    Hu, Jing; Wu, Xiaofeng; Zhang, Qingfan; Gao, Mingyan; Qiu, Haifang; Huang, Keke; Feng, Shouhua; Wang, Tingting; Yang, Ying; Liu, Zhelin; Zhao, Bo

    2018-02-27

    A PdNi/RGO/polyoxometalate nanocomposite has been successfully synthesized by a simple wet-chemical method. Characterizations such as transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy are employed to verify the morphology, structure, and elemental composition of the as-prepared nanocomposite. Inspired by the fast-developing fuel cells, the electrochemical catalytic performance of the nanocomposite toward methanol and ethanol oxidation in alkaline media is further tested. Notably, the nanocomposite exhibits excellent catalytic activity and long-term stability toward alcohol electrooxidation compared with the PdNi/RGO and commercial Pd/C catalyst. Furthermore, the electrochemical results reveal that the prepared nanocomposite is attractive as a promising electrocatalyst for direct alcohol fuel cells, in which the phosphotungstic acid plays a crucial role in enhancing the electrocatalytic activities of the catalyst.

  14. Real-time monitoring of methanol concentration using a shear horizontal surface acoustic wave sensor for direct methanol fuel cell without reference liquid measurement

    Science.gov (United States)

    Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun

    2017-07-01

    In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.

  15. The adsorption properties of short chain alcohols and Triton X-100 mixtures at the water-air interface.

    Science.gov (United States)

    Zdziennicka, Anna

    2009-07-15

    The adsorption behaviour at the water-air interface of aqueous solutions of Triton X-100 and methanol (ethanol) mixtures at constant Triton X-100 (TX-100) concentration equal to 10(-7), 10(-6), 10(-5), 10(-4), 6x10(-4) and 10(-3)M, respectively, in a wide range of alcohol concentration was investigated by surface tension measurements of solutions. The obtained values of the surface tension of aqueous solutions of "pure" methanol and ethanol and their mixtures with TX-100, as well as the values of propanol solutions and their mixtures with TX-100 as a function of alcohol concentration taken from the literature were compared with those calculated from the Szyszkowski, Connors and Fainerman and Miller equations. On the basis of this comparison it was stated that these equations can be useful for description of the solution surface tension in the wide range of alcohol concentration, but only at the concentrations of Triton X-100 corresponding to its unsaturated layer in the absence of alcohol. It was also stated that the Connors equation is more adequate for concentrated aqueous organic solutions. The measured values of the surface tension were used in the Gibbs equation to determine the surface excess concentration of Triton X-100 and alcohol. Next, on the basis of Gibbs adsorption isotherms those of Guggenheim and Adam and real adsorption isotherms were established. From the obtained adsorption isotherms it results that alcohol influences the shape of TX-100 isotherms in the whole range of alcohol and TX-100 concentration, but TX-100 influences the alcohol isotherms only at TX-100 concentration at which the saturated monolayer at the solution-air interface is formed in the absence of alcohol. This conclusion was confirmed by analysis of the composition of the surface layer in comparison to the composition of the bulk phase in the equilibrium state.

  16. The Effect of Alcoholic Extract of Physalis alkekengi on Serum Concentration of Thyroid Hormones in Rats

    Directory of Open Access Journals (Sweden)

    Shahnaz Shekar-Foroosh

    2012-05-01

    Full Text Available Background: There are different factors which are effective on maintaining homeostasis, especially by pituitary-thyroid axis hormones. The objective of this study was to examine the effect of Physalis alkekengi plant extract belonging to Solanaceae family on the concentration of the pituitary-thyroid axis hormones.Materials and Methods: This study was conducted on five groups (n=10 of male Wistar rats (with mean weight 210±5g. The control group did not receive any substances, while the reference group received 0.2 ml normal saline daily and the experimental groups received maximum (0.4 g/kg, moderate (0.2 g/kg, and minimum (0.1 g/kg intraperitoneal (IP doses of the alcoholic extract for 14 days. At the end of this period, blood samples were drawn and the results were analyzed by SPSS-11.5 software.Results: The results of statistical analysis showed significant increases in plasma concentrations of thyroxin (T4 and triiodothyronine (T3 in the maximum dose group (p<0.05 with no significant changes in plasma concentrations of thyroid-stimulating hormone (TSH.Conclusion: Increases in T3 and T4 levels with no changes in TSH concentration indicate hyperthyroidism euthyroidism in which the levels of thyroid hormones increase while the amount of TSH remains constant. These changes could be due to plasma proteins increase including albumin, which are probably induced by physaline and alkaloids existing in Physalis alkekengi. So, these drug doses do not seem to bring about pathological changes in the pituitary-thyroid axis.

  17. Fermentation of starches and sugars to alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Fertman, G I; Berenshtein, A F; Gulyaev, J P

    1958-02-25

    To prevent the growth of acid-forming bacteria in the started wort, the ester-aldehyde fraction or the amino alcohol obtained in the rectification process is returned to the wort in amounts sufficient to give an alcohol concentration of approximately 1.5% by volume. The fermenting wort is also acidified to 0.5 to 0.6.

  18. Assessing the impacts of ethanol and isobutanol on gaseous and particulate emissions from flexible fuel vehicles.

    Science.gov (United States)

    Karavalakis, Georgios; Short, Daniel; Russell, Robert L; Jung, Heejung; Johnson, Kent C; Asa-Awuku, Akua; Durbin, Thomas D

    2014-12-02

    This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.

  19. Catalytic synthesis of alcoholic fuels for transportation from syngas

    OpenAIRE

    Wu, Qiongxiao; Jensen, Anker Degn; Grunwaldt, Jan-Dierk; Temel, Burcin; Christensen, Jakob Munkholt

    2013-01-01

    This work has investigated the catalytic conversion of syngas into methanol and higher alcohols. Based on input from computational catalyst screening, an experimental investigation of promising catalyst candidates for methanol synthesis from syngas has been carried out. Cu-Ni alloys of different composition have been identified as potential candidates for methanol synthesis. These Cu-Ni alloy catalysts have been synthesized and tested in a fixed-bed continuous-flow reactor for CO hydrogenatio...

  20. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Ishibashi, Yoko; Aoyama, Motoo; Oyama, Jun-ichi; Masumi, Ryoji; Soneda, Hideo.

    1994-01-01

    A fuel assembly comprises a plurality of fuel rods filled with nuclear fuels, a plurality of burnable poison rods incorporated with burnable poisons, and water rods which can vary the height in the tube depending on the coolant flow rate flown into the assembly. The amount of entire burnable poisons of the burnable poison-containing rods in adjacent with the water rods is smaller than the amount of entire burnable poisons in the burnable poison containing rods not in adjacent with the water rods. Then the average concentration of burnable poisons in the axial upper half region is made smaller than the average concentration of the burnable poisons at the axial lower half region. Further, a burnable poison concentration at the upper half region of at least one of burnable poison-containing rods in adjacent with the water rods is made lower than the burnable poison concentration in the lower half region. Since this can fasten the combustion of the burnable poisons, a fuel assembly having good fuel economy can be attained. (I.N.)

  1. The valuation of air emission externalities of vehicles: a comparison between fossil fuels and ethanol in Brazil

    International Nuclear Information System (INIS)

    Fernandes, E.S.L.; Zylbersztain, D.

    1997-01-01

    The National Alcohol Program, Proalcool has had an important strategic role as an alternative fuel. Nevertheless, Proalcool has faced economic difficulties that endanger the Program's future. From the environmental point of view, the introduction of hydrated ethanol as an automobile fuel was beneficial because initially it reduced vehicle emissions. The lack of investment in technology for a neat-alcohol vehicle has delayed further development of an alcohol engine relative to the gasoline engine, which is reflected in current exhaust gas emissions. This paper discusses the evolution of ethanol vehicle emissions and the monetary effect of these emissions in the urban area of Sao Paulo, Brazil. (author)

  2. Evaluation Of Radioactivity Concentration In The Primary Cooling Water System Of The RSG-GAS During Operation With 30% Silicide Fuels

    International Nuclear Information System (INIS)

    Hartoyo, Unggul; Udiyani, P.M.; Setiawanto, Anto

    2001-01-01

    The evaluating radioactivity concentration in the primary cooling water of the RSG-GAS during operation with 30% silicide fuels has been performed. The method of the research is sampling of primary cooling water during operation of the reactor and calculation of its radioactivity concentration. Based on the data obtained from calculation, the identified nuclides in the water are, Mn-56, Sb-124, Sb-122 and Na-24, under the limit of safety value

  3. Fuel assembly for nuclear reactor

    International Nuclear Information System (INIS)

    Yamanaka, Akihiro; Haikawa, Katsumasa; Haraguchi, Yuko; Nakamura, Mitsuya; Aoyama, Motoo; Koyama, Jun-ichi.

    1996-01-01

    In a BWR type fuel assembly comprising first fuel rods filled with nuclear fission products and second fuel rods filled with burnable poisons and nuclear fission products, the concentration of the burnable poisons mixed to a portion of the second fuel rods is controlled so that it is reduced at the upper portion and increased at the lower portion in the axial direction. In addition, a product of the difference of an average concentration of burnable poisons between the upper portion and the lower portion and the number of fuel rods is determined to higher than a first set value determined corresponding to the limit value of a maximum linear power density. The sum of the difference of the average concentration of the burnable poisons between the upper portion and the lower portion of the second fuel rod and the number of the second fuel rods is determined to lower than a second set value determined corresponding to a required value of a surplus reactivity. If the number of the fuel rods mixed with the burnable poisons is increased, the infinite multiplication factor at an initial stage of the burning is lowered and, if the concentration of the mixed burnable poisons is increased, the time of exhaustion of the burnable poisons is delayed. As a result, the maximum value of the infinite multiplication factor is suppressed thereby enabling to control surplus reactivity. (N.H.)

  4. Brazilian Alcohol Program (Proalcool): economic re-evaluation and demand adjustments

    International Nuclear Information System (INIS)

    Motta, R.S. da; Rocha Ferreira, L. da

    1987-01-01

    The aim of this paper is to discuss the economic impact on the Brazilian National Alcohol Programme caused by changes in the energy scenery, in view of recent oil price fall in the international market, and evaluate the necessary adjustments of the Programme according to the new Brazilian economic reality. The economic analysis concludes that the alcohol production, considering current production capacity and its investments, could be economically feasible at international oil prices near US$ 30.00. Excluding investments, its feasibility would be between US$ 18.00 and US$ 20.00 per equivalent oil barrel. Based on these conclusions, proposals for adjusting the PROALCOOL are discussed, including alternative pricing, fiscal and credit policies to control the alcohol-fuel demand. (author)

  5. Review of Biojet Fuel Conversion Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei-Cheng [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tao, Ling [National Renewable Energy Lab. (NREL), Golden, CO (United States); Markham, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, Yanan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Batan, Liaw [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Biomass-derived jet (biojet) fuel has become a key element in the aviation industry’s strategy to reduce operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation industry, government, biofuel companies, agricultural organizations, and academia are working toward developing commercially viable and sustainable processes that produce long-lasting renewable jet fuels with low production costs and low greenhouse gas emissions. Additionally, jet fuels must meet ASTM International specifications and potentially be a 100% drop-in replacement for the current petroleum jet fuel. The combustion characteristics and engine tests demonstrate the benefits of running the aviation gas turbine with biojet fuels. In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways, are reviewed. The main challenges for each technology pathway, including feedstock availability, conceptual process design, process economics, life-cycle assessment of greenhouse gas emissions, and commercial readiness, are discussed. Although the feedstock price and availability and energy intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a significant portion of conventional jet fuel required to meet commercial and military demand.

  6. Reactivity of solvent alcohol on degradation of CFC113

    International Nuclear Information System (INIS)

    Nakagawa, Seiko

    2003-01-01

    1,1,2-Trichloro-trifluoroethane (CFC113) was dissolved in alkaline 1-butanol, 2-butanol, iso-butyl alcohol, and phenyl ethyl alcohol and irradiated with 60 Co gamma rays after purged with pure nitrogen gas. In all these solvents, the concentration of CFC113 and hydroxide ion decreased and that of chloride ion increased with a dose observed in 2-propanol solution. The reaction efficiency increases in order of 1-butanol< iso-butyl alcohol< phenyl ethyl alcohol<2-butanol<2-propanol. The solvent effect will depend on the binding energy of the αC-H of the alcohol molecule and electron affinity and dipole moment of the ketones or aldehydes produced from the alcohols

  7. The Enzymatic Approach to Making of Alcoholic Beverages

    Directory of Open Access Journals (Sweden)

    Dilbar Mirzarakhmetova

    2011-11-01

    Full Text Available Immobilized yeast invertase was applied for treatment of alcoholic beverages with the aim of transformation of higher alcohols into alkylfructosides. Gas-liquid chromatography of treated water-alcoholic medium containing 3.0 mg/l isoamyl alcohol and 4% saccharose by immobilized invertase had shown the convertion of 40% isoamyl alcohol, which amounts to 1.8 mg/l absolute alcohol. Other parameters remained at the previous level. The high level of enzyme activity was observed when the initial concentration of sucrose in the reaction mixture attained 4.0-12.5%. Tasting of treated samples indicated the improvement of quality and degustational properties of beverages, they had softer and more harmonious taste and aroma in comparison with control sample and finished Vodka, which completed the cycle of technological processing.

  8. Bio-fuel - millions to be invested despite great uncertainty

    International Nuclear Information System (INIS)

    Beer, G.

    2005-01-01

    A directive passed by Brussels which directs Europe Union (EU) members to replace traditional fuels has created problems for many countries as they are not yet ready for bio-fuels. The directive counts with most euro-citizens no longer using pure petrol or diesel as of next year. Most refineries and petrol stations will have to sell a mixture of petrol and alcohol, or diesel and MERO. From 2007, bio-elements should comprise up to 5.75% of the energy content of diesel and petrol. The content of the bio-elements should be gradually increased to reach this figure - by the end of this year the required level will be 2%. For EU members, bio-fuels will create major problems and few advantages. Their share of car fuels will still be too low to have a major environmental effect or decrease dependency on oil imports. Reaching the prescribed percentage of bio-components in fuels will be expensive for the state. Exact figures are not yet available, but according to the National Program of Bio-Fuel Development this process will cost Slovakia over 500 mil Slovak crowns (Sk) (13.158 mil. Eur) in 2007 and by 2010 total state budget contributions will double. EC Directive 2003/30/EC creates business opportunities for certain business groups. But to benefit from this development they will have to act fast. In 2010, 29,000 ha. of maize and a greater acreage of grain will be needed for the production of the required volumes of bio-ethanol and so farmers have a chance to benefit from this situation. But farmers still do not have a clear view of what their cooperation with refineries will be like. In Slovakia, bio-alcohol will be produced from maize or grain. Its price is currently around 100 euro (4 000 Sk) per ton. To produce 1 ton of alcohol, 3 tons of grain are needed. A faster solution for Slovakia could be mixing diesel with MERO as in this area sufficient production capacity already exists, currently a part of production is exported to Germany, according to the head of Palma

  9. Purification of alcohol obtained from molasses

    Energy Technology Data Exchange (ETDEWEB)

    Visnevskaya, G L; Egorov, A S; Sokol' skaya, E V

    1960-01-01

    A study of the composition of alcohol liquids on different plates of a fractionation column of indirect action during purification of alcohol obtained from normal and defective molasses, and from starch raw material, showed that there were two local strength minima in the lower part of the column and on the plates (adjacent and feed). Aldehydes behaved as a typical head impurity; a noticeable increase in their concentration occurred only on the highest plates in the fractionation column. In the zone of the column containing liquids of a strength of 86 to 94% alcohol by weight a sharply pronounced local maximum of ester accumulation were observed, provisionally designated as intermediate, whose presence is apparently one of the causes of the specific sharp taste of alcohol obtained from molasses. These esters hinder the obtaining of high-grade alcohols which are standard in respect to ester content and oxidizability test. Reduction with 0.05N KMnO/sub 4/ occurs most rapidly with alcohol liquids in the zone of ester accumulation; purification of alcohols obtained from grain and potato raw material resulted in no zones of ester accumulation in the column.

  10. The Medical and Social Consequences of Alcohol Abuse

    African Journals Online (AJOL)

    Siegal_D

    those structures. Relatively little alcohol enters fat tissue due to its poor solubility in fat. Compared with males, females have relatively higher fat content and hence blood and tissue concentrations of alcohol are higher in females5. ... Damage to peripheral nerves manifesting as foot drop, burning sensation in the feet and.

  11. Transferrin metabolism in alcoholic liver disease

    International Nuclear Information System (INIS)

    Potter, B.J.; Chapman, R.W.; Nunes, R.M.; Sorrentino, D.; Sherlock, S.

    1985-01-01

    The metabolism of transferrin was studied using purified 125 I-labeled transferrin in 11 alcoholic patients; six with fatty liver and five with cirrhosis. Six healthy subjects whose alcohol intake was les than 40 gm daily were studied as a control group. There were no significant differences in the mean fractional catabolic rate and plasma volume in the alcoholic groups when compared with control subjects. A significantly decreased mean serum transferrin concentration was found in the alcoholic cirrhotic patients (1.8 +/- 0.3 gm per liter vs. 2.9 +/- 0.2; p less than 0.01), resulting from diminished total body synthesis (0.9 +/- 0.2 mg per kg per hr vs. 1.8 +/- 0.2; p less than 0.01). In contrast, in the patients with alcoholic fatty liver, the mean total body transferrin synthesis (2.4 +/- 0.3 mg per kg per hr) was significantly increased when compared with controls (p less than 0.05). For all the alcoholic patients, the serum transferrin correlated with transferrin synthesis (r = +0.70; p less than 0.01) but the serum iron did not. These results suggest that, in alcoholic cirrhosis, transferrin synthesis is decreased, probably reflecting diminished synthetic capacity by the liver. In contrast, in patients with alcoholic fatty liver, transferrin turnover is accelerated

  12. Effect of Alcohol to Oral Health

    Directory of Open Access Journals (Sweden)

    Peycheva K.

    2016-03-01

    Full Text Available According to the World Health Organization there are almost two billion people worldwide who consume alcohol on a regular basis. It’s a common abuse and almost 80 million are diagnozed with “alcohol abuse disorders” (WHO 2002, 2004. Excessive alcohol consumption is related to more than 60 different medical conditions, as suicide, homicide and different forms of accidents. Some conditions are acute, while other conditions such as liver cirrhosis, chronic pancreatitis, haemorrhagic stroke and various forms of cancer, are chronic consequences. Non-carious destructions of teeth like dental erosion are also associated with frequent alcohol consumption, because of precipitation of salivary proline-rich proteins caused by polyphenols present in most alcoholic drinks. The high concentration of organic and inorganic acids and the habit of keeping the alcoholic drink in the mouth can cause chronic inflammations of the soft tissues in the mouth and can increase the negative side effects from metals of crowns, bridges, orthodontic devises and various restorations. A literature review has been made due to the authors clinical observations and experiences.

  13. A Survey on the Methanol Content of Home Distilled Alcoholic Beverages in Transylvania (Romania

    Directory of Open Access Journals (Sweden)

    Md Croitoru

    2013-08-01

    Full Text Available Objective: Methanol appears in relatively high concentrations in alcoholic beverages obtained from fermented fruits distillates. These products are traditionally home made in many regions in Romania and other EU countries. The chronic use of products with high methanol concentration can be considered a health risk. The purpose of this work was to measure methanol concentration in a Romanian region where brandy-type alcoholic products are made from different fruits (plum, apple, pear, grapes, and to observe if there is a type of product that contains more methanol than the others. Methods: The content of methanol in the tested alcoholic beverages was determined using a gas chromatographic method. Results: Only 18% of the tested 56 samples met UE regulation regarding methanol content of alcoholic beverages (0.4% in alcoholic drinks containing 40% ethanol. The highest concentration of 2.39% was found in a plum brandy. Plum brandies contained significantly higher amounts of methanol than brandies made from other fruits (0.91 vs 0.52%, p = 0.01. Conclusions: Home distilled alcoholic beverages obtained from fruits are a health threat due to their high methanol content. Strict regulations and tests should be introduced for such products

  14. Well-to-wheel analysis of renewable transport fuels: synthetic natural gas from wood gasification and hydrogen from concentrated solar energy[Dissertation 17437

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.

    2007-07-01

    In order to deal with problems such as climate change, an increasing energy demand and the finiteness of fossil resources, alternative CO{sub 2}-low technologies have to be found for a sustainable growing future. Laboratories at PSI are conducting research on two pathways delivering such car fuels: synthetic natural gas from wood gasification (SNG) and hydrogen from solar thermochemical ZnO dissociation (STD). The biofuel SNG is produced using wood in an auto-thermal gasification reactor. It can be supplied to the natural-gas grid and be used in a compressed natural gas (CNG) vehicle. STD is a long-term option, using concentrated solar radiation in a thermochemical reactor, producing zinc as solar energy carrier. Zinc can be used for hydrolysis, in order to produce hydrogen as a locally low-polluting future car fuel. In the frame of the thesis, both fuels are assessed using a life cycle assessment, i.e. investigating all environmental interactions from the extraction of resources over the processing and usage steps to the final disposal. Different methodologies are applied for a rating, compared to alternatives and standard fuels of today. In addition, costs of the technologies are calculated in order to assess economic competitiveness. The thesis is structured as follows: After an introduction giving an overview (chapter A), the methodology is presented (chapter B). It includes various life cycle impact assessment methods such as greenhouse gas emissions, the cumulative energy demand or comprehensive rating approaches. Calculations of the production and supply costs of the assessed fuels are included as well as the eco-efficiency, a combination of environmental with economic indicators. In addition, external costs caused by the emissions are quantified. Sensitivity studies investigate the importance of different parameters and substantiate conclusions. In chapter C, the production, supply and use of the assessed fuels is discussed, following the well

  15. Determination of Gd concentration profile in UO{sub 2}–Gd{sub 2}O{sub 3} fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Tobia, D., E-mail: dina.tobia@cab.cnea.gov.ar [Laboratorio de Resonancias Magnéticas, Centro Atómico Bariloche – CNEA and CONICET, 8400 S.C. de Bariloche (Argentina); Winkler, E.L.; Milano, J.; Butera, A. [Laboratorio de Resonancias Magnéticas, Centro Atómico Bariloche – CNEA and CONICET, 8400 S.C. de Bariloche (Argentina); Kempf, R. [División Caracterización de Combustibles Avanzados, Gerencia Ciclo Combustible Nuclear, Centro Atómico Constituyentes – CNEA, 1650 San Martín, Pcia. de Buenos Aires (Argentina); Bianchi, L.; Kaufmann, F. [Departamento de Combustibles Avanzados, Gerencia Ciclo Combustible Nuclear, Centro Atómico Constituyentes – CNEA, 1650 San Martín, Pcia. de Buenos Aires (Argentina)

    2014-08-01

    A transversal mapping of the Gd concentration was measured in UO{sub 2}–Gd{sub 2}O{sub 3} nuclear fuel pellets by electron paramagnetic resonance spectroscopy (EPR). The quantification was made from the comparison with a Gd{sub 2}O{sub 3} reference sample. The nominal concentration in the pellets is UO{sub 2}: 7.5% Gd{sub 2}O{sub 3}. A concentration gradient was found, which indicates that the Gd{sub 2}O{sub 3} amount diminishes towards the edges of the pellets. The concentration varies from (9.3 ± 0.5)% in the center to (5.8 ± 0.3)% in one of the edges. The method was found to be particularly suitable for the precise mapping of the distribution of Gd{sup 3+} ions in the UO{sub 2} matrix.

  16. Universal electrode interface for electrocatalytic oxidation of liquid fuels.

    Science.gov (United States)

    Liao, Hualing; Qiu, Zhipeng; Wan, Qijin; Wang, Zhijie; Liu, Yi; Yang, Nianjun

    2014-10-22

    Electrocatalytic oxidations of liquid fuels from alcohols, carboxylic acids, and aldehydes were realized on a universal electrode interface. Such an interface was fabricated using carbon nanotubes (CNTs) as the catalyst support and palladium nanoparticles (Pd NPs) as the electrocatalysts. The Pd NPs/CNTs nanocomposite was synthesized using the ethylene glycol reduction method. It was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, voltammetry, and impedance. On the Pd NPs/CNTs nanocomposite coated electrode, the oxidations of those liquid fuels occur similarly in two steps: the oxidations of freshly chemisorbed species in the forward (positive-potential) scan and then, in the reverse scan (negative-potential), the oxidations of the incompletely oxidized carbonaceous species formed during the forward scan. The oxidation charges were adopted to study their oxidation mechanisms and oxidation efficiencies. The oxidation efficiency follows the order of aldehyde (formaldehyde) > carboxylic acid (formic acid) > alcohols (ethanol > methanol > glycol > propanol). Such a Pd NPs/CNTs nanocomposite coated electrode is thus promising to be applied as the anode for the facilitation of direct fuel cells.

  17. Promotion or suppression of glucose isomerization in subcritical aqueous straight- and branched-chain alcohols.

    Science.gov (United States)

    Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji

    2015-01-01

    The influence of water-miscible alcohols (methanol, 1-propanol, 2-propanol, and t-butyl alcohol) on the isomerization of glucose to fructose and mannose was investigated under subcritical aqueous conditions (180-200 °C). Primary and secondary alcohols promoted the conversion and isomerization of glucose to afford fructose and mannose with high and low selectivity, respectively. On the other hand, the decomposition (side-reaction) of glucose was suppressed in the presence of the primary and secondary alcohols compared with that in subcritical water. The yield of fructose increased with increasing concentration of the primary and secondary alcohols, and the species of the primary and secondary alcohols tested had little effect on the isomerization behavior of glucose. In contrast, the isomerization of glucose was suppressed in subcritical aqueous t-butyl alcohol. Both the conversion of glucose and the yield of fructose decreased with increasing concentration of t-butyl alcohol. In addition, mannose was not detected in reactions using subcritical aqueous t-butyl alcohol.

  18. Mutagenicity studies on alcohol extracts from gamma-irradiated potatoes

    International Nuclear Information System (INIS)

    Shinozaki, Yoshiharu; Hogetsu, Daisuke; Okuyama, Norio; Manabe, Takashi; Sasagawa, Tatsuru.

    1981-01-01

    The preparation of alcohol extracts from gamma-irradiated potatoes of the ''Danshaku'' variety and their chemical aspects were studied. The final concentrate of alcohol extracts from potatoes showed pH values of 3 -- 4. The o-quinones or ''radiotoxins'' reported by Kuzin, et al. were not detected in the alcohol extracts from potatoes of this variety by high performance liquid chromatography (HPLC) analysis, paper chromatography and the model enzymatic experiment. (author)

  19. Effect of monohydric alcohols on structural properties of macromolecular solutions

    International Nuclear Information System (INIS)

    Giordano, R.; Wanderlingh, F.; Cordone, L.; Cupane, A.

    1983-01-01

    A report on the effects of monohydric alcohols on the thixotropic properties of a 1% (by weight) BSA solution is given. The presence of alcohols in the solution medium, even in a very small amount, weakens the structure responsible for the thixotropic properties: this effect increases with increasing alcohol concentration and alkyl group size. Indirect evidence relating the observed effects to the alteration, in the presence of alcohol, of protein-solvent hydrophobic interactions is also presented

  20. Advances in developing rapid, reliable and portable detection systems for alcohol.

    Science.gov (United States)

    Thungon, Phurpa Dema; Kakoti, Ankana; Ngashangva, Lightson; Goswami, Pranab

    2017-11-15

    Development of portable, reliable, sensitive, simple, and inexpensive detection system for alcohol has been an instinctive demand not only in traditional brewing, pharmaceutical, food and clinical industries but also in rapidly growing alcohol based fuel industries. Highly sensitive, selective, and reliable alcohol detections are currently amenable typically through the sophisticated instrument based analyses confined mostly to the state-of-art analytical laboratory facilities. With the growing demand of rapid and reliable alcohol detection systems, an all-round attempt has been made over the past decade encompassing various disciplines from basic and engineering sciences. Of late, the research for developing small-scale portable alcohol detection system has been accelerated with the advent of emerging miniaturization techniques, advanced materials and sensing platforms such as lab-on-chip, lab-on-CD, lab-on-paper etc. With these new inter-disciplinary approaches along with the support from the parallel knowledge growth on rapid detection systems being pursued for various targets, the progress on translating the proof-of-concepts to commercially viable and environment friendly portable alcohol detection systems is gaining pace. Here, we summarize the progress made over the years on the alcohol detection systems, with a focus on recent advancement towards developing portable, simple and efficient alcohol sensors. Copyright © 2017 Elsevier B.V. All rights reserved.