WorldWideScience

Sample records for computing surface heat

  1. Computed Heats of Formation

    National Research Council Canada - National Science Library

    Politzer, Peter

    1998-01-01

    ..., the heats of vaporization and sublimation. The latter are determined by means of relationships that we have developed involving the computed electrostatic potential on the molecular surface 2,3...

  2. Computer aided surface representation

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R E

    1987-11-01

    The aims of this research are the creation of new surface forms and the determination of geometric and physical properties of surfaces. The full sweep from constructive mathematics through the implementation of algorithms and the interactive computer graphics display of surfaces is utilized. Both three-dimensional and multi- dimensional surfaces are considered. Particular emphasis is given to the scientific computing solution of Department of Energy problems. The methods that we have developed and that we are proposing to develop allow applications such as: Producing smooth contour maps from measured data, such as weather maps. Modeling the heat distribution inside a furnace from sample measurements. Terrain modeling based on satellite pictures. The investigation of new surface forms includes the topics of triangular interpolants, multivariate interpolation, surfaces defined on surfaces and monotone and/or convex surfaces. The geometric and physical properties considered include contours, the intersection of surfaces, curvatures as a interrogation tool, and numerical integration.

  3. Method of processing results of tests of heating surfaces of a steam generator on a digital computer

    Energy Technology Data Exchange (ETDEWEB)

    Glusker, B.N.

    1975-03-01

    At present, processing of information obtained by testing steam generators in high-capacity generating units is carried out manually. This takes a long time and does not always permit one to process all the information obtained, which impoverishes the results of experimental work. In addition, this kind of processing of experimental results is as a rule done after completion of a considerable part of the tests, and occasionally after completion of all the tests. In this case, it is impossible to conduct a better directed, corrected experiment, and this leads to duplication of experiments and to increasing the period of adjusting and exploratory work on industrial plants. An algorithm was developed for automated processing of the hydraulic and temperature conditions of the heating surfaces in steam generators on digital computers, which is a part of the general algorithm of processing of results of thermal tests of steam generators. It includes calculation of all characteristics determining the thermal and hydraulic conditions of the heating surfaces. The program of processing includes a subprogram: determination of the thermophysical and thermodynamic properties of the water and steam.

  4. An Integrated Experimental and Computational Study of Heating due to Surface Catalysis under Hypersonic Conditions

    Science.gov (United States)

    2012-08-01

    platform COOLFluiD (Computational Object Oriented Libraries for Fluid Dynamics) [1, 2, 3, 4] is VKI collaborative software environment for high...Poedts. The COOLFluiD framework: Design solutions for high-performance object oriented scientific computing software . In P. M. A. Sloot V. S. Sunderan, G...Andrea Lani. An Object Oriented and high performance platform for aerothermodynamics simulation. PhD thesis, Université Libre de Bruxelles, Chaussée

  5. Winter-regime surface heat loss from heated streams

    International Nuclear Information System (INIS)

    Paily, P.P.; Macagno, E.O.; Kennedy, J.F.

    1974-01-01

    Evaluation of the rate of surface heat exchange between the water and air is a significant factor in any study of the thermal response of heated streams to heat inputs. Existing methods to determine the amount of heat transfer across the water surface are surveyed, and the different formulas developed for determining the heat exchange components are compiled. Heat-transfer models that have been proposed in the literature are reviewed, and a new linearized model for determining the rate of surface heat exchange is proposed. Generalized relations between the major climatological factors and the coefficients of the linearized heat-loss rate are established by multiple-regression analysis. The analysis is limited to cold-period conditions, in the sense that air temperatures below the freezing point of water only are considered in developing the regression equations. A computer program, using FORTRAN, is presented which enables the computation of the coefficients appearing in the linearized heat-loss rate for all combinations of the various climatological factors

  6. Computer aided surface representation

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R.E.

    1990-02-19

    The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a surface defined on a surface''. Sometimes properties of an already defined surface are desired, which is geometry processing''. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

  7. Radiative heat exchange between surfaces

    International Nuclear Information System (INIS)

    Yener, Y.; Yuncu, H.

    1987-01-01

    The geometrical features of radiative heat exchange between surfaces are discussed first by developing various radiation shape factor relations. The governing equations for enclosures with diffusely emitting and diffusely reflecting surfaces, as well as the equations for enclosures with gray surfaces having specular component of reflectivity are introduced next. Finally, a simplified model for enclosures with isothermal surfaces under the assumption of uniform radiosity over the surfaces is discussed, and various working relations for different conditions are presented

  8. Computer representation of molecular surfaces

    International Nuclear Information System (INIS)

    Max, N.L.

    1981-01-01

    This review article surveys recent work on computer representation of molecular surfaces. Several different algorithms are discussed for producing vector or raster drawings of space-filling models formed as the union of spheres. Other smoother surfaces are also considered

  9. Surface engineering and heat treatment

    International Nuclear Information System (INIS)

    Morton, P.H.

    1991-01-01

    This book is the proceedings of a Conference organised jointly by The Institute of Metals and The Centre for Exploitation of Science and Technology (CEST). It sets out to review this role and point the way to the future by collecting together a series of invited papers written by noted authorities in their fields. The opening review by CEST highlights the economic and industrial importance of Surface Engineering and is followed by a group of four articles devoted to specific branches of industry. Several technical papers then describe various aspects of the development of heat treatment over the last twenty-five years. These are followed by papers describing advances made possible by new technologies such as plasma, laser and ion beam. A separate abstract has been prepared for a paper on materials aspects of ion beam technology. (author)

  10. GAM-HEAT -- a computer code to compute heat transfer in complex enclosures

    International Nuclear Information System (INIS)

    Cooper, R.E.; Taylor, J.R.; Kielpinski, A.L.; Steimke, J.L.

    1991-02-01

    The GAM-HEAT code was developed for heat transfer analyses associated with postulated Double Ended Guillotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re- radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices, and also accounts for convective, conductive, and advective heat exchanges. The code is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium. The GAM-HEAT code has been exercised extensively for computing transient temperatures in SRS reactors with specific charges and control components. Results from these computations have been used to establish the need for and to evaluate hardware modifications designed to mitigate results of postulated accident scenarios, and to assist in the specification of safe reactor operating power limits. The code utilizes temperature dependence on material properties. The efficiency of the code has been enhanced by the use of an iterative equation solver. Verification of the code to date consists of comparisons with parallel efforts at Los Alamos National Laboratory and with similar efforts at Westinghouse Science and Technology Center in Pittsburgh, PA, and benchmarked using problems with known analytical or iterated solutions. All comparisons and tests yield results that indicate the GAM-HEAT code performs as intended

  11. CASKETSS-HEAT: a finite difference computer program for nonlinear heat conduction problems

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1988-12-01

    A heat conduction program CASKETSS-HEAT has been developed. CASKETSS-HEAT is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Main features of CASKETSS-HEAT are as follows. (1) One, two and three-dimensional geometries for heat conduction calculation are available. (2) Convection and radiation heat transfer of boundry can be specified. (3) Phase change and chemical change can be treated. (4) Finned surface heat transfer can be treated easily. (5) Data memory allocation in the program is variable according to problem size. (6) The program is a compatible heat transfer analysis program to the stress analysis program SAP4 and SAP5. (7) Pre- and post-processing for input data generation and graphic representation of calculation results are available. In the paper, brief illustration of calculation method, input data and sample calculation are presented. (author)

  12. Cardioplegia heat exchanger design modelling using computational fluid dynamics.

    Science.gov (United States)

    van Driel, M R

    2000-11-01

    A new cardioplegia heat exchanger has been developed by Sorin Biomedica. A three-dimensional computer-aided design (CAD) model was optimized using computational fluid dynamics (CFD) modelling. CFD optimization techniques have commonly been applied to velocity flow field analysis, but CFD analysis was also used in this study to predict the heat exchange performance of the design before prototype fabrication. The iterative results of the optimization and the actual heat exchange performance of the final configuration are presented in this paper. Based on the behaviour of this model, both the water and blood fluid flow paths of the heat exchanger were optimized. The simulation predicted superior heat exchange performance using an optimal amount of energy exchange surface area, reducing the total contact surface area, the device priming volume and the material costs. Experimental results confirm the empirical results predicted by the CFD analysis.

  13. Computational study of heat transfer from the inner surface of a circular tube to force high temperature liquid metal flow in laminar and transition regions

    Science.gov (United States)

    Hata, K.; Fukuda, K.; Masuzaki, S.

    2018-03-01

    Heat transfer through forced convection from the inner surface of a circular tube to force the flow of liquid sodium in the laminar and transition regions were numerically analysed for two types of tube geometries (concentric annular and circular tubes) and two types of equivalent diameters (hydraulic and thermal equivalent diameters). The unsteady laminar three-dimensional basic equations for forced convection heat transfer caused by a step heat flux were numerically solved until a steady state is attained. The code of the parabolic hyperbolic or elliptic numerical integration code series (PHOENICS) was used for calculations by considering relevant temperature dependent thermo-physical properties. The concentric annular tube has a test tube with inner and outer diameters of 7.6 and 14.3 mm, respectively, has a heated length of 52 mm, and an L/d of 6.84. The two circular tubes have inner diameters of 6.7 and 19.3 mm with L/d of 7.76 and 2.69, respectively, and a heated length of 52 mm. The inlet liquid temperature, inlet liquid velocity, and surface heat flux were equally set for each test tube as T in ≅573 to 585 K, u in = 0.0852 to 1 m/s, and q = 2×105 to 2.5×106 W/m2, respectively. The increase in temperature from the leading edge of the heated section to the outlet of the circular tubes (with a hydraulic diameter of d H = 6.7 mm and a thermal equivalent diameter d te = 19.3 mm) was approximately 2.70 and 1.21 times as large as the corresponding values of the concentric annular tube with an inner diameter of 7.6 mm and an outer diameter of 14.3 mm, respectively. A quantity in the laminar and transition regions was suggested as the dominant variable involved in the forced convection heat transfer in the circular tube. The values of the local and average Nusselt numbers, Nu z and Nu av , respectively, for a concentric annular tube with d H = 6.7 mm and for a circular tube with d H = 6.7 mm were calculated to examine the effects of q, T in , and Pe on heat

  14. Delay of turbulent by surface heating in water

    International Nuclear Information System (INIS)

    Arakeri, V.H.

    1980-01-01

    Boundary layer flow visualization studies in water on a 1.5 cal tangent ogive body with surface heating are reported. Existing laminar boundary layer separation was observed to be eliminated with sufficient surface heating. In addition, transition location was observed to be significantly delayed. With surface temperature difference of about 27 0 C no disturbances in the boundary layer could be detected up to (X/D) = 2.5 as compared to observed transition at about (X/D) = 1.32 under slightly heated conditions. Present observations are found to be in agreement with the theoretical computations of Wazzan et al. in a qualitative sense. (orig.)

  15. Computational Complexity of Combinatorial Surfaces

    NARCIS (Netherlands)

    Vegter, Gert; Yap, Chee K.

    1990-01-01

    We investigate the computational problems associated with combinatorial surfaces. Specifically, we present an algorithm (based on the Brahana-Dehn-Heegaard approach) for transforming the polygonal schema of a closed triangulated surface into its canonical form in O(n log n) time, where n is the

  16. Optimization of heat recovery with computers. Waermerueckgewinnung mit Computer optimieren

    Energy Technology Data Exchange (ETDEWEB)

    Gueggi, T. (Jaeggi AG, Bern (Switzerland))

    1991-05-01

    The economic efficiency of heat recovery systems largely depends on the correct dimensioning of the heat exchangers and the whole plant. With special computer programs today dimensioning, design choice and the combined action of the total system can be optimized on the basis of given parameters and to predict the economic and energetic result. One of these user programs is presented. (BWI).

  17. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  18. Heat transfer from rough surfaces

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1977-01-01

    Artificial roughness is often used in nuclear reactors to improve the thermal performance of the fuel elements. Although these are made up of clusters of rods, the experiments to measure the heat transfer and friction coefficients of roughness are performed with single rods contained in smooth tubes. This work illustrated a new transformation method to obtain data applicable to reactor fuel elements from these annulus experiments. New experimental friction data are presented for ten rods, each with a different artificial roughness made up of two-dimensional rectangular ribs. For each rod four tests have been performed, each in a different outer smooth tube. For two of these rods, each for two different outer tubes, heat transfer data are also given. The friction and heat transfer data, transformed with the present method, are correlated by simple equations. In the paper, these equations are applied to a case typical for a Gas Cooled Fast Reactor fuel element. (orig.) [de

  19. Future heat waves and surface ozone

    Science.gov (United States)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  20. Interaction between liquid droplets and heated surface

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, B I [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation); Vasiliev, N I [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation); Guguchkin, V V [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation)

    1993-06-01

    In this paper, experimental methods and investigation results of interaction between droplets of different liquids and a heated surface are presented. Wetted area, contact time period and transition boundary from wetted to non-wetted interaction regimes are experimentally evaluated. A simple connection of the wetted area value and contact time period with the heat removal efficiency is shown. (orig.)

  1. Computational approach to Riemann surfaces

    CERN Document Server

    Klein, Christian

    2011-01-01

    This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first...

  2. Computational simulation of heat transfer in laser melted material flow

    International Nuclear Information System (INIS)

    Shankar, V.; Gnanamuthu, D.

    1986-01-01

    A computational procedure has been developed to study the heat transfer process in laser-melted material flow associated with surface heat treatment of metallic alloys to improve wear-and-tear and corrosion resistance. The time-dependent incompressible Navier-Stokes equations are solved, accounting for both convective and conductive heat transfer processes. The convection, induced by surface tension and high surface temperature gradients, sets up a counterrotating vortex flow within the molten pool. This recirculating material flow is responsible for determining the molten pool shape and the associated cooling rates which affect the solidifying material composition. The numerical method involves an implicit triple-approximate factorization scheme for the energy equation, and an explicit treatment for the momentum and the continuity equations. An experimental setup, using a continuous wave CO 2 laser beam as a heat source, has been carried out to generate data for validation of the computational model. Results in terms of the depth, width, and shape of the molten pool and the heat-affected zone for various power settings and shapes of the laser, and for various travel speeds of the workpiece, compare very well with experimental data. The presence of the surface tension-induced vortex flow is demonstrated

  3. Computational fluid mechanics and heat transfer

    CERN Document Server

    Pletcher, Richard H; Anderson, Dale

    2012-01-01

    ""I have always considered this book the best gift from one generation to the next in computational fluid dynamics. I earnestly recommend this book to graduate students and practicing engineers for the pleasure of learning and a handy reference. The description of the basic concepts and fundamentals is thorough and is crystal clear for understanding. And since 1984, two newer editions have kept abreast to the new, relevant, and fully verified advancements in CFD.""-Joseph J.S. Shang, Wright State University""Computational Fluid Mechanics and Heat Transfer is very well written to be used as a t

  4. Computer graphics in heat-transfer simulations

    International Nuclear Information System (INIS)

    Hamlin, G.A. Jr.

    1980-01-01

    Computer graphics can be very useful in the setup of heat transfer simulations and in the display of the results of such simulations. The potential use of recently available low-cost graphics devices in the setup of such simulations has not been fully exploited. Several types of graphics devices and their potential usefulness are discussed, and some configurations of graphics equipment are presented in the low-, medium-, and high-price ranges

  5. Evaporation of nanofluid droplet on heated surface

    Directory of Open Access Journals (Sweden)

    Yeung Chan Kim

    2015-04-01

    Full Text Available In this study, an experiment on the evaporation of nanofluid sessile droplet on a heated surface was conducted. A nanofluid of 0.5% volumetric concentration mixed with 80-nm-sized CuO powder and pure water were used for experiment. Droplet was applied to the heated surface, and images of the evaporation process were obtained. The recorded images were analyzed to find the volume, diameter, and contact angle of the droplet. In addition, the evaporative heat transfer coefficient was calculated from experimental result. The results of this study are summarized as follows: the base diameter of the droplet was maintained stably during the evaporation. The measured temperature of the droplet was increased rapidly for a very short time, then maintained constantly. The nanofluid droplet was evaporated faster than the pure water droplet under the experimental conditions of the same initial volume and temperature, and the average evaporative heat transfer coefficient of the nanofluid droplet was higher than that of pure water. We can consider the effects of the initial contact angle and thermal conductivity of nanofluid as the reason for this experimental result. However, the effect of surface roughness on the evaporative heat transfer of nanofluid droplet appeared unclear.

  6. Surface temperature and surface heat flux determination of the inverse heat conduction problem for a slab

    International Nuclear Information System (INIS)

    Kuroyanagi, Toshiyuki

    1983-07-01

    Based on an idea that surface conditions should be a reflection of interior temperature and interior heat flux variation as inverse as interior conditions has been determined completely by the surface temperature and/on surface heat flux as boundary conditions, a method is presented for determining the surface temperature and the surface heat flux of a solid when the temperature and heat flux at an interior point are a prescribed function of time. The method is developed by the integration of Duhumels' integral which has unknown temperature or unknown heat flux in its integrand. Specific forms of surface condition determination are developed for a sample inverse problem: slab. Ducussing the effect of a degree of avairable informations at an interior point due to damped system and the effect of variation of surface conditions on those formulations, it is shown that those formulations are capable of representing the unknown surface conditions except for small time interval followed by discontinuous change of surface conditions. The small un-resolved time interval is demonstrated by a numerical example. An evaluation method of heat flux at an interior point, which is requested by those formulations, is discussed. (author)

  7. Tritiated hydrogen conversion on heated metallic surfaces

    International Nuclear Information System (INIS)

    Ionita, G.; Mihaila, V.; Purghel, L.; Rebigan, F.

    1995-01-01

    This work reports investigations on tritiated hydrogen conversion to tritiated water on heated metallic surfaces. The HT conversion process has been revealed for copper, aluminium and stainless steel W4541 surfaces in the temperature range 150 to 300 o C, in case of the static regime and in the range 250 to 400 o C for the dynamic case. The most significant catalytic activity was shown by the copper sample. Studies on this subject are used as input information for different nuclear accident scenarios implying tritium leakage

  8. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    Science.gov (United States)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  9. Heat Transfer Computations of Internal Duct Flows With Combined Hydraulic and Thermal Developing Length

    Science.gov (United States)

    Wang, C. R.; Towne, C. E.; Hippensteele, S. A.; Poinsatte, P. E.

    1997-01-01

    This study investigated the Navier-Stokes computations of the surface heat transfer coefficients of a transition duct flow. A transition duct from an axisymmetric cross section to a non-axisymmetric cross section, is usually used to connect the turbine exit to the nozzle. As the gas turbine inlet temperature increases, the transition duct is subjected to the high temperature at the gas turbine exit. The transition duct flow has combined development of hydraulic and thermal entry length. The design of the transition duct required accurate surface heat transfer coefficients. The Navier-Stokes computational method could be used to predict the surface heat transfer coefficients of a transition duct flow. The Proteus three-dimensional Navier-Stokes numerical computational code was used in this study. The code was first studied for the computations of the turbulent developing flow properties within a circular duct and a square duct. The code was then used to compute the turbulent flow properties of a transition duct flow. The computational results of the surface pressure, the skin friction factor, and the surface heat transfer coefficient were described and compared with their values obtained from theoretical analyses or experiments. The comparison showed that the Navier-Stokes computation could predict approximately the surface heat transfer coefficients of a transition duct flow.

  10. Titanium based flat heat pipes for computer chip cooling

    Science.gov (United States)

    Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

    2008-11-01

    We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

  11. Residual stresses estimation in tubes after rapid heating of surface

    International Nuclear Information System (INIS)

    Serikov, S.V.

    1992-01-01

    Results are presented on estimation of residual stresses in tubes of steel types ShKh15, EhP836 and 12KIMF after heating by burning pyrotechnic substance inside tubes. External tube surface was heated up to 400-450 deg C under such treatment. Axial stresses distribution over tube wall thickness was determined for initial state, after routine heat treatment and after heating with the use of fireworks. Inner surface heating was shown to essentially decrease axial stresses in tubes

  12. The FLUFF code for calculating finned surface heat transfer -description and user's guide

    International Nuclear Information System (INIS)

    Fry, C.J.

    1985-08-01

    FLUFF is a computer code for calculating heat transfer from finned surfaces by convection and radiation. It can also represent heat transfer by radiation to a partially emitting and absorbing medium within the fin cavity. The FLUFF code is useful not only for studying the behaviour of finned surfaces but also for deriving heat fluxes which can be applied as boundary conditions to other heat transfer codes. In this way models of bodies with finned surfaces may be greatly simplified since the fins need not be explicitly represented. (author)

  13. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.

    2014-02-05

    The objective of this work is to study the electrostatic response of materials accounting for boundary surfaces with their own (electrostatic) constitutive behaviour. The electric response of materials with (electrostatic) energetic boundary surfaces (surfaces that possess material properties and constitutive structures different from those of the bulk) is formulated in a consistent manner using a variational framework. The forces and moments that appear due to bulk and surface electric fields are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress and the Maxwell stress is examined.

  14. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.; Javili, A.; Steinmann, P.

    2014-01-01

    are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress

  15. 3-D heat transfer computer calculations of the performance of the IAEA's air-bath calorimeters

    International Nuclear Information System (INIS)

    Elias, E.; Kaizermann, S.; Perry, R.B.; Fiarman, S.

    1989-01-01

    A three dimensional (3-D) heat transfer computer code was developed to study and optimize the design parameters and to better understand the performance characteristics of the IAEA's air-bath calorimeters. The computer model accounts for heat conduction and radiation in the complex materials of the calorimeter and for heat convection and radiation at its outer surface. The temperature servo controller is modelled as an integral part of the heat balance equations in the system. The model predictions will be validated against test data using the ANL bulk calorimeter. 11 refs., 6 figs

  16. Identification of the Heat Transfer Coefficient at the Charge Surface Heated on the Chamber Furnace

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2017-06-01

    Full Text Available The inverse method was applied to determine the heat flux reaching the charge surface. The inverse solution was based upon finding the minimum of the error norm between the measured and calculated temperatures. The charge temperature field was calculated with the finite element method by solving the heat transfer equation for a square charge made of 15HM steel heated on all its surfaces. On the basis of the mean value of heat flux, the value of the heat transfer coefficient at each surface was determined depending on the surface temperature of the material heated.

  17. Surface wettability and subcooling on nucleate pool boiling heat transfer

    Science.gov (United States)

    Suroto, Bambang Joko; Kohno, Masamichi; Takata, Yasuyuki

    2018-02-01

    The effect of varying surface wettabilities and subcooling on nucleate pool boiling heat transfer at intermediate heat flux has been examined and investigated. The experiments were performed using pure water as the working fluid and subcooling ranging from 0, 5 and 10 K, respectively. The three types of heat transfer block were used that are bare surface/hydrophilic (polished copper), superhydrophilic/TiO2-coated on copper and hydrophobic/PTFE surface. The experimental results will be examined by the existing model. The results show that the heat transfer performance of surfaces with PTFE coating is better at low heat flux. While for an intermediate heat flux, superhydrophilic surface (TiO2) is superior compared to hydrophilic and hydrophobic surfaces. It is observed that the heat transfer performance is decreasing when the sub cooling degree is increased.

  18. Study on Induction Heating Coil for Uniform Mold Cavity Surface Heating

    OpenAIRE

    Yu-Ting Sung; Sheng-Jye Hwang; Huei-Huang Lee; Durn-Yuan Huang

    2014-01-01

    Recently, energy saving is one of the important issues for polymer processing industry. Electromagnetic induction heating has many advantages such as fast heating and low energy consumption. Previous studies using electromagnetic induction heating for rapid tool heating have indicated that the temperature uniformity on a cavity surface is not easy to be achieved. In this paper, two different coils were used for heating uniform 7 mm thick hot work tool steel (JIS SKD61) surface. One is a four-...

  19. Computing Visible-Surface Representations,

    Science.gov (United States)

    1985-03-01

    Terzopoulos N00014-75-C-0643 9. PERFORMING ORGANIZATION NAME AMC ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Artificial Inteligence Laboratory AREA A...Massachusetts Institute of lechnolog,. Support lbr the laboratory’s Artificial Intelligence research is provided in part by the Advanced Rtccarcl Proj...dynamically maintaining visible surface representations. Whether the intention is to model human vision or to design competent artificial vision systems

  20. A modified stanton number for heat transfer through fabric surface

    Directory of Open Access Journals (Sweden)

    Zhang Shen-Zhong

    2015-01-01

    Full Text Available The Stanton number was originally proposed for describing heat transfer through a smooth surface. A modified one is suggested in this paper to take into account non-smooth surface or fractal surface. The emphasis is put on the heat transfer through fabrics.

  1. Subcooled boiling heat transfer on a finned surface

    International Nuclear Information System (INIS)

    Kowalski, J.E.; Tran, V.T.; Mills, P.J.

    1992-01-01

    Experimental and numerical studies have been performed to determine the heat transfer coefficients from a finned cylindrical surface to subcooled boiling water. The heat transfer rates were measured in an annular test section consisting of an electrically heated fuel element simulator (FES) with eight longitudinal, rectangular fins enclosed in a glass tube. A two-dimensional finite-element heat transfer model using the Galerkin method was employed to determine the heat transfer coefficients along the periphery of the FES surface. An empirical correlation was developed to predict the heat transfer coefficients during subcooled boiling. The correlation agrees well with the measured data. (6 figures) (Author)

  2. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi; Chen, Ping-Hei

    2012-01-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography

  3. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    Science.gov (United States)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  4. Prediction of Experimental Surface Heat Flux of Thin Film Gauges using ANFIS

    Science.gov (United States)

    Sarma, Shrutidhara; Sahoo, Niranjan; Unal, Aynur

    2018-05-01

    Precise quantification of surface heat fluxes in highly transient environment is of paramount importance from the design point of view of several engineering equipment like thermal protection or cooling systems. Such environments are simulated in experimental facilities by exposing the surface with transient heat loads typically step/impulsive in nature. The surface heating rates are then determined from highly transient temperature history captured by efficient surface temperature sensors. The classical approach is to use thin film gauges (TFGs) in which temperature variations are acquired within milliseconds, thereby allowing calculation of surface heat flux, based on the theory of one-dimensional heat conduction on a semi-infinite body. With recent developments in the soft computing methods, the present study is an attempt for the application of intelligent system technique, called adaptive neuro fuzzy inference system (ANFIS) to recover surface heat fluxes from a given temperature history recorded by TFGs without having the need to solve lengthy analytical equations. Experiments have been carried out by applying known quantity of `impulse heat load' through laser beam on TFGs. The corresponding voltage signals have been acquired and surface heat fluxes are estimated through classical analytical approach. These signals are then used to `train' the ANFIS model, which later predicts output for `test' values. Results from both methods have been compared and these surface heat fluxes are used to predict the non-linear relationship between thermal and electrical properties of the gauges that are exceedingly pertinent to the design of efficient TFGs. Further, surface plots have been created to give an insight about dimensionality effect of the non-linear dependence of thermal/electrical parameters on each other. Later, it is observed that a properly optimized ANFIS model can predict the impulsive heat profiles with significant accuracy. This paper thus shows the

  5. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  6. Viking Afterbody Heating Computations and Comparisons to Flight Data

    Science.gov (United States)

    Edquist, Karl T.; Wright, Michael J.; Allen, Gary A., Jr.

    2006-01-01

    Computational fluid dynamics predictions of Viking Lander 1 entry vehicle afterbody heating are compared to flight data. The analysis includes a derivation of heat flux from temperature data at two base cover locations, as well as a discussion of available reconstructed entry trajectories. Based on the raw temperature-time history data, convective heat flux is derived to be 0.63-1.10 W/cm2 for the aluminum base cover at the time of thermocouple failure. Peak heat flux at the fiberglass base cover thermocouple is estimated to be 0.54-0.76 W/cm2, occurring 16 seconds after peak stagnation point heat flux. Navier-Stokes computational solutions are obtained with two separate codes using an 8- species Mars gas model in chemical and thermal non-equilibrium. Flowfield solutions using local time-stepping did not result in converged heating at either thermocouple location. A global time-stepping approach improved the computational stability, but steady state heat flux was not reached for either base cover location. Both thermocouple locations lie within a separated flow region of the base cover that is likely unsteady. Heat flux computations averaged over the solution history are generally below the flight data and do not vary smoothly over time for both base cover locations. Possible reasons for the mismatch between flight data and flowfield solutions include underestimated conduction effects and limitations of the computational methods.

  7. Automated Hybrid Microwave Heating for Lunar Surface Solidification, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project addresses the need for a system that will provide automated lunar surface stabilization via hybrid microwave heating. Surface stabilization is...

  8. Ion track membranes providing heat pipe surfaces with capillary structures

    International Nuclear Information System (INIS)

    Akapiev, G.N.; Dmitriev, S.N.; Erler, B.; Shirkova, V.V.; Schulz, A.; Pietsch, H.

    2003-01-01

    The microgalvanic method for metal filling of etched ion tracks in organic foils is of particular interest for the fabrication of microsized structures. Microstructures like copper whiskers with a high aspect ratio produced in ion track membranes are suitable for the generation of high-performance heat transfer surfaces. A surface with good heat transfer characteristics is defined as a surface on which a small temperature difference causes a large heat transfer from the surface material to the liquid. It is well-known that a porous surface layer transfers to an evaporating liquid a given quantity of heat at a smaller temperature difference than does a usual smooth surface. Copper whiskers with high aspect ratio and a density 10 5 per cm 2 form such a porous structure, which produces strong capillary forces and therefore a maximum of heat transfer coefficients

  9. Heat transfer enhancement with condensation by surface rotation

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Khrolenok, V V [A.V. Luikov Heat and Mass Transfer Inst., Minsk (Belarus)

    1993-11-01

    Process intensification relies on many unit operations on enhanced heat transfer. One technique for the enhancement of condensation heat transfer is the use of surface rotation. This is particularly effective in reducing the condensate film thickness. The formulae and relationships given in this paper are concerned with rotating discs and tubes, and can be used for developing advanced heat exchanger concepts. (Author)

  10. Surface computing and collaborative analysis work

    CERN Document Server

    Brown, Judith; Gossage, Stevenson; Hack, Chris

    2013-01-01

    Large surface computing devices (wall-mounted or tabletop) with touch interfaces and their application to collaborative data analysis, an increasingly important and prevalent activity, is the primary topic of this book. Our goals are to outline the fundamentals of surface computing (a still maturing technology), review relevant work on collaborative data analysis, describe frameworks for understanding collaborative processes, and provide a better understanding of the opportunities for research and development. We describe surfaces as display technologies with which people can interact directly, and emphasize how interaction design changes when designing for large surfaces. We review efforts to use large displays, surfaces or mixed display environments to enable collaborative analytic activity. Collaborative analysis is important in many domains, but to provide concrete examples and a specific focus, we frequently consider analysis work in the security domain, and in particular the challenges security personne...

  11. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  12. Blowdown heat transfer surface in RELAP4/MOD6

    International Nuclear Information System (INIS)

    Nelson, R.A.; Sullivan, L.H.

    1978-01-01

    New heat transfer correlations for both PWR and BWR blowdowns have been implemented in the RELAP4/MOD6 program. The concept of a multidimensional surface is introduced with the heat flux from a given heat transfer correlation or correlations depicted as a mathematical surface that is dependent upon quality, wall superheat, mass flow and pressure. The heat transfer logic has been modularized to facilitate replacing boiling curves for future correlation data comparisons and investigations. To determine the validity of the blowdown surface, comparison has been performed using data from the Semiscale experimental facility. (author)

  13. Program Computes Flows Of Fluids And Heat

    Science.gov (United States)

    Cullimore, Brent; Ring, Steven; Welch, Mark

    1993-01-01

    SINDA'85/FLUINT incorporates lumped-parameter-network and one-dimensional-flow mathematical models. System enables analysis of mutual influences of thermal and flow phenomena. Offers two finite-difference numerical solution techniques: forward-difference explicit approximation and Crank-Nicholson approximation. Enables simulation of nonuniform heating and facilitates mathematical modeling of thin-walled heat exchangers. Ability to model nonequilibrium behavior within two-phase volumes included. Recent changes in program improve modeling of real evaporator pumps and other capillary-assist evaporators. Written in FORTRAN 77.

  14. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  15. Computer simulation of heating of biological tissue during laser radiation

    International Nuclear Information System (INIS)

    Bojanic, S.; Sreckovic, M.

    1995-01-01

    Computer model is based on an implicit finite difference scheme to solve the diffusion equation for light distribution and the bio-heat equation. A practical application of the model is to calculate the temperature distributions during thermal coagulation of prostate by radiative heating. (author)

  16. Fusion surface material melting, ablation, and ejection under high heat loading

    International Nuclear Information System (INIS)

    Holliday, M.R.; Doster, J.M.; Gilligan, J.G.

    1986-01-01

    Limiters, divertor plates, and sections of the first wall are exposed to intense heat loads during normal operation and plasma disruptions. This results in severe thermal stresses as well as erosion of the surface material. Large surface areas of compact high-field tokamaks are expected to be exposed to these high heat loads. The need for a fast and accurate computational model describing the heat transfer and phase change process has arisen as a part of the larger model of the plasma-edge region. The authors report on a solution scheme that has been developed that minimizes computational time for this time-dependent, one-dimensional, moving boundary problem. This research makes use of the heat balance integral technique, which is at least an order of magnitude faster than previous finite difference techniques. In addition, we report on the effect of molten material ejection (by external forces) on the total surface erosion rate

  17. Instability of flow of liquid film over a heated surface

    International Nuclear Information System (INIS)

    Sha, W.T.

    1994-01-01

    Fundamental concepts and basic equations of a flowing thin liquid film cooling a heated surfaced by its vaporization and the effect of dry patches were treated. Stable film flow prior to the appearance of dry patches on the heated surface is maintained by a balance of various forces due to surface tension, shear stress, heat and mass transfer, and gravity. Film splitting at a critical film thickness produces dry patches due to perturbation by waves on a perfect surface, and often by surface imperfection and uneven heating. This work is primarily motivated by the design of next-generation nuclear reactors, which employ many novel passive heat-removal systems via natural circulation. These systems are design to prevent damage to the reactor core and containment without action by the reactor operators during or after a design basis accident such as a loss of coolant accident (LOCA) or a main steam-line break (MSLB) accident

  18. Modelling flow and heat transfer around a seated human body by computational fluid dynamics

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft; Voigt, Lars Peter Kølgaard

    2003-01-01

    A database (http://www.ie.dtu.dk/manikin) containing a detailed representation of the surface geometry of a seated female human body was created from a surface scan of a thermal manikin (minus clothing and hair). The radiative heat transfer coefficient and the natural convection flow around...... of the computational manikin has all surface features of a human being; (2) the geometry is an exact copy of an experimental thermal manikin, enabling detailed comparisons between calculations and experiments....

  19. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  20. Some observations on boiling heat transfer with surface oscillation

    International Nuclear Information System (INIS)

    Miyashita, H.

    1992-01-01

    The effects of surface oscillation on pool boiling heat transfer are experimentally studied. Experiments were performed in saturated ethanol and distilled water, covering the range from nucleate to film boiling except in the transition region. Two different geometries were employed as the heating surface with the same wetting area, stainless steel pipe and molybdenum ribbon. The results confirm earlier work on the effect of surface oscillation especially in lower heat flux region of nucleate boiling. Interesting boiling behavior during surface oscillation is observed, which was not referred to in previous work. (2 figures) (Author)

  1. Multiresolution Computation of Conformal Structures of Surfaces

    Directory of Open Access Journals (Sweden)

    Xianfeng Gu

    2003-10-01

    Full Text Available An efficient multiresolution method to compute global conformal structures of nonzero genus triangle meshes is introduced. The homology, cohomology groups of meshes are computed explicitly, then a basis of harmonic one forms and a basis of holomorphic one forms are constructed. A progressive mesh is generated to represent the original surface at different resolutions. The conformal structure is computed for the coarse level first, then used as the estimation for that of the finer level, by using conjugate gradient method it can be refined to the conformal structure of the finer level.

  2. Heat and mass transfer boundary conditions at the surface of a heated sessile droplet

    Science.gov (United States)

    Ljung, Anna-Lena; Lundström, T. Staffan

    2017-12-01

    This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.

  3. Flow and heat transfer regimes during quenching of hot surfaces

    International Nuclear Information System (INIS)

    Barnea, Y.; Elias, E.

    1993-05-01

    Reflooding experiments have been performed to study flow and heat transfer regimes in a heated annular vertical channel under supercooled inlet conditions. A gamma densitometer was employed to determine the void fraction as a function of the distance from the quench front. Surface heat fluxes were determined by fast measurements of the temperature spatial distribution. Two quench front is shown to lie in the transition boiling region which spreads into the dry and wet segments of the heated surface. (authors) 5 refs, 3 figs

  4. Method of relative comparison of the thermohydraulic efficiency of heat exchange intensification in channels of heat-exchange surfaces

    International Nuclear Information System (INIS)

    Dubrovskij, E.V.; Vasil'ev, V.Ya.

    2002-01-01

    One introduces a technique to compare relatively thermohydraulic efficiency of heat transfer intensification in channels of heat exchange surfaces of any design types. It is shown that one should compare thermohydraulic efficiency of heat exchange intensification as to the thermal power of heat exchangers and pressure losses in channels with turbulators and in polished channels of heat exchange surfaces on the basis of dimensions of heat exchangers, their heat exchange surfaces and at similar (as to Re numbers) modes of coolant flow [ru

  5. Computational method for free surface hydrodynamics

    International Nuclear Information System (INIS)

    Hirt, C.W.; Nichols, B.D.

    1980-01-01

    There are numerous flow phenomena in pressure vessel and piping systems that involve the dynamics of free fluid surfaces. For example, fluid interfaces must be considered during the draining or filling of tanks, in the formation and collapse of vapor bubbles, and in seismically shaken vessels that are partially filled. To aid in the analysis of these types of flow phenomena, a new technique has been developed for the computation of complicated free-surface motions. This technique is based on the concept of a local average volume of fluid (VOF) and is embodied in a computer program for two-dimensional, transient fluid flow called SOLA-VOF. The basic approach used in the VOF technique is briefly described, and compared to other free-surface methods. Specific capabilities of the SOLA-VOF program are illustrated by generic examples of bubble growth and collapse, flows of immiscible fluid mixtures, and the confinement of spilled liquids

  6. Experimental investigation of pool boiling heat transfer and critical heat flux on a downward facing surface

    International Nuclear Information System (INIS)

    Gocmanac, M.; Luxat, J.C.

    2012-01-01

    A separate effects experimental study of heat transfer and Critical Heat Flux (CHF) on a downward facing plate in subcooled water pool boiling is described. Two geometries of downwards facing surfaces are studied. The first is termed the 'confined' study in which bubble motion is restricted to the heated surface. The second is termed the 'unconfined' study where individual bubbles are free to move along the heated surface and vent in any direction. The method used in the confined study is novel and involves the placement of a lip surrounding the heated surface. The CHF as a function of angle of inclination of the surface is presented and is in good agreement with other experimental data from somewhat different test geometries. (author)

  7. Plasma-surface interactions under high heat and particle fluxes

    NARCIS (Netherlands)

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  8. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    Science.gov (United States)

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  9. A comprehensive review of milk fouling on heated surfaces.

    Science.gov (United States)

    Sadeghinezhad, E; Kazi, S N; Dahari, M; Safaei, Mohammad Reza; Sadri, Rad; Badarudin, A

    2015-01-01

    Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.

  10. Computational efficiency for the surface renewal method

    Science.gov (United States)

    Kelley, Jason; Higgins, Chad

    2018-04-01

    Measuring surface fluxes using the surface renewal (SR) method requires programmatic algorithms for tabulation, algebraic calculation, and data quality control. A number of different methods have been published describing automated calibration of SR parameters. Because the SR method utilizes high-frequency (10 Hz+) measurements, some steps in the flux calculation are computationally expensive, especially when automating SR to perform many iterations of these calculations. Several new algorithms were written that perform the required calculations more efficiently and rapidly, and that tested for sensitivity to length of flux averaging period, ability to measure over a large range of lag timescales, and overall computational efficiency. These algorithms utilize signal processing techniques and algebraic simplifications that demonstrate simple modifications that dramatically improve computational efficiency. The results here complement efforts by other authors to standardize a robust and accurate computational SR method. Increased speed of computation time grants flexibility to implementing the SR method, opening new avenues for SR to be used in research, for applied monitoring, and in novel field deployments.

  11. Computational investigation of fluid flow and heat transfer of an economizer by porous medium approach

    Science.gov (United States)

    Babu, C. Rajesh; Kumar, P.; Rajamohan, G.

    2017-07-01

    Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.

  12. Magnetic surface compression heating in the heliotron device

    International Nuclear Information System (INIS)

    Uo, K.; Motojima, O.

    1982-01-01

    The slow adiabatic compression of the plasma in the heliotron device is examined. It has a prominent characteristic that the plasma equilibrium always exists at each stage of the compression. The heating efficiency is calculated. We show the possible access to fusion. A large amount of the initial investment for the heating system (NBI or RF) is reduced by using the magnetic surface compression heating. (author)

  13. Influence of Ear Surface Area on Heat Tolerance of Composite ...

    African Journals Online (AJOL)

    Relative importance of ear surface area on heat tolerance of composite rabbit population was evaluated. The study was conducted during the dry and rainy seasons, climatic data were recorded to obtain categorical heat stress index. Physiological parameters, growth performance, ear length and ear width of the rabbits ...

  14. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  15. DESIGN AND CALCULATION OF AERODROMECOAING WITH HEATED SURFACE LAYERS

    Directory of Open Access Journals (Sweden)

    Vadim G. Piskunov

    2009-04-01

    Full Text Available  The developed constructions with heated by surface layers for aerodromes and auto roads when developed composition of electroconductive concrete reinforced with chemical electrical conductive fibres being used was researched. The experimentally obtained characteristics of ended conductive concrete reinforced with fibers were presented. Calculation by developed heated construction of shell was made.

  16. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  17. Surfaces for high heat dissipation with no Leidenfrost limit

    Science.gov (United States)

    Sajadi, Seyed Mohammad; Irajizad, Peyman; Kashyap, Varun; Farokhnia, Nazanin; Ghasemi, Hadi

    2017-07-01

    Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m-2 K-1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.

  18. Practical Considerations for Thermal Stresses Induced by Surface Heating

    International Nuclear Information System (INIS)

    Blanchard, James P.

    2003-01-01

    Rapid surface heating can induce large stresses in solids. A relatively simple model, assuming full constraint in two dimensions and no constraint in the third dimension, can adequately model stresses in a wide variety of situations. This paper derives this simple model, and supports it with criteria for its validity. Phenomena that are considered include non-zero penetration depths for the heat deposition, spatial non-uniformity in the surface heating, and elastic waves. Models for each of these cases, using simplified geometries, are used to develop quantitative limits for their applicability

  19. Behavior of Corrosion of a Heat Pipe Cooling Device in a Computer

    Directory of Open Access Journals (Sweden)

    S. Rittidech

    2017-12-01

    Full Text Available The aim of this study was to perform life testing and to determine the effect of working time on the corrosion of a heat pipe used for cooling in a computer. The heat pipe was made from a copper tube. The heat pipe consists of evaporator and condenser section. It had a specification similar with the use in ordinary computers, the working fluid being distilled water. When the computer starts, the concentration of the copper solution slightly increases. The greater copper concentration was 0.00062 ppm upon 3000-5000 hours of testing. The surface traces of corrosion rises due to the oxidation of the porous material within the working fluid. The test found that oxygen (O and carbon (C are component contents.

  20. Heat Transfer treatment in computer codes for safety analysis

    International Nuclear Information System (INIS)

    Jerele, A.; Gregoric, M.

    1984-01-01

    Increased number of operating nuclear power plants has stressed importance of nuclear safety evaluation. For this reason, accordingly to regulatory commission request, safety analyses with computer codes are preformed. In this paper part of this thermohydraulic models dealing with wall-to-fluid heat transfer correlations in computer codes TRAC=PF1, RELAP4/MOD5, RELAP5/MOD1 and COBRA-IV is discussed. (author)

  1. Effect of surface etching on condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Sung Chul; Park, Jae Won; Jung, Jiyeon; Choi, Chonggun; Choi, Gyu Hong; Hwang, Seung Sik; Chung, Tae Yong; Shin, Donghoon [Kookmin University, Seoul (Korea, Republic of); Kim, Jin Jun [Hoseo University, Asan (Korea, Republic of)

    2016-02-15

    This study conducted experiments on humid air condensation during heat transfer in an air preheating exchanger attached to a home condensing boiler to improve thermal efficiency. An etchant composed of sulfuric acid and sodium nitrate was used to create roughness on the heat exchanger surface made from STS430J1L. A counter flow heat exchanger was fabricated to test the performance of heat transfer. Results showed that the overall heat transfer coefficients of all specimens treated with etchant improved with respect to the original specimens (not treated with etchant), and the overall heat transfer coefficient of the 60 s etching specimen increased by up to 15%. However, the increasing rate of the heat transfer coefficient was disproportional to the etching time. When the etching time specifically increased above 60 s, the heat transfer coefficient decreased. This effect was assumed to be caused by surface characteristics such as contact angle. Furthermore, a smaller contact angle or higher hydrophilicity leads to higher heat transfer coefficient.

  2. Direct evaluation of transient surface temperatures and heat fluxes

    International Nuclear Information System (INIS)

    Axford, R.A.

    1975-08-01

    Evaluations of transient surface temperatures resulting from the absorption of radiation are required in laser fusion reactor systems studies. A general method for the direct evaluation of transient surface temperatures and heat fluxes on the boundaries of bounded media is developed by constructing fundamental solutions of the scalar Helmholtz equation and performing certain elementary integrations

  3. Effect of surface radiation on natural convection in an asymmetrically heated channel-chimney system

    Science.gov (United States)

    Nasri, Zied; Derouich, Youssef; Laatar, Ali Hatem; Balti, Jalloul

    2018-05-01

    In this paper, a more realistic numerical approach that takes into account the effect of surface radiation on the laminar air flow induced by natural convection in a channel-chimney system asymmetrically heated at uniform heat flux is used. The aim is to enrich the results given in Nasri et al. (Int J Therm Sci 90:122-134, 2015) by varying all the geometric parameters of the system and by taking into account the effect of surface radiation on the flows. The numerical results are first validated against experimental and numerical data available in the literature. The computations have allowed the determination of optimal configurations that maximize the mass flow rate and the convective heat transfer and minimize the heated wall temperatures. The analysis of the temperature fields with the streamlines and the pressure fields has helped to explain the effects of surface radiation and of the different thermo-geometrical parameters on the system performances to improve the mass flow rate and the heat transfer with respect to the simple channel. It is shown that the thermal performance of the channel-chimney system in terms of lower heated wall temperatures is little affected by the surface radiation. At the end, simple correlation equations have been proposed for quickly and easily predict the optimal configurations as well as the corresponding enhancement rates of the induced mass flow rate and the convective heat transfer.

  4. Computation of turbulent flow and heat transfer in subassemblies

    International Nuclear Information System (INIS)

    Slagter, W.

    1979-01-01

    This research is carried out in order to provide information on the thermohydraulic behaviour of fast reactor subassemblies. The research work involves the development of versatile computation methods and the evaluation of combined theoretical and experimental work on fluid flow and heat transfer in fuel rod bundles. The computation method described here rests on the application of the distributed parameter approach. The conditions considered cover steady, turbulent flow and heat transfer of incompressible fluids in bundles of bare rods. Throughout 1978 main efforts were given to the development of the VITESSE program and to the validation of the hydrodynamic part of the code. In its present version the VITESSE program is applicable to predict the fully developed turbulent flow and heat transfer in the subchannels of a bundle with bare rods. In this paper the main features of the code are described as well as the present status of development

  5. Film Levitation of Droplet Impact on Heated Nanotube Surfaces

    Science.gov (United States)

    Duan, Fei; Tong, Wei; Qiu, Lu

    2017-11-01

    Contact boiling of an impacting droplet impacting on a heated surface can be observed when the surface temperature is able to activate the nucleation and growth of vapor bubbles, the phenomena are related to nature and industrial application. The dynamic boiling patterns us is investigated when a single falling water droplet impacts on a heated titanium (Ti) surface covered with titanium oxide (TiO2) nanotubes. In the experiments, the droplets were generated from a flat-tipped needle connected to a syringe mounted on a syringe pump. The droplet diameter and velocity before impacting on the heated surface are measured by a high-speed camera with the Weber number is varied from 45 to 220. The dynamic wetting length, spreading diameter, levitation distance, and the associated parameter are measured. Interesting film levitation on titanium (Ti) surface has been revealed. The comparison of the phase diagrams on the nanotube surface and bare Ti surface suggests that the dynamic Leidenfrost point of the surface with the TiO2 nanotubes has been significantly delayed as compared to that on a bare Ti surface. The delay is inferred to result from the increase in the surface wettability and the capillary effect by the nanoscale tube structure. The further relation is discussed.

  6. The role of a convective surface in models of the radiative heat transfer in nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M., E-mail: mansurdu@yahoo.com; Al-Mazroui, W.A.; Al-Hatmi, F.S.; Al-Lawatia, M.A.; Eltayeb, I.A.

    2014-08-15

    Highlights: • The role of a convective surface in modelling with nanofluids is investigated over a wedge. • Surface convection significantly controls the rate of heat transfer in nanofluid. • Increased volume fraction of nanoparticles to the base-fluid may not always increase the rate of heat transfer. • Effect of nanoparticles solid volume fraction depends on the types of constitutive materials. • Higher heat transfer in nanofluids is found in a moving wedge rather than in a static wedge. - Abstract: Nanotechnology becomes the core of the 21st century. Nanofluids are important class of fluids which help advancing nanotechnology in various ways. Convection in nanofluids plays a key role in enhancing the rate of heat transfer either for heating or cooling nanodevices. In this paper, we investigate theoretically the role of a convective surface on the heat transfer characteristics of water-based nanofluids over a static or moving wedge in the presence of thermal radiation. Three different types of nanoparticles, namely copper Cu, alumina Al{sub 2}O{sub 3} and titanium dioxide TiO{sub 2} are considered in preparation of nanofluids. The governing nonlinear partial differential equations are made dimensionless with the similarity transformations. Numerical simulations are carried out through the very robust computer algebra software MAPLE 13 to investigate the effects of various pertinent parameters on the flow field. The obtained results presented graphically as well as in tabular form and discussed from physical and engineering points of view. The results show that the rate of heat transfer in a nanofluid in the presence of thermal radiation significantly depends on the surface convection parameter. If the hot fluid side surface convection resistance is lower than the cold fluid side surface convection resistance, then increased volume fraction of the nanoparticles to the base fluid may reduces the heat transfer rate rather than increases from the surface of

  7. Heat Flow In Cylindrical Bodies During Laser Surface Transformation Hardening

    Science.gov (United States)

    Sandven, Ole A.

    1980-01-01

    A mathematical model for the transient heat flow in cylindrical specimens is presented. The model predicts the temperature distribution in the vicinity of a moving ring-shaped laser spot around the periphery of the outer surface of a cylinder, or the inner surface of a hollow cylinder. It can be used to predict the depth of case in laser surface transformation hardening. The validity of the model is tested against experimental results obtained on SAE 4140 steel.

  8. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...... performance predicted by the model agrees well with experimental observations for the laboratory scale CDHE whereas the overall heat transfer in the scaled-up version was not in equally good agreement. The lack of the model to predict the heat transfer performance in scale-up leads us to identify the key...

  9. Surface roughness effects on heat transfer in Couette flow

    International Nuclear Information System (INIS)

    Elia, G.G.

    1981-01-01

    A cell theory for viscous flow with rough surfaces is applied to two basic illustrative heat transfer problems which occur in Couette flow. Couette flow between one adiabatic surface and one isothermal surface exhibits roughness effects on the adiabatic wall temperature. Two types of rough cell adiabatic surfaces are studied: (1) perfectly insulating (the temperature gradient vanishes at the boundary of each cell); (2) average insulating (each cell may gain or lose heat but the total heat flow at the wall is zero). The results for the roughness on a surface in motion are postulated to occur because of fluid entrainment in the asperities on the moving surface. The symmetry of the roughness effects on thermal-viscous dissipation is discussed in detail. Explicit effects of the roughness on each surface, including combinations of roughness values, are presented to enable the case where the two surfaces may be from different materials to be studied. The fluid bulk temperature rise is also calculated for Couette flow with two ideal adiabatic surfaces. The effect of roughness on thermal-viscous dissipation concurs with the viscous hydrodynamic effect. The results are illustrated by an application to lubrication. (Auth.)

  10. Investigation into the heat transfer performance of helically ribbed surfaces

    International Nuclear Information System (INIS)

    Firth, R.J.

    1981-12-01

    The first part of an investigation into flow and heat transfer in annular channels and seven pin clusters is described. One of the main aims of the project is to improve cluster heat transfer prediction codes for helically ribbed surfaces. A study is made of the heat transfer and flow characteristics of a helically ribbed pin in an annular channel. It is shown that the swirling flow, which is induced by the helical ribs, gives rise to substantially enhanced diffusivity levels. This phenomenon had not been taken into account by previous analysis techniques. The methods for analysing heat transfer and pressure drop data from annular channels which were originally developed for non-swirling flow are generalised to accommodate swirling flow. The new methods are shown to be consistent with empirical data. Roughness parameter data is presented for helically ribbed surfaces with an axial rib pitch into height ratio of about 7. (author)

  11. Surface heat loads on the ITER divertor vertical targets

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R.A.; Corre, Y.; Dejarnac, Renaud; Firdaouss, M.; Kočan, M.; Komm, Michael; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-01-01

    Roč. 57, č. 4 (2017), č. článku 046025. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : ITER * divertor * ELM heat load * inter-ELM heat load * tungsten Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a

  12. Heat transport and surface heat transfer with helium in rotating channels

    International Nuclear Information System (INIS)

    Schnapper, C.

    1978-06-01

    Heat transport and surface heat transfer with helium in rotating radially arranged channels were experimentally studied with regard to cooling of large turbogenerators with superconducting windings. Measurements with thermosiphon and thermosiphon loops of different channel diameters were performed, and results are presented. The thermodynamic state of the helium in a rotating thermosiphon and the mass flow rate in a thermosiphon loop is characterized by formulas. Heat transport by directed convection in thermosiphon loops is found to be more efficient 12 cm internal convection in thermosiphons. Steady state is reached sooner in thermosiphon loops than in thermosiphons, when heat load suddenly changes. In a very large centrifugal field single-phase heat transfer with natural and forced convection is described by similar formulas which are also applicable 10 thermosiphons in gravitation field or to heat transfer to non-rotating helium. (orig.) [de

  13. Development of silicon growth techniques from melt with surface heating

    Science.gov (United States)

    Kravtsov, Anatoly

    2018-05-01

    The paper contains literary and personal data on the development history of silicon-growing technology with volumetric and surface melt heating. It discusses the advantages and disadvantages of surface-heating technology. Examples are given of the implementation of such processes in the 60s-70s of the last century, and the reasons for the discontinuation of the relevant work. It describes the main solutions for the implementation of crystal growth process with the electron-beam heating of the melt surface, implemented by KEPP EU (Latvia). It discusses differences in the management of the growth process for the crystals with constant diameters compared to the Czochralski method. It lists geometrical and electro-physical properties of the obtained crystals. It describes the possible use of such crystals and the immediate challenges of technology development.

  14. Computational studies of ohmic heating in the spheromak

    International Nuclear Information System (INIS)

    Olson, R.E.

    1983-01-01

    Time-dependent computational simulations using both single-fluid O-D and two-fluid 1 1/2-D models are developed for and utilized in an investigation of the ohmic heating of a spheromak plasma. The plasma density and composition, the applied magnetic field strength, the plasma size, and the plasma current density profile are considered for their effects on the spheromak heating rate and maximum achievable temperature. The feasibility of ohmic ignition of a reactor-size spheromak plasma is also contemplated

  15. Advanced Computational Methods for Thermal Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  16. Computational simulation of laser heat processing of materials

    Science.gov (United States)

    Shankar, Vijaya; Gnanamuthu, Daniel

    1987-04-01

    A computational model simulating the laser heat treatment of AISI 4140 steel plates with a CW CO2 laser beam has been developed on the basis of the three-dimensional, time-dependent heat equation (subject to the appropriate boundary conditions). The solution method is based on Newton iteration applied to a triple-approximate factorized form of the equation. The method is implicit and time-accurate; the maintenance of time-accuracy in the numerical formulation is noted to be critical for the simulation of finite length workpieces with a finite laser beam dwell time.

  17. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  18. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  19. Turbulence Modeling and Computation of Turbine Aerodynamics and Heat Transfer

    Science.gov (United States)

    Lakshminarayana, B.; Luo, J.

    1996-01-01

    The objective of the present research is to develop improved turbulence models for the computation of complex flows through turbomachinery passages, including the effects of streamline curvature, heat transfer and secondary flows. Advanced turbulence models are crucial for accurate prediction of rocket engine flows, due to existance of very large extra strain rates, such as strong streamline curvature. Numerical simulation of the turbulent flows in strongly curved ducts, including two 180-deg ducts, one 90-deg duct and a strongly concave curved turbulent boundary layer have been carried out with Reynolds stress models (RSM) and algebraic Reynolds stress models (ARSM). An improved near-wall pressure-strain correlation has been developed for capturing the anisotropy of turbulence in the concave region. A comparative study of two modes of transition in gas turbine, the by-pass transition and the separation-induced transition, has been carried out with several representative low-Reynolds number (LRN) k-epsilon models. Effects of blade surface pressure gradient, freestream turbulence and Reynolds number on the blade boundary layer development, and particularly the inception of transition are examined in detail. The present study indicates that the turbine blade transition, in the presence of high freestream turbulence, is predicted well with LRN k-epsilon models employed. The three-dimensional Navier-Stokes procedure developed by the present authors has been used to compute the three-dimensional viscous flow through the turbine nozzle passage of a single stage turbine. A low Reynolds number k-epsilon model and a zonal k-epsilon/ARSM (algebraic Reynolds stress model) are utilized for turbulence closure. An assessment of the performance of the turbulence models has been carried out. The two models are found to provide similar predictions for the mean flow parameters, although slight improvement in the prediction of some secondary flow quantities has been obtained by the

  20. Validating modeled turbulent heat fluxes across large freshwater surfaces

    Science.gov (United States)

    Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.

    2017-12-01

    Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.

  1. Experimental determinations of the performances of heat transfer surfaces

    International Nuclear Information System (INIS)

    Pirovano, Alain; Viannay, Stephane; Mazeas, C.Y.

    1974-01-01

    With the help of flow schemes and of assumptions on the heat transfer, it is possible, in some cases, to predict the thermal and aerodynamical performances of a new heat transfer surface with moderate accuracy. These estimates, valid for an approximate classification of a new surface among known surfaces, are not accurate enough to be taken as a basis for the design of heat exchangers. In the present state of knowledge, the performances of a new heat transfer surface can only be determined accurately with experimental measurements. Bertin and Co have at their disposal two air test rigs especially designed for this purpose. The first one, more directly concerned with the measurements on tube bundles with fluid flow perpendicular to the generatrices of the tubes, is a semi-closed loop equipped with a high-efficiency ejector which amplifies the air flow rate supplied by an external source and thus allows high values of Reynolds number to be reached. The second one is adapted to other types of surfaces: tubes with external flow parallel to the generatrices, tubes with sophisticated cross section and with internal flow, compact surfaces with finned plates, etc. Both test rigs, the relevant equipment, the methods of data acquisition and of test results analysis are described in this paper. During the 5 past years, 60 configurations were tested. It was possible to compare some of the test results with the results of measurements performed later, on entire heat exchangers working with numbers of tubes, fluids, and temperature levels different from those prevailing during the tests on the small scale mock-up; the agreement is quite good [fr

  2. Surface heat loads during major disruptions in INTOR

    International Nuclear Information System (INIS)

    Mioduszewski, P.

    1981-01-01

    The thermal energy contained in the INTOR plasma is assumed to be about 200 MJ. In a major plasma disruption this energy is dumped into parts of the first wall in a time short compared to the energy confinement time. To estimate the surface heat load due to this energy dump, two major parameters are not sufficiently well known at present: the disruption time and the affected first wall surface area. To get a certain idea of the heat loads to be expected, we have employed the model of conserved flux tubes which are successively scraped-off at the first wall. The results reveal that even for a homogeneous deposition in the toroidal direction the heat load is too high for some parts of the first wall. Since, however, the presumptions are very uncertain to date, experiments will have to be set up to study the energy deposition during disruptions. (author)

  3. Prediction of incipient flow boiling from a uniformly heated surface

    International Nuclear Information System (INIS)

    Yin, S.T.; Abdelmessih, A.H.

    1977-01-01

    This study was undertaken to investigate the phenomenon of liquid superheat during incipient boiling in a uniformly heated forced convection channel. Experimental data were obtained using Freon 11 as the test medium. Based on existing theories, an analytical method was developed for predicting the point of termination of nucleate boiling, observed during a decreasing heat flux process with a nucleation activated surface. The method may also be used to predict the point of boiling incipience, observed during an increasing heat flux process with a non-activated surface; this point does not appear to have been treated analytically in previous work. It can be shown that some of the existing models are special cases of the present formulation

  4. Interactions between bubble formation and heating surface in nucleate boiling

    International Nuclear Information System (INIS)

    Luke, Andrea

    2009-01-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  5. Interactions between bubble formation and heating surface in nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Luke, Andrea [Leibniz University, Hannover (Denmark). Inst. of Thermodynamics], e-mail: ift@ift.uni-hannover.de

    2009-07-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  6. Deposition of heated whey proteins on a chromium oxide surface.

    NARCIS (Netherlands)

    Jeurnink, Th.; Verheul, M.; Cohen Stuart, M.A.; Kruif, de C.G.

    1996-01-01

    Whey protein solutions were given different heat treatments after which their deposition on a chromium oxide surface (the outer layer of stainless steel) was measured by reflectometry. The deposition was studied under controlled flow conditions by using a stagnation point flow configuration. The

  7. Effects of nonuniform surface heat flux and uniform volumetric heating on blanket design for fusion reactors

    International Nuclear Information System (INIS)

    Hasan, M.Z.

    1988-05-01

    An analytical solution for the temperature profile and film temperature drop for fully-developed, laminar flow in a circular tube is provided. The surface heat flux varies circcimferentally but is constant along the axis of the tube. The volulmetric heat generation is uniform in the fluid. The fully developed laminar velocity profile is approximated by a power velocity profile to represent the flattening effect of a perpendicular magnetic field when the coolant is electrivally conductive. The presence of volumetric heat generation in the fluid adds another component to the film temperature drop to that due to the surface heat flux. The reduction of the boundary layer thickness by a perpendicular magnetic field reduces both of these two film temperature drops. A strong perpendicular magnetic field can reduce the film termperatiure drop by a factor of two if the fluid is electrically conducting. The effect of perpendicualr magnetic field )or the flatness of the velocity profile) is less pronounced on teh film termperature drop due to nonuniform surfacae heat flux than on that due to uniform surface heat flux. An example is provided to show the relative effects on these two film temperd

  8. Boiling heat transfer in a flat slot between heating surface and perforated plate

    International Nuclear Information System (INIS)

    Kirichenko, Yu.A.; Rusanov, K.V.; Tyurina, E.G.

    1987-01-01

    The results are presented of the experimental study of heat transfer and crisis at nitrogen boiling in a flat gap between the horizontal heating surface and perforated plate. The gap width is 1.0 to 5.6 mm, diameter of holes is 1.0 to 2.0 mm, their spacing being 3.0 to 12.0 mm. The geometrical parameters dependence of the heat transfer coefficient and crisis characteristics is invesigated, the experimental data are compared with the results reported by other authors and calculations by some well-known formulas. 12 refs.; 3 figs.; 4 tabs

  9. A surface code quantum computer in silicon

    Science.gov (United States)

    Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2015-01-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  10. A surface code quantum computer in silicon.

    Science.gov (United States)

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.

  11. Experimental and Computational Study of Underexpanded Jet Impingement Heat Transfer

    Science.gov (United States)

    Rufer, Shann J.; Nowak, Robert J.; Daryabeigi, Kamran; Picetti, Donald

    2009-01-01

    An experiment was performed to assess CFD modeling of a hypersonic-vehicle breach, boundary-layer flow ingestion and internal surface impingement. Tests were conducted in the NASA Langley Research Center 31-Inch Mach 10 Tunnel. Four simulated breaches were tested and impingement heat flux data was obtained for each case using both phosphor thermography and thin film gages on targets placed inside the model. A separate target was used to measure the surface pressure distribution. The measured jet impingement width and peak location are in good agreement with CFD analysis.

  12. Development and adaptation of conduction and radiation heat-transfer computer codes for the CFTL

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1981-08-01

    RODCON and HOTTEL are two computational methods used to calculate thermal and radiation heat transfer for the Core Flow Test Loop (CFTL) analysis efforts. RODCON was developed at ORNL to calculate the internal temperature distribution of the fuel rod simulator (FRS) for the CFTL. RODCON solves the time-dependent heat transfer equation in two-dimensional (R angle) cylindrical coordinates at an axial plane with user-specified radial material zones and time- and position-variant surface conditions at the FRS periphery. Symmetry of the FRS periphery boundary conditions is not necessary. The governing elliptic, partial differential heat equation is cast into a fully implicit, finite-difference form by approximating the derivatives with a forward-differencing scheme with variable mesh spacing. The heat conduction path is circumferentially complete, and the potential mathematical problem at the rod center can be effectively ignored. HOTTEL is a revision of an algorithm developed by C.B. Baxi at the General Atomic Company (GAC) to be used in calculating radiation heat transfer in a rod bundle enclosed in a hexagonal duct. HOTTEL uses geometric view factors, surface emissivities, and surface areas to calculate the gray-body or composite view factors in an enclosure having multiple reflections in a nonparticipating medium

  13. Heat exchanger performance analysis programs for the personal computer

    International Nuclear Information System (INIS)

    Putman, R.E.

    1992-01-01

    Numerous utility industry heat exchange calculations are repetitive and thus lend themselves to being performed on a Personal Computer. These programs may be regarded as engineering tools which, when put together, can form a Toolbox. However, the practicing Results Engineer in the utility industry desires not only programs that are robust as well as easy to use but can also be used both on desktop and laptop PC's. The latter also offer the opportunity to take the computer into the plant or control room, and use it there to process test or operating data right on the spot. Most programs evolve through the needs which arise in the course of day-to-day work. This paper describes several of the more useful programs of this type and outlines some of the guidelines to be followed when designing personal computer programs for use by the practicing Results Engineer

  14. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    Science.gov (United States)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  15. Kinetic computer modeling of microwave surface-wave plasma production

    International Nuclear Information System (INIS)

    Ganachev, Ivan P.

    2004-01-01

    Kinetic computer plasma modeling occupies an intermediate position between the time consuming rigorous particle dynamic simulation and the fast but rather rough cold- or warm-plasma fluid models. The present paper reviews the kinetic modeling of microwave surface-wave discharges with accent on recent kinetic self-consistent models, where the external input parameters are reduced to the necessary minimum (frequency and intensity of the applied microwave field and pressure and geometry of the discharge vessel). The presentation is limited to low pressures, so that Boltzmann equation is solved in non-local approximation and collisional electron heating is neglected. The numerical results reproduce correctly the bi-Maxwellian electron energy distribution functions observed experimentally. (author)

  16. Effect of carbon nanofiber surface morphology on convective heat transfer from cylindrical surface: Synthesis, characterization and heat transfer measurement

    NARCIS (Netherlands)

    Taha, T.J.; Mojet, Barbara; Lefferts, Leonardus; van der Meer, Theodorus H.

    2016-01-01

    In this work, heat transfer surface modification is made by layers of carbon nanofiber (CNF) on a 50 μm nickel wire using Thermal chemical vapor deposition process (TCVD). Three different CNF layer morphologies are made, at 500 °C, 600 °C and 700 °C, to investigate the influence of morphology on

  17. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    Directory of Open Access Journals (Sweden)

    Veli Tayfun Kilic

    2016-03-01

    Full Text Available All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys. To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  18. Improvement of Reactor Fuel Element Heat Transfer by Surface Roughness

    International Nuclear Information System (INIS)

    Kjellstroem, B.; Larsson, A.E.

    1967-04-01

    In heat exchangers with a limited surface temperature such as reactor fuel elements, rough heat transfer surfaces may give lower pumping power than smooth. To obtain data for choice of the most advantageous roughness for the superheater elements in the Marviken reactor, measurements were made of heat transfer and pressure drop in an annular channel with a smooth or rough test rod in a smooth adiabatic shroud. 24 different roughness geometries were tested. The results were transformed to rod cluster geometry by the method of W B Hall, and correlated by the friction and heat transfer similarity laws as suggested by D F Dipprey and R H Sabersky with RMS errors of 12.5 % in the friction factor and 8.1 % in the Stanton number. The relation between the Stanton number and the friction factor could be described by a relation of the type suggested by W Nunner, with a mean error of 3.1 % and an RMS error of 11.6 %. Application of the results to fuel element calculations is discussed, and the great gains in economy which can be obtained with rough surfaces are demonstrated by two examples

  19. Improvement of Reactor Fuel Element Heat Transfer by Surface Roughness

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B; Larsson, A E

    1967-04-15

    In heat exchangers with a limited surface temperature such as reactor fuel elements, rough heat transfer surfaces may give lower pumping power than smooth. To obtain data for choice of the most advantageous roughness for the superheater elements in the Marviken reactor, measurements were made of heat transfer and pressure drop in an annular channel with a smooth or rough test rod in a smooth adiabatic shroud. 24 different roughness geometries were tested. The results were transformed to rod cluster geometry by the method of W B Hall, and correlated by the friction and heat transfer similarity laws as suggested by D F Dipprey and R H Sabersky with RMS errors of 12.5 % in the friction factor and 8.1 % in the Stanton number. The relation between the Stanton number and the friction factor could be described by a relation of the type suggested by W Nunner, with a mean error of 3.1 % and an RMS error of 11.6 %. Application of the results to fuel element calculations is discussed, and the great gains in economy which can be obtained with rough surfaces are demonstrated by two examples.

  20. Heating of roads. Heat consumption and heat output as a function of climate, construction, demands on surface conditions and principle of heat supply. Uppvaermning av vaegar

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, R

    1977-01-01

    In this work analytical formulas for calculation of temperatures in a heated roadbed are given. The heat flux from a heated surface has been studied. The methods for snowclearence on different types of roads have been investigated. The construction work has been studied. The analytical formulas have been evaluated by comparison between calculated temperatures and temperatures measured in field and laboratory. The heat transfer coefficients in those formulas have been developed empirically by tests in laboratory and field. Surfaces with different types of traffic are divided into three classes according to the demands for snow removal. The construction work has been divided into cost elements. This has given a basis for calculating the economic effects of alternative designs. By this work has been developed a method useful on one hand for calculation of the optimum principle of regulation of the supply of heat and on the other hand for the design of the heat installations in the road.

  1. Desensitization of stainless steels by laser surface heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Yoshikuni; Nishimoto, Kazutoshi

    1987-11-01

    Laser heating was applied for the desensitization heat-treatment of the surface layer in the sensitized HAZ of Type 304 stainless steel. The degree of sensitization was examined by EPR technique and the 10 % oxalic acid electrolytic etch test. The CO/sub 2/ laser with maximum power of 1.5 kW was used for heat-treatment. Time-Temperature-Desensitization diagram (TTDS diagram) for sensitized Type 304 stainless steels were developed by calculation assuming the chromium diffusion control for desensitization which might occur when the chromium depleted zone was healed up due to dissolution of chromium carbide and chromium diffusion from the matrix being heated at the solution annealing temperatures. TTDS diagrams calculated agree fairly well with ones determined by corrosion tests. Laser irradiation conditions (e.g., Laser power, beam diameter and traveling velocity) required for desensitization of sensitized Type 304 stainless steels were calculated using additivity rule from the TTDS diagram calculated and theoretical thermal curve of laser heating derived from the heat conduction theory. After laser beam irradiated under an optimum condition predicted by calculation, the sensitized HAZ of Type 304 stainless steel restored complete resistance to intergranular corrosion.

  2. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  3. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Bai, Xuelian; Luo, Te; Cheng, Kehui; Chai, Feng

    2014-01-01

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  4. An appraisal of computational techniques for transient heat conduction equation

    International Nuclear Information System (INIS)

    Kant, T.

    1983-01-01

    A semi-discretization procedure in which the ''space'' dimension is discretized by the finite element method is emphasized for transient problems. This standard methodology transforms the space-time partial differential equation (PDE) system into a set of ordinary differential equations (ODE) in time. Existing methods for transient heat conduction calculations are then reviewed. Existence of two general classes of time integration schemes- implicit and explicit is noted. Numerical stability characteristics of these two methods are elucidated. Implicit methods are noted to be numerically stable, permitting large time steps, but the cost per step is high. On the otherhand, explicit schemes are noted to be inexpensive per step, but small step size is required. Low computational cost of the explicit schemes make it very attractive for nonlinear problems. However, numerical stability considerations requiring use of very small time steps come in the way of its general adoption. Effectiveness of the fourth-order Runge-Kutta-Gill explicit integrator is then numerically evaluated. Finally we discuss some very recent works on development of computational algorithms which not only achieve unconditional stability, high accuracy and convergence but involve computations on matrix equations of elements only. This development is considered to be very significant in the light of our experience gained for simple heat conduction calculations. We conclude that such algorithms have the potential for further developments leading to development of economical methods for general transient analysis of complex physical systems. (orig.)

  5. Free surface deformation and heat transfer by thermocapillary convection

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael; Basting, Steffen; Bänsch, Eberhard

    2016-04-01

    Knowing the location of the free liquid/gas surface and the heat transfer from the wall towards the fluid is of paramount importance in the design and the optimization of cryogenic upper stage tanks for launchers with ballistic phases, where residual accelerations are smaller by up to four orders of magnitude compared to the gravity acceleration on earth. This changes the driving forces drastically: free surfaces become capillary dominated and natural or free convection is replaced by thermocapillary convection if a non-condensable gas is present. In this paper we report on a sounding rocket experiment that provided data of a liquid free surface with a nonisothermal boundary condition, i.e. a preheated test cell was filled with a cold but storable liquid in low gravity. The corresponding thermocapillary convection (driven by the temperature dependence of the surface tension) created a velocity field directed away from the hot wall towards the colder liquid and then in turn back at the bottom towards the wall. A deformation of the free surface resulting in an apparent contact angle rather different from the microscopic one could be observed. The thermocapillary flow convected the heat from the wall to the liquid and increased the heat transfer compared to pure conduction significantly. The paper presents results of the apparent contact angle as a function of the dimensionless numbers (Weber-Marangoni and Reynolds-Marangoni number) as well as heat transfer data in the form of a Nusselt number. Experimental results are complemented by corresponding numerical simulations with the commercial software Flow3D and the inhouse code Navier.

  6. Studies on boiling heat transfer on a hemispherical downward heating surface supposing IVR-AM

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Matsumoto, Hiroyuki; Matsumoto, Tadayoshi; Kataoka, Isao

    2006-01-01

    The scale-down experiments supposing the IVR-AM were made on the pool boiling heat transfer from hemispherical downward facing heating surface. The boiling phenomena were realized by flooding the heated hemispherical vessel into the sub-cooled water or saturated water under the atmospheric pressure. The hemispherical vessel supposing the scale-down pressure vessel was made of SUS304 stainless steel. Molten lead, which was preheated up to about 500 degrees Celsius, was put into the vessel and used as the heat source. The vessel was cooled down by flooding into the water to realize the quenching process. The direct observation by using the digital video camera was performed and made clear the special characteristics of boiling phenomena such as the film boiling, the transition boiling and the nucleate boiling taking place in order during the cooling process. The measurement for the wall superheat and heat flux by using thermocouples was also carried out to make clear the boiling heat transfer characteristics during the cooling process. Fifteen thermocouples are inserted in the wall of the hemispherical bowl to measure the temperature distributions and heat flux in the hemispherical bowl. (author)

  7. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  8. Measuring the surface-heating of medical ultrasonic probes

    International Nuclear Information System (INIS)

    Kollmann, Chr; Vacariu, G; Fialka-Moser, V; Bergmann, H

    2004-01-01

    Due to converting losses the probe's surface itself is heated up, especially when emitting into air. Possible temperature increases in an ensemble of 15 different diagnostic and therapeutic ultrasound probes from 7 manufacturers in the frequency range between 0.05-7.5 MHz have been examined. Surface temperatures were detected by means of a calibrated IR-thermographic camera using a scheme of various power and pulse settings, as well as different imaging modalitites as used in clinical routine. Depending on the setup and the output power, the absolute surface temperatures of some of the probes emitting in air can be beyond 43 deg. C within 5-7 min.; a maximum surface temperature of 84 deg. C has been detected. Continuous mode or high pulse repetition frequencies on the therapeutic system side, small focused Doppler modes on the diagnostic system side combined with increased emitted acoustic intensities result in high surface temperatures. Within a worst case scenario a potential risk of negative skin changes (heat damage) or non-optimal therapeutic effects seems to be possible if a therapeutic system is used very often and if its emission continues unintentionally. In general the user should be aware that low emission intensities of e.g. 50 mW cm -2 could already produce hot surfaces

  9. Measurement of a surface heat flux and temperature

    Science.gov (United States)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  10. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  11. A study of the rates of heat transfer and bubble site density for nucleate boiling on an inclined heating surface

    International Nuclear Information System (INIS)

    Bonamy, S.E.; Symons, J.G.

    1974-08-01

    Nucleate pool boiling of distilled water from an electrically heated surface at atmospheric pressure is studied for varying heating surface inclinations. The constants of the accepted boiling equation phi = K Tsup(B) and the Rohsenow Correlation Coefficient are found to be dependent on surface orientation. Convection cooling is observed to play a major role in pool boiling phenomena and causes large changes in the heat transfer rates for a given excess of temperature of the heated surface. Active nucleation site density is studied and found to be independent of surface inclination. Empirical relations are presented to provide an understanding of the effects of inclination on other boiling parameters. (author)

  12. Experimental studies of surface modified oscillating heat pipes

    Science.gov (United States)

    Leu, Tzong-Shyng; Wu, Cheng-Han

    2017-11-01

    Oscillating heat pipe (OHP) is a two-phase heat transfer device which has the characteristics of simple construction, high heat flux capability and no need of wicking structures for liquid transport. There are many studies in finding the ways how to improve the system performance OHP. In this paper, studies of the effects of contact angle ( θ c ) on the inner wall of OHP system have been conducted first. Glass OHP systems with unmodified ( θ c = 26.74°), superhydrophobic ( θ c = 156.2°), superhydrophilic ( θ c evaporator region and superhydrophobic within condensation region) surfaces, are studied. The research results indicated that thermal resistance of these four OHP systems can be significantly affected by different surface modification approaches. Although superhydrophobic OHP system can still work, the thermal resistance ( R th ) is the highest one of the four OHP systems, R th = 0.36 °C/W at 200 W. Unmodified pure glass and superhydrophilic OHP systems have similar performance. Thermal resistances are 0.28 and 0.27 °C/W at 200 W respectively. The hybrid OHP achieves the lowest thermal resistance, R th = 0.23 °C/W at 200 W in this study. The exact mechanism and effects of contact angle on OHP systems are investigated with the help of flow visualization. By comparing the flow visualization results of OHP systems before and after surface modification, one tries to find the mechanism how the surface modified inner wall surface affects the OHP system performance. In additional to the reason that the superhydrophobic dropwise condensation surface inside the hybrid OHP system, hybrid OHP system shows more stable and energetic circulation flow. It is found that instead of stratified flow, vapor slug flows are identified within the evaporator section of the hybrid OHP system that can effectively generate higher pressure force for two phase interfacial flow. This effect is attributed to be the main mechanism for better performance of the hybrid OHP system.

  13. The computational optimization of heat exchange efficiency in stack chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Van Goch, T.A.J.

    2012-02-15

    stack chimney heat exchanger is used for heating or cooling applications, what is the expected performance and how do the design parameters relate to this performance'. Simulation models were developed in the BPS tool ESP-r. The most important design parameters and their relative influence on the performance indicators were analysed based on sensitivity analysis (SA). From this analysis general design guidelines were derived ('optimal set of design parameters'). A multi objective optimization of the design parameters was performed on the simulation models, using the responsive surface methods and artificial neural network capabilities of optimization environment ModEContier to speed up the iteration process. In this optimization, 'heat exchange in stack chimneys is optimized annually'. The uncertainty in the optimized results has been analysed using uncertainty analysis (UA). Finally, the appropriateness of deploying a complex, high resolution simulation has been evaluated by studying current modelling resolution selection methodology found in literature.

  14. Evaluation of scale formation in waterwall heated surfaces

    Directory of Open Access Journals (Sweden)

    Taylasheva Tatiana

    2017-01-01

    Full Text Available This paper presents the possibility of forecasting assessments of the speed and the time of formation of depositions in the evaporator-tube elements of double-drum boilers. The values of thermal flow in the wall region of tank screens of boiler furnace are obtained, besides the velocity values of scaling metal corrosion products are obtained. Conclusions about the ability of forecasting unnominal situations and emergency risks dependent with damage to the screen surface heating pipes are made.

  15. Surface spin tunneling and heat dissipation in magnetic nanoparticles

    Science.gov (United States)

    Palakkal, Jasnamol P.; Obula Reddy, Chinna; Paulose, Ajeesh P.; Sankar, Cheriyedath Raj

    2018-03-01

    Quantum superparamagnetic state is observed in ultra-fine magnetic particles, which is often experimentally identified by a significant hike in magnetization towards low temperatures much below the superparamagnetic blocking temperature. Here, we report experimentally observed surface spin relaxation at low temperatures in hydrated magnesium ferrite nanoparticles of size range of about 5 nm. We observed time dependent oscillatory magnetization of the sample below 2.5 K, which is attributed to surface spin tunneling. Interestingly, we observed heat dissipation during the process by using an external thermometer.

  16. Development of a computer code for thermohydraulic analysis of a heated channel in transients

    International Nuclear Information System (INIS)

    Jafari, J.; Kazeminejad, H.; Davilu, H.

    2004-01-01

    This paper discusses the thermohydraulic analysis of a heated channel of a nuclear reactor in transients by a computer code that has been developed by the writer. The considered geometry is a channel of a nuclear reactor with cylindrical or planar fuel rods. The coolant is water and flows from the outer surface of the fuel rod. To model the heat transfer in the fuel rod, two dimensional time dependent conduction equations has been solved by combination of numerical methods, O rthogonal Collocation Method in radial direction and finite difference method in axial direction . For coolant modelling the single phase time dependent energy equation has been used and solved by finite difference method . The combination of the first module that solves the conduction in the fuel rod and a second one that solved the energy balance in the coolant region constitute the computer code (Thyc-1) to analysis thermohydraulic of a heated channel in transients. The Orthogonal collocation method maintains the accuracy and computing time of conventional finite difference methods, while the computer storage is reduced by a factor of two. The same problem has been modelled by RELAP5/M3 system code to asses the validity of the Thyc-1 code. The good agreement of the results qualifies the developed code

  17. Prediction of turbulent heat transfer with surface blowing using a non-linear algebraic heat flux model

    International Nuclear Information System (INIS)

    Bataille, F.; Younis, B.A.; Bellettre, J.; Lallemand, A.

    2003-01-01

    The paper reports on the prediction of the effects of blowing on the evolution of the thermal and velocity fields in a flat-plate turbulent boundary layer developing over a porous surface. Closure of the time-averaged equations governing the transport of momentum and thermal energy is achieved using a complete Reynolds-stress transport model for the turbulent stresses and a non-linear, algebraic and explicit model for the turbulent heat fluxes. The latter model accounts explicitly for the dependence of the turbulent heat fluxes on the gradients of mean velocity. Results are reported for the case of a heated boundary layer which is first developed into equilibrium over a smooth impervious wall before encountering a porous section through which cooler fluid is continuously injected. Comparisons are made with LDA measurements for an injection rate of 1%. The reduction of the wall shear stress with increase in injection rate is obtained in the calculations, and the computed rates of heat transfer between the hot flow and the wall are found to agree well with the published data

  18. A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations

    Science.gov (United States)

    Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.

    2005-01-01

    Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.

  19. A computational procedure for finding multiple solutions of convective heat transfer equations

    International Nuclear Information System (INIS)

    Mishra, S; DebRoy, T

    2005-01-01

    In recent years numerical solutions of the convective heat transfer equations have provided significant insight into the complex materials processing operations. However, these computational methods suffer from two major shortcomings. First, these procedures are designed to calculate temperature fields and cooling rates as output and the unidirectional structure of these solutions preclude specification of these variables as input even when their desired values are known. Second, and more important, these procedures cannot determine multiple pathways or multiple sets of input variables to achieve a particular output from the convective heat transfer equations. Here we propose a new method that overcomes the aforementioned shortcomings of the commonly used solutions of the convective heat transfer equations. The procedure combines the conventional numerical solution methods with a real number based genetic algorithm (GA) to achieve bi-directionality, i.e. the ability to calculate the required input variables to achieve a specific output such as temperature field or cooling rate. More important, the ability of the GA to find a population of solutions enables this procedure to search for and find multiple sets of input variables, all of which can lead to the desired specific output. The proposed computational procedure has been applied to convective heat transfer in a liquid layer locally heated on its free surface by an electric arc, where various sets of input variables are computed to achieve a specific fusion zone geometry defined by an equilibrium temperature. Good agreement is achieved between the model predictions and the independent experimental results, indicating significant promise for the application of this procedure in finding multiple solutions of convective heat transfer equations

  20. Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux

    Science.gov (United States)

    Hayat, T.; Zubair, M.; Ayub, M.; Waqas, M.; Alsaedi, A.

    2016-10-01

    Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.

  1. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    Science.gov (United States)

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  2. Surface properties of activated carbon treated by cold plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Norikazu, Kurano [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yamada, Hiroshi [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yajima, Tatsuhiko [Faculty of Engineering, Saitama Institute of Technology, 1690 Fusoiji, Okabe 3690293 (Japan); Sugiyama, Kazuo [Faculty of Engineering, Saitama University, 255 Shimo-okubo, Sakura-Ku, Saitama 3388570 (Japan)]. E-mail: sugi@apc.saitama-u.ac.jp

    2007-03-12

    To modify the surface properties of activated carbon powders, we have applied the cold plasma treatment method. The cold plasma was used to be generated in the evacuated reactor vessel by 2.45 GHz microwave irradiation. In this paper, changes of surface properties such as distribution of acidic functional groups and roughness morphology were examined. By the cold plasma treatment, activated carbons with large specific surface area of ca. 2000 m{sup 2}/g or more could be prepared in a minute. The amount of every gaseous organic compound adsorbed on the unit gram of treated activated carbons was more increased that on the unit gram of untreated carbons. Especially, the adsorbed amount of carbon disulfide was remarkably increased even if it was compared by the amount per unit surface area. These results suggest that the surface property of the sample was modified by the plasma treatment. It became apparent by observing SEM photographs that dust and impure particles in macropores of activated carbons were far more reduced by the plasma treatment than by the conventional heating in an electric furnace under vacuum. In addition, a bubble-like surface morphology of the sample was observed by AEM measurement. The amount of acidic functional groups at the surface was determined by using the Boehm's titration method. Consequently, the increase of lactone groups and the decrease of carboxyl groups were also observed.

  3. Network Simulation solution of free convective flow from a vertical cone with combined effect of non- uniform surface heat flux and heat generation or absorption

    Science.gov (United States)

    Immanuel, Y.; Pullepu, Bapuji; Sambath, P.

    2018-04-01

    A two dimensional mathematical model is formulated for the transitive laminar free convective, incompressible viscous fluid flow over vertical cone with variable surface heat flux combined with the effects of heat generation and absorption is considered . using a powerful computational method based on thermoelectric analogy called Network Simulation Method (NSM0, the solutions of governing nondimensionl coupled, unsteady and nonlinear partial differential conservation equations of the flow that are obtained. The numerical technique is always stable and convergent which establish high efficiency and accuracy by employing network simulator computer code Pspice. The effects of velocity and temperature profiles have been analyzed for various factors, namely Prandtl number Pr, heat flux power law exponent n and heat generation/absorption parameter Δ are analyzed graphically.

  4. Fundamental research on supercooling phenomenon on heat transfer surface

    International Nuclear Information System (INIS)

    Saito, A.; Okawa, S.; Koganezawa, S.

    1991-01-01

    In relation to the problem of supercooling for ice storage devices, experiments on freezing a relatively large volume of supercooled water is carried out. In the experiment, an experimental method to determine a probability of freezing a large volume of supercooled water with a uniform temperature distribution is introduced. It is accomplished by dividing the water into many smaller droplets. In a statistical analysis, a method to improve an accuracy in a case of having a limited number of experiments is introduced, and the probability of freezing is calculated for each degree of supercooling. The average freezing temperature for the experiment is placed just at the extended region of the other researchers results worked on small droplets. By relating the value with the probability of freezing on various kinds of heat transfer surfaces, the probability of freezing which is independent of the surface is calculated. In this paper it is confirmed to be negligible compared with the one on the surface

  5. The validation of ocean surface heat fluxes in AMIP

    International Nuclear Information System (INIS)

    Gleckler, P.J.; Randall, D.A.

    1993-09-01

    Recent intercomparisons of Atmospheric General Circulation Models (AGCMS) constrained with sea-surface temperatures have shown that while there are substantial differences among various models (with each other and available observations), overall the differences between them have been decreasing. The primary goal of AMIP is to enable a systematic intercomparison and validation of state-of-the- art AGCMs by supporting in-depth diagnosis of and interpretation of the model results. Official AMIP simulations are 10 years long, using monthly mean Sea-Surface Temperatures (SSTs) and sea ice conditions which are representative of the 1979--1988 decade. Some model properties are also dictated by the design of AMIP such as the solar constant, the atmospheric CO 2 concentration, and the approximate horizontal resolution. In this paper, some of the preliminary results of AMIP Subproject No. 5 will be summarized. The focus will be on the intercomparison and validation of ocean surface heat fluxes of the AMIP simulations available thus far

  6. Surface urban heat island across 419 global big cities.

    Science.gov (United States)

    Peng, Shushi; Piao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Ottle, Catherine; Bréon, François-Marie; Nan, Huijuan; Zhou, Liming; Myneni, Ranga B

    2012-01-17

    Urban heat island is among the most evident aspects of human impacts on the earth system. Here we assess the diurnal and seasonal variation of surface urban heat island intensity (SUHII) defined as the surface temperature difference between urban area and suburban area measured from the MODIS. Differences in SUHII are analyzed across 419 global big cities, and we assess several potential biophysical and socio-economic driving factors. Across the big cities, we show that the average annual daytime SUHII (1.5 ± 1.2 °C) is higher than the annual nighttime SUHII (1.1 ± 0.5 °C) (P < 0.001). But no correlation is found between daytime and nighttime SUHII across big cities (P = 0.84), suggesting different driving mechanisms between day and night. The distribution of nighttime SUHII correlates positively with the difference in albedo and nighttime light between urban area and suburban area, while the distribution of daytime SUHII correlates negatively across cities with the difference of vegetation cover and activity between urban and suburban areas. Our results emphasize the key role of vegetation feedbacks in attenuating SUHII of big cities during the day, in particular during the growing season, further highlighting that increasing urban vegetation cover could be one effective way to mitigate the urban heat island effect.

  7. Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface

    International Nuclear Information System (INIS)

    Das, Sudev; Kumar, D.S.; Bhaumik, Swapan

    2016-01-01

    Highlights: • EBPVD approach was employed for fabrication of well-ordered nanoparticle coated micro/nanostructure on metal surface. • Nucleate boiling heat transfer performance on nanoparticle coated micro/nanostructure surface was experimentally studied. • Stability of nanoparticle coated surface under boiling environment was systematically studied. • 58% enhancement of boiling heat transfer coefficient was found. • Present experimental results are validated with well known boiling correlations. - Abstract: Electron beam physical vapor deposition (EBPVD) coating approach was employed for fabrication of well-ordered of nanoparticle coated micronanostructures on metal surfaces. This paper reports the experimental study of augmentation of pool boiling heat transfer performance and stabilities of silicon oxide nanoparticle coated surfaces with water at atmospheric pressure. The surfaces were characterized with respect to dynamic contact angle, surface roughness, topography, and morphology. The results were found that there is a reduction of about 36% in the incipience superheat and 58% enhancement in heat transfer coefficient for silicon oxide coated surface over the untreated surface. This enhancement might be the reason of enhanced wettability, enhanced surface roughness and increased number of a small artificial cavity on a heating surface. The performance and stability of nanoparticle coated micro/nanostructure surfaces were examined and found that after three runs of experiment the heat transfer coefficient with heat flux almost remain constant.

  8. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface.

    Science.gov (United States)

    Ezzat, Magdy A; El-Bary, Alaa A; Al-Sowayan, Noorah S

    2016-10-01

    A fractional model of Bioheat equation for describing quantitatively the thermal responses of skin tissue under sinusoidal heat flux conditions on skin surface is given. Laplace transform technique is used to obtain the solution in a closed form. The resulting formulation is applied to one-dimensional application to investigate the temperature distribution in skin with instantaneous surface heating for different cases. According to the numerical results and its graphs, conclusion about the fractional bioheat transfer equation has been constructed. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature. The comparisons are made with the results obtained in the case of the absence of time-fractional order. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  9. Dropwise condensation heat transfer process optimisation on superhydrophobic surfaces using a multi-disciplinary approach

    International Nuclear Information System (INIS)

    Khatir, Z.; Kubiak, K.J.; Jimack, P.K.; Mathia, T.G.

    2016-01-01

    Highlights: • Droplets jumping phenomenon can enhance condensate evacuation from the surface. • Droplets jumping velocity depends on droplets radius and surface static contact angle. • Optimum conditions are for droplets with radius 35–40 μm and contact angle near 160°. • Jumping phenomenon occurs only when static contact angle is above 140°. • The optimal functional surface design maximises jumping velocity and heat flux. - Abstract: Dropwise condensation has superior heat transfer efficiency than filmwise condensation; however condensate evacuation from the surface still remains a significant technological challenge. The process of droplets jumping, against adhesive forces, from a solid surface upon coalescence has been studied using both experimental and Computational Fluid Dynamics (CFD) analysis. Both Lattice Boltzmann (LBM) and Volume of Fluid (VOF) methods have been used to evaluate different kinematic conditions of coalescence inducing a jump velocity. In this paper, an optimisation framework for superhydrophobic surface designs is presented which uses experimentally verified high fidelity CFD analyses to identify optimal combinations of design features which maximise desirable characteristics such as the vertical velocity of the merged jumping droplet from the surface and energy efficiency. A Radial Basis Function (RBF)-based surrogate modelling approach using Design of Experiment (DOE) technique was used to establish near-optimal initial process parameters around which to focus the study. This multidisciplinary approach allows us to evaluate the jumping phenomenon for superhydrophobic surfaces for which several input parameters may be varied, so as to improve the heat transfer exchange rate on the surface during condensation. Reliable conditions were found to occur for droplets within initial radius range of r = 20–40 μm and static contact angle θ_s ∼ 160°. Moreover, the jumping phenomenon was observed for droplets with initial

  10. Simulation of nuclear fuel rods by using process computer-controlled power for indirect electrically heated rods

    International Nuclear Information System (INIS)

    Malang, S.

    1975-11-01

    An investigation was carried out to determine how the simulation of nuclear fuel rods with indirect electrically heated rods could be improved by use of a computer to control the electrical power during a loss-of-coolant accident (LOCA). To aid in the experiment, a new version of the HETRAP code was developed which simulates a LOCA with heater rod power controlled by a computer that adjusts rod power during a blowdown to minimize the difference in heat flux of the fuel and heater rods. Results show that without computer control of heater rod power, only the part of a blowdown up to the time when the heat transfer mode changes from nucleate boiling to transition or film boiling can be simulated well and then only for short times. With computer control, the surface heat flux and temperature of an electrically heated rod can be made nearly identical to that of a reactor fuel rod with the same cooling conditions during much of the LOCA. A small process control computer can be used to achieve close simulation of a nuclear fuel rod with an indirect electrically heated rod

  11. Evaluation of Heat Losses Behind the Front of the Detonation Moving Along the Metallic Porous Surface

    Directory of Open Access Journals (Sweden)

    S. V. Golovastov

    2016-01-01

    Full Text Available The paper considers a computational technique of the heat flow from the hot products of detonation combustion into the porous coating and estimates the efficiency of the coating layer that results in slowing the flame front down with disregard the transverse displacement of the combustion products weight of a hydrogen-air mixture.Initial thermodynamic parameters of combustion products on the porous coating surface have been estimated. A drag (stagnation temperature of flow was determined.The statement of task was to calculate the heat flow into the long cylindrical metal fiber with radius of 15 μm. The reference values of heat capacity and heat diffusivity were used to estimate a thermal diffusivity in a wide range of temperatures. An approximation of the parameters is given for a wide range of temperatures.The calculation algorithm using an explicit four-point scheme is presented. The convergence and accuracy of the results were confirmed. The theoretical estimation using cylindrical Bessel functions was made to prove the accuracy of the results.Total heat loss was estimated using the photos of moving detonation front and hot combustion gases.Comparison of the total heat loss and the amount of energy absorbed by a single fiber allowed us to find that the porous coating thickness, resulting in attenuation of detonation wave, is efficient.

  12. Trace moisture emissions from heated metal surfaces in hydrogen service

    International Nuclear Information System (INIS)

    Funke, Hans H.; Yao Jianlong; Raynor, Mark W.

    2004-01-01

    The formation of trace moisture by exposure of dry heated surfaces of 316 L stainless-steel, Restek Silcosteel registered , and nickel 1/8 in. outer diameter line segments to purified Ar and H 2 was studied using atmospheric pressure ionization mass spectrometry at flow rates of 2 slpm. Prior to H 2 exposure, adsorbed moisture was removed by heating incrementally to 500 deg. C in an argon matrix, where the Restek Silcosteel registered material released a maximum of 50 ppb moisture at 300 deg. C and moisture spikes from the Ni and stainless-steel surfaces reached several 100 ppb. Upon exposure to H 2 , persistent low ppb moisture emissions due to the reduction of surface oxide species were observed at temperatures as low as 100 deg. C. Spikes at 300-500 deg. C ranged from ∼100 ppb for the stainless-steel lines to 400 ppb for the Restek Silcosteel registered material. The observed moisture emissions have to be considered as a potential contamination source for high-purity processes utilizing H 2 purge at elevated temperatures

  13. Ground surface temperature and continental heat gain: uncertainties from underground

    International Nuclear Information System (INIS)

    Beltrami, Hugo; Matharoo, Gurpreet S; Smerdon, Jason E

    2015-01-01

    Temperature changes at the Earth's surface propagate and are recorded underground as perturbations to the equilibrium thermal regime associated with the heat flow from the Earth's interior. Borehole climatology is concerned with the analysis and interpretation of these downward propagating subsurface temperature anomalies in terms of surface climate. Proper determination of the steady-state geothermal regime is therefore crucial because it is the reference against which climate-induced subsurface temperature anomalies are estimated. Here, we examine the effects of data noise on the determination of the steady-state geothermal regime of the subsurface and the subsequent impact on estimates of ground surface temperature (GST) history and heat gain. We carry out a series of Monte Carlo experiments using 1000 Gaussian noise realizations and depth sections of 100 and 200 m as for steady-state estimates depth intervals, as well as a range of data sampling intervals from 10 m to 0.02 m. Results indicate that typical uncertainties for 50 year averages are on the order of ±0.02 K for the most recent 100 year period. These uncertainties grow with decreasing sampling intervals, reaching about ±0.1 K for a 10 m sampling interval under identical conditions and target period. Uncertainties increase for progressively older periods, reaching ±0.3 K at 500 years before present for a 10 m sampling interval. The uncertainties in reconstructed GST histories for the Northern Hemisphere for the most recent 50 year period can reach a maximum of ±0.5 K in some areas. We suggest that continuous logging should be the preferred approach when measuring geothermal data for climate reconstructions, and that for those using the International Heat Flow Commission database for borehole climatology, the steady-state thermal conditions should be estimated from boreholes as deep as possible and using a large fitting depth range (∼100 m). (letter)

  14. Vacuum boilers developed heating surfaces technic and economic efficiency evaluation

    Science.gov (United States)

    Slobodina, E. N.; Mikhailov, A. G.; Semenov, B. A.

    2018-01-01

    The vacuum boilers as manufacturing proto types application analysis was carried out, the possible directions for the heating surfaces development are identified with a view to improving the energy efficiency. Economic characteristics to evaluate the vacuum boilers application efficiency (Net Discounted Income (NDI), Internal Rate of Return (IRR), Profitability Index (PI) and Payback Period) are represented. The given type boilers application technic and economic efficiency criteria were established. NDI changing curves depending on the finning coefficient and operating pressure were obtained as a result of the conducted calculation studies.

  15. Hybrid fuzzy logic control of laser surface heat treatments

    International Nuclear Information System (INIS)

    Perez, Jose Antonio; Ocana, Jose Luis; Molpeceres, Carlos

    2007-01-01

    This paper presents an advanced hybrid fuzzy logic control system for laser surface heat treatments, which allows to increase significantly the uniformity and final quality of the obtained product, reducing the rejection rate and increasing the productivity and efficiency of the treatment. Basically, the proposed hybrid control structure combines a fuzzy logic controller, with a pure integral action, both fully decoupled, improving the performances of the process with a reasonable design cost, since the system nonlinearities are fully compensated by the fuzzy component of the controller, while the integral action contributes to eliminate the steady-state error

  16. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Siekhaus, W.J.

    1982-01-01

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives

  17. MINIVER: Miniature version of real/ideal gas aero-heating and ablation computer program

    Science.gov (United States)

    Hendler, D. R.

    1976-01-01

    Computer code is used to determine heat transfer multiplication factors, special flow field simulation techniques, different heat transfer methods, different transition criteria, crossflow simulation, and more efficient thin skin thickness optimization procedure.

  18. Droplet Impact on a Heated Surface under a Depressurized Environment

    Science.gov (United States)

    Hatakenaka, Ryuta; Tagawa, Yoshiyuki

    2016-11-01

    Behavior of a water droplet of the diameter 1-3mm impacting on a heated surface under depressurized environment (100kPa -1kPa) has been studied. A syringe pump for droplet generation and a heated plate are set into a transparent acrylic vacuum chamber. The internal pressure of the chamber is automatically controlled at a target pressure with a rotary pump, a pressure transducer, and an electrical valve. A silicon wafer of the thickness 0.28 mm is mounted on the heater plate, whose temperature is directly measured by attaching a thermocouple on the backside. The droplet behavior is captured using a high-speed camera in a direction perpendicular to droplet velocity. Some unique behaviors of droplet are observed by decreasing the environmental pressure, which are considered to be due to two basic elements: Enhancement of evaporation due to the lowered saturation temperature, and shortage of pneumatic spring effect between the droplet and heated wall due to the lowered pressure of the air.

  19. Efficient Computations and Representations of Visible Surfaces.

    Science.gov (United States)

    1979-12-01

    position as stated. The smooth contour generator may lie along a sharp ridge, for instance. Richards & Stevens -28- 6m lace contout s ?S ,.......... ceoonec...From understanding computation to understanding neural circuitry. Neurosci. Res. Prog. Bull. 13. 470-488. Metelli, F. 1970 An algebraic development of

  20. Convection heat transfer of closely-spaced spheres with surface blowing

    Energy Technology Data Exchange (ETDEWEB)

    Kleinstreuer, C. (North Carolina State Univ., Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering); Chiang, H. (Thermofluid Technology Div., Industrial Technology Research Inst., Chutung (Taiwan, Province of China))

    1993-05-01

    A validated computer simulation model has been developed for the analysis of colinear spheres in a heated gas stream. Using the Galerkin finite element method, the steady-state Navier-Stokes and heat transfer equations have been solved describing laminar axisymmetric thermal flow past closely-spaced monodisperse spheres with fluid injection. Of interest are the coupled nonlinear interaction effects on the temperature fields and ultimately on the Nusselt number of each sphere for different free stream Reynolds numbers (20 [<=] Re [<=] 200) and intersphere distances (1.5 [<=] d[sub ij] [<=] 6.0) in the presence of surface blowing (0 [<=] v[sub b] [<=] 0.1). Fluid injection (i.e. blowing) and associated wake effects generate lower average heat transfer coefficients for each interacting sphere when the Reynolds number increases (Re > 100). Heat transfer is also reduced at small spacings especially for the second and third sphere. A Nusselt number correlation for each interacting (porous) sphere has been developed based on computer experiments. (orig.)

  1. Surface latent heat flux as an earthquake precursor

    Directory of Open Access Journals (Sweden)

    S. Dey

    2003-01-01

    Full Text Available The analysis of surface latent heat flux (SLHF from the epicentral regions of five recent earthquakes that occurred in close proximity to the oceans has been found to show anomalous behavior. The maximum increase of SLHF is found 2–7 days prior to the main earthquake event. This increase is likely due to an ocean-land-atmosphere interaction. The increase of SLHF prior to the main earthquake event is attributed to the increase in infrared thermal (IR temperature in the epicentral and surrounding region. The anomalous increase in SLHF shows great potential in providing early warning of a disastrous earthquake, provided that there is a better understanding of the background noise due to the tides and monsoon in surface latent heat flux. Efforts have been made to understand the level of background noise in the epicentral regions of the five earthquakes considered in the present paper. A comparison of SLHF from the epicentral regions over the coastal earthquakes and the earthquakes that occurred far away from the coast has been made and it has been found that the anomalous behavior of SLHF prior to the main earthquake event is only associated with the coastal earthquakes.

  2. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  3. Estimation of surface absorptivity in laser surface heating process with experimental data

    International Nuclear Information System (INIS)

    Chen, H-T; Wu, X-Y

    2006-01-01

    This study applies a hybrid technique of the Laplace transform and finite-difference methods in conjunction with the least-squares method and experimental temperature data inside the test material to predict the unknown surface temperature, heat flux and absorptivity for various surface conditions in the laser surface heating process. In this study, the functional form of the surface temperature is unknown a priori and is assumed to be a function of time before performing the inverse calculation. In addition, the whole time domain is divided into several analysis sub-time intervals and then these unknown estimates on each analysis interval can be predicted. In order to show the accuracy of the present inverse method, comparisons are made among the present estimates, direct results and previous results, showing that the present estimates agree with the direct results for the simulated problem. However, the present estimates of the surface absorptivity deviate slightly from previous estimated results under the assumption of constant thermal properties. The effect of the surface conditions on the surface absorptivity and temperature is not negligible

  4. Radiant heat evaluation of concrete: a study of the erosion of concrete due to surface heating

    International Nuclear Information System (INIS)

    Chu, T.Y.

    1978-01-01

    Experiments were carried out to investigate the erosion of concrete under high surface heat flux in connection with the core-melt/concrete interaction studies. The dominate erosion mechanism was found to be melting at the surface accompanied by chemical decomposition of the concrete beneath the melt-solid interface. The erosion process reaches a steady state after an initial transient. The steady state is characterized by an essentially constant erosion rate at the surface and a nonvarying (with respect to the moving melt interface) temperature distribution within the concrete. For the range of incident heat flux 64 W/cm 2 to 118 W/cm 2 , the corresponding steady state erosion rate varies from approximately 8 cm/hr to 23 cm/hr. A simple ablation/melting model is proposed for the erosion process. The model was found to be able to correlate all temperature responses at various depths from all tests at large times and for temperatures above approximately 250 0 C

  5. Experimental study of the structure of vapor phase during boiling of R134a on heat exchange surfaces of heat pump

    Science.gov (United States)

    Ustinov, D. A.; Sukhikh, A. A.; Sidenkov, D. V.; Ustinov, V. A.

    2017-10-01

    The heat supply by means of heat pumps is considered now as a rational method of local heating which can lead to economy of primary fuel. At use of low-potential heat, for example, the heat of a ground (5 … 18 °C) or ground waters (8 … 10°C) only small depressing of temperature of these sources (on 3 … 5°C) is possible that demands application of heat exchangers with intensified heatmass transfer surfaces. In thermal laboratory of TOT department the 200 W experimental installation has been developed for research of process of boiling of freon R134a. The principle of action of the installation consists in realisation of reverse thermodynamic cycle and consecutive natural measurement of characteristics of elements of surfaces of heat exchangers of real installations at boiling points of freon from-10°C to +10°C and condensing temperatures from 15°C to 50 °C. The evaporator casing has optical windows for control of process of boiling of freon on ribbed on technology of distorting cut tubes. Temperature measurement in characteristic points of a cycle is provided by copper-constantan thermocouples which by means of ADT are connected to the computer that allows treat results of measurements in a real time mode. The structure of a two-phase flow investigated by means of the optical procedure based on laser technique.

  6. A computational model for heterogeneous heating during pulsed laser irradiation of polymers doped with light-absorbing microparticles

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    characteristics. This work presents a study based on a computational model of laser heating of polymer doped with light-absorbing microparticles accounting for the heterogeneous nature of heating. The work aims at gaining a fundamental insight into the nature of the heating process and to understand the role......Doping of polymers with light-absorbing microparticles to increase their optical properties is a commonly used pre-treatment technique in laser processing of polymers. The presence of these particles plays an important role during laser heating of the polymer that influences its surface...... of microparticles. The results suggest that apart from the laser intensity and pulse duration, the properties of the microparticles including their size and distribution also play an important role during the laser heating of polymers....

  7. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  8. Surface temperatures in New York City: Geospatial data enables the accurate prediction of radiative heat transfer.

    Science.gov (United States)

    Ghandehari, Masoud; Emig, Thorsten; Aghamohamadnia, Milad

    2018-02-02

    Despite decades of research seeking to derive the urban energy budget, the dynamics of thermal exchange in the densely constructed environment is not yet well understood. Using New York City as a study site, we present a novel hybrid experimental-computational approach for a better understanding of the radiative heat transfer in complex urban environments. The aim of this work is to contribute to the calculation of the urban energy budget, particularly the stored energy. We will focus our attention on surface thermal radiation. Improved understanding of urban thermodynamics incorporating the interaction of various bodies, particularly in high rise cities, will have implications on energy conservation at the building scale, and for human health and comfort at the urban scale. The platform presented is based on longwave hyperspectral imaging of nearly 100 blocks of Manhattan, in addition to a geospatial radiosity model that describes the collective radiative heat exchange between multiple buildings. Despite assumptions in surface emissivity and thermal conductivity of buildings walls, the close comparison of temperatures derived from measurements and computations is promising. Results imply that the presented geospatial thermodynamic model of urban structures can enable accurate and high resolution analysis of instantaneous urban surface temperatures.

  9. Simultaneous heat and mass transfer to air from a compact heat exchanger with water spray precooling and surface deluge cooling

    International Nuclear Information System (INIS)

    Zhang, Feini; Bock, Jessica; Jacobi, Anthony M.; Wu, Hailing

    2014-01-01

    Various methods are available to enhance heat exchanger performance with evaporative cooling. In this study, evaporative mist precooling, deluge cooling, and combined cooling schemes are examined experimentally and compared to model predictions. A flexible model of a compact, finned-tube heat exchanger with a wetted surface is developed by applying the governing conservation and rate equations and invoking the heat and mass transfer analogy. The model is applicable for dry, partially wet, or fully wet surface conditions and capable of predicting local heat/mass transfer, wetness condition, and pressure drop of the heat exchanger. Experimental data are obtained from wind tunnel experiments using a louver-fin flat-tube heat exchanger with single-phase tube-side flow. Total capacity, pressure drop, and water drainage behavior under various water usage rates and air face velocities are analyzed and compared to data for dry-surface conditions. A heat exchanger partitioning method for evaporative cooling is introduced to study partially wet surface conditions, as part of a consistent and general method for interpreting wet-surface performance data. The heat exchanger is partitioned into dry and wet portions by introducing a wet surface factor. For the wet part, the enthalpy potential method is used to determine the air-side sensible heat transfer coefficient. Thermal and hydraulic performance is compared to empirical correlations. Total capacity predictions from the model agree with the experimental results with an average deviation of 12.6%. The model is also exercised for four water augmentation schemes; results support operating under a combined mist precooling and deluge cooling scheme. -- Highlights: • A new spray-cooled heat exchanger model is presented and is validated with data. • Heat duty is shown to be asymptotic with spray flow rate. • Meaningful heat transfer coefficients for partially wet conditions are obtained. • Colburn j wet is lower than j dry

  10. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model

    International Nuclear Information System (INIS)

    Chen, Jiaoliao; Xu, Fang; Tan, Dapeng; Shen, Zheng; Zhang, Libin; Ai, Qinglin

    2015-01-01

    Highlights: • A novel control method for the heating greenhouse with SWSHPS is proposed. • CFD is employed to predict the priorities of FCU loops for thermal performance. • EPM is act as an on-line tool to predict the total energy demand of greenhouse. • The CFD–EPM-based method can save energy and improve control accuracy. • The energy savings potential is between 8.7% and 15.1%. - Abstract: As energy heating is one of the main production costs, many efforts have been made to reduce the energy consumption of agricultural greenhouses. Herein, a novel control method of greenhouse heating using computational fluid dynamics (CFD) and energy prediction model (EPM) is proposed for energy savings and system performance. Based on the low-Reynolds number k–ε turbulence principle, a CFD model of heating greenhouse is developed, applying the discrete ordinates model for the radiative heat transfers and porous medium approach for plants considering plants sensible and latent heat exchanges. The CFD simulations have been validated, and used to analyze the greenhouse thermal performance and the priority of fan coil units (FCU) loops under the various heating conditions. According to the heating efficiency and temperature uniformity, the priorities of each FCU loop can be predicted to generate a database with priorities for control system. EPM is built up based on the thermal balance, and used to predict and optimize the energy demand of the greenhouse online. Combined with the priorities of FCU loops from CFD simulations offline, we have developed the CFD–EPM-based heating control system of greenhouse with surface water source heat pumps system (SWSHPS). Compared with conventional multi-zone independent control (CMIC) method, the energy savings potential is between 8.7% and 15.1%, and the control temperature deviation is decreased to between 0.1 °C and 0.6 °C in the investigated greenhouse. These results show the CFD–EPM-based method can improve system

  11. Versatile Density Functionals for Computational Surface Science

    DEFF Research Database (Denmark)

    Wellendorff, Jess

    Density functional theory (DFT) emerged almost 50 years ago. Since then DFT has established itself as the central electronic structure methodology for simulating atomicscale systems from a few atoms to a few hundred atoms. This success of DFT is due to a very favorable accuracy-to-computational c......Density functional theory (DFT) emerged almost 50 years ago. Since then DFT has established itself as the central electronic structure methodology for simulating atomicscale systems from a few atoms to a few hundred atoms. This success of DFT is due to a very favorable accuracy...... resampling techniques, thereby systematically avoiding problems with overfitting. The first ever density functional presenting both reliable accuracy and convincing error estimation is generated. The methodology is general enough to be applied to more complex functional forms with higher-dimensional fitting...

  12. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NARCIS (Netherlands)

    Taha, T.J.; Thakur, D.B.; van der Meer, Theodorus H.

    2012-01-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon

  13. Computation of Surface Integrals of Curl Vector Fields

    Science.gov (United States)

    Hu, Chenglie

    2007-01-01

    This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…

  14. Near-Surface Seismic Velocity Data: A Computer Program For ...

    African Journals Online (AJOL)

    A computer program (NESURVELANA) has been developed in Visual Basic Computer programming language to carry out a near surface velocity analysis. The method of analysis used includes: Algorithms design and Visual Basic codes generation for plotting arrival time (ms) against geophone depth (m) employing the ...

  15. Heat shock proteins on the human sperm surface.

    Science.gov (United States)

    Naaby-Hansen, Soren; Herr, John C

    2010-01-01

    The sperm plasma membrane is known to be critical to fertilization and to be highly regionalized into domains of head, mid- and principal pieces. However, the molecular composition of the sperm plasma membrane and its alterations during genital tract passage, capacitation and the acrosome reaction remains to be fully dissected. A two-dimensional gel-based proteomic study previously identified 98 human sperm proteins which were accessible for surface labelling with both biotin and radioiodine. In this report twelve dually labelled protein spots were excised from stained gels or PDVF membranes and analysed by mass spectrometry (MS) and Edman degradation. Seven members from four different heat shock protein (HSP) families were identified including HYOU1 (ORP150), HSPC1 (HSP86), HSPA5 (Bip), HSPD1 (HSP60), and several isoforms of the two testis-specific HSP70 chaperones HSPA2 and HSPA1L. An antiserum raised against the testis-specific HSPA2 chaperone reacted with three 65kDa HSPA2 isoforms and three high molecular weight surface proteins (78-79kDa, 84kDa and 90-93kDa). These proteins, together with seven 65kDa HSP70 forms, reacted with human anti-sperm IgG antibodies that blocked in vitro fertilization in humans. Three of these surface biotinylated human sperm antigens were immunoprecipitated with a rabbit antiserum raised against a linear peptide epitope in Chlamydia trachomatis HSP70. The results indicate diverse HSP chaperones are accessible for surface labelling on human sperm. Some of these share epitopes with C. trachomatis HSP70, suggesting an association between genital tract infection, immunity to HSP70 and reproductive failure. 2009 Elsevier Ireland Ltd. All rights reserved.

  16. A computer-aided surface roughness measurement system

    International Nuclear Information System (INIS)

    Hughes, F.J.; Schankula, M.H.

    1983-11-01

    A diamond stylus profilometer with computer-based data acquisitions/analysis system is being used to characterize surfaces of reactor components and materials, and to examine the effects of surface topography on thermal contact conductance. The current system is described; measurement problems and system development are discussed in general terms and possible future improvements are outlined

  17. Micro-structured rough surfaces by laser etching for heat transfer enhancement on flush mounted heat sinks

    International Nuclear Information System (INIS)

    Ventola, L; Scaltrito, L; Ferrero, S; Chiavazzo, E; Asinari, P; Maccioni, G

    2014-01-01

    The aim of this work is to improve heat transfer performances of flush mounted heat sinks used in electronic cooling. To do this we patterned 1.23 cm 2 heat sinks surfaces by microstructured roughnesses built by laser etching manufacturing technique, and experimentally measured the convective heat transfer enhancements due to different patterns. Each roughness differs from the others with regards to the number and the size of the micro-fins (e.g. the micro- fin length ranges from 200 to 1100 μm). Experimental tests were carried out in forced air cooling regime. In particular fully turbulent flows (heating edge based Reynolds number ranging from 3000 to 17000) were explored. Convective heat transfer coefficient of the best micro-structured heat sink is found to be roughly two times compared to the smooth heat sinks one. In addition, surface area roughly doubles with regard to smooth heat sinks, due to the presence of micro-fins. Consequently, patterned heat sinks thermal transmittance [W/K] is found to be roughly four times the smooth heat sinks one. We hope this work may open the way for huge boost in the technology of electronic cooling by innovative manufacturing techniques.

  18. Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit

    International Nuclear Information System (INIS)

    Gunes, M.

    1998-01-01

    In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically

  19. Thermoelectric cooling of microelectronic circuits and waste heat electrical power generation in a desktop personal computer

    International Nuclear Information System (INIS)

    Gould, C.A.; Shammas, N.Y.A.; Grainger, S.; Taylor, I.

    2011-01-01

    Thermoelectric cooling and micro-power generation from waste heat within a standard desktop computer has been demonstrated. A thermoelectric test system has been designed and constructed, with typical test results presented for thermoelectric cooling and micro-power generation when the computer is executing a number of different applications. A thermoelectric module, operating as a heat pump, can lower the operating temperature of the computer's microprocessor and graphics processor to temperatures below ambient conditions. A small amount of electrical power, typically in the micro-watt or milli-watt range, can be generated by a thermoelectric module attached to the outside of the computer's standard heat sink assembly, when a secondary heat sink is attached to the other side of the thermoelectric module. Maximum electrical power can be generated by the thermoelectric module when a water cooled heat sink is used as the secondary heat sink, as this produces the greatest temperature difference between both sides of the module.

  20. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2018-04-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  1. Application of Laser Pulse Heating to Simulate Thermomechanical Damage at Gun Bore Surfaces

    National Research Council Canada - National Science Library

    Cote, Paul

    2003-01-01

    Laser pulse heating experiments were performed to provide insights into the thermomechanical damage effects that occur at the surface of coated and uncoated gun steel under cyclic rapid heating and cooling...

  2. Structural dynamics of fore-crisis area on a heat emission surface of a fuel element's

    International Nuclear Information System (INIS)

    Sharaevskij, I.G.; Fialko, N.M.; Sharaevskaya, E.I.

    2011-01-01

    The known theoretical and experimental data regarding the nature of dry spots evolution are reviewed and the idea regarding the mechanism of heat emission from the heated surface in fore-crisis area are defined more precisely.

  3. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania

    Science.gov (United States)

    Herbel, Ioana; Croitoru, Adina-Eliza; Rus, Adina Viorica; Roşca, Cristina Florina; Harpa, Gabriela Victoria; Ciupertea, Antoniu-Flavius; Rus, Ionuţ

    2017-07-01

    The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day

  4. Estimation of sensible and latent heat flux from natural sparse vegetation surfaces using surface renewal

    Science.gov (United States)

    Zapata, N.; Martínez-Cob, A.

    2001-12-01

    This paper reports a study undertaken to evaluate the feasibility of the surface renewal method to accurately estimate long-term evaporation from the playa and margins of an endorreic salty lagoon (Gallocanta lagoon, Spain) under semiarid conditions. High-frequency temperature readings were taken for two time lags ( r) and three measurement heights ( z) in order to get surface renewal sensible heat flux ( HSR) values. These values were compared against eddy covariance sensible heat flux ( HEC) values for a calibration period (25-30 July 2000). Error analysis statistics (index of agreement, IA; root mean square error, RMSE; and systematic mean square error, MSEs) showed that the agreement between HSR and HEC improved as measurement height decreased and time lag increased. Calibration factors α were obtained for all analyzed cases. The best results were obtained for the z=0.9 m ( r=0.75 s) case for which α=1.0 was observed. In this case, uncertainty was about 10% in terms of relative error ( RE). Latent heat flux values were obtained by solving the energy balance equation for both the surface renewal ( LESR) and the eddy covariance ( LEEC) methods, using HSR and HEC, respectively, and measurements of net radiation and soil heat flux. For the calibration period, error analysis statistics for LESR were quite similar to those for HSR, although errors were mostly at random. LESR uncertainty was less than 9%. Calibration factors were applied for a validation data subset (30 July-4 August 2000) for which meteorological conditions were somewhat different (higher temperatures and wind speed and lower solar and net radiation). Error analysis statistics for both HSR and LESR were quite good for all cases showing the goodness of the calibration factors. Nevertheless, the results obtained for the z=0.9 m ( r=0.75 s) case were still the best ones.

  5. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary

    International Nuclear Information System (INIS)

    Mahanthesh, B.; Gireesha, B.J.; Gorla, R.S. Reddy; Abbasi, F.M.; Shehzad, S.A.

    2016-01-01

    Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases. - Highlights: • Hydromagnetic flow of nanofluid over a bidirectional non-linear stretching surface is examined. • Cu, Al 2 O3 and TiO 2 types nanoparticles are taken into account. • Numerical solutions have been computed and addressed. • The values of skin-friction and Nusselt number are presented.

  6. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary

    Energy Technology Data Exchange (ETDEWEB)

    Mahanthesh, B., E-mail: bmanths@gmail.com [Department of Mathematics, AIMS Institutes, Peenya, 560058 Bangalore (India); Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Gireesha, B.J., E-mail: bjgireesu@rediffmail.com [Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Gorla, R.S. Reddy, E-mail: r.gorla@csuohio.edu [Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A., E-mail: ali_qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-11-01

    Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases. - Highlights: • Hydromagnetic flow of nanofluid over a bidirectional non-linear stretching surface is examined. • Cu, Al{sub 2}O3 and TiO{sub 2} types nanoparticles are taken into account. • Numerical solutions have been computed and addressed. • The values of skin-friction and Nusselt number are presented.

  7. On the Heat Transfer through a Solid Slab Heated Uniformly and Continuously on One of Its Surfaces

    Science.gov (United States)

    Marin, E.; Lara-Bernal, A.; Calderon, A.; Delgado-Vasallo, O.

    2011-01-01

    Some peculiarities of the heat transfer through a sample that is heated by the superficial absorption of light energy under continuous uniform illumination are discussed. We explain, using a different approach to that presented in a recent article published in this journal (Salazar "et al" 2010 "Eur. J. Phys." 31 1053-9), that the front surface of…

  8. Application of the TEMPEST computer code to canister-filling heat transfer problems

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Faletti, D.W.; Budden, M.J.

    1988-03-01

    Pacific Northwest Laboratory (PNL) researchers used the TEMPEST computer code to simulate thermal cooldown behavior of nuclear waste glass after it was poured into steel canisters for long-term storage. The objective of this work was to determine the accuracy and applicability of the TEMPEST code when used to compute canister thermal histories. First, experimental data were obtained to provide the basis for comparing TEMPEST-generated predictions. Five canisters were instrumented with appropriately located radial and axial thermocouples. The canister were filled using the pilot-scale ceramic melter (PSCM) at PNL. Each canister was filled in either a continous or a batch filling mode. One of the canisters was also filled within a turntable simulant (a group of cylindrical shells with heat transfer resistances similar to those in an actual melter turntable). This was necessary to provide a basis for assessing the ability of the TEMPEST code to also model the transient cooling of canisters in a melter turntable. The continous-fill model, Version M, was found to predict temperatures with more accuracy. The turntable simulant experiment demonstrated that TEMPEST can adequately model the asymmetric temperature field caused by the turntable geometry. Further, TEMPEST can acceptably predict the canister cooling history within a turntable, despite code limitations in computing simultaneous radiation and convection heat transfer between shells, along with uncertainty in stainless-steel surface emissivities. Based on the successful performance of TEMPEST Version M, development was initiated to incorporate 1) full viscous glass convection, 2) a dynamically adaptive grid that automatically follows the glass/air interface throughout the transient, and 3) a full enclosure radiation model to allow radiation heat transfer to non-nearest neighbor cells. 5 refs., 47 figs., 17 tabs

  9. Aram Chaos and its constraints on the surface heat flux of Mars

    NARCIS (Netherlands)

    Schumacher, S.; Zegers, T.E.

    2011-01-01

    The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface

  10. Development of surface wettability characteristics for enhancing pool boiling heat transfer

    International Nuclear Information System (INIS)

    Kim, Moo Hwan; Jo, Hang Jin

    2010-05-01

    For several centuries, many boiling experiments have been conducted. Based on literature survey, the characteristic of heating surface in boiling condition played as an important role which mainly influenced to boiling performance. Among many surface factor, the fact that wettability effect is significant to not only the enhancement of critical heat flux(CHF) but also the nucleate boiling heat transfer is also supported by other kinds of boiling experiments. In this regard, the excellent boiling performance (a high CHF and heat transfer performance) in pool boiling could be achieved through some favorable surface modification which satisfies the optimized wettability condition. To find the optimized boiling condition, we design the special heaters to examine how two materials, which have different wettability (e.g. hydrophilic and hydrophobic), affect the boiling phenomena. The special heaters have hydrophobic dots on hydrophilic surface. The contact angle of hydrophobic surface is 120 .deg. to water at the room temperature. The contact angle of hydrophilic surface is 60 .deg. at same conditions. To conduct the experiment with new surface condition, we developed new fabrication method and design the pool boiling experimental apparatus. Through this facility, we can the higher CHF on pattern surface than that on hydrophobic surface, and the higher boiling heat transfer performance on pattern surface than that on hydrophilic surface. Based on this experimental results, we concluded that we proposed new heating surface condition and surface fabrication method to realize the best boiling condition by modified heating surface condition

  11. Computer simulation of heat pump application in distillation towers

    International Nuclear Information System (INIS)

    Pedram, B.; Kharrat, R.

    2000-01-01

    Distillation columns rank among the largest industrial energy users today. Almost 30-60% of the total energy demand in the chemical and petrochemical industry is needed to heat distillation columns. Hence, researchers decided to optimize energy consumption to make its application more efficient. One of the recommended way is to use heat pumps. Several works have been reported in the literature in which comparisons of energy consumption between conventional and heat pump distillation for two or three component systems have been investigated. However, the concluded results are not sufficient. In this work, a case study was considered in which different heat pump configurations were applied and the optimum configuration was selected. The cost of each configuration was found to be depending on the cold temperature approach of the heat pump. Therefore, an optimum value was found for each configuration. In addition, the cost of the heat pump was found to be sensitive to the compression and condensation of the process fluid

  12. Computer simulation of the relationship between selected properties of laser remelted tool steel surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Bonek, Mirosław, E-mail: miroslaw.bonek@polsl.pl; Śliwa, Agata; Mikuła, Jarosław

    2016-12-01

    Highlights: • Prediction of the properties of laser remelted surface layer with the use of FEM analysis. • The simulation was applied to determine the shape of molten pool of remelted surface. • Applying of numerical model MES for simulation of surface laser treatment to meaningfully shorten time of selection of optimum parameters. • An FEM model was established for the purpose of building a computer simulation. - Abstract: Investigations >The language in this paper has been slightly changed. Please check for clarity of thought, and that the meaning is still correct, and amend if necessary.include Finite Element Method simulation model of remelting of PMHSS6-5-3 high-speed steel surface layer using the high power diode laser (HPDL). The Finite Element Method computations were performed using ANSYS software. The scope of FEM simulation was determination of temperature distribution during laser alloying process at various process configurations regarding the laser beam power and method of powder deposition, as pre-coated past or surface with machined grooves. The Finite Element Method simulation was performed on five different 3-dimensional models. The model assumed nonlinear change of thermal conductivity, specific heat and density that were depended on temperature. The heating process was realized as heat flux corresponding to laser beam power of 1.4, 1.7 and 2.1 kW. Latent heat effects are considered during solidification. The molten pool is composed of the same material as the substrate and there is no chemical reaction. The absorptivity of laser energy was dependent on the simulated materials properties and their surface condition. The Finite Element Method simulation allows specifying the heat affected zone and the temperature distribution in the sample as a function of time and thus allows the estimation of the structural changes taking place during laser remelting process. The simulation was applied to determine the shape of molten pool and the

  13. COXPRO-II: a computer program for calculating radiation and conduction heat transfer in irradiated fuel assemblies

    International Nuclear Information System (INIS)

    Rhodes, C.A.

    1984-12-01

    This report describes the computer program COXPRO-II, which was written for performing thermal analyses of irradiated fuel assemblies in a gaseous environment with no forced cooling. The heat transfer modes within the fuel pin bundle are radiation exchange among fuel pin surfaces and conduction by the stagnant gas. The array of parallel cylindrical fuel pins may be enclosed by a metal wrapper or shroud. Heat is dissipated from the outer surface of the fuel pin assembly by radiation and convection. Both equilateral triangle and square fuel pin arrays can be analyzed. Steady-state and unsteady-state conditions are included. Temperatures predicted by the COXPRO-II code have been validated by comparing them with experimental measurements. Temperature predictions compare favorably to temperature measurements in pressurized water reactor (PWR) and liquid-metal fast breeder reactor (LMFBR) simulated, electrically heated fuel assemblies. Also, temperature comparisons are made on an actual irradiated Fast-Flux Test Facility (FFTF) LMFBR fuel assembly

  14. Computational heat transfer analysis and combined ANN–GA

    Indian Academy of Sciences (India)

    The heat transfer augmentation is studied for different parameters such as inner radius, outer radius, height of the fins and number of pin fins. The base plate is supplied with a constant heat flux in the range of 20–500W. The base plate dimensions are kept constant. The base plate temperature is predicted using Artificial ...

  15. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  16. Computer simulation of the topography evolution on ion bombarded surfaces

    CERN Document Server

    Zier, M

    2003-01-01

    The development of roughness on ion bombarded surfaces (facets, ripples) on single crystalline and amorphous homogeneous solids plays an important role for example in depth profiling techniques. To verify a faceting mechanism based not only on sputtering by directly impinging ions but also on the contribution of reflected ions and the redeposition of sputtered material a computer simulation has been carried out. The surface in this model is treated as a two-dimensional line segment profile. The model describes the topography evolution on ion bombarded surfaces including the growth mechanism of a facetted surface, using only the interplay of reflected and primary ions and redeposited atoms.

  17. fiReproxies: A computational model providing insight into heat-affected archaeological lithic assemblages.

    Science.gov (United States)

    Sorensen, Andrew C; Scherjon, Fulco

    2018-01-01

    Evidence for fire use becomes increasingly sparse the further back in time one looks. This is especially true for Palaeolithic assemblages. Primary evidence of fire use in the form of hearth features tends to give way to clusters or sparse scatters of more durable heated stone fragments. In the absence of intact fireplaces, these thermally altered lithic remains have been used as a proxy for discerning relative degrees of fire use between archaeological layers and deposits. While previous experimental studies have demonstrated the physical effects of heat on stony artefacts, the mechanisms influencing the proportion of fire proxy evidence within archaeological layers remain understudied. This fundamental study is the first to apply a computer-based model (fiReproxies) in an attempt to simulate and quantify the complex interplay of factors that ultimately determine when and in what proportions lithic artefacts are heated by (anthropogenic) fires. As an illustrative example, we apply our model to two hypothetical archaeological layers that reflect glacial and interglacial conditions during the late Middle Palaeolithic within a generic simulated cave site to demonstrate how different environmental, behavioural and depositional factors like site surface area, sedimentation rate, occupation frequency, and fire size and intensity can, independently or together, significantly influence the visibility of archaeological fire signals.

  18. Piston surface heat transfer during combustion in large marine diesel engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    In the design process of large marine diesel engines information on the maximum heat load on the piston surface experienced during the engine cycle is an important parameter. The peak heat load occurs during combustion when hot combustion products impinge on the piston surface. Although the maximum...... heat load is only present for a short time of the total engine cycle, it is a severe thermal load on the piston surface. At the same time, cooling of the piston crown is generally more complicated than cooling of the other components of the combustion chamber. This can occasionally cause problems...... with burning off piston surface material. In this work the peak heat load on the piston surface of large marine diesel engines during combustion was investigated. Measurements of the instantaneous surface temperature and surface heat flux on pistons in large marine engines are difficult due to expensive...

  19. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  20. Easy-to-use application programs for decay heat and delayed neutron calculations on personal computers

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, Kazuhiro [Nagoya Univ. (Japan)

    1998-03-01

    Application programs for personal computers are developed to calculate the decay heat power and delayed neutron activity from fission products. The main programs can be used in any computers from personal computers to main frames because their sources are written in Fortran. These programs have user friendly interfaces to be used easily not only for research activities but also for educational purposes. (author)

  1. Computation of the temperatures of a fluid flowing through a pipe from temperature measurements on the pipe's outer surface

    International Nuclear Information System (INIS)

    Sauer, G.

    1999-01-01

    A method for computing the temperatures of a fluid flowing through a pipe on the basis of temperatures recorded at the pipe's outer surface is presented. The heat conduction in the pipe wall is described by one-dimensional heat conduction elements. Heat transfer between fluid, pipe and surrounding is allowed for. The equation system resulting from the standard finite element discretization is reformulated to enable the computation of temperature events preceding the recorded temperature in time. It is shown that the method can be used to identify the actual fluid temperature from temperature data obtained only at the outer surface of the pipe. The temperatures in the pipe wall are computed with good accuracy even in the case of a severe thermal shock. (orig.) [de

  2. Holonomic surface codes for fault-tolerant quantum computation

    Science.gov (United States)

    Zhang, Jiang; Devitt, Simon J.; You, J. Q.; Nori, Franco

    2018-02-01

    Surface codes can protect quantum information stored in qubits from local errors as long as the per-operation error rate is below a certain threshold. Here we propose holonomic surface codes by harnessing the quantum holonomy of the system. In our scheme, the holonomic gates are built via auxiliary qubits rather than the auxiliary levels in multilevel systems used in conventional holonomic quantum computation. The key advantage of our approach is that the auxiliary qubits are in their ground state before and after each gate operation, so they are not involved in the operation cycles of surface codes. This provides an advantageous way to implement surface codes for fault-tolerant quantum computation.

  3. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order...

  4. An Analysis of Saturated Film Boiling Heat Transfer from a Vertical Slab with Horizontal Bottom Surface

    OpenAIRE

    茂地, 徹; 山田, たかし

    1997-01-01

    The film boiling heat transfer from a vertical slab with horizontal bottom surface to saturated liquids was analyzed theoretically. Bromley's solution for the vertical surface was modified to accommodate the continuity of the vapor mass flow rate around the lower corner of the vertical slab. The thickness of the vapor film covering the vertical surface of the slab was increased owing to the inflow of vapor generated under the horizontal bottom surface and resulted in a decrease in the heat tr...

  5. Characterisation of a grooved heat pipe with an anodised surface

    Science.gov (United States)

    Solomon, A. Brusly; Ram Kumar, A. M.; Ramachandran, K.; Pillai, B. C.; Senthil Kumar, C.; Sharifpur, Mohsen; Meyer, Josua P.

    2017-03-01

    A grooved heat pipe (GHP) is an important device for managing heat in space applications such as satellites and space stations, as it works efficiently in the absence of gravity. Apart from the above application, axial GHPs are used in many applications, such as electronic cooling units for temperature control and permafrost cooling. Improving the performance of GHPs is essential for better cooling and thermal management. In the present study, the effect of anodization on the heat transfer characteristics of a GHP is studied with R600a as a working fluid. In addition, the effects of fill ratio, inclination angle and heat inputs on the heat transfer performance of a GHP are studied. Furthermore, the effect of heat flux on dimensional numbers, such as the Webber, Bond, Kutateladze and condensation numbers, are studied. The inclination angle, heat input and fill ratio of GHPs are varied in the range of 0°-90°, 25-250 W and 10-70 % respectively. It is found that the above parameters have a significant effect on the performance of a GHP. Due to the anodisation, the maximum enhancement in heat transfer coefficient at the evaporator is 39 % for a 90° inclination at a heat flux of 11 kW/m2. The reported performance enhancement of a GHP may be due to the large numbers of nucleation sites created by the anodisation process and enhancement in the capillary force due to the coating.

  6. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  7. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Directory of Open Access Journals (Sweden)

    Tong Wen

    Full Text Available The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol compared with the conventional heating (43.9 kJ/mol. However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite. Keywords: Microwave-assisted heating, Chalcopyrite, Leaching kinetics, Interface temperature, Surface energy

  8. An Experimental Study on the Pool Boiling Heat Transfer on a Square Surface

    International Nuclear Information System (INIS)

    Kim, Jae Kwang

    2000-02-01

    An experimental study was carried out to identify the various regimes of natural convective boiling and to determine the Critical Heat Flux (CHF) on a square surface. The basic knowledge on the boiling heat transfer and CHF on the square surface is necessary for various engineering problems, such as the design of compact heat exchangers, cooling of CPU chips, and design of the external cooling mechanism for the reactor during the severe accidents in the nuclear power plants. The heater block made of copper with cartridge heaters in it is submerged in a water tank with windows for visualization. The heater surface has dimension of 70mm x 70mm and the maximum heat flux capacity is about 1.8MW/m 2 . The boiling heat transfer coefficient for the various flow regimes up to CHF has been measured for upward facing surface, vertical surface, and nearly horizontal downward facing surfaces. The temperatures of the heater block are measured by the thermocouples imbedded in the heater block. As the heat flux increases from 100kW/m 2 to 1.0MW/m 2 , the heat-transfer regime changes from the nucleate boiling to the CHF. Near 1.0MW/m 2 , the heat transfer regime suddenly changed from nucleate boiling to film boiling and it resulted in a rapid heat up of the heater block. The various boiling patterns on the vertical surface, upward facing surface, and downward facing surface are observed by a high speed video camera whose frame rate is 1000fps. An explosive vapor generation on the heated surface, whose size and frequency are characterized by the heat flux and inclination angle, is observed

  9. Calculation of Thermal Mode of Flat Irradiated Ceramic Mass Sample’ while Evaporating Moisture from Heated-up Surface

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2004-01-01

    Full Text Available The solution of a differential heat conduction equation is given in view of cooling effect of moisture evaporation from a heated surface. In this case heating heat flow is diminishing in time exponentially. The most typical nomographic temperature and temperature gradient charts of heated surface and mean temperature of a plate are presented in the paper.

  10. Radionuclide deposits on heat transfer surfaces in a circumt with dissociating N2O4 coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.; Komissarov, F.D.

    1984-01-01

    Radionuclides deposits on heat transfer surfaces of a circuit with dissociating coolant are studied. The areas of preferential deposition of 54 Mn, 51 Cr, 134 Cs and their distribution along the heating and cooling surfaces are determined. The comparison of the obtained data on the nuclide and chemical compositions of the deposits in the areas of N 2 O 4 coolant heating and cooling shows that 54 Mn, 51 Cr, 134 Cs deposit preferentially on heat transfer surfaces in the area of the coolant heating. Fixed and movable deposits consists of the structural material oxides. The quantity of radionuclides in the deposits on the surfaces of heat transfer tubes in the area of cooling decreases with the coolant temperature drop

  11. Turbulence modeling and surface heat transfer in a stagnation flow region

    Science.gov (United States)

    Wang, C. R.; Yeh, F. C.

    1987-01-01

    Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.

  12. Selecting the induction heating for normalization of deposited surfaces of cylindrical parts

    Directory of Open Access Journals (Sweden)

    Олена Валеріївна Бережна

    2017-07-01

    Full Text Available The machine parts recovered by electric contact surfacing with metal strip are characterized by high loading of the surface layer, which has a significant impact on their performance. Therefore, the improvement of the operational stability of fast-wearing machine parts through the use of combined treatment technologies is required. Not all the work-piece but just the worn zones are subjected to recovery with electric contact surfacing; the tape thickness and depth of the heat affected zone being not more than a few millimeters. Therefore, the most optimal in this case is the use of a local surface heating method of high frequency currents. This method has economical benefits because there is no need to heat the entire work-piece. The induction heating mode at a constant power density has been proposed and analytically investigated. The ratios that make it possible to determine the main heating parameters ensuring calculation of the inductor for the normalization of the reconstructed surface of cylindrical parts have been given. These parameters are: specific power, frequency and warm-up time. The proposed induction heating mode is intermediate between the quenching and cross-cutting heating and makes it possible to simultaneously obtain the required temperatures at the surface and at the predetermined depth of the heated layer of cylindrical parts with the normalization of their surfaces restored with electric contact surfacing

  13. Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones

    Science.gov (United States)

    Irimpan, Kiran Joy; Menezes, Viren

    2018-03-01

    Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.

  14. Influence of the convective surface transfer coefficients on the Heat, Air, and Moisture (HAM) building performance

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in buildings assume constant boundary conditions for the temperature and relative humidity of the neighbouring air and for the surface heat and moisture transfer coefficients. These assumptions may introduce errors in the predicted...... influence on the predicted hygrothermal conditions at the surface of a building component and on the heat and vapour exchange with the indoor environment....

  15. Scaling of Calcium Carbonate at Heated Surfaces in a Continuous System

    OpenAIRE

    Nergaard, Margrethe

    2011-01-01

    Scaling is the precipitation of a mineral layer on a surface. Sparingly soluble salts with inverse solubility, which calcium carbonate exhibits, will prefer precipitation at heated surfaces, making heat exchangers a target for scale formation. A continuous setup was used to study scale formation, the nature of the scale formed and scaling rate. An internally heated U-shaped tube was inserted into a continuously stirred tank, giving the same conditions for all scaling points. The experimental ...

  16. Finite-elements modeling of radiant heat transfers between mobile surfaces; Modelisation par elements finis de transferts radiatifs entre surfaces mobiles

    Energy Technology Data Exchange (ETDEWEB)

    Daurelle, J V; Cadene, V; Occelli, R [Universite de Provence, 13 - Marseille (France)

    1997-12-31

    In the numerical modeling of thermal industrial problems, radiant heat transfers remain difficult to take into account and require important computer memory and long computing time. These difficulties are enhanced when radiant heat transfers are coupled with finite-elements diffusive heat transfers because finite-elements architecture is complex and requires a lot of memory. In the case of radiant heat transfers along mobile boundaries, the methods must be optimized. The model described in this paper concerns the radiant heat transfers between diffuse grey surfaces. These transfers are coupled with conduction transfers in the limits of the diffusive opaque domain. 2-D and 3-D geometries are analyzed and two configurations of mobile boundaries are considered. In the first configuration, the boundary follows the deformation of the mesh, while in the second, the boundary moves along the fixed mesh. Matter displacement is taken into account in the term of transport of the energy equation, and an appropriate variation of the thermophysical properties of the transition elements between the opaque and transparent media is used. After a description of the introduction of radiative limit conditions in a finite-elements thermal model, the original methods used to optimize calculation time are explained. Two examples of application illustrate the approach used. The first concerns the modeling of radiant heat transfers between fuel rods during a reactor cooling accident, and the second concerns the study of heat transfers inside the air-gap of an electric motor. The method of identification of the mobile surface on the fixed mesh is described. (J.S.) 12 refs.

  17. Finite-elements modeling of radiant heat transfers between mobile surfaces; Modelisation par elements finis de transferts radiatifs entre surfaces mobiles

    Energy Technology Data Exchange (ETDEWEB)

    Daurelle, J.V.; Cadene, V.; Occelli, R. [Universite de Provence, 13 - Marseille (France)

    1996-12-31

    In the numerical modeling of thermal industrial problems, radiant heat transfers remain difficult to take into account and require important computer memory and long computing time. These difficulties are enhanced when radiant heat transfers are coupled with finite-elements diffusive heat transfers because finite-elements architecture is complex and requires a lot of memory. In the case of radiant heat transfers along mobile boundaries, the methods must be optimized. The model described in this paper concerns the radiant heat transfers between diffuse grey surfaces. These transfers are coupled with conduction transfers in the limits of the diffusive opaque domain. 2-D and 3-D geometries are analyzed and two configurations of mobile boundaries are considered. In the first configuration, the boundary follows the deformation of the mesh, while in the second, the boundary moves along the fixed mesh. Matter displacement is taken into account in the term of transport of the energy equation, and an appropriate variation of the thermophysical properties of the transition elements between the opaque and transparent media is used. After a description of the introduction of radiative limit conditions in a finite-elements thermal model, the original methods used to optimize calculation time are explained. Two examples of application illustrate the approach used. The first concerns the modeling of radiant heat transfers between fuel rods during a reactor cooling accident, and the second concerns the study of heat transfers inside the air-gap of an electric motor. The method of identification of the mobile surface on the fixed mesh is described. (J.S.) 12 refs.

  18. Computer code for thermal-hydraulic simulation of heat pressurizer tanks operation (Simterm-H)

    International Nuclear Information System (INIS)

    Sellos, R.F.

    1987-01-01

    It is presented the Simtherm-H computer code, developed for calculating the thermodynamic properties of the high pressure heating system and the feedwater tank in transient state for PWR nuclear power plants (1300 MWe). (E.G.) [pt

  19. Comprehensive study of flow and heat transfer at the surface of circular cooling fin

    Science.gov (United States)

    Mityakov, V. Yu; Grekov, M. A.; Gusakov, A. A.; Sapozhnikov, S. Z.; Seroshtanov, V. V.; Bashkatov, A. V.; Dymkin, A. N.; Pavlov, A. V.; Milto, O. A.; Kalmykov, K. S.

    2017-11-01

    For the first time is proposed to combine heat flux measurements with thermal imaging and PIV (particle image velocimetry) for a comprehensive study of flow and heat transfer at the surface of the circular cooling fin. The investigated hollow fin is heated from within with saturated water steam; meanwhile the isothermal external surface simulates one of the perfect fin. Flow and heat transfer at the surface of the solid fin of the same size and shape, made of titanium alloy is investigated in the same regimes. Gradient Heat Flux Sensors (GHFS) were installed at different places of the fin surface. Velocity field around a cylinder, temperature field at the surface of the fin and heat flux for each rated time were obtained. Comprehensive method including heat flux measurement, PIV and thermal imaging allow to study flow and heat transfer at the surface of the fin in real time regime. The possibility to study flow and heat transfer for non-isothermal fins is shown; it is allow to improve traditional calculation of the cooling fins.

  20. Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux

    International Nuclear Information System (INIS)

    Seddeek, M.A.; Abdelmeguid, M.S.

    2006-01-01

    The effect of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux has been studied. The thermal diffusivity is assumed to vary as a linear function of temperature. The governing partial differential equations have been transformed to ordinary differential equations. The exact analytical solution for the velocity and the numerical solution for the temperature field are given. Numerical solutions are obtained for different values of variable thermal diffusivity, radiation, temperature parameter and Prandtl number

  1. CACHE: an extended BASIC program which computes the performance of shell and tube heat exchangers

    International Nuclear Information System (INIS)

    Tallackson, J.R.

    1976-03-01

    An extended BASIC program, CACHE, has been written to calculate steady state heat exchange rates in the core auxiliary heat exchangers, (CAHE), designed to remove afterheat from High-Temperature Gas-Cooled Reactors (HTGR). Computationally, these are unbaffled counterflow shell and tube heat exchangers. The computational method is straightforward. The exchanger is subdivided into a user-selected number of lengthwise segments; heat exchange in each segment is calculated in sequence and summed. The program takes the temperature dependencies of all thermal conductivities, viscosities and heat capacities into account providing these are expressed algebraically. CACHE is easily adapted to compute steady state heat exchange rates in any unbaffled counterflow exchanger. As now used, CACHE calculates heat removal by liquid weight from high-temperature helium and helium mixed with nitrogen, oxygen and carbon monoxide. A second program, FULTN, is described. FULTN computes the geometrical parameters required as input to CACHE. As reported herein, FULTN computes the internal dimensions of the Fulton Station CAHE. The two programs are chained to operate as one. Complete user information is supplied. The basic equations, variable lists, annotated program lists, and sample outputs with explanatory notes are included

  2. The effect of heating rate on the surface chemistry of NiTi.

    Science.gov (United States)

    Undisz, Andreas; Hanke, Robert; Freiberg, Katharina E; Hoffmann, Volker; Rettenmayr, Markus

    2014-11-01

    The impact of the heating rate on the Ni content at the surface of the oxide layer of biomedical NiTi is explored. Heat treatment emulating common shape-setting procedures was performed by means of conventional and inductive heating for similar annealing time and temperature, applying various heating rates from ~0.25 K s(-1) to 250 K s(-1). A glow discharge optical emission spectroscopy method was established and employed to evaluate concentration profiles of Ni, Ti and O in the near-surface region at high resolution. The Ni content at the surface of the differently treated samples varies significantly, with maximum surface Ni concentrations of ~20 at.% at the lowest and ~1.5 at.% at the highest heating rate, i.e. the total amount of Ni contained in the surface region of the oxide layer decreases by >15 times. Consequently, the heating rate is a determinant for the biomedical characteristics of NiTi, especially since Ni available at the surface of the oxide layer may affect the hemocompatibility and be released promptly after surgical application of a respective implant. Furthermore, apparently contradictory results presented in the literature reporting surface Ni concentrations of ~3 at.% to >20 at.% after heat treatment are consistently explained considering the ascertained effect of the heating rate. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Computational heat transfer analysis and combined ANN–GA ...

    Indian Academy of Sciences (India)

    The analysis using the numerical simulation and neural network ... Optimization is the process of finding the most plausible and desirable solution to a problem. ... increased heat transfer and compared the results of regular non-fuzzy model and fuzzy model. ..... network is designed using MATLAB Neural network toolbox.

  4. The TX-model - a quantitative heat loss analysis of district heating pipes by means of IR surface temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zinki, Heimo [ZW Energiteknik, Nykoeping (Sweden)

    1996-11-01

    The aim of this study was to investigate the possibility of analysing the temperature profile at the ground surface above buried district heating pipes in such a way that would enable the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of advanced IR-thermography. For this purpose, the principle of the TX - model has been developed, based on the fact that the heat losses from pipes buried in the ground have a temperature signature on the ground surface. Qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques primarily make use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss per unit length. The basic idea is that the integral of the temperature profile perpendicular to the pipe, called TX, is a function of the heat loss, but is also affected by other parameters such as burial depth, heat diffusivity, wind, precipitation and so on. In order to analyse the parameters influencing the TX- factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is by and large unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at different sites in Denmark, Finland, Sweden and USA through a co-operative research program organised and partially financed by the IEA District Heating Programme, Task III, and

  5. A method for sensible heat flux model parameterization based on radiometric surface temperature and environmental factors without involving the parameter KB-1

    Science.gov (United States)

    Zhuang, Qifeng; Wu, Bingfang; Yan, Nana; Zhu, Weiwei; Xing, Qiang

    2016-05-01

    Sensible heat flux is a key component of land-atmosphere interaction. In most parameterizations it is calculated with surface-air temperature differences and total aerodynamic resistance to heat transfer (Rae) that is related to the KB-1 parameter. Suitable values are hard to obtain since KB-1 is related both to canopy characteristics and environmental conditions. In this paper, a parameterize method for sensible heat flux over vegetated surfaces (maize field and grass land in the Heihe river basin of northwest China) was proposed based on the radiometric surface temperature, surface resistance (Rs) and vapor pressures (saturated and actual) at the surface and the atmosphere above the canopy. A biophysics-based surface resistance model was revised to compute surface resistance with several environmental factors. The total aerodynamic resistance to heat transfer is directly calculated by combining the biophysics-based surface resistance and vapor pressures. One merit of this method is that the calculation of KB-1 can be avoided. The method provides a new way to estimate sensible heat flux over vegetated surfaces and its performance compares well to the LAS measured sensible heat and other empirical or semi-empirical KB-1 based estimations.

  6. Thermal-hydraulic performance of the finned surface of a compact heat exchanger

    International Nuclear Information System (INIS)

    Errasti Cabrera, Michel

    2015-01-01

    In this work the thermal-hydraulic behavior of the finned surface of a compact heat exchanger is obtained in tube-fin configuration corrugated (wavy). Through numerical simulation are determined average values ​​of intensification of heat transfer and pressure loss in the inter-channel finned. The objective is to characterize the surface to use as a reference, to make comparisons with other heat exchange surfaces enhanced using traditional techniques combined with more current, such as vortex generators. The study is conducted in laminar flow, with Reynolds numbers below 1000. In the working model compact exchanger tubes and corrugated fins (wavy) heat is described, and the results of the coefficient of overall heat transfer and the pressure drop are explained from the local characteristics of the velocity field and temperature inside the heat exchanger. (Full text)

  7. Computer simulation for improving radio frequency (RF) heating uniformity of food products: A review.

    Science.gov (United States)

    Huang, Zhi; Marra, Francesco; Subbiah, Jeyamkondan; Wang, Shaojin

    2018-04-13

    Radio frequency (RF) heating has great potential for achieving rapid and volumetric heating in foods, providing safe and high-quality food products due to deep penetration depth, moisture self-balance effects, and leaving no chemical residues. However, the nonuniform heating problem (usually resulting in hot and cold spots in the heated product) needs to be resolved. The inhomogeneous temperature distribution not only affects the quality of the food but also raises the issue of food safety when the microorganisms or insects may not be controlled in the cold spots. The mathematical modeling for RF heating processes has been extensively studied in a wide variety of agricultural products recently. This paper presents a comprehensive review of recent progresses in computer simulation for RF heating uniformity improvement and the offered solutions to reduce the heating nonuniformity. It provides a brief introduction on the basic principle of RF heating technology, analyzes the applications of numerical simulation, and discusses the factors influencing the RF heating uniformity and the possible methods to improve heating uniformity. Mathematical modeling improves the understanding of RF heating of food and is essential to optimize the RF treatment protocol for pasteurization and disinfestation applications. Recommendations for future research have been proposed to further improve the accuracy of numerical models, by covering both heat and mass transfers in the model, validating these models with sample movement and mixing, and identifying the important model parameters by sensitivity analysis.

  8. Discussion on the Heat and Mass Transfer Model on the Pool Surface

    International Nuclear Information System (INIS)

    Hong, Soon-Joon; Choo, Yeon-Jun; Ha, Sang-Jun

    2016-01-01

    Heat transfer on the pool surface involves the evaporation and condensation of steam in the presence of non-condensable gas. It is a kind of inter-phase heat transfer. This phenomenon has been regarded as less important on the thermal hydraulic behaviors such as pressure, temperature, hydrogen distribution, and so on in the nuclear reactor containment building. As a matter of fact, several RAIs (requests for additional information) during the licensing review of the developed CAP have been presented. And early in 2000s the steam condensation on the water surface of IRWST was a concern of APR1400 design. Such an increased concern is believed because it is a newly adopted system. This study discusses the pool surface heat transfer by reviewing the models of several well-known containment analysis codes, and conducting the sensitivities. This study discussed the pool surface heat transfer. The related models of CAP, GOTHIC, CONTEMPT-LT, and CONTEMPT4 were compared. The sensitivity of heat transfer coefficient for SKN3 and 4 using conventional code CONTEMPT-LT/028-A showed little effect. And the sensitivity of relative humidity and heat transfer area for latent heat transfer shows that CAP locates between GOTHIC and CONTEMPT4/MOD. The sensitivity for sensible heat transfer also shows similar trend. Conclusively, current CAP model of pool surface heat transfer has no fatal defect

  9. Discussion on the Heat and Mass Transfer Model on the Pool Surface

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon-Joon; Choo, Yeon-Jun [FNC Tech., Yongin (Korea, Republic of); Ha, Sang-Jun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Heat transfer on the pool surface involves the evaporation and condensation of steam in the presence of non-condensable gas. It is a kind of inter-phase heat transfer. This phenomenon has been regarded as less important on the thermal hydraulic behaviors such as pressure, temperature, hydrogen distribution, and so on in the nuclear reactor containment building. As a matter of fact, several RAIs (requests for additional information) during the licensing review of the developed CAP have been presented. And early in 2000s the steam condensation on the water surface of IRWST was a concern of APR1400 design. Such an increased concern is believed because it is a newly adopted system. This study discusses the pool surface heat transfer by reviewing the models of several well-known containment analysis codes, and conducting the sensitivities. This study discussed the pool surface heat transfer. The related models of CAP, GOTHIC, CONTEMPT-LT, and CONTEMPT4 were compared. The sensitivity of heat transfer coefficient for SKN3 and 4 using conventional code CONTEMPT-LT/028-A showed little effect. And the sensitivity of relative humidity and heat transfer area for latent heat transfer shows that CAP locates between GOTHIC and CONTEMPT4/MOD. The sensitivity for sensible heat transfer also shows similar trend. Conclusively, current CAP model of pool surface heat transfer has no fatal defect.

  10. Boundary layer transition observations on a body of revolution with surface heating and cooling in water

    Science.gov (United States)

    Arakeri, V. H.

    1980-04-01

    Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. (1970).

  11. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Directory of Open Access Journals (Sweden)

    Jandačka J.

    2013-04-01

    Full Text Available Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe. Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  12. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Science.gov (United States)

    Kaduchová, K.; Lenhard, R.; Gavlas, S.; Jandačka, J.

    2013-04-01

    Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe). Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  13. Thermal response to heat fluxes of the W7-AS divertor surface submitted to surface modification under high temperature treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, D., E-mail: dieter.hildebrandt@ipp.mpg.d [Euratom Association, Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, 17491 Greifswald (Germany); Duebner, A. [Euratom Association, Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, 17491 Greifswald (Germany); Greuner, H.; Wiltner, A. [Teilinstitut Garching, Boltzmannstr. 2, 85748 Garching (Germany)

    2009-06-15

    Some target tiles of the W7-AS divertor has been investigated with respect to their thermal behaviour at the surface during power loading with well-defined heat fluxes in the Gladis facility. The primary aim was to examine uncertainties in the determination of heat fluxes derived from IR-thermography during operation of W7-AS. It is found that the derived heat flux profiles are strongly influenced by the local distribution of plasma-deposited contamination analyzed by AES and SIMS. With the observed actual surface conditions characterized by redeposited contamination equivalent up to about 1 mum thickness, the heat fluxes were partially overestimated up to a factor of 4 during operation of W7-AS. This uncertainty is observed to be significantly reduced after heat treatment at temperatures beyond 700 deg. C attained at power flux densities of 10.5 MW/m{sup 2} and durations longer than 5 s.

  14. Thermal response to heat fluxes of the W7-AS divertor surface submitted to surface modification under high temperature treatment

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Duebner, A.; Greuner, H.; Wiltner, A.

    2009-01-01

    Some target tiles of the W7-AS divertor has been investigated with respect to their thermal behaviour at the surface during power loading with well-defined heat fluxes in the Gladis facility. The primary aim was to examine uncertainties in the determination of heat fluxes derived from IR-thermography during operation of W7-AS. It is found that the derived heat flux profiles are strongly influenced by the local distribution of plasma-deposited contamination analyzed by AES and SIMS. With the observed actual surface conditions characterized by redeposited contamination equivalent up to about 1 μm thickness, the heat fluxes were partially overestimated up to a factor of 4 during operation of W7-AS. This uncertainty is observed to be significantly reduced after heat treatment at temperatures beyond 700 deg. C attained at power flux densities of 10.5 MW/m 2 and durations longer than 5 s.

  15. Simulation and analysis on thermodynamic performance of surface water source heat pump system

    Institute of Scientific and Technical Information of China (English)

    Nan Lv; Qing Zhang; Zhenqian Chen; Dongsheng Wu

    2017-01-01

    This work established a thermodynamic performance model of a heat pump system containing a heat pump unit model, an air conditioning cooling and heating load calculation model, a heat exchanger model and a water pump performance model based on mass and energy balances. The thermodynamic performance of a surface water source heat pump air conditioning system was simulated and verified by comparing the simulation results to an actual engineering project. In addition, the effects of the surface water temperature, heat exchanger structure and surface water pipeline transportation system on the thermodynamic performance of the heat pump air conditioning system were analyzed. Under the simulated conditions in this paper with a cooling load of 3400 kW, the results showed that a 1 ℃ decrease in the surface water temperature leads to a 2.3 percent increase in the coefficient of performance; furthermore, an additional 100 m of length for the closed-loop surface water heat exchanger tube leads to a 0.08 percent increase in the coefficient of performance. To decrease the system energy consumption, the optimal working point should be specified according to the surface water transportation length.

  16. Integrating aerodynamic surface modeling for computational fluid dynamics with computer aided structural analysis, design, and manufacturing

    Science.gov (United States)

    Thorp, Scott A.

    1992-01-01

    This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.

  17. A multi-resolution approach to heat kernels on discrete surfaces

    KAUST Repository

    Vaxman, Amir

    2010-07-26

    Studying the behavior of the heat diffusion process on a manifold is emerging as an important tool for analyzing the geometry of the manifold. Unfortunately, the high complexity of the computation of the heat kernel - the key to the diffusion process - limits this type of analysis to 3D models of modest resolution. We show how to use the unique properties of the heat kernel of a discrete two dimensional manifold to overcome these limitations. Combining a multi-resolution approach with a novel approximation method for the heat kernel at short times results in an efficient and robust algorithm for computing the heat kernels of detailed models. We show experimentally that our method can achieve good approximations in a fraction of the time required by traditional algorithms. Finally, we demonstrate how these heat kernels can be used to improve a diffusion-based feature extraction algorithm. © 2010 ACM.

  18. Experimental and computational study on thermoelectric generators using thermosyphons with phase change as heat exchangers

    International Nuclear Information System (INIS)

    Araiz, M.; Martínez, A.; Astrain, D.; Aranguren, P.

    2017-01-01

    Highlights: • Thermosyphon with phase change heat exchanger computational model. • Construction and experimentation of a prototype. • ±9% of maximum deviation from experimental values of the main outputs. • Influence of the auxiliary equipment on the net power generation. - Abstract: An important issue in thermoelectric generators is the thermal design of the heat exchangers since it can improve their performance by increasing the heat absorbed or dissipated by the thermoelectric modules. Due to its several advantages, compared to conventional dissipation systems, a thermosyphon heat exchanger with phase change is proposed to be placed on the cold side of thermoelectric generators. Some of these advantages are: high heat-transfer rates; absence of moving parts and lack of auxiliary consumption (because fans or pumps are not required); and the fact that these systems are wickless. A computational model is developed to design and predict the behaviour of this heat exchangers. Furthermore, a prototype has been built and tested in order to demonstrate its performance and validate the computational model. The model predicts the thermal resistance of the heat exchanger with a relative error in the interval [−8.09; 7.83] in the 95% of the cases. Finally, the use of thermosyphons with phase change in thermoelectric generators has been studied in a waste-heat recovery application, stating that including them on the cold side of the generators improves the net thermoelectric production by 36% compared to that obtained with finned dissipators under forced convection.

  19. Cost-effective computational method for radiation heat transfer in semi-crystalline polymers

    Science.gov (United States)

    Boztepe, Sinan; Gilblas, Rémi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2018-05-01

    This paper introduces a cost-effective numerical model for infrared (IR) heating of semi-crystalline polymers. For the numerical and experimental studies presented here semi-crystalline polyethylene (PE) was used. The optical properties of PE were experimentally analyzed under varying temperature and the obtained results were used as input in the numerical studies. The model was built based on optically homogeneous medium assumption whereas the strong variation in the thermo-optical properties of semi-crystalline PE under heating was taken into account. Thus, the change in the amount radiative energy absorbed by the PE medium was introduced in the model induced by its temperature-dependent thermo-optical properties. The computational study was carried out considering an iterative closed-loop computation, where the absorbed radiation was computed using an in-house developed radiation heat transfer algorithm -RAYHEAT- and the computed results was transferred into the commercial software -COMSOL Multiphysics- for solving transient heat transfer problem to predict temperature field. The predicted temperature field was used to iterate the thermo-optical properties of PE that varies under heating. In order to analyze the accuracy of the numerical model experimental analyses were carried out performing IR-thermographic measurements during the heating of the PE plate. The applicability of the model in terms of computational cost, number of numerical input and accuracy was highlighted.

  20. Teaching Computer-Aided Design of Fluid Flow and Heat Transfer Engineering Equipment.

    Science.gov (United States)

    Gosman, A. D.; And Others

    1979-01-01

    Describes a teaching program for fluid mechanics and heat transfer which contains both computer aided learning (CAL) and computer aided design (CAD) components and argues that the understanding of the physical and numerical modeling taught in the CAL course is essential to the proper implementation of CAD. (Author/CMV)

  1. Simplified computational simulation of liquid metal behaviour in turbulent flow with heat transfer

    International Nuclear Information System (INIS)

    Costa, E.B. da.

    1992-09-01

    The present work selected the available bibliography equations and empirical relationships to the development of a computer code to obtain the turbulent velocity and temperature profiles in liquid metal tube flow with heat generation. The computer code is applied to a standard problem and the results are considered satisfactory, at least from the viewpoint of qualitative behaviour. (author). 50 refs, 21 figs, 3 tabs

  2. Determination of transient temperature and heat flux on the surface of a reactor control rod based on temperature measurements at the interior points

    International Nuclear Information System (INIS)

    Cebula, Artur; Taler, Jan

    2014-01-01

    The paper presents heat transfer calculation results concerning a control rod of nuclear power plant. Apart from numerical calculation results, experimental heat transfer measurements of the control rod model are also presented. The control rod that is the object of interest is surrounded by a mixing region of hot and cold streams and, as a consequence, is subjected to thermal fluctuations. The paper describes a method based on the solution of the inverse heat conduction problem (IHCP) for determining heat flux on the outer surface of the rod. Numerical tests were conducted to validate the method by comparison of the results with the time changes of surface temperature and heat flux which were obtained from the computational fluid dynamics (CFD) simulation of the mixing process. A measuring instrument was designed to measure the heat flux at the outer surface of the control rod model. In addition, the principle of operation and construction of heat flux meter is presented in detail. -- Highlights: • Temperature and heat flux estimation during cooling of control rod are presented. • The inverse technique is based on the space marching method. • The instrument for surface heat flux measurement was manufactured and tested. • CFD simulations were used to validate the developed inverse technique. • Actual data were used to demonstrate practical applicability of the method

  3. An inverse hyperbolic heat conduction problem in estimating surface heat flux by the conjugate gradient method

    International Nuclear Information System (INIS)

    Huang, C.-H.; Wu, H.-H.

    2006-01-01

    In the present study an inverse hyperbolic heat conduction problem is solved by the conjugate gradient method (CGM) in estimating the unknown boundary heat flux based on the boundary temperature measurements. Results obtained in this inverse problem will be justified based on the numerical experiments where three different heat flux distributions are to be determined. Results show that the inverse solutions can always be obtained with any arbitrary initial guesses of the boundary heat flux. Moreover, the drawbacks of the previous study for this similar inverse problem, such as (1) the inverse solution has phase error and (2) the inverse solution is sensitive to measurement error, can be avoided in the present algorithm. Finally, it is concluded that accurate boundary heat flux can be estimated in this study

  4. Computational model of surface ablation from tokamak disruptions

    International Nuclear Information System (INIS)

    Ehst, D.; Hassanein, A.

    1993-10-01

    Energy transfer to material surfaces is dominated by photon radiation through low temperature plasma vapors if tokamak disruptions are due to low kinetic energy particles ( < 100 eV). Simple models of radiation transport are derived and incorporated into a fast-running computer routine to model this process. The results of simulations are in fair agreement with plasma gun erosion tests on several metal targets

  5. Computer simulation of RBS spectra from samples with surface roughness

    Czech Academy of Sciences Publication Activity Database

    Malinský, Petr; Hnatowicz, Vladimír; Macková, Anna

    2016-01-01

    Roč. 371, MAR (2016), s. 101-105 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : computer simulation * Rutherford backscattering * surface roughness Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  6. Temperature distribution and heat radiation of patterned surfaces at short wavelengths

    Science.gov (United States)

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  7. CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient

    International Nuclear Information System (INIS)

    Mihálka, Peter; Matiašovský, Peter

    2016-01-01

    The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity of an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.

  8. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.

    Science.gov (United States)

    Tunnell, James W; Torres, Jorge H; Anvari, Bahman

    2002-01-01

    Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.

  9. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves

    International Nuclear Information System (INIS)

    Li, Dan; Sun, Ting; Liu, Maofeng; Yang, Long; Wang, Linlin; Gao, Zhiqiu

    2015-01-01

    Heat waves (HWs) are projected to become more frequent and last longer over most land areas in the late 21st century, which raises serious public health concerns. Urban residents face higher health risks due to synergies between HWs and urban heat islands (UHIs) (i.e., UHIs are higher under HW conditions). However, the responses of urban and rural surface energy budgets to HWs are still largely unknown. This study analyzes observations from two flux towers in Beijing, China and reveals significant differences between the responses of urban and rural (cropland) ecosystems to HWs. It is found that UHIs increase significantly during HWs, especially during the nighttime, implying synergies between HWs and UHIs. Results indicate that the urban site receives more incoming shortwave radiation and longwave radiation due to HWs as compared to the rural site, resulting in a larger radiative energy input into the urban surface energy budget. Changes in turbulent heat fluxes also diverge strongly for the urban site and the rural site: latent heat fluxes increase more significantly at the rural site due to abundant available water, while sensible heat fluxes and possibly heat storage increase more at the urban site. These comparisons suggest that the contrasting responses of urban and rural surface energy budgets to HWs are responsible for the synergies between HWs and UHIs. As a result, urban mitigation and adaption strategies such as the use of green roofs and white roofs are needed in order to mitigate the impact of these synergies. (letter)

  10. Feedback system for divertor impurity seeding based on real-time measurements of surface heat flux in the Alcator C-Mod tokamak

    Science.gov (United States)

    Brunner, D.; Burke, W.; Kuang, A. Q.; LaBombard, B.; Lipschultz, B.; Wolfe, S.

    2016-02-01

    Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.

  11. VASCo: computation and visualization of annotated protein surface contacts

    Directory of Open Access Journals (Sweden)

    Thallinger Gerhard G

    2009-01-01

    Full Text Available Abstract Background Structural data from crystallographic analyses contain a vast amount of information on protein-protein contacts. Knowledge on protein-protein interactions is essential for understanding many processes in living cells. The methods to investigate these interactions range from genetics to biophysics, crystallography, bioinformatics and computer modeling. Also crystal contact information can be useful to understand biologically relevant protein oligomerisation as they rely in principle on the same physico-chemical interaction forces. Visualization of crystal and biological contact data including different surface properties can help to analyse protein-protein interactions. Results VASCo is a program package for the calculation of protein surface properties and the visualization of annotated surfaces. Special emphasis is laid on protein-protein interactions, which are calculated based on surface point distances. The same approach is used to compare surfaces of two aligned molecules. Molecular properties such as electrostatic potential or hydrophobicity are mapped onto these surface points. Molecular surfaces and the corresponding properties are calculated using well established programs integrated into the package, as well as using custom developed programs. The modular package can easily be extended to include new properties for annotation. The output of the program is most conveniently displayed in PyMOL using a custom-made plug-in. Conclusion VASCo supplements other available protein contact visualisation tools and provides additional information on biological interactions as well as on crystal contacts. The tool provides a unique feature to compare surfaces of two aligned molecules based on point distances and thereby facilitates the visualization and analysis of surface differences.

  12. Confirmatory analysis of the AP1000 passive residual heat removal heat exchanger with 3-D computational fluid dynamic analysis

    International Nuclear Information System (INIS)

    Schwall, James R.; Karim, Naeem U.; Thakkar, Jivan G.; Taylor, Creed; Schulz, Terry; Wright, Richard F.

    2006-01-01

    The AP1000 is an 1100 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 received final design approval from the US-NRC in 2004. The AP1000 design is based on the AP600 design that received final design approval in 1999. Wherever possible, the AP1000 plant configuration and layout was kept the same as AP600 to take advantage of the maturity of the design and to minimize new design efforts. As a result, the two-loop configuration was maintained for AP1000, and the containment vessel diameter was kept the same. It was determined that this significant power up-rate was well within the capability of the passive safety features, and that the safety margins for AP1000 were greater than those of operating PWRs. A key feature of the passive core cooling system is the passive residual heat removal heat exchanger (PRHR HX) that provides decay heat removal for postulated LOCA and non-LOCA events. The PRHR HX is a C-tube heat exchanger located in the in-containment refueling water storage tank (IRWST) above the core promoting natural circulation heat removal between the reactor cooling system and the tank. Component testing was performed for the AP600 PRHR HX to determine the heat transfer characteristics and to develop correlations to be used for the AP1000 safety analysis codes. The data from these tests were confirmed by subsequent integral tests at three separate facilities including the ROSA facility in Japan. Owing to the importance of this component, an independent analysis has been performed using the ATHOS-based computational fluid dynamics computer code PRHRCFD. Two separate models of the PRHR HX and IRWST have been developed representing the ROSA test geometry and the AP1000 plant geometry. Confirmation of the ROSA test results were used to validate PRHRCFD, and the AP1000 plant model

  13. MLSOIL and DFSOIL - computer codes to estimate effective ground surface concentrations for dose computations

    International Nuclear Information System (INIS)

    Sjoreen, A.L.; Kocher, D.C.; Killough, G.G.; Miller, C.W.

    1984-11-01

    This report is a user's manual for MLSOIL (Multiple Layer SOIL model) and DFSOIL (Dose Factors for MLSOIL) and a documentation of the computational methods used in those two computer codes. MLSOIL calculates an effective ground surface concentration to be used in computations of external doses. This effective ground surface concentration is equal to (the computed dose in air from the concentration in the soil layers)/(the dose factor for computing dose in air from a plane). MLSOIL implements a five compartment linear-transfer model to calculate the concentrations of radionuclides in the soil following deposition on the ground surface from the atmosphere. The model considers leaching through the soil as well as radioactive decay and buildup. The element-specific transfer coefficients used in this model are a function of the k/sub d/ and environmental parameters. DFSOIL calculates the dose in air per unit concentration at 1 m above the ground from each of the five soil layers used in MLSOIL and the dose per unit concentration from an infinite plane source. MLSOIL and DFSOIL have been written to be part of the Computerized Radiological Risk Investigation System (CRRIS) which is designed for assessments of the health effects of airborne releases of radionuclides. 31 references, 3 figures, 4 tables

  14. Development of computational technique for labeling magnetic flux-surfaces

    International Nuclear Information System (INIS)

    Nunami, Masanori; Kanno, Ryutaro; Satake, Shinsuke; Hayashi, Takaya; Takamaru, Hisanori

    2006-03-01

    In recent Large Helical Device (LHD) experiments, radial profiles of ion temperature, electric field, etc. are measured in the m/n=1/1 magnetic island produced by island control coils, where m is the poloidal mode number and n the toroidal mode number. When the transport of the plasma in the radial profiles is numerically analyzed, an average over a magnetic flux-surface in the island is a very useful concept to understand the transport. On averaging, a proper labeling of the flux-surfaces is necessary. In general, it is not easy to label the flux-surfaces in the magnetic field with the island, compared with the case of a magnetic field configuration having nested flux-surfaces. In the present paper, we have developed a new computational technique to label the magnetic flux-surfaces. This technique is constructed by using an optimization algorithm, which is known as an optimization method called the simulated annealing method. The flux-surfaces are discerned by using two labels: one is classification of the magnetic field structure, i.e., core, island, ergodic, and outside regions, and the other is a value of the toroidal magnetic flux. We have applied the technique to an LHD configuration with the m/n=1/1 island, and successfully obtained the discrimination of the magnetic field structure. (author)

  15. Point, surface and volumetric heat sources in the thermal modelling of selective laser melting

    Science.gov (United States)

    Yang, Yabin; Ayas, Can

    2017-10-01

    Selective laser melting (SLM) is a powder based additive manufacturing technique suitable for producing high precision metal parts. However, distortions and residual stresses within products arise during SLM because of the high temperature gradients created by the laser heating. Residual stresses limit the load resistance of the product and may even lead to fracture during the built process. It is therefore of paramount importance to predict the level of part distortion and residual stress as a function of SLM process parameters which requires a reliable thermal modelling of the SLM process. Consequently, a key question arises which is how to describe the laser source appropriately. Reasonable simplification of the laser representation is crucial for the computational efficiency of the thermal model of the SLM process. In this paper, first a semi-analytical thermal modelling approach is described. Subsequently, the laser heating is modelled using point, surface and volumetric sources, in order to compare the influence of different laser source geometries on the thermal history prediction of the thermal model. The present work provides guidelines on appropriate representation of the laser source in the thermal modelling of the SLM process.

  16. Preparation of functions of computer code GENGTC and improvement for two-dimensional heat transfer calculations for irradiation capsules

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Someya, Hiroyuki; Ito, Haruhiko.

    1992-11-01

    Capsules for irradiation tests in the JMTR (Japan Materials Testing Reactor), consist of irradiation specimens surrounded by a cladding tube, holders, an inner tube and a container tube (from 30mm to 65mm in diameter). And the annular gaps between these structural materials in the capsule are filled with liquids or gases. Cooling of the capsule is done by reactor primary coolant flowing down outside the capsule. Most of the heat generated by fission in fuel specimens and gamma absorption in structural materials is directed radially to the capsule container outer surface. In thermal performance calculations for capsule design, an one(r)-dimensional heat transfer computer code entitled (Generalyzed Gap Temperature Calculation), GENGTC, originally developed in Oak Ridge National Laboratory, U.S.A., has been frequently used. In designing a capsule, are needed many cases of parametric calculations with respect to changes materials and gap sizes. And in some cases, two(r,z)-dimensional heat transfer calculations are needed for irradiation test capsules with short length fuel rods. Recently the authors improved the original one-dimensional code GENGTC, (1) to simplify preparation of input data, (2) to perform automatic calculations for parametric survey based on design temperatures, ect. Moreover, the computer code has been improved to perform r-z two-dimensional heat transfer calculation. This report describes contents of the preparation of the one-dimensional code GENGTC and the improvement for the two-dimensional code GENGTC-2, together with their code manuals. (author)

  17. Computational study of heat transport in compositionally disordered binary crystals

    International Nuclear Information System (INIS)

    Lyver, John W.; Blaisten-Barojas, Estela

    2006-01-01

    The thermal conductivity of compositionally disordered binary crystals with atoms interacting through Lennard-Jones potentials has been studied as a function of temperature. The two species in the crystal differ in mass, hard-core atomic diameter, well depth and relative concentration. The isobaric Monte Carlo was used to equilibrate the samples at near-zero pressure. The isoenergy molecular dynamics combined with the Green-Kubo approach was taken to calculate the heat current time-dependent autocorrelation function and determine the lattice thermal conductivity of the sample. The inverse temperature dependence of the lattice thermal conductivity was shown to fail at low temperatures when the atomic diameters of the two species differ. Instead, the thermal conductivity was nearly a constant across temperatures for species with different atomic diameters. Overall, it is shown that there is a dramatic decrease of the lattice thermal conductivity with increasing atomic radii ratio between species and a moderate decrease due to mass disorder

  18. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    Science.gov (United States)

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  19. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-04-01

    Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.

  20. Experimental study of water droplets on over-heated nano/microstructured zirconium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seol Ha [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Ahn, Ho Seon [Division of Mechanical System Engineering, Incheon National University, 406-772 (Korea, Republic of); Kim, Joonwon [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of)

    2014-10-15

    Highlights: • Heat transfer performance of a droplet on a modified zirconium surface is evaluated. • Modified (nano/micro-) surfaces enhanced heat transfer rate and Leidenfrost point. • A highly wettable condition of the modified surface contributes the enhancement. • Nano-scaled modification indicates the higher performance of droplet cooling. • Investigation via visualization of the droplet support the heat transfer experimental data. - Abstract: In this study, we observed the behavior of water droplets near the Leidenfrost point (LFP) on zirconium alloy surfaces with anodizing treatment and investigated the droplet cooling performance. The anodized zirconium surface, which consists of bundles of nanotubes (∼10–100 nm) or micro-mountain-like structures, improved the wetting characteristics of the surface. A deionized water droplet (6 μL) was dropped onto test surfaces heated to temperatures ranging from 250 °C to the LFP. The droplet dynamics were investigated through high-speed visualization, and the cooling performance was discussed in terms of the droplet evaporation time. The modified surface provided vigorous, intensive nucleate boiling in comparison with a clean, bare surface. Additionally, we observed that the structured surface had a delayed LFP due to the high wetting condition induced by strong capillary wicking forces on the structured surface.

  1. Effect of Heat Treatment on the Surface Properties of Activated Carbons

    Directory of Open Access Journals (Sweden)

    Meriem Belhachemi

    2011-01-01

    Full Text Available This work reports the effect of heat treatment on the porosity and surface chemistry of two series of activated carbons prepared from a local agricultural biomass material, date pits, by physical activation with carbon dioxide and steam. Both series samples were oxidized with nitric acid and subsequently heat treated under N2 at 973 K in order to study the effect of these treatments in porosity and surface functional groups of activated carbons. When the activated carbons were heat treated after oxidation the surface area and the pore volume increase for both activated carbons prepared by CO2 and steam activations. However the amount of surface oxygen complexes decreases, the samples keep the most stable oxygen surface groups evolved as CO by temperature-programmed desorption experiments at high temperature. The results show that date pits can be used as precursors to produce activated carbons with a well developed porosity and tailored oxygen surface groups.

  2. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  3. Finite Volume Based Computer Program for Ground Source Heat Pump System

    Energy Technology Data Exchange (ETDEWEB)

    Menart, James A. [Wright State University

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  4. Computational Fluid Dynamics Based Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  5. Non-linear heat transfer computer code by finite element method

    International Nuclear Information System (INIS)

    Nagato, Kotaro; Takikawa, Noboru

    1977-01-01

    The computer code THETA-2D for the calculation of temperature distribution by the two-dimensional finite element method was made for the analysis of heat transfer in a high temperature structure. Numerical experiment was performed for the numerical integration of the differential equation of heat conduction. The Runge-Kutta method of the numerical experiment produced an unstable solution. A stable solution was obtained by the β method with the β value of 0.35. In high temperature structures, the radiative heat transfer can not be neglected. To introduce a term of the radiative heat transfer, a functional neglecting the radiative heat transfer was derived at first. Then, the radiative term was added after the discretion by variation method. Five model calculations were carried out by the computer code. Calculation of steady heat conduction was performed. When estimated initial temperature is 1,000 degree C, reasonable heat blance was obtained. In case of steady-unsteady temperature calculation, the time integral by THETA-2D turned out to be under-estimation for enthalpy change. With a one-dimensional model, the temperature distribution in a structure, in which heat conductivity is dependent on temperature, was calculated. Calculation with a model which has a void inside was performed. Finally, model calculation for a complex system was carried out. (Kato, T.)

  6. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Volker C. Radeloff

    2011-01-01

    Heat waves are expected to become more frequent and severe as climate changes, with unknown consequences for biodiversity. We sought to identify ecologically-relevant broad-scale indicators of heat waves based on MODIS land surface temperature (LST) and interpolated air temperature data and assess their associations with avian community structure. Specifically, we...

  7. Color and surface chemistry changes of extracted wood flour after heating at 120 °C

    Science.gov (United States)

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark

    2013-01-01

    To investigate the effect of heat on color and surface chemistry of wood flour (WF), unextracted, extracted and delignified samples of commercial WF were heated at 120 °C for 24 h and analyzed by colorimetry, diffuse reflectance visible (DRV), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Fourier transform Raman (FT-Raman) spectroscopies....

  8. Multi-sensor remote sensing parameterization of heat fluxes over heterogeneous land surfaces

    NARCIS (Netherlands)

    Faivre, R.D.

    2014-01-01

    The parameterization of heat transfer by remote sensing, and based on SEBS scheme for turbulent heat fluxes retrieval, already proved to be very convenient for estimating evapotranspiration (ET) over homogeneous land surfaces. However, the use of such a method over heterogeneous landscapes (e.g.

  9. Heat transfer and vascular cambium necrosis in the boles of trees during surface fires

    Science.gov (United States)

    M. B. Dickinson

    2002-01-01

    Heat-transfer and cell-survival models are used to link surface fire behavior with vascular cambium necrosis from heating by flames. Vascular cambium cell survival was predicted with a numerical model based on the kinetics of protein denaturation and parameterized with data from the literature. Cell survival was predicted for vascular cambium temperature regimes...

  10. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were ... mate source of energy for all physical and bio- logical processes ... May) account for major thunderstorm activity in the state and winter ...

  11. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency heat...

  12. Fouling of roughened stainless steel surfaces during convective heat transfer to aqueous solutions

    International Nuclear Information System (INIS)

    Herz, A.; Malayeri, M.R.; Mueller-Steinhagen, H.

    2008-01-01

    The deterioration of heat transfer performance due to fouling is the prime cause for higher energy consumption and inefficiency in many industrial heat exchangers such as those in power plants, refineries, food and dairy industries. Fouling is also a very complex process in which many geometrical, physical and operating parameters are involved with poorly understood interaction. Among them, the surface roughness is an important surface characteristic that would greatly influence crystallisation fouling mechanisms and hence deposition morphology and stickability to the surface. In this work, the effect of the surface roughness of AISI 304 BA stainless steel surfaces on fouling of an aqueous solution with inverse solubility behaviour has been investigated under convective heat transfer. Several experiments have been performed on roughened surfaces ranging from 0.18 to 1.55 μm for different bulk concentrations and heat fluxes. The EDTA titration method was used to measure the concentration of the calcium sulphate salt in order to maintain it at constant value during each fouling run. Experimental results show that the heat transfer coefficient of very rough surfaces (1.55 μm) decreases more rapidly than that of 0.54 μm. Several facts contribute to this behaviour notably (1) increased of primary heterogeneous nucleation rate on the surfaces; (2) reduction of local shear stress in the valleys and (3) reduced removal rate of the crystals from the surfaces where the roughness elements protrude out of the viscous sub-layer. The results also show linear and proportional variation of the fouling rate and heat flux within the range of operating conditions. In addition, the deposition process in terms of fouling rate could only be affected at lower surface contact angles. Such results would particularly be of interest for new surface treatment technologies which aim at altering the surface texture

  13. Comparative Evaluation of Different Computational Models for Performance of Air Source Heat Pumps Based on Real World Data

    NARCIS (Netherlands)

    Tabatabaei, Seyed Amin; Treur, Jan; Waumans, Erik

    2015-01-01

    To reduce energy usage and CO2 emission due to heating, heat pumps have turned out a good option. For example, to obtain a net zero house, often a combination of solar panels and a heat pump is used. A computational model of the performance of a heat pump provides a useful tool for prediction and

  14. Performance Analysis and Application of Three Different Computational Methods for Solar Heating System with Seasonal Water Tank Heat Storage

    Directory of Open Access Journals (Sweden)

    Dongliang Sun

    2013-01-01

    Full Text Available We analyze and compare three different computational methods for a solar heating system with seasonal water tank heat storage (SHS-SWTHS. These methods are accurate numerical method, temperature stratification method, and uniform temperature method. The accurate numerical method can accurately predict the performance of the system, but it takes about 4 to 5 weeks, which is too long and hard for the performance analysis of this system. The temperature stratification method obtains relatively accurate computation results and takes a relatively short computation time, which is about 2 to 3 hours. Therefore, this method is most suitable for the performance analysis of this system. The deviation of the computational results of the uniform temperature method is great, and the time consumed is similar to that of the temperature stratification method. Therefore, this method is not recommended herein. Based on the above analyses, the temperature stratification method is applied to analyze the influence of the embedded depth of water tank, the thickness of thermal insulation material, and the collection area on the performance of this system. The results will provide a design basis for the related demonstration projects.

  15. Analytical study of condensation heat transfer on titanium tube with super-hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Dae Yun; Park, Hyun Gyu; Lee, Kwon Yeong [Handong Global University, Pohang (Korea, Republic of)

    2016-05-15

    There are many nuclear or fossil power plants which occupy more than 85% among entire power plants in the world. These plants release heat through condenser into nature. The condenser is an important component for cooling the working fluid after the turbine. Its performance is related with material and size of its tubes. To have good performance or to reduce condenser size, it is important to increase condensation heat transfer coefficient on condenser tubes. Ma et al. executed heat transfer experiment in dropwise condensation with non-condensable gas, and studied how the amount of air and pressure difference affect condensation heat transfer coefficient. The more non-condensable gas existed, the condensation heat transfer coefficient was decreased. Shen et al. studied condensation heat transfer at horizontal bundle tubes. Several variables such as coolant velocity, saturated pressure, and surface conditions were studied. As a result, surface modified brass tube and stainless tube showed higher condensation heat transfer coefficient as much as 1.3 and 1.4 times comparing with their bare tubes, in 70 kPa vacuum condition respectively. Rausch et al. studied dropwise condensation on ion-implanted titanium surface. Experimental study is performed to evaluate the performance of surface modified titanium tube in vacuum state. SAM coating is used to make super-hydrophobic surface of titanium tube. Preliminary analysis were performed considering filmwise and dropwise condensations, respectively. Experiment facility is almost prepared and the test result will be shown soon.

  16. Turbulence Control Through Selective Surface Heating Using Microwave Radiation

    Science.gov (United States)

    2013-05-01

    3 Model Size 3 Mod el Vibrator Array Fig.3.5. New optimized experimental chamber in MRTI – the full electrodynamic analogue of new wind...before the model burnout that enable only a limited number of test runs. The main drawback of the MW heating resultd from the non-uniformity of energy... burnout occurred in a certain point, organic substances in model burnt out and were blown away but some of them consisting mainly of carbon

  17. Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven

    Directory of Open Access Journals (Sweden)

    Mustafa MUTLU

    2016-04-01

    Full Text Available In this study, the IR heated stress relieve oven was experimentally and theoretically examined. In experimental measurements, temperature was measured on headlight surface, placed in IR oven at various conveyor speeds and various distances between IR lamps and headlight surface. In theoretical study, a mathematical model was developed for the headlights surface temperature by using heat transfer theory. The results obtained by the mathematical model and the measurement showed very good agreement with a 6.5 % average error. It is shown that mathematical models can be used to estimate the surface temperatures when the oven is operated under different conditions.

  18. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    Science.gov (United States)

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. COMPUTER PROGRAM FOR CALCULATION MICROCHANNEL HEAT EXCHANGERS FOR AIR CONDITIONING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Olga V. Olshevska

    2016-08-01

    Full Text Available Creating a computer program to calculate microchannel air condensers to reduce design time and carrying out variant calculations. Software packages for thermophysical properties of the working substance and the coolant, the correlation equation for calculating heat transfer, aerodynamics and hydrodynamics, the thermodynamic equations for the irreversible losses and their minimization in the heat exchanger were used in the process of creating. Borland Delphi 7 is used for creating software package.

  20. Heat transfer effect of an extended surface in downward-facing subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Abdul R., E-mail: khan@vis.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Erkan, Nejdet, E-mail: erkan@vis.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan); Okamoto, Koji, E-mail: okamoto@n.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan)

    2015-12-15

    Highlights: • Compare downward-facing flow boiling results from bare and extended surfaces. • Upstream and downstream temperatures were measured on the extended surface. • Downstream temperatures exceed upstream temperatures for all flow rates. • Bubble accumulation occurs downstream on extended surface. • Extended surface heat transfer lower than bare surface as flow rate reduced. - Abstract: New BWR containment designs are considering cavity flooding as an accident management strategy. Unlike the PWR, the BWR has many Control Rod Guide Tube (CRGT) penetrations in the lower head. During a severe accident scenario with core melt in the lower plenum along with cavity flooding, the penetrations may affect the heat transfer on the ex-vessel surface and disrupt fluid flow during the boiling process. A small-scale experiment was performed to investigate the issues existing in downward-facing boiling phenomenon with an extended surface. The results were compared with a bare (flat) surface. The mass flux of 244 kg/m{sup 2} s, 215 kg/m{sup 2} s, and 177 kg/m{sup 2} s were applied in this study. CHF conditions were observed only for the 177 kg/m{sup 2} s case. The boiling curves for both types of surfaces and all flow rates were obtained. The boiling curves for the highest flow rate showed lower surface temperatures for the extended surface experiments when compared to the bare surface. The downstream location on the extended surface yielded the highest surface temperatures as the flow rate was reduced. The bubble accumulation and low velocity in the wake produced by flow around the extended surface was believed to have caused the elevated temperatures in the downstream location. Although an extended surface may enhance the overall heat transfer, a reduction in the local heat transfer was observed in the current experiments.

  1. Computing anode heating voltage in high-pressure arc discharges and modelling rod electrodes in dc and ac regimes

    International Nuclear Information System (INIS)

    Almeida, N A; Cunha, M D; Benilov, M S

    2017-01-01

    Numerical modelling of near-anode layers in arc discharges in several gases (Ar, Xe and Hg) is performed in a wide range of current densities, anode surface temperatures, and plasma pressures. It is shown that the density of energy flux to the anode is only weakly affected by the anode surface temperature and varies linearly with the current density. This allows one to interpret the results in terms of anode heating voltage (volt equivalent of the heat flux to the anode). The computed data may be useful in different ways. An example considered in this work concerns the evaluation of thermal regime of anodes in the shape of a thin rod operating in the diffuse mode. Invoking the model of nonlinear surface heating for cathodes, one obtains a simple and free of empirical parameters model of thin rod electrodes applicable to dc and ac high-pressure arcs provided that no anode spots are present. The model is applied to a variety of experiments reported in the literature and a good agreement with the experimental data found. (paper)

  2. Heat-driven liquid metal cooling device for the thermal management of a computer chip

    Energy Technology Data Exchange (ETDEWEB)

    Ma Kunquan; Liu Jing [Cryogenic Laboratory, PO Box 2711, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-08-07

    The tremendous heat generated in a computer chip or very large scale integrated circuit raises many challenging issues to be solved. Recently, liquid metal with a low melting point was established as the most conductive coolant for efficiently cooling the computer chip. Here, by making full use of the double merits of the liquid metal, i.e. superior heat transfer performance and electromagnetically drivable ability, we demonstrate for the first time the liquid-cooling concept for the thermal management of a computer chip using waste heat to power the thermoelectric generator (TEG) and thus the flow of the liquid metal. Such a device consumes no external net energy, which warrants it a self-supporting and completely silent liquid-cooling module. Experiments on devices driven by one or two stage TEGs indicate that a dramatic temperature drop on the simulating chip has been realized without the aid of any fans. The higher the heat load, the larger will be the temperature decrease caused by the cooling device. Further, the two TEGs will generate a larger current if a copper plate is sandwiched between them to enhance heat dissipation there. This new method is expected to be significant in future thermal management of a desk or notebook computer, where both efficient cooling and extremely low energy consumption are of major concern.

  3. Heat-driven liquid metal cooling device for the thermal management of a computer chip

    International Nuclear Information System (INIS)

    Ma Kunquan; Liu Jing

    2007-01-01

    The tremendous heat generated in a computer chip or very large scale integrated circuit raises many challenging issues to be solved. Recently, liquid metal with a low melting point was established as the most conductive coolant for efficiently cooling the computer chip. Here, by making full use of the double merits of the liquid metal, i.e. superior heat transfer performance and electromagnetically drivable ability, we demonstrate for the first time the liquid-cooling concept for the thermal management of a computer chip using waste heat to power the thermoelectric generator (TEG) and thus the flow of the liquid metal. Such a device consumes no external net energy, which warrants it a self-supporting and completely silent liquid-cooling module. Experiments on devices driven by one or two stage TEGs indicate that a dramatic temperature drop on the simulating chip has been realized without the aid of any fans. The higher the heat load, the larger will be the temperature decrease caused by the cooling device. Further, the two TEGs will generate a larger current if a copper plate is sandwiched between them to enhance heat dissipation there. This new method is expected to be significant in future thermal management of a desk or notebook computer, where both efficient cooling and extremely low energy consumption are of major concern

  4. Computer calculation of heat capacity of natural gases over a wide range of pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dranchuk, P.M. (Alberta Univ., Edmonton, AB (Canada)); Abou-Kassem, J.H. (Pennsylvania State Univ., University Park, PA (USA))

    1992-04-01

    A method is presented whereby specific heats or heat capacities of natural gases, both sweet and sour, at elevated pressures and temperatures may be made suitable to modern-day machine calculation. The method involves developing a correlation for ideal isobaric heat capacity as a function of gas gravity and pseudo reduced temperature over the temperature range of 300 to 1500 K, and a mathematical equation for the isobaric heat capacity departure based on accepted thermodynamic principles applied to an equation of state that adequately describes the behavior of gases to which the Standing and Katz Z factor correlation applies. The heat capacity departure equation is applicable over the range of 0.2 {le} Pr {le} 15 and 1.05 {le} Tr {le} 3, where Pr and Tr refer to the reduced pressure and temperature respectively. The significance of the method presented lies in its utility and adaptability to computer applications. 25 refs., 2 figs., 4 tabs.

  5. User's guide for SLWDN9, a code for calculating flux-surfaced-averaging of alpha densities, currents, and heating in non-circular tokamaks

    International Nuclear Information System (INIS)

    Hively, L.M.; Miley, G.M.

    1980-03-01

    The code calculates flux-surfaced-averaged values of alpha density, current, and electron/ion heating profiles in realistic, non-circular tokamak plasmas. The code is written in FORTRAN and execute on the CRAY-1 machine at the Magnetic Fusion Energy Computer Center

  6. Computer screen photo-excited surface plasmon resonance imaging.

    Science.gov (United States)

    Filippini, Daniel; Winquist, Fredrik; Lundström, Ingemar

    2008-09-12

    Angle and spectra resolved surface plasmon resonance (SPR) images of gold and silver thin films with protein deposits is demonstrated using a regular computer screen as light source and a web camera as detector. The screen provides multiple-angle illumination, p-polarized light and controlled spectral radiances to excite surface plasmons in a Kretchmann configuration. A model of the SPR reflectances incorporating the particularities of the source and detector explain the observed signals and the generation of distinctive SPR landscapes is demonstrated. The sensitivity and resolution of the method, determined in air and solution, are 0.145 nm pixel(-1), 0.523 nm, 5.13x10(-3) RIU degree(-1) and 6.014x10(-4) RIU, respectively, encouraging results at this proof of concept stage and considering the ubiquity of the instrumentation.

  7. Computer studies of surface structure of NiAl(111)

    International Nuclear Information System (INIS)

    Takeuchi, Wataru; Yamamura, Yasunori

    1994-01-01

    The 180 neutral impact-collision ion scattering spectroscopy (NICISS) data have been analyzed using the ACOCT program code based on the binary collision approximation (BCA). The computer simulations are performed for the case of 2 keV He + ions incident along the [ anti 12 anti 1] direction of a NiAl(111) surface. It is found that the experimental results are well reproduced by the ACOCT simulations including the inward relaxation of 40% of the first interlayer spacing on Ni terminated layer at the NiAl(111) surface and including the Moliere approximation of the Thomas-Fermi potential with a reduced Firsov screening length, multiplied by a factor of 0.60. (orig.)

  8. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL; Hsu, Julia [Massachusetts Institute of Technology (MIT)

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  9. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering

    International Nuclear Information System (INIS)

    Huang Xianai; Kocaefe, Duygu; Kocaefe, Yasar; Boluk, Yaman; Krause, Cornélia

    2013-01-01

    Highlights: ► Investigate detailed structural changes of heat-treated wood due to weathering. ► Identify connection between physical structural changes and chemical degradation. ► Study effect of heat treatment conditions on weathering degradation process. - Abstract: Effect of artificial weathering on the surface structural changes of birch (Betule papyrifera) wood, heat-treated to different temperatures, was studied using the fluorescence microscopy and the scanning electron microscopy (SEM). Changes in the chemical structure of wood components were analyzed by FTIR in order to understand the mechanism of degradation taking place due to heat treatment and artificial weathering. The results are compared with those of the untreated (kiln-dried) birch. The SEM analysis results show that the effect of weathering on the cell wall of the untreated birch surface is more than that of heat-treated samples. The FTIR spectroscopy results indicate that lignin is the most sensitive component of heat-treated birch to the weathering degradation process. Elimination of the amorphous and highly crystallised cellulose is observed for both heat-treated and untreated wood during weathering. It is also observed that heat treatment increases the lignin and crystallised cellulose contents, which to some extent protects heat-treated birch against degradation due to weathering.

  10. Heat transfer from the roughened surface of gas cooled fast breeder reactor fuel element

    International Nuclear Information System (INIS)

    Tang, I.M.

    1979-01-01

    The temperature distributions and the augmentation of heat transfer performance by artificial roughening of a gas cooled fast breeder reactor (GCFR) fuel rod cladding are studied. Numerical solutions are based on the axisymmetric assumption for a two-dimensional model for one rib pitch of axial distance. The local and axial clad temperature distributions are obtained for both the rectangular and ramp rib roughened surface geometries. The transformation of experimentally measured convective heat transfer coefficients, in terms of Stanton number, into GCFR values is studied. In addition, the heat transfer performance of a GCFR fuel rod cladding roughened surface design is evaluated. Approximate analytical solution for correlating an average Stanton number is also obtained and satisfactorily compared with the corresponding numerical result for a GCFR design. The analytical correlation is useful in assessing roughened surface heat transfer performance in scoping studies and conceptual design

  11. Response of concrete exposed to a high heat flux on one surface

    International Nuclear Information System (INIS)

    Muir, J.F.

    1977-11-01

    Experiments were performed to investigate the response of concrete to severe thermal environments such as might be encountered during the interaction of molten reactor core materials with the containment substructure following a hypothetical fuel melt accident. The dominant mechanism for erosion of both limestone and basaltic concrete appears to be melting of the cementitious material in the matrix. The erosion proceeded in a quiescent manner with negligible spallation. The erosion rate increased with heat flux, becoming as large as approximately 70 cm/hr for a net surface heat flux of roughly 190 W/cm 2 . Analyses reveal the surface temperature to be the single most significant parameter affecting the net surface heat flux, through its importance to emitted radiation; and that the greatest fraction of the net energy transmitted to the concrete goes into sensible heat

  12. A study on the effects of heated surface wettability on nucleation characteristics in subcooled flow boiling

    International Nuclear Information System (INIS)

    Kajihara, Tomoyuki; Kaiho, Kazuhiro; Okawa, Tomio

    2014-01-01

    Subcooled flow boiling plays an important role in boiling water reactors because it influences the heat transfer performance from fuel rods, two-phase flow stabilities, and neutron moderation characteristics. In the present study, flow visualization of water subcooled flow boiling in a vertical heated channel was carried out to investigate the mechanisms of void fraction development. The two surfaces of distinctly different contact angles were used as the heated surface to investigate the effect of the surface wettability. It was observed that with an increase in the wall heat flux, more nucleation sites were activated and larger bubbles were produced at low-frequency. It was considered that formation of these large bubbles primarily contributed to the void fraction development. (author)

  13. Heat transfer analyses using computational fluid dynamics in the air blast freezing of guava pulp in large containers

    Directory of Open Access Journals (Sweden)

    W. M. Okita

    2013-12-01

    Full Text Available Heat transfer during the freezing of guava pulp conditioned in large containers such as in stacked boxes (34 L and buckets (20 L and unstacked drums (200 L is discussed. The air velocities across the cross-section of the tunnel were measured, and the values in the outlet of the evaporator were used as the initial conditions in computational fluid dynamics (CFD simulations. The model tested was turbulent standard k-ε. The CFD-generated convective heat transfer coefficients were mapped on the surfaces for each configuration and used in procedures for the calculation of freezing-time estimates. These estimates were compared with the experimental results for validation. The results showed that CFD determined representative coefficients and produced good correlations between the predicted and experimental values when applied to the freezing-time estimates for the box and drum configurations. The errors depended on the configuration and the adopted mesh (3-D grid construction.

  14. TRUMP3-JR: a finite difference computer program for nonlinear heat conduction problems

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1984-02-01

    Computer program TRUMP3-JR is a revised version of TRUMP3 which is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Pre- and post-processings for input data generation and graphical representations of calculation results of TRUMP3 are avaiable in TRUMP3-JR. The calculation equations, program descriptions and user's instruction are presented. A sample problem is described to demonstrate the use of the program. (author)

  15. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been defined. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  16. Full Scale Investigation of the Dynamic Heat Storage of Concrete Decks with PCM and Enhanced Heat Transfer Surface Area

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    The paper presents the full-scale experimental investigation of the dynamic heat storage potential of the prefabricated hollow core deck elements with and without phase change material (PCM) and with and without increased bottom surface area of the decks. In the presented investigation five types...... of hollow core decks with different surfaces on the bottom are investigated: reference deck made of standard concrete and flat surface, deck with special mortar grooved tiles, deck with flat mortar tiles, deck with grooved mortar and phase change material tiles, deck with flat mortar and phase change...... material tiles. The experimental investigation presented in the paper is performed in the specially designed modified hot box apparatus that allows maintaining periodic steady-state tests with the full-scale concrete deck elements. The presented research investigates if the extended surface area and PCM...

  17. Heat-resisting alloys for hard surfacing and sealing pad welding

    Directory of Open Access Journals (Sweden)

    R.O. Wielgosz

    2010-07-01

    Full Text Available The paper deals with heat-resisting alloys used to harden surfaces of elements operating in increased temperatures. It also deals with alloysused to seal cooperating surfaces of elements operating in the conditions of increased temperatures and aggressive utilities. Application methods and properties of thus obtained layers have been presented and adhesion of layers with matrix material has been assessed.

  18. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    Science.gov (United States)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  19. Data that warms: Waste heat, infrastructural convergence and the computation traffic commodity

    Directory of Open Access Journals (Sweden)

    Julia Velkova

    2016-12-01

    Full Text Available This article explores the ways in which data centre operators are currently reconfiguring the systems of energy and heat supply in European capitals, replacing conventional forms of heating with data-driven heat production, and becoming important energy suppliers. Taking as an empirical object the heat generated from server halls, the article traces the expanding phenomenon of ‘waste heat recycling’ and charts the ways in which data centre operators in Stockholm and Paris direct waste heat through metropolitan district heating systems and urban homes, and valorise it. Drawing on new materialisms, infrastructure studies and classical theory of production and destruction of value in capitalism, the article outlines two modes in which this process happens, namely infrastructural convergence and decentralisation of the data centre. These modes arguably help data centre operators convert big data from a source of value online into a raw material that needs to flow in the network irrespective of meaning. In this conversion process, the article argues, a new commodity is in a process of formation, that of computation traffic. Altogether data-driven heat production is suggested to raise the importance of certain data processing nodes in Northern Europe, simultaneously intervening in the global politics of access, while neutralising external criticism towards big data by making urban life literally dependent on power from data streams.

  20. Effects of heat flux on dropwise condensation on a superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyung Won; Park, Hyun Sun; Moriyama, Kiyofumi [POSTECH, Pohang (Korea, Republic of); Kim, Dong Hyun [KAERI, Daejeon (Korea, Republic of); Jo, Hang Jin [University of Wisconsin-Madison, Wisconsin (United States); Kim, Moo Hwan [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The condensation heat transfer efficiencies of superhydrophobic surfaces that have ∼160.deg. contact angle under atmospheric conditions were investigated experimentally. The departing diameter and the contact angle hysteresis of droplets were measured by capturing front and tilted side views of condensation phenomena with a high speed camera and an endoscope, respectively. Condensation behaviors on the surface were observed at the micro-scale using an Environmental scanning electron microscope (ESEM). Apparently-spherical droplets formed at very low heat flux q' ∼20 kW/m{sup 2} but hemispherical droplets formed at high q' ∼ 440 kW/m{sup 2} . At high q', heat transfer coefficients were lower on the superhydrophobic surface than on a hydrophobic surface although the superhydrophobic surface is water repellent so droplets roll off. The results of contact angle hysteresis and ESEM image revealed that the reduced heat transfer of the surface can be attributed to the large size of departing droplets caused by adhesive condensed droplets at nucleation sites. The results suggest that the effect of q' or degree of sub-cooling of a condensation wall determine the droplet shape, which is closely related to removal rates of condensates and finally to the heat transfer coefficient.

  1. Effects of graphite surface roughness on bypass flow computations for an HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Yu-Hsin, E-mail: touushin@gmail.com [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Johnson, Richard W., E-mail: Rich.Johnson@inl.gov [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Sato, Hiroyuki, E-mail: sato.hiroyuki09@jaea.go.jp [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer CFD calculations are made of bypass flow between graphite blocks in HTGR. Black-Right-Pointing-Pointer Several turbulence models are employed to compare to friction and heat transfer correlations. Black-Right-Pointing-Pointer Parameters varied include bypass gap width and surface roughness. Black-Right-Pointing-Pointer Surface roughness causes increases in max fuel and coolant temperatures. Black-Right-Pointing-Pointer Surface roughness does not cause increase in outlet coolant temperature variation. - Abstract: Bypass flow in a prismatic high temperature gas reactor (HTGR) occurs between graphite blocks as they sit side by side in the core. Bypass flow is not intentionally designed to occur in the reactor, but is present because of tolerances in manufacture, imperfect installation and expansion and shrinkage of the blocks from heating and irradiation. It is desired to increase the knowledge of the effects of such flow; it has been suggested that it may be as much as 20% of the total helium coolant flow [INL Report 2007, INL/EXT-07-13289]. Computational fluid dynamic (CFD) simulations can provide estimates of the scale and impacts of bypass flow. Previous CFD calculations have examined the effects of bypass gap width, level and distribution of heat generation and effects of shrinkage. The present contribution examines the effects of graphite surface roughness on the bypass flow for different relative roughness factors for three gap widths. Such calculations should be validated using specific bypass flow measurements. While such experiments are currently underway for the specific reference prismatic HTGR design for the next generation nuclear plant (NGNP) program of the U.S. Dept. of Energy, the data are not yet available. To enhance confidence in the present calculations, wall shear stress and heat transfer results for several turbulence models and their associated wall treatments are first compared for steady flow in a

  2. Surface development of a brazing alloy during heat treatment-a comparison between UHV and APXPS

    Science.gov (United States)

    Rullik, L.; Johansson, N.; Bertram, F.; Evertsson, J.; Stenqvist, T.; Lundgren, E.

    2018-01-01

    In an attempt to bridge the pressure gap, APXPS was used to follow the surface development of an aluminum brazing sheet during heating in an ambient oxygen-pressure mimicking the environment of an industrial brazing furnace. The studied aluminum alloy brazing sheet is a composite material consisting of two aluminum alloy standards whose surface is covered with a native aluminum oxide film. To emphasize the necessity of studies of this system in ambient sample environments it is compared to measurements in UHV. Changes in thickness and composition of the surface oxide were followed after heating to 300 °C, 400 °C, and 500 °C. The two sets presented in this paper show that the surface development strongly depends on the environment the sample is heated in.

  3. The algorithmic details of polynomials application in the problems of heat and mass transfer control on the hypersonic aircraft permeable surfaces

    Science.gov (United States)

    Bilchenko, G. G.; Bilchenko, N. G.

    2018-03-01

    The hypersonic aircraft permeable surfaces heat and mass transfer effective control mathematical modeling problems are considered. The analysis of the control (the blowing) constructive and gasdynamical restrictions is carried out for the porous and perforated surfaces. The functions classes allowing realize the controls taking into account the arising types of restrictions are suggested. Estimates of the computational complexity of the W. G. Horner scheme application in the case of using the C. Hermite interpolation polynomial are given.

  4. Climate forcing and response to idealized changes in surface latent and sensible heat

    International Nuclear Information System (INIS)

    Ban-Weiss, George A; Cao Long; Pongratz, Julia; Caldeira, Ken; Bala, Govindasamy

    2011-01-01

    Land use and land cover changes affect the partitioning of latent and sensible heat, which impacts the broader climate system. Increased latent heat flux to the atmosphere has a local cooling influence known as 'evaporative cooling', but this energy will be released back to the atmosphere wherever the water condenses. However, the extent to which local evaporative cooling provides a global cooling influence has not been well characterized. Here, we perform a highly idealized set of climate model simulations aimed at understanding the effects that changes in the balance between surface sensible and latent heating have on the global climate system. We find that globally adding a uniform 1 W m -2 source of latent heat flux along with a uniform 1 W m -2 sink of sensible heat leads to a decrease in global mean surface air temperature of 0.54 ± 0.04 K. This occurs largely as a consequence of planetary albedo increases associated with an increase in low elevation cloudiness caused by increased evaporation. Thus, our model results indicate that, on average, when latent heating replaces sensible heating, global, and not merely local, surface temperatures decrease.

  5. Computer code TOBUNRAD for PWR fuel bundle heat-up calculations

    International Nuclear Information System (INIS)

    Shimooke, Takanori; Yoshida, Kazuo

    1979-05-01

    The computer code TOBUNRAD developed is for analysis of ''fuel-bundle'' heat-up phenomena in a loss-of-coolant accident of PWR. The fuel bundle consists of fuel pins in square lattice; its behavior is different from that of individual pins during heat-up. The code is based on the existing TOODEE2 code which analyzes heat-up phenomena of single fuel pins, so that the basic models of heat conduction and transfer and coolant flow are the same as the TOODEE2's. In addition to the TOODEE2 features, unheated rods are modeled and radiation heat loss is considered between fuel pins, a fuel pin and other heat sinks. The TOBUNRAD code is developed by a new FORTRAN technique which makes it possible to interrupt a flow of program controls wherever desired, thereby attaching several subprograms to the main code. Users' manual for TOBUNRAD is presented: The basic program-structure by interruption method, physical and computational model in each sub-code, usage of the code and sample problems. (author)

  6. Inverse determination of convective heat transfer between an impinging jet and a continuously moving flat surface

    International Nuclear Information System (INIS)

    Mobtil, Mohammed; Bougeard, Daniel; Solliec, Camille

    2014-01-01

    Highlights: • A new method for convective heat flux determination on a moving wall is proposed. • An inverse technique is used for retrieving the heat flux from IR measurements. • Heat flux distribution determination in the slot jet impingement area is performed. • The accuracy of the method is examined using CFD Based simulated experiments. • The inversion quality is tested according to several parameters of the experiments. - Abstract: In this study an inverse method is developed to determine the heat flux distribution on a moving plane wall. The method uses a thin layer of material (the measurement medium) glued on the conveyor belt. The heat flux distribution on the moving wall is then determined by an inverse method based on the temperature measurement by infrared thermography on the upper surface of the measurement medium. A finite element based inverse algorithm of a steady state heat conduction advection in the Eulerian frame is performed. The algorithm entails the use of the Tikhonov regularization method, along with the L-curve method to select an optimal regularization parameter. Both the direct solution of moving boundary problem and the inverse design formulation are presented. The accuracy of the inverse method is examined by simulating the exact and noisy data with four different values of the surface-to-jet velocity ratio, and two different materials (PVC and Aluminum) for the measurement medium. The results show a greater sensitivity to the convective heat flux allowing a better estimation of heat flux distribution for the PVC layer. An alternative underdetermined inverse scheme is also studied. This configuration allows a different extend between the retrieval heat flux surface and the measurement temperature surface

  7. A computational fluid dynamics model for designing heat exchangers based on natural convection

    NARCIS (Netherlands)

    Dirkse, M.H.; Loon, van W.K.P.; Walle, van der T.; Speetjens, S.L.; Bot, G.P.A.

    2006-01-01

    A computational fluid dynamics model was created for the design of a natural convection shell-and-tube heat exchanger with baffles. The flow regime proved to be turbulent and this was modelled using the k¿¿ turbulence model. The features of the complex geometry were simplified considerably resulting

  8. Computational study on effects of rib height and thickness on heat ...

    Indian Academy of Sciences (India)

    A computational study was carried out for the heat transfer augmentation in a three-dimensional square channel fitted with different types of ribs. The standard k–e model and its two variants (RNG and realizable) were used for turbulence modeling. The predictions were compared with available experimental ...

  9. COYOTE: a finite element computer program for nonlinear heat conduction problems

    International Nuclear Information System (INIS)

    Gartling, D.K.

    1978-06-01

    COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program

  10. Computational modeling of latent-heat-storage in PCM modified interior plaster

    Energy Technology Data Exchange (ETDEWEB)

    Fořt, Jan; Maděra, Jiří; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek [Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic)

    2016-06-08

    The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On the basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.

  11. Modeling and computation of heat exchanges in the configuration of an impinging jet on a hot plate

    International Nuclear Information System (INIS)

    Seiler, N.; Mimouni, S.; Simonin, O.; Gardin, P.; Seiler, J.M.

    2003-01-01

    The knowledge of the metal temperature history is essential, especially when strip leave the rolling mill, to get adequate final mechanical properties of steel. Some experiments have yet been carried out on the heat transfer associated with the impingement of a planar (1*9 mm 2 ) subcooled (5-16 K) water jet on a heated plate. Complete boiling curves were then obtained at different locations from the stagnation point and it was observed a phenomenon of 'shoulder of flux' in the transition boiling region near the impingement point. The aim of this work is to compute the heat flux transferred between a very hot plate and a subcooled liquid under a planar impinging jet to obtain the transient temperature distribution in the plate. To achieve this goal, a physical modelling of the phenomenon of 'shoulder of flux' has been carried out. This modelling is based on the assumption that the apparition of periodic bubble oscillations at the wall surface is due to the hydrodynamic fragmentation by the jet. The relation derived from this modelling is validated against experimental results from the literature obtained for a wide range of jet velocity, subcooling and jet diameter. This model is implemented in the new multiphase flow solver developed by EDF 'SATURNE polyphasique'. Numerical results are then compared to experimental heat fluxes obtained on previous experiments. (authors)

  12. Heat transfer control in a plane magnetic fluid layer with a free surface

    International Nuclear Information System (INIS)

    Bashtovoi, V.G.; Pogirnitskaya, S.G.; Reks, A.G.

    1993-01-01

    The heat transfer mechanisms that are specific to a magnetic liquid have been already investigated extensively. The high sensitivity of the free magnetic liquid surface to the external magnetic field introduces a new feature into the heat transfer process. In the present work, the authors have investigated the possibility of controlling the heat transfer through the phenomenon of magnetic liquid surface instability in a uniform magnetic field. The conditions for heat transfer through a chamber, partially filled with a magnetic liquid, are governed by the characteristics of the free liquid surface and by its stability and development in the supercritical magnetic fields. The authors consider a model two-dimensional problem of heat transfer through a two-layer medium consisting of horizontally situated immiscible layers of magnetic and nonmagnetic liquids with given thermal conductivities. In the absence of an external magnetic field, the interface of the liquids represents a plane surface. In fields which exceed the critical magnitude, the interface is deformed along the wave. As the field intensity is increased, the amplitude of interface distortion becomes larger. The two-dimensional shape of the free magnetic liquid surface may be realized experimentally using two plane layers of magnetic and nonmagnetic liquids in a uniform magnetic field tangent to the interface of the component layers. 7 refs., 9 figs

  13. Effect of surface hydroxyl groups on heat capacity of mesoporous silica

    Science.gov (United States)

    Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent

    2018-05-01

    This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.

  14. Development of micro-engineered textured tungsten surfaces for high heat flux applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharafat, Shahram, E-mail: shahrams@ucla.edu [University of California Los Angeles, CA (United States); Aoyama, Aaron [University of California Los Angeles, CA (United States); Williams, Brian, E-mail: brian.williams@ultramet.com [Ultramet Inc., Pacoima, CA (United States); Ghoniem, Nasr [University of California Los Angeles, CA (United States)

    2013-11-15

    Surface micro-engineering can enhance the thermo-mechanical performance of plasma facing components (PFCs). For example, castellation of a surface can reduce thermal stress due to high heat loads and thus provide higher thermo-mechanical resilience. Recently, fabrication of a variety of micro-sized refractory dendrites with reproducible geometric characteristics (e.g., density, length, height, and aspect ratio) has been demonstrated. In contrast to flat surfaces exposed to high heat loads, dendrites deform independently to minimize near-surface thermal stress, which results in improved thermo-mechanical performance. Thus, the use of dendrites offers a unique micro-engineering approach to enhance the performance of PFC structures. A brief overview of W, Re, and Mo dendritic structures is given along with micrographs that show dendrite-coated surfaces. The thermal responses of representative dendrite structures are analyzed as a function of aspect ratios and dendrite geometry. The heat-management capability of needle-like dendrites exposed to a surface energy of up to 1 MJ/m{sup 2} is analyzed and compared to a flat surface. It is concluded that dendrite structures can significantly reduce thermal stress in the substrate when compared to flat surfaces. Implications of dendritic surfaces on sputter erosion rates are also discussed briefly.

  15. Satellite-based Calibration of Heat Flux at the Ocean Surface

    Science.gov (United States)

    Barron, C. N.; Dastugue, J. M.; May, J. C.; Rowley, C. D.; Smith, S. R.; Spence, P. L.; Gremes-Cordero, S.

    2016-02-01

    Model forecasts of upper ocean heat content and variability on diurnal to daily scales are highly dependent on estimates of heat flux through the air-sea interface. Satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. Traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle. Subsequent evolution depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. The COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates) endeavors to correct ocean forecast bias through a responsive error partition among surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using Navy operational global or regional atmospheric forcing. COFFEE addresses satellite-calibration of surface fluxes to estimate surface error covariances and links these to the ocean interior. Experiment cases combine different levels of flux calibration with different assimilation alternatives. The cases may use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger

  16. Initial heats of H{sub 2}S adsorption on activated carbons: Effect of surface features

    Energy Technology Data Exchange (ETDEWEB)

    Bagreev, A.; Adib, F.; Bandosz, T.J.

    1999-11-15

    The sorption of hydrogen sulfide was studied on activated carbons of various origins by means of inverse gas chromatography at infinite dilution. The conditions of the experiment were dry and anaerobic. Prior to the experiments the surface of some carbon samples was oxidized using either nitric acid or ammonium persulfate. Then the structural parameters of carbons were evaluated from the sorption of nitrogen. From the IGC experiments at various temperatures, heats of adsorption were calculated. The results showed that the heat of H{sub 2}S adsorption under dry anaerobic conditions does not depend on surface chemistry. The dependence of the heat of adsorption on the characteristic energy of nitrogen adsorption calculated from the Dubinin-Raduskevich equation was found. This correlation can be used to predict the heat of H{sub 2}S adsorption based on the results obtained from nitrogen adsorption.

  17. Fungistatic activity of heat-treated flaxseed determined by response surface methodology.

    Science.gov (United States)

    Xu, Y; Hall, C; Wolf-Hall, C

    2008-08-01

    The objective of this study was to evaluate the effect of heat treatment on the fungistatic activity of flaxseed (Linum usitatissimum) in potato dextrose agar (PDA) medium and a fresh noodle system. The radial growth of Penicilliumn chrysogenum, Aspergillus flavus, and a Penicillium sp. isolated from moldy noodles, as well as the mold count of fresh noodle enriched with heat treated flaxseed, were used to assess antifungal activity. A central composite design in the response surface methodology was used to predict the effect of heating temperature and time on antifungal activity of flaxseed flour (FF). Statistical analysis determined that the linear terms of both variables (that is, heating temperature and time) and the quadratic terms of the heating temperature had significant (P<0.05) effects on the radial growth of all 3 test fungi and the mold count log-cycle reduction of fresh noodle. The interactions between the temperature and time were significant for all dependent variables (P<0.05). Significant reductions in antifungal activities were found when FF was subjected to high temperatures, regardless of heating time. In contrast, prolonging the heating time did not substantially affect the antifungal activities of FF at low temperature. However, 60% of the antifungal activity was retained after FF was heated at 100 degrees C for 15 min, which suggests a potential use of FF as an antifungal additive in food products subjected to low to mild heat treatments.

  18. Validation of the solar heating and cooling high speed performance (HISPER) computer code

    Science.gov (United States)

    Wallace, D. B.

    1980-01-01

    Developed to give a quick and accurate predictions HISPER, a simplification of the TRNSYS program, achieves its computational speed by not simulating detailed system operations or performing detailed load computations. In order to validate the HISPER computer for air systems the simulation was compared to the actual performance of an operational test site. Solar insolation, ambient temperature, water usage rate, and water main temperatures from the data tapes for an office building in Huntsville, Alabama were used as input. The HISPER program was found to predict the heating loads and solar fraction of the loads with errors of less than ten percent. Good correlation was found on both a seasonal basis and a monthly basis. Several parameters (such as infiltration rate and the outside ambient temperature above which heating is not required) were found to require careful selection for accurate simulation.

  19. Computer simulation of steady-state performance of air-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, R D; Creswick, F A

    1978-03-01

    A computer model by which the performance of air-to-air heat pumps can be simulated is described. The intended use of the model is to evaluate analytically the improvements in performance that can be effected by various component improvements. The model is based on a trio of independent simulation programs originated at the Massachusetts Institute of Technology Heat Transfer Laboratory. The three programs have been combined so that user intervention and decision making between major steps of the simulation are unnecessary. The program was further modified by substituting a new compressor model and adding a capillary tube model, both of which are described. Performance predicted by the computer model is shown to be in reasonable agreement with performance data observed in our laboratory. Planned modifications by which the utility of the computer model can be enhanced in the future are described. User instructions and a FORTRAN listing of the program are included.

  20. Frost behavior of a fin surface with temperature variation along heat exchanger fins

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Kim, Min Soo; Lee, Kwan Soo; Kim, Ook Joong

    2007-01-01

    This paper presents a mathematical model for predicting the frost behavior formed on heat exchanger fins, considering fin heat conduction under frosting condition. The model is composed of air-side, the frost layer, and fin region, and they are coupled to the frost layer. The frost behavior is more accurately predicted with fin heat conduction considered (Case A) than with a constant fin surface temperature assumed (Case B). The results indicate that the frost thickness and heat transfer rate for Case B are over-predicted in most regions of the fin, as compared to those for Case A. Also, for Case A, the maximum frost thickness varies little with the fin length variations, and the extension of the fin length over 30 mm contributes insignificantly to heat transfer

  1. Spatial Manipulation of Heat Flow by Surface Boundaries at the Nanoscale

    Science.gov (United States)

    Malhotra, Abhinav; Maldovan, Martin

    The precise manipulation of phonon transport properties is central to controlling thermal transport in semiconductor nanostructures. The physical understanding, prediction, and control of thermal phonon heat spectra and thermal conductivity accumulation functions - which establish the proportion of heat transported by phonons with different frequencies and mean-free-paths - has attracted significant attention in recent years. In this talk, we advance the possibilities of manipulating heat by spatially modulating thermal transport in nanostructures. We show that phonon scattering at interfaces impacts the most preferred physical pathway used by heat energy flow in thermal transport in nanostructures. The role of introducing boundaries with different surface conditions on resultant thermal flux is presented and methodologies to enhance these spatial modulations are discussed. This talk aims to advance the fundamental understanding on the nature of heat transport at nanoscale with potential applications in multiple research areas ranging from energy materials to optoelectronics.

  2. A study of the flow boiling heat transfer in a minichannel for a heated wall with surface texture produced by vibration-assisted laser machining

    International Nuclear Information System (INIS)

    Piasecka, Magdalena; Strąk, Kinga; Grabas, Bogusław; Maciejewska, Beata

    2016-01-01

    The paper presents results concerning flow boiling heat transfer in a vertical minichannel with a depth of 1.7 mm and a width of 16 mm. The element responsible for heating FC-72, which flowed laminarly in the minichannel, was a plate with an enhanced surface. Two types of surface textures were considered. Both were produced by vibration-assisted laser machining. Infrared thermography was used to record changes in the temperature on the outer smooth side of the plate. Two-phase flow patterns were observed through a glass pane. The main aim of the study was to analyze how the two types of surface textures affect the heat transfer coefficient. A two-dimensional heat transfer approach was proposed to determine the local values of the heat transfer coefficient. The inverse problem for the heated wall was solved using a semi-analytical method based on the Trefftz functions. The results are presented as relationships between the heat transfer coefficient and the distance along the minichannel length and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported in the saturated boiling region for the plate with the type 1 texture produced by vibration-assisted laser machining. (paper)

  3. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2014-01-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable

  4. Drop impacts onto cold and heated rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization

    International Nuclear Information System (INIS)

    Moita, A.S.; Moreira, A.L.N.

    2007-01-01

    This paper addresses an experimental study aimed at characterizing the mechanisms of disintegration which occur when individual water and fuel droplets impact onto heated surfaces. The experiments consider the use of a simplified flow configuration and make use of high-speed visualization together with image processing techniques to characterize the morphology of the impact and to quantify the outcome of secondary atomization in terms of droplet size and number. The results evidence that surface topography, wettability and liquid properties combine in a complex way to alter the wetting behaviour of droplets at impact at different surface temperatures. The relative importance of the dynamic vapor pressure associated with the rate of vaporization and surface roughness increases with surface temperature and becomes dominant at the film boiling regime. The analysis is aimed at giving a phenomenological description of droplet disintegration within the various heat transfer regimes

  5. Surface emissions of heat, water and GHGs from a NYC greenroof

    Science.gov (United States)

    McGillis, W. R.; Jacobson, G.; Culligan, P.; Gaffin, S.; Carson, T.; Marasco, D.; Hsueh, D.; Rella, C.

    2012-04-01

    The budgets of heat, water, and GHGs from greenroofs in New York City, needed for adaptation and sustainable policy and infrastructure strategies, requires an accurate measure of their surface emissions. A high speed, Cavity Ring-Down Spectroscopy (CRDS) based analyzer for measuring carbon dioxide (CO2), methane (CH4) and water (H2O) and an ultrasonic wind and temperature anemometer for measuring heat and momentum is used to assess greenroof performance during seasonal, diurnal, and episodic weather conditions. The flux instrument has proven capable of raw 10 Hz precision (one standard deviation) better than 110 parts-per-billion (ppbv) for carbon dioxide, better than 3 ppbv for methane and better than 6 ppmv +0.3% of reading for water vapor. In the water and heat budget, comparison and reconciliation of greenroof evapotranspiration (ET) using micrometeorological techniques, water balance, and heat balance was conducted. The water balance (month timescales), the heat balance (week timescale) show agreement to the micrometeorological surface ET (hour timescale). By using boundary layer flux measurements of ET, the fundamental performance of greenroofs on climate and weather conditions can be explored. These boundary layer measured surface fluxes provide critical information on the physiology of the built environment in New York City. Faced with sewage failures due to water management and exacerbated heating, the accurate assessment of greenroof performance on high spatial and temporal scales in required for the urban environment. Results will be presented and discussed.

  6. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

    International Nuclear Information System (INIS)

    Shin, Sangwoo; Choi, Geehong; Kim, Beom Seok; Cho, Hyung Hee

    2014-01-01

    Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior. - Highlights: • Observation of suppressed wettability in the presence of surface roughness (nanowires). • Significant reduction of critical heat flux in the presence of nanowires. • Nonmonotonic behavior of heat transfer coefficient vs. nanowire length and Reynolds number

  7. Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.

    2018-03-01

    This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.

  8. Planform structure and heat transfer in turbulent free convection over horizontal surfaces

    Science.gov (United States)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    2000-04-01

    This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.

  9. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical Engineering

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.

  10. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    International Nuclear Information System (INIS)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs

  11. A Bayesian approach to estimate sensible and latent heat over vegetated land surface

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2009-06-01

    Full Text Available Sensible and latent heat fluxes are often calculated from bulk transfer equations combined with the energy balance. For spatial estimates of these fluxes, a combination of remotely sensed and standard meteorological data from weather stations is used. The success of this approach depends on the accuracy of the input data and on the accuracy of two variables in particular: aerodynamic and surface conductance. This paper presents a Bayesian approach to improve estimates of sensible and latent heat fluxes by using a priori estimates of aerodynamic and surface conductance alongside remote measurements of surface temperature. The method is validated for time series of half-hourly measurements in a fully grown maize field, a vineyard and a forest. It is shown that the Bayesian approach yields more accurate estimates of sensible and latent heat flux than traditional methods.

  12. Heat Transfer and Pressure Drop with Rough Surfaces, a Literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, A

    1964-05-15

    This literature survey deals with changes in heat transfer coefficient and friction factor with varying nature and degree of roughness. Experimental data cover mainly the turbulent flow region for both air and water as flow mediums. Semiempirical analysis about changes in heat transfer coefficient due to roughness has been included. An example of how to use these data to design a heat exchanger surface is also cited. The extreme case of large fins has not been considered. Available literature between 1933 - 1963 has been covered.

  13. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    Science.gov (United States)

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. A review of surface heat-flow data of the northern Middle Atlas (Morocco)

    Science.gov (United States)

    Chiozzi, Paolo; Barkaoui, Alae-Eddine; Rimi, Abdelkrim; Verdoya, Massimo; Zarhloule, Yassine

    2017-12-01

    We revised thermal data available from water and oil wells in the northern sector of the Middle Atlas region. To avoid biased estimation of surface heat flow caused by advection likely occurring in shallow aquifers, temperature measurements in water boreholes were carefully inspected and selected. The heat flow in the oil wells was inferred by taking into account the porosity variation with depth, the temperature effect on thermal conductivity of the matrix and the pore fluid, together with the contribution of the radiogenic heat production. Moreover, the possible bias in heat flow caused by convection occurring in confined carbonate aquifers was evaluated. The results of heat flow slightly modify the picture reported in previous investigations. The heat flow value over the investigated region is rather uniform (about 80 mW m-2) and is similar in oil wells and in water boreholes. Geothermal calculations indicate that such a surface heat flow is compatible with a ∼70 km thick thermal lithosphere and normal thermal conditions in the asthenospheric mantle.

  15. Natural convection heat transfer from a horizontal wavy surface in a porous enclosure

    International Nuclear Information System (INIS)

    Murthy, P.V.S.N.; Kumar, B.V.R.; Singh, P.

    1997-01-01

    The effect of surface undulations on the natural convection heat transfer from an isothermal surface in a Darcian fluid-saturated porous enclosure has been numerically analyzed using the finite element method on a graded nonuniform mesh system. The flow-driving Rayleigh number Ra together with the geometrical parameters of wave amplitude a, wave phase φ, and the number of waves N considered in the horizontal dimension of the cavity are found to influence the flow and heat transfer process in the enclosure. For Ra around 50 and above, the phenomenon of flow separation and reattachment is noticed on the walls of the enclosure. A periodic shift in the reattachment point from the bottom wall to the adjacent walls in the clockwise direction, leading to the manifestation of cycles of unicellular and bicellular clockwise and counterclockwise flows, is observed, with the phase varying between 0 degree and 350 degree. The counterflow in the secondary circulation zone is intensified with the increase in the value of Ra. The counterflow on the wavy wall hinders the heat transfer into the system. An increase in either wave amplitude or the number of waves considered per unit length decreases the global heat flux into the system. Only marginal changes in global heat flux are noticed with increasing Ra. On the whole, the comparison of global heat flux results in the wavy wall case with those of the horizontal flat wall case shows that, in a porous enclosure, the wavy wall reduces the heat transfer into the system

  16. Nanofluids for power engineering: Emergency cooling of overheated heat transfer surfaces

    Science.gov (United States)

    Bondarenko, B. I.; Moraru, V. N.; Sidorenko, S. V.; Komysh, D. V.

    2016-07-01

    The possibility of emergency cooling of an overheated heat transfer surface using nanofluids in the case of a boiling crisis is explored by means of synchronous recording of changes of main heat transfer parameters of boiling water over time. Two nanofluids are tested, which are derived from a mixture of natural aluminosilicates (AlSi-7) and titanium dioxide (NF-8). It is found that the introduction of a small portions of nanofluid into a boiling coolant (distilled water) in a state of film boiling ( t heater > 500°C) can dramatically decrease the heat transfer surface temperature to 130-150°C, which corresponds to a transition to a safe nucleate boiling regime without affecting the specific heat flux. The fact that this regime is kept for a long time at a specific heat load exceeding the critical heat flux for water and t heater = 125-130°C is particularly important. This makes it possible to prevent a potential accident emergency (heater burnout and failure of the heat exchanger) and to ensure the smooth operation of the equipment.

  17. Critical heat flux for downward-facing pool boiling on CANDU calandria tube surface

    Energy Technology Data Exchange (ETDEWEB)

    Behdadi, Azin, E-mail: behdada@mcmaster.ca; Talebi, Farshad; Luxat, John

    2017-04-15

    Highlights: • Pressure tube-calandria tube contact may challenge fuel channel integrity in CANDU. • Critical heat flux variation is predicted on the outer surface of CANDU calandria tube. • A two-phase boundary layer flow driven by buoyancy is modeled on the surface. • Different slip ratios and flow regimes are considered inside the boundary layer. • Subcooling effects are added to the model using wall heat flux partitioning. - Abstract: One accident scenario in CANDU reactors that can challenge the integrity of the primary pressure boundary is a loss of coolant accident, referred to as critical break LOCA, in which the pressure tube (PT) can undergo thermal creep strain deformation and contact its calandria tube (CT). In such case, rapid redistribution of stored heat from PT to CT, leads to a large spike in heat flux to the moderator which can cause bubble accumulation and dryout on the CT surface. A challenge to fuel channel integrity is posed if critical heat flux occurs on the surface of the CT and results in sustained film boiling. If the post-dryout temperature becomes sufficiently high then continued creep strain of the PT and CT may lead to fuel channel failure. In this study, a mechanistic model is developed to predict the critical heat flux variations along the downward facing outer surface of CT. The hydrodynamic model considers a liquid macrolayer beneath an elongated vapor slug on the surface. Local dryout is postulated to occur whenever the fresh liquid supply to the macrolayer is not sufficient to compensate for the liquid depletion. A boundary layer analysis is performed, treating the two phase motion as an external buoyancy driven flow. The model shows good agreement with the available experimental data and has been modified to take into account the effect of subcooling.

  18. Influence of pre-heating on the surface modification of powder-metallurgy processed cold-work tool steel during laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Šturm, Roman, E-mail: roman.sturm@fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Štefanikova, Maria [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Steiner Petrovič, Darja [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia)

    2015-01-15

    Graphical abstract: - Highlights: • Heat-treatment protocol for laser surface melting of cold-work tool steel is proposed. • The laser melted steel surface is hardened, and morphologically modified. • The pre-heating of substrate creates a crack-and pore-free steel surface. • The optimum pre-heating temperature is determined to be 350 °C. • Using pre-heating the quantity of retained austenite is reduced. - Abstract: In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.

  19. Transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations

    International Nuclear Information System (INIS)

    Sugano, Y.

    1980-01-01

    The transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations on two edges are studied by means of the Airy stress function. The purposes of this paper are to present a method of determing the transient thermal stresses in an orthographic rectangular plate with four edges of distinct thermal boundary condition of the third kind which exactly satisfy the traction-free conditions of shear stress over all boundaries including four corners of the plate, and to consider the effects of the anisotropies of material properties and the convective heat transfer on the upper and lower surfaces on the thermal stress distribution. (orig.)

  20. Oscillations and chaos on the free surface of a heated fluid

    Energy Technology Data Exchange (ETDEWEB)

    Arecchi, F T; Ciliberto, S; Rubio, M A

    1984-04-01

    We report the observation of oscillatory and chaotic instabilites on a fluid layer with a free surface, heated from below. The system is driven in a bidimensional state by a spatial modulation of the heat flux on the free surface. For increasing temperature gradients the system yields oscillations periodic in time, initially at a frequency of 8 mHz, then with a second frequency lower by a ratio 30 and eventually with an aperiodic behaviour corresponding to the onset of turbulent regime. The oscillatory regions are localized in space.

  1. The EIR-programmes for computing the gross heat output of solar collectors (MURD and ETA)

    International Nuclear Information System (INIS)

    Widder, F.

    1980-11-01

    For the computation of the gross heat output of solar collectors by means of meteo data and characteristic collector parameters two programs were developed: MURD for the determination of the ''mean usable radiation density'' and ETA for the calculation of the collector efficiency i.e. relative values of gross heat output. The main features of these programs are described and detailed instructions for the use of them are given. Results of some cases for the meteo-situation of Zurich airport are given. (Auth.)

  2. A simple mathematical procedure to estimate heat flux in machining using measured surface temperature with infrared laser

    Directory of Open Access Journals (Sweden)

    Hocine Mzad

    2015-09-01

    Full Text Available Several techniques have been developed over time for the measurement of heat and the temperatures generated in various manufacturing processes and tribological applications. Each technique has its own advantages and disadvantages. The appropriate technique for temperature measurement depends on the application under consideration as well as the available tools for measurement. This paper presents a procedure for a simple and accurate determination of the time-varying heat flux at the workpiece–tool interface of three different metals under known cutting conditions. A portable infrared thermometer is used for surface temperature measurements. A spline smoothing interpolation of the surface temperature history enables to determine the local heat flux produced during stock removal. The measured temperature is represented by a third-order spline approximation. Nonetheless, the accuracy of polynomial interpolation depends on how close are the interpolated points; an increase in degree cannot be used to increase the accuracy. Although the data analysis is relatively complicated, the computing time is very small.

  3. Basic heat transfer

    CERN Document Server

    Bacon, D H

    2013-01-01

    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  4. Subcooled flow boiling heat transfer from microporous surfaces in a small channel

    International Nuclear Information System (INIS)

    Yan, Sun; Li, Zhang; Hong, Xu; Xiaocheng, Zhong

    2011-01-01

    The continuously increasing requirement for high heat transfer rate in a compact space can be met by combining the small channel/microchannel and heat transfer enhancement methods during fluid subcooled flow boiling. In this paper, the sintered microporous coating, as an efficient means of enhancing nucleate boiling, was applied to a horizontal, rectangular small channel. Water flow boiling heat transfer characteristics from the small channel with/without the microporous coating were experimentally investigated. The small channel, even without the coating, presented flow boiling heat transfer enhancement at low vapor quality due to size effects of the channel. This enhancement was also verified by under-predictions from macro-scale correlations. In addition to the enhancement from the channel size, all six microporous coatings with various structural parameters were found to further enhance nucleate boiling significantly. Effects of the coating structural parameters, fluid mass flux and inlet subcooling were also investigated to identify the optimum condition for heat transfer enhancement. Under the optimum condition, the microporous coating could produce the heat transfer coefficients 2.7 times the smooth surface value in subcooled flow boiling and 3 times in saturated flow boiling. The combination of the microporous coating and small channel led to excellent heat transfer performance, and therefore was deemed to have promising application prospects in many areas such as air conditioning, chip cooling, refrigeration systems, and many others involving compact heat exchangers. (authors)

  5. Use of a commercial heat transfer code to predict horizontally oriented spent fuel rod surface temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1993-03-01

    Radioactive spent fuel assemblies are a source of hazardous waste that will have to be dealt with in the near future. It is anticipated that the spent fuel assemblies will be transported to disposal sites in spent fuel transportation casks. In order to design a reliable and safe transportation cask, the maximum cladding temperature of the spent fuel rod arrays must be calculated. A comparison between numerical calculations using commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4 degree C and 23 degree C for the low heat dissipation and high heat dissipation, respectively. The temperature predictions using helium as a fill gas are lower for the low and medium heat dissipation levels, but higher at the high heat dissipation. The temperature differences are 1 degree C and 6 degree C for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16 degree C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include experimental uncertainty in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This work demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects will be increasingly important as the amount of dissipated heat increases

  6. Abnormal high surface heat flow caused by the Emeishan mantle plume

    Science.gov (United States)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing

    2016-04-01

    It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.

  7. The influence of heat accumulation on the surface roughness in powder-bed additive manufacturing

    International Nuclear Information System (INIS)

    Jamshidinia, Mahdi; Kovacevic, Radovan

    2015-01-01

    The influence of heat accumulation on surface roughness during powder-bed additive manufacturing was investigated. A series of Ti-6Al-4V thin plates were produced by using an identical heat input by electron beam melting® (EBM). Spacing distances of 5 mm, 10 mm, and 20 mm were used. The surface roughness of as-built thin plates was measured using a two-axis profilometer. A numerical model was developed to study the influence of spacing distance on heat accumulation. An inverse relationship between the spacing distance and surface roughness was revealed. The experimental and numerical results showed that the surface quality of buildups could be controlled not only by process parameters, but also by the arrangement of components in the buildup chamber. At a constant spacing distance, an increase in the number of powder layers resulted in the accumulation of more heat between the thin plates. An increase in the spacing distance resulted in an upward translation of the Bearing Area Curve (BAC) toward shallower depths, with a reduced core roughness depth (R k ) and peak height (R pk ). A logarithmic regression equation was established from the experimental data. This equation could be used to predict the surface roughness of parts fabricated by EBM® in the studied range of spacing distances. (paper)

  8. Correlation between the critical heat flux and the fractal surface roughness of zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; McRae, G.A.; Coleman, C.E.; Nitheanandan, T.; Sanderson, D.B.

    1999-10-01

    In CANDU fuel channels, Zircaloy calandria tubes isolate the hot pressure tubes from the cool heavy water moderator. The heavy-water moderator provides a backup heat sink during some postulated loss-of-coolant accidents. The decay heat from the fuel is transferred to the moderator to ensure fuel channel integrity during emergencies. Moderator temperature requirements are specified to ensure that the transfer of decay heat does not exceed the critical heat flux (CHF) on the outside surface of the calandria tube. An enhanced CHF provides increases in safety margin. Pool boiling experiments indicate the CHF is enhanced with glass-peening of the outside surface of the calandria tubes. The objective of this study was to evaluate the surface characteristics of glass-peened tubes and relate these characteristics to CHF. The micro-topologies of the tube surfaces were analysed using stereo-pair micrographs obtained from scanning electron microscopy (SEM) and photogrammetry techniques. A linear relationship correlated the CHF as a function of the 'fractal' surface roughness of the tubes. (author)

  9. Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation

    International Nuclear Information System (INIS)

    Forster, M.; Augustin, W.; Bohnet, M.

    1999-01-01

    The accumulation of unwanted crystalline deposits (fouling) reduces the efficiency of heat exchangers considerably. In order to decrease the cost of fouling two strategies have been developed. The first fouling mitigation strategy is based on the modification of energy-and-geometry-related characteristics of the heat transfer surface to realize an increased duration of the induction period. By means of a drop-shape-analysis measurement device the interaction at the interface crystal/heat transfer surface is determined. The deployment of the fracture energy model and the interfacial defect model relates wetting characteristics to the adhesion phenomenon. Hence, a first estimation of the optimal choice of surface material is realized. Furthermore, the influence of surface topography on interfacial interactions has been analyzed. The second fouling mitigation strategy is based on the adjustment of the hydrodynamic flow conditions using a pulsation technique. Here, single strokes of higher velocity are superimposed on the stationary flow. These strokes shift the equilibrium of forces to an improved removal process. Fouling experiments have proved that pulsation is a powerful tool to mitigate the built-up of fouling layers on heat transfer surfaces. (author)

  10. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Zhang Baoyan; Shi Fenghui; Li Min; Zhang Zuoguang; Gu Yizhuo

    2011-01-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γ S d increases and the polar surface energy γ S sp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  11. Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after post-heat treatment

    International Nuclear Information System (INIS)

    Chiang Yuchun; Lee, C.-Y.; Lee, H.-C.

    2007-01-01

    Polyacrylonitrile- and rayon-based activated carbon fibers (ACFs) subject to heat treatment were investigated by means of elemental analyzer, and X-ray photoelectron spectroscopy (XPS). The total ash content of all ACFs was also analyzed. The adsorption of benzene, carbon tetrachloride and water vapor on ACFs was determined to shed light on the role of surface chemistry on gas adsorption. Results show that different precursors resulted in various elemental compositions and imposed diverse influence upon surface functionalities after heat treatment. The surface of heat-treated ACFs became more graphitic and hydrophobic. Three distinct peaks due to C, N, and O atoms were identified by XPS, and the high-resolution revealed the existence of several surface functionalities. The presence of nitride-like species, aromatic N-imines, or chemisorbed nitrogen oxides was found to be of great advantage to adsorption of water vapor or benzene, but the pyridine-N was not. Unstable complexes on the surface would hinder the fibers from adsorption of carbon tetrachloride. The rise in total ash content or hydrogen composition was of benefit to the access of water vapor. Modifications of ACFs by heat treatment have effectively improved adsorption performance

  12. Meso-scale wrinkled coatings to improve heat transfers of surfaces facing ambient air

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Tajiri, Koji; Tazawa, Masato; Yoshimura, Kazuki; Shimono, Kazuaki; Nakagawa, Yukio; Takahashi, Kazuhiro; Fujita, Keisuke; Myoko, Masumi

    2015-01-01

    Meso-scale (micrometer-to submillimeter-scale) wrinkled surfaces coated on steel sheets used in outdoor storage and transport facilities for industrial low-temperature liquids were discovered to efficiently increase convective heat transfer between ambient air and the surface. The radiative and convective heat transfer coefficients of various wrinkled surfaces, which were formed by coating steel sheets with several types of shrinkable paints, were examined. The convective heat transfer coefficient of a surface colder than ambient air monotonically changed with average height difference and interval distance of the wrinkle undulation, where the proportions were 0.0254 and 0.0054 W/m 2 /K/μm, respectively. With this wrinkled coating, users can lower the possibility of condensation and reduce rust and maintenance cost of facilities for industrial low-temperature liquids. From the point of view of manufacturers, this coating method can be easily adapted to conventional manufacturing processes. - Highlights: • Various wrinkled surfaces were fabricated by a practical process. • Topographical effect on convection was parameterized separately from radiation. • Meso-scale wrinkled coatings increased convective heat transfer with ambient air. • Maintenance cost of outdoor steel sheets due to condensation can be reduced

  13. Heat transfer and forces on concave surfaces in free molecule flow.

    Science.gov (United States)

    Fan, C.

    1971-01-01

    A Monte Carlo modeling technique is described for mathematically simulating free molecular flows over a concave spherical surface and a concave cylindrical surface of finite length. The half-angle of the surfaces may vary from 0 to 90 degrees, and the incident flow may have an arbitrary speed ratio and an arbitrary angle of attack. Partial diffuse reflection and imperfect energy accommodation for molecules colliding with the surfaces are also considered. Results of heat transfer, drag and lift coefficients are presented for a variety of flow conditions. The present Monte Carlo results are shown to be in very good agreement with certain available theoretical solutions.

  14. Computer aided surface representation. Progress report, June 1, 1989--May 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R.E.

    1990-02-19

    The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a ``surface defined on a surface``. Sometimes properties of an already defined surface are desired, which is ``geometry processing``. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

  15. Surface hardening of titanium alloys with melting depth controlled by heat sink

    Science.gov (United States)

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  16. Influence of Heat Treatment of Nickel-Titanium Rotary Endodontic Instruments on Apical Preparation: A Micro-Computed Tomographic Study.

    Science.gov (United States)

    de Almeida, Bernardo Corrêa; Ormiga, Fabíola; de Araújo, Marcos César Pimenta; Lopes, Ricardo Tadeu; Lima, Inayá Corrêa Barbosa; dos Santos, Bernardo Camargo; Gusman, Heloisa

    2015-12-01

    The aim of this study was to make a 3-dimensional comparison of the canal transportation and changes in apical geometry using micro-computed tomographic imaging after canal preparation with K3 (SybronEndo, Orange, CA) and K3XF (SybronEndo) file systems. Twenty-eight mandibular molars were randomly divided into 2 groups according to the rotary system used in instrumentation: K3 or K3XF. The specimens were scanned by micro-computed tomographic imaging before and after instrumentation. Images before and after instrumentation from each group were compared with regard to canal volume, surface area, and structure model index (SMI) (paired t test, P instrumentation, the canals from each group were compared regarding the changes in volume, surface area, SMI, and canal transportation in the last 4 apical mm (t test, P Instrumentation with the 2 rotary systems significantly changed the canal volume, surface area, and SMI (P instrument types concerning these parameters (P > .05). There were no significant differences between the 2 groups with regard to canal transportation in the last 4 apical mm (P > .05). Both rotary systems showed adequate canal preparations with reduced values of canal transportation. Heat treatment did not influence changes in root canal geometry in the apical region. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    Science.gov (United States)

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This

  18. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  19. Urban surface temperature behaviour and heat island effect in a tropical planned city

    Science.gov (United States)

    Ahmed, Adeb Qaid; Ossen, Dilshan Remaz; Jamei, Elmira; Manaf, Norhashima Abd; Said, Ismail; Ahmad, Mohd Hamdan

    2015-02-01

    Putrajaya is a model city planned with concepts of a "city in the garden" and an "intelligent city" in the tropics. This study presents the behaviour of the surface temperature and the heat island effect of Putrajaya. Findings show that heat island intensity is 2 °C on average at nighttime and negligible at daytime. But high surface temperature values were recorded at the main boulevard due to direct solar radiation incident, street orientation in the direction of northeast and southwest and low building height-to-street width ratio. Buildings facing each other had cooling effect on surfaces during the morning and evening hours; conversely, they had a warming effect at noon. Clustered trees along the street are effective in reducing the surface temperature compared to scattered and isolated trees. Surface temperature of built up areas was highest at noon, while walls and sidewalks facing northwest were hottest later in the day. Walls and sidewalks that face northwest were warmer than those that face southeast. The surface temperatures of the horizontal street surfaces and of vertical façades are at acceptable levels relative to the surface temperature of similar surfaces in mature cities in subtropical, temperate and Mediterranean climates.

  20. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface

    International Nuclear Information System (INIS)

    Pantzali, M.N.; Kanaris, A.G.; Antoniadis, K.D.; Mouza, A.A.; Paras, S.V.

    2009-01-01

    In the present work, the effect of the use of a nanofluid in a miniature plate heat exchanger (PHE) with modulated surface has been studied both experimentally and numerically. First, the thermophysical properties (i.e., thermal conductivity, heat capacity, viscosity, density and surface tension) of a typical nanofluid (CuO in water, 4% v/v) were systematically measured. The effect of surface modulation on heat transfer augmentation and friction losses was then investigated by simulating the existing miniature PHE as well as a notional similar PHE with flat plate using a CFD code. Finally, the effect of the nanofluid on the PHE performance was studied and compared to that of a conventional cooling fluid (i.e., water). The results suggest that, for a given heat duty, the nanofluid volumetric flow rate required is lower than that of water causing lower pressure drop. As a result, smaller equipment and less pumping power are required. In conclusion, the use of the nanofluids seems to be a promising solution towards designing efficient heat exchanging systems, especially when the total volume of the equipment is the main issue. The only drawbacks so far are the high price and the possible instability of the nanoparticle suspensions.

  1. Computational studies of the effect of magnetic field ''ripple'' on neutral beam heating of ZEPHYR

    International Nuclear Information System (INIS)

    Lister, G.G.; Gruber, O.

    1981-01-01

    The results of computations to estimate the heating efficiency of neutral injection in the proposed ZEPHYR experiment are presented. A suitably modified version of the Monte-Carlo neutral deposition and orbit following code FREYA was used for these calculations, in which particular emphasis has been placed on the effects of toroidal field ripple. We find that the ripple associated with the preliminary design of the experiment (+-6%) would result in intolerable energy losses due to ''ripple trapping'' of the fast ions produced by the neutral beam and insufficient heating of the central plasma. The necessary conditions for ignition can be obtained with a total heating power of 25 MW provided the ripple can be reduced to +-1%, in which case energy losses could be kept below 30%. These results are compatible with those found from transport code calculations of the losses to be expected due to ripple enhanced thermal conduction in the plasma

  2. CONVECTIVE HEAT EXCHANGE ON THE LATERAL SURFACE OF A RELATIVELY LONG CYCLONE CHAMBER

    Directory of Open Access Journals (Sweden)

    E. N. Saburov

    2016-01-01

    Full Text Available The high-turbulent swirling flows of heat carrier that are created by a cyclone chamber are used in industry. They make it possible to intensify processes of heat and mass exchange. The results of an experimental study of convective heat transfer on the lateral surface of the active volume of a relatively long cyclone chamber considerably exceeding the length of the chambers that were used in previously performed studies are presented and analyzed in the article. Air supply in the swirler of the chamber was performed tangentially from diametrically opposite sides of the two input channels. The gas outlet was implemented from the opposite end. The heat transfer by convection to the swirling air flow was studied by the method of changing the state of aggregation of a heating agent – condensation of slightly superheated steam. Collecting condensate from the working section was made through a water seal for maintaining a constant pressure calorimeter. The amount of heat transferred during experiment was determined by weight of the collected condensate. The specific features of influence of geometrical characteristics of cyclone chamber on intensity of heat exchange are considered. In the experiments we varied the relative diameter of the outlet port of the chamber dвых and the relative area of the input channels fвх. Segmental construction of the chamber made it possible to move a calorimeter on its length. The local heat transfer coefficient was determined for various values of the dimensionless longitudinal coordinate z coinciding with the axis of the chamber, and counted from the back end of the swirler. The estimated equations of heat transfer obtained during the research are presented and recommended for use in practice of engineering. The considered problem is of an interest from the point of view of further research of aerodynamics and of convective heat transfer in a highly swirling flow cyclone devices, in order to improve the

  3. Computational study of the heat transfer of an avian egg in a tray.

    Science.gov (United States)

    Eren Ozcan, S; Andriessens, S; Berckmans, D

    2010-04-01

    The development of an embryo in an avian egg depends largely on its temperature. The embryo temperature is affected by its environment and the heat produced by the egg. In this paper, eggshell temperature and the heat transfer characteristics from one egg in a tray toward its environment are studied by means of computational fluid dynamics (CFD). Computational fluid dynamics simulations have the advantage of providing extensive 3-dimensional information on velocity and eggshell temperature distribution around an egg that otherwise is not possible to obtain by experiments. However, CFD results need to be validated against experimental data. The objectives were (1) to find out whether CFD can successfully simulate eggshell temperature from one egg in a tray by comparing to previously conducted experiments, (2) to visualize air flow and air temperature distribution around the egg in a detailed way, and (3) to perform sensitivity analysis on several variables affecting heat transfer. To this end, a CFD model was validated using 2 sets of temperature measurements yielding an effective model. From these simulations, it can be concluded that CFD can effectively be used to analyze heat transfer characteristics and eggshell temperature distribution around an egg. In addition, air flow and temperature distribution around the egg are visualized. It has been observed that temperature differences up to 2.6 degrees C are possible at high heat production (285 mW) and horizontal low flow rates (0.5 m/s). Sensitivity analysis indicates that average eggshell temperature is mainly affected by the inlet air velocity and temperature, flow direction, and the metabolic heat of the embryo and less by the thermal conductivity and emissivity of the egg and thermal emissivity of the tray.

  4. HEAT TREATMENTS OF HIGH TEMPERATURE DRIED NORWAY SPRUCE BOARDS: SACCHARIDES AND FURFURALS IN SAPWOOD SURFACES

    Directory of Open Access Journals (Sweden)

    Olov Karlsson,

    2012-02-01

    Full Text Available Carbohydrates that migrate to wood surfaces in sapwood during drying might influence properties such as mould susceptibility and colour. Sugars on the surface of Norway spruce boards during various heat treatments were studied. Samples (350mmx125mmx25mm were double-stacked, facing sapwood-side outwards, and dried at 110oC to a target moisture content (MC of 40%. Dried sub-samples (80 mm x 125 mm x 25 mm were stacked in a similar way and further heated at 110oC and at 130oC for 12, 24, and 36 hours, respectively. Glucose, fructose, and sucrose as well as 5-hydroxymethylfurfural (HMF and furfural in the sapwood surface layer of treated wood were analysed using HPLC (RI- and UV-detectors. Carbohydrates degraded to a lower extent at 110oC than at 130oC. Furfural and to a larger extent HMF increased with treatment period and temperature. Heat treatment led to a decrease in lightness and hue of the sapwood surface of sub-samples, while chroma increased somewhat. Furthermore, considerably faster degradation (within a few minutes of the carbohydrates on the surface of the dried spruce boards was observed when single sub-samples were conductively hot pressed at 200oC. Treatment period and initial MC influenced the presence of the carbohydrates in wood surface as well as colour change (Eab of the hot pressed sub-samples.

  5. Neutralized wettability effect of superhydrophilic Cr-layered surface on pool boiling critical heat flux

    International Nuclear Information System (INIS)

    Son, Hong Hyun; Jeong, Ui Ju; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong

    2016-01-01

    The former method is deemed challenging due to longer development period and license issue. In this regard, FeCrAl, Cr, and SiC have been received positive attention as ATF coating materials because they are highly resistant to high temperature steam reaction causing massive hydrogen generation. In this study, Cr was selected as a target deposition material on the metal substrate because we found that Cr-layered surface becomes superhydrophilic, favorable to delaying the triggering of the critical heat flux (CHF). Thus in order to investigate the effect of Cr-layered superhydrophilic surfaces (under explored coating conditions) on pool boiling heat transfer, pool boiling experiment was conducted in the saturated deionized water under atmospheric pressure. As a physical vapor deposition (PVD) method, the DC magnetron sputtering technique was introduced to develop Cr-layered nanostructure. As a control variable of DC sputtering, substrate temperature was selected. Surface wettability and nanostructure were analyzed as major surface parameters on the CHF. We believe that highly dense micro/nano structure without nucleation cavities and inner pores neutralized the wettability effect on the CHF. Moreover, superhydrophilic surface with deficient cavity density rather hinders active nucleation. This emphasizes the importance of micro/nano structure surface for enhanced boiling heat transfer.

  6. Applied research for profilometric testing of the state of interior surfaces in heat exchanger tubes

    International Nuclear Information System (INIS)

    Gyongyosi, Tiberiu; Panaitescu, Valeriu Nicolae

    2009-01-01

    Generally, the surface flaws identified at heat exchangers tubing are characteristic for the heat secondary systems, located on the external surfaces of the heat exchanger tubes and are mostly the results of the ageing phenomena in systems operation. The tests performed, with the impressing replicating device confirmed the applicability of the technique, functionality of the device and resulted in replicas on metal support, these being the hard copy of the negative of the test tube surface, allowing the profile measurement. The visual inspection of the replicas on the metallic support gives information about the surface geometry replicated, pointing out the marks, which belong to the same area under observation. The minimum and maximum values for the depth of the channel worked out in the inner test tube wall have been determined by profile graphic measurement on the replicas. The paper presents the structural and functional description of the experimental devices. The first results and some conclusions are also included. Two patent applications were submitted at State Office for Inventions and Trademarks (OSIM) covering the original data to protect royalty: 'The local pit flaws, scratches, incipient micro-cracks replicating device on inner cylindrical surfaces', under no. A/00299/17.04.2008 and 'The annular local flaw, incipient micro-cracks replicating device on inner cylindrical surface' under no. A/00300/17.04.2008

  7. Calculation of heat-kernel coefficients and usage of computer algebra

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Lanev, A.V.; Schaale, A.

    1995-01-01

    The calculation of heat-kernel coefficients with the classical De Witt algorithm has been discussed. We present the explicit form of the coefficients up to h 5 in the general case and up to h 7 min for the minimal parts. The results are compared with the expressions in other papers. A method to optimize the usage of memory for working with large expressions on universal computer algebra systems has been proposed. 20 refs

  8. Description os surface quadrupole oscillations of heateU spherical nuclei in the Brownian movement approximation

    International Nuclear Information System (INIS)

    Svin'in, I.R.

    1982-01-01

    Description of collective phenomena in heated nuclei within the framework of the Brownian approximation may be conditionally divided into two parts: 1) solution of the problem for some realization of a random force, 2) averaging in a set of all the possible realizations. Results of the present work are setted the first part of the problem in the case of surface quadrupole oscillations of spherical heated nuclei. Quadrupole surface oscillations of heated spherical nuclei are considered in the Brownian motion approximation. The integrals of motion are constructed taking into account the energy and angular momentum conservations for the nucleus in the process of relaxation of the collective excitations. Wave functions are obtained for states having definite values of the integrals of motion in the phonon representation. It is noted that the description scheme developed is easily used with respect to other multipolarity oscillations

  9. Thermoluminescence and cathodoluminescence studies of calcite and MgO: surface defects and heat treatment

    International Nuclear Information System (INIS)

    Goeksu, H.Y.; Brown, L.M.

    1988-01-01

    Some of the problems which preclude accurate thermoluminescence (TL) dating of geologically formed calcite stem from different sample pre-treatment procedures, such as grinding, drilling or pre-heating. It has long been known that grinding can introduce spurious TL in calcite, but there have been wide differences of opinion as to the magnitude of the influence and its importance. Therefore, various grinding and acid-washing procedures have been suggested to avoid spurious thermoluminescence. Various models have been developed to explain the mechanism. We have studied the changes in thermoluminescence (TL) and cathodoluminescence (CL) properties as well as in the spectral composition of the glow from calcite and MgO due to surface defects and heat treatment. It is found that both laboratory heat treatment and surface indents give rise to changes in TL efficiency. (author)

  10. Blowdown heat transfer surface in RELAP4/MOD6 and data comparisons

    International Nuclear Information System (INIS)

    Nelson, R.A.; Sullivan, L.H.

    1978-01-01

    RELAP4 is a thermal hydraulic analysis tool written to analyze transients in light water reactors (LWR). To date, most of the applications for RELAP4 have been to analyze postulated LOCA transients in LWR and the response of experimental systems to loss-of-coolant experiments. An important part of these analyses is the prediction of the fuel rod or heater surface temperature which involves the calculation of surface heat transfer coefficients. The paper describes the outcome of a significant blowdown heat transfer development effort which is incorporated in RELAP4/MOD6 (the current version of the code available to the United States public from the Argonne Code Center). The primary emphasis in the MOD6 development was on a PWR reflood capability. The best-estimate blowdown heat transfer correlation and logic were added to provide improved blowdown predictive capability

  11. Analysis of surface roughness effects on heat transfer in micro-conduits

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.; Kleinstreuer, C. [North Carolina State University, Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering

    2005-06-01

    Modern heat rejection systems, such as micro-heat sinks, are attractive because of their potential for high performance at small size and low weight. However, the impact of microscale effects on heat transfer have to be considered and quantitatively analyzed in order to gain physical insight and accurate Nusselt number data. The relative surface roughness (SR) was selected as a key microscale parameter, represented by a porous medium layer (PML) model. Assuming steady laminar fully developed liquid flow in microchannels and microtubes, the SR effects in terms of PML thermal conductivity ratio and Darcy number on the dimensionless temperature profile and Nusselt number were analyzed. In summary, the PML characteristics, especially the SR-number and conductivity ratio k{sub m}/k{sub f}, greatly affect the heat transfer performance where the Nusselt number can be either higher or lower than the conventional value. The PML influence is less pronounced in microtubes than in parallel-plate microchannels. (author)

  12. Nucleate pool-boiling heat transfer - I. Review of parametric effects of boiling surface

    International Nuclear Information System (INIS)

    Pioro, I.L.; Rohsenow, W.; Doerffer, S.S.

    2004-01-01

    The objective of this paper is to assess the state-of-the-art of heat transfer in nucleate pool-boiling. Therefore, the paper consists of two parts: part I reviews and examines the effects of major boiling surface parameters affecting nucleate-boiling heat transfer, and part II reviews and examines the existing prediction methods to calculate the nucleate pool-boiling heat transfer coefficient (HTC). A literature review of the parametric trends points out that the major parameters affecting the HTC under nucleate pool-boiling conditions are heat flux, saturation pressure, and thermophysical properties of a working fluid. Therefore, these effects on the HTC under nucleate pool-boiling conditions have been the most investigated and are quite well established. On the other hand, the effects of surface characteristics such as thermophysical properties of the material, dimensions, thickness, surface finish, microstructure, etc., still cannot be quantified, and further investigations are needed. Particular attention has to be paid to the characteristics of boiling surfaces. (author)

  13. Description of surface quadrupole oscillations of heated spherical nuclei in the Brownian-motion approximation

    International Nuclear Information System (INIS)

    Svin'in, I.R.

    1982-01-01

    The Brownian motion of a quadrupole quantum oscillator is considered as a model of surface quadrupole oscillations of heated spherical nuclei. The integrals of the motion related to energy and angular momentum conservation are constructed and the wave functions are obtained for states with definite values of these integrals of the motion in the phonon representation

  14. Experimental investigation of nucleate boiling on heated surfaces under subcooled conditions

    International Nuclear Information System (INIS)

    Schneider, C.; Hampel, R.; Traichel, A.; Hurtado, A.; Meissner, S.; Koch, E.

    2011-01-01

    In case of an accident at pressurized water reactors (PWR), critical boiling conditions can appear at the transition from bubble- to film boiling. During full power operation, heat transfer phenomena of sub cooled nucleate boiling occur on the surface of the fuel rods. To investigate the microscopic processes in nucleate boiling, a test facility with optical measuring methods was constructed. This allows analyzing the effects on a single bubble system at different parameters. For the generation of nucleate boiling, an optically transparent, electrically conductive coating was applied as a heating surface on a borosilicate substrate. The so-called ITO (Indium-Tin-Oxide) coating with a sheet resistance of 20 ohms enables an electrical heating at an optical transparent surface. These properties are prerequisites for the study of microscopic phenomena in the bubble formation with optical coherence tomography (OCT). OCT, generally used in medical diagnostics, is an imaging modality providing cross sectional and volumetric high resolution images. To make sure that the bubble formation takes place at a specific site, artificial nucleation sites in form of micro cavity will be inserted into the surface. Furthermore a small test facility was constructed to dedicate the wall temperature of a heated metal foil during subcooled boiling in non degassed water, which is the content of this paper. (author)

  15. Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface

    International Nuclear Information System (INIS)

    Mukhopadhyay, Swati

    2011-01-01

    Highlights: ► Unsteady boundary layer flow and heat transfer over a non-isothermal stretching sheet in a magnetic field are studied. ► Fluid velocity and temperature decrease for increasing unsteadiness parameter. ► Fluid velocity decreases but temperature increases with the increasing values of the Hartman number. ► The sheet temperature in respect of distance and time has analogous effects on the heat transfer. - Abstract: An analysis is made for the unsteady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching surface having a variable and general form of surface temperature which removes the restrictions of the particular forms of prescribed surface temperature. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the unsteadiness parameter, magnetic parameter, the temperature exponent parameters. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. It is found that the fluid velocity and temperature decrease for increasing unsteadiness parameter. Fluid velocity decreases with the increasing values of the Hartman number resulting an increase in the temperature field in steady as well in unsteady case. It is observed that the variation of the sheet temperature in respect of distance and time has analogous effects both on the free surface temperature and on the heat transfer rate (Nusselt number) at the sheet.

  16. DNS of Turbulent Flow and Heat Transfer in a Channel with Surface Mounted Cubes

    NARCIS (Netherlands)

    Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.

    2000-01-01

    The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence

  17. DNS of turbulent flow and heat transfer in a channel with surface mounted cubes

    NARCIS (Netherlands)

    Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.

    2000-01-01

    The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence

  18. Effect of surface roughness on heat transfer from horizontal immersed tubes in a fluidized bed

    International Nuclear Information System (INIS)

    Grewal, N.S.; Saxena, S.C.

    1979-01-01

    Experimental results of the total heat transfer coefficient between 12.7 mm dia copper tubes with four different rough surfaces and glass beads of three different sizes as taken in a 0.305 m x 0.305 m square fluidized bed as a function of fluidizing velocity are reported. The comparison of results for the rough and technically smooth tubes suggests that the heat transfer coefficient strongly depends on the ratio of pitch (P/sub f/) to the average particle diameter (d/sub p/), where P/sub f/ is the distance between the two corresponding points on consecutive threads or knurls. By the proper choice of (P/sub f//d/sub p/) ratio, the maximum total heat transfer coefficient for V-thread tubes (h/sub w/fb) can be increased by as much as 40 percent over the value for a smooth tube with the same outside diameter. However, for values of (P/sub f//d/sub p/) less than 0.95, the maximum heat transfer coefficient for the V-thread rough tubes is smaller than the smooth tube having the same outside diameter. The qualitative variation of the heat transfer coefficient for rough tubes with (P/sub f//d) is explained on the basis of the combined effect of contact geometry between the solid particles and the heat transfer surface, and the solids renewal rate at the surface. The present findings are critically compared with somewhat similar investigations from the literature on the heat transfer from horizontal or vertical rough tubes and tubes with small fins

  19. Detection of heat wave using Kalpana-1 VHRR land surface temperature product over India

    Science.gov (United States)

    Shah, Dhiraj; Pandya, Mehul R.; Pathak, Vishal N.; Darji, Nikunj P.; Trivedi, Himanshu J.

    2016-05-01

    Heat Waves can have notable impacts on human mortality, ecosystem, economics and energy supply. The effect of heat wave is much more intense during summer than the other seasons. During the period of April to June, spells of very hot weather occur over certain regions of India and global warming scenario may result in further increases of such temperature anomalies and corresponding heat waves conditions. In this paper, satellite observations have been used to detect the heat wave conditions prevailing over India for the period of May-June 2015. The Kalpana-1 VHRR derived land surface temperature (LST) products have been used in the analysis to detect the heat wave affected regions over India. Results from the analysis shows the detection of heat wave affected pixels over Indian land mass. It can be seen that during the study period the parts of the west India, Indo-gangetic plane, Telangana and part of Vidarbh was under severe heat wave conditions which is also confirmed with Automatic Weather Station (AWS) air temperature observations.

  20. Direct numerical simulation of turbulent pipe flow with nonuniform surface heat flux

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kunugi, Tomoaki

    1998-01-01

    Turbulent transport computations of a scalar quantity for fully-developed turbulent pipe flow were carried out by means of a direct numerical simulation (DNS) procedure. In this paper, three wall-heating boundary conditions were considered as follows: Case-1) a uniform heat-flux condition along the wall, Case-2) a nonuniform wall-heating condition, that is, a cosine heat-flux distribution along the wall and Case-3) a nonuniform wall-heating condition with a constant temperature over a half of the pipe wall. The number of computational grids used in this paper is 256 x 128 x 128. Prandtl number of the working fluid is 0.71. The Nusselt number in case of Case-1 is in good agreement with the empirical correlation. In case of Case-3, the distributions of the turbulent quantity and the Nusselt number seem to be reasonable. However, as for Case-2, the distributions of the turbulent quantity and the Nusselt number seem to be unrealistic. Two numerical treatments of thermal boundary condition on the wall were applied and their results were discussed from the viewpoint of the turbulent transport feature. (author)

  1. Heat transfer, velocity-temperature correlation, and turbulent shear stress from Navier-Stokes computations of shock wave/turbulent boundary layer interaction flows

    Science.gov (United States)

    Wang, C. R.; Hingst, W. R.; Porro, A. R.

    1991-01-01

    The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.

  2. Hydrodynamics and Heat Transfer in Flow over Rectangular Ribs on the Initially Smooth Surface

    Directory of Open Access Journals (Sweden)

    V. N. Afanasiev

    2017-01-01

    Full Text Available An efficiency of the heat exchange equipment and reducing their weight and size parameters can be considerably improved by using the optimal methods of heat transfer enhancement, which include a two-dimensional roughness, i.e. ribs, backward-facing steps, cavities, etc. deposited on the heat transfer surface. Their shape, sizes and positional relationship have a significant impact on the structure of the boundary layer and its exchange processes.As known, the most affordable and effective method of controlled influence on the structure of turbulent flow is to create a separation zone or other organized vortex structure in it. In order to successfully use the separation zone, it is necessary to know the mechanism of their interaction with the main turbulent flow and the mechanism of the process in separation zone itself. Heat transfer enhancement is provided mainly due to roughness impact on hydrodynamics of turbulent flow, if the rib height h does not exceed the thickness of the viscous sublayer, since heat transfer enhancement arises from breaking and destruction of viscous sublayer produced by the roughness ribs and emerging vortex zones – sources of turbulence. Usually, the height of ribs y+ ≈ 50, and the distance between them along the streamlined surface is 10-20 times greater. The coefficient of friction also increases, but if the height of ribs is sufficiently small and most of them are in the sublayer, the increase of the friction factor will not exceed the increase of the heat transfer coefficient.The paper presents results of experimental investigation of hydrodynamics and heat transfer in the separation zone before and after a rib and in the area of two rectangular ribs with the height of y+ £ 60. The ribs are placed on the flat plate and heated according to the law of qw = const. The structure of turbulent boundary layer from the standpoint of the universal logarithmic law of velocity distribution has been experimentally

  3. Computational optimization of biodiesel combustion using response surface methodology

    Directory of Open Access Journals (Sweden)

    Ganji Prabhakara Rao

    2017-01-01

    Full Text Available The present work focuses on optimization of biodiesel combustion phenomena through parametric approach using response surface methodology. Physical properties of biodiesel play a vital role for accurate simulations of the fuel spray, atomization, combustion, and emission formation processes. Typically methyl based biodiesel consists of five main types of esters: methyl palmitate, methyl oleate, methyl stearate, methyl linoleate, and methyl linolenate in its composition. Based on the amount of methyl esters present the properties of pongamia bio-diesel and its blends were estimated. CONVERGETM computational fluid dynamics software was used to simulate the fuel spray, turbulence and combustion phenomena. The simulation responses such as indicated specific fuel consumption, NOx, and soot were analyzed using design of experiments. Regression equations were developed for each of these responses. The optimum parameters were found out to be compression ratio – 16.75, start of injection – 21.9° before top dead center, and exhaust gas re-circulation – 10.94%. Results have been compared with baseline case.

  4. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, J. D.; Culling, J. R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  5. Hydromagnetic slip flow of water based nano-fluids past a wedge with convective surface in the presence of heat generation (or) absorption

    International Nuclear Information System (INIS)

    Rahman, M.M.; Al-Lawatia, M.A.; Eltayeb, I.A.; Al-Salti, N.

    2012-01-01

    Heat transfer characteristics of a two-dimensional steady hydromagnetic slip flow of water based nano-fluids (TiO 2 -water, Al 2 O 3 -water, and Cu-water) over a wedge with convective surface taking into account the effects of heat generation (or absorption) has been investigated numerically. The local similarity solutions are obtained by using very robust computer algebra software MATLAB and presented graphically as well as in a tabular form. The results show that nano-fluid velocity is lower than the velocity of the base fluid and the existence of the nano-fluid leads to the thinning of the hydrodynamic boundary layer. The rate of shear stress is significantly influenced by the surface convection parameter and the slip parameter. It is higher for nano-fluids than the base fluid. The results also show that within the boundary layer the temperature of the nano-fluid is higher than the temperature of the base fluid. The rate of heat transfer is found to increase with the increase of the surface convection and the slip parameters. Addition of nano-particles to the base fluid induces the rate of heat transfer. The rate of heat transfer in the Cu-water nano-fluid is found to be higher than the rate of heat transfer in the TiO 2 -water and Al 2 O 3 -water nano-fluids. (authors)

  6. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

    Science.gov (United States)

    Ha, Minseok; Graham, Samuel

    2017-08-01

    Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

  7. The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes

    Science.gov (United States)

    Wong, Elizabeth Wing-See

    There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more

  8. Fluid Analysis and Improved Structure of an ATEG Heat Exchanger Based on Computational Fluid Dynamics

    Science.gov (United States)

    Tang, Z. B.; Deng, Y. D.; Su, C. Q.; Yuan, X. H.

    2015-06-01

    In this study, a numerical model has been employed to analyze the internal flow field distribution in a heat exchanger applied for an automotive thermoelectric generator based on computational fluid dynamics. The model simulates the influence of factors relevant to the heat exchanger, including the automotive waste heat mass flow velocity, temperature, internal fins, and back pressure. The result is in good agreement with experimental test data. Sensitivity analysis of the inlet parameters shows that increase of the exhaust velocity, compared with the inlet temperature, makes little contribution (0.1 versus 0.19) to the heat transfer but results in a detrimental back pressure increase (0.69 versus 0.21). A configuration equipped with internal fins is proved to offer better thermal performance compared with that without fins. Finally, based on an attempt to improve the internal flow field, a more rational structure is obtained, offering a more homogeneous temperature distribution, higher average heat transfer coefficient, and lower back pressure.

  9. Feasibility of computed tomography based thermometry during interstitial laser heating in bovine liver

    International Nuclear Information System (INIS)

    Pandeya, G.D.; Klaessens, J.H.G.M.; Greuter, M.J.W.; Oudkerk, M.; Schmidt, B.; Flohr, T.; Hillegersberg, R. van

    2011-01-01

    To assess the feasibility of computed tomography (CT) based thermometry during interstitial laser heating in the bovine liver. Four freshly exercised cylindrical blocks of bovine tissue were heated using a continuous laser of Nd:YAG (wavelength: 1064 nm, active length: 30 mm, power: 10-30 W). All tissues were imaged at least once before and 7 times during laser heating using CT and temperatures were simultaneously measured with 5 calibrated thermal sensors. The dependency of the average CT numbers as a function of temperature was analysed with regression analysis and a CT thermal sensitivity was derived. During laser heating, the growing hypodense area was observed around the laser source and that area showed an increase as a function of time. The formation of hypodense area was caused by declining in CT numbers at increasing temperatures. The regression analysis showed an inverse linear dependency between temperature and average CT number with -0.65 ± 0.048 HU/ C (R 2 = 0.75) for the range of 18-85 C in bovine liver. The non-invasive CT based thermometry during interstitial laser heating is feasible in the bovine liver. CT based thermometry could be further developed and may be of potential use during clinical LITT of the liver. (orig.)

  10. Verification of heat flux and temperature calculation on the control rod outer surface

    Science.gov (United States)

    Taler, Jan; Cebula, Artur

    2011-12-01

    The paper presents heat transfer calculation results concerning a control rod of Forsmark Nuclear Power Plant (NPP). The part of the control rod, which is the object of interest, is surrounded by a mixing region of hot and cold flows and, as a consequence, is subjected to thermal fluctuations. The paper describes a numerical test which validates the method based on the solution of the inverse heat conduction problem (IHCP). The comparison of the results achieved by two methods, computational fluid dynamics (CFD) simulations and IHCP, including a description of the IHCP method used in the calculation process, shows a very good agreement between the methods.

  11. Development and Validation of Computational Fluid Dynamics Models for Prediction of Heat Transfer and Thermal Microenvironments of Corals

    Science.gov (United States)

    Ong, Robert H.; King, Andrew J. C.; Mullins, Benjamin J.; Cooper, Timothy F.; Caley, M. Julian

    2012-01-01

    We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching. PMID:22701582

  12. Aesthetic value improvement of the ruby stone using heat treatment and its synergetic surface study

    International Nuclear Information System (INIS)

    Sahoo, Rakesh K.; Mohapatra, Birendra K.; Singh, Saroj K.; Mishra, Barada K.

    2015-01-01

    Highlights: • Natural ruby is heated at high temperature with metal oxide additives (PbO and ZnO) to enhance its aesthetic value. • Changes in surface characteristics of these natural rubies before and after heat treatment are compared. • The R-line peak splitting in the PL spectra and the contrary shift of the Al 2p peaks in the XPS spectra are explicated. - Abstract: The surface behavior of the natural ruby stones before and after heat treatment with metal oxide additives like: zinc oxide (ZnO) and lead oxide (PbO) have been studied. The surface appearance of the ruby stones processed with the metal oxides changed whereas the bulk densities of the stones remained within the range of 3.9–4.0 g/cm 3 . The cracks healing and pores filling by the metal oxides on the surface of the ruby have been examined using scanning electron microscopy. The chemical compositions based on the XPS survey scans are in good agreement with the expected composition. The phase and crystallinity of the ruby stones original and heat-treated were obtained from their X-ray diffraction patterns. The change in peak separation between R 1 and R 2 – peaks in photoluminescence spectra and the contrary binding energy shift of the Al 2p peaks in the X-ray photoelectron spectra have been explicated. Moreover, in this work we describe the change in surface chemical and physical characteristics of the ruby stone before and after heat treatment

  13. Convective heat transfer from rough surfaces with two-dimensional ribs - transitional and laminar flow

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Meyer, L.

    1978-01-01

    Measurements of friction factor and heat transfer coefficients for two rods of 18.9 mm 0.D. with two-dimensional roughness, each in two different outer smooth tubes have been performed in turbulent and laminar flow. The turbulent flow results indicate that the flow was not thermally fully established, the isothermal data however agree reasonably well with our previously obtained general correlation. Laminar flow results can be correlated best when the Reynolds and Greatz numbers are evaluated at the temperature average between the temperature of the inner rod surface and of the outer smooth surface of the annulus, the average being weighted over the two surfaces. (orig.) [de

  14. Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating

    International Nuclear Information System (INIS)

    Abel, B.; Aslan, K.

    2012-01-01

    This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization, where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    Science.gov (United States)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  16. Surface Heat Balance Analysis of Tainan City on March 6, 2001 Using ASTER and Formosat-2 Data

    Directory of Open Access Journals (Sweden)

    Chen-Yi Sun

    2008-09-01

    Full Text Available The urban heat island phenomenon occurs as a mixed result of anthropogenic heat discharge, decreased vegetation, and increased artificial impervious surfaces. To clarify the contribution of each factor to the urban heat island, it is necessary to evaluate the surface heat balance. Satellite remote sensing data of Tainan City, Taiwan, obtained from Terra ASTER and Formosat-2 were used to estimate surface heat balance in this study. ASTER data is suitable for analyzing heat balance because of the wide spectral range. We used Formosat-2 multispectral data to classify the land surface, which was used to interpolate some surface parameters for estimating heat fluxes. Because of the high spatial resolution of the Formosat-2 image, more roads, open spaces and small vegetation areas could be distinguished from buildings in urban areas; however, misclassifications of land cover in such areas using ASTER data would overestimate the sensible heat flux. On the other hand, the small vegetated areas detected from the Formosat-2 image slightly increased the estimation of latent heat flux. As a result, the storage heat flux derived from Formosat-2 is higher than that derived from ASTER data in most areas. From these results, we can conclude that the higher resolution land coverage map increases accuracy of the heat balance analysis. Storage heat flux occupies about 60 to 80% of the net radiation in most of the artificial surface areas in spite of their usages. Because of the homogeneity of the building roof materials, there is no contrast between the storage heat flux in business and residential areas. In sparsely vegetated urban areas, more heat is stored and latent heat is smaller than that in the forested suburbs. This result implies that density of vegetation has a significant influence in decreasing temperatures.

  17. Computer code to predict the heat of explosion of high energy materials

    International Nuclear Information System (INIS)

    Muthurajan, H.; Sivabalan, R.; Pon Saravanan, N.; Talawar, M.B.

    2009-01-01

    The computational approach to the thermochemical changes involved in the process of explosion of a high energy materials (HEMs) vis-a-vis its molecular structure aids a HEMs chemist/engineers to predict the important thermodynamic parameters such as heat of explosion of the HEMs. Such a computer-aided design will be useful in predicting the performance of a given HEM as well as in conceiving futuristic high energy molecules that have significant potential in the field of explosives and propellants. The software code viz., LOTUSES developed by authors predicts various characteristics of HEMs such as explosion products including balanced explosion reactions, density of HEMs, velocity of detonation, CJ pressure, etc. The new computational approach described in this paper allows the prediction of heat of explosion (ΔH e ) without any experimental data for different HEMs, which are comparable with experimental results reported in literature. The new algorithm which does not require any complex input parameter is incorporated in LOTUSES (version 1.5) and the results are presented in this paper. The linear regression analysis of all data point yields the correlation coefficient R 2 = 0.9721 with a linear equation y = 0.9262x + 101.45. The correlation coefficient value 0.9721 reveals that the computed values are in good agreement with experimental values and useful for rapid hazard assessment of energetic materials

  18. Heat transfer enhancement of free surface MHD-flow by a protrusion wall

    International Nuclear Information System (INIS)

    Hulin Huang; Bo Li

    2010-01-01

    Due to the magnetohydrodynamic (MHD) effect on the flow, which degrades heat transfer coefficients by pulsation suppression of external magnetic field on the flow, a hemispherical protrusion wall is applied to free surface MHD-flow system as a heat transfer enhancement, because the hemispherical protrusion wall has some excellent characteristics including high heat transfer coefficients, low friction factors and high overall thermal performances. So, the characteristics of the fluid flow and heat transfer of the free surface MHD-flow with hemispherical protrusion wall are simulated numerically and the influence of some parameters, such as protrusion height δ/D, and Hartmann number, are also discussed in this paper. It is found that, in the range of Hartmann number 30 ≤ Ha ≤ 70, the protrusion wall assemblies can achieve heat transfer enhancements (Nu/Nu 0 ) of about 1.3-2.3 relative to the smooth channel, while the friction loss (f/f 0 ) increases by about 1.34-1.45. Thus, the high Nusselt number can be obtained when the protrusion wall with a radically lower friction loss increase, which may help get much higher overall thermal performances.

  19. Surface property effects on dropwise condensation heat transfer from flowing air-steam mixtures to promote drainage

    NARCIS (Netherlands)

    Grooten, M.H.M.; Geld, van der C.W.M.

    2012-01-01

    In this study, the effect of a partially structured Ti-coated plate surface on droplet drainage and heat transfer in dropwise condensation in a compact plate heat exchanger is investigated. In the presence of high concentrations of inert gases, heat transfer is governed by vapor diffusion and

  20. Heat transfer tests of ribbed surfaces for gas-cooled reactors

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1975-07-01

    The performance of gas-cooled reactors is often limited by the heat transfer in the reactor core. Means for modifying core heat transfer surfaces to improve their performance were investigated. The 0.3-in.-OD stainless steel clad heater rods were photo-etched to produce external ribs 0.006 in. high and 0.12 in. wide with a pitch of 0.072 in. Helical ribs with a helix angle of 37 0 (to promote interchannel flow mixing in a multirod array) were provided on one surface. For comparison purposes, a transversely ribbed surface and a smooth rod were also studied. The test surfaces were 49 in. long with a 24-in. heated region, concentrically arranged inside a smooth 0.602-in.-ID stainless steel tube. Nitrogen gas at pressures up to 400 psig was used as the coolant; the linear heat rating ranged to 6.8 kW/ft at surface temperatures up to 1400 0 F; T/sub w/T/sub b/ varied from 1.2 to 2.4 at Re values up to 450,000. Annulus results were recalculated for rod geometry using two different transformations. Good agreement was observed with applicable literature values. The effectiveness of the surfaces was assessed as the ratio E of the heat transfer coefficients of the roughened rods to that of a smooth rod at the same pumping power. The effectiveness of the spiral ribs ranged from 1.3 to 1.4, and from 1.2 to 1.4 for the transverse ribs, spanning Re values from 60,000 to 400,000. These data include variations introduced by alternate transformation methods that were used to make annulus test results applicable to rod geometry. The surfaces investigated in these tests were considered for fast gas-cooled reactors; however, the range of parameters studied also applies to heat transfer from ribbed rod-type fuel elements in thermal gas-cooled reactors. (U.S.)

  1. Thermoelectricity analogy method for computing the periodic heat transfer in external building envelopes

    International Nuclear Information System (INIS)

    Peng Changhai; Wu Zhishen

    2008-01-01

    Simple and effective computation methods are needed to calculate energy efficiency in buildings for building thermal comfort and HVAC system simulations. This paper, which is based upon the theory of thermoelectricity analogy, develops a new harmonic method, the thermoelectricity analogy method (TEAM), to compute the periodic heat transfer in external building envelopes (EBE). It presents, in detail, the principles and specific techniques of TEAM to calculate both the decay rates and time lags of EBE. First, a set of linear equations is established using the theory of thermoelectricity analogy. Second, the temperature of each node is calculated by solving the linear equations set. Finally, decay rates and time lags are found by solving simple mathematical expressions. Comparisons show that this method is highly accurate and efficient. Moreover, relative to the existing harmonic methods, which are based on the classical control theory and the method of separation of variables, TEAM does not require complicated derivation and is amenable to hand computation and programming

  2. A Numerical Study on Impact of Taiwan Island Surface Heat Flux on Super Typhoon Haitang (2005

    Directory of Open Access Journals (Sweden)

    Hongxiong Xu

    2015-01-01

    Full Text Available Three to four tropical cyclones (TCs by average usually impact Taiwan every year. This study, using the Developmental Tested Center (DTC version of the Hurricane WRF (HWRF model, examines the effects of Taiwan’s island surface heat fluxes on typhoon structure, intensity, track, and its rainfall over the island. The numerical simulation successfully reproduced the structure and intensity of super Typhoon Haitang. The model, especially, reproduced the looped path and landfall at nearly the right position. Sensitive experiments indicated that Taiwan’s surface heat fluxes have significant influence on the super Typhoon Haitang. Compared to sensible heat (SH fluxes, latent heat (LH is the dominant factor affecting the intensity and rainfall, but they showed opposite effects on intensity and rainfall. LH (SH flux of Taiwan Island intensified (weakened Typhoon Haitang’s intensity and structure by transferring more energy from (to surface. However, only LH played a major role in the looped path before the landfall of the Typhoon Haitang.

  3. An analytical model for particulate deposition on vertical heat transfer surfaces in a boiling environment

    International Nuclear Information System (INIS)

    Keefer, R.H.; Rider, J.L.; Waldman, L.A.

    1993-01-01

    A frequent problem in heat exchange equipment is the deposition of particulates entrained in the working fluid onto heat transfer surfaces. These deposits increase the overall heat transfer resistance and can significantly degrade the performance of the heat exchanger. Accurate prediction of the deposition rate is necessary to ensure that the design and specified operating conditions of the heat exchanger adequately address the effects of this deposit layer. Although the deposition process has been studied in considerable detail, much of the work has focused on investigating individual aspects of the deposition process. This paper consolidates this previous research into a mechanistically based analytical prediction model for particulate deposition from a boiling liquid onto vertical heat transfer surfaces. Consistent with the well known Kern-Seaton approach, the model postulates net particulate accumulation to depend on the relative contributions of deposition and reentrainment processes. Mechanisms for deposition include boiling, momentum, and diffusion effects. Reentrainment is presumed to occur via an intermittent erosion process, with the energy for particle removal being supplied by turbulent flow instabilities. The contributions of these individual mechanisms are integrated to obtain a single equation for the deposit thickness versus time. The validity of the resulting model is demonstrated by comparison with data published in the open literature. Model estimates show good agreement with data obtained over a range of thermal-hydraulic conditions in both flow and pool boiling environments. The utility of the model in performing parametric studies (e.g. to determine the effect of flow velocity on net deposition) is also demonstrated. The initial success of the model suggests that it could prove useful in establishing a range of heat exchanger. operating conditions to minimize deposition

  4. Thermal performance of a spirally coiled finned tube heat exchanger under wet-surface conditions

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Naphon, Paisarn

    2006-01-01

    This paper is a continuation of the author's previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data

  5. MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux

    International Nuclear Information System (INIS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2009-01-01

    The steady magnetohydrodynamic (MHD) mixed convection flow towards a vertical permeable surface with prescribed heat flux is investigated. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically by a finite-difference method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. Both assisting and opposing flows are considered. It is found that dual solutions exist for the assisting flow, besides the solutions usually reported in the literature for the opposing fow

  6. Specific heats of lunar surface materials from 90 to 350 degrees Kelvin

    Science.gov (United States)

    Robie, R.A.; Hemingway, B.S.; Wilson, W.H.

    1970-01-01

    The specific heats of lunar samples 10057 and 10084 returned by the Apollo 11 mission have been measured between 90 and 350 degrees Kelvin by use of an adiabatic calorimeter. The samples are representative of type A vesicular basalt-like rocks and of finely divided lunar soil. The specific heat of these materials changes smoothly from about 0.06 calorie per gram per degree at 90 degrees Kelvin to about 0.2 calorie per gram per degree at 350 degrees Kelvin. The thermal parameter ??=(k??C)-1/2 for the lunar surface will accordingly vary by a factor of about 2 between lunar noon and midnight.

  7. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture using the particle batch smoother

    Science.gov (United States)

    Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan; van de Giesen, Nick

    2016-04-01

    This study is focused on estimating surface sensible and latent heat fluxes from land surface temperature (LST) time series and soil moisture observations. Surface turbulent heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology and other climate-related fields, but in-situ measurements are costly and difficult. It has been demonstrated that the time series of LST contains information of energy partitioning and that surface turbulent heat fluxes can be determined from assimilation of LST. These studies are mainly based on two assumptions: (1) a monthly value of bulk heat transfer coefficient under neutral conditions (CHN) which scales the sum of the fluxes, and (2) an evaporation fraction (EF) which stays constant during the near-peak hours of the day. Previous studies have applied variational and ensemble approaches to this problem. Here the newly developed particle batch smoother (PBS) algorithm is adopted to test its capability in this application. The PBS can be seen as an extension of the standard particle filter (PF) in which the states and parameters within a fix window are updated in a batch using all observations in the window. The aim of this study is two-fold. First, the PBS is used to assimilate only LST time series into the force-restore model to estimate fluxes. Second, a simple soil water transfer scheme is introduced to evaluate the benefit of assimilating soil moisture observations simultaneously. The experiments are implemented using the First ISLSCP (International Satellite Land Surface Climatology Project) (FIFE) data. It is shown that the restored LST time series using PBS agrees very well with observations, and that assimilating LST significantly improved the flux estimation at both daily and half-hourly time scales. When soil moisture is introduced to further constrain EF, the accuracy of estimated EF is greatly improved. Furthermore, the RMSEs of retrieved fluxes are effectively reduced at both

  8. Thermal Advantages for Solar Heating Systems with a Glass Cover with Antireflection Surfaces

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    Investigations elucidate how a glass cover with antireflection surfaces can improve the efficiency of a solar collector and the thermal performance of solar heating systems. The transmittances for two glass covers for a flat-plate solar collector were measured for different incidence angles....... The two glasses are identical, except for the fact that one of them is equipped with antireflection surfaces by the company SunArc A/ S. The transmittance was increased by 5–9%-points due to the antireflection surfaces. The increase depends on the incidence angle. The efficiency at incidence angles of 08...... and the incidence angle modifier were measured for a flat-plate solar collector with the two cover plates. The collector efficiency was increased by 4–6%-points due to the antireflection surfaces, depending on the incidence angle. The thermal advantage with using a glass cover with antireflection surfaces...

  9. The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.K. Rice, C.K.

    1999-12-10

    The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.

  10. Surface analyses of TiC coated molybdenum limiter material exposed to high heat flux electron beam

    International Nuclear Information System (INIS)

    Onozuka, M.; Uchikawa, T.; Yamao, H.; Kawai, H.; Kousaku, A.; Nakamura, H.; Niikura, S.

    1987-01-01

    Observation and surface analyses of TiC coated molybdenum exposed to high heat flux have been performed to study thermal damage resistance of TiC coated molybdenum limiter material. High heat loads were provided by a 120 kW electron beam facility. SEM, AES and EPMA have been applied to the surface analyses

  11. Computational multi-fluid dynamics predictions of critical heat flux in boiling flow

    International Nuclear Information System (INIS)

    Mimouni, S.; Baudry, C.; Guingo, M.; Lavieville, J.; Merigoux, N.; Mechitoua, N.

    2016-01-01

    Highlights: • A new mechanistic model dedicated to DNB has been implemented in the Neptune_CFD code. • The model has been validated against 150 tests. • Neptune_CFD code is a CFD tool dedicated to boiling flows. - Abstract: Extensive efforts have been made in the last five decades to evaluate the boiling heat transfer coefficient and the critical heat flux in particular. Boiling crisis remains a major limiting phenomenon for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems. As a consequence, models dedicated to boiling flows have being improved. For example, Reynolds Stress Transport Model, polydispersion and two-phase flow wall law have been recently implemented. In a previous work, we have evaluated computational fluid dynamics results against single-phase liquid water tests equipped with a mixing vane and against two-phase boiling cases. The objective of this paper is to propose a new mechanistic model in a computational multi-fluid dynamics tool leading to wall temperature excursion and onset of boiling crisis. Critical heat flux is calculated against 150 tests and the mean relative error between calculations and experimental values is equal to 8.3%. The model tested covers a large physics scope in terms of mass flux, pressure, quality and channel diameter. Water and R12 refrigerant fluid are considered. Furthermore, it was found that the sensitivity to the grid refinement was acceptable.

  12. Computational multi-fluid dynamics predictions of critical heat flux in boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, S., E-mail: stephane.mimouni@edf.fr; Baudry, C.; Guingo, M.; Lavieville, J.; Merigoux, N.; Mechitoua, N.

    2016-04-01

    Highlights: • A new mechanistic model dedicated to DNB has been implemented in the Neptune-CFD code. • The model has been validated against 150 tests. • Neptune-CFD code is a CFD tool dedicated to boiling flows. - Abstract: Extensive efforts have been made in the last five decades to evaluate the boiling heat transfer coefficient and the critical heat flux in particular. Boiling crisis remains a major limiting phenomenon for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems. As a consequence, models dedicated to boiling flows have being improved. For example, Reynolds Stress Transport Model, polydispersion and two-phase flow wall law have been recently implemented. In a previous work, we have evaluated computational fluid dynamics results against single-phase liquid water tests equipped with a mixing vane and against two-phase boiling cases. The objective of this paper is to propose a new mechanistic model in a computational multi-fluid dynamics tool leading to wall temperature excursion and onset of boiling crisis. Critical heat flux is calculated against 150 tests and the mean relative error between calculations and experimental values is equal to 8.3%. The model tested covers a large physics scope in terms of mass flux, pressure, quality and channel diameter. Water and R12 refrigerant fluid are considered. Furthermore, it was found that the sensitivity to the grid refinement was acceptable.

  13. Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.

    Science.gov (United States)

    Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei

    2017-04-10

    In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.

  14. Removal of contaminated concrete surfaces by microwave heating: Phase 1 results

    International Nuclear Information System (INIS)

    White, T.L.; Grubb, R.G.; Pugh, L.P.; Foster, D. Jr.; Box, W.D.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) is developing a microwave heating process to remove radiologically contaminated surface layers from concrete. The microwave energy is directed at the concrete surface and heats the concrete and free water present in the concrete matrix. Continued heating produces steam-pressure-induced mechanical stresses that cause the concrete surface to burst. The concrete particles from this steam explosion are small enough to be removed by a vacuum system, yet less than 1% of the debris is small enough to pose an airborne contamination hazard. The first phase of this program has demonstrated reliable removal of noncontaminated concrete surfaces at frequencies of 2.45 GHz and 10.6 GHz. Continuous concrete removal rates of 1.07 cm 3 /s with 5.2 kW of 2.45.-GHz power and 2.11 cm 3 /s with 3.6 kW of 10.6-GHz power have been demonstrated. Figures-of-merit for microwave removal of concrete have been calculated to be 0.21 cm 3 /s/kW at 2.45 GHz and 0.59 cm 3 /s/kW at 10.6 GHz. The amount of concrete removed in a single pass can be controlled by choosing the frequency and power of the microwave system

  15. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    Science.gov (United States)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  16. Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Tim [Southwest Research Inst., San Antonio, TX (United States); Beck, Griffin [Southwest Research Inst., San Antonio, TX (United States); Bennett, Jeffrey [Southwest Research Inst., San Antonio, TX (United States); Hoopes, Kevin [Southwest Research Inst., San Antonio, TX (United States); Miller, Larry [Southwest Research Inst., San Antonio, TX (United States)

    2016-06-29

    This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and test new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long

  17. On numerical heat transfer characteristic study of flat surface subjected to variation in geometric thickness

    Science.gov (United States)

    Umair, Siddique Mohammed; Kolawale, Abhijeet Rangnath; Bhise, Ganesh Anurath; Gulhane, Nitin Parashram

    Thermal management in the looming world of electronic packaging system is the most prior and conspicuous issue as far as the working efficiency of the system is concerned. The cooling in such systems can be achieved by impinging air jet over the heat sink as jet impingement cooling is one of the cooling technologies which are widely studied now. Here the modulation in impinging and geometric parameters results in the establishment of the characteristic cooling rate over the target surface. The characteristic cooling curve actually resembles non-uniformity in cooling rate. This non-uniformity favors the area average heat dissipation rate. In order to study the non-uniformity in cooling characteristic, the present study takes an initiative in plotting the local Nusselt number magnitude against the non-dimensional radial distance of the different thickness of target surfaces. For this, the steady temperature distribution over the target surface under the impingement of air jet is being determined numerically. The work is completely inclined towards the determination of critical value of geometric thickness below which the non-uniformity in the Nusselt profile starts. This is done by numerically examining different target surfaces under constant Reynolds number and nozzle-target spacing. The occurrences of non-uniformity in Nusselt profile contributes to over a 42% enhancement in area average Nusselt magnitude. The critical value of characteristic thickness (t/d) reported in the present investigation approximate to 0.05. Below this value, the impingement of air jet generates a discrete pressure zones over the target surface in the form of pressure spots. As a result of this, the air flowing in contact with the target surface experiences a damping potential, in due of which it gets more time and contact with the surface to dissipate heat.

  18. Roughness Length of Water Vapor over Land Surfaces and Its Influence on Latent Heat Flux

    Directory of Open Access Journals (Sweden)

    Sang-Jong Park

    2010-01-01

    Full Text Available Latent heat flux at the surface is largely dependent on the roughness length for water vapor (z0q. The determination of z0q is still uncertain because of its multifaceted characteristics of surface properties, atmospheric conditions and insufficient observations. In this study, observed values from the Fluxes Over Snow Surface II field experiment (FLOSS-II from November 2002 to March 2003 were utilized to estimate z0q over various land surfaces: bare soil, snow, and senescent grass. The present results indicate that the estimated z0q over bare soil is much smaller than the roughness length of momentum (z0m; thus, the ratio z0m/z0q is larger than those of previous studies by a factor of 20 - 150 for the available flow regime of the roughness Reynolds number, Re* > 0.1. On the snow surface, the ratio is comparable to a previous estimation for the rough flow (Re* > 1, but smaller by a factor of 10 - 50 as the flow became smooth (Re* < 1. Using the estimated ratio, an optimal regression equation of z0m/z0q is determined as a function of Re* for each surface type. The present parameterization of the ratio is found to greatly reduce biases of latent heat flux estimation compared with that estimated by the conventional method, suggesting the usefulness of current parameterization for numerical modeling.

  19. A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui, E-mail: rhu@anl.gov; Yu, Yiqi

    2016-11-15

    Highlights: • Developed a computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors. • Applied fully-coupled JFNK solution scheme to avoid the operator-splitting errors. • The accuracy and efficiency of the method is confirmed with a 7-assembly test problem. • The effects of different spatial discretization schemes are investigated and compared to the RANS-based CFD simulations. - Abstract: For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneously in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. Additionally, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.

  20. Experimental Investigation of Convective Heat Transfer during Night Cooling with Different Ventilation Systems and Surface Emissivities

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    models for convection. In a full-scale test room, the heat transfer was investigated during 12 h of discharge by night-time ventilation. A total of 34 experiments have been performed, with different ventilation types (mixing and displacement), air change rates, temperature differences between the inlet...... air and the room, and floor emissivities. This extensive experimental study enabled a detailed analysis of the convective and radiative flow at the different surfaces of the room. The experimentally derived convective heat transfer coefficients (CHTC) have been compared to existing correlations....... For mixing ventilation, existing correlations did not predict accurately the convective heat transfer at the ceiling due to differences in the experimental conditions. But the use of local parameters of the air flow showed interesting results to obtain more adaptive CHTC correlations. For displacement...

  1. Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface

    Directory of Open Access Journals (Sweden)

    C.S.K. Raju

    2016-03-01

    Full Text Available In this study we analyzed the flow, heat and mass transfer behavior of Casson fluid past an exponentially permeable stretching surface in presence of thermal radiation, magneticfield, viscous dissipation, heat source and chemical reaction. We presented dual solutions by comparing the results of the Casson fluid with the Newtonian fluid. The governing partial nonlinear differential equations of the flow, heat and mass transfer are transformed into ordinary differential equations by using similarity transformation and solved numerically by using Matlab bvp4c package. The effects of various non-dimensional governing parameters on velocity, temperature and concentration profiles are discussed and presented graphically. Also, the friction factor, Nusselt and Sherwood numbers are analyzed and presented in tabular form for both Casson and Newtonian fluids separately. Under some special conditions the results of the present study have an excellent agreement with existing studies for both Casson and Newtonian fluid cases.

  2. Experimental and computational investigations of heat and mass transfer of intensifier grids

    International Nuclear Information System (INIS)

    Kobzar, Leonid; Oleksyuk, Dmitry; Semchenkov, Yuriy

    2015-01-01

    The paper discusses experimental and numerical investigations on intensification of thermal and mass exchange which were performed by National Research Centre ''Kurchatov Institute'' over the past years. Recently, many designs of heat mass transfer intensifier grids have been proposed. NRC ''Kurchatov Institute'' has accomplished a large scope of experimental investigations to study efficiency of intensifier grids of various types. The outcomes of experimental investigations can be used in verification of computational models and codes. On the basis of experimental data, we derived correlations to calculate coolant mixing and critical heat flux mixing in rod bundles equipped with intensifier grids. The acquired correlations were integrated in subchannel code SC-INT.

  3. A Personal Computer-Based Simulator for Nuclear-Heating Reactors

    International Nuclear Information System (INIS)

    Liu Jie; Zhang Zuoyi; Lu Dongsen; Shi Zhengang; Chen Xiaoming; Dong Yujie

    2000-01-01

    A personal computer (PC)-based simulator for nuclear-heating reactors (NHRs), PC-NHR, has been developed to provide an educational tool for understanding the design and operational characteristics of an NHR system. A general description of the reactor system as well as the technical basis for the design and operation of the heating reactor is provided. The basic models and equations for the NHR simulation are then given, which include models of the reactor core, the reactor coolant system, the containment, and the control system. The graphical user interface is described in detail to provide a manual for the user to operate the simulator properly. Steady state and several transients have been simulated. The results of PC-NHR are in good agreement with design data and the results of RETRAN-02. The real-time capability is also confirmed

  4. Horizontal Air-Ground Heat Exchanger Performance and Humidity Simulation by Computational Fluid Dynamic Analysis

    Directory of Open Access Journals (Sweden)

    Paolo Maria Congedo

    2016-11-01

    Full Text Available Improving energy efficiency in buildings and promoting renewables are key objectives of European energy policies. Several technological measures are being developed to enhance the energy performance of buildings. Among these, geothermal systems present a huge potential to reduce energy consumption for mechanical ventilation and cooling, but their behavior depending on varying parameters, boundary and climatic conditions is not fully established. In this paper a horizontal air-ground heat exchanger (HAGHE system is studied by the development of a computational fluid dynamics (CFD model. Summer and winter conditions representative of the Mediterranean climate are analyzed to evaluate operation and thermal performance differences. A particular focus is given to humidity variations as this parameter has a major impact on indoor air quality and comfort. Results show the benefits that HAGHE systems can provide in reducing energy consumption in all seasons, in summer when free-cooling can be implemented avoiding post air treatment using heat pumps.

  5. Heat Transfer Enhancement By Three-Dimensional Surface Roughness Technique In Nuclear Fuel Rod Bundles

    Science.gov (United States)

    Najeeb, Umair

    This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.

  6. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  7. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    Science.gov (United States)

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. © 2015 Institute of Food Technologists®

  8. Study of temperature distribution of pipes heated by moving rectangular gauss distribution heat source. Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Kamo, Kazuhiko; Asada, Seiji; Terasaki, Toshio

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression stress occurs near the inner surface of pipes. In this paper, the theoretical equation for the temperature distributions of pipes heated by moving rectangular Gauss distribution heat source on the outer surface is derived. The temperature histories of pipes calculated by theoretical equation agree well with FEM analysis results. According to the theoretical equation, the controlling parameters of temperature distributions and histories are q/2a y , vh, a x /h and a y /h, where q is total heat input, a y is heat source length in the axial direction, a x is Gaussian radius of heat source in the hoop direction, ν is moving velocity, and h is thickness of the pipe. The essential variables for L-SIP, which are defined on the basis of the measured temperature histories on the outer surface of the pipe, are Tmax, F 0 =kτ 0 /h 2 , vh, W Q and L Q , where Tmax is maximum temperature on the monitor point of the outer surface, k is thermal diffusivity coefficient, τ 0 is the temperature rise time from 100degC to maximum temperature on the monitor point of the outer surface, W Q is τ 0 x ν, and L Q is the uniform temperature length in the axial direction. It is verified that the essential variables for L-SIP match the controlling parameters by the theoretical equation. (author)

  9. Expanded heat treatment to form residual compressive hoop stress on inner surface of zirconium alloy tubing

    International Nuclear Information System (INIS)

    Megata, Masao

    1997-01-01

    A specific heat treatment process that introduces hoop stress has been developed. This technique can produce zirconium alloy tubing with a residual compressive hoop stress near the inner surface by taking advantage of the mechanical anisotropy in hexagonal close-packed zirconium crystal. Since a crystal having its basal pole parallel to the tangential direction of the tubing is easier to exhibit plastic elongation under the hoop stress than that having its basal pole parallel to the radial direction, the plastic and elastic elongation can coexist under a certain set of temperature and hoop stress conditions. The mechanical anisotropy plays a role to extend the coexistent stress range. Thus, residual compressive hoop stress is formed at the inner surface where more plastic elongation occurs during the heat treatment. This process is referred to as expanded heat treatment. Since this is a fundamental crystallographic principle, it has various applications. The application to improve PCI/SCC (pellet cladding interaction/stress corrosion cracking) properties of water reactor fuel cladding is promising. Excellent results were obtained with laboratory-scale heat treatment and an out-reactor iodine SCC test. These results included an extension of the time to SCC failure. (author)

  10. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments.

    Science.gov (United States)

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-09-24

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti-6Al-4V, Ti-15Mo-5Zr-3Al and Ti-15Zr-4Nb-4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone.

  11. The effect of a heated skate blade on the ice surface

    Energy Technology Data Exchange (ETDEWEB)

    Hache, A. [Moncton Univ., NB (Canada). Dept. of Physics and Astronomy

    2007-05-15

    A new hockey skate using a heated blade, called the Therma Blade, cuts ice friction by half, thereby improving skating performance but has created questions about melting and damage of the ice surface. This paper discussed the effect of the heated skate blade on the ice surface. The paper discussed the thermal power produced by the Therma Blade skate, the ice melting capacity of the therma blade, and the ice temperature profile around the heated blade. It also examined the power dissipation by friction comparing the cold versus the heated blade. Units and definitions as well as conversion factors were also presented in appendix format. Constants and technical specifications were listed in an appendix. It was concluded that the maximum melting capacity of the therma blade is 0.7 grams of ice per skate per minute. This is the upper limit as set by the laws of physics, and this requires the skate to be completely static over ice at 0 degrees Celsius and all the power drawn by the battery to reach the ice friction force. 5 refs., 1 tab., 2 figs.

  12. Heat flux distribution on an optimised limiter surface and structure of the scrape-off-layer

    International Nuclear Information System (INIS)

    Denner, T.

    1998-12-01

    The heat load on plasma-facing components is a key issue for forthcoming fusion experiments. In this work the heat flux on the pump limiter in TEXTOR-94 is measured by a newly developed digital thermography system and these results are compared with theoretical models. The limiter is shaped in such a way as to keep the heat load of the plasma-wetted area low; this is achieved by reducing the angle of incidence of the magnetic field lines with respect to the limiter surface to less than 1 for the first 10 mm of the scrape-off-layer (SOL). This small angle of incidence enhances all effects of toroidal non-uniformity as given e.g. by the magnetic field ripple. Extensive modelling explains well the observed heating pattern on the limiter surface due to the ripple effect. In contrast to expectations from density and temperature distributions in the SOL and at the edge of the confined region, an excessive power density is deposited on the first few millimetres near the roof tip of the limiter. Physical effects which could cause this phenomenon are discussed. (orig.)

  13. Determination of friction factors and heat transfer coefficients for flow past artificially roughened surfaces

    International Nuclear Information System (INIS)

    Hodge, S.A.

    1979-12-01

    Because convective heat transfer is enhanced in flow past rough surfaces, much experimental and analytical effort over the past several decades has been devoted to the evaluation of artificial roughening for potential application to the heat transfer surfaces of gas-cooled reactors. Unfortunately, much of the analytical development in this field has been inadequately explained in the literature; this has led to misinterpretation of some of the subsequent experimental findings, compounding the uncertainty. This work provides a critical review of the underlying assumptions, theoretical foundations, and supporting experimental evidence for the analytical procedures in current use for the evaluation of roughness effects. It is a concise presentation of the available formulations with recommendations concerning their applicability to rough rod bundles

  14. Surface-selective laser sintering of thermolabile polymer particles using water as heating sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, E N; Krotova, L I; Minaev, N V; Minaeva, S A; Mironov, A V; Popov, V K [Institute on Laser and Information Technologies of the Russian Academy of Sciencies, Troitsk, Moscow (Russian Federation); Bagratashvili, V N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-11-30

    We report the implementation of a novel scheme for surface-selective laser sintering (SSLS) of polymer particles, based on using water as a sensitizer of laser heating and sintering of particles as well as laser radiation at a wavelength of 1.94 μm, corresponding to the strong absorption band of water. A method of sintering powders of poly(lactide-co-glycolide), a hydrophobic bioresorbable polymer, after modifying its surface with an aqueous solution of hyaluronic acid is developed. The sintering thresholds for wetted polymer are by 3 – 4 times lower than those for sintering in air. The presence of water restricts the temperature of the heated polymer, preventing its thermal destruction. Polymer matrices with a developed porous structure are obtained. The proposed SSLS method can be applied to produce bioresorbable polymer matrices for tissue engineering. (interaction of laser radiation with matter. laser plasma)

  15. Performance Evaluation Criterion at Equal Pumping Power for Enhanced Performance Heat Transfer Surfaces

    Directory of Open Access Journals (Sweden)

    Rajendra Karwa

    2013-01-01

    Full Text Available The existing equations for the thermal performance evaluation, at equal pumping power for the artificially roughened and smooth surfaced multitube and rectangular duct heat exchangers, have been critically reviewed because the literature survey indicates that a large number of researchers have not interpreted these equations correctly. Three of the most widely used equations have been restated with clearly defined constraints and conditions for their application. Two new equations have been developed for the design constraints not covered earlier.

  16. A Numerical Study on Impact of Taiwan Island Surface Heat Flux on Super Typhoon Haitang (2005)

    OpenAIRE

    Xu, Hongxiong

    2015-01-01

    Three to four tropical cyclones (TCs) by average usually impact Taiwan every year. This study, using the Developmental Tested Center (DTC) version of the Hurricane WRF (HWRF) model, examines the effects of Taiwan’s island surface heat fluxes on typhoon structure, intensity, track, and its rainfall over the island. The numerical simulation successfully reproduced the structure and intensity of super Typhoon Haitang. The model, especially, reproduced the looped path and landfall at nearly the ...

  17. A heat transfer correlation based on a surface renewal model for molten core concrete interaction study

    International Nuclear Information System (INIS)

    Tourniaire, B. . E-mail bruno.tourniaire@cea.fr

    2006-01-01

    The prediction of heat transfer between corium pool and concrete basemat is of particular significance in the framework of the study of PWR's severe accident. Heat transfer directly governs the ablation velocity of concrete in case of molten core concrete interaction (MCCI) and, consequently, the time delay when the reactor cavity may fail. From a restricted hydrodynamic point of view, this issue is related to heat transfer between a heated bubbling pool and a porous wall with gas injection. Several experimental studies have been performed with simulant materials and many correlations have been provided to address this issue. The comparisons of the results of these correlations with the measurements and their extrapolation to reactor materials show that strong discrepancies between the results of these models are obtained which probably means that some phenomena are not well taken into account. The main purpose of this paper is to present an alternative heat transfer model which was originally developed for chemical engineering applications (bubble columns) by Deckwer. A part of this work is devoted to the presentation of this model, which is based on a surface renewal assumption. Comparison of the results of this model with available experimental data in different systems are presented and discussed. These comparisons clearly show that this model can be used to deal with the particular problem of MCCI. The analyses also lead to enrich the original model by taking into account the thermal resistance of the wall: a new formulation of the Deckwer's correlation is finally proposed

  18. Analysis of the phonon surface specific heat using Green function techniques

    International Nuclear Information System (INIS)

    Carrico, A.S.; Albuquerque, E.L.

    1980-01-01

    Green functions are derived for the displacement associated with acoustic vibrations in isotropic elastic media and used to evaluate the surface specific heat in the harmonic approximation. We consider only the low-temperature limit case since, provided K B 1/h is very samll, we can replace the dispersion relation for the three acoustic branches by its long-wavelenghts form. The contributions of surface elastic waves ot the Rayleigh and Love types are pointed out and their features discussed. The nature of the result and their relations to previous work in this field is also presented and discussed. (author) [pt

  19. Heat Transfer and Mass Diffusion in Nanofluids over a Moving Permeable Convective Surface

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2013-01-01

    Full Text Available Heat transfer and mass diffusion in nanofluid over a permeable moving surface are investigated. The surface exhibits convective boundary conditions and constant mass diffusion. Effects of Brownian motion and thermophoresis are considered. The resulting partial differential equations are reduced into coupled nonlinear ordinary differential equations using suitable transformations. Shooting technique is implemented for the numerical solution. Velocity, temperature, and concentration profiles are analyzed for different key parameters entering into the problem. Performed comparative study shows an excellent agreement with the previous analysis.

  20. Influence of the chemical composition, heat and surface treatment in the biofouling of austenitic stainless steels

    International Nuclear Information System (INIS)

    Sarro, M. I.; Aleman, O.; Moreno, D. A.; Roso, M.; Ranninger, C.

    2004-01-01

    The main objective of this study was to analyse the biofouling processes in the kinds of stainless steels used normally in industry (UNS S30400, UNS S30403 and UNS S31600), with different surface treatments after grinding and polishing. The study was developed using two microscopy techniques. Scanning Electron Microscopy (SEM was used to evaluate the microorganisms distribution in the materials, and Epi fluorescence Microscopy was used to evaluate the viability of cells in the biofilm. The results revealed the influence of the material, heat treatment, surface treatment and roughness in the biofouling processes in the stainless steel assays. (Author) 33 refs

  1. Analysis of the phonon surface specific heat using Green function techniques

    International Nuclear Information System (INIS)

    Silva Carrico, A. da; Albuquerque, E.L. de

    1981-01-01

    Green functions are derived for the displacement associated with acoustic vibrations in isotropic elastic media and used to evaluate the surface specific heat in the harmonic approximation. Only the low-temperature limit case is considered since, provided K sub(B) T/h is very small, the dispersion relation for the three acoustic branches can be replaced by its long-wavelenght form. The contributions of surface elastic waves of the Rayleigh and Love types are pointed out and their features discussed. The nature of the result and their relations to previous work in this field is also presented and discussed. (Author) [pt

  2. COMPUTATIONAL FLOW MODELLING OF FORMULA-SAE SIDEPODS FOR OPTIMUM RADIATOR HEAT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    C. M. DE SILVA

    2011-02-01

    Full Text Available Formula SAE vehicles, over the program’s history have showcased a myriad of aerodynamic packages, each claiming specific quantitative and qualitative features. This paper attempts to critique differing aerodynamic sidepod designs and their effect upon radiator heat management. Various features from inlet size, sidepod shape and size, presence of an undertray, suspension cover, gills and chimneys are analysed for their effects. Computational Fluid Dynamics (CFD analyses are performed in the FLUENT environment, with the aid of GAMBIT meshing software and SolidWorks modelling.

  3. Flow and heat transfer over a rotating disk with surface roughness

    International Nuclear Information System (INIS)

    Yoon, Myung Sup; Hyun, Jae Min; Park, Jun Sang

    2007-01-01

    A numerical study is made of flow and heat transfer near an infinite disk, which rotates steadily about the longitudinal axis. The surface of the disk is characterized by axisymmetric, sinusoidally-shaped roughness. The representative Reynolds number is large. Numerical solutions are acquired to the governing boundary-layer-type equations. The present numerical results reproduce the previous data for a flat disk. For a wavy surface disk, the radial distributions of local skin friction coefficient and local Nusselt number show double periodicity, which is in accord with the previous results. Physical explanations are provided for this finding. The surface-integrated torque coefficient and average Nusselt number increase as the surface roughness parameter increases. The effect of the Rossby number is also demonstrated

  4. Stochastic clustering of material surface under high-heat plasma load

    Science.gov (United States)

    Budaev, Viacheslav P.

    2017-11-01

    The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.

  5. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Science.gov (United States)

    Gu, Lianhong; Meyers, Tilden; Pallardy, Stephen G.; Hanson, Paul J.; Yang, Bai; Heuer, Mark; Hosman, Kevin P.; Liu, Qing; Riggs, Jeffery S.; Sluss, Dan; Wullschleger, Stan D.

    2007-01-01

    The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 W m-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the

  6. ESCA and electron diffraction studies of InP surface heated under As molecular beam exposure

    International Nuclear Information System (INIS)

    Sugiura, Hideo; Yamaguchi, Masafumi; Shibukawa, Atsushi

    1983-01-01

    Chemical composition of InP substrate surface heattreated under As molecular beam exposure in an ultrahigh vacuum chamber was studied with ESCA, and surface reconstruction of the substrate was examined by in-situ electron diffraction. The InP substrate heated under the exposure of As molecular beam has mirror surface up to 590 0 C while the surface of InP heated above 400 0 C in vacuum is roughened. The ESCA study shows that thin InAs layer (thickness 0 C under the exposure of As. The electron diffraction study indicates that the InP is cleaned at about 500 0 C in As pressures of 10 -7 - 10 -5 Torr. The InP surface is prevented from thermally decomposing by the coverage of the InAs layer, which may be formed through the following process: 2InPO 4 + As 4 → 2InAs + P 2 O 5 + As 2 O 3 . (author)

  7. Mitigating the surface urban heat island: Mechanism study and sensitivity analysis

    Science.gov (United States)

    Meng, Chunlei

    2017-08-01

    In a surface urban heat island (SUHI), the urban land surface temperature (LST) is usually higher than the temperature of the surrounding rural areas due to human activities and surface characteristics. Because a SUHI has many adverse impacts on urban environment and human health, SUHI mitigation strategies are very important. This paper investigates the mechanism of a SUHI based on the basic physical laws that control the formation of a SUHI; five mitigation strategies are proposed, namely: sprinkling and watering; paving a pervious surface; reducing the anthropogenic heat (AH) release; using a "white roof"; increasing the fractional vegetation cover or leaf area index (LAI). To quantify the effect of these mitigation strategies, 26 sets of experiments are designed and implemented by running the integrated urban land model (IUM). The results of the sensitivity analysis indicate that sprinkling and watering is an effective measure for mitigating a SUHI for an entire day. Decreasing the AH release is also useful for both night- and daytime SUHI mitigation; however, the cooling extent is proportional to the diurnal cycle of AH. Increasing the albedo can reduce the LST in the daytime, especially when the solar radiation is significant; the cooling extent is approximately proportional to the diurnal cycle of the net radiation. Increasing the pervious surface percentage can mitigate the SUHI especially in the daytime. Increasing the fractional vegetation cover can mitigate the SUHI in the daytime but may aggravate the SUHI at night.

  8. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  9. Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks

    Science.gov (United States)

    Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.

  10. Surface thermal analysis of North Brabant cities and neighbourhoods during heat waves

    Directory of Open Access Journals (Sweden)

    Leyre Echevarria Icaza

    2016-03-01

    Full Text Available The urban heat island effect is often associated with large metropolises. However, in the Netherlands even small cities will be affected by the phenomenon in the future (Hove et al., 2011, due to the dispersed or mosaic urbanisation patterns in particularly the southern part of the country: the province of North Brabant. This study analyses the average night time land surface temperature (LST of 21 North-Brabant urban areas through 22 satellite images retrieved by Modis 11A1 during the 2006 heat wave and uses Landsat 5 Thematic Mapper to map albedo and normalized difference temperature index (NDVI values. Albedo, NDVI and imperviousness are found to play the most relevant role in the increase of night-time LST. The surface cover cluster analysis of these three parameters reveals that the 12 “urban living environment” categories used in the region of North Brabant can actually be reduced to 7 categories, which simplifies the design guidelines to improve the surface thermal behaviour of the different neighbourhoods thus reducing the Urban Heat Island (UHI effect in existing medium size cities and future developments adjacent to those cities.

  11. Surface morphology changes of tungsten exposed to high heat loading with mixed hydrogen/helium beams

    International Nuclear Information System (INIS)

    Greuner, H.; Maier, H.; Balden, M.; Böswirth, B.; Elgeti, S.; Schmid, K.; Schwarz-Selinger, T.

    2014-01-01

    We discuss the surface morphology modification of W samples observed after simultaneous heat and particle loading using a mixed H/He particle beam with a He concentration of 1 at.%. The applied heat flux of 10 MW/m 2 is representative for the normal operation of the divertor of DEMO or a power plant. The long pulse high heat flux experiments on actively water-cooled W samples were performed in the GLADIS facility at surface temperatures between 600 °C and 2000 °C. This allows together with the applied total fluences between 1 × 10 24 m −2 and 1 × 10 26 m −2 the temperature- and fluence dependent study of the growing nano-structures. We analyse in detail the surface modifications up to a depth of several μm by scanning electron microscopy combined with focussed ion beam preparation. The hydrogen and helium release of the samples is analysed by long term thermal desorption spectroscopy and compared with the prediction of a diffusion trapping model

  12. In-situ imaging of tungsten surface modification under ITER-like transient heat loads

    Directory of Open Access Journals (Sweden)

    A.A. Vasilyev

    2017-08-01

    Full Text Available Experimental research on behavior of rolled tungsten plates under intense transient heat loads generated by a powerful (a total power of up to 7 MW long-pulse (0.1–0.3ms electron beam with full irradiation area of 2 cm2 was carried out. Imaging of the sample by the fast CCD cameras in the NIR range and with illumination by the 532nm continuous-wave laser was applied for in-situ surface diagnostics during exposure. In these experiments tungsten plates were exposed to heat loads 0.5–1MJ/m2 with a heat flux factor (Fhf close to and above the melting threshold of tungsten at initial room temperature. Crack formation and crack propagation under the surface layer were observed during multiple exposures. Overheated areas with excessive temperature over surrounding surface of about 500K were found on severely damaged samples more than 5ms after beam ending. The application of laser illumination enables to detect areas of intense tungsten melting near crack edges and crack intersections.

  13. The Influence of Anthropogenic Greenhouse Gases and Aerosols on the Surface Heat and Moisture Budgets.

    Science.gov (United States)

    Ramaswamy, V.; Freidenreich, S.; Ginoux, P. A.; Ming, Y.; Paynter, D.; Persad, G.; Schwarzkopf, M. D.

    2017-12-01

    Emissions of greenhouse gases and aerosols alter atmospheric composition and `force' major perturbations in the radiative fluxes at the top-of-the-atmosphere and surface. In this paper, we discuss the radiative changes caused by anthropogenic greenhouse gases and aerosols at the surface, and its importance in the context of effects on the global hydrologic cycle. An important characteristic of imbalances forced by radiative species is the tendency for responses to occur in the non-radiative components, in order for the surface energy and moisture budgets to re-establish equilibrium. Using the NOAA/ GFDL global climate models used in CMIP3 and CMIP5, and to be used in CMIP6, we investigate how the surface energy balance has evolved with time under the action of the emissions, and the manner of changes in the surface radiative, sensible and latent heat components. We diagnose the relative importance of the forcings on the global and continental scales, the differing mechanisms due to greenhouse gases and aerosols on surface heat and moisture budgets, and the relative roles of the atmospheric constituents on precipitation and evaporation. Scattering and absorbing properties of aerosols can have contrasting effects on precipitation, with the aerosol indirect effect presenting another complication owing to the uncertainty in its magnitude. We compare the modeled surface flux changes against observations made from multiple platforms over the 20th and the early period of the 21st centuries, and asses the models' strengths and weaknesses. We also explore the consequences for the surface balance and precipitation in the 21st century under various emission scenarios.

  14. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus

    Science.gov (United States)

    Zhu, Lihua; Huang, Gang; Fan, Guangzhou; Qu, Xia; Zhao, Guijie; Hua, Wei

    2017-10-01

    Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat (SH) over the central and eastern Tibetan Plateau (CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH. During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature. Cloud-radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.

  15. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution

  16. A comparison of optical and microwave scintillometers with eddy covariance derived surface heat fluxes

    KAUST Repository

    Yee, Mei Sun

    2015-11-01

    Accurate measurements of energy fluxes between land and atmosphere are important for understanding and modeling climatic patterns. Several methods are available to measure heat fluxes, and scintillometers are becoming increasingly popular because of their ability to measure sensible (. H) and latent (. LvE) heat fluxes over large spatial scales. The main motivation of this study was to test the use of different methods and technologies to derive surface heat fluxes.Measurements of H and LvE were carried out with an eddy covariance (EC) system, two different makes of optical large aperture scintillometers (LAS) and two microwave scintillometers (MWS) with different frequencies at a pasture site in a semi-arid environment of New South Wales, Australia. We used the EC measurements as a benchmark. Fluxes derived from the EC system and LAS systems agreed (R2>0.94), whereas the MWS systems measured lower H (bias ~60Wm-2) and larger LvE (bias ~65Wm-2) than EC. When the scintillometers were compared against each other, the two LASs showed good agreement of H (R2=0.98), while MWS with different frequencies and polarizations led to different results. Combination of LAS and MWS measurements (i.e., two wavelength method) resulted in performance that fell in between those estimated using either LAS or MWS alone when compared with the EC system. The cause for discrepancies between surface heat fluxes derived from the EC system and those from the MWS systems and the two-wavelength method are possibly related to inaccurate assignment of the structure parameter of temperature and humidity. Additionally, measurements from MWSs can be associated with two values of the Bowen ratio, thereby leading to uncertainties in the estimation of the fluxes. While only one solution has been considered in this study, when LvE was approximately less than 200Wm-2, the alternate solution may be more accurate. Therefore, for measurements of surface heat fluxes in a semi-arid or dry environment, the

  17. Two-wavelength Method Estimates Heat fluxes over Heterogeneous Surface in North-China

    Science.gov (United States)

    Zhang, G.; Zheng, N.; Zhang, J.

    2017-12-01

    Heat fluxes is a key process of hydrological and heat transfer of soil-plant-atmosphere continuum (SPAC), and now it is becoming an important topic in meteorology, hydrology, ecology and other related research areas. Because the temporal and spatial variation of fluxes at regional scale is very complicated, it is still difficult to measure fluxes at the kilometer scale over a heterogeneous surface. A technique called "two-wavelength method" which combines optical scintillometer with microwave scintillometer is able to measure both sensible and latent heat fluxes over large spatial scales at the same time. The main purpose of this study is to investigate the fluxes over non-uniform terrain in North-China. Estimation of heat fluxes was carried out with the optical-microwave scintillometer and an eddy covariance (EC) system over heterogeneous surface in Tai Hang Mountains, China. EC method was set as a benchmark in the study. Structure parameters obtained from scintillometer showed that the typical measurement values of Cn2 are around 10-13 m-2/3 for microwave scintillometer, and values of Cn2 were around 10-15 m-2/3 for optical scintillometer. The correlation of heat fluxes (H) derived from scintillometer and EC system showed as a ratio of 1.05,and with R2=0.75, while the correlation of latent heat fluxes (LE) showed as 1.29 with R2=0.67. It was also found that heat fluxes derived from the two system showed good agreement (R2=0.9 for LE, R2=0.97 for H) when the Bowen ratio (β) was 1.03, while discrepancies showed significantly when β=0.75, and RMSD in H was 139.22 W/m2, 230.85 W/m2 in LE respectively.Experiment results in our research shows that, the two-wavelength method gives a larger heat fluxes over the study area, and a deeper study should be conduct. We expect that our investigate and analysis can be promoted the application of scintillometry method in regional evapotranspiration measurements and relevant disciplines.

  18. Computation of Mach reflection from rigid and yielding surfaces

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Wilson, S.S.

    1976-01-01

    The present discussion centers on a theoretical description of one aspect of the irregular or Mach reflection from solid surfaces. The discussion is restricted to analytical considerations and some preliminary results using model approximations to the surface interaction phenomena. Currently, full numerical simulations of the irregular reflection surface interaction dynamics have not been obtained since the method is still under development. Discussion of the numerical method is, therefore, restricted to some special procedures for the gas-solid surface boundary dynamics. The discussion is divided into an introductory section briefly describing a particular Mach reflection process. Subsequently, some of the considerations on boundary conditions are submitted for numerical treatment of the gas-solid interface. Analysis and discussion of a yielding solid surface subjected to impulsive loading from an intense gas shock wave follows. This is used as a guide for the development of the numerical procedure. Mach reflection processes are then briefly reviewed with special attention for similitude and singular perturbation features

  19. Analysis of the dual phase lag bio-heat transfer equation with constant and time-dependent heat flux conditions on skin surface

    Directory of Open Access Journals (Sweden)

    Ziaei Poor Hamed

    2016-01-01

    Full Text Available This article focuses on temperature response of skin tissue due to time-dependent surface heat fluxes. Analytical solution is constructed for DPL bio-heat transfer equation with constant, periodic and pulse train heat flux conditions on skin surface. Separation of variables and Duhamel’s theorem for a skin tissue as a finite domain are employed. The transient temperature responses for constant and time-dependent boundary conditions are obtained and discussed. The results show that there is major discrepancy between the predicted temperature of parabolic (Pennes bio-heat transfer, hyperbolic (thermal wave and DPL bio-heat transfer models when high heat flux accidents on the skin surface with a short duration or propagation speed of thermal wave is finite. The results illustrate that the DPL model reduces to the hyperbolic model when τT approaches zero and the classic Fourier model when both thermal relaxations approach zero. However for τq = τT the DPL model anticipates different temperature distribution with that predicted by the Pennes model. Such discrepancy is due to the blood perfusion term in energy equation. It is in contrast to results from the literature for pure conduction material, where the DPL model approaches the Fourier heat conduction model when τq = τT . The burn injury is also investigated.

  20. Applying computer modeling to eddy current signal analysis for steam generator and heat exchanger tube inspections

    International Nuclear Information System (INIS)

    Sullivan, S.P.; Cecco, V.S.; Carter, J.R.; Spanner, M.; McElvanney, M.; Krause, T.W.; Tkaczyk, R.

    2000-01-01

    Licensing requirements for eddy current inspections for nuclear steam generators and heat exchangers are becoming increasingly stringent. The traditional industry-standard method of comparing inspection signals with flaw signals from simple in-line calibration standards is proving to be inadequate. A more complete understanding of eddy current and magnetic field interactions with flaws and other anomalies is required for the industry to generate consistently reliable inspections. Computer modeling is a valuable tool in improving the reliability of eddy current signal analysis. Results from computer modeling are helping inspectors to properly discriminate between real flaw signals and false calls, and improving reliability in flaw sizing. This presentation will discuss complementary eddy current computer modeling techniques such as the Finite Element Method (FEM), Volume Integral Method (VIM), Layer Approximation and other analytic methods. Each of these methods have advantages and limitations. An extension of the Layer Approximation to model eddy current probe responses to ferromagnetic materials will also be presented. Finally examples will be discussed demonstrating how some significant eddy current signal analysis problems have been resolved using appropriate electromagnetic computer modeling tools

  1. Computation of single- and two-phase heat transfer rates suitable for water-cooled tubes and subchannels

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Leung, L.K.H.; Cheng, S.C.; Nguyen, C.

    1989-01-01

    A computational method for predicting heat transfer, valid for a wide range of flow conditions (from pool boiling and laminar flow conditions to highly turbulent flow), has been developed. It correctly identifies the heat transfer modes and predicts the heat transfer rates as well as transition points (such as the critical heat flux point) on the boiling curve. The computational heat transfer method consists of a combination of carefully chosen heat transfer equations for each heat transfer mode. Each of these equations has been selected because of their accuracy, wide range of application, and correct asymptotic trends. Using a mechanistically-based heat transfer logic, these equations have been combined in a convenient software package suitable for PC or mainframe application. The computational method has been thoroughly tested against many sets of experimental data. The parametric and asymptotic trends of the prediction method have been examined in detail. Correction factors are proposed for extending the use of individual predictive techniques to various geometric configurations and upstream conditions. (orig.)

  2. Fouling of heat exchanger surfaces by dust particles from flue gases of glass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Mutsaers, P.L.M.; Beerkens, R.G.C.; Waal, H. de (Nederlandse Centrale Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Delft. Inst. of Applied Physics)

    1989-08-01

    Fouling by dust particles generally leads to a reduction of the heat transfer and causes corrosion of secondary heat exchangers. A deposition model, including thermodynamic equilibrium calculations, has been derived and applied to describe the deposition (i.e. fouling) process and the nature of the deposition products in a secondary heat exchanger. The deposition model has been verified by means of laboratory experiments, for the case of flue gases from soda-lime glass furnaces. Corrosion of iron-containing metallic materials, caused by the deposition products, has been briefly investigated with the same equipment. There is a close similarity between the experimental results and model calculations. The largest deposition rates from flue gases on cylindrical tubes in cross-flow configuration, are predicted and measured at the upstream stagnation point. The lowest deposition rates are determined at downstream stagnation point locations. At tube surface temperatures of approximately 520 to 550 K, the fouling rate on the tube reaches a maximum. In this temperature region NaHSO{sub 4} is the most important deposition product. This component is mainly formed at temperatures from 470 up to 540 K. The compound Na{sub 3}H(SO{sub 4}){sub 2} seems to be stable up to 570 K, for even higher temperatures Na{sub 2}SO{sub 4} has been found. These deposition products react with iron, SO{sub 3}, oxygen and water vapour forming the complex corrosion product Na{sub 3}Fe(SO{sub 4}){sub 3}. NaHSO{sub 4}, which is formed at tube surface temperatures below 540 K, causes more severe corrosion of iron-containing materials than Na{sub 2}SO{sub 4}. Maintaining temperatures of the heat exchanger surfaces above 550 to 600 K reduces the fouling tendency and corrosion in case of flue gases from oil-fired soda-lime glass furnaces. (orig.).

  3. Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate

    Science.gov (United States)

    Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.

    2013-01-01

    There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable

  4. Heats of formation of phosphorus compounds determined by current methods of computational quantum chemistry

    Science.gov (United States)

    Haworth, Naomi L.; Bacskay, George B.

    2002-12-01

    The heats of formation of a range of phosphorus containing molecules (P2, P4, PH, PH2, PH3, P2H2, P2H4, PO, PO2, PO3, P2O, P2O2, HPO, HPOH, H2POH, H3PO, HOPO, and HOPO2) have been determined by high level quantum chemical calculations. The equilibrium geometries and vibrational frequencies were computed via density functional theory, utilizing the B3LYP/6-31G(2df,p) functional and basis set. Atomization energies were obtained by the application of ab initio coupled cluster theory with single and double excitations from (spin)-restricted Hartree-Fock reference states with perturbative correction for triples [CCSD(T)], in conjunction with cc-pVnZ basis sets (n=T, Q, 5) which include an extra d function on the phosphorus atoms and diffuse functions on the oxygens, as recommended by Bauschlicher [J. Phys. Chem. A 103, 11126 (1999)]. The valence correlated atomization energies were extrapolated to the complete basis limit and corrected for core-valence (CV) correlation and scalar relativistic effects, as well as for basis set superposition errors (BSSE) in the CV terms. This methodology is effectively the same as the one adopted by Bauschlicher in his study of PO, PO2, PO3, HPO, HOPO, and HOPO2. Consequently, for these molecules the results of this work closely match Bauschlicher's computed values. The theoretical heats of formation, whose accuracy is estimated as ranging from ±1.0 to ±2.5 kcal mol-1, are consistent with the available experimental data. The current set of theoretical data represent a convenient benchmark, against which the results of other computational procedures, such as G3, G3X, and G3X2, can be compared. Despite the fact that G3X2 [which is an approximation to the quadratic CI procedure QCISD(T,Full)/G3Xlarge] is a formally higher level theory than G3X, the heats of formation obtained by these two methods are found to be of comparable accuracy. Both reproduce the benchmark heats of formation on the average to within ±2 kcal mol-1 and, for these

  5. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Science.gov (United States)

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  6. Neural Computation of Surface Border Ownership and Relative Surface Depth from Ambiguous Contrast Inputs

    Science.gov (United States)

    Dresp-Langley, Birgitta; Grossberg, Stephen

    2016-01-01

    The segregation of image parts into foreground and background is an important aspect of the neural computation of 3D scene perception. To achieve such segregation, the brain needs information about border ownership; that is, the belongingness of a contour to a specific surface represented in the image. This article presents psychophysical data derived from 3D percepts of figure and ground that were generated by presenting 2D images composed of spatially disjoint shapes that pointed inward or outward relative to the continuous boundaries that they induced along their collinear edges. The shapes in some images had the same contrast (black or white) with respect to the background gray. Other images included opposite contrasts along each induced continuous boundary. Psychophysical results demonstrate conditions under which figure-ground judgment probabilities in response to these ambiguous displays are determined by the orientation of contrasts only, not by their relative contrasts, despite the fact that many border ownership cells in cortical area V2 respond to a preferred relative contrast. Studies are also reviewed in which both polarity-specific and polarity-invariant properties obtain. The FACADE and 3D LAMINART models are used to explain these data. PMID:27516746

  7. Neural Computation of Surface Border Ownership and Relative Surface Depth from Ambiguous Contrast Inputs.

    Science.gov (United States)

    Dresp-Langley, Birgitta; Grossberg, Stephen

    2016-01-01

    The segregation of image parts into foreground and background is an important aspect of the neural computation of 3D scene perception. To achieve such segregation, the brain needs information about border ownership; that is, the belongingness of a contour to a specific surface represented in the image. This article presents psychophysical data derived from 3D percepts of figure and ground that were generated by presenting 2D images composed of spatially disjoint shapes that pointed inward or outward relative to the continuous boundaries that they induced along their collinear edges. The shapes in some images had the same contrast (black or white) with respect to the background gray. Other images included opposite contrasts along each induced continuous boundary. Psychophysical results demonstrate conditions under which figure-ground judgment probabilities in response to these ambiguous displays are determined by the orientation of contrasts only, not by their relative contrasts, despite the fact that many border ownership cells in cortical area V2 respond to a preferred relative contrast. Studies are also reviewed in which both polarity-specific and polarity-invariant properties obtain. The FACADE and 3D LAMINART models are used to explain these data.

  8. Neural computation of surface border ownership and relative surface depth from ambiguous contrast inputs

    Directory of Open Access Journals (Sweden)

    Birgitta Dresp-Langley

    2016-07-01

    Full Text Available The segregation of image parts into foreground and background is an important aspect of the neural computation of 3D scene perception. To achieve such segregation, the brain needs information about border ownership; that is, the belongingness of a contour to a specific surface represented in the image. This article presents psychophysical data derived from 3D percepts of figure and ground that were generated by presenting 2D images composed of spatially disjoint shapes that pointed inward or outward relative to the continuous boundaries that they induced along their collinear edges. The shapes in some images had the same contrast (black or white with respect to the background gray. Other images included opposite contrasts along each induced continuous boundary. Results demonstrate conditions under which figure-ground judgment probabilities in response to these ambiguous displays are determined by the orientation of contrasts only, not by their relative contrasts, despite the fact that many border ownership cells in cortical area V2 respond to a preferred relative contrast. Studies are also reviewed in which both polarity-specific and polarity-invariant properties obtain. The FACADE and 3D LAMINART models are used to explain these data.

  9. Surface roughness of Ti6Al4V after heat treatment evaluated by artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Altug, Mehmet [Inonu Univ., Malataya (Turkey). Dept. of Machine and Metal Technologies; Erdem, Mehmet; Bozkir, Oguz [Inonu Univ., Malataya (Turkey); Ozay, Cetin [Univ. of Firat Elazig (Turkey). Faculty of Tech. Education

    2016-05-01

    The study examines how, using wire electrical discharge machining (WEDM), the microstructural, mechanical and conductivity characteristics of the titanium alloy Ti6Al4V are changed as a result of heat treatment and the effect they have on machinability. Scanning electron microscope (SEM), optical microscope and X-ray diffraction (XRD) examinations were performed to determine various characteristics and additionally related microhardness and conductivity measurements were conducted. L{sub 18} Taquchi test design was performed with three levels and six different parameters to determine the effect of such alterations on its machinability using WEDM and post-processing surface roughness (Ra) values were determined. Micro-changes were ensured successfully by using heat treatments. Results obtained with the optimization technique of artificial neural network (ANN) presented minimum surface roughness. Values obtained by using response surface method along with this equation were completely comparable with those achieved in the experiments. The best surface roughness value was obtained from sample D which had a tempered martensite structure.

  10. Computational simulation of flow and heat transfer in single-phase natural circulation loops

    International Nuclear Information System (INIS)

    Pinheiro, Larissa Cunha

    2017-01-01

    Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr_m), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)

  11. Assessment of gamma irradiation heating and damage in miniature neutron source reactor vessel using computational methods and SRIM - TRIM code

    International Nuclear Information System (INIS)

    Appiah-Ofori, F. F.

    2014-07-01

    The Effects of Gamma Radiation Heating and Irradiation Damage in the reactor vessel of Ghana Research Reactor 1, Miniature Neutron Source Reactor were assessed using Implicit Control Volume Finite Difference Numerical Computation and validated by SRIM - TRIM Code. It was assumed that 5.0 MeV of gamma rays from the reactor core generate heat which interact and absorbed completely by the interior surface of the MNSR vessel which affects it performance due to the induced displacement damage. This displacement damage is as result of lattice defects being created which impair the vessel through formation of point defect clusters such as vacancies and interstitiaIs which can result in dislocation loops and networks, voids and bubbles and causing changes in the layers in the thickness of the vessel. The microscopic defects produced in the vessel due to γ - radiation damage are referred to as radiation damage while the defects thus produced modify the macroscopic properties of the vessel which are also known as the radiation effects. These radiation damage effects are of major concern for materials used in nuclear energy production. In this study, the overall objective was to assess the effects of gamma radiation heating and damage in GHARR - I MNSR vessel by a well-developed Mathematical model, Analytical and Numerical solutions, simulating the radiation damage in the vessel. SRIM - TRIM Code was used as a computational tool to determine the displacement per atom (dpa) associated with radiation damage while implicit Control Volume Finite Difference Method was used to determine the temperature profile within the vessel due to γ - radiation heating respectively. The methodology adopted in assessing γ - radiation heating in the vessel involved development of the One-Dimensional Steady State Fourier Heat Conduction Equation with Volumetric Heat Generation both analytical and implicit Control Volume Finite Difference Method approach to determine the maximum temperature and

  12. Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Jacopo Biasetti

    2017-10-01

    Full Text Available Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid–solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.

  13. Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study.

    Science.gov (United States)

    Biasetti, Jacopo; Pustavoitau, Aliaksei; Spazzini, Pier Giorgio

    2017-01-01

    Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid-solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.

  14. Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes

    Science.gov (United States)

    Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.

    2016-12-01

    The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud

  15. Theory of surface enrichment in disordered monophasic binary alloys. Numerical computations for Ag-Au alloys

    NARCIS (Netherlands)

    Santen, van R.A.; Boersma, M.A.M.

    1974-01-01

    The regular solution model is used to compute the surface enrichment in the (111)- and (100)-faces of silver-gold alloys. Surface enrichment by silver is predicted to increase if the surface plane becomes less saturated and decreases if one raises the temperature. The possible implications of these

  16. Influence of the heater material on the critical heat load at boiling of liquids on surfaces with different sizes

    Science.gov (United States)

    Anokhina, E. V.

    2010-05-01

    Data on critical heat loads q cr for the saturated and unsaturated pool boiling of water and ethanol under atmospheric pressure are reported. It is found experimentally that the critical heat load does not necessarily coincide with the heat load causing burnout of the heater, which should be taken into account. The absolute values of q cr for the boiling of water and ethanol on copper surfaces 65, 80, 100, 120, and 200 μm in diameter; tungsten surface 100 μm in diameter; and nichrome surface 100 μm in diameter are obtained experimentally.

  17. Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation

    Science.gov (United States)

    Mueller, Jerel K.; Ai, Leo; Bansal, Priya; Legon, Wynn

    2016-10-01

    Objective. While ultrasound is largely established for use in diagnostic imaging, its application for neuromodulation is relatively new and crudely understood. The objective of the present study was to investigate the effects of tissue properties and geometry on the wave propagation and heating in the context of transcranial neuromodulation. Approach. A computational model of transcranial-focused ultrasound was constructed and validated against empirical data. The models were then incrementally extended to investigate a number of issues related to the use of ultrasound for neuromodulation, including the effect on wave propagation of variations in geometry of skull and gyral anatomy as well as the effect of multiple tissue and media layers, including scalp, skull, CSF, and gray/white matter. In addition, a sensitivity analysis was run to characterize the influence of acoustic properties of intracranial tissues. Finally, the heating associated with ultrasonic stimulation waveforms designed for neuromodulation was modeled. Main results. The wave propagation of a transcranially focused ultrasound beam is significantly influenced by the cranial domain. The half maximum acoustic beam intensity profiles are insensitive overall to small changes in material properties, though the inclusion of sulci in models results in greater peak intensity values compared to a model without sulci (1%-30% greater). Finally, heating using currently employed stimulation parameters in humans is highest in bone (0.16 °C) and is negligible in brain (4.27 × 10-3 °C) for a 0.5 s exposure. Significance. Ultrasound for noninvasive neuromodulation holds great promise and appeal for its non-invasiveness, high spatial resolution and deep focal lengths. Here we show gross brain anatomy and biological material properties to have limited effect on ultrasound wave propagation and to result in safe heating levels in the skull and brain.

  18. Optimizing critical heat flux enhancement through nano-particle-based surface modifications

    International Nuclear Information System (INIS)

    Truong, B.; Hu, L. W.; Buongiorno, J.

    2008-01-01

    Colloidal dispersions of nano-particles, also known as nano-fluids, have shown to yield significant Critical Heat Flux (CHF) enhancement. The CHF enhancement mechanism in nano-fluids is due to the buildup of a porous layer of nano-particles upon boiling. Unlike microporous coatings that had been studied extensively, nano-particles have the advantages of forming a thin layer on the substrate with surface roughness ranges from the sub-micron to several microns. By tuning the chemical properties it is possible to coat the nano-particles in colloidal dispersions onto the desired surface, as has been demonstrated in engineering thin film industry. Building on recent work conducted at MIT, this paper illustrates the maximum CHF enhancement that can be achieved based on existing correlations. Optimization of the CHF enhancement by incorporation of key factors, such as the surface wettability and roughness, will also be discussed. (authors)

  19. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    International Nuclear Information System (INIS)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-01-01

    Graphical abstract: - Highlights: • In situ adsorption behaviors of TES on PA6 surface were clarified by QCM. • Highest adsorption of TES on PA6 was obtained in pH 3 and 0.1 M solution. • Molecular layers of TES with uniform structures were prepared on PA6 surface. • TES layer improved PA6 local heat resistance from 150 °C to 230 °C. • TES molecular layer successfully reduced Ag ion to Ag"0. - Abstract: Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag"+ ion to Ag"0. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  20. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Jing [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Aisawa, Sumio, E-mail: aisawa@iwate-u.ac.jp [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Hirahara, Hidetoshi [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kudo, Takahiro [Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan); Mori, Kunio [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan)

    2016-04-15

    Graphical abstract: - Highlights: • In situ adsorption behaviors of TES on PA6 surface were clarified by QCM. • Highest adsorption of TES on PA6 was obtained in pH 3 and 0.1 M solution. • Molecular layers of TES with uniform structures were prepared on PA6 surface. • TES layer improved PA6 local heat resistance from 150 °C to 230 °C. • TES molecular layer successfully reduced Ag ion to Ag{sup 0}. - Abstract: Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag{sup +} ion to Ag{sup 0}. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  1. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.; Wang, Lixin; Parkes, Stephen; Strauss, Josiah; McCabe, Matthew; Evans, Jason P.; Griffiths, Alan D.

    2015-01-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  2. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  3. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    Science.gov (United States)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2018-02-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  4. 'Thermal ghosts': apparent decay of fixed surfaces caused by heat diffusion

    International Nuclear Information System (INIS)

    Livadiotis, George

    2007-01-01

    The behaviour concerning classical heat diffusion on fixed thermal surfaces, studied by observations, still holds surprises. As soon as convective and radiative processes are negligible within the medium, this is considered to be free from energy sources and sinks. Then, the heat diffusion equation is conveniently solved using standard Fourier methods. Some considerations about the contrast effect suggest that the surface boundary would rather be observed to follow specific area decay dynamics than remaining fixed and static. Here it is shown that the apparent boundary lies on a specific isothermal spatiotemporal curve, which depends on the observing device. This is characterized by a slight, though determinative, difference between its radiance and that of the ambient background. Thereafter, the heat diffusion yields apparent boundary shrinkage with the passing of time. This phenomenon is particularly notable for two reasons: its lifetime and final decay rate depend only on the medium thermal properties, while being independent of the apparent boundary spatiotemporal curve. Thus, the former provides a suitable method for measuring the medium thermal properties via the observational data. The latter strongly reveal a kind of universality of some characteristic properties of the phenomenon, common to all observers

  5. Surface Heat Flux and Pressure Distribution on a Hypersonic Blunt Body With DEAS

    Science.gov (United States)

    Salvador, I. I.; Minucci, M. A. S.; Toro, P. G. P.; Oliveira, A. C.; Channes, J. B.

    2008-04-01

    With the currently growing interest for advanced technologies to enable hypersonic flight comes the Direct Energy Air Spike concept, where pulsed beamed laser energy is focused upstream of a blunt flight vehicle to disrupt the flow structure creating a virtual, slender body geometry. This allies in the vehicle both advantages of a blunt body (lower thermal stresses) to that of a slender geometry (lower wave drag). The research conducted at the Henry T. Nagamatsu Laboratory for Aerodynamics and Hypersonics focused on the measurement of the surface pressure and heat transfer rates on a blunt model. The hypersonic flight conditions were simulated at the HTN Laboratory's 0.3 m T2 Hypersonic Shock Tunnel. During the tests, the laser energy was focused upstream the model by an infrared telescope to create the DEAS effect, which was supplied by a TEA CO2 laser. Piezoelectric pressure transducers were used for the pressure measurements and fast response coaxial thermocouples were used for the measurement of surface temperature, which was later used for the estimation of the wall heat transfer using the inverse heat conduction theory.

  6. Surface heat flow density at the Phlegrean Fields caldera (southern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Corrado, Gennardo [Naples Univ., Dept. of Geophysics and Volcanology, Naples (Italy); De Lorenzo, Salvatore; Mongelli, Francesco; Tramacere, Antonio; Zito, Gianmaria [Bari Univ., Dept. of Geology and Geophysics, Bari (Italy)

    1998-08-01

    The Phlegrean Fields areas is a Holocene caldera located west of Naples, southern Italy. The recent post caldera activity is characterised by several eruptive centers inside the collapsed areas. In order to investigate the still active volcanic processes, surface heat flow measurement were carried out in 1995 in 30 sites of the Phlegrean Fields and a heat flow map compiled. Filtering of the map reveals some well-defined anomalies superimposed on a general southward-increasing trend. Local anomalies are related to small magma bodies, whereas the observed general trend has been attributed to the effect of ground-water flow. This effect was calculated and removed. The undisturbed mean value of the surface heat flow density in the eastern sector is 149mW/m{sup 2}, which is above the regional value of 85mW/m{sup 2} assigned to the eastern part of the Tyrrhenian Sea, and which is probably influenced by a very large, deep magmatic body. (Author)

  7. CHF enhancement in pool boiling of nanofluid : effect of nanoparticle-coating on heating surface

    International Nuclear Information System (INIS)

    Kim, Hyung Dae; Kim, Moo Hwan

    2005-01-01

    Recently researches to enhance CHF using the nanofluid, a new kind of heat transfer fluid in which nano-particles are uniformly and stably dispersed, were attempted. You showed that nanofluid, containing only 0.005 g/l of alumina nanoparticle, make the dramatic increase (∼200%) in CHF in pool boiling at the pressure of 2.89 psia (Tsat=60 .deg. C). They concluded that the abnormal CHF enhancement of nanofluid cannot be explained with any existing models of CHF. Vassallo performed the experimental studies on pool boiling heat transfer in water-SiO 2 nanofluid under atmospheric pressure. They showed a remarkable increase in CHF for nanofluid and also found that the stable film boiling at temperatures close to the melting point of the boiling surface are achievable with the nanofluid. After the experiments, they observed that the formation of the thin silica coating on the wire heater was occurred. This paper focuses on the experimental study of the effect of nanoparticle-coating on CHF enhancement in pool boiling of nanofluid. In this regard, pool boiling CHF values are measured and compared (a) from bare heater immersed in nanofluid and (b) from nanoparticle-coated heater, which is generated by deposition of suspended nanoparticles during pool boiling of nanofluid, immersed in pure water, and (c) from nanoparticle-coated heater immersed in nanofluid. And the microstructure of each heating surface is investigated from photography taken using SEM

  8. Buoyancy effects laminar slot jet impinging on a surface with constant heat flux

    International Nuclear Information System (INIS)

    Shokouhmand, H.; Esfahanian, V.; Masoodi, R.

    2004-01-01

    The two-dimensional laminar air jet issuing from a nozzle of half which terminates at height above a flat plate normal to the jet is numerically on the flow and thermal structure of the region near impingement. The impinging surface is maintained at a constant heat flux condition. The full Navier-Stocks and energy equations are solved by a finite difference method to evaluate the velocity profiles and temperature distribution. The governing parameters and their ranges are: Reynolds number Re, 10-50, Grashof number Gr, 0-50, Richardson number Ri=Gr/ Re 2 , Non dimensional nozzle height H,2-3. Results of the free streamline, local friction factor and heat transfer coefficient are graphically presented. It is found that enhancement of the heat transfer rate is substantial for high Richardson number conditions. Although the laminar jet impingement for isothermal condition has been already studied, however the constant heat flux has not been studied enough. the present paper will analyze a low velocity air jet, Which can be used for cooling of a simulated electronics package

  9. Calorimetry Minisensor for the Localised Measurement of Surface Heat Dissipated from the Human Body.

    Science.gov (United States)

    Socorro, Fabiola; Rodríguez de Rivera, Pedro Jesús; Rodríguez de Rivera, Manuel

    2016-11-06

    We have developed a calorimetry sensor that can perform a local measurement of the surface heat dissipated from the human body. The operating principle is based on the law of conductive heat transfer: heat dissipated by the human body passes across a thermopile located between the individual and a thermostat. Body heat power is calculated from the signals measured by the thermopile and the amount of power dissipated across the thermostat in order to maintain a constant temperature. The first prototype we built had a detection area measuring 6 × 6 cm², while the second prototype, which is described herein, had a 2 × 2 cm² detection area. This new design offers three advantages over the initial one: (1) greater resolution and three times greater thermal sensitivity; (2) a twice as fast response; and (3) it can take measurements from smaller areas of the body. The sensor has a 5 mW resolution, but the uncertainty is greater, up to 15 mW, due to the measurement and calculation procedure. The order of magnitude of measurements made in healthy subjects ranged from 60 to 300 mW at a thermostat temperature of 28 °C and an ambient room temperature of 21 °C. The values measured by the sensor depend on the ambient temperature and the thermostat's temperature, while the power dissipated depends on the individual's metabolism and any physical and/or emotional activity.

  10. A theory for natural convection turbulent boundary layers next to heated vertical surfaces

    International Nuclear Information System (INIS)

    George, W.K. Jr.; Capp, S.P.

    1979-01-01

    The turbulent natural convection boundary layer next to a heated vertical surface is analyzed by classical scaling arguments. It is shown that the fully developed turbulent boundary layer must be treated in two parts: and outer region consisting of most of the boundary layer in which viscous and conduction terms are negligible and an inner region in which the mean convection terms are negligible. The inner layer is identified as a constant heat flux layer. A similarity analysis yields universal profiles for velocity and temperature in the outer and constant heat flux layers. An asymptotic matching of these profiles in an intermediate layer (the buoyant sublayer) yields analytical expressions for the buoyant sublayer profiles. Asymptotic heat transfer and friction laws are obtained for the fully developed boundary layers. Finally, conductive and thermo-viscous sublayers characterized by a linear variation of velocity and temperature are shown to exist at the wall. All predictions are seen to be in excellent agreement with the abundant experimental data. (author)

  11. Visual Observation of Bubble Departure Characteristics in the Nano-particle Coated Heating Surface

    International Nuclear Information System (INIS)

    Han, Won Soek; Yoo, Shin; Lee, Jae Young

    2010-01-01

    Although the great enhancement of the thermal conductivity of the nanofluids, the fluid mixed with small amount of the nano meter sized particles, has been known, many experimental data of the boiling heat transfer reported degraded heat transfer rate than the fresh fluid. However, the great enhancement of the critical heat flux in nanofluids has been reported by many investigators. Due to the opaque scattering of the nano particles in nano fluids, direct observation of the bubble dynamics in the boiling process has not been made. However, it has been known that the boiling heat transfer characteristics of the heater coated by the nano particles in the fresh water are almost similar to that in the nano fluid. Recently, consensus has been made in the understanding of the CHF enhancement of nanofluids or nano-particle coated heater as the surface phenomena. Therefore, in the present paper, we do experimental study to observe the bubble departure in the pool boiling process with the nano-particle coated heater

  12. Computational mesh generation for vascular structures with deformable surfaces

    International Nuclear Information System (INIS)

    Putter, S. de; Laffargue, F.; Breeuwer, M.; Vosse, F.N. van de; Gerritsen, F.A.; Philips Medical Systems, Best

    2006-01-01

    Computational blood flow and vessel wall mechanics simulations for vascular structures are becoming an important research tool for patient-specific surgical planning and intervention. An important step in the modelling process for patient-specific simulations is the creation of the computational mesh based on the segmented geometry. Most known solutions either require a large amount of manual processing or lead to a substantial difference between the segmented object and the actual computational domain. We have developed a chain of algorithms that lead to a closely related implementation of image segmentation with deformable models and 3D mesh generation. The resulting processing chain is very robust and leads both to an accurate geometrical representation of the vascular structure as well as high quality computational meshes. The chain of algorithms has been tested on a wide variety of shapes. A benchmark comparison of our mesh generation application with five other available meshing applications clearly indicates that the new approach outperforms the existing methods in the majority of cases. (orig.)

  13. Computed tomography of surface related radionuclide distributions ('BONN'-tomography)

    International Nuclear Information System (INIS)

    Bockisch, A.; Koenig, R.

    1989-01-01

    A method called the 'BONN' tomography is described to produce planar projections of circular activity distributions using standard single photon emission computed tomography. The clinical value of the method is demonstrated for bone scans of the jaw, thorax, and pelvis. Numerical or projection-related problems are discussed. (orig.) [de

  14. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  15. Quantification of lung surface area using computed tomography

    Directory of Open Access Journals (Sweden)

    Xing Li

    2010-10-01

    Full Text Available Abstract Objective To refine the CT prediction of emphysema by comparing histology and CT for specific regions of lung. To incorporate both regional lung density measured by CT and cluster analysis of low attenuation areas for comparison with histological measurement of surface area per unit lung volume. Methods The histological surface area per unit lung volume was estimated for 140 samples taken from resected lung specimens of fourteen subjects. The region of the lung sampled for histology was located on the pre-operative CT scan; the regional CT median lung density and emphysematous lesion size were calculated using the X-ray attenuation values and a low attenuation cluster analysis. Linear mixed models were used to examine the relationships between histological surface area per unit lung volume and CT measures. Results The median CT lung density, low attenuation cluster analysis, and the combination of both were important predictors of surface area per unit lung volume measured by histology (p Conclusion Combining CT measures of lung density and emphysematous lesion size provides a more accurate estimate of lung surface area per unit lung volume than either measure alone.

  16. Surface processing with ionized cluster beams: computer simulation

    International Nuclear Information System (INIS)

    Insepov, Z.; Yamada, I.

    1999-01-01

    Molecular Dynamics (MD) and Monte Carlo (MC) models of energetic gas cluster irradiation of a solid surface have been developed to investigate the phenomena of crater formation, sputtering, surface treatment, and the material hardness evaluation by irradiation with cluster ions. Theoretical estimation of crater dimensions formed with Ar gas cluster ion irradiation of different substrates, based on hydrodynamics and MD simulation, are presented. The atomic scale shock waves arising from cluster impact were obtained by calculating the pressure, temperature and mass-velocity of the target atoms. The crater depth is given as a unique 1/3 dependence on the cluster energy and on the cold material Brinell hardness number (BHN). A new 'true material hardness' scale which can be very useful for example for thin film coatings deposited on a soft substrate, is defined. This finding could be used as a new technique for measuring of a material hardness. Evolution of surface morphology under cluster ion irradiation was described by the surface relaxation equation which contains a term of crater formation at cluster impact. The formation of ripples on a surface irradiated with oblique cluster ion beams was predicted. MD and MC models of Decaborane ion (B 10 H 14 ) implantation into Si and the following rapid thermal annealing (RTA) have been developed

  17. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces

    Science.gov (United States)

    Wang, Chi R.

    2005-01-01

    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one

  18. Influence of low-order rational magnetic surfaces on heat transport in TJ-II heliac ECRH plasmas

    International Nuclear Information System (INIS)

    Castejon, F.; Lopez-Bruna, D.; Estrada, T.; Ascasibar, E.; Zurro, B.; Baciero, A.

    2004-01-01

    We study the effect of low-order rational surfaces on electron heat transport in plasmas confined in the TJ-II stellarator (Alejaldre et al 1990 Fusion Technol. 17 131) and heated by electron cyclotron waves. Enhancement of core electron heat confinement is observed when the rational surface is placed in the vicinity of the power deposition zone, either by performing a magnetic configuration scan or by inducing Ohmic current in a single discharge. The key to improving heat confinement seems to be a locally strong positive radial electric field, which is made possible by a synergistic effect between enhanced electron heat fluxes through radial positions around low-order rationals and pump out mechanisms in the heat deposition zone. (author)

  19. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    Science.gov (United States)

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  20. Accurate measurement of surface areas of anatomical structures by computer-assisted triangulation of computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Allardice, J.T.; Jacomb-Hood, J.; Abulafi, A.M.; Williams, N.S. (Royal London Hospital (United Kingdom)); Cookson, J.; Dykes, E.; Holman, J. (London Hospital Medical College (United Kingdom))

    1993-05-01

    There is a need for accurate surface area measurement of internal anatomical structures in order to define light dosimetry in adjunctive intraoperative photodynamic therapy (AIOPDT). The authors investigated whether computer-assisted triangulation of serial sections generated by computed tomography (CT) scanning can give an accurate assessment of the surface area of the walls of the true pelvis after anterior resection and before colorectal anastomosis. They show that the technique of paper density tessellation is an acceptable method of measuring the surface areas of phantom objects, with a maximum error of 0.5%, and is used as the gold standard. Computer-assisted triangulation of CT images of standard geometric objects and accurately-constructed pelvic phantoms gives a surface area assessment with a maximum error of 2.5% compared with the gold standard. The CT images of 20 patients' pelves have been analysed by computer-assisted triangulation and this shows the surface area of the walls varies from 143 cm[sup 2] to 392 cm[sup 2]. (Author).