WorldWideScience

Sample records for computing facility scientific

  1. National facility for advanced computational science: A sustainable path to scientific discovery

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  2. Molecular Science Computing Facility Scientific Challenges: Linking Across Scales

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Windus, Theresa L.

    2005-07-01

    The purpose of this document is to define the evolving science drivers for performing environmental molecular research at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and to provide guidance associated with the next-generation high-performance computing center that must be developed at EMSL's Molecular Science Computing Facility (MSCF) in order to address this critical research. The MSCF is the pre-eminent computing facility?supported by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research (BER)?tailored to provide the fastest time-to-solution for current computational challenges in chemistry and biology, as well as providing the means for broad research in the molecular and environmental sciences. The MSCF provides integral resources and expertise to emerging EMSL Scientific Grand Challenges and Collaborative Access Teams that are designed to leverage the multiple integrated research capabilities of EMSL, thereby creating a synergy between computation and experiment to address environmental molecular science challenges critical to DOE and the nation.

  3. The OSG Open Facility: an on-ramp for opportunistic scientific computing

    Science.gov (United States)

    Jayatilaka, B.; Levshina, T.; Sehgal, C.; Gardner, R.; Rynge, M.; Würthwein, F.

    2017-10-01

    The Open Science Grid (OSG) is a large, robust computing grid that started primarily as a collection of sites associated with large HEP experiments such as ATLAS, CDF, CMS, and DZero, but has evolved in recent years to a much larger user and resource platform. In addition to meeting the US LHC community’s computational needs, the OSG continues to be one of the largest providers of distributed high-throughput computing (DHTC) to researchers from a wide variety of disciplines via the OSG Open Facility. The Open Facility consists of OSG resources that are available opportunistically to users other than resource owners and their collaborators. In the past two years, the Open Facility has doubled its annual throughput to over 200 million wall hours. More than half of these resources are used by over 100 individual researchers from over 60 institutions in fields such as biology, medicine, math, economics, and many others. Over 10% of these individual users utilized in excess of 1 million computational hours each in the past year. The largest source of these cycles is temporary unused capacity at institutions affiliated with US LHC computational sites. An increasing fraction, however, comes from university HPC clusters and large national infrastructure supercomputers offering unused capacity. Such expansions have allowed the OSG to provide ample computational resources to both individual researchers and small groups as well as sizable international science collaborations such as LIGO, AMS, IceCube, and sPHENIX. Opening up access to the Fermilab FabrIc for Frontier Experiments (FIFE) project has also allowed experiments such as mu2e and NOvA to make substantial use of Open Facility resources, the former with over 40 million wall hours in a year. We present how this expansion was accomplished as well as future plans for keeping the OSG Open Facility at the forefront of enabling scientific research by way of DHTC.

  4. The OSG Open Facility: An On-Ramp for Opportunistic Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Jayatilaka, B. [Fermilab; Levshina, T. [Fermilab; Sehgal, C. [Fermilab; Gardner, R. [Chicago U.; Rynge, M. [USC - ISI, Marina del Rey; Würthwein, F. [UC, San Diego

    2017-11-22

    The Open Science Grid (OSG) is a large, robust computing grid that started primarily as a collection of sites associated with large HEP experiments such as ATLAS, CDF, CMS, and DZero, but has evolved in recent years to a much larger user and resource platform. In addition to meeting the US LHC community’s computational needs, the OSG continues to be one of the largest providers of distributed high-throughput computing (DHTC) to researchers from a wide variety of disciplines via the OSG Open Facility. The Open Facility consists of OSG resources that are available opportunistically to users other than resource owners and their collaborators. In the past two years, the Open Facility has doubled its annual throughput to over 200 million wall hours. More than half of these resources are used by over 100 individual researchers from over 60 institutions in fields such as biology, medicine, math, economics, and many others. Over 10% of these individual users utilized in excess of 1 million computational hours each in the past year. The largest source of these cycles is temporary unused capacity at institutions affiliated with US LHC computational sites. An increasing fraction, however, comes from university HPC clusters and large national infrastructure supercomputers offering unused capacity. Such expansions have allowed the OSG to provide ample computational resources to both individual researchers and small groups as well as sizable international science collaborations such as LIGO, AMS, IceCube, and sPHENIX. Opening up access to the Fermilab FabrIc for Frontier Experiments (FIFE) project has also allowed experiments such as mu2e and NOvA to make substantial use of Open Facility resources, the former with over 40 million wall hours in a year. We present how this expansion was accomplished as well as future plans for keeping the OSG Open Facility at the forefront of enabling scientific research by way of DHTC.

  5. Investigation of Storage Options for Scientific Computing on Grid and Cloud Facilities

    International Nuclear Information System (INIS)

    Garzoglio, Gabriele

    2012-01-01

    In recent years, several new storage technologies, such as Lustre, Hadoop, OrangeFS, and BlueArc, have emerged. While several groups have run benchmarks to characterize them under a variety of configurations, more work is needed to evaluate these technologies for the use cases of scientific computing on Grid clusters and Cloud facilities. This paper discusses our evaluation of the technologies as deployed on a test bed at FermiCloud, one of the Fermilab infrastructure-as-a-service Cloud facilities. The test bed consists of 4 server-class nodes with 40 TB of disk space and up to 50 virtual machine clients, some running on the storage server nodes themselves. With this configuration, the evaluation compares the performance of some of these technologies when deployed on virtual machines and on “bare metal” nodes. In addition to running standard benchmarks such as IOZone to check the sanity of our installation, we have run I/O intensive tests using physics-analysis applications. This paper presents how the storage solutions perform in a variety of realistic use cases of scientific computing. One interesting difference among the storage systems tested is found in a decrease in total read throughput with increasing number of client processes, which occurs in some implementations but not others.

  6. XML Based Scientific Data Management Facility

    Science.gov (United States)

    Mehrotra, P.; Zubair, M.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The World Wide Web consortium has developed an Extensible Markup Language (XML) to support the building of better information management infrastructures. The scientific computing community realizing the benefits of XML has designed markup languages for scientific data. In this paper, we propose a XML based scientific data management ,facility, XDMF. The project is motivated by the fact that even though a lot of scientific data is being generated, it is not being shared because of lack of standards and infrastructure support for discovering and transforming the data. The proposed data management facility can be used to discover the scientific data itself, the transformation functions, and also for applying the required transformations. We have built a prototype system of the proposed data management facility that can work on different platforms. We have implemented the system using Java, and Apache XSLT engine Xalan. To support remote data and transformation functions, we had to extend the XSLT specification and the Xalan package.

  7. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Allcock, William; Beggio, Chris; Campbell, Stuart; Cherry, Andrew; Cholia, Shreyas; Dart, Eli; England, Clay; Fahey, Tim; Foertter, Fernanda; Goldstone, Robin; Hick, Jason; Karelitz, David; Kelly, Kaki; Monroe, Laura; Prabhat,; Skinner, David; White, Julia

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at the DOE national laboratories. The report contains findings from that review.

  8. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Peisert, Sean [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Davis, CA (United States); Potok, Thomas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jones, Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-03

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues included research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the

  9. Building a High Performance Computing Infrastructure for Novosibirsk Scientific Center

    International Nuclear Information System (INIS)

    Adakin, A; Chubarov, D; Nikultsev, V; Belov, S; Kaplin, V; Sukharev, A; Zaytsev, A; Kalyuzhny, V; Kuchin, N; Lomakin, S

    2011-01-01

    Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies (ICT), and Institute of Computational Mathematics and Mathematical Geophysics (ICM and MG). Since each institute has specific requirements on the architecture of the computing farms involved in its research field, currently we've got several computing facilities hosted by NSC institutes, each optimized for the particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM and MG), and a Grid Computing Facility of BINP. Recently a dedicated optical network with the initial bandwidth of 10 Gbps connecting these three facilities was built in order to make it possible to share the computing resources among the research communities of participating institutes, thus providing a common platform for building the computing infrastructure for various scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technologies based on XEN and KVM platforms. The solution implemented was tested thoroughly within the computing environment of KEDR detector experiment which is being carried out at BINP, and foreseen to be applied to the use cases of other HEP experiments in the upcoming future.

  10. 2015 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  11. 2014 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  12. Computational Science at the Argonne Leadership Computing Facility

    Science.gov (United States)

    Romero, Nichols

    2014-03-01

    The goal of the Argonne Leadership Computing Facility (ALCF) is to extend the frontiers of science by solving problems that require innovative approaches and the largest-scale computing systems. ALCF's most powerful computer - Mira, an IBM Blue Gene/Q system - has nearly one million cores. How does one program such systems? What software tools are available? Which scientific and engineering applications are able to utilize such levels of parallelism? This talk will address these questions and describe a sampling of projects that are using ALCF systems in their research, including ones in nanoscience, materials science, and chemistry. Finally, the ways to gain access to ALCF resources will be presented. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

  13. Introduction to the LaRC central scientific computing complex

    Science.gov (United States)

    Shoosmith, John N.

    1993-01-01

    The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley.

  14. Scientific Computing Strategic Plan for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Whiting, Eric Todd

    2015-01-01

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory's (INL's) challenge and charge, and is central to INL's ongoing success. Computing is an essential part of INL's future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing number of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.

  15. High Performance Computing Facility Operational Assessment, FY 2010 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; White, Julia C [ORNL

    2010-08-01

    Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energy assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools

  16. Data management, code deployment, and scientific visualization to enhance scientific discovery in fusion research through advanced computing

    International Nuclear Information System (INIS)

    Schissel, D.P.; Finkelstein, A.; Foster, I.T.; Fredian, T.W.; Greenwald, M.J.; Hansen, C.D.; Johnson, C.R.; Keahey, K.; Klasky, S.A.; Li, K.; McCune, D.C.; Peng, Q.; Stevens, R.; Thompson, M.R.

    2002-01-01

    The long-term vision of the Fusion Collaboratory described in this paper is to transform fusion research and accelerate scientific understanding and innovation so as to revolutionize the design of a fusion energy source. The Collaboratory will create and deploy collaborative software tools that will enable more efficient utilization of existing experimental facilities and more effective integration of experiment, theory, and modeling. The computer science research necessary to create the Collaboratory is centered on three activities: security, remote and distributed computing, and scientific visualization. It is anticipated that the presently envisioned Fusion Collaboratory software tools will require 3 years to complete

  17. COMPUTER ORIENTED FACILITIES OF TEACHING AND INFORMATIVE COMPETENCE

    Directory of Open Access Journals (Sweden)

    Olga M. Naumenko

    2010-09-01

    Full Text Available In the article it is considered the history of views to the tasks of education, estimations of its effectiveness from the point of view of forming of basic vitally important competences. Opinions to the problem in different countries, international organizations, corresponding experience of the Ukrainian system of education are described. The necessity of forming of informative competence of future teacher is reasonable in the conditions of application of the computer oriented facilities of teaching at the study of naturally scientific cycle subjects in pedagogical colleges. Prognosis estimations concerning the development of methods of application of computer oriented facilities of teaching are presented.

  18. Integrating multiple scientific computing needs via a Private Cloud infrastructure

    International Nuclear Information System (INIS)

    Bagnasco, S; Berzano, D; Brunetti, R; Lusso, S; Vallero, S

    2014-01-01

    In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.

  19. Scientific and Technological Facilities in CIEMAT

    International Nuclear Information System (INIS)

    Vaquero Ortiz, E. M.; Cascante Díaz, E.; González Pineda, L. M.

    2015-01-01

    The precise knowledge of the available Resources in an Organization, regardless the work it carries out, is an essential strategic enabler to achieve its goals. Material Resources are part of the resources in an organization, The “Material Resources” expression includes a wide span of elements, because a Material Resource, as a generic concept, is each and every specific physical mean, utilized to get any of the Organization objectives. In CIEMAT, as Public Research Agency, its Material Resources consist of its scientific and technological facilities. These resources are the basis of this Agency numerous amount of technical capabilities, allowing it to carry out its research, development and innovation activity to transfer its results to the society later. This report is a summary on CIEMAT scientific and technological facilities, whose spread can help to show its scientific and technological capabilities, to enable the execution of a wide variety of projects and to open new external cooperation channels. Outstanding among these facilities are two “Unique Scientific and Technological Infrastructures” (ICTS) and the Ionizing Radiations Metrology Laboratory (LMRI) which is the Spanish National Standards Laboratory for ionising radiations.

  20. Scientific user facilities at Oak Ridge National Laboratory: New research capabilities and opportunities

    Science.gov (United States)

    Roberto, James

    2011-10-01

    Over the past decade, Oak Ridge National Laboratory (ORNL) has transformed its research infrastructure, particularly in the areas of neutron scattering, nanoscale science and technology, and high-performance computing. New facilities, including the Spallation Neutron Source, Center for Nanophase Materials Sciences, and Leadership Computing Facility, have been constructed that provide world-leading capabilities in neutron science, condensed matter and materials physics, and computational physics. In addition, many existing physics-related facilities have been upgraded with new capabilities, including new instruments and a high- intensity cold neutron source at the High Flux Isotope Reactor. These facilities are operated for the scientific community and are available to qualified users based on competitive peer-reviewed proposals. User facilities at ORNL currently welcome more than 2,500 researchers each year, mostly from universities. These facilities, many of which are unique in the world, will be reviewed including current and planned research capabilities, availability and operational performance, access procedures, and recent research results. Particular attention will be given to new neutron scattering capabilities, nanoscale science, and petascale simulation and modeling. In addition, user facilities provide a portal into ORNL that can enhance the development of research collaborations. The spectrum of partnership opportunities with ORNL will be described including collaborations, joint faculty, and graduate research and education.

  1. Scientific computer simulation review

    International Nuclear Information System (INIS)

    Kaizer, Joshua S.; Heller, A. Kevin; Oberkampf, William L.

    2015-01-01

    Before the results of a scientific computer simulation are used for any purpose, it should be determined if those results can be trusted. Answering that question of trust is the domain of scientific computer simulation review. There is limited literature that focuses on simulation review, and most is specific to the review of a particular type of simulation. This work is intended to provide a foundation for a common understanding of simulation review. This is accomplished through three contributions. First, scientific computer simulation review is formally defined. This definition identifies the scope of simulation review and provides the boundaries of the review process. Second, maturity assessment theory is developed. This development clarifies the concepts of maturity criteria, maturity assessment sets, and maturity assessment frameworks, which are essential for performing simulation review. Finally, simulation review is described as the application of a maturity assessment framework. This is illustrated through evaluating a simulation review performed by the U.S. Nuclear Regulatory Commission. In making these contributions, this work provides a means for a more objective assessment of a simulation’s trustworthiness and takes the next step in establishing scientific computer simulation review as its own field. - Highlights: • We define scientific computer simulation review. • We develop maturity assessment theory. • We formally define a maturity assessment framework. • We describe simulation review as the application of a maturity framework. • We provide an example of a simulation review using a maturity framework

  2. The Fermilab central computing facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-01-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front-end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS cluster interactive front-end, an Amdahl VM Computing engine, ACP farms, and (primarily) VMS workstations. This paper will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. (orig.)

  3. The Fermilab Central Computing Facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-05-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS Cluster interactive front end, an Amdahl VM computing engine, ACP farms, and (primarily) VMS workstations. This presentation will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. 2 figs

  4. High Performance Computing Facility Operational Assessment 2015: Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Ashley D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bland, Arthur S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Gary, Jeff D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Hack, James J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; McNally, Stephen T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Rogers, James H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Smith, Brian E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Straatsma, T. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Sukumar, Sreenivas Rangan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Thach, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Tichenor, Suzy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Vazhkudai, Sudharshan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Wells, Jack C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility

    2016-03-01

    Oak Ridge National Laboratory’s (ORNL’s) Leadership Computing Facility (OLCF) continues to surpass its operational target goals: supporting users; delivering fast, reliable systems; creating innovative solutions for high-performance computing (HPC) needs; and managing risks, safety, and security aspects associated with operating one of the most powerful computers in the world. The results can be seen in the cutting-edge science delivered by users and the praise from the research community. Calendar year (CY) 2015 was filled with outstanding operational results and accomplishments: a very high rating from users on overall satisfaction that ties the highest-ever mark set in CY 2014; the greatest number of core-hours delivered to research projects; the largest percentage of capability usage since the OLCF began tracking the metric in 2009; and success in delivering on the allocation of 60, 30, and 10% of core hours offered for the INCITE (Innovative and Novel Computational Impact on Theory and Experiment), ALCC (Advanced Scientific Computing Research Leadership Computing Challenge), and Director’s Discretionary programs, respectively. These accomplishments, coupled with the extremely high utilization rate, represent the fulfillment of the promise of Titan: maximum use by maximum-size simulations. The impact of all of these successes and more is reflected in the accomplishments of OLCF users, with publications this year in notable journals Nature, Nature Materials, Nature Chemistry, Nature Physics, Nature Climate Change, ACS Nano, Journal of the American Chemical Society, and Physical Review Letters, as well as many others. The achievements included in the 2015 OLCF Operational Assessment Report reflect first-ever or largest simulations in their communities; for example Titan enabled engineers in Los Angeles and the surrounding region to design and begin building improved critical infrastructure by enabling the highest-resolution Cybershake map for Southern

  5. Scientific and Technological Facilities in CIEMAT

    International Nuclear Information System (INIS)

    Vaquero Ortiz, E. M.

    2012-01-01

    The precise knowledge of the available Resources in an Organization, regardless the work it carries out, is an essential strategic enable to achieve its goals. Material Resources are part of the resources in an organization, The Material Resources expression includes a wide span of elements, because a Material Resource, as a generic concept, is each and every specific physical mean, utilised to get any of the Organization objectives. In case of CIEMAT, as Public Research Agency, its Material Resources consists of its scientific and technological facilities. These resources are the basis of this Agency numerous amount of technical capabilities, allowing it to carry out its research, development and innovation activity to transfer its results to the society later. This report is a summary on CIEMAT scientific and technological facilities, whose spread can help to show its scientific and technological capabilities, to enable the execution of a wide variety of projects and to open new external cooperation channels. In that list its possible to find the two Unique Scientific and Technological Infrastructures (ICTS) in Spain which are hold by CIEMAT and the Ionizing Radiations Metrology Laboratory (LMRI) which is the Spanish National Standards Laboratory for ionising radiations. (Author)

  6. Pascal-SC a computer language for scientific computation

    CERN Document Server

    Bohlender, Gerd; von Gudenberg, Jürgen Wolff; Rheinboldt, Werner; Siewiorek, Daniel

    1987-01-01

    Perspectives in Computing, Vol. 17: Pascal-SC: A Computer Language for Scientific Computation focuses on the application of Pascal-SC, a programming language developed as an extension of standard Pascal, in scientific computation. The publication first elaborates on the introduction to Pascal-SC, a review of standard Pascal, and real floating-point arithmetic. Discussions focus on optimal scalar product, standard functions, real expressions, program structure, simple extensions, real floating-point arithmetic, vector and matrix arithmetic, and dynamic arrays. The text then examines functions a

  7. Second Annual AEC Scientific Computer Information Exhange Meeting. Proceedings of the technical program theme: computer graphics

    Energy Technology Data Exchange (ETDEWEB)

    Peskin,A.M.; Shimamoto, Y.

    1974-01-01

    The topic of computer graphics serves well to illustrate that AEC affiliated scientific computing installations are well represented in the forefront of computing science activities. The participant response to the technical program was overwhelming--both in number of contributions and quality of the work described. Session I, entitled Advanced Systems, contains presentations describing systems that contain features not generally found in graphics facilities. These features can be roughly classified as extensions of standard two-dimensional monochromatic imaging to higher dimensions including color and time as well as multidimensional metrics. Session II presents seven diverse applications ranging from high energy physics to medicine. Session III describes a number of important developments in establishing facilities, techniques and enhancements in the computer graphics area. Although an attempt was made to schedule as many of these worthwhile presentations as possible, it appeared impossible to do so given the scheduling constraints of the meeting. A number of prospective presenters 'came to the rescue' by graciously withdrawing from the sessions. Some of their abstracts have been included in the Proceedings.

  8. High-End Scientific Computing

    Science.gov (United States)

    EPA uses high-end scientific computing, geospatial services and remote sensing/imagery analysis to support EPA's mission. The Center for Environmental Computing (CEC) assists the Agency's program offices and regions to meet staff needs in these areas.

  9. High Performance Computing Facility Operational Assessment, FY 2011 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Ann E [ORNL; Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL

    2011-08-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.5 billion core hours in calendar year (CY) 2010 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Scientific achievements by OLCF users range from collaboration with university experimentalists to produce a working supercapacitor that uses atom-thick sheets of carbon materials to finely determining the resolution requirements for simulations of coal gasifiers and their components, thus laying the foundation for development of commercial-scale gasifiers. OLCF users are pushing the boundaries with software applications sustaining more than one petaflop of performance in the quest to illuminate the fundamental nature of electronic devices. Other teams of researchers are working to resolve predictive capabilities of climate models, to refine and validate genome sequencing, and to explore the most fundamental materials in nature - quarks and gluons - and their unique properties. Details of these scientific endeavors - not possible without access to leadership-class computing resources - are detailed in Section 4 of this report and in the INCITE in Review. Effective operations of the OLCF play a key role in the scientific missions and accomplishments of its users. This Operational Assessment Report (OAR) will delineate the policies, procedures, and innovations implemented by the OLCF to continue delivering a petaflop-scale resource for cutting-edge research. The 2010 operational assessment of the OLCF yielded recommendations that have been addressed (Reference Section 1) and

  10. Joint Computing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raised Floor Computer Space for High Performance ComputingThe ERDC Information Technology Laboratory (ITL) provides a robust system of IT facilities to develop and...

  11. Practical scientific computing

    CERN Document Server

    Muhammad, A

    2011-01-01

    Scientific computing is about developing mathematical models, numerical methods and computer implementations to study and solve real problems in science, engineering, business and even social sciences. Mathematical modelling requires deep understanding of classical numerical methods. This essential guide provides the reader with sufficient foundations in these areas to venture into more advanced texts. The first section of the book presents numEclipse, an open source tool for numerical computing based on the notion of MATLAB®. numEclipse is implemented as a plug-in for Eclipse, a leading integ

  12. Research on the Construction Management and Sustainable Development of Large-Scale Scientific Facilities in China

    Science.gov (United States)

    Guiquan, Xi; Lin, Cong; Xuehui, Jin

    2018-05-01

    As an important platform for scientific and technological development, large -scale scientific facilities are the cornerstone of technological innovation and a guarantee for economic and social development. Researching management of large-scale scientific facilities can play a key role in scientific research, sociology and key national strategy. This paper reviews the characteristics of large-scale scientific facilities, and summarizes development status of China's large-scale scientific facilities. At last, the construction, management, operation and evaluation of large-scale scientific facilities is analyzed from the perspective of sustainable development.

  13. Exploring HPCS languages in scientific computing

    International Nuclear Information System (INIS)

    Barrett, R F; Alam, S R; Almeida, V F d; Bernholdt, D E; Elwasif, W R; Kuehn, J A; Poole, S W; Shet, A G

    2008-01-01

    As computers scale up dramatically to tens and hundreds of thousands of cores, develop deeper computational and memory hierarchies, and increased heterogeneity, developers of scientific software are increasingly challenged to express complex parallel simulations effectively and efficiently. In this paper, we explore the three languages developed under the DARPA High-Productivity Computing Systems (HPCS) program to help address these concerns: Chapel, Fortress, and X10. These languages provide a variety of features not found in currently popular HPC programming environments and make it easier to express powerful computational constructs, leading to new ways of thinking about parallel programming. Though the languages and their implementations are not yet mature enough for a comprehensive evaluation, we discuss some of the important features, and provide examples of how they can be used in scientific computing. We believe that these characteristics will be important to the future of high-performance scientific computing, whether the ultimate language of choice is one of the HPCS languages or something else

  14. Exploring HPCS languages in scientific computing

    Science.gov (United States)

    Barrett, R. F.; Alam, S. R.; Almeida, V. F. d.; Bernholdt, D. E.; Elwasif, W. R.; Kuehn, J. A.; Poole, S. W.; Shet, A. G.

    2008-07-01

    As computers scale up dramatically to tens and hundreds of thousands of cores, develop deeper computational and memory hierarchies, and increased heterogeneity, developers of scientific software are increasingly challenged to express complex parallel simulations effectively and efficiently. In this paper, we explore the three languages developed under the DARPA High-Productivity Computing Systems (HPCS) program to help address these concerns: Chapel, Fortress, and X10. These languages provide a variety of features not found in currently popular HPC programming environments and make it easier to express powerful computational constructs, leading to new ways of thinking about parallel programming. Though the languages and their implementations are not yet mature enough for a comprehensive evaluation, we discuss some of the important features, and provide examples of how they can be used in scientific computing. We believe that these characteristics will be important to the future of high-performance scientific computing, whether the ultimate language of choice is one of the HPCS languages or something else.

  15. Scientific Support of Construction of Unique Buildings and Structures and Facilities of Increased Danger

    Science.gov (United States)

    Alekhin, V. N.; Antipin, A. A.; Gorodilov, S. N.

    2017-11-01

    A range of works on scientific support for the construction of unique buildings and the structures and facilities of increased danger, such as airport facilities, long-span and high-rise buildings is being implemented at the department “Computer Aided Design in Civil Engineering” of Ural Federal University. The scope of work includes: numerical simulation of wind and snow loads, analysis of progressive collapse and seismic impacts, verification of design solutions. The results of wind, snow loads and progressive collapse of airport buildings in the cities of Orenburg, Rostov-on-Don and Perm are considered in the article.

  16. Computer-Aided Facilities Management Systems (CAFM).

    Science.gov (United States)

    Cyros, Kreon L.

    Computer-aided facilities management (CAFM) refers to a collection of software used with increasing frequency by facilities managers. The six major CAFM components are discussed with respect to their usefulness and popularity in facilities management applications: (1) computer-aided design; (2) computer-aided engineering; (3) decision support…

  17. Paul Scherrer Institute Scientific and Technical Report 2000. Volume VI: Large Research Facilities

    International Nuclear Information System (INIS)

    Foroughi, Fereydoun; Bercher, Renate; Buechli, Carmen; Zumkeller, Lotty

    2001-01-01

    The PSI Department Large Research Facilities (GFA) joins the efforts to provide an excellent research environment to Swiss and foreign research groups on the experimental facilities driven by our high intensity proton accelerator complex. Its divisions care for the running, maintenance and enhancement of the accelerator complex, the primary proton beamlines, the targets and the secondary beams as well as the neutron spallation source SINQ. The division for technical support and coordination provides for technical support to the research facility complementary to the basic logistic available from the department for logistics and marketing. Besides running the facilities, the staff of the department is also involved in theoretical and experimental research projects. Some of them address basic scientific questions mainly concerning the properties of micro- or nanostructured materials: experiments as well as large scale computer simulations of molecular dynamics were performed to investigate nonclassical materials properties. Others are related to improvements or extensions of the capabilities of our facilities. We also report on intriguing results from applications of the neutron capture radiography, the prompt gamma activation method and the isotope production facility at SINQ

  18. Paul Scherrer Institute Scientific and Technical Report 2000. Volume VI: Large Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Foroughi, Fereydoun; Bercher, Renate; Buechli, Carmen; Zumkeller, Lotty [eds.

    2001-07-01

    The PSI Department Large Research Facilities (GFA) joins the efforts to provide an excellent research environment to Swiss and foreign research groups on the experimental facilities driven by our high intensity proton accelerator complex. Its divisions care for the running, maintenance and enhancement of the accelerator complex, the primary proton beamlines, the targets and the secondary beams as well as the neutron spallation source SINQ. The division for technical support and coordination provides for technical support to the research facility complementary to the basic logistic available from the department for logistics and marketing. Besides running the facilities, the staff of the department is also involved in theoretical and experimental research projects. Some of them address basic scientific questions mainly concerning the properties of micro- or nanostructured materials: experiments as well as large scale computer simulations of molecular dynamics were performed to investigate nonclassical materials properties. Others are related to improvements or extensions of the capabilities of our facilities. We also report on intriguing results from applications of the neutron capture radiography, the prompt gamma activation method and the isotope production facility at SINQ.

  19. Computers and Computation. Readings from Scientific American.

    Science.gov (United States)

    Fenichel, Robert R.; Weizenbaum, Joseph

    A collection of articles from "Scientific American" magazine has been put together at this time because the current period in computer science is one of consolidation rather than innovation. A few years ago, computer science was moving so swiftly that even the professional journals were more archival than informative; but today it is…

  20. OPENING REMARKS: Scientific Discovery through Advanced Computing

    Science.gov (United States)

    Strayer, Michael

    2006-01-01

    as the national and regional electricity grid, carbon sequestration, virtual engineering, and the nuclear fuel cycle. The successes of the first five years of SciDAC have demonstrated the power of using advanced computing to enable scientific discovery. One measure of this success could be found in the President’s State of the Union address in which President Bush identified ‘supercomputing’ as a major focus area of the American Competitiveness Initiative. Funds were provided in the FY 2007 President’s Budget request to increase the size of the NERSC-5 procurement to between 100-150 teraflops, to upgrade the LCF Cray XT3 at Oak Ridge to 250 teraflops and acquire a 100 teraflop IBM BlueGene/P to establish the Leadership computing facility at Argonne. We believe that we are on a path to establish a petascale computing resource for open science by 2009. We must develop software tools, packages, and libraries as well as the scientific application software that will scale to hundreds of thousands of processors. Computer scientists from universities and the DOE’s national laboratories will be asked to collaborate on the development of the critical system software components such as compilers, light-weight operating systems and file systems. Standing up these large machines will not be business as usual for ASCR. We intend to develop a series of interconnected projects that identify cost, schedule, risks, and scope for the upgrades at the LCF at Oak Ridge, the establishment of the LCF at Argonne, and the development of the software to support these high-end computers. The critical first step in defining the scope of the project is to identify a set of early application codes for each leadership class computing facility. These codes will have access to the resources during the commissioning phase of the facility projects and will be part of the acceptance tests for the machines. Applications will be selected, in part, by breakthrough science, scalability, and

  1. Scientific computing

    CERN Document Server

    Trangenstein, John A

    2017-01-01

    This is the third of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses topics that depend more on calculus than linear algebra, in order to prepare the reader for solving differential equations. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 90 examples, 200 exercises, 36 algorithms, 40 interactive JavaScript programs, 91 references to software programs and 1 case study. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in GSLIB and MATLAB. This book could be used for a second course in numerical methods, for either ...

  2. High Performance Computing Facility Operational Assessment, CY 2011 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Bland, Arthur S Buddy [ORNL; Boudwin, Kathlyn J. [ORNL; Hack, James J [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL; Hudson, Douglas L [ORNL

    2012-02-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.4 billion core hours in calendar year (CY) 2011 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Users reported more than 670 publications this year arising from their use of OLCF resources. Of these we report the 300 in this review that are consistent with guidance provided. Scientific achievements by OLCF users cut across all range scales from atomic to molecular to large-scale structures. At the atomic scale, researchers discovered that the anomalously long half-life of Carbon-14 can be explained by calculating, for the first time, the very complex three-body interactions between all the neutrons and protons in the nucleus. At the molecular scale, researchers combined experimental results from LBL's light source and simulations on Jaguar to discover how DNA replication continues past a damaged site so a mutation can be repaired later. Other researchers combined experimental results from ORNL's Spallation Neutron Source and simulations on Jaguar to reveal the molecular structure of ligno-cellulosic material used in bioethanol production. This year, Jaguar has been used to do billion-cell CFD calculations to develop shock wave compression turbo machinery as a means to meet DOE goals for reducing carbon sequestration costs. General Electric used Jaguar to calculate the unsteady flow through turbo machinery to learn what efficiencies the traditional steady flow assumption is hiding from designers. Even a 1% improvement in turbine design can save the nation

  3. XVIS: Visualization for the Extreme-Scale Scientific-Computation Ecosystem Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Maynard, Robert [Kitware, Inc., Clifton Park, NY (United States)

    2017-10-27

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. The XVis project brought together collaborators from predominant DOE projects for visualization on accelerators and combining their respective features into a new visualization toolkit called VTK-m.

  4. RXY/DRXY-a postprocessing graphical system for scientific computation

    International Nuclear Information System (INIS)

    Jin Qijie

    1990-01-01

    Scientific computing require computer graphical function for its visualization. The developing objects and functions of a postprocessing graphical system for scientific computation are described, and also briefly described its implementation

  5. ATR National Scientific User Facility 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Julie A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robertson, Sarah [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    This is the 2013 Annual Report for the Advanced Test Reactor National Scientific User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.

  6. Tritium handling facilities at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Anderson, J.L.; Damiano, F.A.; Nasise, J.E.

    1975-01-01

    A new tritium facility, recently activated at the Los Alamos Scientific Laboratory, is described. The facility contains a large drybox, associated gas processing system, a facility for handling tritium gas at pressures to approximately 100 MPa, and an effluent treatment system which removes tritium from all effluents prior to their release to the atmosphere. The system and its various components are discussed in detail with special emphasis given to those aspects which significantly reduce personnel exposures and atmospheric releases. (auth)

  7. 5th International Conference on High Performance Scientific Computing

    CERN Document Server

    Hoang, Xuan; Rannacher, Rolf; Schlöder, Johannes

    2014-01-01

    This proceedings volume gathers a selection of papers presented at the Fifth International Conference on High Performance Scientific Computing, which took place in Hanoi on March 5-9, 2012. The conference was organized by the Institute of Mathematics of the Vietnam Academy of Science and Technology (VAST), the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University, Ho Chi Minh City University of Technology, and the Vietnam Institute for Advanced Study in Mathematics. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and practical applications. Subjects covered include mathematical modeling; numerical simulation; methods for optimization and control; parallel computing; software development; and applications of scientific computing in physics, mechanics and biomechanics, material science, hydrology, chemistry, biology, biotechnology, medicine, sports, psychology, transport, logistics, com...

  8. 3rd International Conference on High Performance Scientific Computing

    CERN Document Server

    Kostina, Ekaterina; Phu, Hoang; Rannacher, Rolf

    2008-01-01

    This proceedings volume contains a selection of papers presented at the Third International Conference on High Performance Scientific Computing held at the Hanoi Institute of Mathematics, Vietnamese Academy of Science and Technology (VAST), March 6-10, 2006. The conference has been organized by the Hanoi Institute of Mathematics, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, and its International PhD Program ``Complex Processes: Modeling, Simulation and Optimization'', and Ho Chi Minh City University of Technology. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and applications in practice. Subjects covered are mathematical modelling, numerical simulation, methods for optimization and control, parallel computing, software development, applications of scientific computing in physics, chemistry, biology and mechanics, environmental and hydrology problems, transport, logistics and site loca...

  9. 6th International Conference on High Performance Scientific Computing

    CERN Document Server

    Phu, Hoang; Rannacher, Rolf; Schlöder, Johannes

    2017-01-01

    This proceedings volume highlights a selection of papers presented at the Sixth International Conference on High Performance Scientific Computing, which took place in Hanoi, Vietnam on March 16-20, 2015. The conference was jointly organized by the Heidelberg Institute of Theoretical Studies (HITS), the Institute of Mathematics of the Vietnam Academy of Science and Technology (VAST), the Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University, and the Vietnam Institute for Advanced Study in Mathematics, Ministry of Education The contributions cover a broad, interdisciplinary spectrum of scientific computing and showcase recent advances in theory, methods, and practical applications. Subjects covered numerical simulation, methods for optimization and control, parallel computing, and software development, as well as the applications of scientific computing in physics, mechanics, biomechanics and robotics, material science, hydrology, biotechnology, medicine, transport, scheduling, and in...

  10. Scientific and Technological Facilities in CIEMAT; Informe sobre Instalaciones del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Vaquero Ortiz, E. M.; Cascante Díaz, E.; González Pineda, L. M.

    2015-07-01

    The precise knowledge of the available Resources in an Organization, regardless the work it carries out, is an essential strategic enabler to achieve its goals. Material Resources are part of the resources in an organization, The “Material Resources” expression includes a wide span of elements, because a Material Resource, as a generic concept, is each and every specific physical mean, utilized to get any of the Organization objectives. In CIEMAT, as Public Research Agency, its Material Resources consist of its scientific and technological facilities. These resources are the basis of this Agency numerous amount of technical capabilities, allowing it to carry out its research, development and innovation activity to transfer its results to the society later. This report is a summary on CIEMAT scientific and technological facilities, whose spread can help to show its scientific and technological capabilities, to enable the execution of a wide variety of projects and to open new external cooperation channels. Outstanding among these facilities are two “Unique Scientific and Technological Infrastructures” (ICTS) and the Ionizing Radiations Metrology Laboratory (LMRI) which is the Spanish National Standards Laboratory for ionising radiations.

  11. Advanced Test Reactor National Scientific User Facility 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mary Catherine Thelen; Todd R. Allen

    2011-05-01

    This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

  12. Highly parallel machines and future of scientific computing

    International Nuclear Information System (INIS)

    Singh, G.S.

    1992-01-01

    Computing requirement of large scale scientific computing has always been ahead of what state of the art hardware could supply in the form of supercomputers of the day. And for any single processor system the limit to increase in the computing power was realized a few years back itself. Now with the advent of parallel computing systems the availability of machines with the required computing power seems a reality. In this paper the author tries to visualize the future large scale scientific computing in the penultimate decade of the present century. The author summarized trends in parallel computers and emphasize the need for a better programming environment and software tools for optimal performance. The author concludes this paper with critique on parallel architectures, software tools and algorithms. (author). 10 refs., 2 tabs

  13. User Facilities of the Office of Basic Energy Sciences: A National Resource for Scientific Research

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-01

    The BES user facilities provide open access to specialized instrumentation and expertise that enable scientific users from universities, national laboratories, and industry to carry out experiments and develop theories that could not be done at their home institutions. These forefront research facilities require resource commitments well beyond the scope of any non-government institution and open up otherwise inaccessible facets of Nature to scientific inquiry. For approved, peer-reviewed projects, instrument time is available without charge to researchers who intend to publish their results in the open literature. These large-scale user facilities have made significant contributions to various scientific fields, including chemistry, physics, geology, materials science, environmental science, biology, and biomedical science. Over 16,000 scientists and engineers.pdf file (27KB) conduct experiments at BES user facilities annually. Thousands of other researchers collaborate with these users and analyze the data measured at the facilities to publish new scientific findings in peer-reviewed journals.

  14. Compiler Technology for Parallel Scientific Computation

    Directory of Open Access Journals (Sweden)

    Can Özturan

    1994-01-01

    Full Text Available There is a need for compiler technology that, given the source program, will generate efficient parallel codes for different architectures with minimal user involvement. Parallel computation is becoming indispensable in solving large-scale problems in science and engineering. Yet, the use of parallel computation is limited by the high costs of developing the needed software. To overcome this difficulty we advocate a comprehensive approach to the development of scalable architecture-independent software for scientific computation based on our experience with equational programming language (EPL. Our approach is based on a program decomposition, parallel code synthesis, and run-time support for parallel scientific computation. The program decomposition is guided by the source program annotations provided by the user. The synthesis of parallel code is based on configurations that describe the overall computation as a set of interacting components. Run-time support is provided by the compiler-generated code that redistributes computation and data during object program execution. The generated parallel code is optimized using techniques of data alignment, operator placement, wavefront determination, and memory optimization. In this article we discuss annotations, configurations, parallel code generation, and run-time support suitable for parallel programs written in the functional parallel programming language EPL and in Fortran.

  15. Scientific and Technological Facilities in CIEMAT; Las Instalaciones del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Vaquero Ortiz, E M

    2012-09-13

    The precise knowledge of the available Resources in an Organization, regardless the work it carries out, is an essential strategic enable to achieve its goals. Material Resources are part of the resources in an organization, The Material Resources expression includes a wide span of elements, because a Material Resource, as a generic concept, is each and every specific physical mean, utilised to get any of the Organization objectives. In case of CIEMAT, as Public Research Agency, its Material Resources consists of its scientific and technological facilities. These resources are the basis of this Agency numerous amount of technical capabilities, allowing it to carry out its research, development and innovation activity to transfer its results to the society later. This report is a summary on CIEMAT scientific and technological facilities, whose spread can help to show its scientific and technological capabilities, to enable the execution of a wide variety of projects and to open new external cooperation channels. In that list its possible to find the two Unique Scientific and Technological Infrastructures (ICTS) in Spain which are hold by CIEMAT and the Ionizing Radiations Metrology Laboratory (LMRI) which is the Spanish National Standards Laboratory for ionising radiations. (Author)

  16. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Charles [Argonne National Lab. (ANL), Argonne, IL (United States); Bell, Greg [ESnet, Berkeley, CA (United States); Canon, Shane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [ESnet, Berkeley, CA (United States); Dattoria, Vince [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Goodwin, Dave [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Lee, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hicks, Susan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holohan, Ed [Argonne National Lab. (ANL), Argonne, IL (United States); Klasky, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lauzon, Carolyn [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Rogers, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skinner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian [ESnet, Berkeley, CA (United States)

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  17. Scientific computing an introduction using Maple and Matlab

    CERN Document Server

    Gander, Walter; Kwok, Felix

    2014-01-01

    Scientific computing is the study of how to use computers effectively to solve problems that arise from the mathematical modeling of phenomena in science and engineering. It is based on mathematics, numerical and symbolic/algebraic computations and visualization. This book serves as an introduction to both the theory and practice of scientific computing, with each chapter presenting the basic algorithms that serve as the workhorses of many scientific codes; we explain both the theory behind these algorithms and how they must be implemented in order to work reliably in finite-precision arithmetic. The book includes many programs written in Matlab and Maple – Maple is often used to derive numerical algorithms, whereas Matlab is used to implement them. The theory is developed in such a way that students can learn by themselves as they work through the text. Each chapter contains numerous examples and problems to help readers understand the material “hands-on”.

  18. Conducting Computer Security Assessments at Nuclear Facilities

    International Nuclear Information System (INIS)

    2016-06-01

    Computer security is increasingly recognized as a key component in nuclear security. As technology advances, it is anticipated that computer and computing systems will be used to an even greater degree in all aspects of plant operations including safety and security systems. A rigorous and comprehensive assessment process can assist in strengthening the effectiveness of the computer security programme. This publication outlines a methodology for conducting computer security assessments at nuclear facilities. The methodology can likewise be easily adapted to provide assessments at facilities with other radioactive materials

  19. Scientific Discovery through Advanced Computing in Plasma Science

    Science.gov (United States)

    Tang, William

    2005-03-01

    Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research during the 21st Century. For example, the Department of Energy's ``Scientific Discovery through Advanced Computing'' (SciDAC) Program was motivated in large measure by the fact that formidable scientific challenges in its research portfolio could best be addressed by utilizing the combination of the rapid advances in super-computing technology together with the emergence of effective new algorithms and computational methodologies. The imperative is to translate such progress into corresponding increases in the performance of the scientific codes used to model complex physical systems such as those encountered in high temperature plasma research. If properly validated against experimental measurements and analytic benchmarks, these codes can provide reliable predictive capability for the behavior of a broad range of complex natural and engineered systems. This talk reviews recent progress and future directions for advanced simulations with some illustrative examples taken from the plasma science applications area. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by the combination of access to powerful new computational resources together with innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning a huge range in time and space scales. In particular, the plasma science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations

  20. High-performance scientific computing in the cloud

    Science.gov (United States)

    Jorissen, Kevin; Vila, Fernando; Rehr, John

    2011-03-01

    Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.

  1. A high performance scientific cloud computing environment for materials simulations

    OpenAIRE

    Jorissen, Kevin; Vila, Fernando D.; Rehr, John J.

    2011-01-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including...

  2. OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing

    Science.gov (United States)

    Strayer, Michael

    2005-01-01

    with industry and virtual prototyping. New instruments of collaboration will include institutes and centers while summer schools, workshops and outreach will invite new talent and expertise. Computational science adds new dimensions to science and its practice. Disciplines of fusion, accelerator science, and combustion are poised to blur the boundaries between pure and applied science. As we open the door into FY2006 we shall see a landscape of new scientific challenges: in biology, chemistry, materials, and astrophysics to name a few. The enabling technologies of SciDAC have been transformational as drivers of change. Planning for major new software systems assumes a base line employing Common Component Architectures and this has become a household word for new software projects. While grid algorithms and mesh refinement software have transformed applications software, data management and visualization have transformed our understanding of science from data. The Gordon Bell prize now seems to be dominated by computational science and solvers developed by TOPS ISIC. The priorities of the Office of Science in the Department of Energy are clear. The 20 year facilities plan is driven by new science. High performance computing is placed amongst the two highest priorities. Moore's law says that by the end of the next cycle of SciDAC we shall have peta-flop computers. The challenges of petascale computing are enormous. These and the associated computational science are the highest priorities for computing within the Office of Science. Our effort in Leadership Class computing is just a first step towards this goal. Clearly, computational science at this scale will face enormous challenges and possibilities. Performance evaluation and prediction will be critical to unraveling the needed software technologies. We must not lose sight of our overarching goal—that of scientific discovery. Science does not stand still and the landscape of science discovery and computing holds

  3. Scientific applications of symbolic computation

    International Nuclear Information System (INIS)

    Hearn, A.C.

    1976-02-01

    The use of symbolic computation systems for problem solving in scientific research is reviewed. The nature of the field is described, and particular examples are considered from celestial mechanics, quantum electrodynamics and general relativity. Symbolic integration and some more recent applications of algebra systems are also discussed [fr

  4. A New Hybrid Approach for Augmented Reality Maintenance in Scientific Facilities

    Directory of Open Access Journals (Sweden)

    Héctor Martínez

    2013-09-01

    Full Text Available Maintenance in scientific facilities is a difficult issue, especially in large and hazardous facilities, due to the complexity of tasks and equipment. Augmented reality is a technology that has already shown great promise in the maintenance field. With the help of augmented reality applications, maintenance tasks can be carried out faster and more safely. The problem with current applications is that they are small-scale prototypes that do not easily scale to large facility maintenance applications. This paper presents a new hybrid approach that enables the creation of augmented reality maintenance applications for large and hazardous scientific facilities. In this paper, a new augmented reality marker and the algorithm for its recognition is proposed. The performance of the algorithm is verified in three test cases, showing promising results in two of them. Improvements in robustness in the third test case in which the camera is moving quickly or when light conditions are extreme are subject to further studies. The proposed new approach will be integrated into an existing augmented reality maintenance system.

  5. FPS scientific and supercomputers computers in chemistry

    International Nuclear Information System (INIS)

    Curington, I.J.

    1987-01-01

    FPS Array Processors, scientific computers, and highly parallel supercomputers are used in nearly all aspects of compute-intensive computational chemistry. A survey is made of work utilizing this equipment, both published and current research. The relationship of the computer architecture to computational chemistry is discussed, with specific reference to Molecular Dynamics, Quantum Monte Carlo simulations, and Molecular Graphics applications. Recent installations of the FPS T-Series are highlighted, and examples of Molecular Graphics programs running on the FPS-5000 are shown

  6. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  7. HPCToolkit: performance tools for scientific computing

    Energy Technology Data Exchange (ETDEWEB)

    Tallent, N; Mellor-Crummey, J; Adhianto, L; Fagan, M; Krentel, M [Department of Computer Science, Rice University, Houston, TX 77005 (United States)

    2008-07-15

    As part of the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC) program, science teams are tackling problems that require simulation and modeling on petascale computers. As part of activities associated with the SciDAC Center for Scalable Application Development Software (CScADS) and the Performance Engineering Research Institute (PERI), Rice University is building software tools for performance analysis of scientific applications on the leadership-class platforms. In this poster abstract, we briefly describe the HPCToolkit performance tools and how they can be used to pinpoint bottlenecks in SPMD and multi-threaded parallel codes. We demonstrate HPCToolkit's utility by applying it to two SciDAC applications: the S3D code for simulation of turbulent combustion and the MFDn code for ab initio calculations of microscopic structure of nuclei.

  8. HPCToolkit: performance tools for scientific computing

    International Nuclear Information System (INIS)

    Tallent, N; Mellor-Crummey, J; Adhianto, L; Fagan, M; Krentel, M

    2008-01-01

    As part of the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC) program, science teams are tackling problems that require simulation and modeling on petascale computers. As part of activities associated with the SciDAC Center for Scalable Application Development Software (CScADS) and the Performance Engineering Research Institute (PERI), Rice University is building software tools for performance analysis of scientific applications on the leadership-class platforms. In this poster abstract, we briefly describe the HPCToolkit performance tools and how they can be used to pinpoint bottlenecks in SPMD and multi-threaded parallel codes. We demonstrate HPCToolkit's utility by applying it to two SciDAC applications: the S3D code for simulation of turbulent combustion and the MFDn code for ab initio calculations of microscopic structure of nuclei

  9. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  10. Performance analysis of cloud computing services for many-tasks scientific computing

    NARCIS (Netherlands)

    Iosup, A.; Ostermann, S.; Yigitbasi, M.N.; Prodan, R.; Fahringer, T.; Epema, D.H.J.

    2011-01-01

    Cloud computing is an emerging commercial infrastructure paradigm that promises to eliminate the need for maintaining expensive computing facilities by companies and institutes alike. Through the use of virtualization and resource time sharing, clouds serve with a single set of physical resources a

  11. Towards Monitoring-as-a-service for Scientific Computing Cloud applications using the ElasticSearch ecosystem

    CERN Document Server

    Bagnasco, S; Guarise, A; Lusso, S; Masera, M; Vallero, S

    2015-01-01

    The INFN computing centre in Torino hosts a private Cloud, which is managed with the OpenNebula cloud controller. The infrastructure offers Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) services to different scientific computing applications. The main stakeholders of the facility are a grid Tier-2 site for the ALICE collaboration at LHC, an interactive analysis facility for the same experiment and a grid Tier-2 site for the BESIII collaboration, plus an increasing number of other small tenants. The dynamic allocation of resources to tenants is partially automated. This feature requires detailed monitoring and accounting of the resource usage. We set up a monitoring framework to inspect the site activities both in terms of IaaS and applications running on the hosted virtual instances. For this purpose we used the ElasticSearch, Logstash and Kibana (ELK) stack. The infrastructure relies on a MySQL database back-end for data preservation and to ensure flexibility to choose a different monit...

  12. A high performance scientific cloud computing environment for materials simulations

    Science.gov (United States)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  13. Scientific Computing in Electrical Engineering

    CERN Document Server

    Amrhein, Wolfgang; Zulehner, Walter

    2018-01-01

    This collection of selected papers presented at the 11th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in St. Wolfgang, Austria, in 2016, showcases the state of the art in SCEE. The aim of the SCEE 2016 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, and to promote intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The focus in methodology was on model order reduction and uncertainty quantification. This extensive reference work is divided into six parts: Computational Electromagnetics, Circuit and Device Modeling and Simulation, Coupled Problems and Multi‐Scale Approaches in Space and Time, Mathematical and Computational Methods Including Uncertainty Quantification, Model Order Reduction, and Industrial Applicat...

  14. Advanced scientific computational methods and their applications to nuclear technologies. (4) Overview of scientific computational methods, introduction of continuum simulation methods and their applications (4)

    International Nuclear Information System (INIS)

    Sekimura, Naoto; Okita, Taira

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the fourth issue showing the overview of scientific computational methods with the introduction of continuum simulation methods and their applications. Simulation methods on physical radiation effects on materials are reviewed based on the process such as binary collision approximation, molecular dynamics, kinematic Monte Carlo method, reaction rate method and dislocation dynamics. (T. Tanaka)

  15. CEBAF [Continuous Electron Beam Accelerator Facility] scientific program

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    The principal scientific mission of the Continuous Electron Beam Facility (CEBAF) is to study collective phenomena in cold (or normal) nucler matter in order to understand the structure and behavior of macroscopic systems constructed from nuclei. This document discusses in broad popular terms those issues which the CEBAF experimental and theoretical program are designed to address. Specific experimental programs currently planned for CEBAF are also reivewed. 35 refs., 19 figs

  16. Component-based software for high-performance scientific computing

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, Yuri; Allan, Benjamin A; Armstrong, Robert C; Bernholdt, David E; Dahlgren, Tamara L; Gannon, Dennis; Janssen, Curtis L; Kenny, Joseph P; Krishnan, Manojkumar; Kohl, James A; Kumfert, Gary; McInnes, Lois Curfman; Nieplocha, Jarek; Parker, Steven G; Rasmussen, Craig; Windus, Theresa L

    2005-01-01

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly.

  17. Component-based software for high-performance scientific computing

    International Nuclear Information System (INIS)

    Alexeev, Yuri; Allan, Benjamin A; Armstrong, Robert C; Bernholdt, David E; Dahlgren, Tamara L; Gannon, Dennis; Janssen, Curtis L; Kenny, Joseph P; Krishnan, Manojkumar; Kohl, James A; Kumfert, Gary; McInnes, Lois Curfman; Nieplocha, Jarek; Parker, Steven G; Rasmussen, Craig; Windus, Theresa L

    2005-01-01

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly

  18. Evolution of the Virtualized HPC Infrastructure of Novosibirsk Scientific Center

    International Nuclear Information System (INIS)

    Adakin, A; Chubarov, D; Nikultsev, V; Anisenkov, A; Belov, S; Kaplin, V; Korol, A; Skovpen, K; Sukharev, A; Zaytsev, A; Kalyuzhny, V; Kuchin, N; Lomakin, S

    2012-01-01

    Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies, and Institute of Computational Mathematics and Mathematical Geophysics (ICM and MG). Since each institute has specific requirements on the architecture of computing farms involved in its research field, currently we've got several computing facilities hosted by NSC institutes, each optimized for a particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM and MG), and a Grid Computing Facility of BINP. A dedicated optical network with the initial bandwidth of 10 Gb/s connecting these three facilities was built in order to make it possible to share the computing resources among the research communities, thus increasing the efficiency of operating the existing computing facilities and offering a common platform for building the computing infrastructure for future scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technology based on XEN and KVM platforms. This contribution gives a thorough review of the present status and future development prospects for the NSC virtualized computing infrastructure and the experience gained while using it for running production data analysis jobs related to HEP experiments being carried out at BINP, especially the KEDR detector experiment at the VEPP-4M electron-positron collider.

  19. Computing facility at SSC for detectors

    International Nuclear Information System (INIS)

    Leibold, P.; Scipiono, B.

    1990-01-01

    A description of the RISC-based distributed computing facility for detector simulaiton being developed at the SSC Laboratory is discussed. The first phase of this facility is scheduled for completion in early 1991. Included is the status of the project, overview of the concepts used to model and define system architecture, networking capabilities for user access, plans for support of physics codes and related topics concerning the implementation of this facility

  20. Software Defects, Scientific Computation and the Scientific Method

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Computation has rapidly grown in the last 50 years so that in many scientific areas it is the dominant partner in the practice of science. Unfortunately, unlike the experimental sciences, it does not adhere well to the principles of the scientific method as espoused by, for example, the philosopher Karl Popper. Such principles are built around the notions of deniability and reproducibility. Although much research effort has been spent on measuring the density of software defects, much less has been spent on the more difficult problem of measuring their effect on the output of a program. This talk explores these issues with numerous examples suggesting how this situation might be improved to match the demands of modern science. Finally it develops a theoretical model based on an amalgam of statistical mechanics and Hartley/Shannon information theory which suggests that software systems have strong implementation independent behaviour and supports the widely observed phenomenon that defects clust...

  1. Software Engineering for Scientific Computer Simulations

    Science.gov (United States)

    Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.

    2004-11-01

    Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.

  2. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Riley, Katherine [Argonne National Lab., IL (United States). Argonne Leadership Computing Facility (ALCF); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet

    2018-01-22

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, and deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain

  3. A Computing Environment to Support Repeatable Scientific Big Data Experimentation of World-Wide Scientific Literature

    Energy Technology Data Exchange (ETDEWEB)

    Schlicher, Bob G [ORNL; Kulesz, James J [ORNL; Abercrombie, Robert K [ORNL; Kruse, Kara L [ORNL

    2015-01-01

    A principal tenant of the scientific method is that experiments must be repeatable and relies on ceteris paribus (i.e., all other things being equal). As a scientific community, involved in data sciences, we must investigate ways to establish an environment where experiments can be repeated. We can no longer allude to where the data comes from, we must add rigor to the data collection and management process from which our analysis is conducted. This paper describes a computing environment to support repeatable scientific big data experimentation of world-wide scientific literature, and recommends a system that is housed at the Oak Ridge National Laboratory in order to provide value to investigators from government agencies, academic institutions, and industry entities. The described computing environment also adheres to the recently instituted digital data management plan mandated by multiple US government agencies, which involves all stages of the digital data life cycle including capture, analysis, sharing, and preservation. It particularly focuses on the sharing and preservation of digital research data. The details of this computing environment are explained within the context of cloud services by the three layer classification of Software as a Service , Platform as a Service , and Infrastructure as a Service .

  4. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee Report on Scientific and Technical Information

    Energy Technology Data Exchange (ETDEWEB)

    Hey, Tony [eScience Institute, University of Washington; Agarwal, Deborah [Lawrence Berkeley National Laboratory; Borgman, Christine [University of California, Los Angeles; Cartaro, Concetta [SLAC National Accelerator Laboratory; Crivelli, Silvia [Lawrence Berkeley National Laboratory; Van Dam, Kerstin Kleese [Pacific Northwest National Laboratory; Luce, Richard [University of Oklahoma; Arjun, Shankar [CADES, Oak Ridge National Laboratory; Trefethen, Anne [University of Oxford; Wade, Alex [Microsoft Research, Microsoft Corporation; Williams, Dean [Lawrence Livermore National Laboratory

    2015-09-04

    The Advanced Scientific Computing Advisory Committee (ASCAC) was charged to form a standing subcommittee to review the Department of Energy’s Office of Scientific and Technical Information (OSTI) and to begin by assessing the quality and effectiveness of OSTI’s recent and current products and services and to comment on its mission and future directions in the rapidly changing environment for scientific publication and data. The Committee met with OSTI staff and reviewed available products, services and other materials. This report summaries their initial findings and recommendations.

  5. A large-scale computer facility for computational aerodynamics

    International Nuclear Information System (INIS)

    Bailey, F.R.; Balhaus, W.F.

    1985-01-01

    The combination of computer system technology and numerical modeling have advanced to the point that computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. To provide for further advances in modeling of aerodynamic flow fields, NASA has initiated at the Ames Research Center the Numerical Aerodynamic Simulation (NAS) Program. The objective of the Program is to develop a leading-edge, large-scale computer facility, and make it available to NASA, DoD, other Government agencies, industry and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. The Program will establish an initial operational capability in 1986 and systematically enhance that capability by incorporating evolving improvements in state-of-the-art computer system technologies as required to maintain a leadership role. This paper briefly reviews the present and future requirements for computational aerodynamics and discusses the Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans

  6. The Potential of the Cell Processor for Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel; Shalf, John; Oliker, Leonid; Husbands, Parry; Kamil, Shoaib; Yelick, Katherine

    2005-10-14

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. As a result, the high performance computing community is examining alternative architectures that address the limitations of modern cache-based designs. In this work, we examine the potential of the using the forth coming STI Cell processor as a building block for future high-end computing systems. Our work contains several novel contributions. We are the first to present quantitative Cell performance data on scientific kernels and show direct comparisons against leading superscalar (AMD Opteron), VLIW (IntelItanium2), and vector (Cray X1) architectures. Since neither Cell hardware nor cycle-accurate simulators are currently publicly available, we develop both analytical models and simulators to predict kernel performance. Our work also explores the complexity of mapping several important scientific algorithms onto the Cells unique architecture. Additionally, we propose modest microarchitectural modifications that could significantly increase the efficiency of double-precision calculations. Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency.

  7. The Y2K program for scientific-analysis computer programs at AECL

    International Nuclear Information System (INIS)

    Popovic, J.; Gaver, C.; Chapman, D.

    1999-01-01

    The evaluation of scientific-analysis computer programs for year-2000 compliance is part of AECL' s year-2000 (Y2K) initiative, which addresses both the infrastructure systems at AECL and AECL's products and services. This paper describes the Y2K-compliance program for scientific-analysis computer codes. This program involves the integrated evaluation of the computer hardware, middleware, and third-party software in addition to the scientific codes developed in-house. The project involves several steps: the assessment of the scientific computer programs for Y2K compliance, performing any required corrective actions, porting the programs to Y2K-compliant platforms, and verification of the programs after porting. Some programs or program versions, deemed no longer required in the year 2000 and beyond, will be retired and archived. (author)

  8. The Y2K program for scientific-analysis computer programs at AECL

    International Nuclear Information System (INIS)

    Popovic, J.; Gaver, C.; Chapman, D.

    1999-01-01

    The evaluation of scientific analysis computer programs for year-2000 compliance is part of AECL's year-2000 (Y2K) initiative, which addresses both the infrastructure systems at AECL and AECL's products and services. This paper describes the Y2K-compliance program for scientific-analysis computer codes. This program involves the integrated evaluation of the computer hardware, middleware, and third-party software in addition to the scientific codes developed in-house. The project involves several steps: the assessment of the scientific computer programs for Y2K compliance, performing any required corrective actions, porting the programs to Y2K-compliant platforms, and verification of the programs after porting. Some programs or program versions, deemed no longer required in the year 2000 and beyond, will be retired and archived. (author)

  9. Scientific workflow and support for high resolution global climate modeling at the Oak Ridge Leadership Computing Facility

    Science.gov (United States)

    Anantharaj, V.; Mayer, B.; Wang, F.; Hack, J.; McKenna, D.; Hartman-Baker, R.

    2012-04-01

    The Oak Ridge Leadership Computing Facility (OLCF) facilitates the execution of computational experiments that require tens of millions of CPU hours (typically using thousands of processors simultaneously) while generating hundreds of terabytes of data. A set of ultra high resolution climate experiments in progress, using the Community Earth System Model (CESM), will produce over 35,000 files, ranging in sizes from 21 MB to 110 GB each. The execution of the experiments will require nearly 70 Million CPU hours on the Jaguar and Titan supercomputers at OLCF. The total volume of the output from these climate modeling experiments will be in excess of 300 TB. This model output must then be archived, analyzed, distributed to the project partners in a timely manner, and also made available more broadly. Meeting this challenge would require efficient movement of the data, staging the simulation output to a large and fast file system that provides high volume access to other computational systems used to analyze the data and synthesize results. This file system also needs to be accessible via high speed networks to an archival system that can provide long term reliable storage. Ideally this archival system is itself directly available to other systems that can be used to host services making the data and analysis available to the participants in the distributed research project and to the broader climate community. The various resources available at the OLCF now support this workflow. The available systems include the new Jaguar Cray XK6 2.63 petaflops (estimated) supercomputer, the 10 PB Spider center-wide parallel file system, the Lens/EVEREST analysis and visualization system, the HPSS archival storage system, the Earth System Grid (ESG), and the ORNL Climate Data Server (CDS). The ESG features federated services, search & discovery, extensive data handling capabilities, deep storage access, and Live Access Server (LAS) integration. The scientific workflow enabled on

  10. The 12-th INS scientific computational programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This issue is the collection of the paper on INS scientific computational programs. Separate abstracts were presented for 3 of the papers in this report. The remaining 5 were considered outside the subject scope of INIS. (J.P.N.)

  11. Educational NASA Computational and Scientific Studies (enCOMPASS)

    Science.gov (United States)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and

  12. High Energy Physics Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and High Energy Physics, June 10-12, 2015, Bethesda, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Salman [Argonne National Lab. (ANL), Argonne, IL (United States); Roser, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [Esnet, Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Esnet, Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Esnet, Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Tim [Argonne National Lab. (ANL), Argonne, IL (United States); Almgren, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Amundson, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bailey, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bloom, Ken [Univ. of Nebraska, Lincoln, NE (United States); Bockelman, Brian [Univ. of Nebraska, Lincoln, NE (United States); Borgland, Anders [SLAC National Accelerator Lab., Menlo Park, CA (United States); Borrill, Julian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Boughezal, Radja [Argonne National Lab. (ANL), Argonne, IL (United States); Brower, Richard [Boston Univ., MA (United States); Cowan, Benjamin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Finkel, Hal [Argonne National Lab. (ANL), Argonne, IL (United States); Frontiere, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States); Fuess, Stuart [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ge, Lixin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gnedin, Nick [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gottlieb, Steven [Indiana Univ., Bloomington, IN (United States); Gutsche, Oliver [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Han, T. [Indiana Univ., Bloomington, IN (United States); Heitmann, Katrin [Argonne National Lab. (ANL), Argonne, IL (United States); Hoeche, Stefan [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ko, Kwok [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kononenko, Oleksiy [SLAC National Accelerator Lab., Menlo Park, CA (United States); LeCompte, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Li, Zheng [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lukic, Zarija [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mori, Warren [Univ. of California, Los Angeles, CA (United States); Ng, Cho-Kuen [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nugent, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oleynik, Gene [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); O’Shea, Brian [Michigan State Univ., East Lansing, MI (United States); Padmanabhan, Nikhil [Yale Univ., New Haven, CT (United States); Petravick, Donald [Univ. of Illinois, Urbana, IL (United States). National Center for Supercomputing Applications; Petriello, Frank J. [Argonne National Lab. (ANL), Argonne, IL (United States); Pope, Adrian [Argonne National Lab. (ANL), Argonne, IL (United States); Power, John [Argonne National Lab. (ANL), Argonne, IL (United States); Qiang, Ji [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Rizzo, Thomas Gerard [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ryne, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schram, Malachi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spentzouris, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Toussaint, Doug [Univ. of Arizona, Tucson, AZ (United States); Vay, Jean Luc [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Viren, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wuerthwein, Frank [Univ. of California, San Diego, CA (United States); Xiao, Liling [SLAC National Accelerator Lab., Menlo Park, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-29

    The U.S. Department of Energy (DOE) Office of Science (SC) Offices of High Energy Physics (HEP) and Advanced Scientific Computing Research (ASCR) convened a programmatic Exascale Requirements Review on June 10–12, 2015, in Bethesda, Maryland. This report summarizes the findings, results, and recommendations derived from that meeting. The high-level findings and observations are as follows. Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude — and in some cases greater — than that available currently. The growth rate of data produced by simulations is overwhelming the current ability of both facilities and researchers to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. Data rates and volumes from experimental facilities are also straining the current HEP infrastructure in its ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. A close integration of high-performance computing (HPC) simulation and data analysis will greatly aid in interpreting the results of HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. Long-range planning between HEP and ASCR will be required to meet HEP’s research needs. To best use ASCR HPC resources, the experimental HEP program needs (1) an established, long-term plan for access to ASCR computational and data resources, (2) the ability to map workflows to HPC resources, (3) the ability for ASCR facilities to accommodate workflows run by collaborations potentially comprising thousands of individual members, (4) to transition codes to the next-generation HPC platforms that will be available at ASCR

  13. Scientific Computing and Apple's Intel Transition

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Intel's published processor roadmap and how it may affect the future of personal and scientific computing About the speaker: Eric Albert is Senior Software Engineer in Apple's Core Technologies group. During Mac OS X's transition to Intel processors he has worked on almost every part of the operating system, from the OS kernel and compiler tools to appli...

  14. Advanced scientific computational methods and their applications of nuclear technologies. (1) Overview of scientific computational methods, introduction of continuum simulation methods and their applications (1)

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Okuda, Hiroshi

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the first issue showing their overview and introduction of continuum simulation methods. Finite element method as their applications is also reviewed. (T. Tanaka)

  15. Scientific Computing Kernels on the Cell Processor

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel W.; Shalf, John; Oliker, Leonid; Kamil, Shoaib; Husbands, Parry; Yelick, Katherine

    2007-04-04

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. As a result, the high performance computing community is examining alternative architectures that address the limitations of modern cache-based designs. In this work, we examine the potential of using the recently-released STI Cell processor as a building block for future high-end computing systems. Our work contains several novel contributions. First, we introduce a performance model for Cell and apply it to several key scientific computing kernels: dense matrix multiply, sparse matrix vector multiply, stencil computations, and 1D/2D FFTs. The difficulty of programming Cell, which requires assembly level intrinsics for the best performance, makes this model useful as an initial step in algorithm design and evaluation. Next, we validate the accuracy of our model by comparing results against published hardware results, as well as our own implementations on a 3.2GHz Cell blade. Additionally, we compare Cell performance to benchmarks run on leading superscalar (AMD Opteron), VLIW (Intel Itanium2), and vector (Cray X1E) architectures. Our work also explores several different mappings of the kernels and demonstrates a simple and effective programming model for Cell's unique architecture. Finally, we propose modest microarchitectural modifications that could significantly increase the efficiency of double-precision calculations. Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency.

  16. Scientific opportunities with advanced facilities for neutron scattering

    International Nuclear Information System (INIS)

    Lander, G.H.; Emery, V.J.

    1984-01-01

    The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10 15 n cm -2 s -1 steady state source or a 10 17 n cm -2 s -1 peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee

  17. Learning SciPy for numerical and scientific computing

    CERN Document Server

    Silva

    2013-01-01

    A step-by-step practical tutorial with plenty of examples on research-based problems from various areas of science, that prove how simple, yet effective, it is to provide solutions based on SciPy. This book is targeted at anyone with basic knowledge of Python, a somewhat advanced command of mathematics/physics, and an interest in engineering or scientific applications---this is broadly what we refer to as scientific computing.This book will be of critical importance to programmers and scientists who have basic Python knowledge and would like to be able to do scientific and numerical computatio

  18. Scientific Computing in the CH Programming Language

    Directory of Open Access Journals (Sweden)

    Harry H. Cheng

    1993-01-01

    Full Text Available We have developed a general-purpose block-structured interpretive programming Ianguage. The syntax and semantics of this language called CH are similar to C. CH retains most features of C from the scientific computing point of view. In this paper, the extension of C to CH for numerical computation of real numbers will be described. Metanumbers of −0.0, 0.0, Inf, −Inf, and NaN are introduced in CH. Through these metanumbers, the power of the IEEE 754 arithmetic standard is easily available to the programmer. These metanumbers are extended to commonly used mathematical functions in the spirit of the IEEE 754 standard and ANSI C. The definitions for manipulation of these metanumbers in I/O; arithmetic, relational, and logic operations; and built-in polymorphic mathematical functions are defined. The capabilities of bitwise, assignment, address and indirection, increment and decrement, as well as type conversion operations in ANSI C are extended in CH. In this paper, mainly new linguistic features of CH in comparison to C will be described. Example programs programmed in CH with metanumbers and polymorphic mathematical functions will demonstrate capabilities of CH in scientific computing.

  19. Oak Ridge Leadership Computing Facility (OLCF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Oak Ridge Leadership Computing Facility (OLCF) was established at Oak Ridge National Laboratory in 2004 with the mission of standing up a supercomputer 100 times...

  20. The Argonne Leadership Computing Facility 2010 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Drugan, C. (LCF)

    2011-05-09

    that will be faster than petascale-class computers by a factor of a thousand. Pete Beckman, who served as the ALCF's Director for the past few years, has been named director of the newly created Exascale Technology and Computing Institute (ETCi). The institute will focus on developing exascale computing to extend scientific discovery and solve critical science and engineering problems. Just as Pete's leadership propelled the ALCF to great success, we know that that ETCi will benefit immensely from his expertise and experience. Without question, the future of supercomputing is certainly in good hands. I would like to thank Pete for all his effort over the past two years, during which he oversaw the establishing of ALCF2, the deployment of the Magellan project, increases in utilization, availability, and number of projects using ALCF1. He managed the rapid growth of ALCF staff and made the facility what it is today. All the staff and users are better for Pete's efforts.

  1. Research initiatives for plug-and-play scientific computing

    International Nuclear Information System (INIS)

    McInnes, Lois Curfman; Dahlgren, Tamara; Nieplocha, Jarek; Bernholdt, David; Allan, Ben; Armstrong, Rob; Chavarria, Daniel; Elwasif, Wael; Gorton, Ian; Kenny, Joe; Krishan, Manoj; Malony, Allen; Norris, Boyana; Ray, Jaideep; Shende, Sameer

    2007-01-01

    This paper introduces three component technology initiatives within the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS) that address ever-increasing productivity challenges in creating, managing, and applying simulation software to scientific discovery. By leveraging the Common Component Architecture (CCA), a new component standard for high-performance scientific computing, these initiatives tackle difficulties at different but related levels in the development of component-based scientific software: (1) deploying applications on massively parallel and heterogeneous architectures, (2) investigating new approaches to the runtime enforcement of behavioral semantics, and (3) developing tools to facilitate dynamic composition, substitution, and reconfiguration of component implementations and parameters, so that application scientists can explore tradeoffs among factors such as accuracy, reliability, and performance

  2. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY17.

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pugmire, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Childs, Hank [Univ. of Oregon, Eugene, OR (United States); Ma, Kwan-Liu [Univ. of California, Davis, CA (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States)

    2017-10-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  3. Performance evaluation of scientific programs on advanced architecture computers

    International Nuclear Information System (INIS)

    Walker, D.W.; Messina, P.; Baille, C.F.

    1988-01-01

    Recently a number of advanced architecture machines have become commercially available. These new machines promise better cost-performance then traditional computers, and some of them have the potential of competing with current supercomputers, such as the Cray X/MP, in terms of maximum performance. This paper describes an on-going project to evaluate a broad range of advanced architecture computers using a number of complete scientific application programs. The computers to be evaluated include distributed- memory machines such as the NCUBE, INTEL and Caltech/JPL hypercubes, and the MEIKO computing surface, shared-memory, bus architecture machines such as the Sequent Balance and the Alliant, very long instruction word machines such as the Multiflow Trace 7/200 computer, traditional supercomputers such as the Cray X.MP and Cray-2, and SIMD machines such as the Connection Machine. Currently 11 application codes from a number of scientific disciplines have been selected, although it is not intended to run all codes on all machines. Results are presented for two of the codes (QCD and missile tracking), and future work is proposed

  4. From Data to Knowledge to Discoveries: Artificial Intelligence and Scientific Workflows

    Directory of Open Access Journals (Sweden)

    Yolanda Gil

    2009-01-01

    Full Text Available Scientific computing has entered a new era of scale and sharing with the arrival of cyberinfrastructure facilities for computational experimentation. A key emerging concept is scientific workflows, which provide a declarative representation of complex scientific applications that can be automatically managed and executed in distributed shared resources. In the coming decades, computational experimentation will push the boundaries of current cyberinfrastructure in terms of inter-disciplinary scope and integrative models of scientific phenomena under study. This paper argues that knowledge-rich workflow environments will provide necessary capabilities for that vision by assisting scientists to validate and vet complex analysis processes and by automating important aspects of scientific exploration and discovery.

  5. Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds

    Science.gov (United States)

    Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano

    Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.

  6. Computer network access to scientific information systems for minority universities

    Science.gov (United States)

    Thomas, Valerie L.; Wakim, Nagi T.

    1993-08-01

    The evolution of computer networking technology has lead to the establishment of a massive networking infrastructure which interconnects various types of computing resources at many government, academic, and corporate institutions. A large segment of this infrastructure has been developed to facilitate information exchange and resource sharing within the scientific community. The National Aeronautics and Space Administration (NASA) supports both the development and the application of computer networks which provide its community with access to many valuable multi-disciplinary scientific information systems and on-line databases. Recognizing the need to extend the benefits of this advanced networking technology to the under-represented community, the National Space Science Data Center (NSSDC) in the Space Data and Computing Division at the Goddard Space Flight Center has developed the Minority University-Space Interdisciplinary Network (MU-SPIN) Program: a major networking and education initiative for Historically Black Colleges and Universities (HBCUs) and Minority Universities (MUs). In this paper, we will briefly explain the various components of the MU-SPIN Program while highlighting how, by providing access to scientific information systems and on-line data, it promotes a higher level of collaboration among faculty and students and NASA scientists.

  7. JINR CLOUD SERVICE FOR SCIENTIFIC AND ENGINEERING COMPUTATIONS

    Directory of Open Access Journals (Sweden)

    Nikita A. Balashov

    2018-03-01

    Full Text Available Pretty often small research scientific groups do not have access to powerful enough computational resources required for their research work to be productive. Global computational infrastructures used by large scientific collaborations can be challenging for small research teams because of bureaucracy overhead as well as usage complexity of underlying tools. Some researchers buy a set of powerful servers to cover their own needs in computational resources. A drawback of such approach is a necessity to take care about proper hosting environment for these hardware and maintenance which requires a certain level of expertise. Moreover a lot of time such resources may be underutilized because а researcher needs to spend a certain amount of time to prepare computations and to analyze results as well as he doesn’t always need all resources of modern multi-core CPUs servers. The JINR cloud team developed a service which provides an access for scientists of small research groups from JINR and its Member State organizations to computational resources via problem-oriented (i.e. application-specific web-interface. It allows a scientist to focus on his research domain by interacting with the service in a convenient way via browser and abstracting away from underlying infrastructure as well as its maintenance. A user just sets a required values for his job via web-interface and specify a location for uploading a result. The computational workloads are done on the virtual machines deployed in the JINR cloud infrastructure.

  8. Ontology-Driven Discovery of Scientific Computational Entities

    Science.gov (United States)

    Brazier, Pearl W.

    2010-01-01

    Many geoscientists use modern computational resources, such as software applications, Web services, scientific workflows and datasets that are readily available on the Internet, to support their research and many common tasks. These resources are often shared via human contact and sometimes stored in data portals; however, they are not necessarily…

  9. 2016 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Jim [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The Argonne Leadership Computing Facility (ALCF) helps researchers solve some of the world’s largest and most complex problems, while also advancing the nation’s efforts to develop future exascale computing systems. This report presents some of the ALCF’s notable achievements in key strategic areas over the past year.

  10. Initial explorations of ARM processors for scientific computing

    International Nuclear Information System (INIS)

    Abdurachmanov, David; Elmer, Peter; Eulisse, Giulio; Muzaffar, Shahzad

    2014-01-01

    Power efficiency is becoming an ever more important metric for both high performance and high throughput computing. Over the course of next decade it is expected that flops/watt will be a major driver for the evolution of computer architecture. Servers with large numbers of ARM processors, already ubiquitous in mobile computing, are a promising alternative to traditional x86-64 computing. We present the results of our initial investigations into the use of ARM processors for scientific computing applications. In particular we report the results from our work with a current generation ARMv7 development board to explore ARM-specific issues regarding the software development environment, operating system, performance benchmarks and issues for porting High Energy Physics software

  11. Computer Security at Nuclear Facilities

    International Nuclear Information System (INIS)

    Cavina, A.

    2013-01-01

    This series of slides presents the IAEA policy concerning the development of recommendations and guidelines for computer security at nuclear facilities. A document of the Nuclear Security Series dedicated to this issue is on the final stage prior to publication. This document is the the first existing IAEA document specifically addressing computer security. This document was necessary for 3 mains reasons: first not all national infrastructures have recognized and standardized computer security, secondly existing international guidance is not industry specific and fails to capture some of the key issues, and thirdly the presence of more or less connected digital systems is increasing in the design of nuclear power plants. The security of computer system must be based on a graded approach: the assignment of computer system to different levels and zones should be based on their relevance to safety and security and the risk assessment process should be allowed to feed back into and influence the graded approach

  12. Python for Scientific Computing Education: Modeling of Queueing Systems

    Directory of Open Access Journals (Sweden)

    Vladimiras Dolgopolovas

    2014-01-01

    Full Text Available In this paper, we present the methodology for the introduction to scientific computing based on model-centered learning. We propose multiphase queueing systems as a basis for learning objects. We use Python and parallel programming for implementing the models and present the computer code and results of stochastic simulations.

  13. Academic Computing Facilities and Services in Higher Education--A Survey.

    Science.gov (United States)

    Warlick, Charles H.

    1986-01-01

    Presents statistics about academic computing facilities based on data collected over the past six years from 1,753 institutions in the United States, Canada, Mexico, and Puerto Rico for the "Directory of Computing Facilities in Higher Education." Organizational, functional, and financial characteristics are examined as well as types of…

  14. Scientific computing with MATLAB and Octave

    CERN Document Server

    Quarteroni, Alfio; Gervasio, Paola

    2014-01-01

    This textbook is an introduction to Scientific Computing, in which several numerical methods for the computer-based solution of certain classes of mathematical problems are illustrated. The authors show how to compute the zeros, the extrema, and the integrals of continuous functions, solve linear systems, approximate functions using polynomials and construct accurate approximations for the solution of ordinary and partial differential equations. To make the format concrete and appealing, the programming environments Matlab and Octave are adopted as faithful companions. The book contains the solutions to several problems posed in exercises and examples, often originating from important applications. At the end of each chapter, a specific section is devoted to subjects which were not addressed in the book and contains bibliographical references for a more comprehensive treatment of the material. From the review: ".... This carefully written textbook, the third English edition, contains substantial new developme...

  15. Parallel computing works

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-23

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.

  16. RAPPORT: running scientific high-performance computing applications on the cloud.

    Science.gov (United States)

    Cohen, Jeremy; Filippis, Ioannis; Woodbridge, Mark; Bauer, Daniela; Hong, Neil Chue; Jackson, Mike; Butcher, Sarah; Colling, David; Darlington, John; Fuchs, Brian; Harvey, Matt

    2013-01-28

    Cloud computing infrastructure is now widely used in many domains, but one area where there has been more limited adoption is research computing, in particular for running scientific high-performance computing (HPC) software. The Robust Application Porting for HPC in the Cloud (RAPPORT) project took advantage of existing links between computing researchers and application scientists in the fields of bioinformatics, high-energy physics (HEP) and digital humanities, to investigate running a set of scientific HPC applications from these domains on cloud infrastructure. In this paper, we focus on the bioinformatics and HEP domains, describing the applications and target cloud platforms. We conclude that, while there are many factors that need consideration, there is no fundamental impediment to the use of cloud infrastructure for running many types of HPC applications and, in some cases, there is potential for researchers to benefit significantly from the flexibility offered by cloud platforms.

  17. Technologies for Large Data Management in Scientific Computing

    CERN Document Server

    Pace, A

    2014-01-01

    In recent years, intense usage of computing has been the main strategy of investigations in several scientific research projects. The progress in computing technology has opened unprecedented opportunities for systematic collection of experimental data and the associated analysis that were considered impossible only few years ago. This paper focusses on the strategies in use: it reviews the various components that are necessary for an effective solution that ensures the storage, the long term preservation, and the worldwide distribution of large quantities of data that are necessary in a large scientific research project. The paper also mentions several examples of data management solutions used in High Energy Physics for the CERN Large Hadron Collider (LHC) experiments in Geneva, Switzerland which generate more than 30,000 terabytes of data every year that need to be preserved, analyzed, and made available to a community of several tenth of thousands scientists worldwide.

  18. Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Benson, Jeff; Thelen, Mary Catherine

    2011-01-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  19. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  20. Advanced Test Reactor National Scientific User Facility Partnerships

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Allen, Todd R.; Benson, Jeff B.; Cole, James I.; Thelen, Mary Catherine

    2012-01-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  1. The HEPCloud Facility: elastic computing for High Energy Physics - The NOvA Use Case

    Science.gov (United States)

    Fuess, S.; Garzoglio, G.; Holzman, B.; Kennedy, R.; Norman, A.; Timm, S.; Tiradani, A.

    2017-10-01

    The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a common interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 38 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This paper

  2. Scholarly literature and the press: scientific impact and social perception of physics computing

    CERN Document Server

    Pia, Maria Grazia; Bell, Zane W; Dressendorfer, Paul V

    2014-01-01

    The broad coverage of the search for the Higgs boson in the mainstream media is a relative novelty for high energy physics (HEP) research, whose achievements have traditionally been limited to scholarly literature. This paper illustrates the results of a scientometric analysis of HEP computing in scientific literature, institutional media and the press, and a comparative overview of similar metrics concerning representative particle physics measurements. The picture emerging from these scientometric data documents the scientific impact and social perception of HEP computing. The results of this analysis suggest that improved communication of the scientific and social role of HEP computing would be beneficial to the high energy physics community.

  3. Operational Circular nr 5 - October 2000 USE OF CERN COMPUTING FACILITIES

    CERN Multimedia

    Division HR

    2000-01-01

    New rules covering the use of CERN Computing facilities have been drawn up. All users of CERN’s computing facilites are subject to these rules, as well as to the subsidiary rules of use. The Computing Rules explicitly address your responsibility for taking reasonable precautions to protect computing equipment and accounts. In particular, passwords must not be easily guessed or obtained by others. Given the difficulty to completely separate work and personal use of computing facilities, the rules define under which conditions limited personal use is tolerated. For example, limited personal use of e-mail, news groups or web browsing is tolerated in your private time, provided CERN resources and your official duties are not adversely affected. The full conditions governing use of CERN’s computing facilities are contained in Operational Circular N° 5, which you are requested to read. Full details are available at : http://www.cern.ch/ComputingRules Copies of the circular are also available in the Divis...

  4. Scientific computing in electrical engineering SCEE 2010

    Energy Technology Data Exchange (ETDEWEB)

    Michielsen, Bastiaan [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 31 - Toulouse (France); Poirier, Jean-Rene (eds.) [LAPLACE-ENSEEIHT, Toulouse (France)

    2012-07-01

    Selected from papers presented at the 8th Scientific Computation in Electrical Engineering conference in Toulouse in 2010, the contributions to this volume cover every angle of numerically modelling electronic and electrical systems, including computational electromagnetics, circuit theory and simulation and device modelling. On computational electromagnetics, the chapters examine cutting-edge material ranging from low-frequency electrical machine modelling problems to issues in high-frequency scattering. Regarding circuit theory and simulation, the book details the most advanced techniques for modelling networks with many thousands of components. Modelling devices at microscopic levels is covered by a number of fundamental mathematical physics papers, while numerous papers on model order reduction help engineers and systems designers to bring their modelling of industrial-scale systems within the reach of present-day computational power. Complementing these more specific papers, the volume also contains a selection of mathematical methods which can be used in any application domain. (orig.)

  5. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sewell, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Childs, Hank [Univ. of Oregon, Eugene, OR (United States); Ma, Kwan-Liu [Univ. of California, Davis, CA (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Meredith, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  6. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Mid-year report FY17 Q2

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pugmire, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Childs, Hank [Univ. of Oregon, Eugene, OR (United States); Ma, Kwan-Liu [Univ. of California, Davis, CA (United States); Geveci, Berk [Kitware Inc., Clifton Park, NY (United States)

    2017-05-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  7. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem. Mid-year report FY16 Q2

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D.; Sewell, Christopher (LANL); Childs, Hank (U of Oregon); Ma, Kwan-Liu (UC Davis); Geveci, Berk (Kitware); Meredith, Jeremy (ORNL)

    2016-05-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  8. Emerging Nanophotonic Applications Explored with Advanced Scientific Parallel Computing

    Science.gov (United States)

    Meng, Xiang

    The domain of nanoscale optical science and technology is a combination of the classical world of electromagnetics and the quantum mechanical regime of atoms and molecules. Recent advancements in fabrication technology allows the optical structures to be scaled down to nanoscale size or even to the atomic level, which are far smaller than the wavelength they are designed for. These nanostructures can have unique, controllable, and tunable optical properties and their interactions with quantum materials can have important near-field and far-field optical response. Undoubtedly, these optical properties can have many important applications, ranging from the efficient and tunable light sources, detectors, filters, modulators, high-speed all-optical switches; to the next-generation classical and quantum computation, and biophotonic medical sensors. This emerging research of nanoscience, known as nanophotonics, is a highly interdisciplinary field requiring expertise in materials science, physics, electrical engineering, and scientific computing, modeling and simulation. It has also become an important research field for investigating the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the nature of the nanostructured matter controls the interactions. In addition, the fast advancements in the computing capabilities, such as parallel computing, also become as a critical element for investigating advanced nanophotonic devices. This role has taken on even greater urgency with the scale-down of device dimensions, and the design for these devices require extensive memory and extremely long core hours. Thus distributed computing platforms associated with parallel computing are required for faster designs processes. Scientific parallel computing constructs mathematical models and quantitative analysis techniques, and uses the computing machines to analyze and solve otherwise intractable scientific challenges. In

  9. Scientific computing and algorithms in industrial simulations projects and products of Fraunhofer SCAI

    CERN Document Server

    Schüller, Anton; Schweitzer, Marc

    2017-01-01

    The contributions gathered here provide an overview of current research projects and selected software products of the Fraunhofer Institute for Algorithms and Scientific Computing SCAI. They show the wide range of challenges that scientific computing currently faces, the solutions it offers, and its important role in developing applications for industry. Given the exciting field of applied collaborative research and development it discusses, the book will appeal to scientists, practitioners, and students alike. The Fraunhofer Institute for Algorithms and Scientific Computing SCAI combines excellent research and application-oriented development to provide added value for our partners. SCAI develops numerical techniques, parallel algorithms and specialized software tools to support and optimize industrial simulations. Moreover, it implements custom software solutions for production and logistics, and offers calculations on high-performance computers. Its services and products are based on state-of-the-art metho...

  10. Domain analysis of computational science - Fifty years of a scientific computing group

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M.

    2010-02-23

    I employed bibliometric- and historical-methods to study the domain of the Scientific Computing group at Brookhaven National Laboratory (BNL) for an extended period of fifty years, from 1958 to 2007. I noted and confirmed the growing emergence of interdisciplinarity within the group. I also identified a strong, consistent mathematics and physics orientation within it.

  11. New tools to aid in scientific computing and visualization

    International Nuclear Information System (INIS)

    Wallace, M.G.; Christian-Frear, T.L.

    1992-01-01

    In this paper, two computer programs are described which aid in the pre- and post-processing of computer generated data. CoMeT (Computational Mechanics Toolkit) is a customizable, interactive, graphical, menu-driven program that provides the analyst with a consistent user-friendly interface to analysis codes. Trans Vol (Transparent Volume Visualization) is a specialized tool for the scientific three-dimensional visualization of complex solids by the technique of volume rendering. Both tools are described in basic detail along with an application example concerning the simulation of contaminant migration from an underground nuclear repository

  12. Modern computer hardware and the role of central computing facilities in particle physics

    International Nuclear Information System (INIS)

    Zacharov, V.

    1981-01-01

    Important recent changes in the hardware technology of computer system components are reviewed, and the impact of these changes assessed on the present and future pattern of computing in particle physics. The place of central computing facilities is particularly examined, to answer the important question as to what, if anything, should be their future role. Parallelism in computing system components is considered to be an important property that can be exploited with advantage. The paper includes a short discussion of the position of communications and network technology in modern computer systems. (orig.)

  13. Scholarly literature and the press: scientific impact and social perception of physics computing

    International Nuclear Information System (INIS)

    Pia, M G; Basaglia, T; Bell, Z W; Dressendorfer, P V

    2014-01-01

    The broad coverage of the search for the Higgs boson in the mainstream media is a relative novelty for high energy physics (HEP) research, whose achievements have traditionally been limited to scholarly literature. This paper illustrates the results of a scientometric analysis of HEP computing in scientific literature, institutional media and the press, and a comparative overview of similar metrics concerning representative particle physics measurements. The picture emerging from these scientometric data documents the relationship between the scientific impact and the social perception of HEP physics research versus that of HEP computing. The results of this analysis suggest that improved communication of the scientific and social role of HEP computing via press releases from the major HEP laboratories would be beneficial to the high energy physics community.

  14. The HEPCloud Facility: elastic computing for High Energy Physics – The NOvA Use Case

    Energy Technology Data Exchange (ETDEWEB)

    Fuess, S. [Fermilab; Garzoglio, G. [Fermilab; Holzman, B. [Fermilab; Kennedy, R. [Fermilab; Norman, A. [Fermilab; Timm, S. [Fermilab; Tiradani, A. [Fermilab

    2017-03-15

    The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a common interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 25 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This paper

  15. Scientific Design of the New Neutron Radiography Facility (SANRAD) at SAFARI-1 for South Africa

    Science.gov (United States)

    de Beer, F. C.; Gruenauer, F.; Radebe, J. M.; Modise, T.; Schillinger, B.

    The final scientific design for an upgraded neutron radiography/tomography facility at beam port no.2 of the SAFARI-1 nuclear research reactor has been performed through expert advice from Physics Consulting, FRMII in Germany and IPEN, Brazil. A need to upgrade the facility became apparent due to the identification of various deficiencies of the current SANRAD facility during an IAEA-sponsored expert mission of international scientists to Necsa, South Africa. A lack of adequate shielding that results in high neutron background on the beam port floor, a mismatch in the collimator aperture to the core that results in a high gradient in neutron flux on the imaging plane and due to a relative low L/D the quality of the radiographs are poor, are a number of deficiencies to name a few.The new design, based on results of Monte Carlo (MCNP-X) simulations of neutron- and gamma transport from the reactor core and through the new facility, is being outlined. The scientific design philosophy, neutron optics and imaging capabilities that include the utilization of fission neutrons, thermal neutrons, and gamma-rays emerging from the core of SAFARI-1 are discussed.

  16. Enabling Extreme Scale Earth Science Applications at the Oak Ridge Leadership Computing Facility

    Science.gov (United States)

    Anantharaj, V. G.; Mozdzynski, G.; Hamrud, M.; Deconinck, W.; Smith, L.; Hack, J.

    2014-12-01

    The Oak Ridge Leadership Facility (OLCF), established at the Oak Ridge National Laboratory (ORNL) under the auspices of the U.S. Department of Energy (DOE), welcomes investigators from universities, government agencies, national laboratories and industry who are prepared to perform breakthrough research across a broad domain of scientific disciplines, including earth and space sciences. Titan, the OLCF flagship system, is currently listed as #2 in the Top500 list of supercomputers in the world, and the largest available for open science. The computational resources are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, sponsored by the U.S. DOE Office of Science. In 2014, over 2.25 billion core hours on Titan were awarded via INCITE projects., including 14% of the allocation toward earth sciences. The INCITE competition is also open to research scientists based outside the USA. In fact, international research projects account for 12% of the INCITE awards in 2014. The INCITE scientific review panel also includes 20% participation from international experts. Recent accomplishments in earth sciences at OLCF include the world's first continuous simulation of 21,000 years of earth's climate history (2009); and an unprecedented simulation of a magnitude 8 earthquake over 125 sq. miles. One of the ongoing international projects involves scaling the ECMWF Integrated Forecasting System (IFS) model to over 200K cores of Titan. ECMWF is a partner in the EU funded Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) project. The significance of the research carried out within this project is the demonstration of techniques required to scale current generation Petascale capable simulation codes towards the performance levels required for running on future Exascale systems. One of the techniques pursued by ECMWF is to use Fortran2008 coarrays to overlap computations and communications and

  17. Data-flow oriented visual programming libraries for scientific computing

    NARCIS (Netherlands)

    Maubach, J.M.L.; Drenth, W.D.; Sloot, P.M.A.

    2002-01-01

    The growing release of scientific computational software does not seem to aid the implementation of complex numerical algorithms. Released libraries lack a common standard interface with regard to for instance finite element, difference or volume discretizations. And, libraries written in standard

  18. National Energy Research Scientific Computing Center 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hules, John A.; Bashor, Jon; Wang, Ucilia; Yarris, Lynn; Preuss, Paul

    2008-10-23

    This report presents highlights of the research conducted on NERSC computers in a variety of scientific disciplines during the year 2007. It also reports on changes and upgrades to NERSC's systems and services aswell as activities of NERSC staff.

  19. Computer security at ukrainian nuclear facilities: interface between nuclear safety and security

    International Nuclear Information System (INIS)

    Chumak, D.; Klevtsov, O.

    2015-01-01

    Active introduction of information technology, computer instrumentation and control systems (I and C systems) in the nuclear field leads to a greater efficiency and management of technological processes at nuclear facilities. However, this trend brings a number of challenges related to cyber-attacks on the above elements, which violates computer security as well as nuclear safety and security of a nuclear facility. This paper considers regulatory support to computer security at the nuclear facilities in Ukraine. The issue of computer and information security considered in the context of physical protection, because it is an integral component. The paper focuses on the computer security of I and C systems important to nuclear safety. These systems are potentially vulnerable to cyber threats and, in case of cyber-attacks, the potential negative impact on the normal operational processes can lead to a breach of the nuclear facility security. While ensuring nuclear security of I and C systems, it interacts with nuclear safety, therefore, the paper considers an example of an integrated approach to the requirements of nuclear safety and security

  20. Survey of computer codes applicable to waste facility performance evaluations

    International Nuclear Information System (INIS)

    Alsharif, M.; Pung, D.L.; Rivera, A.L.; Dole, L.R.

    1988-01-01

    This study is an effort to review existing information that is useful to develop an integrated model for predicting the performance of a radioactive waste facility. A summary description of 162 computer codes is given. The identified computer programs address the performance of waste packages, waste transport and equilibrium geochemistry, hydrological processes in unsaturated and saturated zones, and general waste facility performance assessment. Some programs also deal with thermal analysis, structural analysis, and special purposes. A number of these computer programs are being used by the US Department of Energy, the US Nuclear Regulatory Commission, and their contractors to analyze various aspects of waste package performance. Fifty-five of these codes were identified as being potentially useful on the analysis of low-level radioactive waste facilities located above the water table. The code summaries include authors, identification data, model types, and pertinent references. 14 refs., 5 tabs

  1. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Report: Exascale Computing Initiative Review

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Daniel [University of Iowa; Berzins, Martin [University of Utah; Pennington, Robert; Sarkar, Vivek [Rice University; Taylor, Valerie [Texas A& M University

    2015-08-01

    On November 19, 2014, the Advanced Scientific Computing Advisory Committee (ASCAC) was charged with reviewing the Department of Energy’s conceptual design for the Exascale Computing Initiative (ECI). In particular, this included assessing whether there are significant gaps in the ECI plan or areas that need to be given priority or extra management attention. Given the breadth and depth of previous reviews of the technical challenges inherent in exascale system design and deployment, the subcommittee focused its assessment on organizational and management issues, considering technical issues only as they informed organizational or management priorities and structures. This report presents the observations and recommendations of the subcommittee.

  2. Artificial intelligence support for scientific model-building

    Science.gov (United States)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  3. Scientific computing vol II - eigenvalues and optimization

    CERN Document Server

    Trangenstein, John A

    2017-01-01

    This is the second of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses more advanced topics than volume one, and is largely not a prerequisite for volume three. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 49 examples, 110 exercises, 66 algorithms, 24 interactive JavaScript programs, 77 references to software programs and 1 case study. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in LAPACK, GSLIB and MATLAB. This book could be used for a second course in numerical methods, for either upper level undergraduate...

  4. Scientific computing vol III - approximation and integration

    CERN Document Server

    Trangenstein, John A

    2017-01-01

    This is the third of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses topics that depend more on calculus than linear algebra, in order to prepare the reader for solving differential equations. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 90 examples, 200 exercises, 36 algorithms, 40 interactive JavaScript programs, 91 references to software programs and 1 case study. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in GSLIB and MATLAB. This book could be used for a second course in numerical methods, for either ...

  5. Integration of small computers in the low budget facility

    International Nuclear Information System (INIS)

    Miller, G.E.; Crofoot, T.A.

    1988-01-01

    Inexpensive computers (PC's) are well within the reach of low budget reactor facilities. It is possible to envisage many uses that will both improve capabilities of existing instrumentation and also assist operators and staff with certain routine tasks. Both of these opportunities are important for survival at facilities with severe budget and staffing limitations. (author)

  6. UNEDF: Advanced Scientific Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem

    International Nuclear Information System (INIS)

    Nam, H; Stoitsov, M; Nazarewicz, W; Hagen, G; Kortelainen, M; Pei, J C; Bulgac, A; Maris, P; Vary, J P; Roche, K J; Schunck, N; Thompson, I; Wild, S M

    2012-01-01

    The demands of cutting-edge science are driving the need for larger and faster computing resources. With the rapidly growing scale of computing systems and the prospect of technologically disruptive architectures to meet these needs, scientists face the challenge of effectively using complex computational resources to advance scientific discovery. Multi-disciplinary collaborating networks of researchers with diverse scientific backgrounds are needed to address these complex challenges. The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper describes UNEDF and identifies attributes that classify it as a successful computational collaboration. We illustrate significant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, most advanced algorithms, and leadership-class computational resources.

  7. INFN-Pisa scientific computation environment (GRID, HPC and Interactive Analysis)

    International Nuclear Information System (INIS)

    Arezzini, S; Carboni, A; Caruso, G; Ciampa, A; Coscetti, S; Mazzoni, E; Piras, S

    2014-01-01

    The INFN-Pisa Tier2 infrastructure is described, optimized not only for GRID CPU and Storage access, but also for a more interactive use of the resources in order to provide good solutions for the final data analysis step. The Data Center, equipped with about 6700 production cores, permits the use of modern analysis techniques realized via advanced statistical tools (like RooFit and RooStat) implemented in multicore systems. In particular a POSIX file storage access integrated with standard SRM access is provided. Therefore the unified storage infrastructure is described, based on GPFS and Xrootd, used both for SRM data repository and interactive POSIX access. Such a common infrastructure allows a transparent access to the Tier2 data to the users for their interactive analysis. The organization of a specialized many cores CPU facility devoted to interactive analysis is also described along with the login mechanism integrated with the INFN-AAI (National INFN Infrastructure) to extend the site access and use to a geographical distributed community. Such infrastructure is used also for a national computing facility in use to the INFN theoretical community, it enables a synergic use of computing and storage resources. Our Center initially developed for the HEP community is now growing and includes also HPC resources fully integrated. In recent years has been installed and managed a cluster facility (1000 cores, parallel use via InfiniBand connection) and we are now updating this facility that will provide resources for all the intermediate level HPC computing needs of the INFN theoretical national community.

  8. Scientific Grand Challenges: Crosscutting Technologies for Computing at the Exascale - February 2-4, 2010, Washington, D.C.

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.

    2011-02-06

    The goal of the "Scientific Grand Challenges - Crosscutting Technologies for Computing at the Exascale" workshop in February 2010, jointly sponsored by the U.S. Department of Energy’s Office of Advanced Scientific Computing Research and the National Nuclear Security Administration, was to identify the elements of a research and development agenda that will address these challenges and create a comprehensive exascale computing environment. This exascale computing environment will enable the science applications identified in the eight previously held Scientific Grand Challenges Workshop Series.

  9. Towards Monitoring-as-a-service for Scientific Computing Cloud applications using the ElasticSearch ecosystem

    Science.gov (United States)

    Bagnasco, S.; Berzano, D.; Guarise, A.; Lusso, S.; Masera, M.; Vallero, S.

    2015-12-01

    The INFN computing centre in Torino hosts a private Cloud, which is managed with the OpenNebula cloud controller. The infrastructure offers Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) services to different scientific computing applications. The main stakeholders of the facility are a grid Tier-2 site for the ALICE collaboration at LHC, an interactive analysis facility for the same experiment and a grid Tier-2 site for the BESIII collaboration, plus an increasing number of other small tenants. The dynamic allocation of resources to tenants is partially automated. This feature requires detailed monitoring and accounting of the resource usage. We set up a monitoring framework to inspect the site activities both in terms of IaaS and applications running on the hosted virtual instances. For this purpose we used the ElasticSearch, Logstash and Kibana (ELK) stack. The infrastructure relies on a MySQL database back-end for data preservation and to ensure flexibility to choose a different monitoring solution if needed. The heterogeneous accounting information is transferred from the database to the ElasticSearch engine via a custom Logstash plugin. Each use-case is indexed separately in ElasticSearch and we setup a set of Kibana dashboards with pre-defined queries in order to monitor the relevant information in each case. For the IaaS metering, we developed sensors for the OpenNebula API. The IaaS level information gathered through the API is sent to the MySQL database through an ad-hoc developed RESTful web service. Moreover, we have developed a billing system for our private Cloud, which relies on the RabbitMQ message queue for asynchronous communication to the database and on the ELK stack for its graphical interface. The Italian Grid accounting framework is also migrating to a similar set-up. Concerning the application level, we used the Root plugin TProofMonSenderSQL to collect accounting data from the interactive analysis facility. The BESIII

  10. Conceptual design of an ALICE Tier-2 centre. Integrated into a multi-purpose computing facility

    Energy Technology Data Exchange (ETDEWEB)

    Zynovyev, Mykhaylo

    2012-06-29

    This thesis discusses the issues and challenges associated with the design and operation of a data analysis facility for a high-energy physics experiment at a multi-purpose computing centre. At the spotlight is a Tier-2 centre of the distributed computing model of the ALICE experiment at the Large Hadron Collider at CERN in Geneva, Switzerland. The design steps, examined in the thesis, include analysis and optimization of the I/O access patterns of the user workload, integration of the storage resources, and development of the techniques for effective system administration and operation of the facility in a shared computing environment. A number of I/O access performance issues on multiple levels of the I/O subsystem, introduced by utilization of hard disks for data storage, have been addressed by the means of exhaustive benchmarking and thorough analysis of the I/O of the user applications in the ALICE software framework. Defining the set of requirements to the storage system, describing the potential performance bottlenecks and single points of failure and examining possible ways to avoid them allows one to develop guidelines for selecting the way how to integrate the storage resources. The solution, how to preserve a specific software stack for the experiment in a shared environment, is presented along with its effects on the user workload performance. The proposal for a flexible model to deploy and operate the ALICE Tier-2 infrastructure and applications in a virtual environment through adoption of the cloud computing technology and the 'Infrastructure as Code' concept completes the thesis. Scientific software applications can be efficiently computed in a virtual environment, and there is an urgent need to adapt the infrastructure for effective usage of cloud resources.

  11. Conceptual design of an ALICE Tier-2 centre. Integrated into a multi-purpose computing facility

    International Nuclear Information System (INIS)

    Zynovyev, Mykhaylo

    2012-01-01

    This thesis discusses the issues and challenges associated with the design and operation of a data analysis facility for a high-energy physics experiment at a multi-purpose computing centre. At the spotlight is a Tier-2 centre of the distributed computing model of the ALICE experiment at the Large Hadron Collider at CERN in Geneva, Switzerland. The design steps, examined in the thesis, include analysis and optimization of the I/O access patterns of the user workload, integration of the storage resources, and development of the techniques for effective system administration and operation of the facility in a shared computing environment. A number of I/O access performance issues on multiple levels of the I/O subsystem, introduced by utilization of hard disks for data storage, have been addressed by the means of exhaustive benchmarking and thorough analysis of the I/O of the user applications in the ALICE software framework. Defining the set of requirements to the storage system, describing the potential performance bottlenecks and single points of failure and examining possible ways to avoid them allows one to develop guidelines for selecting the way how to integrate the storage resources. The solution, how to preserve a specific software stack for the experiment in a shared environment, is presented along with its effects on the user workload performance. The proposal for a flexible model to deploy and operate the ALICE Tier-2 infrastructure and applications in a virtual environment through adoption of the cloud computing technology and the 'Infrastructure as Code' concept completes the thesis. Scientific software applications can be efficiently computed in a virtual environment, and there is an urgent need to adapt the infrastructure for effective usage of cloud resources.

  12. High-integrity software, computation and the scientific method

    International Nuclear Information System (INIS)

    Hatton, L.

    2012-01-01

    Computation rightly occupies a central role in modern science. Datasets are enormous and the processing implications of some algorithms are equally staggering. With the continuing difficulties in quantifying the results of complex computations, it is of increasing importance to understand its role in the essentially Popperian scientific method. In this paper, some of the problems with computation, for example the long-term unquantifiable presence of undiscovered defect, problems with programming languages and process issues will be explored with numerous examples. One of the aims of the paper is to understand the implications of trying to produce high-integrity software and the limitations which still exist. Unfortunately Computer Science itself suffers from an inability to be suitably critical of its practices and has operated in a largely measurement-free vacuum since its earliest days. Within computer science itself, this has not been so damaging in that it simply leads to unconstrained creativity and a rapid turnover of new technologies. In the applied sciences however which have to depend on computational results, such unquantifiability significantly undermines trust. It is time this particular demon was put to rest. (author)

  13. Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems

    Science.gov (United States)

    2017-04-13

    AFRL-AFOSR-UK-TR-2017-0029 Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems ...2012, “ Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems .” 2. The objective...2012 - 01/25/2015 4. TITLE AND SUBTITLE Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous

  14. International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics

    CERN Document Server

    DEVELOPMENTS IN RELIABLE COMPUTING

    1999-01-01

    The SCAN conference, the International Symposium on Scientific Com­ puting, Computer Arithmetic and Validated Numerics, takes place bian­ nually under the joint auspices of GAMM (Gesellschaft fiir Angewandte Mathematik und Mechanik) and IMACS (International Association for Mathematics and Computers in Simulation). SCAN-98 attracted more than 100 participants from 21 countries all over the world. During the four days from September 22 to 25, nine highlighted, plenary lectures and over 70 contributed talks were given. These figures indicate a large participation, which was partly caused by the attraction of the organizing country, Hungary, but also the effec­ tive support system have contributed to the success. The conference was substantially supported by the Hungarian Research Fund OTKA, GAMM, the National Technology Development Board OMFB and by the J6zsef Attila University. Due to this funding, it was possible to subsidize the participation of over 20 scientists, mainly from Eastern European countries. I...

  15. Computer simulations and the changing face of scientific experimentation

    CERN Document Server

    Duran, Juan M

    2013-01-01

    Computer simulations have become a central tool for scientific practice. Their use has replaced, in many cases, standard experimental procedures. This goes without mentioning cases where the target system is empirical but there are no techniques for direct manipulation of the system, such as astronomical observation. To these cases, computer simulations have proved to be of central importance. The question about their use and implementation, therefore, is not only a technical one but represents a challenge for the humanities as well. In this volume, scientists, historians, and philosophers joi

  16. Power requirements assessment for lunar and Mars scientific and experimental payloads

    International Nuclear Information System (INIS)

    Kotas, J.F.

    1992-01-01

    This paper reports on an evaluation of prospective scientific payloads and surface experiments for future manned missions to the moon and Mars which determined that overall mission objectives and requirements influence the selection of candidate power systems. A generic classification of these science missions was developed to examine these relationships. Scientific missions were defined for the four Synthesis Report architectures and cumulative power load and payload mix computed. Approximately half of all deployed science payloads were sited within the main surface outpost and powered by the central power generation facility. The remaining remote science payloads require either autonomous or smaller central power facilities

  17. PARA'04, State-of-the-art in scientific computing

    DEFF Research Database (Denmark)

    Madsen, Kaj; Wasniewski, Jerzy

    This meeting in the series, the PARA'04 Workshop with the title ``State of the Art in Scientific Computing'', was held in Lyngby, Denmark, June 20-23, 2004. The PARA'04 Workshop was organized by Jack Dongarra from the University of Tennessee and Oak Ridge National Laboratory, and Kaj Madsen and J...

  18. Elastic Scheduling of Scientific Workflows under Deadline Constraints in Cloud Computing Environments

    Directory of Open Access Journals (Sweden)

    Nazia Anwar

    2018-01-01

    Full Text Available Scientific workflow applications are collections of several structured activities and fine-grained computational tasks. Scientific workflow scheduling in cloud computing is a challenging research topic due to its distinctive features. In cloud environments, it has become critical to perform efficient task scheduling resulting in reduced scheduling overhead, minimized cost and maximized resource utilization while still meeting the user-specified overall deadline. This paper proposes a strategy, Dynamic Scheduling of Bag of Tasks based workflows (DSB, for scheduling scientific workflows with the aim to minimize financial cost of leasing Virtual Machines (VMs under a user-defined deadline constraint. The proposed model groups the workflow into Bag of Tasks (BoTs based on data dependency and priority constraints and thereafter optimizes the allocation and scheduling of BoTs on elastic, heterogeneous and dynamically provisioned cloud resources called VMs in order to attain the proposed method’s objectives. The proposed approach considers pay-as-you-go Infrastructure as a Service (IaaS clouds having inherent features such as elasticity, abundance, heterogeneity and VM provisioning delays. A trace-based simulation using benchmark scientific workflows representing real world applications, demonstrates a significant reduction in workflow computation cost while the workflow deadline is met. The results validate that the proposed model produces better success rates to meet deadlines and cost efficiencies in comparison to adapted state-of-the-art algorithms for similar problems.

  19. ScalaLab and GroovyLab: Comparing Scala and Groovy for Scientific Computing

    Directory of Open Access Journals (Sweden)

    Stergios Papadimitriou

    2015-01-01

    Full Text Available ScalaLab and GroovyLab are both MATLAB-like environments for the Java Virtual Machine. ScalaLab is based on the Scala programming language and GroovyLab is based on the Groovy programming language. They present similar user interfaces and functionality to the user. They also share the same set of Java scientific libraries and of native code libraries. From the programmer's point of view though, they have significant differences. This paper compares some aspects of the two environments and highlights some of the strengths and weaknesses of Scala versus Groovy for scientific computing. The discussion also examines some aspects of the dilemma of using dynamic typing versus static typing for scientific programming. The performance of the Java platform is continuously improved at a fast pace. Today Java can effectively support demanding high-performance computing and scales well on multicore platforms. Thus, both systems can challenge the performance of the traditional C/C++/Fortran scientific code with an easier to use and more productive programming environment.

  20. Advancing nuclear technology and research. The advanced test reactor national scientific user facility

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Jeff B; Marshall, Frances M [Idaho National Laboratory, Idaho Falls, ID (United States); Allen, Todd R [Univ. of Wisconsin, Madison, WI (United States)

    2012-03-15

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research. The mission of the ATR NSUF is to provide access to world-class facilities, thereby facilitating the advancement of nuclear science and technology. Cost free access to the ATR, INL post irradiation examination facilities, and partner facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to United States Department of Energy. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. (author)

  1. The Observation of Bahasa Indonesia Official Computer Terms Implementation in Scientific Publication

    Science.gov (United States)

    Gunawan, D.; Amalia, A.; Lydia, M. S.; Muthaqin, M. I.

    2018-03-01

    The government of the Republic of Indonesia had issued a regulation to substitute computer terms in foreign language that have been used earlier into official computer terms in Bahasa Indonesia. This regulation was stipulated in Presidential Decree No. 2 of 2001 concerning the introduction of official computer terms in Bahasa Indonesia (known as Senarai Padanan Istilah/SPI). After sixteen years, people of Indonesia, particularly for academics, should have implemented the official computer terms in their official publications. This observation is conducted to discover the implementation of official computer terms usage in scientific publications which are written in Bahasa Indonesia. The data source used in this observation are the publications by the academics, particularly in computer science field. The method used in the observation is divided into four stages. The first stage is metadata harvesting by using Open Archive Initiative - Protocol for Metadata Harvesting (OAI-PMH). Second, converting the harvested document (in pdf format) to plain text. The third stage is text-preprocessing as the preparation of string matching. Then the final stage is searching the official computer terms based on 629 SPI terms by using Boyer-Moore algorithm. We observed that there are 240,781 foreign computer terms in 1,156 scientific publications from six universities. This result shows that the foreign computer terms are still widely used by the academics.

  2. Systems Engineering and Safety Issues in Scientific Facilities Subject to Ionizing Radiations

    Directory of Open Access Journals (Sweden)

    Pierre Bonnal

    2013-10-01

    Full Text Available The conception and development of large-scale scientific facilities emitting ionizing radiations rely more on project management practices in use in the process industry than on systems engineering practices. This paper aims to highlight possible reasons for this present situation and to propose some ways to enhance systems engineering so that the specific radiation safety requirements are considered and integrated in the approach. To do so, we have reviewed lessons learned from the management of large-scale scientific projects and more specifically that of the Large Hadron Collider project at CERN. It is shown that project management and systems engineering practices are complementary and can beneficially be assembled in an integrated and lean managerial framework that grants the appropriate amount of focus to safety and radiation safety aspects.

  3. From Mars to Minerva: The origins of scientific computing in the AEC labs

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W. [ERA Land Grant Professor of the History of Technology]|[Charles Babbage Institute, University of Minnesota, Minneapolis, Minnesota (United States)

    1996-10-01

    Although the AEC laboratories are renowned for the development of nuclear weapons, their largess in promoting scientific computing also had a profound effect on scientific and technological development in the second half of the 20th century. {copyright} {ital 1996 American Institute of Physics.}

  4. The scaling issue: scientific opportunities

    Science.gov (United States)

    Orbach, Raymond L.

    2009-07-01

    A brief history of the Leadership Computing Facility (LCF) initiative is presented, along with the importance of SciDAC to the initiative. The initiative led to the initiation of the Innovative and Novel Computational Impact on Theory and Experiment program (INCITE), open to all researchers in the US and abroad, and based solely on scientific merit through peer review, awarding sizeable allocations (typically millions of processor-hours per project). The development of the nation's LCFs has enabled available INCITE processor-hours to double roughly every eight months since its inception in 2004. The 'top ten' LCF accomplishments in 2009 illustrate the breadth of the scientific program, while the 75 million processor hours allocated to American business since 2006 highlight INCITE contributions to US competitiveness. The extrapolation of INCITE processor hours into the future brings new possibilities for many 'classic' scaling problems. Complex systems and atomic displacements to cracks are but two examples. However, even with increasing computational speeds, the development of theory, numerical representations, algorithms, and efficient implementation are required for substantial success, exhibiting the crucial role that SciDAC will play.

  5. The scaling issue: scientific opportunities

    International Nuclear Information System (INIS)

    Orbach, Raymond L

    2009-01-01

    A brief history of the Leadership Computing Facility (LCF) initiative is presented, along with the importance of SciDAC to the initiative. The initiative led to the initiation of the Innovative and Novel Computational Impact on Theory and Experiment program (INCITE), open to all researchers in the US and abroad, and based solely on scientific merit through peer review, awarding sizeable allocations (typically millions of processor-hours per project). The development of the nation's LCFs has enabled available INCITE processor-hours to double roughly every eight months since its inception in 2004. The 'top ten' LCF accomplishments in 2009 illustrate the breadth of the scientific program, while the 75 million processor hours allocated to American business since 2006 highlight INCITE contributions to US competitiveness. The extrapolation of INCITE processor hours into the future brings new possibilities for many 'classic' scaling problems. Complex systems and atomic displacements to cracks are but two examples. However, even with increasing computational speeds, the development of theory, numerical representations, algorithms, and efficient implementation are required for substantial success, exhibiting the crucial role that SciDAC will play.

  6. Computer-Assisted School Facility Planning with ONPASS.

    Science.gov (United States)

    Urban Decision Systems, Inc., Los Angeles, CA.

    The analytical capabilities of ONPASS, an on-line computer-aided school facility planning system, are described by its developers. This report describes how, using the Canoga Park-Winnetka-Woodland Hills Planning Area as a test case, the Department of City Planning of the city of Los Angeles employed ONPASS to demonstrate how an on-line system can…

  7. Large-scale computation at PSI scientific achievements and future requirements

    International Nuclear Information System (INIS)

    Adelmann, A.; Markushin, V.

    2008-11-01

    Computational modelling and simulation are among the disciplines that have seen the most dramatic growth in capabilities in the 2Oth Century. Within the past two decades, scientific computing has become an important contributor to all scientific research programs. Computational modelling and simulation are particularly indispensable for solving research problems that are unsolvable by traditional theoretical and experimental approaches, hazardous to study, or time consuming or expensive to solve by traditional means. Many such research areas are found in PSI's research portfolio. Advances in computing technologies (including hardware and software) during the past decade have set the stage for a major step forward in modelling and simulation. We have now arrived at a situation where we have a number of otherwise unsolvable problems, where simulations are as complex as the systems under study. In 2008 the High-Performance Computing (HPC) community entered the petascale area with the heterogeneous Opteron/Cell machine, called Road Runner built by IBM for the Los Alamos National Laboratory. We are on the brink of a time where the availability of many hundreds of thousands of cores will open up new challenging possibilities in physics, algorithms (numerical mathematics) and computer science. However, to deliver on this promise, it is not enough to provide 'peak' performance in terms of peta-flops, the maximum theoretical speed a computer can attain. Most important, this must be translated into corresponding increase in the capabilities of scientific codes. This is a daunting problem that can only be solved by increasing investment in hardware, in the accompanying system software that enables the reliable use of high-end computers, in scientific competence i.e. the mathematical (parallel) algorithms that are the basis of the codes, and education. In the case of Switzerland, the white paper 'Swiss National Strategic Plan for High Performance Computing and Networking

  8. Large-scale computation at PSI scientific achievements and future requirements

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A.; Markushin, V

    2008-11-15

    Computational modelling and simulation are among the disciplines that have seen the most dramatic growth in capabilities in the 2Oth Century. Within the past two decades, scientific computing has become an important contributor to all scientific research programs. Computational modelling and simulation are particularly indispensable for solving research problems that are unsolvable by traditional theoretical and experimental approaches, hazardous to study, or time consuming or expensive to solve by traditional means. Many such research areas are found in PSI's research portfolio. Advances in computing technologies (including hardware and software) during the past decade have set the stage for a major step forward in modelling and simulation. We have now arrived at a situation where we have a number of otherwise unsolvable problems, where simulations are as complex as the systems under study. In 2008 the High-Performance Computing (HPC) community entered the petascale area with the heterogeneous Opteron/Cell machine, called Road Runner built by IBM for the Los Alamos National Laboratory. We are on the brink of a time where the availability of many hundreds of thousands of cores will open up new challenging possibilities in physics, algorithms (numerical mathematics) and computer science. However, to deliver on this promise, it is not enough to provide 'peak' performance in terms of peta-flops, the maximum theoretical speed a computer can attain. Most important, this must be translated into corresponding increase in the capabilities of scientific codes. This is a daunting problem that can only be solved by increasing investment in hardware, in the accompanying system software that enables the reliable use of high-end computers, in scientific competence i.e. the mathematical (parallel) algorithms that are the basis of the codes, and education. In the case of Switzerland, the white paper 'Swiss National Strategic Plan for High Performance Computing

  9. Neutronic computational modeling of the ASTRA critical facility using MCNPX

    International Nuclear Information System (INIS)

    Rodriguez, L. P.; Garcia, C. R.; Milian, D.; Milian, E. E.; Brayner, C.

    2015-01-01

    The Pebble Bed Very High Temperature Reactor is considered as a prominent candidate among Generation IV nuclear energy systems. Nevertheless the Pebble Bed Very High Temperature Reactor faces an important challenge due to the insufficient validation of computer codes currently available for use in its design and safety analysis. In this paper a detailed IAEA computational benchmark announced by IAEA-TECDOC-1694 in the framework of the Coordinated Research Project 'Evaluation of High Temperature Gas Cooled Reactor (HTGR) Performance' was solved in support of the Generation IV computer codes validation effort using MCNPX ver. 2.6e computational code. In the IAEA-TECDOC-1694 were summarized a set of four calculational benchmark problems performed at the ASTRA critical facility. Benchmark problems include criticality experiments, control rod worth measurements and reactivity measurements. The ASTRA Critical Facility at the Kurchatov Institute in Moscow was used to simulate the neutronic behavior of nuclear pebble bed reactors. (Author)

  10. Scientific visualization in computational aerodynamics at NASA Ames Research Center

    Science.gov (United States)

    Bancroft, Gordon V.; Plessel, Todd; Merritt, Fergus; Walatka, Pamela P.; Watson, Val

    1989-01-01

    The visualization methods used in computational fluid dynamics research at the NASA-Ames Numerical Aerodynamic Simulation facility are examined, including postprocessing, tracking, and steering methods. The visualization requirements of the facility's three-dimensional graphical workstation are outlined and the types hardware and software used to meet these requirements are discussed. The main features of the facility's current and next-generation workstations are listed. Emphasis is given to postprocessing techniques, such as dynamic interactive viewing on the workstation and recording and playback on videodisk, tape, and 16-mm film. Postprocessing software packages are described, including a three-dimensional plotter, a surface modeler, a graphical animation system, a flow analysis software toolkit, and a real-time interactive particle-tracer.

  11. Ground facility for information reception, processing, dissemination and scientific instruments management setup in the CORONAS-PHOTON space project

    Science.gov (United States)

    Buslov, A. S.; Kotov, Yu. D.; Yurov, V. N.; Bessonov, M. V.; Kalmykov, P. A.; Oreshnikov, E. M.; Alimov, A. M.; Tumanov, A. V.; Zhuchkova, E. A.

    2011-06-01

    This paper deals with the organizational structure of ground-based receiving, processing, and dissemination of scientific information created by the Astrophysics Institute of the Scientific Research Nuclear University, Moscow Engineering Physics Institute. Hardware structure and software features are described. The principles are given for forming sets of control commands for scientific equipment (SE) devices, and statistics data are presented on the operation of facility during flight tests of the spacecraft (SC) in the course of one year.

  12. Accelerating scientific discovery : 2007 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, P.; Dave, P.; Drugan, C.

    2008-11-14

    As a gateway for scientific discovery, the Argonne Leadership Computing Facility (ALCF) works hand in hand with the world's best computational scientists to advance research in a diverse span of scientific domains, ranging from chemistry, applied mathematics, and materials science to engineering physics and life sciences. Sponsored by the U.S. Department of Energy's (DOE) Office of Science, researchers are using the IBM Blue Gene/L supercomputer at the ALCF to study and explore key scientific problems that underlie important challenges facing our society. For instance, a research team at the University of California-San Diego/ SDSC is studying the molecular basis of Parkinson's disease. The researchers plan to use the knowledge they gain to discover new drugs to treat the disease and to identify risk factors for other diseases that are equally prevalent. Likewise, scientists from Pratt & Whitney are using the Blue Gene to understand the complex processes within aircraft engines. Expanding our understanding of jet engine combustors is the secret to improved fuel efficiency and reduced emissions. Lessons learned from the scientific simulations of jet engine combustors have already led Pratt & Whitney to newer designs with unprecedented reductions in emissions, noise, and cost of ownership. ALCF staff members provide in-depth expertise and assistance to those using the Blue Gene/L and optimizing user applications. Both the Catalyst and Applications Performance Engineering and Data Analytics (APEDA) teams support the users projects. In addition to working with scientists running experiments on the Blue Gene/L, we have become a nexus for the broader global community. In partnership with the Mathematics and Computer Science Division at Argonne National Laboratory, we have created an environment where the world's most challenging computational science problems can be addressed. Our expertise in high-end scientific computing enables us to provide

  13. Functional failure modes cause-consequence logic suited for mobile robots used at scientific facilities

    CERN Document Server

    Khan, Douzi Imran; Bonnal, Pierre; Verma, A K

    2014-01-01

    The scientific facilities emitting ionizing radiation may have some significant failures and hazard issues, in and around their infrastructure. Significantly, this will also cause risks to workers and environment, which has led engineers to explore the use and implementation of mobile robots (MR), in order to reduce or eliminate such risks concerned with safety issues. Safe functioning of MR and the systems working at hazardous facilities is essential and therefore all the systems, structures and components (SSC) of a hazardous facility have to correspond to high reliability, availability, maintainability and safety (=RAMS) demands. RAMS characteristics have a causal relationship with the risks related to the facility systems availability, safety and life cycle costs. They also form the basis for the operating systems and MR performance, to carry out the desired functions. In this paper we have developed and presented a method for how to consider and model a SSC with respect to its desired functions and also ...

  14. Integrated computer network high-speed parallel interface

    International Nuclear Information System (INIS)

    Frank, R.B.

    1979-03-01

    As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures

  15. Development of computer model for radionuclide released from shallow-land disposal facility

    International Nuclear Information System (INIS)

    Suganda, D.; Sucipta; Sastrowardoyo, P.B.; Eriendi

    1998-01-01

    Development of 1-dimensional computer model for radionuclide release from shallow land disposal facility (SLDF) has been done. This computer model is used for the SLDF facility at PPTA Serpong. The SLDF facility is above 1.8 metres from groundwater and 150 metres from Cisalak river. Numerical method by implicit method of finite difference solution is chosen to predict the migration of radionuclide with any concentration.The migration starts vertically from the bottom of SLDF until the groundwater layer, then horizontally in the groundwater until the critical population group. Radionuclide Cs-137 is chosen as a sample to know its migration. The result of the assessment shows that the SLDF facility at PPTA Serpong has the high safety criteria. (author)

  16. Topics in numerical partial differential equations and scientific computing

    CERN Document Server

    2016-01-01

    Numerical partial differential equations (PDEs) are an important part of numerical simulation, the third component of the modern methodology for science and engineering, besides the traditional theory and experiment. This volume contains papers that originated with the collaborative research of the teams that participated in the IMA Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing in August 2014.

  17. Advanced Scientific Computing Research Exascale Requirements Review. An Office of Science review sponsored by Advanced Scientific Computing Research, September 27-29, 2016, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Almgren, Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeMar, Phil [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vetter, Jeffrey [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Riley, Katherine [Argonne Leadership Computing Facility, Argonne, IL (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Science Network; Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Science Network; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Science Network; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bethel, Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bosilca, George [Univ. of Tennessee, Knoxville, TN (United States); Cappello, Frank [Argonne National Lab. (ANL), Argonne, IL (United States); Gamblin, Todd [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Habib, Salman [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, Judy [Oak Ridge Leadership Computing Facility, Oak Ridge, TN (United States); Hollingsworth, Jeffrey K. [Univ. of Maryland, College Park, MD (United States); McInnes, Lois Curfman [Argonne National Lab. (ANL), Argonne, IL (United States); Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moore, Shirley [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moreland, Ken [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roser, Rob [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Shende, Sameer [Univ. of Oregon, Eugene, OR (United States); Shipman, Galen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-20

    The widespread use of computing in the American economy would not be possible without a thoughtful, exploratory research and development (R&D) community pushing the performance edge of operating systems, computer languages, and software libraries. These are the tools and building blocks — the hammers, chisels, bricks, and mortar — of the smartphone, the cloud, and the computing services on which we rely. Engineers and scientists need ever-more specialized computing tools to discover new material properties for manufacturing, make energy generation safer and more efficient, and provide insight into the fundamentals of the universe, for example. The research division of the U.S. Department of Energy’s (DOE’s) Office of Advanced Scientific Computing and Research (ASCR Research) ensures that these tools and building blocks are being developed and honed to meet the extreme needs of modern science. See also http://exascaleage.org/ascr/ for additional information.

  18. Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.

    Energy Technology Data Exchange (ETDEWEB)

    Papka, M.; Messina, P.; Coffey, R.; Drugan, C. (LCF)

    2012-08-16

    The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursor to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to

  19. The role of dedicated data computing centers in the age of cloud computing

    Science.gov (United States)

    Caramarcu, Costin; Hollowell, Christopher; Strecker-Kellogg, William; Wong, Antonio; Zaytsev, Alexandr

    2017-10-01

    Brookhaven National Laboratory (BNL) anticipates significant growth in scientific programs with large computing and data storage needs in the near future and has recently reorganized support for scientific computing to meet these needs. A key component is the enhanced role of the RHIC-ATLAS Computing Facility (RACF) in support of high-throughput and high-performance computing (HTC and HPC) at BNL. This presentation discusses the evolving role of the RACF at BNL, in light of its growing portfolio of responsibilities and its increasing integration with cloud (academic and for-profit) computing activities. We also discuss BNL’s plan to build a new computing center to support the new responsibilities of the RACF and present a summary of the cost benefit analysis done, including the types of computing activities that benefit most from a local data center vs. cloud computing. This analysis is partly based on an updated cost comparison of Amazon EC2 computing services and the RACF, which was originally conducted in 2012.

  20. Trend Analysis of the Brazilian Scientific Production in Computer Science

    Directory of Open Access Journals (Sweden)

    TRUCOLO, C. C.

    2014-12-01

    Full Text Available The growth of scientific information volume and diversity brings new challenges in order to understand the reasons, the process and the real essence that propel this growth. This information can be used as the basis for the development of strategies and public politics to improve the education and innovation services. Trend analysis is one of the steps in this way. In this work, trend analysis of Brazilian scientific production of graduate programs in the computer science area is made to identify the main subjects being studied by these programs in general and individual ways.

  1. Implementation of Scientific Computing Applications on the Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Guochun Shi

    2009-01-01

    Full Text Available The Cell Broadband Engine architecture is a revolutionary processor architecture well suited for many scientific codes. This paper reports on an effort to implement several traditional high-performance scientific computing applications on the Cell Broadband Engine processor, including molecular dynamics, quantum chromodynamics and quantum chemistry codes. The paper discusses data and code restructuring strategies necessary to adapt the applications to the intrinsic properties of the Cell processor and demonstrates performance improvements achieved on the Cell architecture. It concludes with the lessons learned and provides practical recommendations on optimization techniques that are believed to be most appropriate.

  2. Data management and its role in delivering science at DOE BES user facilities - Past, Present, and Future

    Science.gov (United States)

    Miller, Stephen D.; Herwig, Kenneth W.; Ren, Shelly; Vazhkudai, Sudharshan S.; Jemian, Pete R.; Luitz, Steffen; Salnikov, Andrei A.; Gaponenko, Igor; Proffen, Thomas; Lewis, Paul; Green, Mark L.

    2009-07-01

    The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research [1]. We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one's laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today's data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need [2]. Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990's to integrate data from across multiple modalities to achieve

  3. Data management and its role in delivering science at DOE BES user facilities - Past, Present, and Future

    International Nuclear Information System (INIS)

    Miller, Stephen D; Herwig, Kenneth W; Ren, Shelly; Vazhkudai, Sudharshan S; Jemian, Pete R; Luitz, Steffen; Salnikov, Andrei A; Gaponenko, Igor; Proffen, Thomas; Lewis, Paul; Green, Mark L

    2009-01-01

    The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research. We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one's laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today's data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need. Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990's to integrate data from across multiple modalities to achieve better

  4. Data Management and its Role in Delivering Science at DOE BES User Facilities - Past, Present, and Future

    International Nuclear Information System (INIS)

    Miller, Stephen D.; Herwig, Kenneth W.; Ren, Shelly; Vazhkudai, Sudharshan S.; Jemian, Pete R.; Luitz, Steffen; Salnikov, Andrei; Gaponenko, Igor; Proffen, Thomas; Lewis, Paul; Hagen, Mark E.

    2009-01-01

    The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research. We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one's laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today's data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need. Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990's to integrate data from across multiple modalities to achieve better

  5. Data Management and Its Role in Delivering Science at DOE BES User Facilities Past, Present, and Future

    International Nuclear Information System (INIS)

    Miller, Stephen D.; Herwig, Kenneth W.; Ren, Shelly; Vazhkudai, Sudharshan S.

    2009-01-01

    The primary mission of user facilities operated by Basic Energy Sciences under the Department of Energy is to produce data for users in support of open science and basic research (1). We trace back almost 30 years of history across selected user facilities illustrating the evolution of facility data management practices and how these practices have related to performing scientific research. The facilities cover multiple techniques such as X-ray and neutron scattering, imaging and tomography sciences. Over time, detector and data acquisition technologies have dramatically increased the ability to produce prolific volumes of data challenging the traditional paradigm of users taking data home upon completion of their experiments to process and publish their results. During this time, computing capacity has also increased dramatically, though the size of the data has grown significantly faster than the capacity of one's laptop to manage and process this new facility produced data. Trends indicate that this will continue to be the case for yet some time. Thus users face a quandary for how to manage today's data complexity and size as these may exceed the computing resources users have available to themselves. This same quandary can also stifle collaboration and sharing. Realizing this, some facilities are already providing web portal access to data and computing thereby providing users access to resources they need (2). Portal based computing is now driving researchers to think about how to use the data collected at multiple facilities in an integrated way to perform their research, and also how to collaborate and share data. In the future, inter-facility data management systems will enable next tier cross-instrument-cross facility scientific research fuelled by smart applications residing upon user computer resources. We can learn from the medical imaging community that has been working since the early 1990's to integrate data from across multiple modalities to achieve

  6. Scientific and Computational Challenges of the Fusion Simulation Program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  7. Scientific and computational challenges of the fusion simulation program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) - a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  8. DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Robert [University of Southern California, Information Sciences Institute; Ang, James [Sandia National Laboratories; Bergman, Keren [Columbia University; Borkar, Shekhar [Intel; Carlson, William [Institute for Defense Analyses; Carrington, Laura [University of California, San Diego; Chiu, George [IBM; Colwell, Robert [DARPA; Dally, William [NVIDIA; Dongarra, Jack [University of Tennessee; Geist, Al [Oak Ridge National Laboratory; Haring, Rud [IBM; Hittinger, Jeffrey [Lawrence Livermore National Laboratory; Hoisie, Adolfy [Pacific Northwest National Laboratory; Klein, Dean Micron; Kogge, Peter [University of Notre Dame; Lethin, Richard [Reservoir Labs; Sarkar, Vivek [Rice University; Schreiber, Robert [Hewlett Packard; Shalf, John [Lawrence Berkeley National Laboratory; Sterling, Thomas [Indiana University; Stevens, Rick [Argonne National Laboratory; Bashor, Jon [Lawrence Berkeley National Laboratory; Brightwell, Ron [Sandia National Laboratories; Coteus, Paul [IBM; Debenedictus, Erik [Sandia National Laboratories; Hiller, Jon [Science and Technology Associates; Kim, K. H. [IBM; Langston, Harper [Reservoir Labs; Murphy, Richard Micron; Webster, Clayton [Oak Ridge National Laboratory; Wild, Stefan [Argonne National Laboratory; Grider, Gary [Los Alamos National Laboratory; Ross, Rob [Argonne National Laboratory; Leyffer, Sven [Argonne National Laboratory; Laros III, James [Sandia National Laboratories

    2014-02-10

    Exascale computing systems are essential for the scientific fields that will transform the 21st century global economy, including energy, biotechnology, nanotechnology, and materials science. Progress in these fields is predicated on the ability to perform advanced scientific and engineering simulations, and analyze the deluge of data. On July 29, 2013, ASCAC was charged by Patricia Dehmer, the Acting Director of the Office of Science, to assemble a subcommittee to provide advice on exascale computing. This subcommittee was directed to return a list of no more than ten technical approaches (hardware and software) that will enable the development of a system that achieves the Department's goals for exascale computing. Numerous reports over the past few years have documented the technical challenges and the non¬-viability of simply scaling existing computer designs to reach exascale. The technical challenges revolve around energy consumption, memory performance, resilience, extreme concurrency, and big data. Drawing from these reports and more recent experience, this ASCAC subcommittee has identified the top ten computing technology advancements that are critical to making a capable, economically viable, exascale system.

  9. Shieldings for X-ray radiotherapy facilities calculated by computer

    International Nuclear Information System (INIS)

    Pedrosa, Paulo S.; Farias, Marcos S.; Gavazza, Sergio

    2005-01-01

    This work presents a methodology for calculation of X-ray shielding in facilities of radiotherapy with help of computer. Even today, in Brazil, the calculation of shielding for X-ray radiotherapy is done based on NCRP-49 recommendation establishing a methodology for calculating required to the elaboration of a project of shielding. With regard to high energies, where is necessary the construction of a labyrinth, the NCRP-49 is not very clear, so that in this field, studies were made resulting in an article that proposes a solution to the problem. It was developed a friendly program in Delphi programming language that, through the manual data entry of a basic design of architecture and some parameters, interprets the geometry and calculates the shields of the walls, ceiling and floor of on X-ray radiation therapy facility. As the final product, this program provides a graphical screen on the computer with all the input data and the calculation of shieldings and the calculation memory. The program can be applied in practical implementation of shielding projects for radiotherapy facilities and can be used in a didactic way compared to NCRP-49.

  10. Quality assurance of analytical, scientific, and design computer programs for nuclear power plants

    International Nuclear Information System (INIS)

    1994-06-01

    This Standard applies to the design and development, modification, documentation, execution, and configuration management of computer programs used to perform analytical, scientific, and design computations during the design and analysis of safety-related nuclear power plant equipment, systems, structures, and components as identified by the owner. 2 figs

  11. Quality assurance of analytical, scientific, and design computer programs for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    This Standard applies to the design and development, modification, documentation, execution, and configuration management of computer programs used to perform analytical, scientific, and design computations during the design and analysis of safety-related nuclear power plant equipment, systems, structures, and components as identified by the owner. 2 figs.

  12. Topic 14+16: High-performance and scientific applications and extreme-scale computing (Introduction)

    KAUST Repository

    Downes, Turlough P.

    2013-01-01

    As our understanding of the world around us increases it becomes more challenging to make use of what we already know, and to increase our understanding still further. Computational modeling and simulation have become critical tools in addressing this challenge. The requirements of high-resolution, accurate modeling have outstripped the ability of desktop computers and even small clusters to provide the necessary compute power. Many applications in the scientific and engineering domains now need very large amounts of compute time, while other applications, particularly in the life sciences, frequently have large data I/O requirements. There is thus a growing need for a range of high performance applications which can utilize parallel compute systems effectively, which have efficient data handling strategies and which have the capacity to utilise current and future systems. The High Performance and Scientific Applications topic aims to highlight recent progress in the use of advanced computing and algorithms to address the varied, complex and increasing challenges of modern research throughout both the "hard" and "soft" sciences. This necessitates being able to use large numbers of compute nodes, many of which are equipped with accelerators, and to deal with difficult I/O requirements. © 2013 Springer-Verlag.

  13. DYMAC computer system

    International Nuclear Information System (INIS)

    Hagen, J.; Ford, R.F.

    1979-01-01

    The DYnamic Materials ACcountability program (DYMAC) has been monitoring nuclear material at the Los Alamos Scientific Laboratory plutonium processing facility since January 1978. This paper presents DYMAC's features and philosophy, especially as reflected in its computer system design. Early decisions and tradeoffs are evaluated through the benefit of a year's operating experience

  14. Computer codes for ventilation in nuclear facilities

    International Nuclear Information System (INIS)

    Mulcey, P.

    1987-01-01

    In this paper the authors present some computer codes, developed in the last years, for ventilation and radioprotection. These codes are used for safety analysis in the conception, exploitation and dismantlement of nuclear facilities. The authors present particularly: DACC1 code used for aerosol deposit in sampling circuit of radiation monitors; PIAF code used for modelization of complex ventilation system; CLIMAT 6 code used for optimization of air conditioning system [fr

  15. Designing Scientific Software for Heterogeneous Computing

    DEFF Research Database (Denmark)

    Glimberg, Stefan Lemvig

    , algorithms and data structures must be designed to utilize the underlying parallel architecture. The architectural changes in hardware design within the last decade, from single to multi and many-core architectures, require software developers to identify and properly implement methods that both exploit...... makes parallel software design applicable, but also a challenge for scientific software developers at all levels. We have developed a generic C++ library for fast prototyping of large-scale PDEs solvers based on flexible-order finite difference approximations on structured regular grids. The library...... is designed with a high abstraction interface to improve developer productivity. The library is based on modern template-based design concepts as described in Glimberg, Engsig-Karup, Nielsen & Dammann (2013). The library utilizes heterogeneous CPU/GPU environments in order to maximize computational throughput...

  16. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    International Nuclear Information System (INIS)

    Khaleel, Mohammad A.

    2009-01-01

    This report is an account of the deliberations and conclusions of the workshop on 'Forefront Questions in Nuclear Science and the Role of High Performance Computing' held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to (1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; (2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; (3) provide nuclear physicists the opportunity to influence the development of high performance computing; and (4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  17. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.

    2009-10-01

    This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  18. Computer-Supported Aids to Making Sense of Scientific Articles: Cognitive, Motivational, and Attitudinal Effects

    Science.gov (United States)

    Gegner, Julie A.; Mackay, Donald H. J.; Mayer, Richard E.

    2009-01-01

    High school students can access original scientific research articles on the Internet, but may have trouble understanding them. To address this problem of online literacy, the authors developed a computer-based prototype for guiding students' comprehension of scientific articles. High school students were asked to read an original scientific…

  19. Computer control and data acquisition system for the R.F. Test Facility

    International Nuclear Information System (INIS)

    Stewart, K.A.; Burris, R.D.; Mankin, J.B.; Thompson, D.H.

    1986-01-01

    The Radio Frequency Test Facility (RFTF) at Oak Ridge National Laboratory, used to test and evaluate high-power ion cyclotron resonance heating (ICRH) systems and components, is monitored and controlled by a multicomponent computer system. This data acquisition and control system consists of three major hardware elements: (1) an Allen-Bradley PLC-3 programmable controller; (2) a VAX 11/780 computer; and (3) a CAMAC serial highway interface. Operating in LOCAL as well as REMOTE mode, the programmable logic controller (PLC) performs all the control functions of the test facility. The VAX computer acts as the operator's interface to the test facility by providing color mimic panel displays and allowing input via a trackball device. The VAX also provides archiving of trend data acquired by the PLC. Communications between the PLC and the VAX are via the CAMAC serial highway. Details of the hardware, software, and the operation of the system are presented in this paper

  20. Certainty in Stockpile Computing: Recommending a Verification and Validation Program for Scientific Software

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.

    1998-11-01

    As computing assumes a more central role in managing the nuclear stockpile, the consequences of an erroneous computer simulation could be severe. Computational failures are common in other endeavors and have caused project failures, significant economic loss, and loss of life. This report examines the causes of software failure and proposes steps to mitigate them. A formal verification and validation program for scientific software is recommended and described.

  1. Computing challenges of the CMS experiment

    International Nuclear Information System (INIS)

    Krammer, N.; Liko, D.

    2017-01-01

    The success of the LHC experiments is due to the magnificent performance of the detector systems and the excellent operating computing systems. The CMS offline software and computing system is successfully fulfilling the LHC Run 2 requirements. For the increased data rate of future LHC operation, together with high pileup interactions, improvements of the usage of the current computing facilities and new technologies became necessary. Especially for the challenge of the future HL-LHC a more flexible and sophisticated computing model is needed. In this presentation, I will discuss the current computing system used in the LHC Run 2 and future computing facilities for the HL-LHC runs using flexible computing technologies like commercial and academic computing clouds. The cloud resources are highly virtualized and can be deployed for a variety of computing tasks providing the capacities for the increasing needs of large scale scientific computing.

  2. Centralized computer-based controls of the Nova Laser Facility

    International Nuclear Information System (INIS)

    Krammen, J.

    1985-01-01

    This article introduces the overall architecture of the computer-based Nova Laser Control System and describes its basic components. Use of standard hardware and software components ensures that the system, while specialized and distributed throughout the facility, is adaptable. 9 references, 6 figures

  3. Computational Methods and Function Theory

    CERN Document Server

    Saff, Edward; Salinas, Luis; Varga, Richard

    1990-01-01

    The volume is devoted to the interaction of modern scientific computation and classical function theory. Many problems in pure and more applied function theory can be tackled using modern computing facilities: numerically as well as in the sense of computer algebra. On the other hand, computer algorithms are often based on complex function theory, and dedicated research on their theoretical foundations can lead to great enhancements in performance. The contributions - original research articles, a survey and a collection of problems - cover a broad range of such problems.

  4. Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    Science.gov (United States)

    Estes, Ronald H. (Editor)

    1993-01-01

    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.

  5. Computer-assisted estimating for the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Spooner, J.E.

    1976-02-01

    An analysis is made of the cost estimating system currently in use at the Los Alamos Scientific Laboratory (LASL) and the benefits of computer assistance are evaluated. A computer-assisted estimating system (CAE) is proposed for LASL. CAE can decrease turnaround and provide more flexible response to management requests for cost information and analyses. It can enhance value optimization at the design stage, improve cost control and change-order justification, and widen the use of cost information in the design process. CAE costs are not well defined at this time although they appear to break even with present operations. It is recommended that a CAE system description be submitted for contractor consideration and bid while LASL system development continues concurrently

  6. Strategic Plan for a Scientific Cloud Computing infrastructure for Europe

    CERN Document Server

    Lengert, Maryline

    2011-01-01

    Here we present the vision, concept and direction for forming a European Industrial Strategy for a Scientific Cloud Computing Infrastructure to be implemented by 2020. This will be the framework for decisions and for securing support and approval in establishing, initially, an R&D European Cloud Computing Infrastructure that serves the need of European Research Area (ERA ) and Space Agencies. This Cloud Infrastructure will have the potential beyond this initial user base to evolve to provide similar services to a broad range of customers including government and SMEs. We explain how this plan aims to support the broader strategic goals of our organisations and identify the benefits to be realised by adopting an industrial Cloud Computing model. We also outline the prerequisites and commitment needed to achieve these objectives.

  7. The grand challenge of managing the petascale facility.

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, R. J.; Mathematics and Computer Science

    2007-02-28

    This report is the result of a study of networks and how they may need to evolve to support petascale leadership computing and science. As Dr. Ray Orbach, director of the Department of Energy's Office of Science, says in the spring 2006 issue of SciDAC Review, 'One remarkable example of growth in unexpected directions has been in high-end computation'. In the same article Dr. Michael Strayer states, 'Moore's law suggests that before the end of the next cycle of SciDAC, we shall see petaflop computers'. Given the Office of Science's strong leadership and support for petascale computing and facilities, we should expect to see petaflop computers in operation in support of science before the end of the decade, and DOE/SC Advanced Scientific Computing Research programs are focused on making this a reality. This study took its lead from this strong focus on petascale computing and the networks required to support such facilities, but it grew to include almost all aspects of the DOE/SC petascale computational and experimental science facilities, all of which will face daunting challenges in managing and analyzing the voluminous amounts of data expected. In addition, trends indicate the increased coupling of unique experimental facilities with computational facilities, along with the integration of multidisciplinary datasets and high-end computing with data-intensive computing; and we can expect these trends to continue at the petascale level and beyond. Coupled with recent technology trends, they clearly indicate the need for including capability petascale storage, networks, and experiments, as well as collaboration tools and programming environments, as integral components of the Office of Science's petascale capability metafacility. The objective of this report is to recommend a new cross-cutting program to support the management of petascale science and infrastructure. The appendices of the report document current and projected

  8. Mastering scientific computing with R

    CERN Document Server

    Gerrard, Paul

    2015-01-01

    If you want to learn how to quantitatively answer scientific questions for practical purposes using the powerful R language and the open source R tool ecosystem, this book is ideal for you. It is ideally suited for scientists who understand scientific concepts, know a little R, and want to be able to start applying R to be able to answer empirical scientific questions. Some R exposure is helpful, but not compulsory.

  9. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  10. Public Computer Assisted Learning Facilities for Children with Visual Impairment: Universal Design for Inclusive Learning

    Science.gov (United States)

    Siu, Kin Wai Michael; Lam, Mei Seung

    2012-01-01

    Although computer assisted learning (CAL) is becoming increasingly popular, people with visual impairment face greater difficulty in accessing computer-assisted learning facilities. This is primarily because most of the current CAL facilities are not visually impaired friendly. People with visual impairment also do not normally have access to…

  11. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    International Nuclear Information System (INIS)

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt; Larson, Krista; Sfiligoi, Igor; Rynge, Mats

    2014-01-01

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by 'Big Data' will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.

  12. 10th International Conference on Scientific Computing in Electrical Engineering

    CERN Document Server

    Clemens, Markus; Günther, Michael; Maten, E

    2016-01-01

    This book is a collection of selected papers presented at the 10th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in Wuppertal, Germany in 2014. The book is divided into five parts, reflecting the main directions of SCEE 2014: 1. Device Modeling, Electric Circuits and Simulation, 2. Computational Electromagnetics, 3. Coupled Problems, 4. Model Order Reduction, and 5. Uncertainty Quantification. Each part starts with a general introduction followed by the actual papers. The aim of the SCEE 2014 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, with the goal of fostering intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The methodological focus was on model order reduction and uncertainty quantification.

  13. On-line satellite/central computer facility of the Multiparticle Argo Spectrometer System

    International Nuclear Information System (INIS)

    Anderson, E.W.; Fisher, G.P.; Hien, N.C.; Larson, G.P.; Thorndike, A.M.; Turkot, F.; von Lindern, L.; Clifford, T.S.; Ficenec, J.R.; Trower, W.P.

    1974-09-01

    An on-line satellite/central computer facility has been developed at Brookhaven National Laboratory as part of the Multiparticle Argo Spectrometer System (MASS). This facility consisting of a PDP-9 and a CDC-6600, has been successfully used in study of proton-proton interactions at 28.5 GeV/c. (U.S.)

  14. Using Just-in-Time Information to Support Scientific Discovery Learning in a Computer-Based Simulation

    Science.gov (United States)

    Hulshof, Casper D.; de Jong, Ton

    2006-01-01

    Students encounter many obstacles during scientific discovery learning with computer-based simulations. It is hypothesized that an effective type of support, that does not interfere with the scientific discovery learning process, should be delivered on a "just-in-time" base. This study explores the effect of facilitating access to…

  15. A training program for scientific supercomputing users

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, F.; Moher, T.; Sabelli, N.; Solem, A.

    1988-01-01

    There is need for a mechanism to transfer supercomputing technology into the hands of scientists and engineers in such a way that they will acquire a foundation of knowledge that will permit integration of supercomputing as a tool in their research. Most computing center training emphasizes computer-specific information about how to use a particular computer system; most academic programs teach concepts to computer scientists. Only a few brief courses and new programs are designed for computational scientists. This paper describes an eleven-week training program aimed principally at graduate and postdoctoral students in computationally-intensive fields. The program is designed to balance the specificity of computing center courses, the abstractness of computer science courses, and the personal contact of traditional apprentice approaches. It is based on the experience of computer scientists and computational scientists, and consists of seminars and clinics given by many visiting and local faculty. It covers a variety of supercomputing concepts, issues, and practices related to architecture, operating systems, software design, numerical considerations, code optimization, graphics, communications, and networks. Its research component encourages understanding of scientific computing and supercomputer hardware issues. Flexibility in thinking about computing needs is emphasized by the use of several different supercomputer architectures, such as the Cray X/MP48 at the National Center for Supercomputing Applications at University of Illinois at Urbana-Champaign, IBM 3090 600E/VF at the Cornell National Supercomputer Facility, and Alliant FX/8 at the Advanced Computing Research Facility at Argonne National Laboratory. 11 refs., 6 tabs.

  16. Resilient and Robust High Performance Computing Platforms for Scientific Computing Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yier [Univ. of Central Florida, Orlando, FL (United States)

    2017-07-14

    As technology advances, computer systems are subject to increasingly sophisticated cyber-attacks that compromise both their security and integrity. High performance computing platforms used in commercial and scientific applications involving sensitive, or even classified data, are frequently targeted by powerful adversaries. This situation is made worse by a lack of fundamental security solutions that both perform efficiently and are effective at preventing threats. Current security solutions fail to address the threat landscape and ensure the integrity of sensitive data. As challenges rise, both private and public sectors will require robust technologies to protect its computing infrastructure. The research outcomes from this project try to address all these challenges. For example, we present LAZARUS, a novel technique to harden kernel Address Space Layout Randomization (KASLR) against paging-based side-channel attacks. In particular, our scheme allows for fine-grained protection of the virtual memory mappings that implement the randomization. We demonstrate the effectiveness of our approach by hardening a recent Linux kernel with LAZARUS, mitigating all of the previously presented side-channel attacks on KASLR. Our extensive evaluation shows that LAZARUS incurs only 0.943% overhead for standard benchmarks, and is therefore highly practical. We also introduced HA2lloc, a hardware-assisted allocator that is capable of leveraging an extended memory management unit to detect memory errors in the heap. We also perform testing using HA2lloc in a simulation environment and find that the approach is capable of preventing common memory vulnerabilities.

  17. Oak Ridge Leadership Computing Facility Position Paper

    Energy Technology Data Exchange (ETDEWEB)

    Oral, H Sarp [ORNL; Hill, Jason J [ORNL; Thach, Kevin G [ORNL; Podhorszki, Norbert [ORNL; Klasky, Scott A [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL

    2011-01-01

    This paper discusses the business, administration, reliability, and usability aspects of storage systems at the Oak Ridge Leadership Computing Facility (OLCF). The OLCF has developed key competencies in architecting and administration of large-scale Lustre deployments as well as HPSS archival systems. Additionally as these systems are architected, deployed, and expanded over time reliability and availability factors are a primary driver. This paper focuses on the implementation of the Spider parallel Lustre file system as well as the implementation of the HPSS archive at the OLCF.

  18. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Benson, J.B.; Foster, J.A.; Marshall, F.M.; Meyer, M.K.; Thelen, M.C.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  19. ASCR Cybersecurity for Scientific Computing Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Piesert, Sean

    2015-02-27

    The Department of Energy (DOE) has the responsibility to address the energy, environmental, and nuclear security challenges that face our nation. Much of DOE’s enterprise involves distributed, collaborative teams; a signi¬cant fraction involves “open science,” which depends on multi-institutional, often international collaborations that must access or share signi¬cant amounts of information between institutions and over networks around the world. The mission of the Office of Science is the delivery of scienti¬c discoveries and major scienti¬c tools to transform our understanding of nature and to advance the energy, economic, and national security of the United States. The ability of DOE to execute its responsibilities depends critically on its ability to assure the integrity and availability of scienti¬c facilities and computer systems, and of the scienti¬c, engineering, and operational software and data that support its mission.

  20. Computer modeling of commercial refrigerated warehouse facilities

    International Nuclear Information System (INIS)

    Nicoulin, C.V.; Jacobs, P.C.; Tory, S.

    1997-01-01

    The use of computer models to simulate the energy performance of large commercial refrigeration systems typically found in food processing facilities is an area of engineering practice that has seen little development to date. Current techniques employed in predicting energy consumption by such systems have focused on temperature bin methods of analysis. Existing simulation tools such as DOE2 are designed to model commercial buildings and grocery store refrigeration systems. The HVAC and Refrigeration system performance models in these simulations tools model equipment common to commercial buildings and groceries, and respond to energy-efficiency measures likely to be applied to these building types. The applicability of traditional building energy simulation tools to model refrigerated warehouse performance and analyze energy-saving options is limited. The paper will present the results of modeling work undertaken to evaluate energy savings resulting from incentives offered by a California utility to its Refrigerated Warehouse Program participants. The TRNSYS general-purpose transient simulation model was used to predict facility performance and estimate program savings. Custom TRNSYS components were developed to address modeling issues specific to refrigerated warehouse systems, including warehouse loading door infiltration calculations, an evaporator model, single-state and multi-stage compressor models, evaporative condenser models, and defrost energy requirements. The main focus of the paper will be on the modeling approach. The results from the computer simulations, along with overall program impact evaluation results, will also be presented

  1. Argonne Laboratory Computing Resource Center - FY2004 Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R.

    2005-04-14

    In the spring of 2002, Argonne National Laboratory founded the Laboratory Computing Resource Center, and in April 2003 LCRC began full operations with Argonne's first teraflops computing cluster. The LCRC's driving mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting application use and development. This report describes the scientific activities, computing facilities, and usage in the first eighteen months of LCRC operation. In this short time LCRC has had broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. Steering for LCRC comes from the Computational Science Advisory Committee, composed of computing experts from many Laboratory divisions. The CSAC Allocations Committee makes decisions on individual project allocations for Jazz.

  2. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    CERN Document Server

    Abdurachmanov, David; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2014-01-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  3. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    Science.gov (United States)

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad

    2015-05-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  4. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    International Nuclear Information System (INIS)

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Muzaffar, Shahzad; Knight, Robert

    2015-01-01

    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG). (paper)

  5. A document-driven method for certifying scientific computing software for use in nuclear safety analysis

    International Nuclear Information System (INIS)

    Smith, W. Spencer; Koothoor, Mimitha

    2016-01-01

    This paper presents a documentation and development method to facilitate the certification of scientific computing software used in the safety analysis of nuclear facilities. To study the problems faced during quality assurance and certification activities, a case study was performed on legacy software used for thermal analysis of a fuel pin in a nuclear reactor. Although no errors were uncovered in the code, 27 issues of incompleteness and inconsistency were found with the documentation. This work proposes that software documentation follow a rational process, which includes a software requirements specification following a template that is reusable, maintainable, and understandable. To develop the design and implementation, this paper suggests literate programming as an alternative to traditional structured programming. Literate programming allows for documenting of numerical algorithms and code together in what is termed the literate programmer's manual. This manual is developed with explicit traceability to the software requirements specification. The traceability between the theory, numerical algorithms, and implementation facilitates achieving completeness and consistency, as well as simplifies the process of verification and the associated certification

  6. A document-driven method for certifying scientific computing software for use in nuclear safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W. Spencer; Koothoor, Mimitha [Computing and Software Department, McMaster University, Hamilton (Canada)

    2016-04-15

    This paper presents a documentation and development method to facilitate the certification of scientific computing software used in the safety analysis of nuclear facilities. To study the problems faced during quality assurance and certification activities, a case study was performed on legacy software used for thermal analysis of a fuel pin in a nuclear reactor. Although no errors were uncovered in the code, 27 issues of incompleteness and inconsistency were found with the documentation. This work proposes that software documentation follow a rational process, which includes a software requirements specification following a template that is reusable, maintainable, and understandable. To develop the design and implementation, this paper suggests literate programming as an alternative to traditional structured programming. Literate programming allows for documenting of numerical algorithms and code together in what is termed the literate programmer's manual. This manual is developed with explicit traceability to the software requirements specification. The traceability between the theory, numerical algorithms, and implementation facilitates achieving completeness and consistency, as well as simplifies the process of verification and the associated certification.

  7. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    Science.gov (United States)

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.

  8. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

    Science.gov (United States)

    Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  9. ATLAS experience with HEP software at the Argonne leadership computing facility

    International Nuclear Information System (INIS)

    Uram, Thomas D; LeCompte, Thomas J; Benjamin, D

    2014-01-01

    A number of HEP software packages used by the ATLAS experiment, including GEANT4, ROOT and ALPGEN, have been adapted to run on the IBM Blue Gene supercomputers at the Argonne Leadership Computing Facility. These computers use a non-x86 architecture and have a considerably less rich operating environment than in common use in HEP, but also represent a computing capacity an order of magnitude beyond what ATLAS is presently using via the LCG. The status and potential for making use of leadership-class computing, including the status of integration with the ATLAS production system, is discussed.

  10. ATLAS Experience with HEP Software at the Argonne Leadership Computing Facility

    CERN Document Server

    LeCompte, T; The ATLAS collaboration; Benjamin, D

    2014-01-01

    A number of HEP software packages used by the ATLAS experiment, including GEANT4, ROOT and ALPGEN, have been adapted to run on the IBM Blue Gene supercomputers at the Argonne Leadership Computing Facility. These computers use a non-x86 architecture and have a considerably less rich operating environment than in common use in HEP, but also represent a computing capacity an order of magnitude beyond what ATLAS is presently using via the LCG. The status and potential for making use of leadership-class computing, including the status of integration with the ATLAS production system, is discussed.

  11. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Maxine D. [Acting Director, EVL; Leigh, Jason [PI

    2014-02-17

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundation’s Blue Waters petascale computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energy’s Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for “Development of the Next-Generation CAVE Virtual Environment (NG-CAVE),” enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.

  12. An analytical model for computation of reliability of waste management facilities with intermediate storages

    International Nuclear Information System (INIS)

    Kallweit, A.; Schumacher, F.

    1977-01-01

    A high reliability is called for waste management facilities within the fuel cycle of nuclear power stations which can be fulfilled by providing intermediate storage facilities and reserve capacities. In this report a model based on the theory of Markov processes is described which allows computation of reliability characteristics of waste management facilities containing intermediate storage facilities. The application of the model is demonstrated by an example. (orig.) [de

  13. High-Precision Computation and Mathematical Physics

    International Nuclear Information System (INIS)

    Bailey, David H.; Borwein, Jonathan M.

    2008-01-01

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

  14. New Chicago-Indiana computer network will handle dataflow from world's largest scientific experiment

    CERN Multimedia

    2006-01-01

    "Massive quantities of data will soon begin flowing from the largest scientific instrument ever built into an international netword of computer centers, including one operated jointly by the University of Chicago and Indiana University." (1,5 page)

  15. COMPUTER ORIENTED FACILITIES OF TEACHING AND INFORMATIVE COMPETENCE

    OpenAIRE

    Olga M. Naumenko

    2010-01-01

    In the article it is considered the history of views to the tasks of education, estimations of its effectiveness from the point of view of forming of basic vitally important competences. Opinions to the problem in different countries, international organizations, corresponding experience of the Ukrainian system of education are described. The necessity of forming of informative competence of future teacher is reasonable in the conditions of application of the computer oriented facilities of t...

  16. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a

  17. Computational Simulations and the Scientific Method

    Science.gov (United States)

    Kleb, Bil; Wood, Bill

    2005-01-01

    As scientific simulation software becomes more complicated, the scientific-software implementor's need for component tests from new model developers becomes more crucial. The community's ability to follow the basic premise of the Scientific Method requires independently repeatable experiments, and model innovators are in the best position to create these test fixtures. Scientific software developers also need to quickly judge the value of the new model, i.e., its cost-to-benefit ratio in terms of gains provided by the new model and implementation risks such as cost, time, and quality. This paper asks two questions. The first is whether other scientific software developers would find published component tests useful, and the second is whether model innovators think publishing test fixtures is a feasible approach.

  18. Maintenance of reactor safety and control computers at a large government facility

    International Nuclear Information System (INIS)

    Brady, H.G.

    1985-01-01

    In 1950 the US Government contracted the Du Pont Company to design, build, and operate the Savannah River Plant (SRP). At the time, it was the largest construction project ever undertaken by man. It is still the largest of the Department of Energy facilities. In the nearly 35 years that have elapsed, Du Pont has met its commitments to the US Government and set world safety records in the construction and operation of nuclear facilities. Contributing factors in achieving production goals and setting the safety records are a staff of highly qualified personnel, a well maintained plant, and sound maintenance programs. There have been many ''first ever'' achievements at SRP. These ''firsts'' include: (1) computer control of a nuclear rector, and (2) use of computer systems as safety circuits. This presentation discusses the maintenance program provided for these computer systems and all digital systems at SRP. An in-house computer maintenance program that was started in 1966 with five persons has grown to a staff of 40 with investments in computer hardware increasing from $4 million in 1970 to more than $60 million in this decade. 4 figs

  19. Simulator of Cryogenic process and Refrigeration, and its Control in scientific -nuclear facilities with EcosimPro

    International Nuclear Information System (INIS)

    Veleiro Blanco, A. M.

    2011-01-01

    The cryogenic plants and their control in Scientific-Nuclear Facilities is complicated by the large number of variables and the wide range of variation during operation. Initially the design and control of these systems in CERN was based on stationary calculations which non yielded the expected results. Due to its complexity, the dynamic simulation is the only way to get adequate results during operational transients.

  20. The Magellan Final Report on Cloud Computing

    Energy Technology Data Exchange (ETDEWEB)

    ,; Coghlan, Susan; Yelick, Katherine

    2011-12-21

    The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.

  1. Visual computing scientific visualization and imaging systems

    CERN Document Server

    2014-01-01

    This volume aims to stimulate discussions on research involving the use of data and digital images as an understanding approach for analysis and visualization of phenomena and experiments. The emphasis is put not only on graphically representing data as a way of increasing its visual analysis, but also on the imaging systems which contribute greatly to the comprehension of real cases. Scientific Visualization and Imaging Systems encompass multidisciplinary areas, with applications in many knowledge fields such as Engineering, Medicine, Material Science, Physics, Geology, Geographic Information Systems, among others. This book is a selection of 13 revised and extended research papers presented in the International Conference on Advanced Computational Engineering and Experimenting -ACE-X conferences 2010 (Paris), 2011 (Algarve), 2012 (Istanbul) and 2013 (Madrid). The examples were particularly chosen from materials research, medical applications, general concepts applied in simulations and image analysis and ot...

  2. Designing Facilities for Collaborative Operations

    Science.gov (United States)

    Norris, Jeffrey; Powell, Mark; Backes, Paul; Steinke, Robert; Tso, Kam; Wales, Roxana

    2003-01-01

    A methodology for designing operational facilities for collaboration by multiple experts has begun to take shape as an outgrowth of a project to design such facilities for scientific operations of the planned 2003 Mars Exploration Rover (MER) mission. The methodology could also be applicable to the design of military "situation rooms" and other facilities for terrestrial missions. It was recognized in this project that modern mission operations depend heavily upon the collaborative use of computers. It was further recognized that tests have shown that layout of a facility exerts a dramatic effect on the efficiency and endurance of the operations staff. The facility designs (for example, see figure) and the methodology developed during the project reflect this recognition. One element of the methodology is a metric, called effective capacity, that was created for use in evaluating proposed MER operational facilities and may also be useful for evaluating other collaboration spaces, including meeting rooms and military situation rooms. The effective capacity of a facility is defined as the number of people in the facility who can be meaningfully engaged in its operations. A person is considered to be meaningfully engaged if the person can (1) see, hear, and communicate with everyone else present; (2) see the material under discussion (typically data on a piece of paper, computer monitor, or projection screen); and (3) provide input to the product under development by the group. The effective capacity of a facility is less than the number of people that can physically fit in the facility. For example, a typical office that contains a desktop computer has an effective capacity of .4, while a small conference room that contains a projection screen has an effective capacity of around 10. Little or no benefit would be derived from allowing the number of persons in an operational facility to exceed its effective capacity: At best, the operations staff would be underutilized

  3. An integrated IaaS and PaaS architecture for scientific computing

    OpenAIRE

    Donvito, Giacinto; Blanquer, Ignacio

    2015-01-01

    Scientific applications often require multiple computing resources deployed on a coordinated way. The deployment of multiple resources require installing and configuring special software applications which should be updated when changes in the virtual infrastructure take place. When working on hybrid and federated cloud environments, restrictions on the hypervisor or cloud management platform must be minimised to facilitate geographic-wide brokering and cross-site deployments. Moreover, prese...

  4. Scientific and computational challenges of the fusion simulation project (FSP)

    International Nuclear Information System (INIS)

    Tang, W M

    2008-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Project (FSP). The primary objective is to develop advanced software designed to use leadership-class computers for carrying out multiscale physics simulations to provide information vital to delivering a realistic integrated fusion simulation model with unprecedented physics fidelity. This multiphysics capability will be unprecedented in that in the current FES applications domain, the largest-scale codes are used to carry out first-principles simulations of mostly individual phenomena in realistic 3D geometry while the integrated models are much smaller-scale, lower-dimensionality codes with significant empirical elements used for modeling and designing experiments. The FSP is expected to be the most up-to-date embodiment of the theoretical and experimental understanding of magnetically confined thermonuclear plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing a reliable ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices on all relevant time and space scales. From a computational perspective, the fusion energy science application goal to produce high-fidelity, whole-device modeling capabilities will demand computing resources in the petascale range and beyond, together with the associated multicore algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative device involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics

  5. Combustion Dynamics Facility: April 1990 workshop working group reports

    Energy Technology Data Exchange (ETDEWEB)

    Kung, A.H.; Lee, Y.T.

    1990-04-01

    This document summarizes results from a workshop held April 5--7, 1990, on the proposed Combustion Dynamics Facility (CDF). The workshop was hosted by the Lawrence Berkeley Laboratory (LBL) and Sandia National Laboratories (SNL) to provide an opportunity for potential users to learn about the proposed experimental and computational facilities, to discuss the science that could be conducted with such facilities, and to offer suggestions as to how the specifications and design of the proposed facilities might be further refined to address the most visionary scientific opportunities. Some 130 chemical physicists, combustion chemists, and specialists in UV synchrotron radiation sources and free-electron lasers (more than half of whom were from institutions other than LBL and SNL) attended the five plenary sessions and participated in one or more of the nine parallel working group sessions. Seven of these sessions were devoted to broadening and strengthening the scope of CDF scientific opportunities and to detail the experimental facilities required to realize these opportunities. Two technical working group sessions addressed the design and proposed performance of two of the major CDF experimental facilities. These working groups and their chairpersons are listed below. A full listing of the attendees of the workshop is given in Appendix A. 1 tab.

  6. The advanced test reactor national scientific user facility advancing nuclear technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Thelen, M.C.; Meyer, M.K.; Marshall, F.M.; Foster, J.; Benson, J.B.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  7. 2006 XSD Scientific Software Workshop report.

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K., Jr.; De Carlo, F.; Jemian, P.; Lang, J.; Lienert, U.; Maclean, J.; Newville, M.; Tieman, B.; Toby, B.; van Veenendaal, B.; Univ. of Chicago

    2006-01-22

    In May of 2006, a committee was formed to assess the fundamental needs and opportunities in scientific software for x-ray data reduction, analysis, modeling, and simulation. This committee held a series of discussions throughout the summer, conducted a poll of the members of the x-ray community, and held a workshop. This report details the findings and recommendations of the committee. Each experiment performed at the APS requires three crucial ingredients: the powerful x-ray source, an optimized instrument to perform measurements, and computer software to acquire, visualize, and analyze the experimental observations. While the APS has invested significant resources in the accelerator, investment in other areas such as scientific software for data analysis and visualization has lagged behind. This has led to the adoption of a wide variety of software with variable levels of usability. In order to maximize the scientific output of the APS, it is essential to support the broad development of real-time analysis and data visualization software. As scientists attack problems of increasing sophistication and deal with larger and more complex data sets, software is playing an ever more important role. Furthermore, our need for excellent and flexible scientific software can only be expected to increase, as the upgrade of the APS facility and the implementation of advanced detectors create a host of new measurement capabilities. New software analysis tools must be developed to take full advantage of these capabilities. It is critical that the APS take the lead in software development and the implementation of theory to software to ensure the continued success of this facility. The topics described in this report are relevant to the APS today and critical for the APS upgrade plan. Implementing these recommendations will have a positive impact on the scientific productivity of the APS today and will be even more critical in the future.

  8. Position Paper: Applying Machine Learning to Software Analysis to Achieve Trusted, Repeatable Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Prowell, Stacy J [ORNL; Symons, Christopher T [ORNL

    2015-01-01

    Producing trusted results from high-performance codes is essential for policy and has significant economic impact. We propose combining rigorous analytical methods with machine learning techniques to achieve the goal of repeatable, trustworthy scientific computing.

  9. The graphics future in scientific applications-trends and developments in computer graphics

    CERN Document Server

    Enderle, G

    1982-01-01

    Computer graphics methods and tools are being used to a great extent in scientific research. The future development in this area will be influenced both by new hardware developments and by software advances. On the hardware sector, the development of the raster technology will lead to the increased use of colour workstations with more local processing power. Colour hardcopy devices for creating plots, slides, or movies will be available at a lower price than today. The first real 3D-workstations will appear on the marketplace. One of the main activities on the software sector is the standardization of computer graphics systems, graphical files, and device interfaces. This will lead to more portable graphical application programs and to a common base for computer graphics education.

  10. HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Holzman, Burt [Fermilab; Bauerdick, Lothar A.T. [Fermilab; Bockelman, Brian [Nebraska U.; Dykstra, Dave [Fermilab; Fisk, Ian [New York U.; Fuess, Stuart [Fermilab; Garzoglio, Gabriele [Fermilab; Girone, Maria [CERN; Gutsche, Oliver [Fermilab; Hufnagel, Dirk [Fermilab; Kim, Hyunwoo [Fermilab; Kennedy, Robert [Fermilab; Magini, Nicolo [Fermilab; Mason, David [Fermilab; Spentzouris, Panagiotis [Fermilab; Tiradani, Anthony [Fermilab; Timm, Steve [Fermilab; Vaandering, Eric W. [Fermilab

    2017-09-29

    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing nterest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized both local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. In addition, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.

  11. Visualization in scientific computing

    National Research Council Canada - National Science Library

    Nielson, Gregory M; Shriver, Bruce D; Rosenblum, Lawrence J

    1990-01-01

    The purpose of this text is to provide a reference source to scientists, engineers, and students who are new to scientific visualization or who are interested in expanding their knowledge in this subject...

  12. Applied and numerical partial differential equations scientific computing in simulation, optimization and control in a multidisciplinary context

    CERN Document Server

    Glowinski, R; Kuznetsov, Y A; Periaux, Jacques; Neittaanmaki, Pekka; Pironneau, Olivier

    2010-01-01

    Standing at the intersection of mathematics and scientific computing, this collection of state-of-the-art papers in nonlinear PDEs examines their applications to subjects as diverse as dynamical systems, computational mechanics, and the mathematics of finance.

  13. Opportunities for discovery: Theory and computation in Basic Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Bruce; Kirby, Kate; McCurdy, C. William

    2005-01-11

    New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.

  14. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Graf, F.A. Jr.

    1995-02-27

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System`s pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System.

  15. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    International Nuclear Information System (INIS)

    Graf, F.A. Jr.

    1995-01-01

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System's pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System

  16. Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    Science.gov (United States)

    Botts, Michael E.; Phillips, Ron J.; Parker, John V.; Wright, Patrick D.

    1992-01-01

    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented.

  17. Designing scientific applications on GPUs

    CERN Document Server

    Couturier, Raphael

    2013-01-01

    Many of today's complex scientific applications now require a vast amount of computational power. General purpose graphics processing units (GPGPUs) enable researchers in a variety of fields to benefit from the computational power of all the cores available inside graphics cards.Understand the Benefits of Using GPUs for Many Scientific ApplicationsDesigning Scientific Applications on GPUs shows you how to use GPUs for applications in diverse scientific fields, from physics and mathematics to computer science. The book explains the methods necessary for designing or porting your scientific appl

  18. Accelerating the scientific exploration process with scientific workflows

    International Nuclear Information System (INIS)

    Altintas, Ilkay; Barney, Oscar; Cheng, Zhengang; Critchlow, Terence; Ludaescher, Bertram; Parker, Steve; Shoshani, Arie; Vouk, Mladen

    2006-01-01

    Although an increasing amount of middleware has emerged in the last few years to achieve remote data access, distributed job execution, and data management, orchestrating these technologies with minimal overhead still remains a difficult task for scientists. Scientific workflow systems improve this situation by creating interfaces to a variety of technologies and automating the execution and monitoring of the workflows. Workflow systems provide domain-independent customizable interfaces and tools that combine different tools and technologies along with efficient methods for using them. As simulations and experiments move into the petascale regime, the orchestration of long running data and compute intensive tasks is becoming a major requirement for the successful steering and completion of scientific investigations. A scientific workflow is the process of combining data and processes into a configurable, structured set of steps that implement semi-automated computational solutions of a scientific problem. Kepler is a cross-project collaboration, co-founded by the SciDAC Scientific Data Management (SDM) Center, whose purpose is to develop a domain-independent scientific workflow system. It provides a workflow environment in which scientists design and execute scientific workflows by specifying the desired sequence of computational actions and the appropriate data flow, including required data transformations, between these steps. Currently deployed workflows range from local analytical pipelines to distributed, high-performance and high-throughput applications, which can be both data- and compute-intensive. The scientific workflow approach offers a number of advantages over traditional scripting-based approaches, including ease of configuration, improved reusability and maintenance of workflows and components (called actors), automated provenance management, 'smart' re-running of different versions of workflow instances, on-the-fly updateable parameters, monitoring

  19. Sign use and cognition in automated scientific discovery: are computers only special kinds of signs?

    Science.gov (United States)

    Giza, Piotr

    2018-04-01

    James Fetzer criticizes the computational paradigm, prevailing in cognitive science by questioning, what he takes to be, its most elementary ingredient: that cognition is computation across representations. He argues that if cognition is taken to be a purposive, meaningful, algorithmic problem solving activity, then computers are incapable of cognition. Instead, they appear to be signs of a special kind, that can facilitate computation. He proposes the conception of minds as semiotic systems as an alternative paradigm for understanding mental phenomena, one that seems to overcome the difficulties of computationalism. Now, I argue, that with computer systems dealing with scientific discovery, the matter is not so simple as that. The alleged superiority of humans using signs to stand for something other over computers being merely "physical symbol systems" or "automatic formal systems" is only easy to establish in everyday life, but becomes far from obvious when scientific discovery is at stake. In science, as opposed to everyday life, the meaning of symbols is, apart from very low-level experimental investigations, defined implicitly by the way the symbols are used in explanatory theories or experimental laws relevant to the field, and in consequence, human and machine discoverers are much more on a par. Moreover, the great practical success of the genetic programming method and recent attempts to apply it to automatic generation of cognitive theories seem to show, that computer systems are capable of very efficient problem solving activity in science, which is neither purposive nor meaningful, nor algorithmic. This, I think, undermines Fetzer's argument that computer systems are incapable of cognition because computation across representations is bound to be a purposive, meaningful, algorithmic problem solving activity.

  20. Science and Engineering Research Council Central Laser Facility

    International Nuclear Information System (INIS)

    1981-03-01

    This report covers the work done at, or in association with, the Central Laser Facility during the year April 1980 to March 1981. In the first chapter the major reconstruction and upgrade of the glass laser, which has been undertaken in order to increase the versatility of the facility, is described. The work of the six groups of the Glass Laser Scientific Progamme and Scheduling Committee is described in further chapters entitled; glass laser development, laser plasma interactions, transport and particle emission studies, ablative acceleration and compression studies, spectroscopy and XUV lasers, and theory and computation. Publications based on the work of the facility which have either appeared or been accepted for publication during the year are listed. (U.K.)

  1. National Nanotechnology Laboratory (LNNano) open facilities for scientific community: new methods for polymeric materials characterization

    International Nuclear Information System (INIS)

    Silva, Cristiane A.; Santos, Ramon H.Z. dos; Bernardes, Juliana S.; Gouveia, Rubia F.

    2015-01-01

    National Nanotechnology Laboratory (LNNano) at the National Center for Energy and Materials (CNPEM) presents open facilities for scientific public in some areas. In this work will be discussed the facilities for mainly the polymeric community, as well as new methods for the characterization. Low density polyethylene (LDPE) surfaces were characterized by X-ray microtomography and X-ray photoelectron spectroscopy (XPS). The results obtained by microtomography have shown that these surfaces present different contrasts when compared with the bulk. These differences are correlated with the formation of an oxidized layer at the polymer surface, which consequently have a greater X-ray attenuation. This hypothesis is confirmed by XPS, which shows LDPE surface layers are richer in carbonyl, carboxyl and vinyl groups than the bulk. This work presents that microtomography can be used as a new method for detection and characterization of polymer surface oxidation. (author)

  2. Computer usage among nurses in rural health-care facilities in South Africa: obstacles and challenges.

    Science.gov (United States)

    Asah, Flora

    2013-04-01

    This study discusses factors inhibiting computer usage for work-related tasks among computer-literate professional nurses within rural healthcare facilities in South Africa. In the past two decades computer literacy courses have not been part of the nursing curricula. Computer courses are offered by the State Information Technology Agency. Despite this, there seems to be limited use of computers by professional nurses in the rural context. Focus group interviews held with 40 professional nurses from three government hospitals in northern KwaZulu-Natal. Contributing factors were found to be lack of information technology infrastructure, restricted access to computers and deficits in regard to the technical and nursing management support. The physical location of computers within the health-care facilities and lack of relevant software emerged as specific obstacles to usage. Provision of continuous and active support from nursing management could positively influence computer usage among professional nurses. A closer integration of information technology and computer literacy skills into existing nursing curricula would foster a positive attitude towards computer usage through early exposure. Responses indicated that change of mindset may be needed on the part of nursing management so that they begin to actively promote ready access to computers as a means of creating greater professionalism and collegiality. © 2011 Blackwell Publishing Ltd.

  3. Shielding Calculations for Positron Emission Tomography - Computed Tomography Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Baasandorj, Khashbayar [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yang, Jeongseon [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    Integrated PET-CT has been shown to be more accurate for lesion localization and characterization than PET or CT alone, and the results obtained from PET and CT separately and interpreted side by side or following software based fusion of the PET and CT datasets. At the same time, PET-CT scans can result in high patient and staff doses; therefore, careful site planning and shielding of this imaging modality have become challenging issues in the field. In Mongolia, the introduction of PET-CT facilities is currently being considered in many hospitals. Thus, additional regulatory legislation for nuclear and radiation applications is necessary, for example, in regulating licensee processes and ensuring radiation safety during the operations. This paper aims to determine appropriate PET-CT shielding designs using numerical formulas and computer code. Since presently there are no PET-CT facilities in Mongolia, contact was made with radiological staff at the Nuclear Medicine Center of the National Cancer Center of Mongolia (NCCM) to get information about facilities where the introduction of PET-CT is being considered. Well-designed facilities do not require additional shielding, which should help cut down overall costs related to PET-CT installation. According to the results of this study, building barrier thicknesses of the NCCM building is not sufficient to keep radiation dose within the limits.

  4. The application of cloud computing to scientific workflows: a study of cost and performance.

    Science.gov (United States)

    Berriman, G Bruce; Deelman, Ewa; Juve, Gideon; Rynge, Mats; Vöckler, Jens-S

    2013-01-28

    The current model of transferring data from data centres to desktops for analysis will soon be rendered impractical by the accelerating growth in the volume of science datasets. Processing will instead often take place on high-performance servers co-located with data. Evaluations of how new technologies such as cloud computing would support such a new distributed computing model are urgently needed. Cloud computing is a new way of purchasing computing and storage resources on demand through virtualization technologies. We report here the results of investigations of the applicability of commercial cloud computing to scientific computing, with an emphasis on astronomy, including investigations of what types of applications can be run cheaply and efficiently on the cloud, and an example of an application well suited to the cloud: processing a large dataset to create a new science product.

  5. Evolution of facility layout requirements and CAD [computer-aided design] system development

    International Nuclear Information System (INIS)

    Jones, M.

    1990-06-01

    The overall configuration of the Superconducting Super Collider (SSC) including the infrastructure and land boundary requirements were developed using a computer-aided design (CAD) system. The evolution of the facility layout requirements and the use of the CAD system are discussed. The emphasis has been on minimizing the amount of input required and maximizing the speed by which the output may be obtained. The computer system used to store the data is also described

  6. Applications of industrial computed tomography at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Kruger, R.P.; Morris, R.A.; Wecksung, G.W.

    1980-01-01

    A research and development program was begun three years ago at the Los Alamos Scientific Laboratory (LASL) to study nonmedical applications of computed tomography. This program had several goals. The first goal was to develop the necessary reconstruction algorithms to accurately reconstruct cross sections of nonmedical industrial objects. The second goal was to be able to perform extensive tomographic simulations to determine the efficacy of tomographic reconstruction with a variety of hardware configurations. The final goal was to construct an inexpensive industrial prototype scanner with a high degree of design flexibility. The implementation of these program goals is described

  7. The WNR facility - a pulsed spallation neutron source at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Russell, G.J.; Lisowski, P.W.; King, N.S.P.

    1978-01-01

    The Weapons Neutron Research facility (WNR) at the Los Alamos Scientific Laboratory is the first operating example of a new class of pulsed neutron sources using the X(p,n)Y spallation reaction. At present, up to 10 microamperes of 800-MeV protons from the Clinton P. Anderson Meson Physics Facility (LAMPF) linear accelerator bombard a Ta target to produce an intense white-neutron spectrum from about 800 MeV to 100 keV. The Ta target can be coupled with CH 2 and H 2 O moderators to produce neutrons of lower energy. The time structure of the WNR proton beam may be varied to optimize neutron time-of-flight (TOF) measurements covering the energy range from several hundred MeV to a few meV. The neutronics of the WNR target and target/moderator configurations have been calculated from 800 MeV to 0.5 eV. About 11 neutrons per proton are predicted for the existing Ta target. Some initial neutron TOF data are presented and compared with calculations

  8. Scientific Services on the Cloud

    Science.gov (United States)

    Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong

    Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.

  9. Computer mapping and visualization of facilities for planning of D and D operations

    International Nuclear Information System (INIS)

    Wuller, C.E.; Gelb, G.H.; Cramond, R.; Cracraft, J.S.

    1995-01-01

    The lack of as-built drawings for many old nuclear facilities impedes planning for decontamination and decommissioning. Traditional manual walkdowns subject workers to lengthy exposure to radiological and other hazards. The authors have applied close-range photogrammetry, 3D solid modeling, computer graphics, database management, and virtual reality technologies to create geometrically accurate 3D computer models of the interiors of facilities. The required input to the process is a set of photographs that can be acquired in a brief time. They fit 3D primitive shapes to objects of interest in the photos and, at the same time, record attributes such as material type and link patches of texture from the source photos to facets of modeled objects. When they render the model as either static images or at video rates for a walk-through simulation, the phototextures are warped onto the objects, giving a photo-realistic impression. The authors have exported the data to commercial CAD, cost estimating, robotic simulation, and plant design applications. Results from several projects at old nuclear facilities are discussed

  10. Smolyak's algorithm: A powerful black box for the acceleration of scientific computations

    KAUST Repository

    Tempone, Raul; Wolfers, Soeren

    2017-01-01

    We provide a general discussion of Smolyak's algorithm for the acceleration of scientific computations. The algorithm first appeared in Smolyak's work on multidimensional integration and interpolation. Since then, it has been generalized in multiple directions and has been associated with the keywords: sparse grids, hyperbolic cross approximation, combination technique, and multilevel methods. Variants of Smolyak's algorithm have been employed in the computation of high-dimensional integrals in finance, chemistry, and physics, in the numerical solution of partial and stochastic differential equations, and in uncertainty quantification. Motivated by this broad and ever-increasing range of applications, we describe a general framework that summarizes fundamental results and assumptions in a concise application-independent manner.

  11. Smolyak's algorithm: A powerful black box for the acceleration of scientific computations

    KAUST Repository

    Tempone, Raul

    2017-03-26

    We provide a general discussion of Smolyak\\'s algorithm for the acceleration of scientific computations. The algorithm first appeared in Smolyak\\'s work on multidimensional integration and interpolation. Since then, it has been generalized in multiple directions and has been associated with the keywords: sparse grids, hyperbolic cross approximation, combination technique, and multilevel methods. Variants of Smolyak\\'s algorithm have been employed in the computation of high-dimensional integrals in finance, chemistry, and physics, in the numerical solution of partial and stochastic differential equations, and in uncertainty quantification. Motivated by this broad and ever-increasing range of applications, we describe a general framework that summarizes fundamental results and assumptions in a concise application-independent manner.

  12. Advanced physical protection systems for facilities and transportation

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Sandia Laboratories is developing advanced physical protection safeguards in order to improve the security of special nuclear materials, facilities, and transportation. Computer models are being used to assess the cost-effectiveness of alternative systems for protecting facilities against external attack which may include internal assistance, and against internal theft or sabotage. Physical protection elements such as admittance controls, portals and detectors, perimeter and interior intrusion alarms, fixed and remotely activated barriers, and secure communications are being evaluated, adapted, and where required, developed. New facilities safeguards concepts which involve ''control loops'' between physical protection and materials control elements are being evolved jointly between Sandia Laboratories and Los Alamos Scientific Laboratory. Special vehicles and digital communications equipment have been developed for the ERDA safe-secure transportation system. The current status and direction of these activities are surveyed

  13. Advanced physical protection systems for facilities and transportation

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Sandia Laboratories is developing advanced physical protection safeguards in order to improve the security of special nuclear materials, facilities, and transportation. Computer models are being used to assess the cost-effectiveness of alternative systems for protecting facilities against external attack which may include internal assistance, and against internal theft or sabotage. Physical protection elements such as admittance controls, portals and detectors, perimeter and interior intrusion alarms, fixed and remotely-activated barriers, and secure communications are being evaluated, adapted, and where required, developed. New facilities safeguards concepts which involve (control loops) between physical protection and materials control elements are being evolved jointly between Sandia Laboratories and Los Alamos Scientific Laboratory. Special vehicles and digital communications equipment have been developed for the ERDA safe-secure transportation system. The current status and direction of these activities are surveyed

  14. Opportunities for artificial intelligence application in computer- aided management of mixed waste incinerator facilities

    International Nuclear Information System (INIS)

    Rivera, A.L.; Ferrada, J.J.; Singh, S.P.N.

    1992-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site. It is designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). This facility, known as the TSCA Incinerator, services seven DOE/OR installations. This incinerator was recently authorized for production operation in the United States for the processing of mixed (radioactively contaminated-chemically hazardous) wastes as regulated under TSCA and RCRA. Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. These requirements impact the characteristics and disposition of incinerator residues, limits the quality of liquid and gaseous effluents, limit the characteristics and rates of waste feeds and operating conditions, and restrict the handling of the waste feed inventories. This incinerator facility presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. Demonstrated computer-aided management systems could be transferred to future mixed waste incinerator facilities

  15. The radar signature of revolution objects in scientific computing

    International Nuclear Information System (INIS)

    Bonnemason, P.; Le Martret, R.; Scheurer, B.; Stupfel, B.

    1990-12-01

    This work is motivated by the study of stealthy (or discrete) revolution objects vis-a-vis a radar. Efficient algorithms, specific numerical methods and two original industrial software (SHF 89 and SHF C) have been developed. These are reliable tools in intensive scientific computing. In particular, they have enabled the precise numerical modeling of complex objects, of very general forms, in the field of high frequencies and a thorough understanding of the physics of the problems involved. The purpose of this note is a general description of the work and its context, which is illustrated by examples of numerical applications (presented in Appendix 4). The technical aspects are detailed in reports and publications (a list is attached to this note) [fr

  16. Advanced scientific computational methods and their applications to nuclear technologies. (3) Introduction of continuum simulation methods and their applications (3)

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kunugi, Tomoaki

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the third issue showing the introduction of continuum simulation methods and their applications. Spectral methods and multi-interface calculation methods in fluid dynamics are reviewed. (T. Tanaka)

  17. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    Science.gov (United States)

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  18. Computer simulation, rhetoric, and the scientific imagination how virtual evidence shapes science in the making and in the news

    CERN Document Server

    Roundtree, Aimee Kendall

    2013-01-01

    Computer simulations help advance climatology, astrophysics, and other scientific disciplines. They are also at the crux of several high-profile cases of science in the news. How do simulation scientists, with little or no direct observations, make decisions about what to represent? What is the nature of simulated evidence, and how do we evaluate its strength? Aimee Kendall Roundtree suggests answers in Computer Simulation, Rhetoric, and the Scientific Imagination. She interprets simulations in the sciences by uncovering the argumentative strategies that underpin the production and disseminati

  19. Studying Scientific Discovery by Computer Simulation.

    Science.gov (United States)

    1983-03-30

    Mendel’s laws of inheritance, the law of Gay- Lussac for gaseous reactions, tile law of Dulong and Petit, the derivation of atomic weights by Avogadro...neceseary mid identify by block number) scientific discovery -ittri sic properties physical laws extensive terms data-driven heuristics intensive...terms theory-driven heuristics conservation laws 20. ABSTRACT (Continue on revere. side It necessary and identify by block number) Scientific discovery

  20. Scientific Grand Challenges: Challenges in Climate Change Science and the Role of Computing at the Extreme Scale

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.; Johnson, Gary M.; Washington, Warren M.

    2009-07-02

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) in partnership with the Office of Advanced Scientific Computing Research (ASCR) held a workshop on the challenges in climate change science and the role of computing at the extreme scale, November 6-7, 2008, in Bethesda, Maryland. At the workshop, participants identified the scientific challenges facing the field of climate science and outlined the research directions of highest priority that should be pursued to meet these challenges. Representatives from the national and international climate change research community as well as representatives from the high-performance computing community attended the workshop. This group represented a broad mix of expertise. Of the 99 participants, 6 were from international institutions. Before the workshop, each of the four panels prepared a white paper, which provided the starting place for the workshop discussions. These four panels of workshop attendees devoted to their efforts the following themes: Model Development and Integrated Assessment; Algorithms and Computational Environment; Decadal Predictability and Prediction; Data, Visualization, and Computing Productivity. The recommendations of the panels are summarized in the body of this report.

  1. New Sensors for In-Pile Temperature Detection at the Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Daw, J.E.; Condie, K.G.; Wilkins, S. Curtis

    2009-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation's energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

  2. Software support for students engaging in scientific activity and scientific controversy

    Science.gov (United States)

    Cavalli-Sforza, Violetta; Weiner, Arlene W.; Lesgold, Alan M.

    Computer environments could support students in engaging in cognitive activities that are essential to scientific practice and to the understanding of the nature of scientific knowledge, but that are difficult to manage in science classrooms. The authors describe a design for a computer-based environment to assist students in conducting dialectical activities of constructing, comparing, and evaluating arguments for competing scientific theories. Their choice of activities and their design respond to educators' and theorists' criticisms of current science curricula. They give detailed specifications of portions of the environment.

  3. The CT Scanner Facility at Stellenbosch University: An open access X-ray computed tomography laboratory

    Science.gov (United States)

    du Plessis, Anton; le Roux, Stephan Gerhard; Guelpa, Anina

    2016-10-01

    The Stellenbosch University CT Scanner Facility is an open access laboratory providing non-destructive X-ray computed tomography (CT) and a high performance image analysis services as part of the Central Analytical Facilities (CAF) of the university. Based in Stellenbosch, South Africa, this facility offers open access to the general user community, including local researchers, companies and also remote users (both local and international, via sample shipment and data transfer). The laboratory hosts two CT instruments, i.e. a micro-CT system, as well as a nano-CT system. A workstation-based Image Analysis Centre is equipped with numerous computers with data analysis software packages, which are to the disposal of the facility users, along with expert supervision, if required. All research disciplines are accommodated at the X-ray CT laboratory, provided that non-destructive analysis will be beneficial. During its first four years, the facility has accommodated more than 400 unique users (33 in 2012; 86 in 2013; 154 in 2014; 140 in 2015; 75 in first half of 2016), with diverse industrial and research applications using X-ray CT as means. This paper summarises the existence of the laboratory's first four years by way of selected examples, both from published and unpublished projects. In the process a detailed description of the capabilities and facilities available to users is presented.

  4. The CT Scanner Facility at Stellenbosch University: An open access X-ray computed tomography laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Plessis, Anton du, E-mail: anton2@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa); Physics Department, Stellenbosch University, Stellenbosch (South Africa); Roux, Stephan Gerhard le, E-mail: lerouxsg@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa); Guelpa, Anina, E-mail: aninag@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa)

    2016-10-01

    The Stellenbosch University CT Scanner Facility is an open access laboratory providing non-destructive X-ray computed tomography (CT) and a high performance image analysis services as part of the Central Analytical Facilities (CAF) of the university. Based in Stellenbosch, South Africa, this facility offers open access to the general user community, including local researchers, companies and also remote users (both local and international, via sample shipment and data transfer). The laboratory hosts two CT instruments, i.e. a micro-CT system, as well as a nano-CT system. A workstation-based Image Analysis Centre is equipped with numerous computers with data analysis software packages, which are to the disposal of the facility users, along with expert supervision, if required. All research disciplines are accommodated at the X-ray CT laboratory, provided that non-destructive analysis will be beneficial. During its first four years, the facility has accommodated more than 400 unique users (33 in 2012; 86 in 2013; 154 in 2014; 140 in 2015; 75 in first half of 2016), with diverse industrial and research applications using X-ray CT as means. This paper summarises the existence of the laboratory’s first four years by way of selected examples, both from published and unpublished projects. In the process a detailed description of the capabilities and facilities available to users is presented.

  5. Automation of a cryogenic facility by commercial process-control computer

    International Nuclear Information System (INIS)

    Sondericker, J.H.; Campbell, D.; Zantopp, D.

    1983-01-01

    To insure that Brookhaven's superconducting magnets are reliable and their field quality meets accelerator requirements, each magnet is pre-tested at operating conditions after construction. MAGCOOL, the production magnet test facility, was designed to perform these tests, having the capacity to test ten magnets per five day week. This paper describes the control aspects of MAGCOOL and the advantages afforded the designers by the implementation of a commercial process control computer system

  6. Computer application in scientific investigations

    International Nuclear Information System (INIS)

    Govorun, N.N.

    1981-01-01

    A short review of the computer development and application and software in JINR for the last 15 years is presented. Main trends of studies on computer application in experimental and theoretical investigations are enumerated: software of computers and their systems, software of data processing systems, designing automatic and automized systems for measuring track detectors images, development of technique of carrying out experiments on computer line, packets of applied computer codes and specialized systems. The development of the on line technique is successfully used in investigations of nuclear processes at relativistic energies. The new trend is the development of television methods of data output and its computer recording [ru

  7. The Virtual Geophysics Laboratory (VGL): Scientific Workflows Operating Across Organizations and Across Infrastructures

    Science.gov (United States)

    Cox, S. J.; Wyborn, L. A.; Fraser, R.; Rankine, T.; Woodcock, R.; Vote, J.; Evans, B.

    2012-12-01

    The Virtual Geophysics Laboratory (VGL) is web portal that provides geoscientists with an integrated online environment that: seamlessly accesses geophysical and geoscience data services from the AuScope national geoscience information infrastructure; loosely couples these data to a variety of gesocience software tools; and provides large scale processing facilities via cloud computing. VGL is a collaboration between CSIRO, Geoscience Australia, National Computational Infrastructure, Monash University, Australian National University and the University of Queensland. The VGL provides a distributed system whereby a user can enter an online virtual laboratory to seamlessly connect to OGC web services for geoscience data. The data is supplied in open standards formats using international standards like GeoSciML. A VGL user uses a web mapping interface to discover and filter the data sources using spatial and attribute filters to define a subset. Once the data is selected the user is not required to download the data. VGL collates the service query information for later in the processing workflow where it will be staged directly to the computing facilities. The combination of deferring data download and access to Cloud computing enables VGL users to access their data at higher resolutions and to undertake larger scale inversions, more complex models and simulations than their own local computing facilities might allow. Inside the Virtual Geophysics Laboratory, the user has access to a library of existing models, complete with exemplar workflows for specific scientific problems based on those models. For example, the user can load a geological model published by Geoscience Australia, apply a basic deformation workflow provided by a CSIRO scientist, and have it run in a scientific code from Monash. Finally the user can publish these results to share with a colleague or cite in a paper. This opens new opportunities for access and collaboration as all the resources (models

  8. Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud

    Science.gov (United States)

    Limosani, Antonio; Boland, Lucien; Coddington, Paul; Crosby, Sean; Huang, Joanna; Sevior, Martin; Wilson, Ross; Zhang, Shunde

    2014-06-01

    The Australian Government is making a AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.

  9. Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud

    International Nuclear Information System (INIS)

    Limosani, Antonio; Boland, Lucien; Crosby, Sean; Huang, Joanna; Sevior, Martin; Coddington, Paul; Zhang, Shunde; Wilson, Ross

    2014-01-01

    The Australian Government is making a $AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.

  10. Review of the Design, Construction, and Coming Scientific Capabilities of the New Arecibo HF Facility

    Science.gov (United States)

    Sulzer, M. P.

    2010-12-01

    complete power system for planetary radar, the HF facility, and site backup. Design of the mesh is complete and the construction phase has started. One of the tower base concrete pads will sit on ground that is softer than expected and this pad is being designed by the engineering firm Amman and Whitney. The other five use the standard design provided by the tower manufacturer. Amman and Whitney are also reviewing the mesh support design and have recommended some changes in the cable support system in order to provide better temperature stability. As the project construction is completed in the next few months, we face the problems of producing a practical scientific facility. This facility is inherently a lot less complicated than the HAARP facility in Alaska. Nonetheless, a computer control and monitoring system is very desirable, both to allow the most complete control over the transmitted waveforms, and to allow the highest reliability of operation. We are currently reviewing the best ways to accomplish this. We expect that a basic system will be in place for the first couple of operational campaigns, with full flexibility coming later. The basic operation would be similar to our previous facility at Islote, vertical operation with continuous wave or a simple pulse sequence on a single frequency.

  11. Paul Scherrer Institute Scientific and Technical Report 1999. Volume VI: Large Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Foroughi, Fereydoun; Bercher, Renate; Buechli, Carmen; Meyer, Rosa [eds.

    2000-07-01

    The department GFA (Grossforschungsanlagen, Large Research Facilities) has been established in October 1998. Its main duty is operation, maintenance and development of the PSI accelerators, the spallation neutron source and the beam transport systems for pions and muons. A large effort of this group concerns the planning and co-ordination of new projects like e.g. the assembly of the synchrotron light source (SLS), design studies of a new proton therapy facility, the ultracold neutron source and a new intensive secondary beam line for low energy muons. A large fraction of this report is devoted to research especially in the field of materials Science. The studies include large scale molecular dynamics computer simulations on the elastic and plastic behavior of nanostructured metals, complemented by experimental mechanical testing using micro-indentation and miniaturized tensile testing, as well as microstructural characterisation and strain field mapping of metallic coatings and thin ceramic layers, the latter done with synchrotron radiation.

  12. Paul Scherrer Institute Scientific and Technical Report 1999. Volume VI: Large Research Facilities

    International Nuclear Information System (INIS)

    Foroughi, Fereydoun; Bercher, Renate; Buechli, Carmen; Meyer, Rosa

    2000-01-01

    The department GFA (Grossforschungsanlagen, Large Research Facilities) has been established in October 1998. Its main duty is operation, maintenance and development of the PSI accelerators, the spallation neutron source and the beam transport systems for pions and muons. A large effort of this group concerns the planning and co-ordination of new projects like e.g. the assembly of the synchrotron light source (SLS), design studies of a new proton therapy facility, the ultracold neutron source and a new intensive secondary beam line for low energy muons. A large fraction of this report is devoted to research especially in the field of materials Science. The studies include large scale molecular dynamics computer simulations on the elastic and plastic behavior of nanostructured metals, complemented by experimental mechanical testing using micro-indentation and miniaturized tensile testing, as well as microstructural characterisation and strain field mapping of metallic coatings and thin ceramic layers, the latter done with synchrotron radiation

  13. Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee

    Science.gov (United States)

    Gallagher, D. L. (Editor)

    1993-01-01

    The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.

  14. Using Amazon's Elastic Compute Cloud to scale CMS' compute hardware dynamically.

    CERN Document Server

    Melo, Andrew Malone

    2011-01-01

    Large international scientific collaborations such as the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider have traditionally addressed their data reduction and analysis needs by building and maintaining dedicated computational infrastructure. Emerging cloud-computing services such as Amazon's Elastic Compute Cloud (EC2) offer short-term CPU and storage resources with costs based on usage. These services allow experiments to purchase computing resources as needed, without significant prior planning and without long term investments in facilities and their management. We have demonstrated that services such as EC2 can successfully be integrated into the production-computing model of CMS, and find that they work very well as worker nodes. The cost-structure and transient nature of EC2 services makes them inappropriate for some CMS production services and functions. We also found that the resources are not truely on-demand as limits and caps on usage are imposed. Our trial workflows allow us t...

  15. Development of the computer code to monitor gamma radiation in the nuclear facility environment

    International Nuclear Information System (INIS)

    Akhmad, Y. R.; Pudjiyanto, M.S.

    1998-01-01

    Computer codes for gamma radiation monitoring in the vicinity of nuclear facility which have been developed could be introduced to the commercial potable gamma analyzer. The crucial stage of the first year activity was succeeded ; that is the codes have been tested to transfer data file (pulse high distribution) from Micro NOMAD gamma spectrometer (ORTEC product) and the convert them into dosimetry and physics quantities. Those computer codes are called as GABATAN (Gamma Analyzer of Batan) and NAGABAT (Natural Gamma Analyzer of Batan). GABATAN code can isable to used at various nuclear facilities for analyzing gamma field up to 9 MeV, while NAGABAT could be used for analyzing the contribution of natural gamma rays to the exposure rate in the certain location

  16. Scientific Infrastructure To Support Manned And Unmanned Aircraft, Tethered Balloons, And Related Aerial Activities At Doe Arm Facilities On The North Slope Of Alaska

    Science.gov (United States)

    Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Helsel, F.

    2015-12-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) facilities, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. DOE has recently invested in improvements to facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska. A new ground facility, the Third ARM Mobile Facility, was installed at Oliktok Point Alaska in 2013. Tethered instrumented balloons were used to make measurements of clouds in the boundary layer including mixed-phase clouds. A new Special Use Airspace was granted to DOE in 2015 to support science missions in international airspace in the Arctic. Warning Area W-220 is managed by Sandia National Laboratories for DOE Office of Science/BER. W-220 was successfully used for the first time in July 2015 in conjunction with Restricted Area R-2204 and a connecting Altitude Reservation Corridor (ALTRV) to permit unmanned aircraft to operate north of Oliktok Point. Small unmanned aircraft (DataHawks) and tethered balloons were flown at Oliktok during the summer and fall of 2015. This poster will discuss how principal investigators may apply for use of these Special Use Airspaces, acquire data from the Third ARM Mobile Facility, or bring their own instrumentation for deployment at Oliktok Point, Alaska. The printed poster will include the standard DOE funding statement.

  17. Irradiation Facilities at CERN

    CERN Document Server

    Gkotse, Blerina; Carbonez, Pierre; Danzeca, Salvatore; Fabich, Adrian; Garcia, Alia, Ruben; Glaser, Maurice; Gorine, Georgi; Jaekel, Martin, Richard; Mateu,Suau, Isidre; Pezzullo, Giuseppe; Pozzi, Fabio; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-01-01

    CERN provides unique irradiation facilities for applications in many scientific fields. This paper summarizes the facilities currently operating for proton, gamma, mixed-field and electron irradiations, including their main usage, characteristics and information about their operation. The new CERN irradiation facilities database is also presented. This includes not only CERN facilities but also irradiation facilities available worldwide.

  18. N286.7-99, A Canadian standard specifying software quality management system requirements for analytical, scientific, and design computer programs and its implementation at AECL

    International Nuclear Information System (INIS)

    Abel, R.

    2000-01-01

    Analytical, scientific, and design computer programs (referred to in this paper as 'scientific computer programs') are developed for use in a large number of ways by the user-engineer to support and prove engineering calculations and assumptions. These computer programs are subject to frequent modifications inherent in their application and are often used for critical calculations and analysis relative to safety and functionality of equipment and systems. N286.7-99(4) was developed to establish appropriate quality management system requirements to deal with the development, modification, and application of scientific computer programs. N286.7-99 provides particular guidance regarding the treatment of legacy codes

  19. An Analysis on the Effect of Computer Self-Efficacy over Scientific Research Self-Efficacy and Information Literacy Self-Efficacy

    Science.gov (United States)

    Tuncer, Murat

    2013-01-01

    Present research investigates reciprocal relations amidst computer self-efficacy, scientific research and information literacy self-efficacy. Research findings have demonstrated that according to standardized regression coefficients, computer self-efficacy has a positive effect on information literacy self-efficacy. Likewise it has been detected…

  20. Scientific Ballooning in India - Recent Developments

    Science.gov (United States)

    Manchanda, R. K.; Srinivasan, S.; Subbarao, J. V.

    Established in 1972, the National Balloon Facility operated by TIFR in Hyderabad, India is is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, Research and Development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is a hallmark of the Hyderabad balloon facility. In the past few years we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to size of 780,000 M^3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.

  1. DB90: A Fortran Callable Relational Database Routine for Scientific and Engineering Computer Programs

    Science.gov (United States)

    Wrenn, Gregory A.

    2005-01-01

    This report describes a database routine called DB90 which is intended for use with scientific and engineering computer programs. The software is written in the Fortran 90/95 programming language standard with file input and output routines written in the C programming language. These routines should be completely portable to any computing platform and operating system that has Fortran 90/95 and C compilers. DB90 allows a program to supply relation names and up to 5 integer key values to uniquely identify each record of each relation. This permits the user to select records or retrieve data in any desired order.

  2. On the Performance of the Python Programming Language for Serial and Parallel Scientific Computations

    Directory of Open Access Journals (Sweden)

    Xing Cai

    2005-01-01

    Full Text Available This article addresses the performance of scientific applications that use the Python programming language. First, we investigate several techniques for improving the computational efficiency of serial Python codes. Then, we discuss the basic programming techniques in Python for parallelizing serial scientific applications. It is shown that an efficient implementation of the array-related operations is essential for achieving good parallel performance, as for the serial case. Once the array-related operations are efficiently implemented, probably using a mixed-language implementation, good serial and parallel performance become achievable. This is confirmed by a set of numerical experiments. Python is also shown to be well suited for writing high-level parallel programs.

  3. SCEE 2008 book of abstracts. The 7. international conference on scientific computing in electrical engineering (SCEE 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Roos, J.; Costa, L.R.J. (ed.)

    2008-09-15

    SCEE is an international conference series dedicated to Scientific Computing in Electrical Engineering. The 7th International Conference on Scientific Computing in Electrical Engineering (SCEE 2008) in Espoo, Finland, is organized by the Helsinki University of Technology (TKK); Faculty of Electronics, Communications and Automation (ECA); Department of Radio Science and Engineering (RAD); Circuit Theory Group. (SCEE 2008 web site: http://www.ct.tkk.fi/scee2008/). The aim of the SCEE 2008 conference is to bring together scientists from academia and industry with the goal of intensive discussions on modeling and numerical simulation of electronic circuits and of electromagnetic fields. The conference is mainly directed towards mathematicians and electrical engineers. The SCEE 2008 conference has the following four main topics: 1. Computational Electromagnetics (CE), 2. Circuit Simulation (CS), 3. Coupled Problems (CP), 4. Mathematical and Computational Methods (CM). The selection of abstracts in this book was carried out by the Program Committee; each abstract was reviewed by two or three reviewers. The authors of all accepted abstracts were invited to submit an extended full paper, which will be reviewed as well. The accepted full papers will later on be published in a separate post-conference book

  4. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, Dan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  5. Teaching Scientific Computing: A Model-Centered Approach to Pipeline and Parallel Programming with C

    Directory of Open Access Journals (Sweden)

    Vladimiras Dolgopolovas

    2015-01-01

    Full Text Available The aim of this study is to present an approach to the introduction into pipeline and parallel computing, using a model of the multiphase queueing system. Pipeline computing, including software pipelines, is among the key concepts in modern computing and electronics engineering. The modern computer science and engineering education requires a comprehensive curriculum, so the introduction to pipeline and parallel computing is the essential topic to be included in the curriculum. At the same time, the topic is among the most motivating tasks due to the comprehensive multidisciplinary and technical requirements. To enhance the educational process, the paper proposes a novel model-centered framework and develops the relevant learning objects. It allows implementing an educational platform of constructivist learning process, thus enabling learners’ experimentation with the provided programming models, obtaining learners’ competences of the modern scientific research and computational thinking, and capturing the relevant technical knowledge. It also provides an integral platform that allows a simultaneous and comparative introduction to pipelining and parallel computing. The programming language C for developing programming models and message passing interface (MPI and OpenMP parallelization tools have been chosen for implementation.

  6. Supporting Scientific Research with the Energy Sciences Network

    CERN Multimedia

    CERN. Geneva; Monga, Inder

    2016-01-01

    The Energy Sciences Network (ESnet) is a high-performance, unclassified national network built to support scientific research. Funded by the U.S. Department of Energy’s Office of Science (SC) and managed by Lawrence Berkeley National Laboratory, ESnet provides services to more than 40 DOE research sites, including the entire National Laboratory system, its supercomputing facilities, and its major scientific instruments. ESnet also connects to 140 research and commercial networks, permitting DOE-funded scientists to productively collaborate with partners around the world. ESnet Division Director (Interim) Inder Monga and ESnet Networking Engineer David Mitchell will present current ESnet projects and research activities which help support the HEP community. ESnet  helps support the CERN community by providing 100Gbps trans-Atlantic network transport for the LHCONE and LHCOPN services. ESnet is also actively engaged in researching connectivity to cloud computing resources for HEP workflows a...

  7. A data management system for engineering and scientific computing

    Science.gov (United States)

    Elliot, L.; Kunii, H. S.; Browne, J. C.

    1978-01-01

    Data elements and relationship definition capabilities for this data management system are explicitly tailored to the needs of engineering and scientific computing. System design was based upon studies of data management problems currently being handled through explicit programming. The system-defined data element types include real scalar numbers, vectors, arrays and special classes of arrays such as sparse arrays and triangular arrays. The data model is hierarchical (tree structured). Multiple views of data are provided at two levels. Subschemas provide multiple structural views of the total data base and multiple mappings for individual record types are supported through the use of a REDEFINES capability. The data definition language and the data manipulation language are designed as extensions to FORTRAN. Examples of the coding of real problems taken from existing practice in the data definition language and the data manipulation language are given.

  8. Integration of distributed plant process computer systems to nuclear power generation facilities

    International Nuclear Information System (INIS)

    Bogard, T.; Finlay, K.

    1996-01-01

    Many operating nuclear power generation facilities are replacing their plant process computer. Such replacement projects are driven by equipment obsolescence issues and associated objectives to improve plant operability, increase plant information access, improve man machine interface characteristics, and reduce operation and maintenance costs. This paper describes a few recently completed and on-going replacement projects with emphasis upon the application integrated distributed plant process computer systems. By presenting a few recent projects, the variations of distributed systems design show how various configurations can address needs for flexibility, open architecture, and integration of technological advancements in instrumentation and control technology. Architectural considerations for optimal integration of the plant process computer and plant process instrumentation ampersand control are evident from variations of design features

  9. ISDMS, Inel Scientific Data Management System

    International Nuclear Information System (INIS)

    Bruestle, H.R.; Russell, K.D.; Snider, D.M.; Stewart, H.D.

    1993-01-01

    Description of program or function: The Idaho National Engineering Laboratory (INEL) Scientific Data Management System, ISDMS, is a generalized scientific data processing system designed to meet the needs of the various organizations at the INEL. It consists of a set of general and specific processors running under the control of an executive processor which serves as the interface between the system and the user. The data requirements at the INEL are primarily for times series analyses. Data acquired at various site facilities are processed on the central CDC CYBER computers. This processing includes: data conversion, data calibration, computed parameter calculations, time series plots, and sundry other applications. The data structure used in ISDMS is CWAF, a common word addressable format. A table driven command language serves as the ISDMS control language. Execution in both batch and interactive mode is possible. All commands and their input arguments are specified in free form. ISDMS is a modular system both at the top executive or MASTER level and in the independent lower or sub-level modules. ISDMS processors were designed and isolated according to their function. This release of ISDMS, identified as 1.3A by the developers, includes processors for data conversion and reformatting for applications programs (e.g. RELAP4), interactive and batch graphics, data analysis, data storage, and archival and development aids

  10. SIGMA, a new language for interactive array-oriented computing

    International Nuclear Information System (INIS)

    Hagedorn, R.; Reinfelds, J.; Vandoni, C.; Hove, L. van.

    1978-01-01

    A description is given of the principles and the main facilities of SIGMA (System for Interactive Graphical Mathematical Applications), a programming language for scientific computing whose major characteristics are: automatic handling of multi-dimensional rectangular arrays as basic data units, interactive operation of the system, and graphical display facilities. After introducing the basic concepts and features of the language, it describes in some detail the methods and operators for the automatic handling of arrays and for their graphical display, the procedures for construction of programs by users, and other facilities of the system. The report is a new version of CERN 73-5. (Auth.)

  11. Computer-based data acquisition system in the Large Coil Test Facility

    International Nuclear Information System (INIS)

    Gould, S.S.; Layman, L.R.; Million, D.L.

    1983-01-01

    The utilization of computers for data acquisition and control is of paramount importance on large-scale fusion experiments because they feature the ability to acquire data from a large number of sensors at various sample rates and provide for flexible data interpretation, presentation, reduction, and analysis. In the Large Coil Test Facility (LCTF) a Digital Equipment Corporation (DEC) PDP-11/60 host computer with the DEC RSX-11M operating system coordinates the activities of five DEC LSI-11/23 front-end processors (FEPs) via direct memory access (DMA) communication links. This provides host control of scheduled data acquisition and FEP event-triggered data collection tasks. Four of the five FEPs have no operating system

  12. 11th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing

    CERN Document Server

    Nuyens, Dirk

    2016-01-01

    This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.

  13. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    Energy Technology Data Exchange (ETDEWEB)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  14. Scientific ballooning in India Recent developments

    Science.gov (United States)

    Manchanda, R. K.

    Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m 3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.

  15. ATR National Scientific User Facility 2009 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen; Mitchell K. Meyer; Frances Marshall; Mary Catherine Thelen; Jeff Benson

    2010-11-01

    This report describes activities of the ATR NSUF from FY-2008 through FY-2009 and includes information on partner facilities, calls for proposals, users week and education programs. The report also contains project information on university research projects that were awarded by ATR NSUF in the fiscal years 2008 & 2009. This research is university-proposed researcher under a user facility agreement. All intellectual property from these experiments belongs to the university per the user agreement.

  16. Facility effluent monitoring plan for the 327 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  17. ATR National Scientific User Facility 2009 Annual Report

    International Nuclear Information System (INIS)

    Allen, Todd R.; Meyer, Mitchell K.; Marshall, Frances; Thelen, Mary Catherine; Benson, Jeff

    2010-01-01

    This report describes activities of the ATR NSUF from FY-2008 through FY-2009 and includes information on partner facilities, calls for proposals, users week and education programs. The report also contains project information on university research projects that were awarded by ATR NSUF in the fiscal years 2008 and 2009. This research is university-proposed researcher under a user facility agreement. All intellectual property from these experiments belongs to the university per the user agreement.

  18. Scientific design of the test facility for the KNGR DVI line small break LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Byong Jo; Park, Choon Kyung; Jun, Hyung Gil; Cho, Seok; Kwon, Tae Soon; Song, Chul Hwa; Kim, Jung Taek

    1999-03-01

    Scientific design of the experimental facility (OASIS) for the KNGR (Korea Next Generation Reactor) DVI line SB-LOCA simulation is carried out. Main purpose of the OASIS is to produce thermal-hydraulic data base for determining the best location of the DVI (Direct Vessel Injection) injection nozzle of the KNGR as well as verifying its design performance in view of the ECCS (Emergency Core Cooling System) effectiveness. The experimental facility is designed based on the Ishii's three-level scaling law. The facility has 1/4 height and 1/341 area scaling ratio. It corresponds to the volume scale of 1/1364. The power scaling is 1/682 and the system pressure is prototypic. The OASIS consists of a core, a downcomer, two steam generators, two pump simulators, a break simulator, a collection tank, primary piping as well as a circulation pump for initial test condition. Each component is designed based on the Ishill's global scaling and boundary flow scaling of mass, energy and momentum. In addition, local phenomena scaling is carried out for the design of major components to preserve key local phenomena in each component. Most of the key phenomena are well preserved in the OASIS. However, the local scaling analysis shows that distortions of the void fraction and mixture level can not be avoided in the core. It comes from the basic features of the Ishill's scaling law in case of the reduced-height simulation. However, it is expected that these distortions will be analyzed properly by a best estimate system analysis code. (Author). 22 refs., 20 tabs., 25 figs.

  19. Specialized computer architectures for computational aerodynamics

    Science.gov (United States)

    Stevenson, D. K.

    1978-01-01

    In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.

  20. The Goal Specificity Effect on Strategy Use and Instructional Efficiency during Computer-Based Scientific Discovery Learning

    Science.gov (United States)

    Kunsting, Josef; Wirth, Joachim; Paas, Fred

    2011-01-01

    Using a computer-based scientific discovery learning environment on buoyancy in fluids we investigated the "effects of goal specificity" (nonspecific goals vs. specific goals) for two goal types (problem solving goals vs. learning goals) on "strategy use" and "instructional efficiency". Our empirical findings close an important research gap,…

  1. Availability measurement of grid services from the perspective of a scientific computing centre

    International Nuclear Information System (INIS)

    Marten, H; Koenig, T

    2011-01-01

    The Karlsruhe Institute of Technology (KIT) is the merger of Forschungszentrum Karlsruhe and the Technical University Karlsruhe. The Steinbuch Centre for Computing (SCC) was one of the first new organizational units of KIT, combining the former Institute for Scientific Computing of Forschungszentrum Karlsruhe and the Computing Centre of the University. IT service management according to the worldwide de-facto-standard 'IT Infrastructure Library (ITIL)' was chosen by SCC as a strategic element to support the merging of the two existing computing centres located at a distance of about 10 km. The availability and reliability of IT services directly influence the customer satisfaction as well as the reputation of the service provider, and unscheduled loss of availability due to hardware or software failures may even result in severe consequences like data loss. Fault tolerant and error correcting design features are reducing the risk of IT component failures and help to improve the delivered availability. The ITIL process controlling the respective design is called Availability Management. This paper discusses Availability Management regarding grid services delivered to WLCG and provides a few elementary guidelines for availability measurements and calculations of services consisting of arbitrary numbers of components.

  2. Computer program for storage of historical and routine safety data related to radiologically controlled facilities

    International Nuclear Information System (INIS)

    Marsh, D.A.; Hall, C.J.

    1984-01-01

    A method for tracking and quick retrieval of radiological status of radiation and industrial safety systems in an active or inactive facility has been developed. The system uses a mini computer, a graphics plotter, and mass storage devices. Software has been developed which allows input and storage of architectural details, radiological conditions such as exposure rates, current location of safety systems, and routine and historical information on exposure and contamination levels. A blue print size digitizer is used for input. The computer program retains facility floor plans in three dimensional arrays. The software accesses an eight pen color plotter for output. The plotter generates color plots of the floor plans and safety systems on 8 1/2 x 11 or 20 x 30 paper or on overhead transparencies for reports and presentations

  3. INFN Tier-1 Testbed Facility

    International Nuclear Information System (INIS)

    Gregori, Daniele; Cavalli, Alessandro; Dell'Agnello, Luca; Dal Pra, Stefano; Prosperini, Andrea; Ricci, Pierpaolo; Ronchieri, Elisabetta; Sapunenko, Vladimir

    2012-01-01

    INFN-CNAF, located in Bologna, is the Information Technology Center of National Institute of Nuclear Physics (INFN). In the framework of the Worldwide LHC Computing Grid, INFN-CNAF is one of the eleven worldwide Tier-1 centers to store and reprocessing Large Hadron Collider (LHC) data. The Italian Tier-1 provides the resources of storage (i.e., disk space for short term needs and tapes for long term needs) and computing power that are needed for data processing and analysis to the LHC scientific community. Furthermore, INFN Tier-1 houses computing resources for other particle physics experiments, like CDF at Fermilab, SuperB at Frascati, as well as for astro particle and spatial physics experiments. The computing center is a very complex infrastructure, the hardaware layer include the network, storage and farming area, while the software layer includes open source and proprietary software. Software updating and new hardware adding can unexpectedly deteriorate the production activity of the center: therefore a testbed facility has been set up in order to reproduce and certify the various layers of the Tier-1. In this article we describe the testbed and the checks performed.

  4. Atmospheric dispersion calculation for posturated accident of nuclear facilities and the computer code: PANDA

    International Nuclear Information System (INIS)

    Kitahara, Yoshihisa; Kishimoto, Yoichiro; Narita, Osamu; Shinohara, Kunihiko

    1979-01-01

    Several Calculation methods for relative concentration (X/Q) and relative cloud-gamma dose (D/Q) of the radioactive materials released from nuclear facilities by posturated accident are presented. The procedure has been formulated as a Computer program PANDA and the usage is explained. (author)

  5. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    International Nuclear Information System (INIS)

    Klimentov, A; Maeno, T; Nilsson, P; Panitkin, S; Wenaus, T; Buncic, P; De, K; Oleynik, D; Petrosyan, A; Jha, S; Mount, R; Porter, R J; Read, K F; Wells, J C; Vaniachine, A

    2015-01-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(10 2 ) sites, O(10 5 ) cores, O(10 8 ) jobs per year, O(10 3 ) users, and ATLAS data volume is O(10 17 ) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled ‘Next Generation Workload Management and Analysis System for Big Data’ (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center 'Kurchatov Institute' together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the

  6. Physics through the 1990s: scientific interfaces and technological applications

    International Nuclear Information System (INIS)

    1986-01-01

    The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics--biophysics, the brain, and theoretical biology; the physics-chemistry interface--instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics--tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics--complex systems and applications in basic research; mathematics--field theory and chaos; microelectronics--integrated circuits, miniaturization, future trends; optical information technologies--fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security--devices, weapons, and arms control; medical physics--radiology, ultrasonics, NMR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs

  7. Computational model of gamma irradiation room at ININ

    Science.gov (United States)

    Rodríguez-Romo, Suemi; Patlan-Cardoso, Fernando; Ibáñez-Orozco, Oscar; Vergara Martínez, Francisco Javier

    2018-03-01

    In this paper, we present a model of the gamma irradiation room at the National Institute of Nuclear Research (ININ is its acronym in Spanish) in Mexico to improve the use of physics in dosimetry for human protection. We deal with air-filled ionization chambers and scientific computing made in house and framed in both the GEANT4 scheme and our analytical approach to characterize the irradiation room. This room is the only secondary dosimetry facility in Mexico. Our aim is to optimize its experimental designs, facilities, and industrial applications of physical radiation. The computational results provided by our model are supported by all the known experimental data regarding the performance of the ININ gamma irradiation room and allow us to predict the values of the main variables related to this fully enclosed space to within an acceptable margin of error.

  8. Center for Technology for Advanced Scientific Component Software (TASCS)

    Energy Technology Data Exchange (ETDEWEB)

    Damevski, Kostadin [Virginia State Univ., Petersburg, VA (United States)

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  9. Taking the classical large audience university lecture online using tablet computer and webconferencing facilities

    DEFF Research Database (Denmark)

    Brockhoff, Per B.

    2011-01-01

    During four offerings (September 2008 – May 2011) of the course 02402 Introduction to Statistics for Engineering students at DTU, with an average of 256 students, the lecturing was carried out 100% through a tablet computer combined with the web conferencing facility Adobe Connect (version 7...

  10. The InSAR Scientific Computing Environment (ISCE): A Python Framework for Earth Science

    Science.gov (United States)

    Rosen, P. A.; Gurrola, E. M.; Agram, P. S.; Sacco, G. F.; Lavalle, M.

    2015-12-01

    The InSAR Scientific Computing Environment (ISCE, funded by NASA ESTO) provides a modern computing framework for geodetic image processing of InSAR data from a diverse array of radar satellites and aircraft. ISCE is both a modular, flexible, and extensible framework for building software components and applications as well as a toolbox of applications for processing raw or focused InSAR and Polarimetric InSAR data. The ISCE framework contains object-oriented Python components layered to construct Python InSAR components that manage legacy Fortran/C InSAR programs. Components are independently configurable in a layered manner to provide maximum control. Polymorphism is used to define a workflow in terms of abstract facilities for each processing step that are realized by specific components at run-time. This enables a single workflow to work on either raw or focused data from all sensors. ISCE can serve as the core of a production center to process Level-0 radar data to Level-3 products, but is amenable to interactive processing approaches that allow scientists to experiment with data to explore new ways of doing science with InSAR data. The NASA-ISRO SAR (NISAR) Mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystems. ISCE is planned as the foundational element in processing NISAR data, enabling a new class of analyses that take greater advantage of the long time and large spatial scales of these new data. NISAR will be but one mission in a constellation of radar satellites in the future delivering such data. ISCE currently supports all publicly available strip map mode space-borne SAR data since ERS and is expected to include support for upcoming missions. ISCE has been incorporated into two prototype cloud-based systems that have demonstrated its elasticity in addressing larger data processing problems in a "production" context and its ability to be

  11. Amplify scientific discovery with artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Yolanda; Greaves, Mark T.; Hendler, James; Hirsch, Hyam

    2014-10-10

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automated language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.

  12. Animal facilities

    International Nuclear Information System (INIS)

    Fritz, T.E.; Angerman, J.M.; Keenan, W.G.; Linsley, J.G.; Poole, C.M.; Sallese, A.; Simkins, R.C.; Tolle, D.

    1981-01-01

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60 Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60 Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  13. Teaching ergonomics to nursing facility managers using computer-based instruction.

    Science.gov (United States)

    Harrington, Susan S; Walker, Bonnie L

    2006-01-01

    This study offers evidence that computer-based training is an effective tool for teaching nursing facility managers about ergonomics and increasing their awareness of potential problems. Study participants (N = 45) were randomly assigned into a treatment or control group. The treatment group completed the ergonomics training and a pre- and posttest. The control group completed the pre- and posttests without training. Treatment group participants improved significantly from 67% on the pretest to 91% on the posttest, a gain of 24%. Differences between mean scores for the control group were not significant for the total score or for any of the subtests.

  14. Managing a tier-2 computer centre with a private cloud infrastructure

    International Nuclear Information System (INIS)

    Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara

    2014-01-01

    In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI

  15. Computational Science Facility (CSF)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL Institutional Computing (PIC) is focused on meeting DOE's mission needs and is part of PNNL's overarching research computing strategy. PIC supports large-scale...

  16. Multiscale Computation. Needs and Opportunities for BER Science

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Timothy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Jeremy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    The Environmental Molecular Sciences Laboratory (EMSL), a scientific user facility managed by Pacific Northwest National Laboratory for the U.S. Department of Energy, Office of Biological and Environmental Research (BER), conducted a one-day workshop on August 26, 2014 on the topic of “Multiscale Computation: Needs and Opportunities for BER Science.” Twenty invited participants, from various computational disciplines within the BER program research areas, were charged with the following objectives; Identify BER-relevant models and their potential cross-scale linkages that could be exploited to better connect molecular-scale research to BER research at larger scales and; Identify critical science directions that will motivate EMSL decisions regarding future computational (hardware and software) architectures.

  17. Reliability Lessons Learned From GPU Experience With The Titan Supercomputer at Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gallarno, George [Christian Brothers University; Rogers, James H [ORNL; Maxwell, Don E [ORNL

    2015-01-01

    The high computational capability of graphics processing units (GPUs) is enabling and driving the scientific discovery process at large-scale. The world s second fastest supercomputer for open science, Titan, has more than 18,000 GPUs that computational scientists use to perform scientific simu- lations and data analysis. Understanding of GPU reliability characteristics, however, is still in its nascent stage since GPUs have only recently been deployed at large-scale. This paper presents a detailed study of GPU errors and their impact on system operations and applications, describing experiences with the 18,688 GPUs on the Titan supercom- puter as well as lessons learned in the process of efficient operation of GPUs at scale. These experiences are helpful to HPC sites which already have large-scale GPU clusters or plan to deploy GPUs in the future.

  18. Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the Path to Ignition

    International Nuclear Information System (INIS)

    Lagin, L J; Bettenhauasen, R C; Bowers, G A; Carey, R W; Edwards, O D; Estes, C M; Demaret, R D; Ferguson, S W; Fisher, J M; Ho, J C; Ludwigsen, A P; Mathisen, D G; Marshall, C D; Matone, J M; McGuigan, D L; Sanchez, R J; Shelton, R T; Stout, E A; Tekle, E; Townsend, S L; Van Arsdall, P J; Wilson, E F

    2007-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of 8 beams each using laser hardware that is modularized into more than 6,000 line replaceable units such as optical assemblies, laser amplifiers, and multifunction sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-Megajoule capability of infrared light. During the next two years, the control system will be expanded to include automation of target area systems including final optics, target positioners and

  19. Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the path to ignition

    International Nuclear Information System (INIS)

    Lagin, L.J.; Bettenhausen, R.C.; Bowers, G.A.; Carey, R.W.; Edwards, O.D.; Estes, C.M.; Demaret, R.D.; Ferguson, S.W.; Fisher, J.M.; Ho, J.C.; Ludwigsen, A.P.; Mathisen, D.G.; Marshall, C.D.; Matone, J.T.; McGuigan, D.L.; Sanchez, R.J.; Stout, E.A.; Tekle, E.A.; Townsend, S.L.; Van Arsdall, P.J.

    2008-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-MJ, 500-TW, ultraviolet laser system together with a 10-m diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of eight beams each using laser hardware that is modularized into more than 6000 line replaceable units such as optical assemblies, laser amplifiers, and multi-function sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-MJ capability of infrared light. During the next 2 years, the control system will be expanded in preparation for project completion in 2009 to include automation of target area systems including final optics

  20. An expanded framework for the advanced computational testing and simulation toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Osni A.; Drummond, Leroy A.

    2003-11-09

    The Advanced Computational Testing and Simulation (ACTS) Toolkit is a set of computational tools developed primarily at DOE laboratories and is aimed at simplifying the solution of common and important computational problems. The use of the tools reduces the development time for new codes and the tools provide functionality that might not otherwise be available. This document outlines an agenda for expanding the scope of the ACTS Project based on lessons learned from current activities. Highlights of this agenda include peer-reviewed certification of new tools; finding tools to solve problems that are not currently addressed by the Toolkit; working in collaboration with other software initiatives and DOE computer facilities; expanding outreach efforts; promoting interoperability, further development of the tools; and improving functionality of the ACTS Information Center, among other tasks. The ultimate goal is to make the ACTS tools more widely used and more effective in solving DOE's and the nation's scientific problems through the creation of a reliable software infrastructure for scientific computing.

  1. Specialized, multi-user computer facility for the high-speed, interactive processing of experimental data

    International Nuclear Information System (INIS)

    Maples, C.C.

    1979-05-01

    A proposal has been made at LBL to develop a specialized computer facility specifically designed to deal with the problems associated with the reduction and analysis of experimental data. Such a facility would provide a highly interactive, graphics-oriented, multi-user environment capable of handling relatively large data bases for each user. By conceptually separating the general problem of data analysis into two parts, cyclic batch calculations and real-time interaction, a multilevel, parallel processing framework may be used to achieve high-speed data processing. In principle such a system should be able to process a mag tape equivalent of data through typical transformations and correlations in under 30 s. The throughput for such a facility, for five users simultaneously reducing data, is estimated to be 2 to 3 times greater than is possible, for example, on a CDC7600. 3 figures

  2. Specialized, multi-user computer facility for the high-speed, interactive processing of experimental data

    International Nuclear Information System (INIS)

    Maples, C.C.

    1979-01-01

    A proposal has been made to develop a specialized computer facility specifically designed to deal with the problems associated with the reduction and analysis of experimental data. Such a facility would provide a highly interactive, graphics-oriented, multi-user environment capable of handling relatively large data bases for each user. By conceptually separating the general problem of data analysis into two parts, cyclic batch calculations and real-time interaction, a multi-level, parallel processing framework may be used to achieve high-speed data processing. In principle such a system should be able to process a mag tape equivalent of data, through typical transformations and correlations, in under 30 sec. The throughput for such a facility, assuming five users simultaneously reducing data, is estimated to be 2 to 3 times greater than is possible, for example, on a CDC7600

  3. Good enough practices in scientific computing.

    Science.gov (United States)

    Wilson, Greg; Bryan, Jennifer; Cranston, Karen; Kitzes, Justin; Nederbragt, Lex; Teal, Tracy K

    2017-06-01

    Computers are now essential in all branches of science, but most researchers are never taught the equivalent of basic lab skills for research computing. As a result, data can get lost, analyses can take much longer than necessary, and researchers are limited in how effectively they can work with software and data. Computing workflows need to follow the same practices as lab projects and notebooks, with organized data, documented steps, and the project structured for reproducibility, but researchers new to computing often don't know where to start. This paper presents a set of good computing practices that every researcher can adopt, regardless of their current level of computational skill. These practices, which encompass data management, programming, collaborating with colleagues, organizing projects, tracking work, and writing manuscripts, are drawn from a wide variety of published sources from our daily lives and from our work with volunteer organizations that have delivered workshops to over 11,000 people since 2010.

  4. Application of personal computer to development of entrance management system for radiating facilities

    International Nuclear Information System (INIS)

    Suzuki, Shogo; Hirai, Shouji

    1989-01-01

    The report describes a system for managing the entrance and exit of personnel to radiating facilities. A personal computer is applied to its development. Major features of the system is outlined first. The computer is connected to the gate and two magnetic card readers provided at the gate. The gate, which is installed at the entrance to a room under control, opens only for those who have a valid card. The entrance-exit management program developed is described next. The following three files are used: ID master file (random file of the magnetic card number, name, qualification, etc., of each card carrier), entrance-exit management file (random file of time of entrance/exit, etc., updated everyday), and entrance-exit record file (sequential file of card number, name, date, etc.), which are stored on floppy disks. A display is provided to show various lists including a list of workers currently in the room and a list of workers who left the room at earlier times of the day. This system is useful for entrance management of a relatively small facility. Though small in required cost, it requires only a few operators to perform effective personnel management. (N.K.)

  5. PS3 CELL Development for Scientific Computation and Research

    Science.gov (United States)

    Christiansen, M.; Sevre, E.; Wang, S. M.; Yuen, D. A.; Liu, S.; Lyness, M. D.; Broten, M.

    2007-12-01

    The Cell processor is one of the most powerful processors on the market, and researchers in the earth sciences may find its parallel architecture to be very useful. A cell processor, with 7 cores, can easily be obtained for experimentation by purchasing a PlayStation 3 (PS3) and installing linux and the IBM SDK. Each core of the PS3 is capable of 25 GFLOPS giving a potential limit of 150 GFLOPS when using all 6 SPUs (synergistic processing units) by using vectorized algorithms. We have used the Cell's computational power to create a program which takes simulated tsunami datasets, parses them, and returns a colorized height field image using ray casting techniques. As expected, the time required to create an image is inversely proportional to the number of SPUs used. We believe that this trend will continue when multiple PS3s are chained using OpenMP functionality and are in the process of researching this. By using the Cell to visualize tsunami data, we have found that its greatest feature is its power. This fact entwines well with the needs of the scientific community where the limiting factor is time. Any algorithm, such as the heat equation, that can be subdivided into multiple parts can take advantage of the PS3 Cell's ability to split the computations across the 6 SPUs reducing required run time by one sixth. Further vectorization of the code can allow for 4 simultanious floating point operations by using the SIMD (single instruction multiple data) capabilities of the SPU increasing efficiency 24 times.

  6. Using Cloud-Computing Applications to Support Collaborative Scientific Inquiry: Examining Pre-Service Teachers' Perceived Barriers to Integration

    Science.gov (United States)

    Donna, Joel D.; Miller, Brant G.

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications, such as Google Drive, can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers' beliefs related to the envisioned use of collaborative,…

  7. Computer programs for capital cost estimation, lifetime economic performance simulation, and computation of cost indexes for laser fusion and other advanced technology facilities

    International Nuclear Information System (INIS)

    Pendergrass, J.H.

    1978-01-01

    Three FORTRAN programs, CAPITAL, VENTURE, and INDEXER, have been developed to automate computations used in assessing the economic viability of proposed or conceptual laser fusion and other advanced-technology facilities, as well as conventional projects. The types of calculations performed by these programs are, respectively, capital cost estimation, lifetime economic performance simulation, and computation of cost indexes. The codes permit these three topics to be addressed with considerable sophistication commensurate with user requirements and available data

  8. Computer-supported analysis of scientific measurements

    NARCIS (Netherlands)

    de Jong, Hidde

    1998-01-01

    In the past decade, large-scale databases and knowledge bases have become available to researchers working in a range of scientific disciplines. In many cases these databases and knowledge bases contain measurements of properties of physical objects which have been obtained in experiments or at

  9. Computer Security at Nuclear Facilities (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    category of the IAEA Nuclear Security Series, and deals with computer security at nuclear facilities. It is based on national experience and practices as well as publications in the fields of computer security and nuclear security. The guidance is provided for consideration by States, competent authorities and operators. The preparation of this publication in the IAEA Nuclear Security Series has been made possible by the contributions of a large number of experts from Member States. An extensive consultation process with all Member States included consultants meetings and open-ended technical meetings. The draft was then circulated to all Member States for 120 days to solicit further comments and suggestions. The comments received from Member States were reviewed and considered in the final version of the publication.

  10. Irradiation facilities at the advanced neutron source

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Neutron Source (ANS) is a facility, centered around a new 330MW(f) heavy-water cooled and reflected research reactor, proposed for construction at Oak Ridge. The main scientific justification for the new source is the United States' need for increased capabilities in neutron scattering and other neutron beam research, but the technical objectives of the project also cater for the need to replace the irradiation facilities at the aging High Flux Isotope Reactor and to provide other research capabilities to the scientific community. This document provides a description of the ANS facilities

  11. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  12. FIRAC - a computer code to predict fire accident effects in nuclear facilities

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Foster, R.D.; Gregory, W.S.

    1983-01-01

    FIRAC is a medium-sized computer code designed to predict fire-induced flows, temperatures, and material transport within the ventilating systems and other airflow pathways in nuclear-related facilities. The code is designed to analyze the behavior of interconnected networks of rooms and typical ventilation system components. This code is one in a family of computer codes that is designed to provide improved methods of safety analysis for the nuclear industry. The structure of this code closely follows that of the previously developed TVENT and EVENT codes. Because a lumped-parameter formulation is used, this code is particularly suitable for calculating the effects of fires in the far field (that is, in regions removed from the fire compartment), where the fire may be represented parametrically. However, a fire compartment model to simulate conditions in the enclosure is included. This model provides transport source terms to the ventilation system that can affect its operation and in turn affect the fire. A basic material transport capability that features the effects of convection, deposition, entrainment, and filtration of material is included. The interrelated effects of filter plugging, heat transfer, gas dynamics, and material transport are taken into account. In this paper the authors summarize the physical models used to describe the gas dynamics, material transport, and heat transfer processes. They also illustrate how a typical facility is modeled using the code

  13. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab

  14. Certification of version 1.2 of the PORFLO-3 code for the WHC scientific and engineering computational center

    International Nuclear Information System (INIS)

    Kline, N.W.

    1994-01-01

    Version 1.2 of the PORFLO-3 Code has migrated from the Hanford Cray computer to workstations in the WHC Scientific and Engineering Computational Center. The workstation-based configuration and acceptance testing are inherited from the CRAY-based configuration. The purpose of this report is to document differences in the new configuration as compared to the parent Cray configuration, and summarize some of the acceptance test results which have shown that the migrated code is functioning correctly in the new environment

  15. ATR National Scientific User Facility 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Sarah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kennedy, J. Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ogden, Dan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cole, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States); Knight, Collin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Teysseyre, Sebastien [Idaho National Lab. (INL), Idaho Falls, ID (United States); Benson, Jeff [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heidrich, Brenden [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jackson, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bean, Lindy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Soelberg, Renae [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This is the 2015 Annual Report for the Nuclear Science User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.

  16. GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data

    Science.gov (United States)

    Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.

    2016-12-01

    Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We

  17. Impact of configuration management system of computer center on support of scientific projects throughout their lifecycle

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Yuzhanin, N.V.; Zolotarev, V.I.; Ezhakova, T.R.

    2017-01-01

    In this article the problem of scientific projects support throughout their lifecycle in the computer center is considered in every aspect of support. Configuration Management system plays a connecting role in processes related to the provision and support of services of a computer center. In view of strong integration of IT infrastructure components with the use of virtualization, control of infrastructure becomes even more critical to the support of research projects, which means higher requirements for the Configuration Management system. For every aspect of research projects support, the influence of the Configuration Management system is reviewed and development of the corresponding elements of the system is described in the present paper.

  18. Research activities by INS cyclotron facility

    International Nuclear Information System (INIS)

    1992-06-01

    Research activities made by the cyclotron facility and the related apparatuses at Institute for Nuclear Study (INS), University of Tokyo, have been reviewed in terms of the associated scientific publications. This publication list, which is to be read as a continuation of INS-Rep.-608 (October, 1986), includes experimental works on low-energy nuclear physics, accelerator technology, instrumental developments, radiation physics and other applications in interdisciplinary fields. The publications are classified into the following four categories. (A) : Internal reports published in INS. (B) : Publications in international scientific journals on experimental research works done by the cyclotron facility and the related apparatuses at INS. Those made by outside users are also included. (C) : Publications in international scientific journals on experimental low-energy nuclear physics, which have been done by the staff of INS Nuclear Physics Division using facilities outside INS. (D) : Contributions to international conferences. (author)

  19. I - Template Metaprogramming for Massively Parallel Scientific Computing - Expression Templates

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Large scale scientific computing raises questions on different levels ranging from the fomulation of the problems to the choice of the best algorithms and their implementation for a specific platform. There are similarities in these different topics that can be exploited by modern-style C++ template metaprogramming techniques to produce readable, maintainable and generic code. Traditional low-level code tend to be fast but platform-dependent, and it obfuscates the meaning of the algorithm. On the other hand, object-oriented approach is nice to read, but may come with an inherent performance penalty. These lectures aim to present he basics of the Expression Template (ET) idiom which allows us to keep the object-oriented approach without sacrificing performance. We will in particular show to to enhance ET to include SIMD vectorization. We will then introduce techniques for abstracting iteration, and introduce thread-level parallelism for use in heavy data-centric loads. We will show to to apply these methods i...

  20. Office of Science User Facilities Summary Report, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-01

    The U.S. Department of Energy Office of Science provides the Nation’s researchers with worldclass scientific user facilities to propel the U.S. to the forefront of science and innovation. A user facility is a federally sponsored research facility available for external use to advance scientific or technical knowledge under the following conditions: open, accessible, free, collaborative, competitive, and unique.

  1. The Centre of High-Performance Scientific Computing, Geoverbund, ABC/J - Geosciences enabled by HPSC

    Science.gov (United States)

    Kollet, Stefan; Görgen, Klaus; Vereecken, Harry; Gasper, Fabian; Hendricks-Franssen, Harrie-Jan; Keune, Jessica; Kulkarni, Ketan; Kurtz, Wolfgang; Sharples, Wendy; Shrestha, Prabhakar; Simmer, Clemens; Sulis, Mauro; Vanderborght, Jan

    2016-04-01

    The Centre of High-Performance Scientific Computing (HPSC TerrSys) was founded 2011 to establish a centre of competence in high-performance scientific computing in terrestrial systems and the geosciences enabling fundamental and applied geoscientific research in the Geoverbund ABC/J (geoscientfic research alliance of the Universities of Aachen, Cologne, Bonn and the Research Centre Jülich, Germany). The specific goals of HPSC TerrSys are to achieve relevance at the national and international level in (i) the development and application of HPSC technologies in the geoscientific community; (ii) student education; (iii) HPSC services and support also to the wider geoscientific community; and in (iv) the industry and public sectors via e.g., useful applications and data products. A key feature of HPSC TerrSys is the Simulation Laboratory Terrestrial Systems, which is located at the Jülich Supercomputing Centre (JSC) and provides extensive capabilities with respect to porting, profiling, tuning and performance monitoring of geoscientific software in JSC's supercomputing environment. We will present a summary of success stories of HPSC applications including integrated terrestrial model development, parallel profiling and its application from watersheds to the continent; massively parallel data assimilation using physics-based models and ensemble methods; quasi-operational terrestrial water and energy monitoring; and convection permitting climate simulations over Europe. The success stories stress the need for a formalized education of students in the application of HPSC technologies in future.

  2. Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX

    International Nuclear Information System (INIS)

    Gohar, Y.; Zhong, Z.; Talamo, A.

    2009-01-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is ∼375 kW including the fission power of ∼260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the electrons and the

  3. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  4. SciDAC advances and applications in computational beam dynamics

    International Nuclear Information System (INIS)

    Ryne, R; Abell, D; Adelmann, A; Amundson, J; Bohn, C; Cary, J; Colella, P; Dechow, D; Decyk, V; Dragt, A; Gerber, R; Habib, S; Higdon, D; Katsouleas, T; Ma, K-L; McCorquodale, P; Mihalcea, D; Mitchell, C; Mori, W; Mottershead, C T; Neri, F; Pogorelov, I; Qiang, J; Samulyak, R; Serafini, D; Shalf, J; Siegerist, C; Spentzouris, P; Stoltz, P; Terzic, B; Venturini, M; Walstrom, P

    2005-01-01

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators-which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook-are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this paper we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications

  5. SciDAC Advances and Applications in Computational Beam Dynamics

    International Nuclear Information System (INIS)

    Ryne, R.; Abell, D.; Adelmann, A.; Amundson, J.; Bohn, C.; Cary, J.; Colella, P.; Dechow, D.; Decyk, V.; Dragt, A.; Gerber, R.; Habib, S.; Higdon, D.; Katsouleas, T.; Ma, K.-L.; McCorquodale, P.; Mihalcea, D.; Mitchell, C.; Mori, W.; Mottershead, C.T.; Neri, F.; Pogorelov, I.; Qiang, J.; Samulyak, R.; Serafini, D.; Shalf, J.; Siegerist, C.; Spentzouris, P.; Stoltz, P.; Terzic, B.; Venturini, M.; Walstrom, P.

    2005-01-01

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators--which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook--are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this poster we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications

  6. Argonne's Laboratory Computing Resource Center : 2005 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R. B.; Coghlan, S. C; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Pieper, G. P.

    2007-06-30

    providers to develop comprehensive scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has begun developing a 'path forward' plan for additional computing resources.

  7. Sudden Cardiac Risk Stratification with Electrocardiographic Indices - A Review on Computational Processing, Technology Transfer, and Scientific Evidence

    Directory of Open Access Journals (Sweden)

    Francisco Javier eGimeno-Blanes

    2016-03-01

    Full Text Available Great effort has been devoted in recent years to the development of sudden cardiac risk predictors as a function of electric cardiac signals, mainly obtained from the electrocardiogram (ECG analysis. But these prediction techniques are still seldom used in clinical practice, partly due to its limited diagnostic accuracy and to the lack of consensus about the appropriate computational signal processing implementation. This paper addresses a three-fold approach, based on ECG indexes, to structure this review on sudden cardiac risk stratification. First, throughout the computational techniques that had been widely proposed for obtaining these indexes in technical literature. Second, over the scientific evidence, that although is supported by observational clinical studies, they are not always representative enough. And third, via the limited technology transfer of academy-accepted algorithms, requiring further meditation for future systems. We focus on three families of ECG derived indexes which are tackled from the aforementioned viewpoints, namely, heart rate turbulence, heart rate variability, and T-wave alternans. In terms of computational algorithms, we still need clearer scientific evidence, standardizing, and benchmarking, siting on advanced algorithms applied over large and representative datasets. New scenarios like electronic health recordings, big data, long-term monitoring, and cloud databases, will eventually open new frameworks to foresee suitable new paradigms in the near future.

  8. A personal computer code for seismic evaluations of nuclear power plant facilities

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.

    1991-01-01

    In the process of review and evaluation of licensing issues related to nuclear power plants, it is essential to understand the behavior of seismic loading, foundation and structural properties and their impact on the overall structural response. In most cases, such knowledge could be obtained by using simplified engineering models which, when properly implemented, can capture the essential parameters describing the physics of the problem. Such models do not require execution on large computer systems and could be implemented through a personal computer (PC) based capability. Recognizing the need for a PC software package that can perform structural response computations required for typical licensing reviews, the US Nuclear Regulatory Commission sponsored the development of a PC operated computer software package CARES (Computer Analysis for Rapid Evaluation of Structures) system. This development was undertaken by Brookhaven National Laboratory (BNL) during FY's 1988 and 1989. A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to operate on a PC, have user friendly input/output interface, and have quick turnaround. This paper describes the various features which have been implemented into the seismic module of CARES version 1.0

  9. A personal computer code for seismic evaluations of nuclear power plant facilities

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.

    1990-01-01

    A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to: operate on a PC, have user friendly input/output interface, and have quick turnaround. The CARES program is structured in a modular format. Each module performs a specific type of analysis. The basic modules of the system are associated with capabilities for static, seismic and nonlinear analyses. This paper describes the various features which have been implemented into the Seismic Module of CARES version 1.0. In Section 2 a description of the Seismic Module is provided. The methodologies and computational procedures thus far implemented into the Seismic Module are described in Section 3. Finally, a complete demonstration of the computational capability of CARES in a typical soil-structure interaction analysis is given in Section 4 and conclusions are presented in Section 5. 5 refs., 4 figs

  10. Computer generated movies to display biotelemetry data

    International Nuclear Information System (INIS)

    White, G.C.

    1979-01-01

    The three dimensional nature of biotelemetry data (x, y, time) makes them difficult to comprehend. Graphic displays provide a means of extracting information and analyzing biotelemetry data. The extensive computer graphics facilities at Los Alamos Scientific Laboratory have been utilized to analyze elk biotelemetry data. Fixes have been taken weekly for 14 months on 14 animals'. The inadequacy of still graphic displays to portray the time dimension of this data has lead to the use of computer generated movies to help grasp time relationships. A computer movie of the data from one animal demonstrates habitat use as a function of time, while a movie of 2 or more animals illustrates the correlations between the animals movements. About 2 hours of computer time were required to generate the movies for each animal for 1 year of data. The cost of the movies is quite small relative to the cost of collecting the data, so that computer generated movies are a reasonable method to depict biotelemetry data

  11. MIMI: Multimodality, Multiresource, Information Integration Environment for Biomedical Core Facilities

    OpenAIRE

    Szymanski, Jacek; Wilson, David L.; Zhang, Guo-Qiang

    2007-01-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administrativel...

  12. Frontiers of massively parallel scientific computation

    International Nuclear Information System (INIS)

    Fischer, J.R.

    1987-07-01

    Practical applications using massively parallel computer hardware first appeared during the 1980s. Their development was motivated by the need for computing power orders of magnitude beyond that available today for tasks such as numerical simulation of complex physical and biological processes, generation of interactive visual displays, satellite image analysis, and knowledge based systems. Representative of the first generation of this new class of computers is the Massively Parallel Processor (MPP). A team of scientists was provided the opportunity to test and implement their algorithms on the MPP. The first results are presented. The research spans a broad variety of applications including Earth sciences, physics, signal and image processing, computer science, and graphics. The performance of the MPP was very good. Results obtained using the Connection Machine and the Distributed Array Processor (DAP) are presented

  13. Accelerating sustainability in large-scale facilities

    CERN Multimedia

    Marina Giampietro

    2011-01-01

    Scientific research centres and large-scale facilities are intrinsically energy intensive, but how can big science improve its energy management and eventually contribute to the environmental cause with new cleantech? CERN’s commitment to providing tangible answers to these questions was sealed in the first workshop on energy management for large scale scientific infrastructures held in Lund, Sweden, on the 13-14 October.   Participants at the energy management for large scale scientific infrastructures workshop. The workshop, co-organised with the European Spallation Source (ESS) and  the European Association of National Research Facilities (ERF), tackled a recognised need for addressing energy issues in relation with science and technology policies. It brought together more than 150 representatives of Research Infrastrutures (RIs) and energy experts from Europe and North America. “Without compromising our scientific projects, we can ...

  14. Using Amazon's Elastic Compute Cloud to dynamically scale CMS computational resources

    International Nuclear Information System (INIS)

    Evans, D; Fisk, I; Holzman, B; Pordes, R; Tiradani, A; Melo, A; Sheldon, P; Metson, S

    2011-01-01

    Large international scientific collaborations such as the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider have traditionally addressed their data reduction and analysis needs by building and maintaining dedicated computational infrastructure. Emerging cloud computing services such as Amazon's Elastic Compute Cloud (EC2) offer short-term CPU and storage resources with costs based on usage. These services allow experiments to purchase computing resources as needed, without significant prior planning and without long term investments in facilities and their management. We have demonstrated that services such as EC2 can successfully be integrated into the production-computing model of CMS, and find that they work very well as worker nodes. The cost-structure and transient nature of EC2 services makes them inappropriate for some CMS production services and functions. We also found that the resources are not truely 'on-demand' as limits and caps on usage are imposed. Our trial workflows allow us to make a cost comparison between EC2 resources and dedicated CMS resources at a University, and conclude that it is most cost effective to purchase dedicated resources for the 'base-line' needs of experiments such as CMS. However, if the ability to use cloud computing resources is built into an experiment's software framework before demand requires their use, cloud computing resources make sense for bursting during times when spikes in usage are required.

  15. Research Facilities | Wind | NREL

    Science.gov (United States)

    Research Facilities Research Facilities NREL's state-of-the-art wind research facilities at the Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being tested. Structural Research Facilities A photo of two people silhouetted against a computer simulation of

  16. Impact of configuration management system of computer center on support of scientific projects throughout their lifecycle

    Science.gov (United States)

    Bogdanov, A. V.; Iuzhanin, N. V.; Zolotarev, V. I.; Ezhakova, T. R.

    2017-12-01

    In this article the problem of scientific projects support throughout their lifecycle in the computer center is considered in every aspect of support. Configuration Management system plays a connecting role in processes related to the provision and support of services of a computer center. In view of strong integration of IT infrastructure components with the use of virtualization, control of infrastructure becomes even more critical to the support of research projects, which means higher requirements for the Configuration Management system. For every aspect of research projects support, the influence of the Configuration Management system is being reviewed and development of the corresponding elements of the system is being described in the present paper.

  17. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    International Nuclear Information System (INIS)

    Lepore, J.V.

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e + e - colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given

  18. Physics, Computer Science and Mathematics Division annual report, January 1--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lepore, J.V. (ed.)

    1977-01-01

    This annual report of the Physics, Computer Science and Mathematics Division describes the scientific research and other work carried out within the Division during the calendar year 1976. The Division is concerned with work in experimental and theoretical physics, with computer science and applied mathematics, and with the operation of a computer center. The major physics research activity is in high-energy physics; a vigorous program is maintained in this pioneering field. The high-energy physics research program in the Division now focuses on experiments with e/sup +/e/sup -/ colliding beams using advanced techniques and developments initiated and perfected at the Laboratory. The Division continues its work in medium energy physics, with experimental work carried out at the Bevatron and at the Los Alamos Pi-Meson Facility. Work in computer science and applied mathematics includes construction of data bases, computer graphics, computational physics and data analysis, mathematical modeling, and mathematical analysis of differential and integral equations resulting from physical problems. The computer center serves the Laboratory by constantly upgrading its facility and by providing day-to-day service. This report is descriptive in nature; references to detailed publications are given. (RWR)

  19. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction CMS distributed computing system performed well during the 2011 start-up. The events in 2011 have more pile-up and are more complex than last year; this results in longer reconstruction times and harder events to simulate. Significant increases in computing capacity were delivered in April for all computing tiers, and the utilisation and load is close to the planning predictions. All computing centre tiers performed their expected functionalities. Heavy-Ion Programme The CMS Heavy-Ion Programme had a very strong showing at the Quark Matter conference. A large number of analyses were shown. The dedicated heavy-ion reconstruction facility at the Vanderbilt Tier-2 is still involved in some commissioning activities, but is available for processing and analysis. Facilities and Infrastructure Operations Facility and Infrastructure operations have been active with operations and several important deployment tasks. Facilities participated in the testing and deployment of WMAgent and WorkQueue+Request...

  20. The Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    Directory of Open Access Journals (Sweden)

    Wojtek James eGoscinski

    2014-03-01

    Full Text Available The Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE is a national imaging and visualisation facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organisation (CSIRO, and the Victorian Partnership for Advanced Computing (VPAC, with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI, x-ray computer tomography (CT, electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i integrated multiple different neuroimaging analysis software components, (ii enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research.

  1. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    Energy Technology Data Exchange (ETDEWEB)

    Kostadin, Damevski [Virginia State Univ., Petersburg, VA (United States)

    2015-01-25

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  2. A performance evaluation of the IBM 370/XT personal computer

    Science.gov (United States)

    Dominick, Wayne D. (Editor); Triantafyllopoulos, Spiros

    1984-01-01

    An evaluation of the IBM 370/XT personal computer is given. This evaluation focuses primarily on the use of the 370/XT for scientific and technical applications and applications development. A measurement of the capabilities of the 370/XT was performed by means of test programs which are presented. Also included is a review of facilities provided by the operating system (VM/PC), along with comments on the IBM 370/XT hardware configuration.

  3. Energy secretary Spencer Abraham announces department of energy 20-year science facility plan

    CERN Multimedia

    2003-01-01

    "In a speech at the National Press Club today, U.S. Energy Secretary Spencer Abraham outlined the Department of Energy's Office of Science 20-year science facility plan, a roadmap for future scientific facilities to support the department's basic science and research missions. The plan prioritizes new, major scientific facilities and upgrades to current facilities" (1 page).

  4. TUNL computer facilities

    International Nuclear Information System (INIS)

    Boyd, M.; Edwards, S.E.; Gould, C.R.; Roberson, N.R.; Westerfeldt, C.R.

    1985-01-01

    The XSYS system has been relatively stable during the last year, and most of our efforts have involved routine software maintenance and enhancement of existing XSYS capabilities. Modifications were made in the MBD program GDAP to increase the execution speed in key GDAP routines. A package of routines has been developed to allow communication between the XSYS and the new Wien filter microprocessor. Recently the authors have upgraded their operating system from VSM V3.7 to V4.1. This required numerous modifications to XSYS, mostly in the command procedures. A new reorganized edition of the XSYS manual will be issued shortly. The TUNL High Resolution Laboratory's VAX 11/750 computer has been in operation for its first full year as a replacement for the PRIME 300 computer which was purchased in 1974 and retired nine months ago. The data acquisition system on the VAX has been in use for the past twelve months performing a number of experiments

  5. Scientific Grand Challenges: Discovery In Basic Energy Sciences: The Role of Computing at the Extreme Scale - August 13-15, 2009, Washington, D.C.

    Energy Technology Data Exchange (ETDEWEB)

    Galli, Giulia [Univ. of California, Davis, CA (United States). Workshop Chair; Dunning, Thom [Univ. of Illinois, Urbana, IL (United States). Workshop Chair

    2009-08-13

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) and Office of Advanced Scientific Computing Research (ASCR) workshop in August 2009 on extreme-scale computing provided a forum for more than 130 researchers to explore the needs and opportunities that will arise due to expected dramatic advances in computing power over the next decade. This scientific community firmly believes that the development of advanced theoretical tools within chemistry, physics, and materials science—combined with the development of efficient computational techniques and algorithms—has the potential to revolutionize the discovery process for materials and molecules with desirable properties. Doing so is necessary to meet the energy and environmental challenges of the 21st century as described in various DOE BES Basic Research Needs reports. Furthermore, computational modeling and simulation are a crucial complement to experimental studies, particularly when quantum mechanical processes controlling energy production, transformations, and storage are not directly observable and/or controllable. Many processes related to the Earth’s climate and subsurface need better modeling capabilities at the molecular level, which will be enabled by extreme-scale computing.

  6. GASFLOW: A computational model to analyze accidents in nuclear containment and facility buildings

    International Nuclear Information System (INIS)

    Travis, J.R.; Nichols, B.D.; Wilson, T.L.; Lam, K.L.; Spore, J.W.; Niederauer, G.F.

    1993-01-01

    GASFLOW is a finite-volume computer code that solves the time-dependent, compressible Navier-Stokes equations for multiple gas species. The fluid-dynamics algorithm is coupled to the chemical kinetics of combusting liquids or gases to simulate diffusion or propagating flames in complex geometries of nuclear containment or confinement and facilities' buildings. Fluid turbulence is calculated to enhance the transport and mixing of gases in rooms and volumes that may be connected by a ventilation system. The ventilation system may consist of extensive ductwork, filters, dampers or valves, and fans. Condensation and heat transfer to walls, floors, ceilings, and internal structures are calculated to model the appropriate energy sinks. Solid and liquid aerosol behavior is simulated to give the time and space inventory of radionuclides. The solution procedure of the governing equations is a modified Los Alamos ICE'd-ALE methodology. Complex facilities can be represented by separate computational domains (multiblocks) that communicate through overlapping boundary conditions. The ventilation system is superimposed throughout the multiblock mesh. Gas mixtures and aerosols are transported through the free three-dimensional volumes and the restricted one-dimensional ventilation components as the accident and fluid flow fields evolve. Combustion may occur if sufficient fuel and reactant or oxidizer are present and have an ignition source. Pressure and thermal loads on the building, structural components, and safety-related equipment can be determined for specific accident scenarios. GASFLOW calculations have been compared with large oil-pool fire tests in the 1986 HDR containment test T52.14, which is a 3000-kW fire experiment. The computed results are in good agreement with the observed data

  7. A Computer Simulation to Assess the Nuclear Material Accountancy System of a MOX Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Portaix, C.G.; Binner, R.; John, H.

    2015-01-01

    SimMOX is a computer programme that simulates container histories as they pass through a MOX facility. It performs two parallel calculations: · the first quantifies the actual movements of material that might be expected to occur, given certain assumptions about, for instance, the accumulation of material and waste, and of their subsequent treatment; · the second quantifies the same movements on the basis of the operator's perception of the quantities involved; that is, they are based on assumptions about quantities contained in the containers. Separate skeletal Excel computer programmes are provided, which can be configured to generate further accountancy results based on these two parallel calculations. SimMOX is flexible in that it makes few assumptions about the order and operational performance of individual activities that might take place at each stage of the process. It is able to do this because its focus is on material flows, and not on the performance of individual processes. Similarly there are no pre-conceptions about the different types of containers that might be involved. At the macroscopic level, the simulation takes steady operation as its base case, i.e., the same quantity of material is deemed to enter and leave the simulated area, over any given period. Transient situations can then be superimposed onto this base scene, by simulating them as operational incidents. A general facility has been incorporated into SimMOX to enable the user to create an ''act of a play'' based on a number of operational incidents that have been built into the programme. By doing this a simulation can be constructed that predicts the way the facility would respond to any number of transient activities. This computer programme can help assess the nuclear material accountancy system of a MOX fuel fabrication facility; for instance the implications of applying NRTA (near real time accountancy). (author)

  8. MIMI: multimodality, multiresource, information integration environment for biomedical core facilities.

    Science.gov (United States)

    Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang

    2009-10-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories.

  9. Health workers' knowledge of and attitudes towards computer applications in rural African health facilities.

    Science.gov (United States)

    Sukums, Felix; Mensah, Nathan; Mpembeni, Rose; Kaltschmidt, Jens; Haefeli, Walter E; Blank, Antje

    2014-01-01

    The QUALMAT (Quality of Maternal and Prenatal Care: Bridging the Know-do Gap) project has introduced an electronic clinical decision support system (CDSS) for pre-natal and maternal care services in rural primary health facilities in Burkina Faso, Ghana, and Tanzania. To report an assessment of health providers' computer knowledge, experience, and attitudes prior to the implementation of the QUALMAT electronic CDSS. A cross-sectional study was conducted with providers in 24 QUALMAT project sites. Information was collected using structured questionnaires. Chi-squared tests and one-way ANOVA describe the association between computer knowledge, attitudes, and other factors. Semi-structured interviews and focus groups were conducted to gain further insights. A total of 108 providers responded, 63% were from Tanzania and 37% from Ghana. The mean age was 37.6 years, and 79% were female. Only 40% had ever used computers, and 29% had prior computer training. About 80% were computer illiterate or beginners. Educational level, age, and years of work experience were significantly associated with computer knowledge (pworkplace. Given the low levels of computer knowledge among rural health workers in Africa, it is important to provide adequate training and support to ensure the successful uptake of electronic CDSSs in these settings. The positive attitudes to computers found in this study underscore that also rural care providers are ready to use such technology.

  10. Toward executable scientific publications

    NARCIS (Netherlands)

    Strijkers, R.J.; Cushing, R.; Vasyunin, D.; Laat, C. de; Belloum, A.S.Z.; Meijer, R.J.

    2011-01-01

    Reproducibility of experiments is considered as one of the main principles of the scientific method. Recent developments in data and computation intensive science, i.e. e-Science, and state of the art in Cloud computing provide the necessary components to preserve data sets and re-run code and

  11. Computer Profile of School Facilities Energy Consumption.

    Science.gov (United States)

    Oswalt, Felix E.

    This document outlines a computerized management tool designed to enable building managers to identify energy consumption as related to types and uses of school facilities for the purpose of evaluating and managing the operation, maintenance, modification, and planning of new facilities. Specifically, it is expected that the statistics generated…

  12. New nuclear facilities and their analytical applications in China

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; He, X.; Ma, Y.H.; Ding, Y.Y.; Chai, Z.F.

    2014-01-01

    Nuclear analytical techniques are a family of modern analytical methods that are based on nuclear reactions, nuclear effects, nuclear radiations, nuclear spectroscopy, nuclear parameters, and nuclear facilities. Because of their combined characteristics of sensitivity and selectivity, they are widely used in projects ranging from life sciences to deep-space exploration. In this review article, new nuclear facilities and their analytical applications in China are selectively reviewed, covering the following aspects: large scientific facilities, national demands, and key scientific issues with the emphasis on the new achievements. (orig.)

  13. Hazardous Waste Cleanup: Fisher Scientific in Bridgewater, New Jersey

    Science.gov (United States)

    The Fisher Scientific Packaging Facility is an operating facility located on approximately 58 acres in Bridgewater, New Jersey. The site is bounded to the north by Route 202. Most of the frontage on Route 202 is retail/commercial, but there are still small

  14. Future Computer Requirements for Computational Aerodynamics

    Science.gov (United States)

    1978-01-01

    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  15. Surface Water Modeling Using an EPA Computer Code for Tritiated Waste Water Discharge from the heavy Water Facility

    International Nuclear Information System (INIS)

    Chen, K.F.

    1998-06-01

    Tritium releases from the D-Area Heavy Water Facilities to the Savannah River have been analyzed. The U.S. EPA WASP5 computer code was used to simulate surface water transport for tritium releases from the D-Area Drum Wash, Rework, and DW facilities. The WASP5 model was qualified with the 1993 tritium measurements at U.S. Highway 301. At the maximum tritiated waste water concentrations, the calculated tritium concentration in the Savannah River at U.S. Highway 301 due to concurrent releases from D-Area Heavy Water Facilities varies from 5.9 to 18.0 pCi/ml as a function of the operation conditions of these facilities. The calculated concentration becomes the lowest when the batch releases method for the Drum Wash Waste Tanks is adopted

  16. NFC like wireless technology for monitoring purposes in scientific/industrial facilities

    International Nuclear Information System (INIS)

    Badillo, I.; Eguiraun, M.; Jugo, J.

    2012-01-01

    Wireless technologies are becoming more and more used in large industrial and scientific facilities like particle accelerators for facilitating the monitoring and indeed sensing in these kind of large environments. Cabled equipment means little flexibility in placement and is very expensive in both money and effort whenever reorganization or new installation is needed. So, when cabling is not really needed for performance reasons wireless monitoring and control is a good option, due to the speed of implementation. There are several wireless flavors to choose, as Bluetooth, Zigbee, WiFi, etc. depending on the requirements of each specific application. In this work a wireless monitoring system for EPICS (Experimental and Industrial Control System) is presented. The desired control system variables are acquired over the network and published in a mobile device, allowing the operator to check process variables everywhere the signal spreads. In this approach, a Python based server will be continuously getting EPICS Process Variables via Channel Access protocol and sending them through a WiFi standard 802.11 network using ICE middle-ware. ICE is a tool-kit oriented to build distributed applications. Finally, the mobile device will read the data and show it to the operator. The security of the communication can be improved by means of a weak wireless signal, following the same idea as in Near Field Communication (NFC), but for more large distances. With this approach, local monitoring and control applications, as for example a vacuum control system for several pumps, are currently implemented. (authors)

  17. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Mikhail [Michigan State Univ., East Lansing, MI (United States); Mokhov, Nikolai [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Niita, Koji [Research Organization for Information Science and Technology, Ibaraki-ken (Japan)

    2013-09-25

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.

  18. Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility

    Science.gov (United States)

    Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.

    2017-01-01

    The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.

  19. Efficient Machine Learning Approach for Optimizing Scientific Computing Applications on Emerging HPC Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Kamesh [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore, these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address

  20. The Overview of the National Ignition Facility Distributed Computer Control System

    International Nuclear Information System (INIS)

    Lagin, L.J.; Bettenhausen, R.C.; Carey, R.A.; Estes, C.M.; Fisher, J.M.; Krammen, J.E.; Reed, R.K.; VanArsdall, P.J.; Woodruff, J.P.

    2001-01-01

    The Integrated Computer Control System (ICCS) for the National Ignition Facility (NIF) is a layered architecture of 300 front-end processors (FEP) coordinated by supervisor subsystems including automatic beam alignment and wavefront control, laser and target diagnostics, pulse power, and shot control timed to 30 ps. FEP computers incorporate either VxWorks on PowerPC or Solaris on UltraSPARC processors that interface to over 45,000 control points attached to VME-bus or PCI-bus crates respectively. Typical devices are stepping motors, transient digitizers, calorimeters, and photodiodes. The front-end layer is divided into another segment comprised of an additional 14,000 control points for industrial controls including vacuum, argon, synthetic air, and safety interlocks implemented with Allen-Bradley programmable logic controllers (PLCs). The computer network is augmented asynchronous transfer mode (ATM) that delivers video streams from 500 sensor cameras monitoring the 192 laser beams to operator workstations. Software is based on an object-oriented framework using CORBA distribution that incorporates services for archiving, machine configuration, graphical user interface, monitoring, event logging, scripting, alert management, and access control. Software coding using a mixed language environment of Ada95 and Java is one-third complete at over 300 thousand source lines. Control system installation is currently under way for the first 8 beams, with project completion scheduled for 2008

  1. FIRAC: a computer code to predict fire-accident effects in nuclear facilities

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Krause, F.R.; Tang, P.K.; Andrae, R.W.; Martin, R.A.; Gregory, W.S.

    1983-01-01

    FIRAC is a medium-sized computer code designed to predict fire-induced flows, temperatures, and material transport within the ventilating systems and other airflow pathways in nuclear-related facilities. The code is designed to analyze the behavior of interconnected networks of rooms and typical ventilation system components. This code is one in a family of computer codes that is designed to provide improved methods of safety analysis for the nuclear industry. The structure of this code closely follows that of the previously developed TVENT and EVENT codes. Because a lumped-parameter formulation is used, this code is particularly suitable for calculating the effects of fires in the far field (that is, in regions removed from the fire compartment), where the fire may be represented parametrically. However, a fire compartment model to simulate conditions in the enclosure is included. This model provides transport source terms to the ventilation system that can affect its operation and in turn affect the fire

  2. Proceedings of the Scientific Meeting in Nuclear Instrumentation Engineering

    International Nuclear Information System (INIS)

    Achmad Suntoro; Rony Djokorayono; Ferry Sujatno; Utaja

    2010-11-01

    The Proceeding of the Scientific Meeting in Nuclear Instrumentation Engineering held on Nov, 30, 2010 by the Centre for Nuclear Instrumentation Engineering - National Nuclear Energy Agency. The Proceedings of the Scientific Contains 40 papers Consist of Nuclear Instrumentation Engineering for Industry, Environment, and Nuclear Facilities. (PPIKSN)

  3. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1996-01-01

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given

  4. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J.D. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The status of the new Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (ORNL), which is slated to start its scientific program late this year is discussed, as is the new experimental equipment which is being constructed at this facility. Information on the early scientific program also is given.

  5. PSI Scientific report 2009

    International Nuclear Information System (INIS)

    Piwnicki, P.

    2010-04-01

    This annual report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at work done at the institute in the year 2009. In particular, the SwissFEL X-ray Laser facility that will allow novel investigations of femtosecond molecular dynamics in chemical, biochemical and condensed-matter systems and permit coherent diffraction imaging of individual nanostructures is commented on. Potential scientific applications of the SwissFEL are noted. Further, the institute's research focus and its findings are commented on. Synchrotron light is looked at and results obtained using neutron scattering and muon spin resonance are reported on. Work done in the micro and nano-technology, biomolecular research and radiopharmacy areas is also reported on Work performed in the biology, general energy and environmental sciences area is also reported on. The institute's comprehensive research facilities are reviewed and the facilities provided for users from the national and international scientific community, in particular regarding condensed matter, materials science and biology research are noted. In addition to the user facilities at the accelerators, other PSI laboratories are also open to external users, e.g. the Hot Laboratory operated by the Nuclear Energy and Safety Department that allows experiments to be performed on highly radioactive samples. The Technology Transfer Office at PSI is also reported on. This department assists representatives from industry in their search for opportunities and sources of innovation at the PSI. Further, an overview is presented of the people who work at the PSI, how the institute is organised and how the money it receives is distributed and used. Finally, a comprehensive list of publications completes the report

  6. Open Access Centre at the Nature Research Centre: a facility for enhancement of scientific research, education and public outreach in Lithuania

    Science.gov (United States)

    Šerpenskienė, Silvija; Skridlaitė, Gražina

    2014-05-01

    Open Access Centre (OAC) was established in Vilnius, Lithuania in 2013 as a subdivision of the Nature Research Centre (NRC) operating on the principle of open access for both internal and external users. The OAC consists of 15 units, i.e. 15 NRC laboratories or their branches. Forty four sets of research equipment were purchased. The OAC cooperates with Lithuanian science and studies institutions, business sector and other governmental and public institutions. Investigations can be carried in the Geosciences, Biotaxonomy, Ecology and Molecular Research, and Ecotoxicology fields. Environmental radioactivity, radioecology, nuclear geophysics, microscopic and chemical composition of natural compounds (minerals, rocks etc.), paleomagnetic, magnetic and environmental investigations, as well as ground and water contamination by oil products and other organic environment polluting compounds, identification of fossils, rocks and minerals can be studied in the Georesearch field. Ecosystems and identification of plants, animals and microorganisms are main subjects of the Biotaxonomy, Ecology and Molecular Research field. The Ecotoxicologal Research deals with toxic and genotoxic effects of toxic substances and other sources of pollution on macro- and microorganisms and cell cultures. Open access is guaranteed by: (1) providing scientific research and experimental development services; (2) implementing joint business and science projects; (3) using facilities for the training of specialists of the highest qualifications; (4) providing properly qualified and technically trained users with opportunities to carry out their scientific research and/or experiments in the OAC laboratories by themselves. Services provided in the Open Access Centre can be received by both internal and external users: persons undertaking innovative economic activities, students of other educational institutions, interns, external teams of researchers engaged in scientific research activities, teachers

  7. [Text mining, a method for computer-assisted analysis of scientific texts, demonstrated by an analysis of author networks].

    Science.gov (United States)

    Hahn, P; Dullweber, F; Unglaub, F; Spies, C K

    2014-06-01

    Searching for relevant publications is becoming more difficult with the increasing number of scientific articles. Text mining as a specific form of computer-based data analysis may be helpful in this context. Highlighting relations between authors and finding relevant publications concerning a specific subject using text analysis programs are illustrated graphically by 2 performed examples. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Computer software design description for the Treated Effluent Disposal Facility (TEDF), Project L-045H, Operator Training Station (OTS)

    International Nuclear Information System (INIS)

    Carter, R.L. Jr.

    1994-01-01

    The Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) is a computer-based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS)

  9. CSNI Integral Test Facility Matrices for Validation of Best-Estimate Thermal-Hydraulic Computer Codes

    International Nuclear Information System (INIS)

    Glaeser, H.

    2008-01-01

    Internationally agreed Integral Test Facility (ITF) matrices for validation of realistic thermal hydraulic system computer codes were established. ITF development is mainly for Pressurised Water Reactors (PWRs) and Boiling Water Reactors (BWRs). A separate activity was for Russian Pressurised Water-cooled and Water-moderated Energy Reactors (WWER). Firstly, the main physical phenomena that occur during considered accidents are identified, test types are specified, and test facilities suitable for reproducing these aspects are selected. Secondly, a list of selected experiments carried out in these facilities has been set down. The criteria to achieve the objectives are outlined. In this paper some specific examples from the ITF matrices will also be provided. The matrices will be a guide for code validation, will be a basis for comparisons of code predictions performed with different system codes, and will contribute to the quantification of the uncertainty range of code model predictions. In addition to this objective, the construction of such a matrix is an attempt to record information which has been generated around the world over the last years, so that it is more accessible to present and future workers in that field than would otherwise be the case.

  10. Large Scale Computing and Storage Requirements for High Energy Physics

    International Nuclear Information System (INIS)

    Gerber, Richard A.; Wasserman, Harvey

    2010-01-01

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes

  11. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    Science.gov (United States)

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba

    2015-12-01

    The scientific discovery process can be advanced by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally, it is important for scientists to be able to share their workflows with collaborators. We have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC); the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In this paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.

  12. Computer facilities for ISABELLE data handling

    International Nuclear Information System (INIS)

    Kramer, M.A.; Love, W.A.; Miller, R.J.; Zeller, M.

    1977-01-01

    The analysis of data produced by ISABELLE experiments will need a large system of computers. An official group of prospective users and operators of that system should begin planning now. Included in the array will be a substantial computer system at each ISABELLE intersection in use. These systems must include enough computer power to keep experimenters aware of the health of the experiment. This will require at least one very fast sophisticated processor in the system, the size depending on the experiment. Other features of the intersection systems must be a good, high speed graphic display, ability to record data on magnetic tape at 500 to 1000 KB, and a high speed link to a central computer. The operating system software must support multiple interactive users. A substantially larger capacity computer system, shared by the six intersection region experiments, must be available with good turnaround for experimenters while ISABELLE is running. A computer support group will be required to maintain the computer system and to provide and maintain software common to all experiments. Special superfast computing hardware or special function processors constructed with microprocessor circuitry may be necessary both in the data gathering and data processing work. Thus both the local and central processors should be chosen with the possibility of interfacing such devices in mind

  13. Computing at the leading edge: Research in the energy sciences

    Energy Technology Data Exchange (ETDEWEB)

    Mirin, A.A.; Van Dyke, P.T. [eds.

    1994-02-01

    The purpose of this publication is to highlight selected scientific challenges that have been undertaken by the DOE Energy Research community. The high quality of the research reflected in these contributions underscores the growing importance both to the Grand Challenge scientific efforts sponsored by DOE and of the related supporting technologies that the National Energy Research Supercomputer Center (NERSC) and other facilities are able to provide. The continued improvement of the computing resources available to DOE scientists is prerequisite to ensuring their future progress in solving the Grand Challenges. Titles of articles included in this publication include: the numerical tokamak project; static and animated molecular views of a tumorigenic chemical bound to DNA; toward a high-performance climate systems model; modeling molecular processes in the environment; lattice Boltzmann models for flow in porous media; parallel algorithms for modeling superconductors; parallel computing at the Superconducting Super Collider Laboratory; the advanced combustion modeling environment; adaptive methodologies for computational fluid dynamics; lattice simulations of quantum chromodynamics; simulating high-intensity charged-particle beams for the design of high-power accelerators; electronic structure and phase stability of random alloys.

  14. Computing at the leading edge: Research in the energy sciences

    International Nuclear Information System (INIS)

    Mirin, A.A.; Van Dyke, P.T.

    1994-01-01

    The purpose of this publication is to highlight selected scientific challenges that have been undertaken by the DOE Energy Research community. The high quality of the research reflected in these contributions underscores the growing importance both to the Grand Challenge scientific efforts sponsored by DOE and of the related supporting technologies that the National Energy Research Supercomputer Center (NERSC) and other facilities are able to provide. The continued improvement of the computing resources available to DOE scientists is prerequisite to ensuring their future progress in solving the Grand Challenges. Titles of articles included in this publication include: the numerical tokamak project; static and animated molecular views of a tumorigenic chemical bound to DNA; toward a high-performance climate systems model; modeling molecular processes in the environment; lattice Boltzmann models for flow in porous media; parallel algorithms for modeling superconductors; parallel computing at the Superconducting Super Collider Laboratory; the advanced combustion modeling environment; adaptive methodologies for computational fluid dynamics; lattice simulations of quantum chromodynamics; simulating high-intensity charged-particle beams for the design of high-power accelerators; electronic structure and phase stability of random alloys

  15. Monte Carlo strategies in scientific computing

    CERN Document Server

    Liu, Jun S

    2008-01-01

    This paperback edition is a reprint of the 2001 Springer edition This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians It can also be used as the textbook for a graduate-level course on Monte Carlo methods Many problems discussed in the alter chapters can be potential thesis topics for masters’ or PhD students in statistics or computer science departments Jun Liu is Professor of Statistics at Harvard University, with a courtesy Professor appointment at Harvard Biostatistics Department Professor Liu was the recipient of the 2002 COPSS Presidents' Award, the most prestigious one for sta...

  16. Annual Report of Radioactive Waste Facilities Operation in 2015

    Institute of Scientific and Technical Information of China (English)

    DU; Hong-ming; GAO; Zhi-gang; DIAO; Lei; SHEN; Zheng; LI; Wen-ge

    2015-01-01

    301of the Department of Radiochemistry,is in charge of the management of radioactive waste and the safety of the relative facilities to meet the request of the scientific research production.There are 16radioactive waste facilities,including9facilities which are closed and monitored

  17. The next scientific revolution.

    Science.gov (United States)

    Hey, Tony

    2010-11-01

    For decades, computer scientists have tried to teach computers to think like human experts. Until recently, most of those efforts have failed to come close to generating the creative insights and solutions that seem to come naturally to the best researchers, doctors, and engineers. But now, Tony Hey, a VP of Microsoft Research, says we're witnessing the dawn of a new generation of powerful computer tools that can "mash up" vast quantities of data from many sources, analyze them, and help produce revolutionary scientific discoveries. Hey and his colleagues call this new method of scientific exploration "machine learning." At Microsoft, a team has already used it to innovate a method of predicting with impressive accuracy whether a patient with congestive heart failure who is released from the hospital will be readmitted within 30 days. It was developed by directing a computer program to pore through hundreds of thousands of data points on 300,000 patients and "learn" the profiles of patients most likely to be rehospitalized. The economic impact of this prediction tool could be huge: If a hospital understands the likelihood that a patient will "bounce back," it can design programs to keep him stable and save thousands of dollars in health care costs. Similar efforts to uncover important correlations that could lead to scientific breakthroughs are under way in oceanography, conservation, and AIDS research. And in business, deep data exploration has the potential to unearth critical insights about customers, supply chains, advertising effectiveness, and more.

  18. Physics at the proposed National Underground Science Facility

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1983-01-01

    The scientific, technical, and financial reasons for building a National Underground Science Facility are discussed. After reviewing examples of other underground facilities, we focus on the Los Alamos proposal and the national for its choice of site

  19. Scalability of Parallel Scientific Applications on the Cloud

    Directory of Open Access Journals (Sweden)

    Satish Narayana Srirama

    2011-01-01

    Full Text Available Cloud computing, with its promise of virtually infinite resources, seems to suit well in solving resource greedy scientific computing problems. To study the effects of moving parallel scientific applications onto the cloud, we deployed several benchmark applications like matrix–vector operations and NAS parallel benchmarks, and DOUG (Domain decomposition On Unstructured Grids on the cloud. DOUG is an open source software package for parallel iterative solution of very large sparse systems of linear equations. The detailed analysis of DOUG on the cloud showed that parallel applications benefit a lot and scale reasonable on the cloud. We could also observe the limitations of the cloud and its comparison with cluster in terms of performance. However, for efficiently running the scientific applications on the cloud infrastructure, the applications must be reduced to frameworks that can successfully exploit the cloud resources, like the MapReduce framework. Several iterative and embarrassingly parallel algorithms are reduced to the MapReduce model and their performance is measured and analyzed. The analysis showed that Hadoop MapReduce has significant problems with iterative methods, while it suits well for embarrassingly parallel algorithms. Scientific computing often uses iterative methods to solve large problems. Thus, for scientific computing on the cloud, this paper raises the necessity for better frameworks or optimizations for MapReduce.

  20. Toward fostering the scientific and technological literacy establishment of the 'Central Scientific and Technological Museum-Institute' and nuclear development

    International Nuclear Information System (INIS)

    Murata, Takashi

    1999-01-01

    The public in general does not necessarily have enough knowledge for the reasonable decision making in the application of scientific and technological development even in the ear of the Information Society. However strongly the necessity of the consensus in the scientific policy like nuclear R and D is required, it is impossible to attain the goal, unless the scientific literacy of the general public is. In order to improve it the role of the scientific museum as a social educational facility is very important. In this respect, there still remains vast room to improve in the Japanese museum system and its activities. The concept of the 'Central Scientific and Technological Museum-Institute', which also operates very small-sized reactor for the educational use, is developed in this paper. (author)

  1. Monitoring of IaaS and scientific applications on the Cloud using the Elasticsearch ecosystem

    Science.gov (United States)

    Bagnasco, S.; Berzano, D.; Guarise, A.; Lusso, S.; Masera, M.; Vallero, S.

    2015-05-01

    The private Cloud at the Torino INFN computing centre offers IaaS services to different scientific computing applications. The infrastructure is managed with the OpenNebula cloud controller. The main stakeholders of the facility are a grid Tier-2 site for the ALICE collaboration at LHC, an interactive analysis facility for the same experiment and a grid Tier-2 site for the BES-III collaboration, plus an increasing number of other small tenants. Besides keeping track of the usage, the automation of dynamic allocation of resources to tenants requires detailed monitoring and accounting of the resource usage. As a first investigation towards this, we set up a monitoring system to inspect the site activities both in terms of IaaS and applications running on the hosted virtual instances. For this purpose we used the Elasticsearch, Logstash and Kibana stack. In the current implementation, the heterogeneous accounting information is fed to different MySQL databases and sent to Elasticsearch via a custom Logstash plugin. For the IaaS metering, we developed sensors for the OpenNebula API. The IaaS level information gathered through the API is sent to the MySQL database through an ad-hoc developed RESTful web service, which is also used for other accounting purposes. Concerning the application level, we used the Root plugin TProofMonSenderSQL to collect accounting data from the interactive analysis facility. The BES-III virtual instances used to be monitored with Zabbix, as a proof of concept we also retrieve the information contained in the Zabbix database. Each of these three cases is indexed separately in Elasticsearch. We are now starting to consider dismissing the intermediate level provided by the SQL database and evaluating a NoSQL option as a unique central database for all the monitoring information. We setup a set of Kibana dashboards with pre-defined queries in order to monitor the relevant information in each case. In this way we have achieved a uniform monitoring

  2. Reduced-order modeling (ROM) for simulation and optimization powerful algorithms as key enablers for scientific computing

    CERN Document Server

    Milde, Anja; Volkwein, Stefan

    2018-01-01

    This edited monograph collects research contributions and addresses the advancement of efficient numerical procedures in the area of model order reduction (MOR) for simulation, optimization and control. The topical scope includes, but is not limited to, new out-of-the-box algorithmic solutions for scientific computing, e.g. reduced basis methods for industrial problems and MOR approaches for electrochemical processes. The target audience comprises research experts and practitioners in the field of simulation, optimization and control, but the book may also be beneficial for graduate students alike. .

  3. Business and scientific workflows a web service-oriented approach

    CERN Document Server

    Tan, Wei

    2013-01-01

    Focuses on how to use web service computing and service-based workflow technologies to develop timely, effective workflows for both business and scientific fields Utilizing web computing and Service-Oriented Architecture (SOA), Business and Scientific Workflows: A Web Service-Oriented Approach focuses on how to design, analyze, and deploy web service-based workflows for both business and scientific applications in many areas of healthcare and biomedicine. It also discusses and presents the recent research and development results. This informative reference features app

  4. On a new method to compute photon skyshine doses around radiotherapy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, R.; Facure, A. [Comissao Nacional de Eenrgia Nuclear, Rio de Janeiro (Brazil); Xavier, A. [PEN/Coppe -UFRJ, Rio de Janeiro (Brazil)

    2006-07-01

    Full text of publication follows: Nowadays, in a great number of situations constructions are raised around radiotherapy facilities. In cases where the constructions would not be in the primary x-ray beam, 'skyshine' radiation is normally accounted for. The skyshine method is commonly used to to calculate the dose contribution from scattered radiation in such circumstances, when the roof shielding is projected considering there will be no occupancy upstairs. In these cases, there will be no need to have the usual 1,5-2,0 m thick ceiling, and the construction costs can be considerably reduced. The existing expression to compute these doses do not accomplish to explain mathematically the existence of a shadow area just around the outer room walls, and its growth, as we get away from these walls. In this paper we propose a new method to compute photon skyshine doses, using geometrical considerations to find the maximum dose point. An empirical equation is derived, and its validity is tested using M.C.N.P. 5 Monte Carlo calculation to simulate radiotherapy rooms configurations. (authors)

  5. Collaborative e-Science Experiments and Scientific Workflows

    NARCIS (Netherlands)

    Belloum, A.; Inda, M.A.; Vasunin, D.; Korkhov, V.; Zhao, Z.; Rauwerda, H.; Breit, T.M.; Bubak, M.; Hertzberger, L.O.

    2011-01-01

    Recent advances in Internet and grid technologies have greatly enhanced scientific experiments' life cycle. In addition to compute- and data-intensive tasks, large-scale collaborations involving geographically distributed scientists and e-infrastructure are now possible. Scientific workflows, which

  6. Operating procedures: Fusion Experiments Analysis Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, R.A.; Carey, R.W.

    1984-03-20

    The Fusion Experiments Analysis Facility (FEAF) is a computer facility based on a DEC VAX 11/780 computer. It became operational in late 1982. At that time two manuals were written to aid users and staff in their interactions with the facility. This manual is designed as a reference to assist the FEAF staff in carrying out their responsibilities. It is meant to supplement equipment and software manuals supplied by the vendors. Also this manual provides the FEAF staff with a set of consistent, written guidelines for the daily operation of the facility.

  7. Operating procedures: Fusion Experiments Analysis Facility

    International Nuclear Information System (INIS)

    Lerche, R.A.; Carey, R.W.

    1984-01-01

    The Fusion Experiments Analysis Facility (FEAF) is a computer facility based on a DEC VAX 11/780 computer. It became operational in late 1982. At that time two manuals were written to aid users and staff in their interactions with the facility. This manual is designed as a reference to assist the FEAF staff in carrying out their responsibilities. It is meant to supplement equipment and software manuals supplied by the vendors. Also this manual provides the FEAF staff with a set of consistent, written guidelines for the daily operation of the facility

  8. Computation: A New Open Access Journal of Computational Chemistry, Computational Biology and Computational Engineering

    OpenAIRE

    Karlheinz Schwarz; Rainer Breitling; Christian Allen

    2013-01-01

    Computation (ISSN 2079-3197; http://www.mdpi.com/journal/computation) is an international scientific open access journal focusing on fundamental work in the field of computational science and engineering. Computational science has become essential in many research areas by contributing to solving complex problems in fundamental science all the way to engineering. The very broad range of application domains suggests structuring this journal into three sections, which are briefly characterized ...

  9. Annual report to the Laser Facility Committee 1984

    International Nuclear Information System (INIS)

    1984-01-01

    The report describes the work carried out at, or in association with, the Central Laser Facility (CLF), during the year ending March 1984. The CLF programme is divided into three main sections. The first, the glass laser scientific programme, is concerned with applications of the high power Nd glass laser. The second, the ultra violet radiation facility scientific programme, involves the excimer pumped frequency tunable lasers. The last, high power KrF laser development, describes Research and development work on this laser. (U.K.)

  10. Recommended practice for the design of a computer driven Alarm Display Facility for central control rooms of nuclear power generating stations

    International Nuclear Information System (INIS)

    Ben-Yaacov, G.

    1984-01-01

    This paper's objective is to explain the process by which design can prevent human errors in nuclear plant operation. Human factor engineering principles, data, and methods used in the design of computer driven alarm display facilities are discussed. A ''generic'', advanced Alarm Display Facility is described. It considers operator capabilities and limitations in decision-making processes, response dynamics, and human memory limitations. Highlighted are considerations of human factor criteria in the designing and layout of alarm displays. Alarm data sources are described, and their use within the Alarm Display Facility are illustrated

  11. Synchrotron Imaging Computations on the Grid without the Computing Element

    International Nuclear Information System (INIS)

    Curri, A; Pugliese, R; Borghes, R; Kourousias, G

    2011-01-01

    Besides the heavy use of the Grid in the Synchrotron Radiation Facility (SRF) Elettra, additional special requirements from the beamlines had to be satisfied through a novel solution that we present in this work. In the traditional Grid Computing paradigm the computations are performed on the Worker Nodes of the grid element known as the Computing Element. A Grid middleware extension that our team has been working on, is that of the Instrument Element. In general it is used to Grid-enable instrumentation; and it can be seen as a neighbouring concept to that of the traditional Control Systems. As a further extension we demonstrate the Instrument Element as the steering mechanism for a series of computations. In our deployment it interfaces a Control System that manages a series of computational demanding Scientific Imaging tasks in an online manner. The instrument control in Elettra is done through a suitable Distributed Control System, a common approach in the SRF community. The applications that we present are for a beamline working in medical imaging. The solution resulted to a substantial improvement of a Computed Tomography workflow. The near-real-time requirements could not have been easily satisfied from our Grid's middleware (gLite) due to the various latencies often occurred during the job submission and queuing phases. Moreover the required deployment of a set of TANGO devices could not have been done in a standard gLite WN. Besides the avoidance of certain core Grid components, the Grid Security infrastructure has been utilised in the final solution.

  12. Argonne's Laboratory Computing Resource Center 2009 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R. B. (CLS-CI)

    2011-05-13

    Now in its seventh year of operation, the Laboratory Computing Resource Center (LCRC) continues to be an integral component of science and engineering research at Argonne, supporting a diverse portfolio of projects for the U.S. Department of Energy and other sponsors. The LCRC's ongoing mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting high-performance computing application use and development. This report describes scientific activities carried out with LCRC resources in 2009 and the broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. The LCRC Allocations Committee makes decisions on individual project allocations for Jazz. Committee members are appointed by the Associate Laboratory Directors and span a range of computational disciplines. The 350-node LCRC cluster, Jazz, began production service in April 2003 and has been a research work horse ever since. Hosting a wealth of software tools and applications and achieving high availability year after year, researchers can count on Jazz to achieve project milestones and enable breakthroughs. Over the years, many projects have achieved results that would have been unobtainable without such a computing resource. In fiscal year 2009, there were 49 active projects representing a wide cross-section of Laboratory research and almost all research divisions.

  13. List of scientific publications of the Kernforschungszentrum Karlsruhe in 1975

    International Nuclear Information System (INIS)

    1976-04-01

    The scientific and technical-scientific publications of the Gesellschaft fuer Kernforschung mbH Karlsruhe are published in the form of books, as primary contributions to scientific or technical journals, as theses as such for habilitation, or submitted for a diploma, as lectures at meetings, as patents, as 'KFK' reports, or as external reports. This report KFK 2325 contains the titles of documents published in 1975. Lectures have been included if the written text is available in the central library. In the case of patents, only first grants of a patent, patent specifications, or patents for public inspection have been considered. The list of publications is arranged according to institutes. Under projects, only the project reports and the publications by members of the project staff are listed. Registered, too, are the publications from the R+D activities within the projects entitled Process Control by Data Processing Systems (PDU) and Computer Aided Design and Development (CAD) which were published in the Nuclear Research Centre; the Gesellschaft fuer Kernforschung carries out these projects in cooperation with industrial enterprises and institutes. In addition to the Gesellschaft fuer Kernforschung's publications, those of the Institut fuer Strahlentechnologie of the Bundesanstalt fuer Ernaehrung have been included. The last chapter contains publications on experiments in the irradiation facilities of the Gesellschaft fuer Kernforschung, carried out by scientists, institutes, etc. not belonging to the Nuclear Research Centre. (orig./HK) [de

  14. COMPUTATIONAL THINKING

    Directory of Open Access Journals (Sweden)

    Evgeniy K. Khenner

    2016-01-01

    Full Text Available Abstract. The aim of the research is to draw attention of the educational community to the phenomenon of computational thinking which actively discussed in the last decade in the foreign scientific and educational literature, to substantiate of its importance, practical utility and the right on affirmation in Russian education.Methods. The research is based on the analysis of foreign studies of the phenomenon of computational thinking and the ways of its formation in the process of education; on comparing the notion of «computational thinking» with related concepts used in the Russian scientific and pedagogical literature.Results. The concept «computational thinking» is analyzed from the point of view of intuitive understanding and scientific and applied aspects. It is shown as computational thinking has evolved in the process of development of computers hardware and software. The practice-oriented interpretation of computational thinking which dominant among educators is described along with some ways of its formation. It is shown that computational thinking is a metasubject result of general education as well as its tool. From the point of view of the author, purposeful development of computational thinking should be one of the tasks of the Russian education.Scientific novelty. The author gives a theoretical justification of the role of computational thinking schemes as metasubject results of learning. The dynamics of the development of this concept is described. This process is connected with the evolution of computer and information technologies as well as increase of number of the tasks for effective solutions of which computational thinking is required. Author substantiated the affirmation that including «computational thinking » in the set of pedagogical concepts which are used in the national education system fills an existing gap.Practical significance. New metasubject result of education associated with

  15. Cloud-based opportunities in scientific computing: insights from processing Suomi National Polar-Orbiting Partnership (S-NPP) Direct Broadcast data

    Science.gov (United States)

    Evans, J. D.; Hao, W.; Chettri, S.

    2013-12-01

    The cloud is proving to be a uniquely promising platform for scientific computing. Our experience with processing satellite data using Amazon Web Services highlights several opportunities for enhanced performance, flexibility, and cost effectiveness in the cloud relative to traditional computing -- for example: - Direct readout from a polar-orbiting satellite such as the Suomi National Polar-Orbiting Partnership (S-NPP) requires bursts of processing a few times a day, separated by quiet periods when the satellite is out of receiving range. In the cloud, by starting and stopping virtual machines in minutes, we can marshal significant computing resources quickly when needed, but not pay for them when not needed. To take advantage of this capability, we are automating a data-driven approach to the management of cloud computing resources, in which new data availability triggers the creation of new virtual machines (of variable size and processing power) which last only until the processing workflow is complete. - 'Spot instances' are virtual machines that run as long as one's asking price is higher than the provider's variable spot price. Spot instances can greatly reduce the cost of computing -- for software systems that are engineered to withstand unpredictable interruptions in service (as occurs when a spot price exceeds the asking price). We are implementing an approach to workflow management that allows data processing workflows to resume with minimal delays after temporary spot price spikes. This will allow systems to take full advantage of variably-priced 'utility computing.' - Thanks to virtual machine images, we can easily launch multiple, identical machines differentiated only by 'user data' containing individualized instructions (e.g., to fetch particular datasets or to perform certain workflows or algorithms) This is particularly useful when (as is the case with S-NPP data) we need to launch many very similar machines to process an unpredictable number of

  16. Computer surety: computer system inspection guidance. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    This document discusses computer surety in NRC-licensed nuclear facilities from the perspective of physical protection inspectors. It gives background information and a glossary of computer terms, along with threats and computer vulnerabilities, methods used to harden computer elements, and computer audit controls.

  17. National nuclear scientific program

    International Nuclear Information System (INIS)

    Plecas, I.; Matausek, M.V.; Neskovic, N.

    2001-01-01

    National scientific program of the Vinca Institute Nuclear Reactors And Radioactive Waste comprises research and development in the following fields: application of energy of nuclear fission, application of neutron beams, analyses of nuclear safety and radiation protection. In the first phase preparatory activities, conceptual design and design of certain processes and facilities should be accomplished. In the second phase realization of the projects is expected. (author)

  18. II - Template Metaprogramming for Massively Parallel Scientific Computing - Vectorization with Expression Templates

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Large scale scientific computing raises questions on different levels ranging from the fomulation of the problems to the choice of the best algorithms and their implementation for a specific platform. There are similarities in these different topics that can be exploited by modern-style C++ template metaprogramming techniques to produce readable, maintainable and generic code. Traditional low-level code tend to be fast but platform-dependent, and it obfuscates the meaning of the algorithm. On the other hand, object-oriented approach is nice to read, but may come with an inherent performance penalty. These lectures aim to present he basics of the Expression Template (ET) idiom which allows us to keep the object-oriented approach without sacrificing performance. We will in particular show to to enhance ET to include SIMD vectorization. We will then introduce techniques for abstracting iteration, and introduce thread-level parallelism for use in heavy data-centric loads. We will show to to apply these methods i...

  19. Multithreaded transactions in scientific computing. The Growth06_v2 program

    Science.gov (United States)

    Daniluk, Andrzej

    2009-07-01

    efficient than the previous ones [3]. Summary of revisions:The design pattern (See Fig. 2 of Ref. [3]) has been modified according to the scheme shown on Fig. 1. A graphical user interface (GUI) for the program has been reconstructed. Fig. 2 presents a hybrid diagram of a GUI that shows how onscreen objects connect to use cases. The program has been compiled with English/USA regional and language options. Note: The figures mentioned above are contained in the program distribution file. Unusual features: The program is distributed in the form of source project GROWTH06_v2.dpr with associated files, and should be compiled using Borland Delphi compilers versions 6 or latter (including Borland Developer Studio 2006 and Code Gear compilers for Delphi). Additional comments: Two figures are included in the program distribution file. These are captioned Static classes model for Transaction design pattern. A model of a window that shows how onscreen objects connect to use cases. Running time: The typical running time is machine and user-parameters dependent. References: [1] A. Daniluk, Comput. Phys. Comm. 170 (2005) 265. [2] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in Pascal: The Art of Scientific Computing, first ed., Cambridge University Press, 1989. [3] M. Brzuszek, A. Daniluk, Comput. Phys. Comm. 175 (2006) 678.

  20. Final Scientific Report: DE-SC0008580

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, Gerald T. [Univ. of Washington, Seattle, WA (United States)

    2017-03-16

    We report scientific, technical, and organizational accomplishments under DE-SC0008580. This includes 10 publications, 5 patent or provisional patent applications, beamtime with important results at both LCLS and APS, and new progress in understanding target design for x-ray heating experiments at x-ray heating facilities.

  1. 78 FR 56871 - Advanced Scientific Computing Advisory Committee

    Science.gov (United States)

    2013-09-16

    ... Germantown Update on Exascale Update from Exascale technical approaches subcommittee Facilities update Report from Applied Math Committee of Visitors Exascale technical talks Public Comment (10-minute rule) Public...

  2. Computer Security at Nuclear Facilities. Reference Manual (Arabic Edition)

    International Nuclear Information System (INIS)

    2011-01-01

    category of the IAEA Nuclear Security Series, and deals with computer security at nuclear facilities. It is based on national experience and practices as well as publications in the fields of computer security and nuclear security. The guidance is provided for consideration by States, competent authorities and operators. The preparation of this publication in the IAEA Nuclear Security Series has been made possible by the contributions of a large number of experts from Member States. An extensive consultation process with all Member States included consultants meetings and open-ended technical meetings. The draft was then circulated to all Member States for 120 days to solicit further comments and suggestions. The comments received from Member States were reviewed and considered in the final version of the publication.

  3. Computer Security at Nuclear Facilities. Reference Manual (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    category of the IAEA Nuclear Security Series, and deals with computer security at nuclear facilities. It is based on national experience and practices as well as publications in the fields of computer security and nuclear security. The guidance is provided for consideration by States, competent authorities and operators. The preparation of this publication in the IAEA Nuclear Security Series has been made possible by the contributions of a large number of experts from Member States. An extensive consultation process with all Member States included consultants meetings and open-ended technical meetings. The draft was then circulated to all Member States for 120 days to solicit further comments and suggestions. The comments received from Member States were reviewed and considered in the final version of the publication.

  4. Computer Security at Nuclear Facilities. Reference Manual (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    category of the IAEA Nuclear Security Series, and deals with computer security at nuclear facilities. It is based on national experience and practices as well as publications in the fields of computer security and nuclear security. The guidance is provided for consideration by States, competent authorities and operators. The preparation of this publication in the IAEA Nuclear Security Series has been made possible by the contributions of a large number of experts from Member States. An extensive consultation process with all Member States included consultants meetings and open-ended technical meetings. The draft was then circulated to all Member States for 120 days to solicit further comments and suggestions. The comments received from Member States were reviewed and considered in the final version of the publication.

  5. Neutron beam facilities at the replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    1999-01-01

    Full text: On September 3rd 1997 the Australian Federal Government announced their decision to replace the HIFAR research reactor by 2005. The proposed reactor will be a multipurpose reactor with improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The neutron beam facilities are intended to cater for Australian scientific needs well into the 21st century. In the first stage of planning the neutron Beam Facilities at the replacement reactor, a Consultative Group was formed (BFCG) to determine the scientific capabilities of the new facility. Members of the group were drawn from academia, industry and government research laboratories. The BFCG submitted their report in April 1998, outlining the scientific priorities to be addressed. Cold and hot neutron sources are to be included, and cold and thermal neutron guides will be used to position most of the instruments in a neutron guide hall outside the reactor confinement building. In 2005 it is planned to have eight instruments installed with a further three to be developed by 2010, and seven spare instrument positions for development of new instruments over the life of the reactor. A beam facilities technical group (BFTG) was then formed to prepare the engineering specifications for the tendering process. The group consisted of some members of the BFCG, several scientists and engineers from ANSTO, and scientists from leading neutron scattering centres in Europe, USA and Japan. The BFTG looked in detail at the key components of the facility such as the thermal, cold and hot neutron sources, neutron collimators, neutron beam guides and overall requirements for the neutron guide hall. The report of the BFTG, completed in August 1998, was incorporated into the draft specifications for the reactor project, which were distributed to potential reactor vendors. An assessment of the first stage of reactor vendor submissions was completed in

  6. CRYSNET manual. Informal report. [Hardware and software of crystallographic computing network

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1976-07-01

    This manual describes the hardware and software which together make up the crystallographic computing network (CRYSNET). The manual is intended as a users' guide and also provides general information for persons without any experience with the system. CRYSNET is a network of intelligent remote graphics terminals that are used to communicate with the CDC Cyber 70/76 computing system at the Brookhaven National Laboratory (BNL) Central Scientific Computing Facility. Terminals are in active use by four research groups in the field of crystallography. A protein data bank has been established at BNL to store in machine-readable form atomic coordinates and other crystallographic data for macromolecules. The bank currently includes data for more than 20 proteins. This structural information can be accessed at BNL directly by the CRYSNET graphics terminals. More than two years of experience has been accumulated with CRYSNET. During this period, it has been demonstrated that the terminals, which provide access to a large, fast third-generation computer, plus stand-alone interactive graphics capability, are useful for computations in crystallography, and in a variety of other applications as well. The terminal hardware, the actual operations of the terminals, and the operations of the BNL Central Facility are described in some detail, and documentation of the terminal and central-site software is given. (RWR)

  7. Meson facility. Powerful new research tool

    International Nuclear Information System (INIS)

    Lobashev, V.M.; Tavkhelidze, A.N.

    A meson facility is being built at the Institute of Nuclear Research, USSR Academy of Sciences, in Troitsk, where the Scientific Center, USSR Academy of Sciences is located. The facility will include a linear accelerator for protons and negative hydrogen ions with 600 MeV energy and 0.5-1 mA beam current. Some fundamental studies that can be studied at a meson facility are described in the areas of elementary particles, neutron physics, solid state physics, and applied research. The characteristics of the linear accelerator are given and the meson facility's experimental complex is described

  8. Computing, Environment and Life Sciences | Argonne National Laboratory

    Science.gov (United States)

    Computing, Environment and Life Sciences Research Divisions BIOBiosciences CPSComputational Science DSLData Argonne Leadership Computing Facility Biosciences Division Environmental Science Division Mathematics and Computer Science Division Facilities and Institutes Argonne Leadership Computing Facility News Events About

  9. Scientific visualization uncertainty, multifield, biomedical, and scalable visualization

    CERN Document Server

    Chen, Min; Johnson, Christopher; Kaufman, Arie; Hagen, Hans

    2014-01-01

    Based on the seminar that took place in Dagstuhl, Germany in June 2011, this contributed volume studies the four important topics within the scientific visualization field: uncertainty visualization, multifield visualization, biomedical visualization and scalable visualization. • Uncertainty visualization deals with uncertain data from simulations or sampled data, uncertainty due to the mathematical processes operating on the data, and uncertainty in the visual representation, • Multifield visualization addresses the need to depict multiple data at individual locations and the combination of multiple datasets, • Biomedical is a vast field with select subtopics addressed from scanning methodologies to structural applications to biological applications, • Scalability in scientific visualization is critical as data grows and computational devices range from hand-held mobile devices to exascale computational platforms. Scientific Visualization will be useful to practitioners of scientific visualization, ...

  10. Neutron research and facility development at the Oak Ridge Electron Linear Accelerator 1970 to 1995

    International Nuclear Information System (INIS)

    Peelle, R.W.; Harvey, J.A.; Maienschein, F.C.; Weston, L.W.; Olsen, D.K.; Larson, D.C.; Macklin, R.L.

    1982-07-01

    This report reviews the accomplishments of the first decade of operation of the Oak Ridge Electron Linear Accelerator (ORELA) and discusses the plans for the facility in the coming decade. Motivations for scientific and applied research during the next decade are included. In addition, ORELA is compared with competing facilities, and prospects for ORELA's improvement and even replacement are reported. Development efforts for the next few years are outlined that are consistent with the anticipated research goals. Recommendations for hardware development include improving the electron injection system to give much larger short-pulse currents on a reliable basis, constructing an Electron Beam Injector Laboratory to help make this improvement possible, continuing a study of possibly replacing the electron accelerator with a proton machine, and replacing or upgrading the facility's data-acquistion and immediate-analysis computer systems. Increased operating time and more involvement of nuclear theorists are recommended, and an effective staff size for optimum use of this unique facility is discussed. A bibliography of all ORELA-related publications is included

  11. Enhanced computational infrastructure for data analysis at the DIII-D National Fusion Facility

    International Nuclear Information System (INIS)

    Schissel, D.P.; Peng, Q.; Schachter, J.; Terpstra, T.B.; Casper, T.A.; Freeman, J.; Jong, R.; Keith, K.M.; McHarg, B.B.; Meyer, W.H.; Parker, C.T.

    2000-01-01

    Recently a number of enhancements to the computer hardware infrastructure have been implemented at the DIII-D National Fusion Facility. Utilizing these improvements to the hardware infrastructure, software enhancements are focusing on streamlined analysis, automation, and graphical user interface (GUI) systems to enlarge the user base. The adoption of the load balancing software package LSF Suite by Platform Computing has dramatically increased the availability of CPU cycles and the efficiency of their use. Streamlined analysis has been aided by the adoption of the MDSplus system to provide a unified interface to analyzed DIII-D data. The majority of MDSplus data is made available in between pulses giving the researcher critical information before setting up the next pulse. Work on data viewing and analysis tools focuses on efficient GUI design with object-oriented programming (OOP) for maximum code flexibility. Work to enhance the computational infrastructure at DIII-D has included a significant effort to aid the remote collaborator since the DIII-D National Team consists of scientists from nine national laboratories, 19 foreign laboratories, 16 universities, and five industrial partnerships. As a result of this work, DIII-D data is available on a 24x7 basis from a set of viewing and analysis tools that can be run on either the collaborators' or DIII-D's computer systems. Additionally, a web based data and code documentation system has been created to aid the novice and expert user alike

  12. Enhanced Computational Infrastructure for Data Analysis at the DIII-D National Fusion Facility

    International Nuclear Information System (INIS)

    Schissel, D.P.; Peng, Q.; Schachter, J.; Terpstra, T.B.; Casper, T.A.; Freeman, J.; Jong, R.; Keith, K.M.; Meyer, W.H.; Parker, C.T.; McCharg, B.B.

    1999-01-01

    Recently a number of enhancements to the computer hardware infrastructure have been implemented at the DIII-D National Fusion Facility. Utilizing these improvements to the hardware infrastructure, software enhancements are focusing on streamlined analysis, automation, and graphical user interface (GUI) systems to enlarge the user base. The adoption of the load balancing software package LSF Suite by Platform Computing has dramatically increased the availability of CPU cycles and the efficiency of their use. Streamlined analysis has been aided by the adoption of the MDSplus system to provide a unified interface to analyzed DIII-D data. The majority of MDSplus data is made available in between pulses giving the researcher critical information before setting up the next pulse. Work on data viewing and analysis tools focuses on efficient GUI design with object-oriented programming (OOP) for maximum code flexibility. Work to enhance the computational infrastructure at DIII-D has included a significant effort to aid the remote collaborator since the DIII-D National Team consists of scientists from 9 national laboratories, 19 foreign laboratories, 16 universities, and 5 industrial partnerships. As a result of this work, DIII-D data is available on a 24 x 7 basis from a set of viewing and analysis tools that can be run either on the collaborators' or DIII-Ds computer systems. Additionally, a Web based data and code documentation system has been created to aid the novice and expert user alike

  13. The scientific benefits of inertially confined fusion research

    International Nuclear Information System (INIS)

    Key, M

    1999-01-01

    A striking feature of 25 years of research into inertially confined fusion (ICF) and inertial fusion energy (IFE) has been its significant impact in other fields of science. Most ICF facilities worldwide are now being used in part to support a wider portfolio of research than simply ICF. Reasons for this trend include the high intrinsic interest of the new science coupled with the relative ease and low marginal cost of adapting the facilities particularly lasers, to carry out experiments with goals other than ICF. The availability at ICF laboratories of sophisticated theory and modeling capability and advanced diagnostics has given added impetus. The expertise of ICF specialists has also triggered more lateral scientific spin-offs leading for example to new types of lasers and to related developments in basic science. In a generic sense, the facilities developed for ICF have made possible study of new regimes of the properties of matter at extremely high-energy density and the interaction of ultraintense light with matter. This general opportunity has been exploited in numerous and diverse specific lines of research. Examples elaborated below include laboratory simulation of astrophysical phenomena; studies of the equation of state (EOS) of matter under conditions relevant to the interior of planets and stars; development of uniquely intense sources of extreme ultraviolet (EUV) to hard x-ray emission, notably the x-ray laser; understanding of the physics of strong field interaction of light and matter; and related new phenomena such as laser-induced nuclear processes and high-field-electron accelerators. Some of these developments have potential themselves for further scientific exploitation such as the scientific use of advanced light sources. There are also avenues for commercial exploitation, for example the use of laser plasma sources in EUV lithography. Past scientific progress is summarized here and projections are made for new science that may flow from the

  14. High throughput computing: a solution for scientific analysis

    Science.gov (United States)

    O'Donnell, M.

    2011-01-01

    Public land management agencies continually face resource management problems that are exacerbated by climate warming, land-use change, and other human activities. As the U.S. Geological Survey (USGS) Fort Collins Science Center (FORT) works with managers in U.S. Department of the Interior (DOI) agencies and other federal, state, and private entities, researchers are finding that the science needed to address these complex ecological questions across time and space produces substantial amounts of data. The additional data and the volume of computations needed to analyze it require expanded computing resources well beyond single- or even multiple-computer workstations. To meet this need for greater computational capacity, FORT investigated how to resolve the many computational shortfalls previously encountered when analyzing data for such projects. Our objectives included finding a solution that would:

  15. File-System Workload on a Scientific Multiprocessor

    Science.gov (United States)

    Kotz, David; Nieuwejaar, Nils

    1995-01-01

    Many scientific applications have intense computational and I/O requirements. Although multiprocessors have permitted astounding increases in computational performance, the formidable I/O needs of these applications cannot be met by current multiprocessors a their I/O subsystems. To prevent I/O subsystems from forever bottlenecking multiprocessors and limiting the range of feasible applications, new I/O subsystems must be designed. The successful design of computer systems (both hardware and software) depends on a thorough understanding of their intended use. A system designer optimizes the policies and mechanisms for the cases expected to most common in the user's workload. In the case of multiprocessor file systems, however, designers have been forced to build file systems based only on speculation about how they would be used, extrapolating from file-system characterizations of general-purpose workloads on uniprocessor and distributed systems or scientific workloads on vector supercomputers (see sidebar on related work). To help these system designers, in June 1993 we began the Charisma Project, so named because the project sought to characterize 1/0 in scientific multiprocessor applications from a variety of production parallel computing platforms and sites. The Charisma project is unique in recording individual read and write requests-in live, multiprogramming, parallel workloads (rather than from selected or nonparallel applications). In this article, we present the first results from the project: a characterization of the file-system workload an iPSC/860 multiprocessor running production, parallel scientific applications at NASA's Ames Research Center.

  16. Role of technical and scientific support organization In Indonesian regulatory body

    International Nuclear Information System (INIS)

    Yusri Heni, N.A.; Zarkasih, A.S.; Liliana, Y.P.; Salman, S.

    2007-01-01

    Indonesian Nuclear Energy Regulatory Agency (BAPETEN) has the function in controlling the utility of nuclear energy through regulation, licensing and inspection, with the aim, interalia, to ensure the welfare, the security and the peace of people, to assure the safety and the health of workers and public, and the environmental protection, and to prevent diversion of purpose of the nuclear material utilization (Article 14 and 15 of Act no 10, 1997 on Nuclear Energy). The role and quality of technical and scientific expertise in supporting regulatory systems are importance increase the effectiveness and public confidence. The Center for Regulatory Assessment of Nuclear Installation and Nuclear Material and Center for Regulatory Assessment of Radiation Facilities and Radioactive Sources as part of BAPETEN organization has a function as technical and scientific support for regulatory systems. The purpose of this function is to provide technical and scientific basis for decisions and activities regarding nuclear and radiation safety during regulatory processes, such as in the developing and establishing regulation, technical verification for licensing, assessment of inspection funding and enforcement. In order to meet the quality and effectiveness of technical and scientific result activity, those two centers for regulatory assesment used internal and external technical experts and joint cooperation with universities, research institutes or laboratories. The development of technical and scientific strategic planning in enhancing nuclear and radiation safety is done by the following increasing of : Human resources and expertise by internal and external training or on the job training; number for computer code to perform safety analysis, capability and quality for review and assessment, national and international cooperation, etc. (author)

  17. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  18. New challenges for HEP computing: RHIC [Relativistic Heavy Ion Collider] and CEBAF [Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    LeVine, M.J.

    1990-01-01

    We will look at two facilities; RHIC and CEBF. CEBF is in the construction phase, RHIC is about to begin construction. For each of them, we examine the kinds of physics measurements that motivated their construction, and the implications of these experiments for computing. Emphasis will be on on-line requirements, driven by the data rates produced by these experiments

  19. Argonne's Laboratory computing center - 2007 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R.; Pieper, G. W.

    2008-05-28

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific

  20. Software quality assurance plan for the National Ignition Facility integrated computer control system

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, J.

    1996-11-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This Software Quality Assurance Plan (SQAP) applies to the activities of the Integrated Computer Control System (ICCS) organization and its subcontractors. The Plan describes the activities implemented by the ICCS section to achieve quality in the NIF Project`s controls software and implements the NIF Quality Assurance Program Plan (QAPP, NIF-95-499, L-15958-2) and the Department of Energy`s (DOE`s) Order 5700.6C. This SQAP governs the quality affecting activities associated with developing and deploying all control system software during the life cycle of the NIF Project.

  1. Software quality assurance plan for the National Ignition Facility integrated computer control system

    International Nuclear Information System (INIS)

    Woodruff, J.

    1996-11-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This Software Quality Assurance Plan (SQAP) applies to the activities of the Integrated Computer Control System (ICCS) organization and its subcontractors. The Plan describes the activities implemented by the ICCS section to achieve quality in the NIF Project's controls software and implements the NIF Quality Assurance Program Plan (QAPP, NIF-95-499, L-15958-2) and the Department of Energy's (DOE's) Order 5700.6C. This SQAP governs the quality affecting activities associated with developing and deploying all control system software during the life cycle of the NIF Project

  2. Toward fostering the scientific and technological literacy establishment of the 'Central Scientific and Technological Museum-Institute' and nuclear development

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Takashi [Graduate School of Energy Sci., Kyoto Univ., Kyoto (Japan)

    1999-12-01

    The public in general does not necessarily have enough knowledge for the reasonable decision making in the application of scientific and technological development even in the ear of the Information Society. However strongly the necessity of the consensus in the scientific policy like nuclear R and D is required, it is impossible to attain the goal, unless the scientific literacy of the general public is. In order to improve it the role of the scientific museum as a social educational facility is very important. In this respect, there still remains vast room to improve in the Japanese museum system and its activities. The concept of the 'Central Scientific and Technological Museum-Institute', which also operates very small-sized reactor for the educational use, is developed in this paper. (author)

  3. A resource facility for kinetic analysis: modeling using the SAAM computer programs.

    Science.gov (United States)

    Foster, D M; Boston, R C; Jacquez, J A; Zech, L

    1989-01-01

    Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.

  4. Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers

    Science.gov (United States)

    Prybol, Cameron J.; Kurtzer, Gregory M.

    2017-01-01

    Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub’s primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers. PMID:29186161

  5. Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers.

    Directory of Open Access Journals (Sweden)

    Vanessa V Sochat

    Full Text Available Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub's primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers.

  6. Large Scale Computing and Storage Requirements for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years

  7. ATLAS Tier-3 within IFIC-Valencia analysis facility

    CERN Document Server

    Villaplana, M; The ATLAS collaboration; Fernández, A; Salt, J; Lamas, A; Fassi, F; Kaci, M; Oliver, E; Sánchez, J; Sánchez-Martínez, V

    2012-01-01

    The ATLAS Tier-3 at IFIC-Valencia is attached to a Tier-2 that has 50% of the Spanish Federated Tier-2 resources. In its design, the Tier-3 includes a GRID-aware part that shares some of the features of IFIC Tier-2 such as using Lustre as a file system. ATLAS users, 70% of IFIC users, also have the possibility of analysing data with a PROOF farm and storing them locally. In this contribution we discuss the design of the analysis facility as well as the monitoring tools we use to control and improve its performance. We also comment on how the recent changes in the ATLAS computing GRID model affect IFIC. Finally, how this complex system can coexist with the other scientific applications running at IFIC (non-ATLAS users) is presented.

  8. Computational neurogenetic modeling

    CERN Document Server

    Benuskova, Lubica

    2010-01-01

    Computational Neurogenetic Modeling is a student text, introducing the scope and problems of a new scientific discipline - Computational Neurogenetic Modeling (CNGM). CNGM is concerned with the study and development of dynamic neuronal models for modeling brain functions with respect to genes and dynamic interactions between genes. These include neural network models and their integration with gene network models. This new area brings together knowledge from various scientific disciplines, such as computer and information science, neuroscience and cognitive science, genetics and molecular biol

  9. Cyber warfare building the scientific foundation

    CERN Document Server

    Jajodia, Sushil; Subrahmanian, VS; Swarup, Vipin; Wang, Cliff

    2015-01-01

    This book features a wide spectrum of the latest computer science research relating to cyber warfare, including military and policy dimensions. It is the first book to explore the scientific foundation of cyber warfare and features research from the areas of artificial intelligence, game theory, programming languages, graph theory and more. The high-level approach and emphasis on scientific rigor provides insights on ways to improve cyber warfare defense worldwide. Cyber Warfare: Building the Scientific Foundation targets researchers and practitioners working in cyber security, especially gove

  10. Techniques for animation of CFD results. [computational fluid dynamics

    Science.gov (United States)

    Horowitz, Jay; Hanson, Jeffery C.

    1992-01-01

    Video animation is becoming increasingly vital to the computational fluid dynamics researcher, not just for presentation, but for recording and comparing dynamic visualizations that are beyond the current capabilities of even the most powerful graphic workstation. To meet these needs, Lewis Research Center has recently established a facility to provide users with easy access to advanced video animation capabilities. However, producing animation that is both visually effective and scientifically accurate involves various technological and aesthetic considerations that must be understood both by the researcher and those supporting the visualization process. These considerations include: scan conversion, color conversion, and spatial ambiguities.

  11. Computational challenges in atomic, molecular and optical physics.

    Science.gov (United States)

    Taylor, Kenneth T

    2002-06-15

    Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion; electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H(3)(+) and water at their dissociation limits; laser-heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.

  12. The need for scientific software engineering in the pharmaceutical industry.

    Science.gov (United States)

    Luty, Brock; Rose, Peter W

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  13. The need for scientific software engineering in the pharmaceutical industry

    Science.gov (United States)

    Luty, Brock; Rose, Peter W.

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  14. AIRDOS-II computer code for estimating radiation dose to man from airborne radionuclides in areas surrouding nuclear facilities

    International Nuclear Information System (INIS)

    Moore, R.E.

    1977-04-01

    The AIRDOS-II computer code estimates individual and population doses resulting from the simultaneous atmospheric release of as many as 36 radionuclides from a nuclear facility. This report describes the meteorological and environmental models used is the code, their computer implementation, and the applicability of the code to assessments of radiological impact. Atmospheric dispersion and surface deposition of released radionuclides are estimated as a function of direction and distance from a nuclear power plant or fuel-cycle facility, and doses to man through inhalation, air immersion, exposure to contaminated ground, food ingestion, and water immersion are estimated in the surrounding area. Annual doses are estimated for total body, GI tract, bone, thyroid, lungs, muscle, kidneys, liver, spleen, testes, and ovaries. Either the annual population doses (man-rems/year) or the highest annual individual doses in the assessment area (rems/year), whichever are applicable, are summarized in output tables in several ways--by nuclides, modes of exposure, and organs. The location of the highest individual doses for each reference organ estimated for the area is specified in the output data

  15. A Bioinformatics Facility for NASA

    Science.gov (United States)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  16. Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Goldhagen, P.; Marino, S.A.; Randers-Pehrson, G.; Hall, E.J.

    1986-01-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which can be used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. It is part of the Radiological Research Laboratory (RRL), and its operation is supported as a National Facility by the US Department of Energy. RARAF is available to all potential users on an equal basis, with priorities based on the recommendations of a Scientific Advisory Committee. Facilities and services are provided to users, but the research projects themselves must be supported separately. This chapter presents a brief description of current experiments being carried out at RARAF and of the operation of the Facility from January through June, 1986. Operation of the Facility for all of 1985 was described in the 1985 Progress Report for RARAF. The experiments described here were supported by various Grants and Contracts from NIH and DOE and by the Statens Stralskyddsinstitut of Sweden

  17. BEAM: A computational workflow system for managing and modeling material characterization data in HPC environments

    Energy Technology Data Exchange (ETDEWEB)

    Lingerfelt, Eric J [ORNL; Endeve, Eirik [ORNL; Ovchinnikov, Oleg S [ORNL; Borreguero Calvo, Jose M [ORNL; Park, Byung H [ORNL; Archibald, Richard K [ORNL; Symons, Christopher T [ORNL; Kalinin, Sergei V [ORNL; Messer, Bronson [ORNL; Shankar, Mallikarjun [ORNL; Jesse, Stephen [ORNL

    2016-01-01

    Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now with the rise of multimodal acquisition systems and the associated processing capability the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) to perform scalable data analysis and simulation via an intuitive, cross-platform client user interface. This framework delivers authenticated, push-button execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing the converged compute-and-data infrastructure at Oak Ridge National Laboratory s (ORNL) Compute and Data Environment for Science (CADES) and HPC environments like Titan at the Oak Ridge Leadership Computing Facility (OLCF). In this work we address the underlying HPC needs for characterization in the material science community, elaborate how BEAM s design and infrastructure tackle those needs, and present a small sub-set of user cases where scientists utilized BEAM across a broad range of analytical techniques and analysis modes.

  18. Scientific planning for the VLT and VLTI

    Science.gov (United States)

    Leibundgut, B.; Berger, J.-P.

    2016-07-01

    An observatory system like the VLT/I requires careful scientific planning for operations and future instruments. Currently the ESO optical/near-infrared facilities include four 8m telescopes, four (movable) 1.8m telescopes used exclusively for interferometry, two 4m telescopes and two survey telescopes. This system offers a large range of scientific capabilities and setting the corresponding priorities depends good community interactions. Coordinating the existing and planned instrumentation is an important aspect for strong scientific return. The current scientific priorities for the VLT and VLTI are pushing for the development of the highest angular resolution imaging and astrometry, integral field spectroscopy and multi-object spectroscopy. The ESO 4m telescopes on La Silla will be dedicated to time domain spectroscopy and exo-planet searches with highly specialized instruments. The next decade will also see a significant rise in the scientific importance of massive ground and space-based surveys. We discuss how future developments in astronomical research could shape the VLT/I evolution.

  19. Advanced Simulation and Computing FY17 Implementation Plan, Version 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendrickson, Bruce [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wade, Doug [National Nuclear Security Administration (NNSA), Washington, DC (United States). Office of Advanced Simulation and Computing and Institutional Research and Development; Hoang, Thuc [National Nuclear Security Administration (NNSA), Washington, DC (United States). Computational Systems and Software Environment

    2016-08-29

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.

  20. Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

    2009-04-14

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  1. Resilient workflows for computational mechanics platforms

    International Nuclear Information System (INIS)

    Nguyen, Toan; Trifan, Laurentiu; Desideri, Jean-Antoine

    2010-01-01

    Workflow management systems have recently been the focus of much interest and many research and deployment for scientific applications worldwide. Their ability to abstract the applications by wrapping application codes have also stressed the usefulness of such systems for multidiscipline applications. When complex applications need to provide seamless interfaces hiding the technicalities of the computing infrastructures, their high-level modeling, monitoring and execution functionalities help giving production teams seamless and effective facilities. Software integration infrastructures based on programming paradigms such as Python, Mathlab and Scilab have also provided evidence of the usefulness of such approaches for the tight coupling of multidisciplne application codes. Also high-performance computing based on multi-core multi-cluster infrastructures open new opportunities for more accurate, more extensive and effective robust multi-discipline simulations for the decades to come. This supports the goal of full flight dynamics simulation for 3D aircraft models within the next decade, opening the way to virtual flight-tests and certification of aircraft in the future.

  2. Remote Internet access to advanced analytical facilities: a new approach with Web-based services.

    Science.gov (United States)

    Sherry, N; Qin, J; Fuller, M Suominen; Xie, Y; Mola, O; Bauer, M; McIntyre, N S; Maxwell, D; Liu, D; Matias, E; Armstrong, C

    2012-09-04

    Over the past decade, the increasing availability of the World Wide Web has held out the possibility that the efficiency of scientific measurements could be enhanced in cases where experiments were being conducted at distant facilities. Examples of early successes have included X-ray diffraction (XRD) experimental measurements of protein crystal structures at synchrotrons and access to scanning electron microscopy (SEM) and NMR facilities by users from institutions that do not possess such advanced capabilities. Experimental control, visual contact, and receipt of results has used some form of X forwarding and/or VNC (virtual network computing) software that transfers the screen image of a server at the experimental site to that of the users' home site. A more recent development is a web services platform called Science Studio that provides teams of scientists with secure links to experiments at one or more advanced research facilities. The software provides a widely distributed team with a set of controls and screens to operate, observe, and record essential parts of the experiment. As well, Science Studio provides high speed network access to computing resources to process the large data sets that are often involved in complex experiments. The simple web browser and the rapid transfer of experimental data to a processing site allow efficient use of the facility and assist decision making during the acquisition of the experimental results. The software provides users with a comprehensive overview and record of all parts of the experimental process. A prototype network is described involving X-ray beamlines at two different synchrotrons and an SEM facility. An online parallel processing facility has been developed that analyzes the data in near-real time using stream processing. Science Studio and can be expanded to include many other analytical applications, providing teams of users with rapid access to processed results along with the means for detailed

  3. Scientific progress report 1980

    International Nuclear Information System (INIS)

    1981-01-01

    The R + D-projects in this field and the infrastructural tasks mentioned are handled in seven working- and two project groups: Computer systems, Numerical and applied mathematics, Software development, Process calculation systems- hardware, Nuclear electronics, measuring- and automatic control technique, Research of component parts and irradiation tests, Central data processing, Processing of process data in the science of medicine, Co-operation in the BERNET-project in the 'Wissenschaftliches Rechenzentrum Berlin (WRB)' (scientific computer center in Berlin). (orig./WB)

  4. Specific features of organizng the computer-aided design of radio-electronic equipment for electrophysical facilities

    International Nuclear Information System (INIS)

    Mozin, I.V.; Vasil'ev, M.P.

    1985-01-01

    Problems of developing systems for computer-aided design (CAD) of radioelectronic equipment for large electrophysical facilities such as charged particle accelerators of new generation are discussed. The PLATA subsystem representing a part of CAD and used for printed circuit design is described. The subsystem PLATA is utilized to design, on the average, up to 150 types of circuits a year, 100-120 of which belong to circuits of increased complexity. In this case labour productivity of a designer at documentation increases almost two times

  5. Thermal studies of the canister staging pit in a hypothetical Yucca Mountain canister handling facility using computational fluid dynamics

    International Nuclear Information System (INIS)

    Soltani, Mehdi; Barringer, Chris; Bues, Timothy T. de

    2007-01-01

    The proposed Yucca Mountain nuclear waste storage site will contain facilities for preparing the radioactive waste canisters for burial. A previous facility design considered was the Canister Handling Facility Staging Pit. This design is no longer used, but its thermal evaluation is typical of such facilities. Structural concrete can be adversely affected by the heat from radioactive decay. Consequently, facilities must have heating ventilation and air conditioning (HVAC) systems for cooling. Concrete temperatures are a function of conductive, convective and radiative heat transfer. The prediction of concrete temperatures under such complex conditions can only be adequately handled by computational fluid dynamics (CFD). The objective of the CFD analysis was to predict concrete temperatures under normal and off-normal conditions. Normal operation assumed steady state conditions with constant HVAC flow and temperatures. However, off-normal operation was an unsteady scenario which assumed a total HVAC failure for a period of 30 days. This scenario was particularly complex in that the concrete temperatures would gradually rise, and air flows would be buoyancy driven. The CFD analysis concluded that concrete wall temperatures would be at or below the maximum temperature limits in both the normal and off-normal scenarios. While this analysis was specific to a facility design that is no longer used, it demonstrates that such facilities are reasonably expected to have satisfactory thermal performance. (author)

  6. Numerical and symbolic scientific computing

    CERN Document Server

    Langer, Ulrich

    2011-01-01

    The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from

  7. Radiation safety training for accelerator facilities

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1997-02-01

    In November 1992, a working group was formed within the U.S. Department of Energy's (DOE's) accelerator facilities to develop a generic safety training program to meet the basic requirements for individuals working in accelerator facilities. This training, by necessity, includes sections for inserting facility-specific information. The resulting course materials were issued by DOE as a handbook under its technical standards in 1996. Because experimenters may be at a facility for only a short time and often at odd times during the day, the working group felt that computer-based training would be useful. To that end, Lawrence Livermore National Laboratory (LLNL) and Argonne National Laboratory (ANL) together have developed a computer-based safety training program for accelerator facilities. This interactive course not only enables trainees to receive facility- specific information, but time the training to their schedule and tailor it to their level of expertise

  8. Computer-guided facility for the study of single crystals at the gamma diffractometer GADI

    International Nuclear Information System (INIS)

    Heer, H.; Bleichert, H.; Gruhn, W.; Moeller, R.

    1984-10-01

    In the study of solid-state properties it is in many cases necessary to work with single crystals. The increased requirement in the industry and research as well as the desire for better characterization by means of γ-diffractometry made it necessary to improve and to modernize the existing instrument. The advantages of a computer-guided facility against the conventional, semiautomatic operation are manifold. Not only the process guidance, but also the data acquisition and evaluation are performed by the computer. By a remote control the operator is able to find quickly a reflex and to drive the crystal in every desired measuring position. The complete protocollation of all important measuring parameters, the convenient data storage, as well as the automatic evaluation are much useful for the user. Finally the measuring time can be increased to practically 24 hours per day. By this the versed characterization by means of γ-diffractometry is put on a completely new level. (orig.) [de

  9. The challenges of developing computational physics: the case of South Africa

    International Nuclear Information System (INIS)

    Salagaram, T; Chetty, N

    2013-01-01

    Most modern scientific research problems are complex and interdisciplinary in nature. It is impossible to study such problems in detail without the use of computation in addition to theory and experiment. Although it is widely agreed that students should be introduced to computational methods at the undergraduate level, it remains a challenge to do this in a full traditional undergraduate curriculum. In this paper, we report on a survey that we conducted of undergraduate physics curricula in South Africa to determine the content and the approach taken in the teaching of computational physics. We also considered the pedagogy of computational physics at the postgraduate and research levels at various South African universities, research facilities and institutions. We conclude that the state of computational physics training in South Africa, especially at the undergraduate teaching level, is generally weak and needs to be given more attention at all universities. Failure to do so will impact negatively on the countrys capacity to grow its endeavours generally in the field of computational sciences, with negative impacts on research, and in commerce and industry

  10. A performance analysis of EC2 cloud computing services for scientific computing

    NARCIS (Netherlands)

    Ostermann, S.; Iosup, A.; Yigitbasi, M.N.; Prodan, R.; Fahringer, T.; Epema, D.H.J.; Avresky, D.; Diaz, M.; Bode, A.; Bruno, C.; Dekel, E.

    2010-01-01

    Cloud Computing is emerging today as a commercial infrastructure that eliminates the need for maintaining expensive computing hardware. Through the use of virtualization, clouds promise to address with the same shared set of physical resources a large user base with different needs. Thus, clouds

  11. Decommissioning Facility Characterization DB System

    International Nuclear Information System (INIS)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S.

    2010-01-01

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  12. Decommissioning Facility Characterization DB System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  13. Manual on JSSL (JAERI scientific subroutine library)

    International Nuclear Information System (INIS)

    Fujimura, Toichiro; Nishida, Takahiko; Asai, Kiyoshi

    1977-05-01

    A manual on the revised JAERI scientific subroutine library is presented. The library is a collection of subroutines developed or modified in JAERI which complements the library installed for FACOM 230-75 computer. It is subject to further extension in the future, since the present one is still insufficient for scientific calculations. (auth.)

  14. Facility model for the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Thomas, K.E.; Sohn, C.L.; Yarbro, T.F.; Hench, K.W.

    1986-01-01

    The Los Alamos Plutonium Facility contains more than sixty unit processes and handles a large variety of nuclear materials, including many forms of plutonium-bearing scrap. The management of the Plutonium Facility is supporting the development of a computer model of the facility as a means of effectively integrating the large amount of information required for material control, process planning, and facility development. The model is designed to provide a flexible, easily maintainable facility description that allows the faciltiy to be represented at any desired level of detail within a single modeling framework, and to do this using a model program and data files that can be read and understood by a technically qualified person without modeling experience. These characteristics were achieved by structuring the model so that all facility data is contained in data files, formulating the model in a simulation language that provides a flexible set of data structures and permits a near-English-language syntax, and using a description for unit processes that can represent either a true unit process or a major subsection of the facility. Use of the model is illustrated by applying it to two configurations of a fictitious nuclear material processing line

  15. Scientific report of results No. 4/1975

    International Nuclear Information System (INIS)

    1975-01-01

    In this report, the HMI Berlin for nuclear research describes the results of work done in the data processing and electronics section, the general scientific-technical facilities of this section, as well as cooperative work, publications and lectures together with the names of the participants. (HK) [de

  16. Symbolic computation and its application to high energy physics

    International Nuclear Information System (INIS)

    Hearn, A.C.

    1981-01-01

    It is clear that we are in the middle of an electronic revolution whose effect will be as profound as the industrial revolution. The continuing advances in computing technology will provide us with devices which will make present day computers appear primitive. In this environment, the algebraic and other non-mumerical capabilities of such devices will become increasingly important. These lectures will review the present state of the field of algebraic computation and its potential for problem solving in high energy physics and related areas. We shall begin with a brief description of the available systems and examine the data objects which they consider. As an example of the facilities which these systems can offer, we shall then consider the problem of analytic integration, since this is so fundamental to many of the calculational techniques used by high energy physicists. Finally, we shall study the implications which the current developments in hardware technology hold for scientific problem solving. (orig.)

  17. ArrayBridge: Interweaving declarative array processing with high-performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Haoyuan [The Ohio State Univ., Columbus, OH (United States); Floratos, Sofoklis [The Ohio State Univ., Columbus, OH (United States); Blanas, Spyros [The Ohio State Univ., Columbus, OH (United States); Byna, Suren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prabhat, Prabhat [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Kesheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Paul [Paradigm4, Inc., Waltham, MA (United States)

    2017-05-04

    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aims to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.

  18. Argonne's Laboratory computing resource center : 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R. B.; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Drugan, C. D.; Pieper, G. P.

    2007-05-31

    use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  19. The FOSS GIS Workbench on the GFZ Load Sharing Facility compute cluster

    Science.gov (United States)

    Löwe, P.; Klump, J.; Thaler, J.

    2012-04-01

    Compute clusters can be used as GIS workbenches, their wealth of resources allow us to take on geocomputation tasks which exceed the limitations of smaller systems. To harness these capabilities requires a Geographic Information System (GIS), able to utilize the available cluster configuration/architecture and a sufficient degree of user friendliness to allow for wide application. In this paper we report on the first successful porting of GRASS GIS, the oldest and largest Free Open Source (FOSS) GIS project, onto a compute cluster using Platform Computing's Load Sharing Facility (LSF). In 2008, GRASS6.3 was installed on the GFZ compute cluster, which at that time comprised 32 nodes. The interaction with the GIS was limited to the command line interface, which required further development to encapsulate the GRASS GIS business layer to facilitate its use by users not familiar with GRASS GIS. During the summer of 2011, multiple versions of GRASS GIS (v 6.4, 6.5 and 7.0) were installed on the upgraded GFZ compute cluster, now consisting of 234 nodes with 480 CPUs providing 3084 cores. The GFZ compute cluster currently offers 19 different processing queues with varying hardware capabilities and priorities, allowing for fine-grained scheduling and load balancing. After successful testing of core GIS functionalities, including the graphical user interface, mechanisms were developed to deploy scripted geocomputation tasks onto dedicated processing queues. The mechanisms are based on earlier work by NETELER et al. (2008). A first application of the new GIS functionality was the generation of maps of simulated tsunamis in the Mediterranean Sea for the Tsunami Atlas of the FP-7 TRIDEC Project (www.tridec-online.eu). For this, up to 500 processing nodes were used in parallel. Further trials included the processing of geometrically complex problems, requiring significant amounts of processing time. The GIS cluster successfully completed all these tasks, with processing times

  20. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    Science.gov (United States)

    Wang, Jianxiong

    2014-06-01

    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF