WorldWideScience

Sample records for computer-enhanced remote viewing

  1. Interactive computer-enhanced remote viewing system

    Energy Technology Data Exchange (ETDEWEB)

    Tourtellott, J.A.; Wagner, J.F. [Mechanical Technology Incorporated, Latham, NY (United States)

    1995-10-01

    Remediation activities such as decontamination and decommissioning (D&D) typically involve materials and activities hazardous to humans. Robots are an attractive way to conduct such remediation, but for efficiency they need a good three-dimensional (3-D) computer model of the task space where they are to function. This model can be created from engineering plans and architectural drawings and from empirical data gathered by various sensors at the site. The model is used to plan robotic tasks and verify that selected paths are clear of obstacles. This report describes the development of an Interactive Computer-Enhanced Remote Viewing System (ICERVS), a software system to provide a reliable geometric description of a robotic task space, and enable robotic remediation to be conducted more effectively and more economically.

  2. Interactive computer-enhanced remote viewing system

    International Nuclear Information System (INIS)

    Tourtellott, J.A.; Wagner, J.F.

    1995-01-01

    Remediation activities such as decontamination and decommissioning (D ampersand D) typically involve materials and activities hazardous to humans. Robots are an attractive way to conduct such remediation, but for efficiency they need a good three-dimensional (3-D) computer model of the task space where they are to function. This model can be created from engineering plans and architectural drawings and from empirical data gathered by various sensors at the site. The model is used to plan robotic tasks and verify that selected paths are clear of obstacles. This report describes the development of an Interactive Computer-Enhanced Remote Viewing System (ICERVS), a software system to provide a reliable geometric description of a robotic task space, and enable robotic remediation to be conducted more effectively and more economically

  3. Interactive computer enhanced remote viewing system

    International Nuclear Information System (INIS)

    Smith, D.A.; Tourtellott, J.A.

    1994-01-01

    The Interactive, Computer Enhanced, Remote Viewing System (ICERVSA) is a volumetric data system designed to help the Department of Energy (DOE) improve remote operations in hazardous sites by providing reliable and accurate maps of task spaces where robots will clean up nuclear wastes. The ICERVS mission is to acquire, store, integrate and manage all the sensor data for a site and to provide the necessary tools to facilitate its visualization and interpretation. Empirical sensor data enters through the Common Interface for Sensors and after initial processing, is stored in the Volumetric Database. The data can be analyzed and displayed via a Graphic User Interface with a variety of visualization tools. Other tools permit the construction of geometric objects, such as wire frame models, to represent objects which the operator may recognize in the live TV image. A computer image can be generated that matches the viewpoint of the live TV camera at the remote site, facilitating access to site data. Lastly, the data can be gathered, processed, and transmitted in acceptable form to a robotic controller. Descriptions are given of all these components. The final phase of the ICERVS project, which has just begun, will produce a full scale system and demonstrate it at a DOE site to be selected. A task added to this Phase will adapt the ICERVS to meet the needs of the Dismantlement and Decommissioning (D and D) work at the Oak Ridge National Laboratory (ORNL)

  4. Interactive computer-enhanced remote viewing system

    International Nuclear Information System (INIS)

    Tourtellott, J.A.; Wagner, J.F.

    1995-01-01

    Remediation activities such as decontamination and decommissioning (D ampersand D) typically involve materials and activities hazardous to humans. Robots are an attractive way to conduct such remediation, but for efficiency they need a good three-dimensional (3-D) computer model of the task space where they are to function. This model can be created from engineering plans and architectural drawings and from empirical data gathered by various sensors at the site. The model is used to plan robotic tasks and verify that selected paths am clear of obstacles. This need for a task space model is most pronounced in the remediation of obsolete production facilities and underground storage tanks. Production facilities at many sites contain compact process machinery and systems that were used to produce weapons grade material. For many such systems, a complex maze of pipes (with potentially dangerous contents) must be removed, and this represents a significant D ampersand D challenge. In an analogous way, the underground storage tanks at sites such as Hanford represent a challenge because of their limited entry and the tumbled profusion of in-tank hardware. In response to this need, the Interactive Computer-Enhanced Remote Viewing System (ICERVS) is being designed as a software system to: (1) Provide a reliable geometric description of a robotic task space, and (2) Enable robotic remediation to be conducted more effectively and more economically than with available techniques. A system such as ICERVS is needed because of the problems discussed below

  5. Interactive computer-enhanced remote viewing system with data fusion capabilities

    International Nuclear Information System (INIS)

    Walter, T.J.

    1997-01-01

    Robotic missions will increasingly involve sending autonomous and semiautonomous vehicles into unstructured work environments. Mission success will often depend on the ability to accurately map scenes, to combine information from a variety of sensor types, to convey the three-dimensional (3-D) characteristics of these spaces to operators, and to construct geometric model task planning and collision avoidance. To meet these needs, an interactive computer-enhanced remote viewing system (ICERVS) has been developed with general-purpose capabilities for data visualization and geometric modeling. ICERVS has been augmented with software that enables fusing data from multiple mapping sensors and poses to reduce the error effects in individual data sets and improve the mapping accuracy of a work space

  6. Interactive Computer-Enhanced Remote Viewing System (ICERVS): Final report, November 1994--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Interactive Computer-Enhanced Remote Viewing System (ICERVS) is a software tool for complex three-dimensional (3-D) visualization and modeling. Its primary purpose is to facilitate the use of robotic and telerobotic systems in remote and/or hazardous environments, where spatial information is provided by 3-D mapping sensors. ICERVS provides a robust, interactive system for viewing sensor data in 3-D and combines this with interactive geometric modeling capabilities that allow an operator to construct CAD models to match the remote environment. Part I of this report traces the development of ICERVS through three evolutionary phases: (1) development of first-generation software to render orthogonal view displays and wireframe models; (2) expansion of this software to include interactive viewpoint control, surface-shaded graphics, material (scalar and nonscalar) property data, cut/slice planes, color and visibility mapping, and generalized object models; (3) demonstration of ICERVS as a tool for the remediation of underground storage tanks (USTs) and the dismantlement of contaminated processing facilities. Part II of this report details the software design of ICERVS, with particular emphasis on its object-oriented architecture and user interface.

  7. Interactive Computer-Enhanced Remote Viewing System (ICERVS): Final report, November 1994--September 1996

    International Nuclear Information System (INIS)

    1997-01-01

    The Interactive Computer-Enhanced Remote Viewing System (ICERVS) is a software tool for complex three-dimensional (3-D) visualization and modeling. Its primary purpose is to facilitate the use of robotic and telerobotic systems in remote and/or hazardous environments, where spatial information is provided by 3-D mapping sensors. ICERVS provides a robust, interactive system for viewing sensor data in 3-D and combines this with interactive geometric modeling capabilities that allow an operator to construct CAD models to match the remote environment. Part I of this report traces the development of ICERVS through three evolutionary phases: (1) development of first-generation software to render orthogonal view displays and wireframe models; (2) expansion of this software to include interactive viewpoint control, surface-shaded graphics, material (scalar and nonscalar) property data, cut/slice planes, color and visibility mapping, and generalized object models; (3) demonstration of ICERVS as a tool for the remediation of underground storage tanks (USTs) and the dismantlement of contaminated processing facilities. Part II of this report details the software design of ICERVS, with particular emphasis on its object-oriented architecture and user interface

  8. Interactive Computer-Enhanced Remote Viewing System (ICERVS)

    International Nuclear Information System (INIS)

    1993-08-01

    The Integrated Computer-Enhanced Remote Viewing System (ICERVS) supports the robotic remediation of hazardous environments such as underground storage tanks, buried waste sites, and contaminated production facilities. The success of these remediation missions will depend on reliable geometric descriptions of the work environment in order to achieve effective task planning, path planning, and collision avoidance. ICERVS provides a means for deriving a reliable geometric description more effectively and efficiently than current systems by combining a number of technologies: Sensing of the environment to acquire dimensional and material property data; integration of acquired data into a common data structure (based on octree technology); presentation of data to robotic task planners for analysis and visualization; interactive synthesis of geometric/surface models to denote features of interest in the environment and transfer of this information to robot control and collision avoidance systems. A key feature of ICERVS is that it will enable an operator to match xyz data from a sensor with surface models of the same region in space. This capability will help operators to better manage the complexities of task and path planning in three-dimensional (3D) space, thereby leading to safer and more effective remediation. The Phase 1 work performed by MTI has brought the ICERVS design to Maturity Level 3, Subscale Major Subsystem, and met the established success criteria

  9. Remote Viewing and Computer Communications--An Experiment.

    Science.gov (United States)

    Vallee, Jacques

    1988-01-01

    A series of remote viewing experiments were run with 12 participants who communicated through a computer conferencing network. The correct target sample was identified in 8 out of 33 cases. This represented more than double the pure chance expectation. Appendices present protocol, instructions, and results of the experiments. (Author/YP)

  10. Lighting for remote viewing systems

    International Nuclear Information System (INIS)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages

  11. Lighting for remote viewing systems

    International Nuclear Information System (INIS)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures

  12. Lighting for remote viewing systems

    International Nuclear Information System (INIS)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgement of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures

  13. Lighting for remote viewing systems

    Energy Technology Data Exchange (ETDEWEB)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgment of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures.

  14. Lighting for remote viewing systems

    Energy Technology Data Exchange (ETDEWEB)

    Draper, J.V.

    1984-01-01

    Scenes viewed by television do not provide the same channels of information for judgement of distances as scenes viewed directly, since television eliminates or degrades several depth perception cues. However, it may be possible to improve depth perception of televised scenes by enhancing the information available through depth cues that are available from lighting. A literature survey and expert opinions were integrated to design a remote lighting arrangement which could enhance depth perception of operators performing remote handling operations. This paper describes the lighting arrangement and discusses some of its advantages and disadvantages. 10 references, 2 figures.

  15. Synthetic viewing: comprehensive work representation, making remote work clearer to the operator

    International Nuclear Information System (INIS)

    Leinemann, K.; Katz, F.; Knueppel, H.; Olbrich, W.; Maisonnier, D.

    1995-01-01

    Maintenance work in fusion plants such as the ITER plant will be carried out fully remotely, without any direct view on to the work scene. The basic sources of information about the state of the work are video monitors. In a first development step, this viewing channel was enhanced by three-dimensional computer graphics controlled by signals of motion sensors (such as joint angle sensors) of the real maintenance devices. However, experience has shown that more information is required about the status of all pieces of equipment involved and about the status of the entire handling task, if the work is to be done properly. Viewing for remote handling applications needs to include the display of such status information in a suitable form. Of special importance in this sense is the representation of the work procedures on the computer display, enabling the operator to grasp at a glance the actual state of the work and the details about the subtask to be executed next. The tool providing this ''synthetic'' viewing but also task-suited to planning, training and controlling support for the operator is the remote handling workstation. The prototype of a remote handling workstation was successfully used in the first complete Karlsruhe experiment for in-torus handling. (orig.)

  16. Synthetic viewing: Comprehensive work representation making remote work more transparent to the operator

    International Nuclear Information System (INIS)

    Leinemann, K.; Katz, F.; Knueppel, H.

    1994-01-01

    To support the operator remote handling a number of well-developed techniques is available like transmission of forces, movements, and dexterous skills in general using masterslave manipulators equipped with special tools. In addition several types of transporters are available to position manipulators and tools. But there is a serious bottle-neck in viewing: the number of cameras is restricted and the cameras may in most cases not be positioned as to provide sufficient information. In order to improve this situation an integration of closed-loop TV and artificial viewing by sensor controlled computer graphics has been introduced successfully by KfK at JET. This integrated viewing subsystem combines not only those two techniques by providing the two views but also enhances the conventional camera control by a computer graphics model-based control. Practical experience has shown that the concept of viewing needs to be extended. Just seeing where things are is insufficient for the operators to perform their remote handling task properly. More information is required about the status of all equipment pieces involved and about the status of the entire handling task. Viewing for remote handling applications needs to include the display of such status information in a suitable form

  17. Macro and Micro Remote Viewing of Objects in Sealed Gloveboxes

    International Nuclear Information System (INIS)

    Heckendorn, F.M.

    2004-01-01

    The Savannah River Site uses sophisticated glovebox facilities to process and analyze material that is radiologically contaminated or that must be protected from contamination by atmospheric gases. The analysis can be visual, non destructive measurement, or destructive measurement, and allows for the gathering of information that would otherwise not be obtainable. Macro and Micro systems that cover a range of 2X to 400X magnifications with a robust system compatible with the harsh glovebox environment were installed. Remote video inspection systems were developed and deployed in Savannah River Site glovebox facilities that provide high quality or mega-pixel quality remote views, for remote inspections. The specialized video systems that are the subject of this report exhibited specialized field application of remote video/viewing techniques by expanding remote viewing to high and very high quality viewing in gloveboxes. This technological enhancement will allow the gathering of precision information that is otherwise not available

  18. Remote viewing.

    Science.gov (United States)

    Scott, C

    1988-04-15

    Remote viewing is the supposed faculty which enables a percipient, sited in a closed room, to describe the perceptions of a remote agent visiting an unknown target site. To provide convincing demonstration of such a faculty poses a range of experimental and practical problems, especially if feedback to the percipient is allowed after each trial. The precautions needed are elaborate and troublesome; many potential loopholes have to be plugged and there will be strong temptations to relax standards, requiring exceptional discipline and dedication by the experimenters. Most reports of remote viewing experiments are rather superficial and do not permit assessment of the experimental procedures with confidence; in many cases there is clear evidence of particular loopholes left unclosed. Any serious appraisal of the evidence would have to go beyond the reports. Meanwhile the published evidence is far from compelling, and certainly insufficient to justify overthrow of well-established scientific principles.

  19. Adaptive strategies of remote systems operators exposed to perturbed camera-viewing conditions

    Science.gov (United States)

    Stuart, Mark A.; Manahan, Meera K.; Bierschwale, John M.; Sampaio, Carlos E.; Legendre, A. J.

    1991-01-01

    This report describes a preliminary investigation of the use of perturbed visual feedback during the performance of simulated space-based remote manipulation tasks. The primary objective of this NASA evaluation was to determine to what extent operators exhibit adaptive strategies which allow them to perform these specific types of remote manipulation tasks more efficiently while exposed to perturbed visual feedback. A secondary objective of this evaluation was to establish a set of preliminary guidelines for enhancing remote manipulation performance and reducing the adverse effects. These objectives were accomplished by studying the remote manipulator performance of test subjects exposed to various perturbed camera-viewing conditions while performing a simulated space-based remote manipulation task. Statistical analysis of performance and subjective data revealed that remote manipulation performance was adversely affected by the use of perturbed visual feedback and performance tended to improve with successive trials in most perturbed viewing conditions.

  20. Variable acuity remote viewing system flight demonstration

    Science.gov (United States)

    Fisher, R. W.

    1983-01-01

    The Variable Acuity Remote Viewing System (VARVS), originally developed under contract to the Navy (ONR) as a laboratory brassboard, was modified for flight demonstration. The VARVS system was originally conceived as a technique which could circumvent the acuity/field of view/bandwidth tradeoffs that exists in remote viewing to provide a nearly eye limited display in both field of view (160 deg) and resolution (2 min arc) while utilizing conventional TV sensing, transmission, and display equipment. The modifications for flight demonstration consisted of modifying the sensor so it could be installed and flow in a Piper PA20 aircraft, equipped for remote control and modifying the display equipment so it could be integrated with the NASA Research RPB (RPRV) remote control cockpit.

  1. View compensated compression of volume rendered images for remote visualization.

    Science.gov (United States)

    Lalgudi, Hariharan G; Marcellin, Michael W; Bilgin, Ali; Oh, Han; Nadar, Mariappan S

    2009-07-01

    Remote visualization of volumetric images has gained importance over the past few years in medical and industrial applications. Volume visualization is a computationally intensive process, often requiring hardware acceleration to achieve a real time viewing experience. One remote visualization model that can accomplish this would transmit rendered images from a server, based on viewpoint requests from a client. For constrained server-client bandwidth, an efficient compression scheme is vital for transmitting high quality rendered images. In this paper, we present a new view compensation scheme that utilizes the geometric relationship between viewpoints to exploit the correlation between successive rendered images. The proposed method obviates motion estimation between rendered images, enabling significant reduction to the complexity of a compressor. Additionally, the view compensation scheme, in conjunction with JPEG2000 performs better than AVC, the state of the art video compression standard.

  2. Real-time markerless Augmented Reality for Remote Handling system in bad viewing conditions

    International Nuclear Information System (INIS)

    Ziaei, Z.; Hahto, A.; Mattila, J.; Siuko, M.; Semeraro, L.

    2011-01-01

    Remote Handling (RH) in harsh environments usually has to tackle the lack of sufficient visual feedback for the human operator due to the limited number of on-site cameras, the not optimized position of the cameras, the poor viewing angles, occlusion, failure, etc. Augmented Reality (AR) enables the user to perceive virtual computer-generated objects in a real scene. The most common goals usually include visibility enhancement and provision of extra information, such as positional data of various objects. The proposed AR system first recognizes and locates the markerless object by using a template based matching algorithm, and then augments the virtual model on top of the recognized item. The tracking algorithm is exploited for locating the object in a continuous sequence of frames. Conceptually, the template is found by computing the similarity between the template and the image frame, for all the relevant template poses (rotation and translation). As a case study, AR interface was displaying measured orientation and transformation of the Water Hydraulic Manipulator (WHMAN) Divertor preloading tool, in near real-time tracking. The bad viewing condition implies on the case when the view angle is such that the interesting features of the object are not in the field of view. The method in this paper was validated in concrete operational context at DTP2. The developed method proved to deliver robust positional and orientation information while augmenting and tracking the moving tool object.

  3. Remote sensing research in geographic education: An alternative view

    Science.gov (United States)

    Wilson, H.; Cary, T. K.; Goward, S. N.

    1981-01-01

    It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.

  4. Enhanced computational infrastructure for data analysis at the DIII-D National Fusion Facility

    International Nuclear Information System (INIS)

    Schissel, D.P.; Peng, Q.; Schachter, J.; Terpstra, T.B.; Casper, T.A.; Freeman, J.; Jong, R.; Keith, K.M.; McHarg, B.B.; Meyer, W.H.; Parker, C.T.

    2000-01-01

    Recently a number of enhancements to the computer hardware infrastructure have been implemented at the DIII-D National Fusion Facility. Utilizing these improvements to the hardware infrastructure, software enhancements are focusing on streamlined analysis, automation, and graphical user interface (GUI) systems to enlarge the user base. The adoption of the load balancing software package LSF Suite by Platform Computing has dramatically increased the availability of CPU cycles and the efficiency of their use. Streamlined analysis has been aided by the adoption of the MDSplus system to provide a unified interface to analyzed DIII-D data. The majority of MDSplus data is made available in between pulses giving the researcher critical information before setting up the next pulse. Work on data viewing and analysis tools focuses on efficient GUI design with object-oriented programming (OOP) for maximum code flexibility. Work to enhance the computational infrastructure at DIII-D has included a significant effort to aid the remote collaborator since the DIII-D National Team consists of scientists from nine national laboratories, 19 foreign laboratories, 16 universities, and five industrial partnerships. As a result of this work, DIII-D data is available on a 24x7 basis from a set of viewing and analysis tools that can be run on either the collaborators' or DIII-D's computer systems. Additionally, a web based data and code documentation system has been created to aid the novice and expert user alike

  5. Enhanced Computational Infrastructure for Data Analysis at the DIII-D National Fusion Facility

    International Nuclear Information System (INIS)

    Schissel, D.P.; Peng, Q.; Schachter, J.; Terpstra, T.B.; Casper, T.A.; Freeman, J.; Jong, R.; Keith, K.M.; Meyer, W.H.; Parker, C.T.; McCharg, B.B.

    1999-01-01

    Recently a number of enhancements to the computer hardware infrastructure have been implemented at the DIII-D National Fusion Facility. Utilizing these improvements to the hardware infrastructure, software enhancements are focusing on streamlined analysis, automation, and graphical user interface (GUI) systems to enlarge the user base. The adoption of the load balancing software package LSF Suite by Platform Computing has dramatically increased the availability of CPU cycles and the efficiency of their use. Streamlined analysis has been aided by the adoption of the MDSplus system to provide a unified interface to analyzed DIII-D data. The majority of MDSplus data is made available in between pulses giving the researcher critical information before setting up the next pulse. Work on data viewing and analysis tools focuses on efficient GUI design with object-oriented programming (OOP) for maximum code flexibility. Work to enhance the computational infrastructure at DIII-D has included a significant effort to aid the remote collaborator since the DIII-D National Team consists of scientists from 9 national laboratories, 19 foreign laboratories, 16 universities, and 5 industrial partnerships. As a result of this work, DIII-D data is available on a 24 x 7 basis from a set of viewing and analysis tools that can be run either on the collaborators' or DIII-Ds computer systems. Additionally, a Web based data and code documentation system has been created to aid the novice and expert user alike

  6. A New Remote Monitoring System Application in Laser Power Based on LabVIEW

    Directory of Open Access Journals (Sweden)

    Liu Gaoqiang

    2016-01-01

    Full Text Available In this paper, a new remote monitoring system based on LabVIEW was proposed to measure laser power automatically and remotely. This system consists of four basic components: an DH-JG2 optical power meter, a NI-USB 6008 data acquisition card, a personal computer (PC, and HP laserJet 1020 Plus printer. Since power output of laser is generally so unstable that abnormal work situation could not retroaction to inspectors right away, new system was designed to solve this problem. The detection system realized function of remote control by TCP protocol and mobile phone. Laser power curve that is measured by detection system demonstrated that the design has a good performance in real-time detection and operability.

  7. Distributed computing testbed for a remote experimental environment

    International Nuclear Information System (INIS)

    Butner, D.N.; Casper, T.A.; Howard, B.C.; Henline, P.A.; Davis, S.L.; Barnes, D.

    1995-01-01

    Collaboration is increasing as physics research becomes concentrated on a few large, expensive facilities, particularly in magnetic fusion energy research, with national and international participation. These facilities are designed for steady state operation and interactive, real-time experimentation. We are developing tools to provide for the establishment of geographically distant centers for interactive operations; such centers would allow scientists to participate in experiments from their home institutions. A testbed is being developed for a Remote Experimental Environment (REE), a ''Collaboratory.'' The testbed will be used to evaluate the ability of a remotely located group of scientists to conduct research on the DIII-D Tokamak at General Atomics. The REE will serve as a testing environment for advanced control and collaboration concepts applicable to future experiments. Process-to-process communications over high speed wide area networks provide real-time synchronization and exchange of data among multiple computer networks, while the ability to conduct research is enhanced by adding audio/video communication capabilities. The Open Software Foundation's Distributed Computing Environment is being used to test concepts in distributed control, security, naming, remote procedure calls and distributed file access using the Distributed File Services. We are exploring the technology and sociology of remotely participating in the operation of a large scale experimental facility

  8. Digital remote viewing system for coronary care unit

    International Nuclear Information System (INIS)

    Cho, P.S.; Tillisch, J.; Huang, H.K.

    1987-01-01

    A digital remote viewing system developed for the coronary care unit at the UCLA Medical Center has been in clinical operation since March 1, 1987. The present system consists of three 512-line monitors, VAX 11/750, Gould IP8500 image processor and a broad-band communication system. The patients' images are acquired with a computed radiography system and are transmitted to the coronary care unit, which is five floors above the radiology department. This exhibit presents the architecture and the performance characteristics of the system. Also, the second-generation system, which consists of an intelligent local work station with three 1,024-line monitors and a fast digital communication network, will be introduced

  9. Remote Viewing End Effectors for Light Duty Utility Arm Robot (U)

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Robinson, C.W.; Haynes, H.B.; Anderosn, E.K.; Pardini, A.F.

    1996-01-01

    The Robotics Development Groups at the Savannah River Site (SRS) and at the Hanford site have developed remote video and photography systems for deployment in underground radioactive-waste storage tanks at the Department of Energy (DOE) sites as a part of the Office of Science and Technology (OST) program within DOE. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and out of the tank, with all viewing functions remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Only the remote video systems are discussed in this paper

  10. MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH

    Data.gov (United States)

    National Aeronautics and Space Administration — MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH VARUN CHANDOLA AND RANGA RAJU VATSAVAI Abstract. Multispectral remote sensing images have...

  11. Remote viewing system development in BNFL

    International Nuclear Information System (INIS)

    Case, D.R.; Garlick, D.R.; Crawford, G.; Montgomerie, J.

    1996-01-01

    The application of imaging systems to BNFL's plants is primarily provided by the Company's Engineering Group. Many systems have been developed for active service and several new developments are currently in an advanced stage of implementation. BNFL has acquired extensive experience of remote viewing from a series of projects undertaken for the Sellafield site in West Cumbria. Applications vary in size and complexity, from simple identification of bar-codes to more complex schemes for remotely storing UO 3 drums. Some are high speed and highly repetitive, whereas others are low speed but require high precision. In this paper the authors outline a selection of current applications. (UK)

  12. Remote viewing system development in BNFL

    International Nuclear Information System (INIS)

    Case, D.R.; Garlick, D.R.; Crawford, G.; Montgomerie, J.

    1996-01-01

    The application of imaging systems to BNFL's plants is primarily provided by the Company's Engineering Group. Many systems have been developed for active service and several new developments are currently in an advanced stage of implementation. BNFL has acquired extensive experience of remote viewing from a series of projects undertaken for the Sellafield site in West Cumbria. Applications vary in size and complexity, from simple identification of bar-codes to more complex schemes for remotely storing UO 3 drums. Some are high speed and highly repetitive, whereas others are low speed but require high precision. In this paper the authors shall outline a selection of current applications. (Author)

  13. Remote maintenance of Compact Ignition Tokamak ex-vessel systems

    International Nuclear Information System (INIS)

    DePew, R.E.; Macdonald, D.

    1989-01-01

    The use of deuterium-tritium (D-T) fuel in the Compact Ignition Tokamak (CIT) will require applying remote handling technology for ex-vessel maintenance and replacement of machine components. Highly activated and contaminated components of the fusion device's auxiliary systems, such as diagnostics and RF heating, must be replaced using remotely operated maintenance equipment in the test cell. Throughout the CIT remote maintenance (RM) studies conducted to date, computer modeling has been used extensively to investigate manipulator access in these complex, tightly packed, and cluttered surroundings. A recent refinement of computer modeling involves the use of an intelligent engineering work station for realtime interactive display of task simulations. This paper discusses the use of three-dimensional (3-D) kinematic computer models of the CIT machines that are proving to be powerful tools in our efforts to evaluate RM requirements. This presentation includes a video-taped simulation of remote replacement of a plasma viewing assembly. The simulation illustrates some of the constraints associated with typical RM activities and the ways in which computer modeling enhances the design process. 1 ref., 3 figs

  14. Remote viewing optical instruments for nuclear installations [Paper No.: J8

    International Nuclear Information System (INIS)

    Das, N.C.; Koppikar, R.S.; Modi, R.K.; Radke, M.G.

    1993-01-01

    Inspection of highly radioactive components and materials in the hot cell and the reactor core requires several remote viewing and remote handling equipment, considering the safety of the operator. With this objective two wall periscopes for the hot cells of the Waste Immobilisation Project (WIP) at Tarapur , a remote viewing macrograph for the hot cell facility at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam and a core viewing periscope for the fast breeder test reactor (FBTR), Kalpakkam has also been developed. Construction principle and the experimental performance of these instruments are discussed. The overall visual magnifications of the WIP and the FBTR periscopes are 2x and the same for the IGCAR macrograph is 20x. (author). 3 figs

  15. Computerized data reduction techniques for nadir viewing remote sensors

    Science.gov (United States)

    Tiwari, S. N.; Gormsen, Barbara B.

    1985-01-01

    Computer resources have been developed for the analysis and reduction of MAPS experimental data from the OSTA-1 payload. The MAPS Research Project is concerned with the measurement of the global distribution of mid-tropospheric carbon monoxide. The measurement technique for the MAPS instrument is based on non-dispersive gas filter radiometer operating in the nadir viewing mode. The MAPS experiment has two passive remote sensing instruments, the prototype instrument which is used to measure tropospheric air pollution from aircraft platforms and the third generation (OSTA) instrument which is used to measure carbon monoxide in the mid and upper troposphere from space platforms. Extensive effort was also expended in support of the MAPS/OSTA-3 shuttle flight. Specific capabilities and resources developed are discussed.

  16. Remote operations and viewing using the monitor system

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.; Baldwin, T.S.; Ekberg, E.L.; Hernandez, T.R.; Raybun, J.L.

    1984-01-01

    Over the past two years, major rebuilding operations were conducted at the Clinton P. Anderson Meson Physics Facility (LAMPF). These operations involved replacement of complex experimental apparatus in high-radiation areas using servomanipulators and video viewing. All remote tasks were completed on or ahead of allotted schedules. This success is attributed to continuing improvement of manipulators, viewing systems, and operating techniques

  17. Optimal directional view angles for remote-sensing missions

    Science.gov (United States)

    Kimes, D. S.; Holben, B. N.; Tucker, C. J.; Newcomb, W. W.

    1984-01-01

    The present investigation is concerned with the directional, off-nadir viewing of terrestrial scenes using remote-sensing systems from aircraft and satellite platforms, taking into account advantages of such an approach over strictly nadir viewing systems. Directional reflectance data collected for bare soil and several different vegetation canopies in NOAA-7 AVHRR bands 1 and 2 were analyzed. Optimum view angles were recommended for two strategies. The first strategy views the utility of off-nadir measurements as extending spatial and temporal coverage of the target area. The second strategy views the utility of off-nadir measurements as providing additional information about the physical characteristics of the target. Conclusions regarding the two strategies are discussed.

  18. Design of Remote Power Plant Monitoring System Based on LabVIEW and VC++ Software

    Directory of Open Access Journals (Sweden)

    Dawei Tan

    2013-05-01

    Full Text Available This study designs a real-time remote monitoring system based on LabVIEW and Microsoft Visual C++ for Plant Units. The server written in LabVIEW uses for data acquisition and storage. The server adopts the TCP and DataSocket to communicate with the VC client. The remote VC client can accept real-time data and process data, enabling remote monitoring.

  19. Depth Perception In Remote Stereoscopic Viewing Systems

    Science.gov (United States)

    Diner, Daniel B.; Von Sydow, Marika

    1989-01-01

    Report describes theoretical and experimental studies of perception of depth by human operators through stereoscopic video systems. Purpose of such studies to optimize dual-camera configurations used to view workspaces of remote manipulators at distances of 1 to 3 m from cameras. According to analysis, static stereoscopic depth distortion decreased, without decreasing stereoscopitc depth resolution, by increasing camera-to-object and intercamera distances and camera focal length. Further predicts dynamic stereoscopic depth distortion reduced by rotating cameras around center of circle passing through point of convergence of viewing axes and first nodal points of two camera lenses.

  20. Video compression and DICOM proxies for remote viewing of DICOM images

    Science.gov (United States)

    Khorasani, Elahe; Sheinin, Vadim; Paulovicks, Brent; Jagmohan, Ashish

    2009-02-01

    Digital medical images are rapidly growing in size and volume. A typical study includes multiple image "slices." These images have a special format and a communication protocol referred to as DICOM (Digital Imaging Communications in Medicine). Storing, retrieving, and viewing these images are handled by DICOM-enabled systems. DICOM images are stored in central repository servers called PACS (Picture Archival and Communication Systems). Remote viewing stations are DICOM-enabled applications that can query the PACS servers and retrieve the DICOM images for viewing. Modern medical images are quite large, reaching as much as 1 GB per file. When the viewing station is connected to the PACS server via a high-bandwidth local LAN, downloading of the images is relatively efficient and does not cause significant wasted time for physicians. Problems arise when the viewing station is located in a remote facility that has a low-bandwidth link to the PACS server. If the link between the PACS and remote facility is in the range of 1 Mbit/sec, downloading medical images is very slow. To overcome this problem, medical images are compressed to reduce the size for transmission. This paper describes a method of compression that maintains diagnostic quality of images while significantly reducing the volume to be transmitted, without any change to the existing PACS servers and viewer software, and without requiring any change in the way doctors retrieve and view images today.

  1. Online Cloud Offloading Using Heterogeneous Enhanced Remote Radio Heads

    KAUST Repository

    Shnaiwer, Yousef N.

    2018-02-12

    This paper studies the cloud offloading gains of using heterogeneous enhanced remote radio heads (eRRHs) and dual-interface clients in fog radio access networks (F-RANs). First, the cloud offloading problem is formulated as a collection of independent sets selection problem over a network coding graph, and its NP-hardness is shown. Therefore, a computationally simple online heuristic algorithm is proposed, that maximizes cloud offloading by finding an efficient schedule of coded file transmissions from the eRRHs and the cloud base station (CBS). Furthermore, a lower bound on the average number of required CBS channels to serve all clients is derived. Simulation results show that our proposed framework that uses both network coding and a heterogeneous F-RAN setting enhances cloud offloading as compared to conventional homogeneous F-RANs with network coding.

  2. Trends in remote handling device development

    International Nuclear Information System (INIS)

    Raimondi, T.

    1991-01-01

    A brief review is given of studies on layouts and methods for handling some major components requiring remote maintenance in future fusion reactors: Neutral sources and beam lines, the blanket, divertor plates, armour tiles and vacuum pumps. Comparison is made to problems encountered in JET, methods and equipment used and development work done there. Areas requiring development and research are outlined. These include topics which are the subject of papers presented here, such as dynamic studies and control of transporters, improvements to the man-machine interface and hot cell equipment. A variety of other topics where effort is needed are also mentioned: Environmental tolerance of components and equipment, TV viewing and compensation of viewing difficulties with aids such as computer graphics and image processing, safety assessment, computer aids for remote manipulation, remote cutting and welding techniques, routine in-vessel inspection methods and selection of connectors and flanges for remote handling. (orig.)

  3. Remote intelligent nuclear facility monitoring in LabVIEW

    International Nuclear Information System (INIS)

    Kucewicz, J.C.; Argo, P.E.; Caffrey, M.; Loveland, R.C.; McNeil, P.J.

    1996-01-01

    A prototype system implemented in LabVIEW for the intelligent monitoring of the movement of radioactive' material within a nuclear facility is presented. The system collects and analyzes radiation sensor and video data to identify suspicious movement of material within the facility. The facility system also transmits wavelet- compressed data to a remote system for concurrent monitoring. 2 refs., 2 figs

  4. Potential of remote sensing of cirrus optical thickness by airborne spectral radiance measurements at different sideward viewing angles

    Science.gov (United States)

    Wolf, Kevin; Ehrlich, André; Hüneke, Tilman; Pfeilsticker, Klaus; Werner, Frank; Wirth, Martin; Wendisch, Manfred

    2017-03-01

    -DOAS channels is 0.26 ± 0.2. For the few simultaneous measurements, the mini-DOAS sideward channel measurements systematically underestimate (-17.6 %) the nadir observations from SMART and mini-DOAS. The agreement between mini-DOAS sideward viewing channels and WALES is better, showing the advantage of using sideward viewing measurements for cloud remote sensing for τ ≤ 1. Therefore, we suggest sideward viewing measurements for retrievals of τ of thin cirrus because of the significantly enhanced capability of sideward viewing compared to nadir measurements.

  5. Acquirement and enhancement of remote speech signals

    Science.gov (United States)

    Lü, Tao; Guo, Jin; Zhang, He-yong; Yan, Chun-hui; Wang, Can-jin

    2017-07-01

    To address the challenges of non-cooperative and remote acoustic detection, an all-fiber laser Doppler vibrometer (LDV) is established. The all-fiber LDV system can offer the advantages of smaller size, lightweight design and robust structure, hence it is a better fit for remote speech detection. In order to improve the performance and the efficiency of LDV for long-range hearing, the speech enhancement technology based on optimally modified log-spectral amplitude (OM-LSA) algorithm is used. The experimental results show that the comprehensible speech signals within the range of 150 m can be obtained by the proposed LDV. The signal-to-noise ratio ( SNR) and mean opinion score ( MOS) of the LDV speech signal can be increased by 100% and 27%, respectively, by using the speech enhancement technology. This all-fiber LDV, which combines the speech enhancement technology, can meet the practical demand in engineering.

  6. Remote monitoring of vacuum and valve status using LabVIEW

    International Nuclear Information System (INIS)

    Rozario, C.; Pal, S.; Nanal, V.; Pillay, R.G.

    2015-01-01

    For remote monitoring of vacuum status in LINAC and associated beam transport lines, a LabVIEW based interface through RS232 communication is developed. All vacuum stations in LINAC are equipped with Pfeiffer pressure measurement units, namely, TPQ 262 (for 2 no.s) and TPG256 (for 6 no.s). The communication to the unit is done via RS232 with the Serial Device Server. The electro-pneumatic gate valves separating beam line sections and cryostats are fitted with limit switches for indicating open/close status. A modular unit based on PIC 18F4520 microcontroller is developed to read the limit switch positions of up to 10 valves. Both the vacuum readout unit and the gate valve monitor unit act as a server to the client PC on the console. Each unit is assigned a unique IP address and connected to the TCP/IP Ethernet bus. The LabVIEW Virtual Instrument based TCP/IP is used for communication through the distributed LAN. It is possible to connect additional client PCs using the LabVIEW Remote Console features. During the accelerator operation the vacuum reading of the gauge and the status of valves can be monitored from the control room console. All the vacuum parameters like gauge value and status at different physical locations are scanned and logged approximately every second. The LabVIEW GUI has helped in making the system user friendly and can be expanded easily. (author)

  7. AN INTERACTIVE WEB-BASED ANALYSIS FRAMEWORK FOR REMOTE SENSING CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    X. Z. Wang

    2015-07-01

    Full Text Available Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users’ private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook

  8. An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing

    Science.gov (United States)

    Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.

    2015-07-01

    Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write

  9. Developments in Remote Collaboration and Computation

    International Nuclear Information System (INIS)

    Burruss, J.R.; Abla, G.; Flanagan, S.; Keahey, K.; Leggett, T.; Ludesche, C.; McCune, D.; Papka, M.E.; Peng, Q.; Randerson, L.; Schissel, D.P.

    2005-01-01

    The National Fusion Collaboratory (NFC) is creating and deploying collaborative software tools to unite magnetic fusion research in the United States. In particular, the NFC is developing and deploying a national FES 'Grid' (FusionGrid) for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid is to allow scientists at remote sites to participate as fully in experiments, machine design, and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community

  10. Remote viewing with the artist Ingo Swann: neuropsychological profile, electroencephalographic correlates, magnetic resonance imaging (MRI), and possible mechanisms.

    Science.gov (United States)

    Persinger, M A; Roll, W G; Tiller, S G; Koren, S A; Cook, C M

    2002-06-01

    In the present study, the artist Ingo Swann, who helped develop the process of remote viewing (awareness of distant objects or places without employing normal senses), was exposed during a single setting of 30 min. to specific patterns of circumcerebral magnetic fields that significantly altered his subjective experiences. Several times during subsequent days, he was asked to sit in a quiet chamber and to sketch and to describe verbally distant stimuli (pictures or places) beyond his normal senses. The proportions of unusual 7-Hz spike and slow wave activity over the occipital lobes per trial were moderately correlated (rho=.50) with the ratings of accuracy between these distal, hidden stimuli and his responses. A neuropsychological assessment and Magnetic Resonance Imaging indicated a different structural and functional organization within the parieto-occipital region of the subject's right hemisphere from organizations typically noted. The results suggest that this type of paranormal phenomenon, often dismissed as methodological artifact or accepted as proofs of spiritual existence, is correlated with neurophysiological processes and physical events. Remote viewing may be enhanced by complex experimentally generated magnetic fields designed to interact with the neuromagnetic "binding factor" of consciousness.

  11. Towards Dynamic Remote Data Auditing in Computational Clouds

    Science.gov (United States)

    Khurram Khan, Muhammad; Anuar, Nor Badrul

    2014-01-01

    Cloud computing is a significant shift of computational paradigm where computing as a utility and storing data remotely have a great potential. Enterprise and businesses are now more interested in outsourcing their data to the cloud to lessen the burden of local data storage and maintenance. However, the outsourced data and the computation outcomes are not continuously trustworthy due to the lack of control and physical possession of the data owners. To better streamline this issue, researchers have now focused on designing remote data auditing (RDA) techniques. The majority of these techniques, however, are only applicable for static archive data and are not subject to audit the dynamically updated outsourced data. We propose an effectual RDA technique based on algebraic signature properties for cloud storage system and also present a new data structure capable of efficiently supporting dynamic data operations like append, insert, modify, and delete. Moreover, this data structure empowers our method to be applicable for large-scale data with minimum computation cost. The comparative analysis with the state-of-the-art RDA schemes shows that the proposed scheme is secure and highly efficient in terms of the computation and communication overhead on the auditor and server. PMID:25121114

  12. Towards Dynamic Remote Data Auditing in Computational Clouds

    Directory of Open Access Journals (Sweden)

    Mehdi Sookhak

    2014-01-01

    Full Text Available Cloud computing is a significant shift of computational paradigm where computing as a utility and storing data remotely have a great potential. Enterprise and businesses are now more interested in outsourcing their data to the cloud to lessen the burden of local data storage and maintenance. However, the outsourced data and the computation outcomes are not continuously trustworthy due to the lack of control and physical possession of the data owners. To better streamline this issue, researchers have now focused on designing remote data auditing (RDA techniques. The majority of these techniques, however, are only applicable for static archive data and are not subject to audit the dynamically updated outsourced data. We propose an effectual RDA technique based on algebraic signature properties for cloud storage system and also present a new data structure capable of efficiently supporting dynamic data operations like append, insert, modify, and delete. Moreover, this data structure empowers our method to be applicable for large-scale data with minimum computation cost. The comparative analysis with the state-of-the-art RDA schemes shows that the proposed scheme is secure and highly efficient in terms of the computation and communication overhead on the auditor and server.

  13. Experiences with remote electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Parvin, Bahram

    2002-02-22

    With the advent of a rapidly proliferating international computer network, it became feasible to consider remote operation of instrumentation normally operated locally. For modern electron microscopes, the growing automation and computer control of many instrumental operations facilitated the task of providing remote operation. In order to provide use of NCEM TEMs by distant users, a project was instituted in 1995 to place a unique instrument, a Kratos EM-1500 operating at 1.5MeV, on-line for remote use. In 1996, the Materials Microcharacterization Collaboratory (MMC) was created as a pilot project within the US Department of Energy's DOE2000 program to establish national collaboratories to provide access via the Internet to unique or expensive DOE research facilities as well as to expertise for remote collaboration, experimentation, production, software development, modeling, and measurement. A major LBNL contribution to the MMC was construction of DeepView, a microscope-independent computer-control system that could be ported to other MMC members to provide a common graphical user-interface (GUI) for control of any MMC instrument over the wide area network.

  14. Remote Sensing: The View from Above. Know Your Environment.

    Science.gov (United States)

    Academy of Natural Sciences, Philadelphia, PA.

    This publication identifies some of the general concepts of remote sensing and explains the image collection process and computer-generated reconstruction of the data. Monitoring the ecological collapse in coral reefs, weather phenomena like El Nino/La Nina, and U.S. Space Shuttle-based sensing projects are some of the areas for which remote…

  15. Design and Manufacturing of Remote Control for Children Viewing Using Children Inspiration

    OpenAIRE

    Madani, R.; Moroz, Adam

    2012-01-01

    N/A The recruitment of children’s imagination in the development of new product design provides an interesting source of new ideas for product development, including for products for children. This study is related to the design and manufacture of a prototype for a remote control that controls television viewing content for children, to protect them from inappropriate content, control their viewing time and keep them at a safe distance from the television screen. For security reasons this ...

  16. Java-based remote viewing and processing of nuclear medicine images: toward "the imaging department without walls".

    Science.gov (United States)

    Slomka, P J; Elliott, E; Driedger, A A

    2000-01-01

    In nuclear medicine practice, images often need to be reviewed and reports prepared from locations outside the department, usually in the form of hard copy. Although hard-copy images are simple and portable, they do not offer electronic data search and image manipulation capabilities. On the other hand, picture archiving and communication systems or dedicated workstations cannot be easily deployed at numerous locations. To solve this problem, we propose a Java-based remote viewing station (JaRViS) for the reading and reporting of nuclear medicine images using Internet browser technology. JaRViS interfaces to the clinical patient database of a nuclear medicine workstation. All JaRViS software resides on a nuclear medicine department server. The contents of the clinical database can be searched by a browser interface after providing a password. Compressed images with the Java applet and color lookup tables are downloaded on the client side. This paradigm does not require nuclear medicine software to reside on remote computers, which simplifies support and deployment of such a system. To enable versatile reporting of the images, color tables and thresholds can be interactively manipulated and images can be displayed in a variety of layouts. Image filtering, frame grouping (adding frames), and movie display are available. Tomographic mode displays are supported, including gated SPECT. The time to display 14 lung perfusion images in 128 x 128 matrix together with the Java applet and color lookup tables over a V.90 modem is remote nuclear medicine viewing station using Java and an Internet or intranet browser. Images can be made easily and cost-effectively available to referring physicians and ambulatory clinics within and outside of the hospital, providing a convenient alternative to film media. We also find this system useful in home reporting of emergency procedures such as lung ventilation-perfusion scans or dynamic studies.

  17. Technology of remote monitoring for nuclear activity monitoring

    International Nuclear Information System (INIS)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry

  18. Technology of remote monitoring for nuclear activity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Ehn Ho; Kim, Jong Soo; Yoon, Wan Ki; Park, Sung Sik; Na, Won Woo; An, Jin Soo; Cha, Hong Ryul; Kim, Jung Soo

    2000-05-01

    In a view of safeguards monitoring at nuclear facilities, the monitoring is changing to remote method so that this report is described to remote monitoring(RM) applying on commercial NPP in Korea. To enhance IAEA safeguards efficiency and effectiveness, IAEA is taking into account of remote monitoring system(RMS) and testing as a field trial. IRMP(International Remote Monitoring Project) in participating many nations for development of RMS is proceeding their project such as technical exchange and research etc. In case of our country are carrying out the research relevant RM since acceptance RMS at 7th ROK-IAEA safeguards implementation review meeting. With a view to enhancement the RMS, installation location and element technology of the RM equipment are evaluated in a view of safeguards in Korea LWRs, and proposed a procedure for national inspection application through remote data evaluation from Younggwang-3 NPP. These results are large valuable to use of national inspection at time point extending installation to all Korea PWR NPP. In case of CANDU, neutron, gamma measurement and basic concept of network using optical fiber scintillating detector as remote verification method for dry storage canister are described. Also RM basic design of spent fuel transfer campaign is described that unattended RM without inspector instead of performing in participating together with IAEA and national inspector. The transfer campaign means the spent fuel storage pond to dry storage canister for about two months every year. Therefore, positively participation of IAEA strength safeguards project will be increased transparency for our nuclear activity as well as contributed to national relevant industry.

  19. Remote data access in computational jobs on the ATLAS data grid

    CERN Document Server

    Begy, Volodimir; The ATLAS collaboration; Lassnig, Mario

    2018-01-01

    This work describes the technique of remote data access from computational jobs on the ATLAS data grid. In comparison to traditional data movement and stage-in approaches it is well suited for data transfers which are asynchronous with respect to the job execution. Hence, it can be used for optimization of data access patterns based on various policies. In this study, remote data access is realized with the HTTP and WebDAV protocols, and is investigated in the context of intra- and inter-computing site data transfers. In both cases, the typical scenarios for application of remote data access are identified. The paper also presents an analysis of parameters influencing the data goodput between heterogeneous storage element - worker node pairs on the grid.

  20. Experiment Design Regularization-Based Hardware/Software Codesign for Real-Time Enhanced Imaging in Uncertain Remote Sensing Environment

    Directory of Open Access Journals (Sweden)

    Castillo Atoche A

    2010-01-01

    Full Text Available A new aggregated Hardware/Software (HW/SW codesign approach to optimization of the digital signal processing techniques for enhanced imaging with real-world uncertain remote sensing (RS data based on the concept of descriptive experiment design regularization (DEDR is addressed. We consider the applications of the developed approach to typical single-look synthetic aperture radar (SAR imaging systems operating in the real-world uncertain RS scenarios. The software design is aimed at the algorithmic-level decrease of the computational load of the large-scale SAR image enhancement tasks. The innovative algorithmic idea is to incorporate into the DEDR-optimized fixed-point iterative reconstruction/enhancement procedure the convex convergence enforcement regularization via constructing the proper multilevel projections onto convex sets (POCS in the solution domain. The hardware design is performed via systolic array computing based on a Xilinx Field Programmable Gate Array (FPGA XC4VSX35-10ff668 and is aimed at implementing the unified DEDR-POCS image enhancement/reconstruction procedures in a computationally efficient multi-level parallel fashion that meets the (near real-time image processing requirements. Finally, we comment on the simulation results indicative of the significantly increased performance efficiency both in resolution enhancement and in computational complexity reduction metrics gained with the proposed aggregated HW/SW co-design approach.

  1. Remote fabrication of breeder reactor fuel

    International Nuclear Information System (INIS)

    Gerber, E.W.; Hoitink, N.C.; Graham, R.A.

    1984-06-01

    The Secure Automated Fabrication (SAF) Line, a remotely operable plutonium fuel fabrication facility, incorporates advanced automation techniques. Included in the plant are 24 robots used to perform complex operations, and to enhance equipment standardization and ease of maintenance. Automated equipment is controlled remotely from centrally located supervisory computer control consoles or alternatively from control consoles dedicated to individual systems

  2. Dynamic integration of remote cloud resources into local computing clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fleig, Georg; Erli, Guenther; Giffels, Manuel; Hauth, Thomas; Quast, Guenter; Schnepf, Matthias [Institut fuer Experimentelle Kernphysik, Karlsruher Institut fuer Technologie (Germany)

    2016-07-01

    In modern high-energy physics (HEP) experiments enormous amounts of data are analyzed and simulated. Traditionally dedicated HEP computing centers are built or extended to meet this steadily increasing demand for computing resources. Nowadays it is more reasonable and more flexible to utilize computing power at remote data centers providing regular cloud services to users as they can be operated in a more efficient manner. This approach uses virtualization and allows the HEP community to run virtual machines containing a dedicated operating system and transparent access to the required software stack on almost any cloud site. The dynamic management of virtual machines depending on the demand for computing power is essential for cost efficient operation and sharing of resources with other communities. For this purpose the EKP developed the on-demand cloud manager ROCED for dynamic instantiation and integration of virtualized worker nodes into the institute's computing cluster. This contribution will report on the concept of our cloud manager and the implementation utilizing a remote OpenStack cloud site and a shared HPC center (bwForCluster located in Freiburg).

  3. Computational Ghost Imaging for Remote Sensing

    Science.gov (United States)

    Erkmen, Baris I.

    2012-01-01

    This work relates to the generic problem of remote active imaging; that is, a source illuminates a target of interest and a receiver collects the scattered light off the target to obtain an image. Conventional imaging systems consist of an imaging lens and a high-resolution detector array [e.g., a CCD (charge coupled device) array] to register the image. However, conventional imaging systems for remote sensing require high-quality optics and need to support large detector arrays and associated electronics. This results in suboptimal size, weight, and power consumption. Computational ghost imaging (CGI) is a computational alternative to this traditional imaging concept that has a very simple receiver structure. In CGI, the transmitter illuminates the target with a modulated light source. A single-pixel (bucket) detector collects the scattered light. Then, via computation (i.e., postprocessing), the receiver can reconstruct the image using the knowledge of the modulation that was projected onto the target by the transmitter. This way, one can construct a very simple receiver that, in principle, requires no lens to image a target. Ghost imaging is a transverse imaging modality that has been receiving much attention owing to a rich interconnection of novel physical characteristics and novel signal processing algorithms suitable for active computational imaging. The original ghost imaging experiments consisted of two correlated optical beams traversing distinct paths and impinging on two spatially-separated photodetectors: one beam interacts with the target and then illuminates on a single-pixel (bucket) detector that provides no spatial resolution, whereas the other beam traverses an independent path and impinges on a high-resolution camera without any interaction with the target. The term ghost imaging was coined soon after the initial experiments were reported, to emphasize the fact that by cross-correlating two photocurrents, one generates an image of the target. In

  4. A web-based remote radiation treatment planning system using the remote desktop function of a computer operating system: a preliminary report.

    Science.gov (United States)

    Suzuki, Keishiro; Hirasawa, Yukinori; Yaegashi, Yuji; Miyamoto, Hideki; Shirato, Hiroki

    2009-01-01

    We developed a web-based, remote radiation treatment planning system which allowed staff at an affiliated hospital to obtain support from a fully staffed central institution. Network security was based on a firewall and a virtual private network (VPN). Client computers were installed at a cancer centre, at a university hospital and at a staff home. We remotely operated the treatment planning computer using the Remote Desktop function built in to the Windows operating system. Except for the initial setup of the VPN router, no special knowledge was needed to operate the remote radiation treatment planning system. There was a time lag that seemed to depend on the volume of data traffic on the Internet, but it did not affect smooth operation. The initial cost and running cost of the system were reasonable.

  5. Multichannel signal enhancement using a remote wireless microphone

    NARCIS (Netherlands)

    Bloemendal, Brian; Van De Laar, Jakob; Sommen, Piet

    2012-01-01

    A novel approach to multichannel signal enhancement is presented that exploits data from a remote wireless microphone (RWM). This RWM is placed near an interfering source and transmits only autocorrelation data of its observations to a host, i.e., not the entire signal. The host has access to the

  6. High contrast enhancement aspect of dynamic computed tomography with arterial infusion - DCT-AI

    International Nuclear Information System (INIS)

    Kato, Seishi; Iwasaki, Naoya; Matsumura, Yoshimitsu; Kuramae, Shigeru; Mishiro, Tadashi

    1983-01-01

    Dynamic computed tomography was performed on 112 cases possibly having hepatic tumors with intraarterial infusion of undiluted contrast into a selectively placed catheter following angiographies. Our dynamic program could evaluate not only early phase of enhancement but also late phase up to 120 sec. Reconstructed views from early scans and magnified views were very useful to evaluate minute sequential changes. Hepatic masses less than 5 cm in size were found in thirty-one cases. Patterns of tumor enhancement and time-density curves have been analysed to correlate them with histology. Four types of tumor enhancement were noted: (1) homogeneous (2) patchy (3) mottled (4) ringed. Characteristic changes were observed in hepatocellular carcinoma - HCC - (mostly mottled) and haemangioma (mostly patchy). The former was divided in two groups reflecting the cellular maturity. The metastatic tumor could be enhanced in a ringed form with dendritic pattern of supplying vascularities in some cases. To support the use of undiluted contrast and to investigate the diagnostic efficacy of high contrast enhancement, experiments were performed by taking transaxial views of an acrylic phantom immersed in different concentrations of contrast. Analysis of CT images taken at different HU values ranging from 0 to 450 demonstrated that the higher the concentration of contrast, the better the spatial resolution was. Also larger magnification could be expected by using higher concentration of contrast. Although our Dynamic Computed Tomography with Arterial Infusion of Contrast still has drawbacks and limited indications, we advocate it as a better way of enhancement to detect and evaluate the hepatic masses, which sometimes elude the examiner's grasp with conventional way of enhancement. (author)

  7. Online Cloud Offloading Using Heterogeneous Enhanced Remote Radio Heads

    KAUST Repository

    Shnaiwer, Yousef N.; Sorour, Sameh; Sadeghi, Parastoo; Al-Naffouri, Tareq Y.

    2018-01-01

    This paper studies the cloud offloading gains of using heterogeneous enhanced remote radio heads (eRRHs) and dual-interface clients in fog radio access networks (F-RANs). First, the cloud offloading problem is formulated as a collection

  8. Remote gaze tracking system for 3D environments.

    Science.gov (United States)

    Congcong Liu; Herrup, Karl; Shi, Bertram E

    2017-07-01

    Eye tracking systems are typically divided into two categories: remote and mobile. Remote systems, where the eye tracker is located near the object being viewed by the subject, have the advantage of being less intrusive, but are typically used for tracking gaze points on fixed two dimensional (2D) computer screens. Mobile systems such as eye tracking glasses, where the eye tracker are attached to the subject, are more intrusive, but are better suited for cases where subjects are viewing objects in the three dimensional (3D) environment. In this paper, we describe how remote gaze tracking systems developed for 2D computer screens can be used to track gaze points in a 3D environment. The system is non-intrusive. It compensates for small head movements by the user, so that the head need not be stabilized by a chin rest or bite bar. The system maps the 3D gaze points of the user onto 2D images from a scene camera and is also located remotely from the subject. Measurement results from this system indicate that it is able to estimate gaze points in the scene camera to within one degree over a wide range of head positions.

  9. Remote Sensing Image Enhancement Based on Non-subsampled Shearlet Transform and Parameterized Logarithmic Image Processing Model

    Directory of Open Access Journals (Sweden)

    TAO Feixiang

    2015-08-01

    Full Text Available Aiming at parts of remote sensing images with dark brightness and low contrast, a remote sensing image enhancement method based on non-subsampled Shearlet transform and parameterized logarithmic image processing model is proposed in this paper to improve the visual effects and interpretability of remote sensing images. Firstly, a remote sensing image is decomposed into a low-frequency component and high frequency components by non-subsampled Shearlet transform.Then the low frequency component is enhanced according to PLIP (parameterized logarithmic image processing model, which can improve the contrast of image, while the improved fuzzy enhancement method is used to enhance the high frequency components in order to highlight the information of edges and details. A large number of experimental results show that, compared with five kinds of image enhancement methods such as bidirectional histogram equalization method, the method based on stationary wavelet transform and the method based on non-subsampled contourlet transform, the proposed method has advantages in both subjective visual effects and objective quantitative evaluation indexes such as contrast and definition, which can more effectively improve the contrast of remote sensing image and enhance edges and texture details with better visual effects.

  10. Methods for Enhancing Geological Structures in Spectral Spatial Difference-Based on Remote-Sensing Image

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@In this paper, some image processing methods such as directional template (mask) matching enhancement, pseudocolor or false color enhancement, K-L transform enhancement are used to enhance a geological structure, one of important ore-controlling factors, shown in the remote-sensing images.This geological structure is regarded as image anomaly in the remote-sensing image, since considerable differences, based on the spatial spectral distribution pattern, in gray values (spectral), color tones and texture, are always present between the geological structure and background. Therefore,the enhancement of the geological structure in the remotesensing image is that of the spectral spatial difference.

  11. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images.

    Science.gov (United States)

    Guo, Le-Hang; Wang, Dan; Qian, Yi-Yi; Zheng, Xiao; Zhao, Chong-Ke; Li, Xiao-Long; Bo, Xiao-Wan; Yue, Wen-Wen; Zhang, Qi; Shi, Jun; Xu, Hui-Xiong

    2018-04-04

    With the fast development of artificial intelligence techniques, we proposed a novel two-stage multi-view learning framework for the contrast-enhanced ultrasound (CEUS) based computer-aided diagnosis for liver tumors, which adopted only three typical CEUS images selected from the arterial phase, portal venous phase and late phase. In the first stage, the deep canonical correlation analysis (DCCA) was performed on three image pairs between the arterial and portal venous phases, arterial and delayed phases, and portal venous and delayed phases respectively, which then generated total six-view features. While in the second stage, these multi-view features were then fed to a multiple kernel learning (MKL) based classifier to further promote the diagnosis result. Two MKL classification algorithms were evaluated in this MKL-based classification framework. We evaluated proposed DCCA-MKL framework on 93 lesions (47 malignant cancers vs. 46 benign tumors). The proposed DCCA-MKL framework achieved the mean classification accuracy, sensitivity, specificity, Youden index, false positive rate, and false negative rate of 90.41 ± 5.80%, 93.56 ± 5.90%, 86.89 ± 9.38%, 79.44 ± 11.83%, 13.11 ± 9.38% and 6.44 ± 5.90%, respectively, by soft margin MKL classifier. The experimental results indicate that the proposed DCCA-MKL framework achieves best performance for discriminating benign liver tumors from malignant liver cancers. Moreover, it is also proved that the three-phase CEUS image based CAD is feasible for liver tumors with the proposed DCCA-MKL framework.

  12. Utility of BRDF Models for Estimating Optimal View Angles in Classification of Remotely Sensed Images

    Science.gov (United States)

    Valdez, P. F.; Donohoe, G. W.

    1997-01-01

    Statistical classification of remotely sensed images attempts to discriminate between surface cover types on the basis of the spectral response recorded by a sensor. It is well known that surfaces reflect incident radiation as a function of wavelength producing a spectral signature specific to the material under investigation. Multispectral and hyperspectral sensors sample the spectral response over tens and even hundreds of wavelength bands to capture the variation of spectral response with wavelength. Classification algorithms then exploit these differences in spectral response to distinguish between materials of interest. Sensors of this type, however, collect detailed spectral information from one direction (usually nadir); consequently, do not consider the directional nature of reflectance potentially detectable at different sensor view angles. Improvements in sensor technology have resulted in remote sensing platforms capable of detecting reflected energy across wavelengths (spectral signatures) and from multiple view angles (angular signatures) in the fore and aft directions. Sensors of this type include: the moderate resolution imaging spectroradiometer (MODIS), the multiangle imaging spectroradiometer (MISR), and the airborne solid-state array spectroradiometer (ASAS). A goal of this paper, then, is to explore the utility of Bidirectional Reflectance Distribution Function (BRDF) models in the selection of optimal view angles for the classification of remotely sensed images by employing a strategy of searching for the maximum difference between surface BRDFs. After a brief discussion of directional reflect ante in Section 2, attention is directed to the Beard-Maxwell BRDF model and its use in predicting the bidirectional reflectance of a surface. The selection of optimal viewing angles is addressed in Section 3, followed by conclusions and future work in Section 4.

  13. A fast combinatorial enhancement technique for earthquake damage identification based on remote sensing image

    Science.gov (United States)

    Dou, Aixia; Wang, Xiaoqing; Ding, Xiang; Du, Zecheng

    2010-11-01

    On the basis of the study on the enhancement methods of remote sensing images obtained after several earthquakes, the paper designed a new and optimized image enhancement model which was implemented by combining different single methods. The patterns of elementary model units and combined types of model were defined. Based on the enhancement model database, the algorithm of combinatorial model was brought out via C++ programming. The combined model was tested by processing the aerial remote sensing images obtained after 1976 Tangshan earthquake. It was proved that the definition and implementation of combined enhancement model can efficiently improve the ability and flexibility of image enhancement algorithm.

  14. Lay Theories Regarding Computer-Mediated Communication in Remote Collaboration

    Science.gov (United States)

    Parke, Karl; Marsden, Nicola; Connolly, Cornelia

    2017-01-01

    Computer-mediated communication and remote collaboration has become an unexceptional norm as an educational modality for distance and open education, therefore the need to research and analyze students' online learning experience is necessary. This paper seeks to examine the assumptions and expectations held by students in regard to…

  15. Bringing an ecological view of change to Landsat-based remote sensing

    Science.gov (United States)

    Kennedy, Robert E.; Andrefouet, Serge; Cohen, Warren; Gomez, Cristina; Griffiths, Patrick; Hais, Martin; Healey, Sean; Helmer, Eileen H.; Hostert, Patrick; Lyons, Mitchell; Meigs, Garrett; Pflugmacher, Dirk; Phinn, Stuart; Powell, Scott; Scarth, Peter; Susmita, Sen; Schroeder, Todd A.; Schneider, Annemarie; Sonnenschein, Ruth; Vogelmann, James; Wulder, Michael A.; Zhu, Zhe

    2014-01-01

    When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more subtle processes of interest to ecologists. Recent technical advances have led to a fundamental shift toward an ecological view of change. Although this conceptual shift began with coarser-scale global imagery, it has now reached users of Landsat imagery, since these datasets have temporal and spatial characteristics appropriate to many ecological questions. We argue that this ecologically relevant perspective of change allows the novel characterization of important dynamic processes, including disturbances, long-term trends, cyclical functions, and feedbacks, and that these improvements are already facilitating our understanding of critical driving forces, such as climate change, ecological interactions, and economic pressures.

  16. A far-field-viewing sensor for making analytical measurements in remote locations.

    Science.gov (United States)

    Michael, K L; Taylor, L C; Walt, D R

    1999-07-15

    We demonstrate a far-field-viewing GRINscope sensor for making analytical measurements in remote locations. The GRINscope was fabricated by permanently affixing a micro-Gradient index (GRIN) lens on the distal face of a 350-micron-diameter optical imaging fiber. The GRINscope can obtain both chemical and visual information. In one application, a thin, pH-sensitive polymer layer was immobilized on the distal end of the GRINscope. The ability of the GRINscope to visually image its far-field surroundings and concurrently detect pH changes in a flowing stream was demonstrated. In a different application, the GRINscope was used to image pH- and O2-sensitive particles on a remote substrate and simultaneously measure their fluorescence intensity in response to pH or pO2 changes.

  17. Wind turbine remote control using Android devices

    Science.gov (United States)

    Rat, C. L.; Panoiu, M.

    2018-01-01

    This paper describes the remote control of a wind turbine system over the internet using an Android device, namely a tablet or a smartphone. The wind turbine workstation contains a LabVIEW program which monitors the entire wind turbine energy conversion system (WECS). The Android device connects to the LabVIEW application, working as a remote interface to the wind turbine. The communication between the devices needs to be secured because it takes place over the internet. Hence, the data are encrypted before being sent through the network. The scope was the design of remote control software capable of visualizing real-time wind turbine data through a secure connection. Since the WECS is fully automated and no full-time human operator exists, unattended access to the turbine workstation is needed. Therefore the device must not require any confirmation or permission from the computer operator in order to control it. Another condition is that Android application does not have any root requirements.

  18. Surface-enhanced Raman fiberoptic sensors for remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, D.L.; Alarie, J.P.; Vo-Dinh, T. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.

    1995-09-01

    A new sensor design for remote surface-enhanced Raman scattering (SERS) measurements has been developed for environmental applications. The design features the modification of an optical fiber using layers of alumina microparticles and silver coatings for inducing the SERS effect at the sensing probe. A single fiber carries both the laser excitation and the SERS signal radiation, keeping optical parameters at the remote tip simple and consistent. The small tip size achievable with this configuration also demonstrates potential of this new design as a microsensor for in-situ measurement in microenvironments. Details of sensor tip fabrication and optical system design are described. SERS spectra of aqueous environmental samples acquired in-situ using the SERS sensor are also presented to illustrate the effectiveness of the SERS sensor.

  19. Television viewing, computer use, and BMI among U.S. children and adolescents.

    Science.gov (United States)

    Fulton, Janet E; Wang, Xuewen; Yore, Michelle M; Carlson, Susan A; Galuska, Deborah A; Caspersen, Carl J

    2009-01-01

    To examine the prevalence of television (TV) viewing, computer use, and their combination and associations with demographic characteristics and body mass index (BMI) among U.S. youth. The 1999 to 2006 National Health and Nutrition Examination Survey (NHANES) was used. Time spent yesterday sitting and watching television or videos (TV viewing) and using the computer or playing computer games (computer use) were assessed by questionnaire. Prevalence (%) of meeting the U.S. objective for TV viewing (< or =2 hours/day) ranged from 65% to 71%. Prevalence of no computer use (0 hours/day) ranged from 23% to 45%. Non-Hispanic Black youth aged 2 to 15 years were less likely than their non-Hispanic White counterparts to meet the objective for TV viewing. Overweight or obese school-age youth were less likely than their normal weight counterparts to meet the objective for TV viewing. Computer use is prevalent among U.S. youth; more than half of youth used a computer on the previous day. The proportion of youth meeting the U.S. objective for TV viewing is less than the target of 75%. Time spent in sedentary behaviors such as viewing TV may contribute to overweight and obesity among U.S. youth.

  20. Modeling Remote I/O versus Staging Tradeoff in Multi-Data Center Computing

    International Nuclear Information System (INIS)

    Suslu, Ibrahim H

    2014-01-01

    In multi-data center computing, data to be processed is not always local to the computation. This is a major challenge especially for data-intensive Cloud computing applications, since large amount of data would need to be either moved the local sites (staging) or accessed remotely over the network (remote I/O). Cloud application developers generally chose between staging and remote I/O intuitively without making any scientific comparison specific to their application data access patterns since there is no generic model available that they can use. In this paper, we propose a generic model for the Cloud application developers which would help them to choose the most appropriate data access mechanism for their specific application workloads. We define the parameters that potentially affect the end-to-end performance of the multi-data center Cloud applications which need to access large datasets over the network. To test and validate our models, we implemented a series of synthetic benchmark applications to simulate the most common data access patterns encountered in Cloud applications. We show that our model provides promising results in different settings with different parameters, such as network bandwidth, server and client capabilities, and data access ratio

  1. Observing the Earth from an Astronaut's View - Applied Remote Sensing in Schools

    Science.gov (United States)

    Rienow, Andreas; Hodam, Henryk; Menz, Gunter; Kerstin, Voß

    2015-04-01

    Since spring 2014, NASA conducts the High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS). HDEV consists of four cameras mounted at ESA's Columbus laboratory. They continuously observe our earth in three different perspectives. Hence, they provide not only footage showing the Sun and the Moon rising and setting but also regular images of landscapes that are difficult to access, such as mountain ranges, deserts, and tropical rainforests. The German educational project "Columbus Eye", which is executed by the University of Bonn and is funded by the German Aerospace Center (DLR), aims at the implementation of the HDEV imagery and videos in a teaching portal: www.columbuseye.uni-bonn.de. Pupils should be motivated to work with the footage in order to learn about pattern and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (www.fis.uni-bonn.de/en). Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents in German and English have been created throughout the last 7 years since FIS' kickoff. The talk presents the educational valorization of ISS and satellite borne imagery data as well as their interactive implementation for teachers and pupils in both learning portals. It will be shown which possibilities the topic of earth observation from space holds ready for teaching the regular STEM curricula. A report of first experiences of a nationwide road show accompanying the mission of the ESA astronaut Alexander Gerst will be given. Among others it involved an event during which pupils from a secondary school in North Rhine-Westphalia have talked to the astronaut via ham radio. Accordingly, the presentation addresses the question of how synergies of human

  2. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition.

    Science.gov (United States)

    González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel

    2016-10-31

    In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented.

  3. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition

    Directory of Open Access Journals (Sweden)

    Isaías González

    2016-10-01

    Full Text Available In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC, the Object-Linking and Embedding for Process Control protocol (OPC and the open-source Easy Java Simulations (EJS package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented.

  4. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition

    Science.gov (United States)

    González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel

    2016-01-01

    In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented. PMID:27809229

  5. Virtual and Remote Robotic Laboratory Using EJS, MATLAB and LabVIEW

    Directory of Open Access Journals (Sweden)

    Jose Antonio Lopez-Orozco

    2013-02-01

    Full Text Available This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory or with a real robot (remote laboratory, with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented.

  6. Virtual and remote robotic laboratory using EJS, MATLAB and LabVIEW.

    Science.gov (United States)

    Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián

    2013-02-21

    This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented.

  7. Enhancing the Teaching of Digital Processing of Remote Sensing Image Course through Geospatial Web Processing Services

    Science.gov (United States)

    di, L.; Deng, M.

    2010-12-01

    Remote sensing (RS) is an essential method to collect data for Earth science research. Huge amount of remote sensing data, most of them in the image form, have been acquired. Almost all geography departments in the world offer courses in digital processing of remote sensing images. Such courses place emphasis on how to digitally process large amount of multi-source images for solving real world problems. However, due to the diversity and complexity of RS images and the shortcomings of current data and processing infrastructure, obstacles for effectively teaching such courses still remain. The major obstacles include 1) difficulties in finding, accessing, integrating and using massive RS images by students and educators, and 2) inadequate processing functions and computing facilities for students to freely explore the massive data. Recent development in geospatial Web processing service systems, which make massive data, computing powers, and processing capabilities to average Internet users anywhere in the world, promises the removal of the obstacles. The GeoBrain system developed by CSISS is an example of such systems. All functions available in GRASS Open Source GIS have been implemented as Web services in GeoBrain. Petabytes of remote sensing images in NASA data centers, the USGS Landsat data archive, and NOAA CLASS are accessible transparently and processable through GeoBrain. The GeoBrain system is operated on a high performance cluster server with large disk storage and fast Internet connection. All GeoBrain capabilities can be accessed by any Internet-connected Web browser. Dozens of universities have used GeoBrain as an ideal platform to support data-intensive remote sensing education. This presentation gives a specific example of using GeoBrain geoprocessing services to enhance the teaching of GGS 588, Digital Remote Sensing taught at the Department of Geography and Geoinformation Science, George Mason University. The course uses the textbook "Introductory

  8. Calculating Viewing Angles Pixel by Pixel in Optical Remote Sensing Satellite Imagery Using the Rational Function Model

    OpenAIRE

    Kai Xu; Guo Zhang; Qingjun Zhang; Deren Li

    2018-01-01

    In studies involving the extraction of surface physical parameters using optical remote sensing satellite imagery, sun-sensor geometry must be known, especially for sensor viewing angles. However, while pixel-by-pixel acquisitions of sensor viewing angles are of critical importance to many studies, currently available algorithms for calculating sensor-viewing angles focus only on the center-point pixel or are complicated and are not well known. Thus, this study aims to provide a simple and ge...

  9. Online catalog access and distribution of remotely sensed information

    Science.gov (United States)

    Lutton, Stephen M.

    1997-09-01

    Remote sensing is providing voluminous data and value added information products. Electronic sensors, communication electronics, computer software, hardware, and network communications technology have matured to the point where a distributed infrastructure for remotely sensed information is a reality. The amount of remotely sensed data and information is making distributed infrastructure almost a necessity. This infrastructure provides data collection, archiving, cataloging, browsing, processing, and viewing for applications from scientific research to economic, legal, and national security decision making. The remote sensing field is entering a new exciting stage of commercial growth and expansion into the mainstream of government and business decision making. This paper overviews this new distributed infrastructure and then focuses on describing a software system for on-line catalog access and distribution of remotely sensed information.

  10. Can Designing Self-Representations through Creative Computing Promote an Incremental View of Intelligence and Enhance Creativity among At-Risk Youth?

    Science.gov (United States)

    Blau, Ina; Benolol, Nurit

    2016-01-01

    Creative computing is one of the rapidly growing educational trends around the world. Previous studies have shown that creative computing can empower disadvantaged children and youth. At-risk youth tend to hold a negative view of self and perceive their abilities as inferior compared to "normative" pupils. The Implicit Theories of…

  11. Virtual network computing: cross-platform remote display and collaboration software.

    Science.gov (United States)

    Konerding, D E

    1999-04-01

    VNC (Virtual Network Computing) is a computer program written to address the problem of cross-platform remote desktop/application display. VNC uses a client/server model in which an image of the desktop of the server is transmitted to the client and displayed. The client collects mouse and keyboard input from the user and transmits them back to the server. The VNC client and server can run on Windows 95/98/NT, MacOS, and Unix (including Linux) operating systems. VNC is multi-user on Unix machines (any number of servers can be run are unrelated to the primary display of the computer), while it is effectively single-user on Macintosh and Windows machines (only one server can be run, displaying the contents of the primary display of the server). The VNC servers can be configured to allow more than one client to connect at one time, effectively allowing collaboration through the shared desktop. I describe the function of VNC, provide details of installation, describe how it achieves its goal, and evaluate the use of VNC for molecular modelling. VNC is an extremely useful tool for collaboration, instruction, software development, and debugging of graphical programs with remote users.

  12. Can Designing Self-Representations through Creative Computing Promote an Incremental View of Intelligence and Enhance Creativity among At-Risk Youth?

    Directory of Open Access Journals (Sweden)

    Ina Blau

    2016-12-01

    Full Text Available Creative computing is one of the rapidly growing educational trends around the world. Previous studies have shown that creative computing can empower disadvantaged children and youth. At-risk youth tend to hold a negative view of self and perceive their abilities as inferior compared to “normative” pupils. The Implicit Theories of Intelligence approach (ITI; Dweck, 1999, 2008 suggests a way of changing beliefs regarding one’s abilities. This paper reports findings from an experiment that explores the impact of a short intervention among at-risk youth and “normative” high-school students on (1 changing ITI from being perceived as fixed (entity view of intelligence to more flexible (incremental view of intelligence and (2 the quality of digital self-representations programmed though a creative computing app. The participants were 117 Israeli youth aged 14-17, half of whom were at-risk youth. The participants were randomly assigned to the experimental and control conditions. The experimental group watched a video of a lecture regarding brain plasticity that emphasized flexibility and the potential of human intelligence to be cultivated. The control group watched a neutral lecture about brain-functioning and creativity. Following the intervention, all of the participants watched screencasts of basic training for the Scratch programming app, designed artifacts that digitally represented themselves five years later and reported their ITI. The results showed more incremental ITI in the experimental group compared to the control group and among normative students compared to at-risk youth. In contrast to the research hypothesis, the Scratch projects of the at-risk youth, especially in the experimental condition, were rated by neutral judges as being more creative, more aesthetically designed, and more clearly conveying their message. The results suggest that creative computing combined with the ITI intervention is a way of developing

  13. Trusted Bytecode Virtual Machine Module: A Novel Method for Dynamic Remote Attestation in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Songzhu Mei

    2012-09-01

    Full Text Available Cloud computing bring a tremendous complexity to information security. Remote attestation can be used to establish trust relationship in cloud. TBVMM is designed to extend the existing chain of trust into the software layers to support dynamic remote attestation for cloud computing. TBVMM uses Bayesian network and Kalman filter to solve the dynamicity of the trusted relationship. It is proposed to fill the trust gap between the infrastructure and upper software stacks.

  14. Interface for connectioin of a spectrometer with remoted computer by means of the internal telephony net

    International Nuclear Information System (INIS)

    Minin, V.V.; Gejst, A.G.; Larin, G.M.

    1989-01-01

    A device permitting to record spectrometers analog signals for computer memory using internal telephony net for connection of a spectrometer with remoted computer, is described. Two-way communication in half-duplex mode is established by a spectrometer operator. Analog-to-digital conversion of a signal is realized by means of a voltage-pulse frequency is 3-30 kHz. The computer may be remoted at up to 1 km. The line signal level is ≤3V, that does not induce transfersal noise

  15. Resolution enhancement of tri-stereo remote sensing images by super resolution methods

    Science.gov (United States)

    Tuna, Caglayan; Akoguz, Alper; Unal, Gozde; Sertel, Elif

    2016-10-01

    Super resolution (SR) refers to generation of a High Resolution (HR) image from a decimated, blurred, low-resolution (LR) image set, which can be either a single frame or multi-frame that contains a collection of several images acquired from slightly different views of the same observation area. In this study, we propose a novel application of tri-stereo Remote Sensing (RS) satellite images to the super resolution problem. Since the tri-stereo RS images of the same observation area are acquired from three different viewing angles along the flight path of the satellite, these RS images are properly suited to a SR application. We first estimate registration between the chosen reference LR image and other LR images to calculate the sub pixel shifts among the LR images. Then, the warping, blurring and down sampling matrix operators are created as sparse matrices to avoid high memory and computational requirements, which would otherwise make the RS-SR solution impractical. Finally, the overall system matrix, which is constructed based on the obtained operator matrices is used to obtain the estimate HR image in one step in each iteration of the SR algorithm. Both the Laplacian and total variation regularizers are incorporated separately into our algorithm and the results are presented to demonstrate an improved quantitative performance against the standard interpolation method as well as improved qualitative results due expert evaluations.

  16. Potential of remote sensing of cirrus optical thickness by airborne spectral radiance measurements at different sideward viewing angles

    OpenAIRE

    Wolf, Kevin; Ehrlich, André; Hüneke, Tilman; Pfeilsticker, Klaus; Werner, Frank; Wirth, Martin; Wendisch, Manfred

    2017-01-01

    Spectral radiance measurements collected in nadir and sideward viewing directions by two airborne passive solar remote sensing instruments, the Spectral Modular Airborne Radiation measurement sysTem (SMART) and the Differential Optical Absorption Spectrometer (mini-DOAS), are used to compare the remote sensing results of cirrus optical thickness τ. The comparison is based on a sensitivity study using radiative transfer simulations (RTS) and on data obtained during three airb...

  17. Forecasting Model for Network Throughput of Remote Data Access in Computing Grids

    CERN Document Server

    Begy, Volodimir; The ATLAS collaboration

    2018-01-01

    Computing grids are one of the key enablers of eScience. Researchers from many fields (e.g. High Energy Physics, Bioinformatics, Climatology, etc.) employ grids to run computational jobs in a highly distributed manner. The current state of the art approach for data access in the grid is data placement: a job is scheduled to run at a specific data center, and its execution starts only when the complete input data has been transferred there. This approach has two major disadvantages: (1) the jobs are staying idle while waiting for the input data; (2) due to the limited infrastructure resources, the distributed data management system handling the data placement, may queue the transfers up to several days. An alternative approach is remote data access: a job may stream the input data directly from storage elements, which may be located at local or remote data centers. Remote data access brings two innovative benefits: (1) the jobs can be executed asynchronously with respect to the data transfer; (2) when combined...

  18. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    Science.gov (United States)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  19. Convergence of Chahine's nonlinear relaxation inversion method used for limb viewing remote sensing

    Science.gov (United States)

    Chu, W. P.

    1985-01-01

    The application of Chahine's (1970) inversion technique to remote sensing problems utilizing the limb viewing geometry is discussed. The problem considered here involves occultation-type measurements and limb radiance-type measurements from either spacecraft or balloon platforms. The kernel matrix of the inversion problem is either an upper or lower triangular matrix. It is demonstrated that the Chahine inversion technique always converges, provided the diagonal elements of the kernel matrix are nonzero.

  20. Lab4CE: a Remote Laboratory for Computer Education

    OpenAIRE

    Broisin , Julien; Venant , Rémi; Vidal , Philippe

    2015-01-01

    International audience; Remote practical activities have been demonstrated to be efficient when learners come to acquire inquiry skills. In computer science education, virtualization technologies are gaining popularity as this technological advance enables instructors to implement realistic practical learning activities, and learners to engage in authentic and problem-based learning. However, virtualization solutions have not been designed especially for education and do not address any pedag...

  1. The design of video and remote analysis system for gamma spectrum based on LabVIEW

    International Nuclear Information System (INIS)

    Xu Hongkun; Fang Fang; Chen Wei

    2009-01-01

    For the protection of analyst in the measurement,as well as the facilitation of expert to realize the remote analysis, a solution of live video combined with internet access and control is proposed. DirectShow technology and the LabVIEW'S IDT (Internet Develop Toolkit) module are used, video and analysis pages of the gamma energy spectrum are integrated and published in the windows system by IIS (Internet Information Sever). We realize the analysis of gamma spectrum and remote operations by internet. At the same time, the system has a friendly interface and easily to be put into practice. It also has some reference value for the related radioactive measurement. (authors)

  2. Commodity Cluster Computing for Remote Sensing Applications using Red Hat LINUX

    Science.gov (United States)

    Dorband, John

    2003-01-01

    Since 1994, we have been doing research at Goddard Space Flight Center on implementing a wide variety of applications on commodity based computing clusters. This talk is about these clusters and haw they are used on these applications including ones for remote sensing.

  3. Rigid hoist articulated grapple system development for enhanced remote maintenance

    International Nuclear Information System (INIS)

    Witham, C.; White, P.; Garin, J.

    1979-01-01

    Remote maintenance and repair within nuclear environments have become more demanding of remote manipulation equipment in the last few years. A deficiency exists in the array of tools available for dexterous operations of loads in the 180-kg range. The development of a manipulation system with enhanced operator controls is discussed. This system is a six-degree-of-freedom manipulator with bilateral servo control. It is to be attached to a mobile support boom in order to operate throughout the nuclear cell. The manipulator is intended to work in conjunction with light duty servomanipulators, overhead crane systems, and through-the-wall mechanical master slaves

  4. Remote CT reading using an ultramobile PC and web-based remote viewing over a wireless network.

    Science.gov (United States)

    Choi, Hyuk Joong; Lee, Jeong Hun; Kang, Bo Seung

    2012-01-01

    We developed a new type of mobile teleradiology system using an ultramobile PC (UMPC) for web-based remote viewing over a wireless network. We assessed the diagnostic performance of this system for abdominal CT interpretation. Performance was compared with an emergency department clinical monitor using a DICOM viewer. A total of 100 abdominal CT examinations were presented to four observers. There were 56 examinations showing appendicitis and 44 which were normal. The observers viewed the images using a UMPC display and an LCD monitor and rated each examination on a five-point scale. Receiver operating characteristics (ROC) analysis was used to test for differences. The sensitivity and specificities of all observers were similarly high. The average area under the ROC curve for readings performed on the UMPC and the LCD monitor was 0.959 and 0.976, respectively. There were no significant differences between the two display systems for interpreting abdominal CTs. The web-based mobile teleradiology system appears to be feasible for reading abdominal CTs for diagnosing appendicitis and may be valuable in emergency teleconsultation. Copyright © 2012 by the Royal Society of Medicine Press Ltd

  5. Viewing ISS Data in Real Time via the Internet

    Science.gov (United States)

    Myers, Gerry; Chamberlain, Jim

    2004-01-01

    EZStream is a computer program that enables authorized users at diverse terrestrial locations to view, in real time, data generated by scientific payloads aboard the International Space Station (ISS). The only computation/communication resource needed for use of EZStream is a computer equipped with standard Web-browser software and a connection to the Internet. EZStream runs in conjunction with the TReK software, described in a prior NASA Tech Briefs article, that coordinates multiple streams of data for the ground communication system of the ISS. EZStream includes server components that interact with TReK within the ISS ground communication system and client components that reside in the users' remote computers. Once an authorized client has logged in, a server component of EZStream pulls the requested data from a TReK application-program interface and sends the data to the client. Future EZStream enhancements will include (1) extensions that enable the server to receive and process arbitrary data streams on its own and (2) a Web-based graphical-user-interface-building subprogram that enables a client who lacks programming expertise to create customized display Web pages.

  6. Chromium Renderserver: Scalable and Open Source Remote RenderingInfrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Brian; Ahern, Sean; Bethel, E. Wes; Brugger, Eric; Cook,Rich; Daniel, Jamison; Lewis, Ken; Owen, Jens; Southard, Dale

    2007-12-01

    Chromium Renderserver (CRRS) is software infrastructure thatprovides the ability for one or more users to run and view image outputfrom unmodified, interactive OpenGL and X11 applications on a remote,parallel computational platform equipped with graphics hardwareaccelerators via industry-standard Layer 7 network protocolsand clientviewers. The new contributions of this work include a solution to theproblem of synchronizing X11 and OpenGL command streams, remote deliveryof parallel hardware-accelerated rendering, and a performance analysis ofseveral different optimizations that are generally applicable to avariety of rendering architectures. CRRSis fully operational, Open Sourcesoftware.

  7. Teachers' Views about the Use of Tablet Computers Distributed in Schools as Part of the Fatih Project

    Science.gov (United States)

    Gökmen, Ömer Faruk; Duman, Ibrahim; Akgün, Özcan Erkan

    2018-01-01

    The purpose of this study is to investigate teachers' views about the use of tablet computers distributed as a part of the FATIH (Movement for Enhancing Opportunities and Improving Technology) Project. In this study, the case study method, one of the qualitative research methods, was used. The participants were 20 teachers from various fields…

  8. Remote plasma-enhanced metalorganic chemical vapor deposition of aluminum oxide thin films

    NARCIS (Netherlands)

    Volintiru, I.; Creatore, M.; Hemmen, van J.L.; Sanden, van de M.C.M.

    2008-01-01

    Aluminum oxide films were deposited using remote plasma-enhanced metalorganic chemical vapor deposition from oxygen/trimethylaluminum mixtures. Initial studies by in situ spectroscopic ellipsometry demonstrated that the aluminum oxide films deposited at temperatures

  9. Computer control for remote wind turbine operation

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, J.F.; Rogers, A.L.; Abdulwahid, U.; Driscoll, J. [Univ. of Massachusetts, Amherst, MA (United States)

    1997-12-31

    Light weight wind turbines located in harsh, remote sites require particularly capable controllers. Based on extensive operation of the original ESI-807 moved to such a location, a much more sophisticated controller than the original one has been developed. This paper describes the design, development and testing of that new controller. The complete control and monitoring system consists of sensor and control inputs, the control computer, control outputs, and additional equipment. The control code was written in Microsoft Visual Basic on a PC type computer. The control code monitors potential faults and allows the turbine to operate in one of eight states: off, start, run, freewheel, low wind shut down, normal wind shutdown, emergency shutdown, and blade parking. The controller also incorporates two {open_quotes}virtual wind turbines,{close_quotes} including a dynamic model of the machine, for code testing. The controller can handle numerous situations for which the original controller was unequipped.

  10. Remote sensing of coral reefs and their physical environment

    International Nuclear Information System (INIS)

    Mumby, Peter J.; Skirving, William; Strong, Alan E.; Hardy, John T.; LeDrew, Ellsworth F.; Hochberg, Eric J.; Stumpf, Rick P.; David, Laura T.

    2004-01-01

    There has been a vast improvement in access to remotely sensed data in just a few recent years. This revolution of information is the result of heavy investment in new technology by governments and industry, rapid developments in computing power and storage, and easy dissemination of data over the internet. Today, remotely sensed data are available to virtually anyone with a desktop computer. Here, we review the status of one of the most popular areas of marine remote sensing research: coral reefs. Previous reviews have focused on the ability of remote sensing to map the structure and habitat composition of coral reefs, but have neglected to consider the physical environment in which reefs occur. We provide a holistic review of what can, might, and cannot be mapped using remote sensing at this time. We cover aspects of reef structure and health but also discuss the diversity of physical environmental data such as temperature, winds, solar radiation and water quality. There have been numerous recent advances in the remote sensing of reefs and we hope that this paper enhances awareness of the diverse data sources available, and helps practitioners identify realistic objectives for remote sensing in coral reef areas

  11. Remote sensing of coral reefs and their physical environment

    Energy Technology Data Exchange (ETDEWEB)

    Mumby, Peter J.; Skirving, William; Strong, Alan E.; Hardy, John T.; LeDrew, Ellsworth F.; Hochberg, Eric J.; Stumpf, Rick P.; David, Laura T

    2004-02-01

    There has been a vast improvement in access to remotely sensed data in just a few recent years. This revolution of information is the result of heavy investment in new technology by governments and industry, rapid developments in computing power and storage, and easy dissemination of data over the internet. Today, remotely sensed data are available to virtually anyone with a desktop computer. Here, we review the status of one of the most popular areas of marine remote sensing research: coral reefs. Previous reviews have focused on the ability of remote sensing to map the structure and habitat composition of coral reefs, but have neglected to consider the physical environment in which reefs occur. We provide a holistic review of what can, might, and cannot be mapped using remote sensing at this time. We cover aspects of reef structure and health but also discuss the diversity of physical environmental data such as temperature, winds, solar radiation and water quality. There have been numerous recent advances in the remote sensing of reefs and we hope that this paper enhances awareness of the diverse data sources available, and helps practitioners identify realistic objectives for remote sensing in coral reef areas.

  12. Construction and Application of Enhanced Remote Sensing Ecological Index

    Science.gov (United States)

    Wang, X.; Liu, C.; Fu, Q.; Yin, B.

    2018-04-01

    In order to monitor the change of regional ecological environment quality, this paper use MODIS and DMSP / OLS remote sensing data, from the production capacity, external disturbance changes and human socio-economic development of the three main factors affecting the quality of ecosystems, select the net primary productivity, vegetation index and light index, using the principal component analysis method to automatically determine the weight coefficient, construction of the formation of enhanced remote sensing ecological index, and the ecological environment quality of Hainan Island from 2001 to 2013 was monitored and analyzed. The enhanced remote sensing ecological index combines the effects of the natural environment and human activities on ecosystems, and according to the contribution of each principal component automatically determine the weight coefficient, avoid the design of the weight of the parameters caused by the calculation of the human error, which provides a new method for the operational operation of regional macro ecological environment quality monitoring. During the period from 2001 to 2013, the ecological environment quality of Hainan Island showed the characteristics of decend first and then rise, the ecological environment in 2005 was affected by severe natural disasters, and the quality of ecological environment dropped sharply. Compared with 2001, in 2013 about 20000 square kilometers regional ecological environmental quality has improved, about 8760 square kilometers regional ecological environment quality is relatively stable, about 5272 square kilometers regional ecological environment quality has decreased. On the whole, the quality of ecological environment in the study area is good, the frequent occurrence of natural disasters, on the quality of the ecological environment to a certain extent.

  13. Data analysis for remote monitoring of safeguarded facilities

    International Nuclear Information System (INIS)

    DeLand, S.M.

    1997-01-01

    The International Remote Monitoring Project (IRMP) sponsored by the US DOE allows DOE and its international partners to gain experience with the remote collection, transmission, and interpretation of safeguards-relevant data. This paper focuses on the interpretation of the data from these remote monitoring systems. Users of these systems need to be able to ascertain that the remote monitoring system is functioning as expected and that the events generated by the sensors are consistent with declared activity. The initial set of analytical tools being provided for IRMP installations this year include a suite of automatically generated views of user-selected data. The baseline set of tools, with illustrative examples, will be discussed. Plans for near-term enhancements will also be discussed. Finally, the applicability of more advanced analytical techniques such as expert systems will be discussed

  14. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels

    Directory of Open Access Journals (Sweden)

    Ovidiu Csillik

    2017-03-01

    Full Text Available Speed and accuracy are important factors when dealing with time-constraint events for disaster, risk, and crisis-management support. Object-based image analysis can be a time consuming task in extracting information from large images because most of the segmentation algorithms use the pixel-grid for the initial object representation. It would be more natural and efficient to work with perceptually meaningful entities that are derived from pixels using a low-level grouping process (superpixels. Firstly, we tested a new workflow for image segmentation of remote sensing data, starting the multiresolution segmentation (MRS, using ESP2 tool from the superpixel level and aiming at reducing the amount of time needed to automatically partition relatively large datasets of very high resolution remote sensing data. Secondly, we examined whether a Random Forest classification based on an oversegmentation produced by a Simple Linear Iterative Clustering (SLIC superpixel algorithm performs similarly with reference to a traditional object-based classification regarding accuracy. Tests were applied on QuickBird and WorldView-2 data with different extents, scene content complexities, and number of bands to assess how the computational time and classification accuracy are affected by these factors. The proposed segmentation approach is compared with the traditional one, starting the MRS from the pixel level, regarding geometric accuracy of the objects and the computational time. The computational time was reduced in all cases, the biggest improvement being from 5 h 35 min to 13 min, for a WorldView-2 scene with eight bands and an extent of 12.2 million pixels, while the geometric accuracy is kept similar or slightly better. SLIC superpixel-based classification had similar or better overall accuracy values when compared to MRS-based classification, but the results were obtained in a fast manner and avoiding the parameterization of the MRS. These two approaches

  15. Remote just-in-time telementored trauma ultrasound: a double-factorial randomized controlled trial examining fluid detection and remote knobology control through an ultrasound graphic user interface display.

    Science.gov (United States)

    Kirkpatrick, Andrew W; McKee, Ian; McKee, Jessica L; Ma, Irene; McBeth, Paul B; Roberts, Derek J; Wurster, Charles L; Parfitt, Robbie; Ball, Chad G; Oberg, Scott; Sevcik, William; Hamilton, Douglas R

    2016-05-01

    Remote-telementored ultrasound involves novice examiners being remotely guided by experts using informatic-technologies. However, requiring a novice to perform ultrasound is a cognitively demanding task exacerbated by unfamiliarity with ultrasound-machine controls. We incorporated a randomized evaluation of using remote control of the ultrasound functionality (knobology) within a study in which the images generated by distant naive examiners were viewed on an ultrasound graphic user interface (GUI) display viewed on laptop computers by mentors in different cities. Fire-fighters in Edmonton (101) were remotely mentored from Calgary (n = 65), Nanaimo (n = 19), and Memphis (n = 17) to examine an ultrasound phantom randomized to contain free fluid or not. Remote mentors (2 surgeons, 1 internist, and 1 ED physician) were randomly assigned to use GUI knobology control during mentoring (GUIK+/GUIK-). Remote-telementored ultrasound was feasible in all cases. Overall accuracy for fluid detection was 97% (confidence interval = 91 to 99%) with 3 false negatives (FNs). Positive/negative likelihood ratios were infinity/0.0625. One FN occurred with the GUIK+ and 2 without (GUIK-). There were no statistical test performance differences in either group (GUIK+ and GUIK-). Ultrasound-naive 1st responders can be remotely mentored with high accuracy, although providing basic remote control of the knobology did not affect outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. An ART iterative reconstruction algorithm for computed tomography of diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Zhang Li; Huang Zhifeng; Kang Kejun; Chen Zhiqiang; Fang Qiaoguang; Zhu Peiping

    2009-01-01

    X-ray diffraction enhanced imaging (DEI) has extremely high sensitivity for weakly absorbing low-Z samples in medical and biological fields. In this paper, we propose an Algebra Reconstruction Technique (ART) iterative reconstruction algorithm for computed tomography of diffraction enhanced imaging (DEI-CT). An Ordered Subsets (OS) technique is used to accelerate the ART reconstruction. Few-view reconstruction is also studied, and a partial differential equation (PDE) type filter which has the ability of edge-preserving and denoising is used to improve the image quality and eliminate the artifacts. The proposed algorithm is validated with both the numerical simulations and the experiment at the Beijing synchrotron radiation facility (BSRF). (authors)

  17. Remote operation: a selective review of research into visual depth perception.

    Science.gov (United States)

    Reinhardt-Rutland, A H

    1996-07-01

    Some perceptual motor operations are performed remotely; examples include the handling of life-threatening materials and surgical procedures. A camera conveys the site of operation to a TV monitor, so depth perception relies mainly on pictorial information, perhaps with enhancement of the occlusion cue by motion. However, motion information such as motion parallax is not likely to be important. The effectiveness of pictorial information is diminished by monocular and binocular information conveying flatness of the screen and by difficulties in scaling: Only a degree of relative depth can be conveyed. Furthermore, pictorial information can mislead. Depth perception is probably adequate in remote operation, if target objects are well separated, with well-defined edges and familiar shapes. Stereoscopic viewing systems are being developed to introduce binocular information to remote operation. However, stereoscopic viewing is problematic because binocular disparity conflicts with convergence and monocular information. An alternative strategy to improve precision in remote operation may be to rely on individuals who lack binocular function: There is redundancy in depth information, and such individuals seem to compensate for the lack of binocular function.

  18. A review of parallel computing for large-scale remote sensing image mosaicking

    OpenAIRE

    Chen, Lajiao; Ma, Yan; Liu, Peng; Wei, Jingbo; Jie, Wei; He, Jijun

    2015-01-01

    Interest in image mosaicking has been spurred by a wide variety of research and management needs. However, for large-scale applications, remote sensing image mosaicking usually requires significant computational capabilities. Several studies have attempted to apply parallel computing to improve image mosaicking algorithms and to speed up calculation process. The state of the art of this field has not yet been summarized, which is, however, essential for a better understanding and for further ...

  19. Enhancing fieldwork learning using blended learning, GIS and remote supervision

    Science.gov (United States)

    Marra, Wouter A.; Alberti, Koko; Karssenberg, Derek

    2015-04-01

    Fieldwork is an important part of education in geosciences and essential to put theoretical knowledge into an authentic context. Fieldwork as teaching tool can take place in various forms, such as field-tutorial, excursion, or supervised research. Current challenges with fieldwork in education are to incorporate state-of-the art methods for digital data collection, on-site GIS-analysis and providing high-quality feedback to large groups of students in the field. We present a case on first-year earth-sciences fieldwork with approximately 80 students in the French Alps focused on geological and geomorphological mapping. Here, students work in couples and each couple maps their own fieldwork area to reconstruct the formative history. We present several major improvements for this fieldwork using a blended-learning approach, relying on open source software only. An important enhancement to the French Alps fieldwork is improving students' preparation. In a GIS environment, students explore their fieldwork areas using existing remote sensing data, a digital elevation model and derivatives to formulate testable hypotheses before the actual fieldwork. The advantage of this is that the students already know their area when arriving in the field, have started to apply the empirical cycle prior to their field visit, and are therefore eager to investigate their own research questions. During the fieldwork, students store and analyze their field observations in the same GIS environment. This enables them to get a better overview of their own collected data, and to integrate existing data sources also used in the preparation phase. This results in a quicker and enhanced understanding by the students. To enable remote access to observational data collected by students, the students synchronize their data daily with a webserver running a web map application. Supervisors can review students' progress remotely, examine and evaluate their observations in a GIS, and provide

  20. Dynamic provisioning of local and remote compute resources with OpenStack

    Science.gov (United States)

    Giffels, M.; Hauth, T.; Polgart, F.; Quast, G.

    2015-12-01

    Modern high-energy physics experiments rely on the extensive usage of computing resources, both for the reconstruction of measured events as well as for Monte-Carlo simulation. The Institut fur Experimentelle Kernphysik (EKP) at KIT is participating in both the CMS and Belle experiments with computing and storage resources. In the upcoming years, these requirements are expected to increase due to growing amount of recorded data and the rise in complexity of the simulated events. It is therefore essential to increase the available computing capabilities by tapping into all resource pools. At the EKP institute, powerful desktop machines are available to users. Due to the multi-core nature of modern CPUs, vast amounts of CPU time are not utilized by common desktop usage patterns. Other important providers of compute capabilities are classical HPC data centers at universities or national research centers. Due to the shared nature of these installations, the standardized software stack required by HEP applications cannot be installed. A viable way to overcome this constraint and offer a standardized software environment in a transparent manner is the usage of virtualization technologies. The OpenStack project has become a widely adopted solution to virtualize hardware and offer additional services like storage and virtual machine management. This contribution will report on the incorporation of the institute's desktop machines into a private OpenStack Cloud. The additional compute resources provisioned via the virtual machines have been used for Monte-Carlo simulation and data analysis. Furthermore, a concept to integrate shared, remote HPC centers into regular HEP job workflows will be presented. In this approach, local and remote resources are merged to form a uniform, virtual compute cluster with a single point-of-entry for the user. Evaluations of the performance and stability of this setup and operational experiences will be discussed.

  1. Integrated Gis-remote sensing processing applied to vegetation ...

    African Journals Online (AJOL)

    A remotely sensed digital image of SPOT by its linear enhancement on a large memory, high speed, and digital electronic computer revealed from false colour composite that vegetation is expressed as red. Further processing of SPOT digital image for arithmetic banding of Normalized Differential Vegetation Index (NDVI) ...

  2. Computational Diagnostic: A Novel Approach to View Medical Data.

    Energy Technology Data Exchange (ETDEWEB)

    Mane, K. K. (Ketan Kirtiraj); Börner, K. (Katy)

    2007-01-01

    A transition from traditional paper-based medical records to electronic health record is largely underway. The use of electronic records offers tremendous potential to personalize patient diagnosis and treatment. In this paper, we discuss a computational diagnostic tool that uses digital medical records to help doctors gain better insight about a patient's medical condition. The paper details different interactive features of the tool which offer potential to practice evidence-based medicine and advance patient diagnosis practices. The healthcare industry is a constantly evolving domain. Research from this domain is often translated into better understanding of different medical conditions. This new knowledge often contributes towards improved diagnosis and treatment solutions for patients. But the healthcare industry lags behind to seek immediate benefits of the new knowledge as it still adheres to the traditional paper-based approach to keep track of medical records. However recently we notice a drive that promotes a transition towards electronic health record (EHR). An EHR stores patient medical records in digital format and offers potential to replace the paper health records. Earlier attempts of an EHR replicated the paper layout on the screen, representation of medical history of a patient in a graphical time-series format, interactive visualization with 2D/3D generated images from an imaging device. But an EHR can be much more than just an 'electronic view' of the paper record or a collection of images from an imaging device. In this paper, we present an EHR called 'Computational Diagnostic Tool', that provides a novel computational approach to look at patient medical data. The developed EHR system is knowledge driven and acts as clinical decision support tool. The EHR tool provides two visual views of the medical data. Dynamic interaction with data is supported to help doctors practice evidence-based decisions and make judicious

  3. Enhanced Choice for Viewing Cocaine Pictures in Cocaine Addiction

    International Nuclear Information System (INIS)

    Moeller, S.J.; Goldstein, R.; Moeller, S.J.; Maloney, T.; Parvaz, M.A.; Dunning, J.P.; Alia-Klein, N.; Woicik, P.A.; Hajcak, G.; Telang, F.; Wang, G.-J.; Volkow, N.D.; Goldstein, R.Z.

    2009-01-01

    Individuals with cocaine use disorder (CUD) chose cocaine over nondrug rewards. In two newly designed laboratory tasks with pictures, we document this modified choice outside of a cocaine administration paradigm. Choice for viewing cocaine, pleasant, unpleasant, or neutral pictures-under explicit contingencies (choice made between two fully visible side-by-side images) and under more implicit contingencies (selections made between pictures hidden under flipped-over cards)-was examined in 20 CUD and 20 matched healthy control subjects. Subjects also provided self-reported ratings of each picture's pleasantness and arousal. Under both contingencies, CUD subjects chose to view more cocaine pictures than control subjects, group differences that were not fully explained by the self-reported picture ratings. Furthermore, whereas CUD subjects choice for viewing cocaine pictures exceeded choice for viewing unpleasant pictures (but did not exceed choice for viewing pleasant pictures, in contrast to their self-reported ratings), healthy control subjects avoided viewing cocaine pictures as frequently as, or even more than, unpleasant pictures. Finally, CUD subjects with the most cocaine viewing selections, even when directly compared with selections of the pleasant pictures, also reported the most frequent recent cocaine use. Enhanced drug-related choice in cocaine addiction can be demonstrated even for nonpharmacologic (pictorial) stimuli. This choice, which is modulated by alternative stimuli, partly transcends self-reports (possibly indicative of a disconnect in cocaine addiction between self-reports and objective behavior) to provide an objective marker of addiction severity. Neuroimaging studies are needed to establish the neural underpinnings of such enhanced cocaine-related choice.

  4. Enhanced Choice for Viewing Cocaine Pictures in Cocaine Addiction

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, S.J.; Goldstein, R.; Moeller, S.J.; Maloney, T. Parvaz, M.A.; Dunning, J.P.; Alia-Klein, N.; Woicik, P.A.; Hajcak, G.; Telang, F.; Wang, G.-J.; Volkow, N.D.; Goldstein, R.Z.

    2009-02-01

    Individuals with cocaine use disorder (CUD) chose cocaine over nondrug rewards. In two newly designed laboratory tasks with pictures, we document this modified choice outside of a cocaine administration paradigm. Choice for viewing cocaine, pleasant, unpleasant, or neutral pictures-under explicit contingencies (choice made between two fully visible side-by-side images) and under more implicit contingencies (selections made between pictures hidden under flipped-over cards)-was examined in 20 CUD and 20 matched healthy control subjects. Subjects also provided self-reported ratings of each picture's pleasantness and arousal. Under both contingencies, CUD subjects chose to view more cocaine pictures than control subjects, group differences that were not fully explained by the self-reported picture ratings. Furthermore, whereas CUD subjects choice for viewing cocaine pictures exceeded choice for viewing unpleasant pictures (but did not exceed choice for viewing pleasant pictures, in contrast to their self-reported ratings), healthy control subjects avoided viewing cocaine pictures as frequently as, or even more than, unpleasant pictures. Finally, CUD subjects with the most cocaine viewing selections, even when directly compared with selections of the pleasant pictures, also reported the most frequent recent cocaine use. Enhanced drug-related choice in cocaine addiction can be demonstrated even for nonpharmacologic (pictorial) stimuli. This choice, which is modulated by alternative stimuli, partly transcends self-reports (possibly indicative of a disconnect in cocaine addiction between self-reports and objective behavior) to provide an objective marker of addiction severity. Neuroimaging studies are needed to establish the neural underpinnings of such enhanced cocaine-related choice.

  5. Remote viewing of objects

    International Nuclear Information System (INIS)

    Motin, J.D.; Reformatsky, I.A.; Sinitsyn, P.R.; Ivanov, N.M.; Ivanov, B.I.; Malakhov, I.K.

    1979-01-01

    An object in a nuclear power plant is viewed through a radiation-proof shield by means of an entrance lens, optic fibre bundle and exit lens. The optic fibre bundle being heated to ensure thermostabilization of its light conducting properties in the presence of ionising radiation. Heating is by an electric heating coil. Alternatively, heating may be by argon itself heated by an electric heating element, a coating of resistive heating material, or absorption of neutrons in the material of the fibres or a coating therefor. Viewing may be on a CRT screen. (author)

  6. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement.

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-02-07

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.

  7. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-01-01

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements. PMID:29414893

  8. The Role of Computer Modeling in Enhancing Students' Conceptual Understanding of Physics

    Directory of Open Access Journals (Sweden)

    F. Ornek

    2012-04-01

    Full Text Available The purpose of this study was to investigate how the use of the computer simulations program VPython facilitated students’ conceptual understanding of fundamental physical principles and in constructing new knowledge of physics. We focused on students in a calculus-based introductory physics course, based on the Matter and Interactions curriculum of Chabay & Sherwood (2002 at a large state engineering and science university in the USA. A major emphasis of this course was on computer modeling by using VPython to write pro¬grams simulating physical systems. We conducted multiple student interviews, as well as an open-ended exit survey, to find out student views on how creating their own simulations to enhanced-conceptual understanding of physics and in constructing new knowledge of phys¬ics. The results varied in relation to the phases when the interviews were conducted. At the beginning of the course, students viewed the simulation program as a burden. However, dur¬ing the course, students stated that it promoted their knowledge and better conceptual understanding of physical phenomena. We deduce that VPython computer simulations can improve students’ conceptual understanding of fundamental physical concepts and promote construction of new knowledge in physics, once they overcome the initial learning curve associated with the VPython software package.

  9. Design and analysis of a tendon-based computed tomography-compatible robot with remote center of motion for lung biopsy.

    Science.gov (United States)

    Yang, Yunpeng; Jiang, Shan; Yang, Zhiyong; Yuan, Wei; Dou, Huaisu; Wang, Wei; Zhang, Daguang; Bian, Yuan

    2017-04-01

    Nowadays, biopsy is a decisive method of lung cancer diagnosis, whereas lung biopsy is time-consuming, complex and inaccurate. So a computed tomography-compatible robot for rapid and precise lung biopsy is developed in this article. According to the actual operation process, the robot is divided into two modules: 4-degree-of-freedom position module for location of puncture point is appropriate for patient's almost all positions and 3-degree-of-freedom tendon-based orientation module with remote center of motion is compact and computed tomography-compatible to orientate and insert needle automatically inside computed tomography bore. The workspace of the robot surrounds patient's thorax, and the needle tip forms a cone under patient's skin. A new error model of the robot based on screw theory is proposed in view of structure error and actuation error, which are regarded as screw motions. Simulation is carried out to verify the precision of the error model contrasted with compensation via inverse kinematics. The results of insertion experiment on specific phantom prove the feasibility of the robot with mean error of 1.373 mm in laboratory environment, which is accurate enough to replace manual operation.

  10. Support and development for remote collaborations in fusion research

    International Nuclear Information System (INIS)

    Casper, T.A.; Jong, R.A.; Meyer, W.H.; Moller, J.M.

    2000-01-01

    Major fusion experiments and modeling efforts rely on joint research of scientists from several locations around the world. A variety of software tools are in use to provide remote interactive access to facilities and data are routinely available over wide-area-network connections to researchers. Audio and video communications, monitoring of control room information and synchronization of remote sites with experimental operations all enhance participation during experiments. Remote distributed computing capabilities allow utilization of off-site computers that now help support the demands of control room analyses and plasma modeling. A collaborative software development project is currently using object technologies with CORBA-based communications to build a network executable transport code that further demonstrates the ability to utilize geographically dispersed resources. Development to extend these concepts with security and naming services and possible applications to instrumentation systems has been initiated. An Information Technology Initiative is deploying communication systems, ISDN (telephone) and IP (network) audio/video (A/V) and web browser-based, to build the infrastructure needed to support remote physics meetings, seminars and interactive discussions

  11. Support and development for remote collaboration in fusion research

    International Nuclear Information System (INIS)

    Casper, T A; Jong, R A; Meyer, W H; Moller, J M

    1999-01-01

    Major fusion experiments and modeling efforts rely on joint research of scientists from several locations around the world. A variety of software tools are in use to provide remote interactive access to facilities and data are routinely available over wide-area-network connections to researchers. Audio and video communications, monitoring of control room information and synchronization of remote sites with experimental operations all enhance participation during experiments. Remote distributed computing capabilities allow utilization of off-site computers that now help support the demands of control room analyses and plasma modeling. A collaborative software development project is currently using object technologies with CORBA-based communications to build a network executable transport code that further demonstrates the ability to utilize geographically dispersed resources. Development to extend these concepts with security and naming services and possible applications to instrumentation systems has been initiated. An Information Technology Initiative is deploying communication systems, ISDN (telephone) and IP (network) audio/video (A/V) and web browser-based, to build the infrastructure needed to support remote physics meetings, seminars and interactive discussions

  12. Remote collaboration and data access at the DIII-D National Fusion Facility

    International Nuclear Information System (INIS)

    Schissel, D.P.

    1998-09-01

    As the number of on-site and remote collaborators has increased, the demands on the DIII-D National Program's computational infrastructure has become more severe. The Director of the DIII-D Program recognized the increased importance of computers in carrying out the DIII-D mission and in late 1997 formed the Data Analysis Programming Group. Utilizing both software and hardware improvements, this new group has been charged with increasing the DIII-D data analysis throughput and data retrieval rate. Understanding the importance of the remote collaborators, this group has developed a long term plan that will allow for fast 24 hour data access (7x24) with complete documentation and a set of data viewing and analysis tools that can be run either on the collaborators' or DIII-D's computer systems. This paper presents the group's long term plan and progress to date

  13. LabVIEW Serial Driver Software for an Electronic Load

    Science.gov (United States)

    Scullin, Vincent; Garcia, Christopher

    2003-01-01

    A LabVIEW-language computer program enables monitoring and control of a Transistor Devices, Inc., Dynaload WCL232 (or equivalent) electronic load via an RS-232 serial communication link between the electronic load and a remote personal computer. (The electronic load can operate at constant voltage, current, power consumption, or resistance.) The program generates a graphical user interface (GUI) at the computer that looks and acts like the front panel of the electronic load. Once the electronic load has been placed in remote-control mode, this program first queries the electronic load for the present values of all its operational and limit settings, and then drops into a cycle in which it reports the instantaneous voltage, current, and power values in displays that resemble those on the electronic load while monitoring the GUI images of pushbuttons for control actions by the user. By means of the pushbutton images and associated prompts, the user can perform such operations as changing limit values, the operating mode, or the set point. The benefit of this software is that it relieves the user of the need to learn one method for operating the electronic load locally and another method for operating it remotely via a personal computer.

  14. Remote control of an MR imaging study via tele-collaboration tools

    Science.gov (United States)

    Sullivan, John M., Jr.; Mullen, Julia S.; Benz, Udo A.; Schmidt, Karl F.; Murugavel, Murali; Chen, Wei; Ghadyani, Hamid

    2005-04-01

    In contrast to traditional 'video conferencing' the Access Grid (AG), developed by Argonne National Laboratory, is a collaboration of audio, video and shared application tools which provide the 'persistent presence' of each participant. Among the shared application tools are the ability to share viewing and control of presentations, browsers, images and movies. When used in conjunction with Virtual Network Computing (VNC) software, an investigator can interact with colleagues at a remote site, and control remote systems via local keyboard and mouse commands. This combination allows for effective viewing and discussion of information, i.e. data, images, and results. It is clear that such an approach when applied to the medical sciences will provide a means by which a team of experts can not only access, but interact and control medical devices for the purpose of experimentation, diagnosis, surgery and therapy. We present the development of an application node at our 4.7 Tesla MR magnet facility, and a demonstration of remote investigator control of the magnet. A local magnet operator performs manual tasks such as loading the test subject into the magnet and administering the stimulus associated with the functional MRI study. The remote investigator has complete control of the magnet console. S/he can adjust the gradient coil settings, the pulse sequence, image capture frequency, etc. A geographically distributed audience views and interacts with the remote investigator and local MR operator. This AG demonstration of MR magnet control illuminates the potential of untethered medical experiments, procedures and training.

  15. Computer-Based Monitoring and Remote Controlling for Oil Well Pumps Using Scada

    Directory of Open Access Journals (Sweden)

    Rudi Tjiptadi

    2011-12-01

    Full Text Available The research aims to change manually the monitoring and controlling of oil well pumps into a computer-based system using SCADA (Supervisory and Data Acquisition system. To design the protection system which consists of controller unit and display system, RTU (Remote Terminal Unit and MTU (Master Terminal Unit are used. The research results in a controller unit which is able to communicate to personal computer using RS-232 C and an alarm system to protect oil pump motors by detecting sensors installed at the pumps. 

  16. The development of remote teaching laboratory access software for multi-slice computed optical tomography for use in undergraduate nuclear education

    International Nuclear Information System (INIS)

    Price, T.J.; Nichita, E.

    2013-01-01

    Internet-based laboratory exercises were developed for a course on biomedical imaging at the University of Ontario Institute of Technology. These exercises used a multi-slice computed optical tomography machine named DeskCAT to instruct students on the principals of computed tomography. User management software was developed which enabled course instructors to quickly set up a computer to accept a series of scheduled remote user connections for a classroom. Laboratory exercises using the DeskCAT machine were developed to be conducted remotely. (author)

  17. The development of remote teaching laboratory access software for multi-slice computed optical tomography for use in undergraduate nuclear education

    Energy Technology Data Exchange (ETDEWEB)

    Price, T.J.; Nichita, E., E-mail: Terry.Price@gmail.com [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2013-07-01

    Internet-based laboratory exercises were developed for a course on biomedical imaging at the University of Ontario Institute of Technology. These exercises used a multi-slice computed optical tomography machine named DeskCAT to instruct students on the principals of computed tomography. User management software was developed which enabled course instructors to quickly set up a computer to accept a series of scheduled remote user connections for a classroom. Laboratory exercises using the DeskCAT machine were developed to be conducted remotely. (author)

  18. Plasma density remote control system of experimental advanced superconductive tokamak

    International Nuclear Information System (INIS)

    Zhang Mingxin; Luo Jiarong; Li Guiming; Wang Hua; Zhao Dazheng; Xu Congdong

    2007-01-01

    In Tokamak experiments, experimental data and information on the density control are stored in the local computer system. Therefore, the researchers have to be in the control room for getting the data. Plasma Density Remote Control System (DRCS), which is implemented by encapsulating the business logic on the client in the B/S module, conducts the complicated science computation and realizes the synchronization with the experimental process on the client. At the same time, Web Services and Data File Services are deployed for the data exchange. It is proved in the experiments that DRCS not only meets the requirements for the remote control, but also shows an enhanced capability on the data transmission. (authors)

  19. Remote-controlled optics experiment for supporting senior high school and undergraduate teaching

    Science.gov (United States)

    Choy, S. H.; Jim, K. L.; Mak, C. L.; Leung, C. W.

    2017-08-01

    This paper reports the development of a remote laboratory (RemoteLab) platform for practising technologyenhanced learning of optics. The development of RemoteLab enhances students' understanding of experimental methodologies and outcomes, and enable students to conduct experiments everywhere at all times. While the initial goal of the system was for physics major undergradutes, the sytem was also made available for senior secondary school students. To gauge the impact of the RemoteLab, we evaluated two groups of students, which included 109 physics 1st-year undergraduates and 11 students from a local secondary school. After the experiments, evaluation including questionnaire survey and interviews were conducted to collect data on students' perceptions on RemoteLab and implementation issues related to the platform. The surveys focused on four main topics, including user interface, experiment setup, booking system and learning process. The survey results indicated that most of the participants' views towards RemoteLab was positive.

  20. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber.

    Science.gov (United States)

    Dechana, A; Thamboon, P; Boonyawan, D

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films-analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques-will be discussed.

  1. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dechana, A. [Program of Physics and General Science, Faculty of Science and Technology, Songkhla Rajabhat University, Songkhla 90000 (Thailand); Thamboon, P. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Boonyawan, D., E-mail: dheerawan.b@cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-10-15

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  2. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Science.gov (United States)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  3. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    International Nuclear Information System (INIS)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-01-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al 2 O 3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al 2 O 3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed

  4. Remote Controlling and Monitoring of Microscopic Slides

    International Nuclear Information System (INIS)

    Mustafa, G.; Qadri, M.T.; Daraz, U.

    2016-01-01

    Remotely controlled microscopic slide was designed using especial Graphical User Interface (GUI) which interfaces the user at remote location with the real microscope using site and the user can easily view and control the slide present on the microscope's stage. Precise motors have been used to allow the movement in all the three dimensions required by a pathologist. The pathologist can easily access these slides from any remote location and so the physical presence of the pathologist is now made easy. This invention would increase the health care efficiency by reducing the time and cost of diagnosis, making it very easy to get the expert's opinion and supporting the pathologist to relocate himself for his work. The microscope is controlled with computer with an attractive Graphical User Interface (GUI), through which a pathologist can easily monitor, control and record the image of the slide. The pathologist can now do his work regardless of his location, time, cost and physically presence of lab equipment. The technology will help the specialist in viewing the patients slide from any location in the world. He would be able to monitor and control the stage. This will also help the pathological laboratories in getting opinion from senior pathologist who are present at any far location in the world. This system also reduces the life risks of the patients. (author)

  5. Tools for remote computing in accelerator control

    International Nuclear Information System (INIS)

    Anderssen, P.S.; Frammery, V.; Wilcke, R.

    1990-01-01

    In modern accelerator control systems, the intelligence of the equipment is distributed in the geographical and the logical sense. Control processes for a large variety of tasks reside in both the equipment and the control computers. Hence successful operation hinges on the availability and reliability of the communication infrastructure. The computers are interconnected by a communication system and use remote procedure calls and message passing for information exchange. These communication mechanisms need a well-defined convention, i.e. a protocol. They also require flexibility in both the setup and changes to the protocol specification. The network compiler is a tool which provides the programmer with a means of establishing such a protocol for his application. Input to the network compiler is a single interface description file provided by the programmer. This file is written according to a grammar, and completely specifies the interprocess communication interfaces. Passed through the network compiler, the interface description file automatically produces the additional source code needed for the protocol. Hence the programmer does not have to be concerned about the details of the communication calls. Any further additions and modifications are made easy, because all the information about the interface is kept in a single file. (orig.)

  6. Accuracy Assessment of Digital Surface Models Based on WorldView-2 and ADS80 Stereo Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Christian Ginzler

    2012-05-01

    Full Text Available Digital surface models (DSMs are widely used in forest science to model the forest canopy. Stereo pairs of very high resolution satellite and digital aerial images are relatively new and their absolute accuracy for DSM generation is largely unknown. For an assessment of these input data two DSMs based on a WorldView-2 stereo pair and a ADS80 DSM were generated with photogrammetric instruments. Rational polynomial coefficients (RPCs are defining the orientation of the WorldView-2 satellite images, which can be enhanced with ground control points (GCPs. Thus two WorldView-2 DSMs were distinguished: a WorldView-2 RPCs-only DSM and a WorldView-2 GCP-enhanced RPCs DSM. The accuracy of the three DSMs was estimated with GPS measurements, manual stereo-measurements, and airborne laser scanning data (ALS. With GCP-enhanced RPCs the WorldView-2 image orientation could be optimised to a root mean square error (RMSE of 0.56 m in planimetry and 0.32 m in height. This improvement in orientation allowed for a vertical median error of −0.24 m for the WorldView-2 GCP-enhanced RPCs DSM in flat terrain. Overall, the DSM based on ADS80 images showed the highest accuracy of the three models with a median error of 0.08 m over bare ground. As the accuracy of a DSM varies with land cover three classes were distinguished: herb and grass, forests, and artificial areas. The study suggested the ADS80 DSM to best model actual surface height in all three land cover classes, with median errors < 1.1 m. The WorldView-2 GCP-enhanced RPCs model achieved good accuracy, too, with median errors of −0.43 m for the herb and grass vegetation and −0.26 m for artificial areas. Forested areas emerged as the most difficult land cover type for height modelling; still, with median errors of −1.85 m for the WorldView-2 GCP-enhanced RPCs model and −1.12 m for the ADS80 model, the input data sets evaluated here are quite promising for forest canopy modelling.

  7. Computed tomography arthrography using a radial plane view for the detection of triangular fibrocartilage complex foveal tears.

    Science.gov (United States)

    Moritomo, Hisao; Arimitsu, Sayuri; Kubo, Nobuyuki; Masatomi, Takashi; Yukioka, Masao

    2015-02-01

    To classify triangular fibrocartilage complex (TFCC) foveal lesions on the basis of computed tomography (CT) arthrography using a radial plane view and to correlate the CT arthrography results with surgical findings. We also tested the interobserver and intra-observer reliability of the radial plane view. A total of 33 patients with a suspected TFCC foveal tear who had undergone wrist CT arthrography and subsequent surgical exploration were enrolled. We classified the configurations of TFCC foveal lesions into 5 types on the basis of CT arthrography with the radial plane view in which the image slices rotate clockwise centered on the ulnar styloid process. Sensitivity, specificity, and positive predictive values were calculated for each type of foveal lesion in CT arthrography to detect foveal tears. We determined interobserver and intra-observer agreements using kappa statistics. We also compared accuracies with the radial plane views with those with the coronal plane views. Among the tear types on CT arthrography, type 3, a roundish defect at the fovea, and type 4, a large defect at the overall ulnar insertion, had high specificity and positive predictive value for the detection of foveal tears. Specificity and positive predictive values were 90% and 89% for type 3 and 100% and 100% for type 4, respectively, whereas sensitivity was 35% for type 3 and 22% for type 4. Interobserver and intra-observer agreement was substantial and almost perfect, respectively. The radial plane view identified foveal lesion of each palmar and dorsal radioulnar ligament separately, but accuracy results with the radial plane views were not statistically different from those with the coronal plane views. Computed tomography arthrography with a radial plane view exhibited enhanced specificity and positive predictive value when a type 3 or 4 lesion was identified in the detection of a TFCC foveal tear compared with historical controls. Diagnostic II. Copyright © 2015 American Society for

  8. Blind quantum computing with weak coherent pulses.

    Science.gov (United States)

    Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony

    2012-05-18

    The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ϵ blindness for UBQC, in analogy to the concept of ϵ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ϵ-blind UBQC for any ϵ>0, even if the channel between the client and the server is arbitrarily lossy.

  9. Blind Quantum Computing with Weak Coherent Pulses

    Science.gov (United States)

    Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony

    2012-05-01

    The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ɛ blindness for UBQC, in analogy to the concept of ɛ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ɛ-blind UBQC for any ɛ>0, even if the channel between the client and the server is arbitrarily lossy.

  10. Development of improved methods for remote access of DIII-D data and data analysis

    International Nuclear Information System (INIS)

    Greene, K.L.; McHarg, B.B. Jr.

    1997-11-01

    The DIII-D tokamak is a national fusion research facility. There is an increasing need to access data from remote sites in order to facilitate data analysis by collaborative researchers at remote locations, both nationally and internationally. In the past, this has usually been done by remotely logging into computers at the DIII-D site. With the advent of faster networking and powerful computers at remote sites, it is becoming possible to access and analyze data from anywhere in the world as if the remote user were actually at the DIII-D site. The general mechanism for accessing DIII-D data has always been via the PTDATA subroutine. Substantial enhancements are being made to that routine to make it more useful in a non-local environment. In particular, a caching mechanism is being built into PTDATA to make network data access more efficient. Studies are also being made of using Distributed File System (DFS) disk storage in a Distributed Computing Environment (DCE). A data server has been created that will migrate, on request, shot data from the DIII-D environment into the DFS environment

  11. Sensitivity of MODIS 2.1 micron Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    Science.gov (United States)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.

    2000-01-01

    Remote sensing of aerosol over land, from MODIS will be based on dark targets using mid-IR channels 2.1 and 3.9 micron. This approach was developed by Kaufman et al (1997), who suggested that dark surface reflectance in the red (0.66 micron -- rho(sub 0.66)) channel is half of that at 2.2 micron (rho(sub 2.2)), and the reflectance in the blue (0.49 micron - rho(sub 0.49)) channel is a quarter of that at 2.2 micron. Using this relationship, the surface reflectance in the visible channels can be predicted within Delta.rho(sub 0.49) approximately Delat.rho(sub 0.66) approximately 0.006 from rho(sub 2.2) for rho(sub 2.2) view angle - the nadir (theta = 0 deg). Considering the importance of the results in remote sensing of aerosols over land surfaces from space, we are validating the relationships for off-nadir view angles using Cloud Absorption Radiometer (CAR) data. The CAR data are available for channels between 0.3 and 2.3 micron and for different surface types and conditions: forest, tundra, ocean, sea-ice, swamp, grassland and over areas covered with smoke. In this study we analyzed data collected during the Smoke, Clouds, and Radiation - Brazil (SCAR-B) experiment to validate Kaufman et al.'s (1997) results for non-nadir view angles. We will show the correlation between rho(sub 0.472), rho(sub 0.675), and rho(sub 2.2) for view angles between nadir (0 deg) and 55 deg off-nadir, and for different viewing directions in the backscatter and forward scatter directions.

  12. The effects of spatially displaced visual feedback on remote manipulator performance

    Science.gov (United States)

    Smith, Randy L.; Stuart, Mark A.

    1993-01-01

    The results of this evaluation have important implications for the arrangement of remote manipulation worksites and the design of workstations for telerobot operations. This study clearly illustrates the deleterious effects that can accompany the performance of remote manipulator tasks when viewing conditions are less than optimal. Future evaluations should emphasize telerobot camera locations and the use of image/graphical enhancement techniques in an attempt to lessen the adverse effects of displaced visual feedback. An important finding in this evaluation is the extent to which results from previously performed direct manipulation studies can be generalized to remote manipulation studies. Even though the results obtained were very similar to those of the direct manipulation evaluations, there were differences as well. This evaluation has demonstrated that generalizations to remote manipulation applications based upon the results of direct manipulation studies are quite useful, but they should be made cautiously.

  13. Using computer graphics to design Space Station Freedom viewing

    Science.gov (United States)

    Goldsberry, Betty S.; Lippert, Buddy O.; Mckee, Sandra D.; Lewis, James L., Jr.; Mount, Francis E.

    1993-01-01

    Viewing requirements were identified early in the Space Station Freedom program for both direct viewing via windows and indirect viewing via cameras and closed-circuit television (CCTV). These requirements reside in NASA Program Definition and Requirements Document (PDRD), Section 3: Space Station Systems Requirements. Currently, analyses are addressing the feasibility of direct and indirect viewing. The goal of these analyses is to determine the optimum locations for the windows, cameras, and CCTV's in order to meet established requirements, to adequately support space station assembly, and to operate on-board equipment. PLAID, a three-dimensional computer graphics program developed at NASA JSC, was selected for use as the major tool in these analyses. PLAID provides the capability to simulate the assembly of the station as well as to examine operations as the station evolves. This program has been used successfully as a tool to analyze general viewing conditions for many Space Shuttle elements and can be used for virtually all Space Station components. Additionally, PLAID provides the ability to integrate an anthropometric scale-modeled human (representing a crew member) with interior and exterior architecture.

  14. High contrast enhancement aspect of dynamic computed tomography with arterial infusion - DCT-AI. Its clinical applications on hepatic tumors and basic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Seishi; Iwasaki, Naoya; Matsumura, Yoshimitsu; Kuramae, Shigeru; Mishiro, Tadashi

    1983-06-01

    Dynamic computed tomography was performed on 112 cases possibly having hepatic tumors with intraarterial infusion of undiluted contrast into a selectively placed catheter following angiographies. Our dynamic program could evaluate not only early phase of enhancement but also late phase up to 120 sec. Reconstructed views from early scans and magnified views were very useful to evaluate minute sequential changes. Hepatic masses less than 5 cm in size were found in thirty-one cases. Patterns of tumor enhancement and time-density curves have been analysed to correlate them with histology. Four types of tumor enhancement were noted: (1) homogeneous (2) patchy (3) mottled (4) ringed. Characteristic changes were observed in hepatocellular carcinoma - HCC - (mostly mottled) and haemangioma (mostly patchy). The former was divided in two groups reflecting the cellular maturity. The metastatic tumor could be enhanced in a ringed form with dendritic pattern of supplying vascularities in some cases. To support the use of undiluted contrast and to investigate the diagnostic efficacy of high contrast enhancement, experiments were performed by taking transaxial views of an acrylic phantom immersed in different concentrations of contrast. Analysis of CT images taken at different HU values ranging from 0 to 450 demonstrated that the higher the concentration of contrast, the better the spatial resolution was. Also larger magnification could be expected by using higher concentration of contrast. Although our Dynamic Computed Tomography with Arterial Infusion of Contrast still has drawbacks and limited indications, we advocate it as a better way of enhancement to detect and evaluate the hepatic masses, which sometimes elude the examiner's grasp with conventional way of enhancement. (author).

  15. Human factors in remote control engineering development activities

    International Nuclear Information System (INIS)

    Clarke, M.M.; Hamel, W.R.; Draper, J.V.

    1983-01-01

    Human factors engineering, which is an integral part of the advanced remote control development activities at the Oak Ridge National Laboratory, is described. First, work at the Remote Systems Development Facility (RSDF) has shown that operators can perform a wide variety of tasks, some of which were not specifically designed for remote systems, with a dextrous electronic force-reflecting servomanipulator and good television remote viewing capabilities. Second, the data collected during mock-up remote maintenance experiments at the RSDF have been analyzed to provide guidelines for the design of human interfaces with an integrated advanced remote maintenance system currently under development. Guidelines have been provided for task allocation between operators, remote viewing systems, and operator controls. 6 references, 5 figures, 2 tables

  16. Remote sampling system in reprocessing: present and future perspective

    International Nuclear Information System (INIS)

    Garcha, J.S.; Balakrishnan, V.P.; Rao, M.K.

    1990-01-01

    For the process and inventory control of the reprocessing plant operation it is essential to analyse the samples from the various process vessels to assess the plant performance and take corrective action if needed in the operating parameters. In view of the very high radioactive inventory in the plant, these plants are operated remotely behind thick shielding. The liquid sampling also has to be carried out by remote techniques only as no direct approach is feasible. A vacuum assisted air lift method is employed for the purpose of obtaining samples from remotely located process vessels. A brief description of the present technique, the design criteria, various interlocks and manual operations involved during sampling and despatching the same to the analytical laboratory is given in the paper. A design approach for making the sampling system, a fully automated remote operation has been attempted in this paper. Utilisation of custom built robots and dedicated computer for the various operations and interlocks has been visualised to ensure a complete remotised system for the adoption in future plants. (author). 2 figs., 2 tabs

  17. mGrid: A load-balanced distributed computing environment for the remote execution of the user-defined Matlab code

    Directory of Open Access Journals (Sweden)

    Almeida Jonas S

    2006-03-01

    Full Text Available Abstract Background Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. Results mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else. Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Conclusion Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web

  18. mGrid: a load-balanced distributed computing environment for the remote execution of the user-defined Matlab code.

    Science.gov (United States)

    Karpievitch, Yuliya V; Almeida, Jonas S

    2006-03-15

    Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over

  19. Sensitivity of MODIS 2.1 micron Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    Science.gov (United States)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.

    2000-01-01

    Remote sensing of aerosol over land, from MODIS will be based on dark targets using mid-IR channels 2.1 and 3.9 micron. This approach was developed by Kaufman et al (1997), who suggested that dark surface reflectance in the red (0.66 micron -- rho(sub 0.66)) channel is half of that at 2.2 micron (rho(sub 2.2)), and the reflectance in the blue (0.49 micron - rho(sub 0.49)) channel is a quarter of that at 2.2 micron. Using this relationship, the surface reflectance in the visible channels can be predicted within Delta.rho(sub 0.49) approximately Delat.rho(sub 0.66) approximately 0.006 from rho(sub 2.2) for rho(sub 2.2) remote sensing of aerosols over land surfaces from space, we are validating the relationships for off-nadir view angles using Cloud Absorption Radiometer (CAR) data. The CAR data are available for channels between 0.3 and 2.3 micron and for different surface types and conditions: forest, tundra, ocean, sea-ice, swamp, grassland and over areas covered with smoke. In this study we analyzed data collected during the Smoke, Clouds, and Radiation - Brazil (SCAR-B) experiment to validate Kaufman et al.'s (1997) results for non-nadir view angles. We will show the correlation between rho(sub 0.472), rho(sub 0.675), and rho(sub 2.2) for view angles between nadir (0 deg) and 55 deg off-nadir, and for different viewing directions in the backscatter and forward scatter directions.

  20. Quantitative remote visual inspection in nuclear power industry

    International Nuclear Information System (INIS)

    Stone, M.C.

    1992-01-01

    A borescope is an instrument that is used within the power industry to visually inspect remote locations. It is typically used for inspections of heat exchangers, condensers, boiler tubes, and steam generators and in many general inspection applications. The optical system of a borescope, like the human eye, does not have a fixed magnification. When viewing an object close up, it appears large; when the same object is viewed from afar, it appears small. Humans, though, have two separate eyes and a brain that process information to calculate the size of an object. These attributes are considered secondary information. Until now, making a measurement using a borescope has been an educated guess. There has always been a need to make accurate measurements from borescope images. The realization of this capability would make remote visual inspection a quantitative nondestructive testing method versus a qualitative one. For nuclear power plants, it is an excellent technique for maintaining radiation levels as low as reasonably achievable. Remote visual measurement provides distance and limits the exposure time needed to make accurate measurements. The design problem, therefore, was to develop the capability to make accurate and repeatable measurements of objects or physical defects with a borescope-type instrument. The solution was achieved by designing a borescope with a novel shadow projection mechanism, integrated with an electronics module containing the video display circuitry and a measurement computer

  1. Sensitivity of MODIS 2.1-(micrometers) Channel for Off-Nadir View Angles for Use in Remote Sensing of Aerosol

    Science.gov (United States)

    Gatebe, C. K.; King, M. D.; Tsay, S.-C.; Ji, Q.; Arnold, T.

    2000-01-01

    In this sensitivity study, we examined the ratio technique, the official method for remote sensing of aerosols over land from Moderate Resolution Imaging Spectroradiometer (MODIS) DATA, for view angles from nadir to 65 deg. off-nadir using Cloud Absorption Radiometer (CAR) data collected during the Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment conducted in 1995. For the data analyzed and for the view angles tested, results seem to suggest that the reflectance (rho)0.47 and (rho)0.67 are predictable from (rho)2.1 using: (rho)0.47 = (rho)2.1/6, which is a slight modification and (rho)0.67 = (rho)2.1/2. These results hold for target viewed from backscattered direction, but not for the forward direction.

  2. Remote sensing for nuclear power plant siting

    International Nuclear Information System (INIS)

    Siegal, B.S.; Welby, C.W.

    1981-01-01

    Remote sensing techniques enhance the selection and evaluation process for nuclear power plant siting. The principal advantage is the synoptic view which improves recognition of linear features, possibly indicative of faults. The interpretation of such images, in conjunction with seismological studies, also permits delineation of seismo-tectonic provinces. In volcanic terrains, geomorphic-age boundaries can be delineated and volcanic centers identified, providing necessary guidance for field sampling and regional model derivation. The use of such techniques is considered for studies in the Philippines, Mexico, and Greece. 5 refs

  3. Remote equipment technology. Final report for GFY 1880

    International Nuclear Information System (INIS)

    Wadekamper, D.C.

    1980-09-01

    An interactive graphics terminal and a desk-top computer were utilized to perform a Computer Aided Remote Maintenance simulation of a hypothetical equipment item. The equipment item included an electrical connection, hydraulic fitting, and simple bolt pattern which were maintained by remote manipulators during the simulation. These remote maintenance operations demonstrated that the Computer Aided Remote Maintenance simulation technology could be extended to complex equipment items. As a result, these equipment items can be evaluated from the standpoint of remote operation and maintenance prior to purchase or installation in a remote processing or cell arrangement

  4. A comparison of symptoms after viewing text on a computer screen and hardcopy.

    Science.gov (United States)

    Chu, Christina; Rosenfield, Mark; Portello, Joan K; Benzoni, Jaclyn A; Collier, Juanita D

    2011-01-01

    Computer vision syndrome (CVS) is a complex of eye and vision problems experienced during or related to computer use. Ocular symptoms may include asthenopia, accommodative and vergence difficulties and dry eye. CVS occurs in up to 90% of computer workers, and given the almost universal use of these devices, it is important to identify whether these symptoms are specific to computer operation, or are simply a manifestation of performing a sustained near-vision task. This study compared ocular symptoms immediately following a sustained near task. 30 young, visually-normal subjects read text aloud either from a desktop computer screen or a printed hardcopy page at a viewing distance of 50 cm for a continuous 20 min period. Identical text was used in the two sessions, which was matched for size and contrast. Target viewing angle and luminance were similar for the two conditions. Immediately following completion of the reading task, subjects completed a written questionnaire asking about their level of ocular discomfort during the task. When comparing the computer and hardcopy conditions, significant differences in median symptom scores were reported with regard to blurred vision during the task (t = 147.0; p = 0.03) and the mean symptom score (t = 102.5; p = 0.04). In both cases, symptoms were higher during computer use. Symptoms following sustained computer use were significantly worse than those reported after hard copy fixation under similar viewing conditions. A better understanding of the physiology underlying CVS is critical to allow more accurate diagnosis and treatment. This will allow practitioners to optimize visual comfort and efficiency during computer operation.

  5. Clinical Views: Object-Oriented Views for Clinical Databases

    Science.gov (United States)

    Portoni, Luisa; Combi, Carlo; Pinciroli, Francesco

    1998-01-01

    We present here a prototype of a clinical information system for the archiving and the management of multimedia and temporally-oriented clinical data related to PTCA patients. The system is based on an object-oriented DBMS and supports multiple views and view schemas on patients' data. Remote data access is supported too.

  6. Gesture recognition based on computer vision and glove sensor for remote working environments

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Sung Il; Kim, In Chul; Baek, Yung Mok; Kim, Dong Su; Jeong, Jee Won; Shin, Kug [Kyungpook National University, Taegu (Korea)

    1998-04-01

    In this research, we defined a gesture set needed for remote monitoring and control of a manless system in atomic power station environments. Here, we define a command as the loci of a gesture. We aim at the development of an algorithm using a vision sensor and glove sensors in order to implement the gesture recognition system. The gesture recognition system based on computer vision tracks a hand by using cross correlation of PDOE image. To recognize the gesture word, the 8 direction code is employed as the input symbol for discrete HMM. Another gesture recognition based on sensor has introduced Pinch glove and Polhemus sensor as an input device. The extracted feature through preprocessing now acts as an input signal of the recognizer. For recognition 3D loci of Polhemus sensor, discrete HMM is also adopted. The alternative approach of two foregoing recognition systems uses the vision and and glove sensors together. The extracted mesh feature and 8 direction code from the locus tracking are introduced for further enhancing recognition performance. MLP trained by backpropagation is introduced here and its performance is compared to that of discrete HMM. (author). 32 refs., 44 figs., 21 tabs.

  7. Immersive viewing engine

    Science.gov (United States)

    Schonlau, William J.

    2006-05-01

    An immersive viewing engine providing basic telepresence functionality for a variety of application types is presented. Augmented reality, teleoperation and virtual reality applications all benefit from the use of head mounted display devices that present imagery appropriate to the user's head orientation at full frame rates. Our primary application is the viewing of remote environments, as with a camera equipped teleoperated vehicle. The conventional approach where imagery from a narrow field camera onboard the vehicle is presented to the user on a small rectangular screen is contrasted with an immersive viewing system where a cylindrical or spherical format image is received from a panoramic camera on the vehicle, resampled in response to sensed user head orientation and presented via wide field eyewear display, approaching 180 degrees of horizontal field. Of primary interest is the user's enhanced ability to perceive and understand image content, even when image resolution parameters are poor, due to the innate visual integration and 3-D model generation capabilities of the human visual system. A mathematical model for tracking user head position and resampling the panoramic image to attain distortion free viewing of the region appropriate to the user's current head pose is presented and consideration is given to providing the user with stereo viewing generated from depth map information derived using stereo from motion algorithms.

  8. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling

    Science.gov (United States)

    Dorigo, W. A.; Zurita-Milla, R.; de Wit, A. J. W.; Brazile, J.; Singh, R.; Schaepman, M. E.

    2007-05-01

    During the last 50 years, the management of agroecosystems has been undergoing major changes to meet the growing demand for food, timber, fibre and fuel. As a result of this intensified use, the ecological status of many agroecosystems has been severely deteriorated. Modeling the behavior of agroecosystems is, therefore, of great help since it allows the definition of management strategies that maximize (crop) production while minimizing the environmental impacts. Remote sensing can support such modeling by offering information on the spatial and temporal variation of important canopy state variables which would be very difficult to obtain otherwise. In this paper, we present an overview of different methods that can be used to derive biophysical and biochemical canopy state variables from optical remote sensing data in the VNIR-SWIR regions. The overview is based on an extensive literature review where both statistical-empirical and physically based methods are discussed. Subsequently, the prevailing techniques of assimilating remote sensing data into agroecosystem models are outlined. The increasing complexity of data assimilation methods and of models describing agroecosystem functioning has significantly increased computational demands. For this reason, we include a short section on the potential of parallel processing to deal with the complex and computationally intensive algorithms described in the preceding sections. The studied literature reveals that many valuable techniques have been developed both for the retrieval of canopy state variables from reflective remote sensing data as for assimilating the retrieved variables in agroecosystem models. However, for agroecosystem modeling and remote sensing data assimilation to be commonly employed on a global operational basis, emphasis will have to be put on bridging the mismatch between data availability and accuracy on one hand, and model and user requirements on the other. This could be achieved by

  9. Remote control of a fusion facility

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, D.P. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)], E-mail: schissel@fusion.gat.com; Abla, G.; Humphreys, D.A.; Penaflor, B.G.; Sammuli, B.S.; Walker, M.L. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)

    2009-06-15

    Magnetic fusion experiments keep growing in size and complexity resulting in a concurrent growth in collaboration between experimental sites and laboratories worldwide. This scientific collaboration activity is strong at existing experimental sites, is a major element of machines just coming on line, and is also a thrust of experiments that will come on line in the next decade. Computer science research into enhancing the ability to scientifically participate in a fusion experiment remotely has been growing in size in an attempt to better address the needs of fusion scientists worldwide. The natural progression of this research is to examine how to move from remote scientific participation to remote hardware control. This paper examines the challenges associated with remote experimental device control and proposes a solution based on a semantic approach that defines a Gatekeeper software system that will be the only channel of interaction for incoming requests to the experimental site. The role of the Gatekeeper is to validate the identification and access privilege of the requestor and to ensure the validity of the proposed request. The Gatekeeper will be a modular system, transparent to end-users, and allow a high volume of activity.

  10. Remote control of a fusion facility

    International Nuclear Information System (INIS)

    Schissel, D.P.; Abla, G.; Humphreys, D.A.; Penaflor, B.G.; Sammuli, B.S.; Walker, M.L.

    2009-01-01

    Magnetic fusion experiments keep growing in size and complexity resulting in a concurrent growth in collaboration between experimental sites and laboratories worldwide. This scientific collaboration activity is strong at existing experimental sites, is a major element of machines just coming on line, and is also a thrust of experiments that will come on line in the next decade. Computer science research into enhancing the ability to scientifically participate in a fusion experiment remotely has been growing in size in an attempt to better address the needs of fusion scientists worldwide. The natural progression of this research is to examine how to move from remote scientific participation to remote hardware control. This paper examines the challenges associated with remote experimental device control and proposes a solution based on a semantic approach that defines a Gatekeeper software system that will be the only channel of interaction for incoming requests to the experimental site. The role of the Gatekeeper is to validate the identification and access privilege of the requestor and to ensure the validity of the proposed request. The Gatekeeper will be a modular system, transparent to end-users, and allow a high volume of activity.

  11. Identification of Enhancers In Human: Advances In Computational Studies

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2016-03-24

    Roughly ~50% of the human genome, contains noncoding sequences serving as regulatory elements responsible for the diverse gene expression of the cells in the body. One very well studied category of regulatory elements is the category of enhancers. Enhancers increase the transcriptional output in cells through chromatin remodeling or recruitment of complexes of binding proteins. Identification of enhancer using computational techniques is an interesting area of research and up to now several approaches have been proposed. However, the current state-of-the-art methods face limitations since the function of enhancers is clarified, but their mechanism of function is not well understood. This PhD thesis presents a bioinformatics/computer science study that focuses on the problem of identifying enhancers in different human cells using computational techniques. The dissertation is decomposed into four main tasks that we present in different chapters. First, since many of the enhancer’s functions are not well understood, we study the basic biological models by which enhancers trigger transcriptional functions and we survey comprehensively over 30 bioinformatics approaches for identifying enhancers. Next, we elaborate more on the availability of enhancer data as produced by different enhancer identification methods and experimental procedures. In particular, we analyze advantages and disadvantages of existing solutions and we report obstacles that require further consideration. To mitigate these problems we developed the Database of Integrated Human Enhancers (DENdb), a centralized online repository that archives enhancer data from 16 ENCODE cell-lines. The integrated enhancer data are also combined with many other experimental data that can be used to interpret the enhancers content and generate a novel enhancer annotation that complements the existing integrative annotation proposed by the ENCODE consortium. Next, we propose the first deep-learning computational

  12. Challenges and solutions for applying the travel cost demand model to geographically remote visitor destinations: A case study of bear viewing at Katmai National Park and Preserve

    Science.gov (United States)

    Richardson, Leslie; Huber, Christopher; Loomis, John

    2017-01-01

    Remote and unique destinations present difficulties when attempting to construct traditional travel cost models to value recreation demand. The biggest limitation comes from the lack of variation in the dependent variable, defined as the number of trips taken over a set time frame. There are various approaches that can be used for overcoming limitations of the traditional travel cost model in the context of remote destinations. This study applies an adaptation of the standard model to estimate recreation benefits of bear viewing at Katmai National Park and Preserve in Alaska, which represents a once-in-a-lifetime experience for many visitors. Results demonstrate that visitors to this park’s Brooks Camp area are willing to pay an average of US$287 per day of bear viewing. Implications of these findings for valuing recreation at other remote destinations are discussed.

  13. An investigation of secure remote instrument control

    International Nuclear Information System (INIS)

    Schissel, D.P.; Abla, G.; Fredian, T.; Greenwald, M.; Penaflor, B.G.; Stillerman, J.; Walker, M.L.; Ciarlette, D.J.

    2010-01-01

    This paper examines the computer science issues associated with secure remote instrumentation control for magnetic fusion experiments. Computer science research into enhancing the ability to scientifically participate in a fusion experiment remotely has been growing in size in an attempt to better address the needs of fusion scientists worldwide. The natural progression of this research is to examine how to move from remote scientific participation to remote hardware control. The vision is to define a gatekeeper software system that will be the only channel of interaction for incoming requests to the secured area of the experimental site. The role of the gatekeeper is to validate the identification and access privilege of the requestor and to insure the general validity of the proposed request. The vision for the gatekeeper is that it be a modular system that is simple in design and defined in a way that makes its implementation and operation transparent and obvious. The architecture of the module interface is flexible enough that it can easily allow the future addition of new modules. At the same time, it should be transparent to end-users and allow a high volume of activity so as to not provide a work bottleneck. The results of the gatekeeper design and initial implementation are presented as well as a discussion on the implication of this research on the operation of fusion experimental machines such as ITER.

  14. An investigation of secure remote instrument control

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, D.P., E-mail: schissel@fusion.gat.co [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Abla, G. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Fredian, T.; Greenwald, M. [Massachusetts Institute of Technology, Cambridge, MA (United States); Penaflor, B.G. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Stillerman, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Walker, M.L. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Ciarlette, D.J. [US ITER Project Office, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2010-07-15

    This paper examines the computer science issues associated with secure remote instrumentation control for magnetic fusion experiments. Computer science research into enhancing the ability to scientifically participate in a fusion experiment remotely has been growing in size in an attempt to better address the needs of fusion scientists worldwide. The natural progression of this research is to examine how to move from remote scientific participation to remote hardware control. The vision is to define a gatekeeper software system that will be the only channel of interaction for incoming requests to the secured area of the experimental site. The role of the gatekeeper is to validate the identification and access privilege of the requestor and to insure the general validity of the proposed request. The vision for the gatekeeper is that it be a modular system that is simple in design and defined in a way that makes its implementation and operation transparent and obvious. The architecture of the module interface is flexible enough that it can easily allow the future addition of new modules. At the same time, it should be transparent to end-users and allow a high volume of activity so as to not provide a work bottleneck. The results of the gatekeeper design and initial implementation are presented as well as a discussion on the implication of this research on the operation of fusion experimental machines such as ITER.

  15. Remote viewing of melter interior Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1986-01-01

    A remote system has been developed and demonstrated for continuous reviewing of the interior of a glass melter, which is used to vitrify highly radioactive waste. The system is currently being implemented with the Defense Waste Processing Facility (DWPF) now under construction at the Savannah River Plant (SRP). The environment in which the borescope/TV unit is implemented combines high temperature, high ionizing radiation, low light, spattering, deposition, and remote maintenance

  16. Prospective Teachers' Views about Video-Enhanced General Biology Instruction

    Science.gov (United States)

    Çetin, Gülcan

    2014-01-01

    The aim of the study is to determine the views of the prospective physics and chemistry teachers about the video-enhanced General Biology instruction. The participants included 19 second-year prospective teachers (10 in Physics and 9 in Chemistry Education) at Necatibey Faculty of Education, Balikesir University, Turkey in the 2011-2012 academic…

  17. Remote maintenance development, July 1975--July 1976

    International Nuclear Information System (INIS)

    Fletcher, R.D.

    1977-04-01

    The results of the second year's efforts on remote handling development and studies for remote maintenance of failure-prone areas of the New Waste Calcining Facility (NWCF) are presented. Test arrangements and results for specific viewing situations and component remote installation and removal in the Remote Maintenance Development Facility (RMDF) and component material evaluations are discussed

  18. "O.K. Where's the Remote?" Children, Families, and Remote Control Devices.

    Science.gov (United States)

    Krendl, Kathy A.; And Others

    This paper, part of a larger study of new television technologies, examines how preschool children integrate remote control devices (RCDs) into their television viewing behavior, preschoolers' competence with and knowledge of RCDs, and the role of the RCD in shaping family viewing styles. Subjects, 50 children aged 4 to 6 years attending 3…

  19. Brain Computer Interfaces for Enhanced Interaction with Mobile Robot Agents

    Science.gov (United States)

    2016-07-27

    SECURITY CLASSIFICATION OF: Brain Computer Interfaces (BCIs) show great potential in allowing humans to interact with computational environments in a...Distribution Unlimited UU UU UU UU 27-07-2016 17-Sep-2013 16-Sep-2014 Final Report: Brain Computer Interfaces for Enhanced Interactions with Mobile Robot...published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Brain Computer Interfaces for Enhanced

  20. Medical Applications of Remote Electronic Browsing.

    Science.gov (United States)

    Chadwick, Joseph

    The purposes of this study are to identify and define viable remote browsing techniques and the requirements for an interactive medical information system that would permit the use of such techniques. The main emphasis is in the areas of: (1) remote viewing of page material; and (2) remote interrogation of fact banks with question-answering…

  1. Video System for Viewing From a Remote or Windowless Cockpit

    Science.gov (United States)

    Banerjee, Amamath

    2009-01-01

    A system of electronic hardware and software synthesizes, in nearly real time, an image of a portion of a scene surveyed by as many as eight video cameras aimed, in different directions, at portions of the scene. This is a prototype of systems that would enable a pilot to view the scene outside a remote or windowless cockpit. The outputs of the cameras are digitized. Direct memory addressing is used to store the data of a few captured images in sequence, and the sequence is repeated in cycles. Cylindrical warping is used in merging adjacent images at their borders to construct a mosaic image of the scene. The mosaic-image data are written to a memory block from which they can be rendered on a head-mounted display (HMD) device. A subsystem in the HMD device tracks the direction of gaze of the wearer, providing data that are used to select, for display, the portion of the mosaic image corresponding to the direction of gaze. The basic functionality of the system has been demonstrated by mounting the cameras on the roof of a van and steering the van by use of the images presented on the HMD device.

  2. Enhancing Student Self-Worth in the Primary School Learning Environment: Teachers' Views and Students' Views

    Science.gov (United States)

    Cushman, Penni; Cowan, Jackie

    2010-01-01

    This paper reports the findings from a study of teachers and students' views regarding self-worth in the primary school learning environment. The revised New Zealand curriculum recognises the importance of self-worth in students' motivation and ability to learn. While the need to enhance self-worth in the classroom has been well established in the…

  3. Remote Adaptive Motor Resistance Training Exercise Apparatus and Method of Use Thereof

    Science.gov (United States)

    Reich, Alton (Inventor); Shaw, James (Inventor)

    2017-01-01

    The invention comprises a method and/or an apparatus using a computer configured exercise system equipped with an electric motor to provide physical resistance to user motion in conjunction with means for sharing exercise system related data and/or user performance data with a secondary user, such as a medical professional, a physical therapist, a trainer, a computer generated competitor, and/or a human competitor. For example, the exercise system is used with a remote trainer to enhance exercise performance, with a remote medical professional for rehabilitation, and/or with a competitor in a competition, such as in a power/weightlifting competition or in a video game. The exercise system is optionally configured with an intelligent software assistant and knowledge navigator functioning as a personal assistant application.

  4. Grid workflow validation using ontology-based tacit knowledge: A case study for quantitative remote sensing applications

    Science.gov (United States)

    Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi

    2017-01-01

    Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.

  5. Exploring the mid-infrared region for urban remote sensing: seasonal and view angle effects

    Science.gov (United States)

    Krehbiel, C. P.; Kovalskyy, V.; Henebry, G. M.

    2013-12-01

    Spanning 3-5 microns, the mid-infrared (MIR) region is the mixing zone between reflected sunlight and emitted earthlight in roughly equal proportions. While the MIR has been utilized in atmospheric remote sensing, its potential in terrestrial remote sensing--particularly urban remote sensing, has yet to be realized. One major advantage of the MIR is the ability to penetrate most anthropogenic haze and smog. Green vegetation appears MIR-dark, urban building materials appear MIR-grey, and bare soil and dried vegetation appear MIR-bright. Thus, there is an intrinsic seasonality in MIR radiance dynamics due both to surface type differences and to seasonal change in insolation. These factors merit exploration into the potential applications of the MIR for monitoring urban change. We investigated MIR radiance dynamics in relation to (1) the spectral properties of land cover types, (2) time of year and (3) sensor view zenith angle (VZA). We used Aqua MODIS daily swaths for band 23 (~ 4.05 μm) at 1 km spatial resolution from 2009-2010 and the NLCD Percent Impervious Surface Area (%ISA) 30 m product from 2001 and 2006. We found the effects of time of year, sensor VZA, and %ISA to be three principal factors influencing MIR radiance dynamics. We focused on analyzing the relationship between MIR radiance and %ISA over eight major cities in the Great Plains of the USA. This region is characterized by four distinct seasons, relatively flat terrain, and isolated urban centers situated within a vegetated landscape. We used west-east transects beginning in the agricultural areas outside of each city, passing through the urban core and extending back out into the agricultural periphery to observe the spatial pattern of MIR radiance and how it changes seasonally. Sensor VZA influences radiance dynamics by affecting the proportion of surface elements detected--especially pertinent at the coarse spatial resolution (~1 km) of MODIS. For example, smaller VZAs (30°). Larger VZAs detect

  6. DEEP: a general computational framework for predicting enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2014-11-05

    Transcription regulation in multicellular eukaryotes is orchestrated by a number of DNA functional elements located at gene regulatory regions. Some regulatory regions (e.g. enhancers) are located far away from the gene they affect. Identification of distal regulatory elements is a challenge for the bioinformatics research. Although existing methodologies increased the number of computationally predicted enhancers, performance inconsistency of computational models across different cell-lines, class imbalance within the learning sets and ad hoc rules for selecting enhancer candidates for supervised learning, are some key questions that require further examination. In this study we developed DEEP, a novel ensemble prediction framework. DEEP integrates three components with diverse characteristics that streamline the analysis of enhancer\\'s properties in a great variety of cellular conditions. In our method we train many individual classification models that we combine to classify DNA regions as enhancers or non-enhancers. DEEP uses features derived from histone modification marks or attributes coming from sequence characteristics. Experimental results indicate that DEEP performs better than four state-of-the-art methods on the ENCODE data. We report the first computational enhancer prediction results on FANTOM5 data where DEEP achieves 90.2% accuracy and 90% geometric mean (GM) of specificity and sensitivity across 36 different tissues. We further present results derived using in vivo-derived enhancer data from VISTA database. DEEP-VISTA, when tested on an independent test set, achieved GM of 80.1% and accuracy of 89.64%. DEEP framework is publicly available at http://cbrc.kaust.edu.sa/deep/.

  7. A LabVIEW based Remote DSP Laboratory

    Directory of Open Access Journals (Sweden)

    Athanasios Kalantzopoulos

    2008-07-01

    Full Text Available Remote laboratories provide the students with the capability to perform laboratory exercises exploiting the relevant equipment any time of the day without their physical presence. Furthermore, providing the ability to use a single workstation by more than one student, they contribute to the reduction of the laboratory cost. Turning to advantage the above and according to the needs of post graduate modules in the fields of DSP Systems Design and Signal Processing Systems with DSPs, we designed and developed a Remote DSP Laboratory. A student using a Web Browser has the ability via internet to turn to account the R-DSP Lab and perform experiments using DSPs (Digital Signal Processors. For now, there is the opportunity to carry out laboratory exercises such as FIR, IIR digital filters and FFT as well as run any executable file developed by the user. In any case the observation of the results is carried out through the use of specially designed Graphical User Interfaces (GUIs.

  8. Factors affecting remote handling productivity during installation of the ITER-like wall at JET

    International Nuclear Information System (INIS)

    Collins, S.; Matthews, G.; Thomas, J.; Hermon, G.

    2013-01-01

    Highlights: ► The paper describes the challenges to achieve the installation of the ILW beryllium sliced wall. ► Examines the factual difference between estimated remote handling in-vessel durations and those achieved, with a view to quantifying the typical disparity between the two. ► The paper will elaborate and highlight the contributing factors. This offers an opportunity to provide provenance for availability estimates of devices such as ITER and DEMO. ► The paper will identify and describe the factors influencing the ratio between estimated versus the actual durations for remote handling operations. -- Abstract: Remote handling operations at JET have encountered many challenges to achieve the installation of the ILW beryllium sliced wall during the Enhanced Performance stage 2 (EP2) shutdown of JET. This was a demanding and challenging activity which was based on the experience gained from a period of over 15 years (20,000 h operations) of JET In-Vessel remote handling operations. This paper describes the difference between estimated remote handling in-vessel durations and those actually achieved with a view to quantifying the typical disparity between them. There are many factors that affect productivity of the remote handling operations and it is important to accommodate these either in the design of the component or within the production of the operational procedures with a view to minimise all impact on the final task duration. Some factors that affect the efficiency are outside the control of the design and operational procedures. These are unforeseen anomalies that were encountered during the removal, naked wall survey and installation of the components. Recoveries from these anomalies are extremely challenging and need to be addressed efficiently in order to minimise the impact on the shutdown duration and prevent optimised panned activities from becoming inefficient by fragmentation

  9. Visual Fatigue Induced by Viewing a Tablet Computer with a High-resolution Display.

    Science.gov (United States)

    Kim, Dong Ju; Lim, Chi Yeon; Gu, Namyi; Park, Choul Yong

    2017-10-01

    In the present study, the visual discomfort induced by smart mobile devices was assessed in normal and healthy adults. Fifty-nine volunteers (age, 38.16 ± 10.23 years; male : female = 19 : 40) were exposed to tablet computer screen stimuli (iPad Air, Apple Inc.) for 1 hour. Participants watched a movie or played a computer game on the tablet computer. Visual fatigue and discomfort were assessed using an asthenopia questionnaire, tear film break-up time, and total ocular wavefront aberration before and after viewing smart mobile devices. Based on the questionnaire, viewing smart mobile devices for 1 hour significantly increased mean total asthenopia score from 19.59 ± 8.58 to 22.68 ± 9.39 (p < 0.001). Specifically, the scores for five items (tired eyes, sore/aching eyes, irritated eyes, watery eyes, and hot/burning eye) were significantly increased by viewing smart mobile devices. Tear film break-up time significantly decreased from 5.09 ± 1.52 seconds to 4.63 ± 1.34 seconds (p = 0.003). However, total ocular wavefront aberration was unchanged. Visual fatigue and discomfort were significantly induced by viewing smart mobile devices, even though the devices were equipped with state-of-the-art display technology. © 2017 The Korean Ophthalmological Society

  10. Analytic evaluation of the weighting functions for remote sensing of blackbody planetary atmospheres : the case of limb viewing geometry

    Science.gov (United States)

    Ustinov, Eugene A.

    2006-01-01

    In a recent publication (Ustinov, 2002), we proposed an analytic approach to evaluation of radiative and geophysical weighting functions for remote sensing of a blackbody planetary atmosphere, based on general linearization approach applied to the case of nadir viewing geometry. In this presentation, the general linearization approach is applied to the limb viewing geometry. The expressions, similar to those obtained in (Ustinov, 2002), are obtained for weighting functions with respect to the distance along the line of sight. Further on, these expressions are converted to the expressions for weighting functions with respect to the vertical coordinate in the atmosphere. Finally, the numerical representation of weighting functions in the form of matrices of partial derivatives of grid limb radiances with respect to the grid values of atmospheric parameters is used for a convolution with the finite field of view of the instrument.

  11. Portable, remotely operated, computer-controlled, quadrupole mass spectrometer for field use

    International Nuclear Information System (INIS)

    Friesen, R.D.; Newton, J.C.; Smith, C.F.

    1982-04-01

    A portable, remote-controlled mass spectrometer was required at the Nevada Test Site to analyze prompt post-event gas from the nuclear cavity in support of the underground testing program. A Balzers QMG-511 quadrupole was chosen for its ability to be interfaced to a DEC LSI-11 computer and to withstand the ground movement caused by this field environment. The inlet system valves, the pumps, the pressure and temperature transducers, and the quadrupole mass spectrometer are controlled by a read-only-memory-based DEC LSI-11/2 with a high-speed microwave link to the control point which is typically 30 miles away. The computer at the control point is a DEC LSI-11/23 running the RSX-11 operating system. The instrument was automated as much as possible because the system is run by inexperienced operators at times. The mass spectrometer has been used on an initial field event with excellent performance. The gas analysis system is described, including automation by a novel computer control method which reduces operator errors and allows dynamic access to the system parameters

  12. Development of a Computer-Assisted Instrumentation Curriculum for Physics Students: Using LabVIEW and Arduino Platform

    Science.gov (United States)

    Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang

    2016-01-01

    We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum "Computer-Assisted Instrumentation in the Design of Physics Laboratories" brings…

  13. Remote sensing for greenhouse detection from stereo pairs of WorldView-2 satellite

    Directory of Open Access Journals (Sweden)

    M.A. Aguilar

    2014-05-01

    Full Text Available The successful launch of the first very high resolution (VHR satellites capable of capturing panchromatic imagery of the land surface with ground sample distance even lower than 1 m (e.g. IKONOS in 1999 or QuickBird in 2001 marked the beginning of a wholly new age in remote sensing. On January 4, 2010, images of WorldView-2 were placed on the market. Possibly it is the most sophisticated commercial VHR satellite currently orbiting the Earth and the exploitation of its data poses a challenge to researchers worldwide. Moreover, the practice of under plastic agriculture had a great development in the Mediterranean area during the past 60 years, especially in Almeria, acting as a key economic driver in the area. The goal of this work is the automatic greenhouse mapping by using Object Based Image Analysis (OBIA. The required input data will be a pan-sharpened orthoimage and a normalized digital surface model (nDSM for objects, both products generated from a WorldView-2 stereo pair. The attained results show that the very high resolution 8-band multispectral and the nDSM data improve the greenhouses automatic detection. In this way, overall accuracies higher than 90% can be achieved.

  14. DEEP: a general computational framework for predicting enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios A.; Kalnis, Panos; Bajic, Vladimir B.

    2014-01-01

    Transcription regulation in multicellular eukaryotes is orchestrated by a number of DNA functional elements located at gene regulatory regions. Some regulatory regions (e.g. enhancers) are located far away from the gene they affect. Identification of distal regulatory elements is a challenge for the bioinformatics research. Although existing methodologies increased the number of computationally predicted enhancers, performance inconsistency of computational models across different cell-lines, class imbalance within the learning sets and ad hoc rules for selecting enhancer candidates for supervised learning, are some key questions that require further examination. In this study we developed DEEP, a novel ensemble prediction framework. DEEP integrates three components with diverse characteristics that streamline the analysis of enhancer's properties in a great variety of cellular conditions. In our method we train many individual classification models that we combine to classify DNA regions as enhancers or non-enhancers. DEEP uses features derived from histone modification marks or attributes coming from sequence characteristics. Experimental results indicate that DEEP performs better than four state-of-the-art methods on the ENCODE data. We report the first computational enhancer prediction results on FANTOM5 data where DEEP achieves 90.2% accuracy and 90% geometric mean (GM) of specificity and sensitivity across 36 different tissues. We further present results derived using in vivo-derived enhancer data from VISTA database. DEEP-VISTA, when tested on an independent test set, achieved GM of 80.1% and accuracy of 89.64%. DEEP framework is publicly available at http://cbrc.kaust.edu.sa/deep/.

  15. Television Viewing, Computer Use, Time Driving and All‐Cause Mortality: The SUN Cohort

    Science.gov (United States)

    Basterra‐Gortari, Francisco Javier; Bes‐Rastrollo, Maira; Gea, Alfredo; Núñez‐Córdoba, Jorge María; Toledo, Estefanía; Martínez‐González, Miguel Ángel

    2014-01-01

    Background Sedentary behaviors have been directly associated with all‐cause mortality. However, little is known about different types of sedentary behaviors in relation to overall mortality. Our objective was to assess the association between different sedentary behaviors and all‐cause mortality. Methods and Results In this prospective, dynamic cohort study (the SUN Project) 13 284 Spanish university graduates with a mean age of 37 years were followed‐up for a median of 8.2 years. Television, computer, and driving time were assessed at baseline. Poisson regression models were fitted to examine the association between each sedentary behavior and total mortality. All‐cause mortality incidence rate ratios (IRRs) per 2 hours per day were 1.40 (95% confidence interval (CI): 1.06 to 1.84) for television viewing, 0.96 (95% CI: 0.79 to 1.18) for computer use, and 1.14 (95% CI: 0.90 to 1.44) for driving, after adjustment for age, sex, smoking status, total energy intake, Mediterranean diet adherence, body mass index, and physical activity. The risk of mortality was twofold higher for participants reporting ≥3 h/day of television viewing than for those reporting Television viewing was directly associated with all‐cause mortality. However, computer use and time spent driving were not significantly associated with higher mortality. Further cohort studies and trials designed to assess whether reductions in television viewing are able to reduce mortality are warranted. The lack of association between computer use or time spent driving and mortality needs further confirmation. PMID:24965030

  16. Remote memories are enhanced by COMT activity through dysregulation of the endocannabinoid system in the prefrontal cortex.

    Science.gov (United States)

    Scheggia, D; Zamberletti, E; Realini, N; Mereu, M; Contarini, G; Ferretti, V; Managò, F; Margiani, G; Brunoro, R; Rubino, T; De Luca, M A; Piomelli, D; Parolaro, D; Papaleo, F

    2018-04-01

    The prefrontal cortex (PFC) is a crucial hub for the flexible modulation of recent memories (executive functions) as well as for the stable organization of remote memories. Dopamine in the PFC is implicated in both these processes and genetic variants affecting its neurotransmission might control the unique balance between cognitive stability and flexibility present in each individual. Functional genetic variants in the catechol-O-methyltransferase (COMT) gene result in a different catabolism of dopamine in the PFC. However, despite the established role played by COMT genetic variation in executive functions, its impact on remote memory formation and recall is still poorly explored. Here we report that transgenic mice overexpressing the human COMT-Val gene (COMT-Val-tg) present exaggerated remote memories (>50 days) while having unaltered recent memories (remote memories as silencing COMT Val overexpression starting from 30 days after the initial aversive conditioning normalized remote memories. COMT genetic overactivity produced a selective overdrive of the endocannabinoid system within the PFC, but not in the striatum and hippocampus, which was associated with enhanced remote memories. Indeed, acute pharmacological blockade of CB1 receptors was sufficient to rescue the altered remote memory recall in COMT-Val-tg mice and increased PFC dopamine levels. These results demonstrate that COMT genetic variations modulate the retrieval of remote memories through the dysregulation of the endocannabinoid system in the PFC.

  17. The Argentine remote monitoring and surveillance system

    International Nuclear Information System (INIS)

    Bonino, A.; Roca, J.L.; Perez, A.; Pizarro, L.; Krimer, M.; Teira, R.; Higa, Z.; Saettone, S.; Monzon, J.; Moroni, D.

    1996-01-01

    The Scientific and Technical Support Department of the Argentine National Board of Nuclear Regulation (ENREN) has developed a Remote Monitoring and Surveillance System (RMSS) that provides a media to verify state of variables related to the monitoring and surveillance activities of nuclear facilities, mainly safeguard applications. RMSS includes a variety of on site installed sensors, an authenticated radiofrequency communication link, a receiver processing unit, an active vision set and a user friendly personal computer interface to collect, view and store pertinent histories of events. A real time data base allows consulting, maintenance, updating and checking activities. RMSS could be integrated into a LAN or WAN via modem for use in a remote operation scheme. In this paper a description of the RMSS is provided. Also, an overview of the RMSS operation at one facility under safeguards belonging to the National Commission of Atomic Energy (CNEA) is presented. Results and conclusions of the system associated with this facility are given. (author). 37 figs

  18. The Argentine remote monitoring and surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, A; Roca, J L; Perez, A; Pizarro, L; Krimer, M; Teira, R; Higa, Z; Saettone, S; Monzon, J; Moroni, D [Ente Nacional Regulador Nuclear, Buenos Aires (Argentina). Dept. Apoyo Cientifico y Tecnico

    1997-12-31

    The Scientific and Technical Support Department of the Argentine National Board of Nuclear Regulation (ENREN) has developed a Remote Monitoring and Surveillance System (RMSS) that provides a media to verify state of variables related to the monitoring and surveillance activities of nuclear facilities, mainly safeguard applications. RMSS includes a variety of on site installed sensors, an authenticated radiofrequency communication link, a receiver processing unit, an active vision set and a user friendly personal computer interface to collect, view and store pertinent histories of events. A real time data base allows consulting, maintenance, updating and checking activities. RMSS could be integrated into a LAN or WAN via modem for use in a remote operation scheme. In this paper a description of the RMSS is provided. Also, an overview of the RMSS operation at one facility under safeguards belonging to the National Commission of Atomic Energy (CNEA) is presented. Results and conclusions of the system associated with this facility are given. (author). 37 figs.

  19. Internal and external Field of View: computer games and cybersickness

    NARCIS (Netherlands)

    Vries, S.C. de; Bos, J.E.; Emmerik, M.L. van; Groen, E.L.

    2007-01-01

    In an experiment with a computer game environment, we studied the effect of Field-of-View (FOV) on cybersickness. In particular, we examined the effect of differences between the internal FOV (IFOV, the FOV which the graphics generator is using to render its images) and the external FOV (EFOV, the

  20. Prospective Turkish Primary Teachers' Views about the Use of Computers in Mathematics Education

    Science.gov (United States)

    Dogan, Mustafa

    2012-01-01

    The use of computers and technology in mathematics education affects students' learning, achievements, and affective dimensions. This study explores prospective Turkish primary mathematics teachers' views about the use of computers in mathematics education. The sample comprised of 129 fourth-year prospective primary mathematics teachers from two…

  1. NET remote workstation

    International Nuclear Information System (INIS)

    Leinemann, K.

    1990-10-01

    The goal of this NET study was to define the functionality of a remote handling workstation and its hardware and software architecture. The remote handling workstation has to fulfill two basic functions: (1) to provide the man-machine interface (MMI), that means the interface to the control system of the maintenance equipment and to the working environment (telepresence) and (2) to provide high level (task level) supporting functions (software tools) during the maintenance work and in the preparation phase. Concerning the man-machine interface, an important module of the remote handling workstation besides the standard components of man-machine interfacing is a module for graphical scene presentation supplementing viewing by TV. The technique of integrated viewing is well known from JET BOOM and TARM control using the GBsim and KISMET software. For integration of equipment dependent MMI functions the remote handling workstation provides a special software module interface. Task level support of the operator is based on (1) spatial (geometric/kinematic) models, (2) remote handling procedure models, and (3) functional models of the equipment. These models and the related simulation modules are used for planning, programming, execution monitoring, and training. The workstation provides an intelligent handbook guiding the operator through planned procedures illustrated by animated graphical sequences. For unplanned situations decision aids are available. A central point of the architectural design was to guarantee a high flexibility with respect to hardware and software. Therefore the remote handling workstation is designed as an open system based on widely accepted standards allowing the stepwise integration of the various modules starting with the basic MMI and the spatial simulation as standard components. (orig./HP) [de

  2. An Investigation of Secure Remote Instrument Control

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, D.; Abla, G.; Penaflor, B. [General Atomics, San Diego (United States); Ciarlette, D. [Oak Ridge National Laboratory, Oak Ridge (United States)

    2009-07-01

    This paper examines the computer science issues associated with secure remote instrumentation control for magnetic fusion experiments. Computer science research into enhancing the ability to scientifically participate in a fusion experiment remotely has been growing in size in an attempt to better address the needs of fusion scientists worldwide. The natural progression of this research is to examine how to move from remote scientific participation to remote hardware control. The vision is to define a gatekeeper software system that will be the only channel of interaction for incoming requests to the experimental site. The role of the gatekeeper is to validate the identification and access privilege of the requester and to insure the validity of the proposed request. The vision for the gatekeeper is that it be a modular system that is simple in design and defined in a way that makes its implementation and operation transparent and obvious. The architecture of the module interface is flexible enough that it can easily allow the future addition of new modules. At the same time, it should be transparent to end-users and allow a high volume of activity so as to not provide a work bottleneck. Appropriate security requires the ability to verify identity (authentication), verify access control (authorization), and validate the appropriateness of requests. The validation process can include provenance and semantic methodologies. The results of the gatekeeper design and initial prototype testing will be presented as well as a discussion on the implication of this research on the operation of fusion experimental machines such as ITER. (authors)

  3. Head-coupled remote stereoscopic camera system for telepresence applications

    Science.gov (United States)

    Bolas, Mark T.; Fisher, Scott S.

    1990-09-01

    The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.

  4. KAMEDIN: a telemedicine system for computer supported cooperative work and remote image analysis in radiology.

    Science.gov (United States)

    Handels, H; Busch, C; Encarnação, J; Hahn, C; Kühn, V; Miehe, J; Pöppl, S I; Rinast, E; Rossmanith, C; Seibert, F; Will, A

    1997-03-01

    The software system KAMEDIN (Kooperatives Arbeiten und MEdizinische Diagnostik auf Innovativen Netzen) is a multimedia telemedicine system for exchange, cooperative diagnostics, and remote analysis of digital medical image data. It provides components for visualisation, processing, and synchronised audio-visual discussion of medical images. Techniques of computer supported cooperative work (CSCW) synchronise user interactions during a teleconference. Visibility of both local and remote cursor on the conference workstations facilitates telepointing and reinforces the conference partner's telepresence. Audio communication during teleconferences is supported by an integrated audio component. Furthermore, brain tissue segmentation with artificial neural networks can be performed on an external supercomputer as a remote image analysis procedure. KAMEDIN is designed as a low cost CSCW tool for ISDN based telecommunication. However it can be used on any TCP/IP supporting network. In a field test, KAMEDIN was installed in 15 clinics and medical departments to validate the systems' usability. The telemedicine system KAMEDIN has been developed, tested, and evaluated within a research project sponsored by German Telekom.

  5. A Collaborative Digital Pathology System for Multi-Touch Mobile and Desktop Computing Platforms

    KAUST Repository

    Jeong, W.

    2013-06-13

    Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server system that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch-enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. We introduce a domain-specific image-stack compression method that leverages real-time hardware decoding on mobile devices. It adaptively encodes image stacks in a decorrelated colour space to achieve extremely low bitrates (0.8 bpp) with very low loss of image quality. We evaluate the image quality of our compression method and the performance of our system for diagnosis with an in-depth user study. Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server systems that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  6. A Collaborative Digital Pathology System for Multi-Touch Mobile and Desktop Computing Platforms

    KAUST Repository

    Jeong, W.; Schneider, J.; Hansen, A.; Lee, M.; Turney, S. G.; Faulkner-Jones, B. E.; Hecht, J. L.; Najarian, R.; Yee, E.; Lichtman, J. W.; Pfister, H.

    2013-01-01

    Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server system that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch-enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. We introduce a domain-specific image-stack compression method that leverages real-time hardware decoding on mobile devices. It adaptively encodes image stacks in a decorrelated colour space to achieve extremely low bitrates (0.8 bpp) with very low loss of image quality. We evaluate the image quality of our compression method and the performance of our system for diagnosis with an in-depth user study. Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server systems that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  7. The forgotten view: Chest X-ray - Lateral view

    Directory of Open Access Journals (Sweden)

    Abraham M. Ittyachen

    2017-01-01

    Full Text Available With CT (computed tomography chest gaining more importance as a diagnostic tool, chest X-ray especially the lateral view is taken less commonly nowadays. Besides CT chest is also proven to be superior to chest X-ray in patients with major blunt trauma. We are presenting a 68-year old male who was partially treated from outside for a left sided pneumonia. He came to our hospital because of persisting chest pain. Chest X-ray, frontal view (postero-anterior was almost normal except for a mild opacity in the left lower zone. CT scan of the chest revealed a fluid collection posteriorly enclosed within enhancing pleura. Chest X-ray, left lateral view showed a corresponding posterior pleural based opacity. We are presenting this case to highlight the importance of the lateral view of the chest X-ray. In selected cases there is still a role for the lateral view. With the three dimensional visualization provided by the CT, the lateral view of the chest may be easier to understand. Consequent to the initial diagnosis by CT further follow up can be done with the chest X-ray. In a limited way this mitigates unnecessary expenditure and more importantly prevents the patient from exposure to harmful radiation in the form of repeated CT.

  8. Two ions coupled to an optical cavity : from an enhanced quantum computer interface towards distributed quantum computing

    International Nuclear Information System (INIS)

    Casabone, B.

    2015-01-01

    Distributed quantum computing, an approach to scale up the computational power of quantum computers, requires entanglement between nodes of a quantum network. In our research group, two building blocks of schemes to entangle two ion-based quantum computers using cavity-based quantum interfaces have recently been demonstrated: ion-photon entanglement and ion-photon state mapping. In this thesis work, we extend the first building block in order to entangle two ions located in the same optical cavity. The entanglement generated by this protocol is efficient and heralded, and as it does not rely on the fact that ions interact with the same cavity, our results are a stepping stone towards the efficient generation of entanglement of remote ion-based quantum computers. In the second part of this thesis, we discuss how collective effects can be used to improve the performance of a cavity-based quantum interface. We show that by using two ions in the so-called superradiant state, the coupling strength between the two ions and the optical cavity is effectively increased compared to the single-ion case. As a complementary result, the creation of a state of two ions that exhibits a reduced coupling strength to the optical cavity, i.e., a subradiant state, is shown. Finally, we demonstrate a direct application of the increased coupling strength that the superradiant state exhibits by showing an enhanced version of the ion-photon state mapping process. By using the current setup and a second one that is being assembled, we intend to build a quantum network. The heralded ion-ion entanglement protocol presented in this thesis work will be used to entangle ions located in both setups, an experiment that requires photons generated in both apparatuses to be indistinguishable. Collective effects then can be used to modify the waveform of photons exiting the cavity in order to effect the desired photon indistinguishability. (author) [de

  9. Remote viewing system for in core inspection of nuclear reactors (Paper No. 022)

    International Nuclear Information System (INIS)

    Modi, R.K.; Radke, M.G.; Ramaswamy, N.V.; Ramakumar, M.S.; Das, N.C.

    1987-02-01

    A remote viewing optical instrument and illuminator have been designed and fabricated to view and photograph the various components inside the core of FBTR, Kalpakkam. These instruments have resulted in development of indegenious technology and saving of foreign exchange of the order of Rs. 20 lakhs. 'Periscope' consists of several relay optics, a scanning device attached to objective end prism and an eye piece module. Objects located at various positions, can be brought to field of view by a scanning prism. Objects situated at a distance between 1 meter to infinity can be focussed with magnifying power of 2x. 'Projector' is designed to provide illumination level of 200 lux, at the farthest surface which is about 2.8 meters from light source. Provision is made to change the lamp module to obtain more intense light beam. Both instruments are inserted through two identical experimental canals on 3600mm thick small rotating plug of concrete. They are housed in 101.6 mm O, D, and 5000 mm long S.S. tube. The outer surface of the tube is hard chrome plated for better seal and ease of decontamination. During shut down the ambient is filled with argon gas and sodium aerosol at the temperature of about 150 degrees. The instruments have to withstand high level of gamma and other particulate radiations. 'Periscope' is flushed with argon and maintained at 5 psig to avoid any possibility of reactor gases from escaping to atmosphere. 'Projector is continuously flushed with argon gas at 5 psig for cooling the lamp enclosure. The instruments are provided with the biological shield of 700 mm thick lead plugs. (author). 4 figs

  10. Grid computing and e-science: a view from inside

    Directory of Open Access Journals (Sweden)

    Stefano Cozzini

    2008-06-01

    Full Text Available My intention is to analyze how, where and if grid computing technology is truly enabling a new way of doing science (so-called ‘e-science’. I will base my views on the experiences accumulated thus far in a number of scientific communities, which we have provided with the opportunity of using grid computing. I shall first define some basic terms and concepts and then discuss a number of specific cases in which the use of grid computing has actually made possible a new method for doing science. I will then present a case in which this did not result in a change in research methods. I will try to identify the reasons for these failures and analyze the future evolution of grid computing. I will conclude by introducing and commenting the concept of ‘cloud computing’, the approach offered and provided by major industrial actors (Google/IBM and Amazon being among the most important and what impact this technology might have on the world of research.

  11. A technique for integrating remote minicomputers into a general computer's file system

    CERN Document Server

    Russell, R D

    1976-01-01

    This paper describes a simple technique for interfacing remote minicomputers used for real-time data acquisition into the file system of a central computer. Developed as part of the ORION system at CERN, this 'File Manager' subsystem enables a program in the minicomputer to access and manipulate files of any type as if they resided on a storage device attached to the minicomputer. Yet, completely transparent to the program, the files are accessed from disks on the central system via high-speed data links, with response times comparable to local storage devices. (6 refs).

  12. JEarth | Analytical Remote Sensing Imagery Application for Researchers and Practitioners

    Science.gov (United States)

    Prashad, L.; Christensen, P. R.; Anwar, S.; Dickenshied, S.; Engle, E.; Noss, D.

    2009-12-01

    The ASU 100 Cities Project and the ASU Mars Space Flight Facility (MSFF) present JEarth, a set of analytical Geographic Information System (GIS) tools for viewing and processing Earth-based remote sensing imagery and vectors, including high-resolution and hyperspectral imagery such as TIMS and MASTER. JEarth is useful for a wide range of researchers and practitioners who need to access, view, and analyze remote sensing imagery. JEarth stems from existing MSFF applications: the Java application JMars (Java Mission-planning and Analysis for Remote Sensing) for viewing and analyzing remote sensing imagery and THMPROC, a web-based, interactive tool for processing imagery to create band combinations, stretches, and other imagery products. JEarth users can run the application on their desktops by installing Java-based open source software on Windows, Mac, or Linux operating systems.

  13. A Cloud Computing Workflow for Scalable Integration of Remote Sensing and Social Media Data in Urban Studies

    Science.gov (United States)

    Soliman, A.; Soltani, K.; Yin, J.; Subramaniam, B.; Liu, Y.; Padmanabhan, A.; Riteau, P.; Keahey, K.; Wang, S. W.

    2015-12-01

    Urban ecosystems are unique earth environments because both their physical and social components contribute to the overall dynamics of the system. Up-to-date, remote sensing data (e.g. optical and LiDAR) allowed researchers to monitor the development of impervious surfaces however, it was not adequate to detect associated social dynamics. Geo-located social media (e.g. Twitter) provides a data source to detect population dynamics and understand the interaction of people with their physical environment. Although, integrating social media with remote sensing data has been hindered by large volumes of data and the lack of models for integrating remote sensing products with unstructured social media data. In this research work, we leveraged the NSF chameleon cloud computing platform to provide virtual clusters and elastic auto-scaling of resources that are needed for the synthesis of landuse and geo-located Twitter data. In this context, data synthesis was used to address research questions related to population dynamics in major metropolitan areas. We provide an overview of a cloud computing workflow comprised of a set of coupled scalable synthesis modules for: a) preprocessing data, which includes storage and query of heterogeneous data streams, b) spatial data integration, which matches geo-located Twitter data with user defined landuse maps based on a conceptual model of human mobility and c) visualization of urban mobility patterns. Our results demonstrate the flexibility to connect data, synthesis methods and computing resources using cloud computing, which would be otherwise very difficult for untrained scientists to setup and control. Furthermore, we demonstrate the capabilities of CyberGIS-based workflow using the case study of comparing commuting distances across major US cities from 2013 through the present. We demonstrate how our workflow will support discoveries in urban ecological studies as well as linking human and physical dimensions in environmental

  14. Three views of logic mathematics, philosophy, and computer science

    CERN Document Server

    Loveland, Donald W; Sterrett, S G

    2014-01-01

    Demonstrating the different roles that logic plays in the disciplines of computer science, mathematics, and philosophy, this concise undergraduate textbook covers select topics from three different areas of logic: proof theory, computability theory, and nonclassical logic. The book balances accessibility, breadth, and rigor, and is designed so that its materials will fit into a single semester. Its distinctive presentation of traditional logic material will enhance readers' capabilities and mathematical maturity. The proof theory portion presents classical propositional logic and first-orde

  15. Increasing Access and Usability of Remote Sensing Data: The NASA Protected Area Archive

    Science.gov (United States)

    Geller, Gary N.

    2004-01-01

    Although remote sensing data are now widely available, much of it at low or no-cost, many managers of protected conservation areas do not have the expertise or tools to view or analyze it. Thus access to it by the protected area management community is effectively blocked. The Protected Area Archive will increase access to remote sensing data by creating collections of satellite images of protected areas and packaging them with simple-to-use visualization and analytical tools. The user can easily locate the area and image of interest on a map, then display, roam, and zoom the image. A set of simple tools will be provided so the user can explore the data and employ it to assist in management and monitoring of their area. The 'Phase 1 ' version requires only a Windows-based computer and basic computer skills, and may be of particular help to protected area managers in developing countries.

  16. Data Quality in Remote Sensing

    Science.gov (United States)

    Batini, C.; Blaschke, T.; Lang, S.; Albrecht, F.; Abdulmutalib, H. M.; Barsi, Á.; Szabó, G.; Kugler, Zs.

    2017-09-01

    The issue of data quality (DQ) is of growing importance in Remote Sensing (RS), due to the widespread use of digital services (incl. apps) that exploit remote sensing data. In this position paper a body of experts from the ISPRS Intercommission working group III/IVb "DQ" identifies, categorises and reasons about issues that are considered as crucial for a RS research and application agenda. This ISPRS initiative ensures to build on earlier work by other organisations such as IEEE, CEOS or GEO, in particular on the meritorious work of the Quality Assurance Framework for Earth Observation (QA4EO) which was established and endorsed by the Committee on Earth Observation Satellites (CEOS) but aims to broaden the view by including experts from computer science and particularly database science. The main activities and outcomes include: providing a taxonomy of DQ dimensions in the RS domain, achieving a global approach to DQ for heterogeneous-format RS data sets, investigate DQ dimensions in use, conceive a methodology for managing cost effective solutions on DQ in RS initiatives, and to address future challenges on RS DQ dimensions arising in the new era of the big Earth data.

  17. Handheld Devices with Wide-Area Wireless Connectivity: Applications in Astronomy Educational Technology and Remote Computational Control

    Science.gov (United States)

    Budiardja, R. D.; Lingerfelt, E. J.; Guidry, M. W.

    2003-05-01

    Wireless technology implemented with handheld devices has attractive features because of the potential to access large amounts of data and the prospect of on-the-fly computational analysis from a device that can be carried in a shirt pocket. We shall describe applications of such technology to the general paradigm of making digital wireless connections from the field to upload information and queries to network servers, executing (potentially complex) programs and controlling data analysis and/or database operations on fast network computers, and returning real-time information from this analysis to the handheld device in the field. As illustration, we shall describe several client/server programs that we have written for applications in teaching introductory astronomy. For example, one program allows static and dynamic properties of astronomical objects to be accessed in a remote observation laboratory setting using a digital cell phone or PDA. Another implements interactive quizzing over a cell phone or PDA using a 700-question introductory astronomy quiz database, thus permitting students to study for astronomy quizzes in any environment in which they have a few free minutes and a digital cell phone or wireless PDA. Another allows one to control and monitor a computation done on a Beowulf cluster by changing the parameters of the computation remotely and retrieving the result when the computation is done. The presentation will include hands-on demonstrations with real devices. *Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  18. Enhancement of Online Robotics Learning Using Real-Time 3D Visualization Technology

    OpenAIRE

    Richard Chiou; Yongjin (james) Kwon; Tzu-Liang (bill) Tseng; Robin Kizirian; Yueh-Ting Yang

    2010-01-01

    This paper discusses a real-time e-Lab Learning system based on the integration of 3D visualization technology with a remote robotic laboratory. With the emergence and development of the Internet field, online learning is proving to play a significant role in the upcoming era. In an effort to enhance Internet-based learning of robotics and keep up with the rapid progression of technology, a 3- Dimensional scheme of viewing the robotic laboratory has been introduced in addition to the remote c...

  19. Computing for magnetic fusion energy research: An updated vision

    International Nuclear Information System (INIS)

    Henline, P.; Giarrusso, J.; Davis, S.; Casper, T.

    1993-01-01

    This Fusion Computing Council perspective is written to present the primary of the fusion computing community at the time of publication of the report necessarily as a summary of the information contained in the individual sections. These concerns reflect FCC discussions during final review of contributions from the various working groups and portray our latest information. This report itself should be considered as dynamic, requiring periodic updating in an attempt to track rapid evolution of the computer industry relevant to requirements for magnetic fusion research. The most significant common concern among the Fusion Computing Council working groups is networking capability. All groups see an increasing need for network services due to the use of workstations, distributed computing environments, increased use of graphic services, X-window usage, remote experimental collaborations, remote data access for specific projects and other collaborations. Other areas of concern include support for workstations, enhanced infrastructure to support collaborations, the User Service Centers, NERSC and future massively parallel computers, and FCC sponsored workshops

  20. Analysing Test-Takers’ Views on a Computer-Based Speaking Test

    Directory of Open Access Journals (Sweden)

    Marian Amengual-Pizarro

    2017-11-01

    Full Text Available This study examines test-takers’ views on a computer-delivered speaking test in order to investigate the aspects they consider most relevant in technology-based oral assessment, and to explore the main advantages and disadvantages computer-based tests may offer as compared to face-to-face speaking tests. A small-scale open questionnaire was administered to 80 test-takers who took the APTIS speaking test at the Universidad de Alcalá in April 2016. Results reveal that examinees believe computer-based tests provide a valid measure of oral competence in English and are considered to be an adequate method for the assessment of speaking. Interestingly, the data suggest that personal characteristics of test-takers seem to play a key role in deciding upon the most suitable and reliable delivery mode.

  1. Aspects of Remote Sensing in the GEOid and Sea level Of the North Atlantic Region (GEOSONAR) Project

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Nielsen, Allan Aasbjerg; Knudsen, Per

    1999-01-01

    The general objectives of the GEOid and Sea level Of the North Atlantic Region (GEOSONAR) project are presented. These include analyses of the dynamics of the ocean and its characteristics. The analyses are mainly based on remote sensing. As an example a data set obtained by the multi-channel Sea-viewing...... Wide Field-of-view Sensor (SeaWiFs) is analysed. The presentation results include the computed principal components (PC) and the maximum autocorrelation factors (MAF). Both methods are expected to be incorporated into future analyses of the state of the ocean....

  2. A geometric method for computing ocular kinematics and classifying gaze events using monocular remote eye tracking in a robotic environment.

    Science.gov (United States)

    Singh, Tarkeshwar; Perry, Christopher M; Herter, Troy M

    2016-01-26

    Robotic and virtual-reality systems offer tremendous potential for improving assessment and rehabilitation of neurological disorders affecting the upper extremity. A key feature of these systems is that visual stimuli are often presented within the same workspace as the hands (i.e., peripersonal space). Integrating video-based remote eye tracking with robotic and virtual-reality systems can provide an additional tool for investigating how cognitive processes influence visuomotor learning and rehabilitation of the upper extremity. However, remote eye tracking systems typically compute ocular kinematics by assuming eye movements are made in a plane with constant depth (e.g. frontal plane). When visual stimuli are presented at variable depths (e.g. transverse plane), eye movements have a vergence component that may influence reliable detection of gaze events (fixations, smooth pursuits and saccades). To our knowledge, there are no available methods to classify gaze events in the transverse plane for monocular remote eye tracking systems. Here we present a geometrical method to compute ocular kinematics from a monocular remote eye tracking system when visual stimuli are presented in the transverse plane. We then use the obtained kinematics to compute velocity-based thresholds that allow us to accurately identify onsets and offsets of fixations, saccades and smooth pursuits. Finally, we validate our algorithm by comparing the gaze events computed by the algorithm with those obtained from the eye-tracking software and manual digitization. Within the transverse plane, our algorithm reliably differentiates saccades from fixations (static visual stimuli) and smooth pursuits from saccades and fixations when visual stimuli are dynamic. The proposed methods provide advancements for examining eye movements in robotic and virtual-reality systems. Our methods can also be used with other video-based or tablet-based systems in which eye movements are performed in a peripersonal

  3. The remote infrared remote control system based on LPC1114

    Science.gov (United States)

    Ren, Yingjie; Guo, Kai; Xu, Xinni; Sun, Dayu; Wang, Li

    2018-05-01

    In view of the shortcomings such as the short control distance of the traditional air conditioner remote controller on the market nowadays and combining with the current smart home new mode "Cloud+ Terminal" mode, a smart home system based on internet is designed and designed to be fully applied to the simple and reliable features of the LPC1114 chip. The controller is added with temperature control module, timing module and other modules. Through the actual test, it achieved remote control air conditioning, with reliability and stability and brought great convenience to people's lives.

  4. A remote sensing computer-assisted learning tool developed using the unified modeling language

    Science.gov (United States)

    Friedrich, J.; Karslioglu, M. O.

    The goal of this work has been to create an easy-to-use and simple-to-make learning tool for remote sensing at an introductory level. Many students struggle to comprehend what seems to be a very basic knowledge of digital images, image processing and image arithmetic, for example. Because professional programs are generally too complex and overwhelming for beginners and often not tailored to the specific needs of a course regarding functionality, a computer-assisted learning (CAL) program was developed based on the unified modeling language (UML), the present standard for object-oriented (OO) system development. A major advantage of this approach is an easier transition from modeling to coding of such an application, if modern UML tools are being used. After introducing the constructed UML model, its implementation is briefly described followed by a series of learning exercises. They illustrate how the resulting CAL tool supports students taking an introductory course in remote sensing at the author's institution.

  5. Enhancing multi-view autostereoscopic displays by viewing distance control (VDC)

    Science.gov (United States)

    Jurk, Silvio; Duckstein, Bernd; Renault, Sylvain; Kuhlmey, Mathias; de la Barré, René; Ebner, Thomas

    2014-03-01

    Conventional multi-view displays spatially interlace various views of a 3D scene and form appropriate viewing channels. However, they only support sufficient stereo quality within a limited range around the nominal viewing distance (NVD). If this distance is maintained, two slightly divergent views are projected to the person's eyes, both covering the entire screen. With increasing deviations from the NVD the stereo image quality decreases. As a major drawback in usability, the manufacturer so far assigns this distance. We propose a software-based solution that corrects false view assignments depending on the distance of the viewer. Our novel approach enables continuous view adaptation based on the calculation of intermediate views and a column-bycolumn rendering method. The algorithm controls each individual subpixel and generates a new interleaving pattern from selected views. In addition, we use color-coded test content to verify its efficacy. This novel technology helps shifting the physically determined NVD to a user-defined distance thereby supporting stereopsis. The recent viewing positions can fall in front or behind the NVD of the original setup. Our algorithm can be applied to all multi-view autostereoscopic displays — independent of the ascent or the periodicity of the optical element. In general, the viewing distance can be corrected with a factor of more than 2.5. By creating a continuous viewing area the visualized 3D content is suitable even for persons with largely divergent intraocular distance — adults and children alike — without any deficiency in spatial perception.

  6. Combining Silviculture and Landscape Architecture to Enhance the Roadside View

    Science.gov (United States)

    Philip M. McDonald; R. Burton Litton Jr.

    1998-01-01

    On a high-quality site in the mixed conifer forest of northern California, understory and overstory vegetation along a 3-mile paved county road were manipulated to enhance the view for the traveler. Traditional silvicultural cutting methods and landscape architectural techniques were blended to give contrast and variability to the vegetation along both sides of the...

  7. "One-Stop Shopping" for Ocean Remote-Sensing and Model Data

    Science.gov (United States)

    Li, P. Peggy; Vu, Quoc; Chao, Yi; Li, Zhi-Jin; Choi, Jei-Kook

    2006-01-01

    OurOcean Portal 2.0 (http:// ourocean.jpl.nasa.gov) is a software system designed to enable users to easily gain access to ocean observation data, both remote-sensing and in-situ, configure and run an Ocean Model with observation data assimilated on a remote computer, and visualize both the observation data and the model outputs. At present, the observation data and models focus on the California coastal regions and Prince William Sound in Alaska. This system can be used to perform both real-time and retrospective analyses of remote-sensing data and model outputs. OurOcean Portal 2.0 incorporates state-of-the-art information technologies (IT) such as MySQL database, Java Web Server (Apache/Tomcat), Live Access Server (LAS), interactive graphics with Java Applet at the Client site and MatLab/GMT at the server site, and distributed computing. OurOcean currently serves over 20 real-time or historical ocean data products. The data are served in pre-generated plots or their native data format. For some of the datasets, users can choose different plotting parameters and produce customized graphics. OurOcean also serves 3D Ocean Model outputs generated by ROMS (Regional Ocean Model System) using LAS. The Live Access Server (LAS) software, developed by the Pacific Marine Environmental Laboratory (PMEL) of the National Oceanic and Atmospheric Administration (NOAA), is a configurable Web-server program designed to provide flexible access to geo-referenced scientific data. The model output can be views as plots in horizontal slices, depth profiles or time sequences, or can be downloaded as raw data in different data formats, such as NetCDF, ASCII, Binary, etc. The interactive visualization is provided by graphic software, Ferret, also developed by PMEL. In addition, OurOcean allows users with minimal computing resources to configure and run an Ocean Model with data assimilation on a remote computer. Users may select the forcing input, the data to be assimilated, the

  8. Testbed for remote telepresence research

    Science.gov (United States)

    Adnan, Sarmad; Cheatham, John B., Jr.

    1992-11-01

    Teleoperated robots offer solutions to problems associated with operations in remote and unknown environments, such as space. Teleoperated robots can perform tasks related to inspection, maintenance, and retrieval. A video camera can be used to provide some assistance in teleoperations, but for fine manipulation and control, a telepresence system that gives the operator a sense of actually being at the remote location is more desirable. A telepresence system comprised of a head-tracking stereo camera system, a kinematically redundant arm, and an omnidirectional mobile robot has been developed at the mechanical engineering department at Rice University. This paper describes the design and implementation of this system, its control hardware, and software. The mobile omnidirectional robot has three independent degrees of freedom that permit independent control of translation and rotation, thereby simulating a free flying robot in a plane. The kinematically redundant robot arm has eight degrees of freedom that assist in obstacle and singularity avoidance. The on-board control computers permit control of the robot from the dual hand controllers via a radio modem system. A head-mounted display system provides the user with a stereo view from a pair of cameras attached to the mobile robotics system. The head tracking camera system moves stereo cameras mounted on a three degree of freedom platform to coordinate with the operator's head movements. This telepresence system provides a framework for research in remote telepresence, and teleoperations for space.

  9. Machine vision system for remote inspection in hazardous environments

    International Nuclear Information System (INIS)

    Mukherjee, J.K.; Krishna, K.Y.V.; Wadnerkar, A.

    2011-01-01

    Visual Inspection of radioactive components need remote inspection systems for human safety and equipment (CCD imagers) protection from radiation. Elaborate view transport optics is required to deliver images at safe areas while maintaining fidelity of image data. Automation of the system requires robots to operate such equipment. A robotized periscope has been developed to meet the challenge of remote safe viewing and vision based inspection. (author)

  10. Remote vehicle survey tool

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Kress, R.L.; Wagner, D.G.; Ward, C.R.

    1993-01-01

    The Remote Vehicle Survey Tool (RVS7) is a color graphical display tool for viewing remotely acquired scientific data. The RVST displays the data in the form of a color two-dimensional world model map. The world model map allows movement of the remote vehicle to be tracked by the operator and the data from sensors to be graphically depicted in the interface. Linear and logarithmic meters, dual channel oscilloscopes, and directional compasses are used to display sensor information. The RVST is user-configurable by the use of ASCII text files. The operator can configure the RVST to work with any remote data acquisition system and teleoperated or autonomous vehicle. The modular design of the RVST and its ability to be quickly configured for varying system requirements make the RVST ideal for remote scientific data display in all environmental restoration and waste management programs

  11. Designing Ubiquitous Computing to Enhance Children's Learning in Museums

    Science.gov (United States)

    Hall, T.; Bannon, L.

    2006-01-01

    In recent years, novel paradigms of computing have emerged, which enable computational power to be embedded in artefacts and in environments in novel ways. These developments may create new possibilities for using computing to enhance learning. This paper presents the results of a design process that set out to explore interactive techniques,…

  12. Integrating ICT with education: using computer games to enhance ...

    African Journals Online (AJOL)

    Integrating ICT with education: using computer games to enhance learning mathematics at undergraduate level. ... This research seeks to look into ways in which computer games as ICT tools can be used to ... AJOL African Journals Online.

  13. Remote monitoring in safeguards: Security of information and enhanced cooperation

    International Nuclear Information System (INIS)

    Galdoz, Erwin; Calzetta, Osvaldo; Fernández Moreno, Sonia; Llacer, Carlos; Díaz, Gustavo; Vigile, Sebastián; Brunhuber, Christoph

    2011-01-01

    Unattended systems with remote transmission capabilities (RM) have the potential to improve safeguards efficiency. Moreover, the evolution of technology and the steady growing of nuclear materials subject to control, lead modern safeguards increasingly utilizing unattended equipment with the capability to store relevant data for long periods of time coupled with the option of being remotely accessed and checked. Remote inspection is still a concept under development, but it may end to be a powerful more efficient verification modality in medium term future. An important part of drawing meaningful safeguards conclusions rests on authenticity and reliability of the information on nuclear material and facilities acquired through the various verification activities and measures applied by IAEA and regional safeguards organizations, like ABACC. The increasing utilization of such technology to further optimize safeguards responds to a multifaceted environment where security of information for all relevant parties is of utmost importance. From the point of view of the IAEA and ABACC, the use of any technology for safeguards application, and specially the use of RM, requires to ensure the security of data collected to guarantee the validity and veracity of such information throughout the whole process (e.g., from collecting to reviewing). This is also valid to the SSAC involved in the process. Information security is also relevant for States and Operators. Assurance should be given that the information could not be withdrawn by non-authorized entities and that facility data is also fully secured. Another important aspect related to RM that may also fall in the security aspect of safeguards relevant information that merits further consideration, is the sharing of information between organizations like ABACC and the IAEA as well as the possibility to make this data available for States authorities purposes. This paper discusses three main themes related to RM: (i) the extent

  14. Remote experimental site concept for diagnostic collaborations in fusion

    International Nuclear Information System (INIS)

    Casper, T.A.

    1991-08-01

    The next generation of tokamaks, ITER or BPX, will be characterized by an even greater emphasis on joint operation and experimentation. With anticipation of an increased number and diversity of collaborations, especially in the area of diagnostics, we are preparing for such shared facilities by developing a systematic approach to remote, joint physics operation involving experimental teams at several locations. The local area network of computers used for control and data acquisition on present and future experiments can be extended over a wide area network to provide a mechanism for remote operation of subsystems (e.g. diagnostics) required for physics experiments. The technology required for high bandwidth (≥45Mbps) connections between multiple sites either exists or will be available over the next few years. With the rapid development of high performance workstations, network interfaces, distributed computing, and video conferencing, we can proceed with the development of a system of control and analysis sites to provide for consistent, efficient, and continuing collaborations. Early establishment of such sites could also enhance existing joint design and development efforts

  15. Medical Equipment Tele- and Condition-Based Maintenance with Enhanced Remote Diagnostic Access (RDA) and Computer Vision

    Science.gov (United States)

    2010-04-01

    failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE APR 2010 2. REPORT...The second is a ‘mechanical’ part that is controlled by circuit boards and is accessible by the technician via the serial console and running...was the use of conventional remote access solution designed for telecommuters or teleworkers in the Information Technology (IT) world, such as a

  16. Diagnosis of hepatic steatosis by contrast-enhanced abdominal computed tomography

    Directory of Open Access Journals (Sweden)

    Rodrigo da Fonseca Monjardim

    2013-06-01

    Full Text Available Objective To evaluate the diagnostic capacity of abdominal computed tomography in the assessment of hepatic steatosis using the portal phase with a simplified calculation method as compared with the non-contrast-enhanced phase. Materials and Methods In the present study, 150 patients were retrospectively evaluated by means of non-contrast-enhanced and contrast-enhanced computed tomography. One hundred patients had hepatic steatosis and 50 were control subjects. For the diagnosis of hepatic steatosis in the portal phase, the authors considered a result of < 104 HU calculated by the formula [L - 0.3 × (0.75 × P + 0.25 × A] / 0.7, where L, P and A represent the attenuation of the liver, of the main portal vein and abdominal aorta, respectively. Sensitivity, specificity, positive and negative predictive values were calculated, using non-contrast-enhanced computed tomography as the reference standard. Results The simplified calculation method with portal phase for the diagnosis of hepatic steatosis showed 100% sensitivity, 36% specificity, negative predictive value of 100% and positive predictive value of 75.8%. The rate of false positive results was 64%. False negative results were not observed. Conclusion The portal phase presents an excellent sensitivity in the diagnosis of hepatic steatosis, as compared with the non-contrast-enhanced phase of abdominal computed tomography. However, the method has low specificity.

  17. Diagnosis of hepatic steatosis by contrast-enhanced abdominal computed tomography

    International Nuclear Information System (INIS)

    Monjardim, Rodrigo da Fonseca; Costa, Danilo Manuel Cerqueira; Romano, Ricardo Francisco Tavares; Salvadori, Priscila Silveira; Santos, Jaime de Vargas Conde dos; Atzingen, Augusto Castelli Von; Shigueoka, David Carlos; D'Ippolito, Giuseppe

    2013-01-01

    Objective: to evaluate the diagnostic capacity of abdominal computed tomography in the assessment of hepatic steatosis using the portal phase with a simplified calculation method as compared with the non-contrast-enhanced phase. Materials and methods: in the present study, 150 patients were retrospectively evaluated by means of non-contrast-enhanced and contrast-enhanced computed tomography. One hundred patients had hepatic steatosis and 50 were control subjects. For the diagnosis of hepatic steatosis in the portal phase, the authors considered a result of < 104 HU calculated by the formula [L - 0.3 × (0.75 × P + 0.25 × A)] / 0.7, where L, P and A represent the attenuation of the liver, of the main portal vein and abdominal aorta, respectively. Sensitivity, specificity, positive and negative predictive values were calculated, using non-contrast-enhanced computed tomography as the reference standard. Results: the simplified calculation method with portal phase for the diagnosis of hepatic steatosis showed 100% sensitivity, 36% specificity, negative predictive value of 100% and positive predictive value of 75.8%. The rate of false positive results was 64%. False negative results were not observed. Conclusion: The portal phase presents an excellent sensitivity in the diagnosis of hepatic steatosis, as compared with the non-contrast-enhanced phase of abdominal computed tomography. However, the method has low specificity. (author)

  18. Gd-EOB-DTPA-enhanced magnetic resonance imaging features of hepatic hemangioma compared with enhanced computed tomography

    OpenAIRE

    Tateyama, Akihiro; Fukukura, Yoshihiko; Takumi, Koji; Shindo, Toshikazu; Kumagae, Yuichi; Kamimura, Kiyohisa; Nakajo, Masayuki

    2012-01-01

    AIM: To clarify features of hepatic hemangiomas on gadolinium-ethoxybenzyl-diethylenetriaminpentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) compared with enhanced computed tomography (CT).

  19. Remote Laboratories Framework : Focus on Reusability and Security in m-Learning Situations

    Directory of Open Access Journals (Sweden)

    Jeremy Lardon

    2009-08-01

    Full Text Available Remote laboratories is a spreading concept which allows the remote use of devices through Internet connexion. The paper deals with the providing of a framework which is reusable for many devices, from different end-user media such as phone, computer or TV and acceptable in industry, therefore taking into account multi information systems securities. The problem is addressed through the point of view of m-learning situations which involves the lack of rich user interactions and the fact that the user belongs to external information systems when he interacts with the remote device. The modelisation of the remote device with ontologies, the use of a central application server, message oriented middleware and standard web services (database, authentication are the keys allowing the independence of the framework to the device. The adaptation of the GUI to the end-user device is made through a proxy which refactor the requests and responses according to the capabilities of the end-user device (size of screen, interactions tools. The use of a user-centric model of identities federation allows us to provide an efficient way to reach the goal of transparency to security constraints.

  20. The JOYO remote monitoring system

    International Nuclear Information System (INIS)

    Damico, Joseph P.; Hashimoto, Yu

    2000-01-01

    The evolution of the personal computer, operating systems and applications software and the Internet has brought drastic change and many benefits worldwide. Remote monitoring systems benefit from computer network and other modern software technologies. The availability of fast, inexpensive and secure communications enables new solutions for monitoring system applications. The JOYO Remote Monitoring System (RMS) utilizes computer network communications and modular software design to provide a distributed integrated solution for monitoring multiple storage locations. This paper describes the remote monitoring system installed at the JOYO Fast Reactor. The system combines sensors, software, and computer network technologies to create a powerful data collection, storage and dissemination capability. The RMS provides a flexible, scalable solution for a variety of applications. The RMS integrates a variety of state of the art technologies from several sources and serves as a test bed for cutting edge technologies that can be shared with outside users. This paper describes the system components and their operation and discusses system benefits. Current activities and future plants for the JOYO RMS will be discussed. (author)

  1. Computers in plasma physics: remote data access and magnetic configuration design

    International Nuclear Information System (INIS)

    Blackwell, B.D.; McMillan, B.F.; Searle, A.C.; Gardner, H.J.; Price, D.M.; Fredian, T.W.

    2000-01-01

    Full text: Two graphically intensive examples of the application of computers in plasma physics are described remote data access for plasma confinement experiments, and a code for real-time magnetic field tracing and optimisation. The application for both of these is the H-1NF National Plasma Fusion Research Facility, a Commonwealth Major National Research Facility within the Research School of Physical Science, Institute of Advanced Studies, ANU. It is based on the 'flexible' heliac stellarator H-1, a plasma confinement device in which the confining fields are generated solely by external conductors. These complex, fully three dimensional magnetic fields are used as examples for the magnetic design application, and data from plasma physics experiments are used to illustrate the remote access techniques. As plasma fusion experiments grow in size, increased remote access allows physicists to participate in experiments and data analysis from their home base. Three types of access will be described and demonstrated - a simple Java-based web interface, an example TCP client-server built around the widely used MDSPlus data system and the visualisation package IDL (RSI Inc), and a virtual desktop Environment (VNC: AT and T Research) that simulates terminals local to the plasma facility. A client server TCP/IP - web interface to the programmable logic controller that provides user interface to the programmable high power magnet power supplies is described. A very general configuration file allows great flexibility, and allows new displays and interfaces to be created (usually) without changes to the underlying C++ and Java code. The magnetic field code BLINE provides accurate calculation of complex magnetic fields, and 3D visualisation in real time, using a low cost multiprocessor computer and an OpenGL-compatible graphics accelerator. A fast, flexible multi-mesh interpolation method is used for tracing vacuum magnetic field lines created by arbitrary filamentary

  2. Red Dirt Thinking on Remote Educational Advantage

    Science.gov (United States)

    Guenther, John; Bat, Melodie; Osborne, Sam

    2014-01-01

    The discourse of remote education is often characterised by a rhetoric of disadvantage. This is reflected in statistics that on the surface seem unambiguous in their demonstration of poor outcomes for remote Aboriginal and Torres Strait Islander students. A range of data support this view, including National Assessment Program-Literacy and…

  3. Remote handling prospects. Computer aided remote handling

    International Nuclear Information System (INIS)

    Vertut, J.

    1984-01-01

    Mechanical manipulators, electrical control manipulators and computer aided manipulators were successively developed. The aim of computer aided manipulators is the realization of complex or tricky job in adverse environment but man is required for non routine work or for situation in evolution. French effort is developed in the frame of the project automation and advanced robotics and new problems have to be solved particularly at the interface man/machine [fr

  4. Children, Adult and Mothers’ View about the Social Impacts of Computer Games

    Directory of Open Access Journals (Sweden)

    Tahmine Shaverdi

    2009-11-01

    Full Text Available Divided to two different parts, this study reviewed students and their parents’ view of the impacts computer games have. In the first part, students’ view of the impacts computer games have would be reviewed, and the second part is dedicated to the parents’ ideas of the matter. Population involves all the students from the fifth grade in primary school to the third grade students in high school and their parents. We have studied students in locales 3, 4 (in north, 15, 16 (in south, 5, 9 (in west, and 14, 8 (in east. We have reviewed ideas of at least 391 students in test group (who play more than 7 hours a week, and 386 ones in witness group (who play less than 4 hours a week. The survey method is questionnaire. However, 107 parents in witness group and 112 ones in test group were interviewed via telephone. These parents were randomly selected.

  5. Tracking the Creation of Tropical Forest Canopy Gaps with UAV Computer Vision Remote Sensing

    Science.gov (United States)

    Dandois, J. P.

    2015-12-01

    The formation of canopy gaps is fundamental for shaping forest structure and is an important component of ecosystem function. Recent time-series of airborne LIDAR have shown great promise for improving understanding of the spatial distribution and size of forest gaps. However, such work typically looks at gap formation across multiple years and important intra-annual variation in gap dynamics remains unknown. Here we present findings on the intra-annual dynamics of canopy gap formation within the 50 ha forest dynamics plot of Barro Colorado Island (BCI), Panama based on unmanned aerial vehicle (UAV) remote sensing. High-resolution imagery (7 cm GSD) over the 50 ha plot was obtained regularly (≈ every 10 days) beginning October 2014 using a UAV equipped with a point and shoot camera. Imagery was processed into three-dimensional (3D) digital surface models (DSMs) using automated computer vision structure from motion / photogrammetric methods. New gaps that formed between each UAV flight were identified by subtracting DSMs between each interval and identifying areas of large deviation. A total of 48 new gaps were detected from 2014-10-02 to 2015-07-23, with sizes ranging from less than 20 m2 to greater than 350 m2. The creation of new gaps was also evaluated across wet and dry seasons with 4.5 new gaps detected per month in the dry season (Jan. - May) and 5.2 per month outside the dry season (Oct. - Jan. & May - July). The incidence of gap formation was positively correlated with ground-surveyed liana stem density (R2 = 0.77, p < 0.001) at the 1 hectare scale. Further research will consider the role of climate in predicting gap formation frequency as well as site history and other edaphic factors. Future satellite missions capable of observing vegetation structure at greater extents and frequencies than airborne observations will be greatly enhanced by the high spatial and temporal resolution bridging scale made possible by UAV remote sensing.

  6. Development and validation of a remote home safety protocol.

    Science.gov (United States)

    Romero, Sergio; Lee, Mi Jung; Simic, Ivana; Levy, Charles; Sanford, Jon

    2018-02-01

    Environmental assessments and subsequent modifications conducted by healthcare professionals can enhance home safety and promote independent living. However, travel time, expense and the availability of qualified professionals can limit the broad application of this intervention. Remote technology has the potential to increase access to home safety evaluations. This study describes the development and validation of a remote home safety protocol that can be used by a caregiver of an elderly person to video-record their home environment for later viewing and evaluation by a trained professional. The protocol was developed based on literature reviews and evaluations from clinical and content experts. Cognitive interviews were conducted with a group of six caregivers to validate the protocol. The final protocol included step-by-step directions to record indoor and outdoor areas of the home. The validation process resulted in modifications related to safety, clarity of the protocol, readability, visual appearance, technical descriptions and usability. Our final protocol includes detailed instructions that a caregiver should be able to follow to record a home environment for subsequent evaluation by a home safety professional. Implications for Rehabilitation The results of this study have several implications for rehabilitation practice The remote home safety evaluation protocol can potentially improve access to rehabilitation services for clients in remote areas and prevent unnecessary delays for needed care. Using our protocol, a patient's caregiver can partner with therapists to quickly and efficiently evaluate a patient's home before they are released from the hospital. Caregiver narration, which reflects a caregiver's own perspective, is critical to evaluating home safety. In-home safety evaluations, currently not available to all who need them due to access barriers, can enhance a patient's independence and provide a safer home environment.

  7. Development of a computationally efficient algorithm for attitude estimation of a remote sensing satellite

    Science.gov (United States)

    Labibian, Amir; Bahrami, Amir Hossein; Haghshenas, Javad

    2017-09-01

    This paper presents a computationally efficient algorithm for attitude estimation of remote a sensing satellite. In this study, gyro, magnetometer, sun sensor and star tracker are used in Extended Kalman Filter (EKF) structure for the purpose of Attitude Determination (AD). However, utilizing all of the measurement data simultaneously in EKF structure increases computational burden. Specifically, assuming n observation vectors, an inverse of a 3n×3n matrix is required for gain calculation. In order to solve this problem, an efficient version of EKF, namely Murrell's version, is employed. This method utilizes measurements separately at each sampling time for gain computation. Therefore, an inverse of a 3n×3n matrix is replaced by an inverse of a 3×3 matrix for each measurement vector. Moreover, gyro drifts during the time can reduce the pointing accuracy. Therefore, a calibration algorithm is utilized for estimation of the main gyro parameters.

  8. An Online System for Remote SHM Operation with Content Adaptive Signal Compression

    OpenAIRE

    Westerkamp , Clemens; Hennewig , Alexander; Speckmann , Holger; Bisle , Wolfgang; Colin , Nicolas; Rafrafi , Mona

    2014-01-01

    International audience; Remote engineering systems are valuable tools to give visual assistance and remote support e.g. in NDT (Non-destructive Testing) or SHM (Structural Health Monitoring). They allow discussing a second opinion with a remote expert and thus reducing the human factor during testing and monitoring. For an optimal impression of the situation, the second person requires both a camera view of the location and the screen view of the system used. The OMA system (Online Maintenanc...

  9. Kite Aerial Photography as a Tool for Remote Sensing

    Science.gov (United States)

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  10. Remote I/O : fast access to distant storage.

    Energy Technology Data Exchange (ETDEWEB)

    Foster, I.; Kohr, D., Jr.; Krishnaiyer, R.; Mogill, J.

    1997-12-17

    As high-speed networks make it easier to use distributed resources, it becomes increasingly common that applications and their data are not colocated. Users have traditionally addressed this problem by manually staging data to and from remote computers. We argue instead for a new remote I/O paradigm in which programs use familiar parallel I/O interfaces to access remote file systems. In addition to simplifying remote execution, remote I/O can improve performance relative to staging by overlapping computation and data transfer or by reducing communication requirements. However, remote I/O also introduces new technical challenges in the areas of portability, performance, and integration with distributed computing systems. We propose techniques designed to address these challenges and describe a remote I/O library called RIO that we have developed to evaluate the effectiveness of these techniques. RIO addresses issues of portability by adopting the quasi-standard MPI-IO interface and by defining a RIO device and RIO server within the ADIO abstract I/O device architecture. It addresses performance issues by providing traditional I/O optimizations such as asynchronous operations and through implementation techniques such as buffering and message forwarding to off load communication overheads. RIO uses the Nexus communication library to obtain access to configuration and security mechanisms provided by the Globus wide area computing tool kit. Microbenchmarks and application experiments demonstrate that our techniques achieve acceptable performance in most situations and can improve turnaround time relative to staging.

  11. DWPF remotable television and cell lighting facilities

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1984-01-01

    The Defense Waste Processing Facility (DWPF) for radioactive waste vitrification at the Savannah River Plant (SRP) is now under construction. Development of specialized low cost television (TV) viewing equipment for in-cell and within-melter applications is now complete. High resolution TV cameras not originally designed for high radiation environments have been demonstrated in crane remotable packages to be well suited to the DWPF. High intensity in-cell lighting has also been demonstrated in crane remotable assemblies. These dual 1000 W units (2000 W total) are used to support the multiplicity of TV and cell window viewing requirements. 8 figures

  12. Advanced remote handling developments for high radiation applications

    International Nuclear Information System (INIS)

    Herndon, J.N.; Kring, C.T.; Feldman, M.J.; Kuban, D.P.; Martin, H.L.; Rowe, J.C.; Hamel, W.R.

    1985-01-01

    The Remote Control Engineering Task of the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory has been developing advanced techniques for remote maintenance of future US fuel reprocessing plants. These efforts are based on the application of teleoperated, force-reflecting servomanipulators for dexterous remote handling with television viewing for large-volume hazardous applications. These developments fully address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in fuel reprocessing. This paper covers the primary emphasis in the present program; the design, fabrication, and installation of a prototype remote handling system for reprocessing applications, the Advanced Integrated Maintenance System

  13. Developing equipment for AGR remote visual inspection

    International Nuclear Information System (INIS)

    James, P.W.; Walton, P.J.

    1985-01-01

    The Remote Inspection Group is part of the CEGB's Generation Development and Construction Division, and has responsibility for the design, development, procurement, testing and setting to work of the equipment provided to carry out routine remote visual inspections of its AGRs. This equipment includes both the viewing devices and the necessary placement equipment. (author)

  14. A Remotely Deployable Wind Sonic Anemometer

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2017-12-01

    Full Text Available Communication and computing shape up base for explosion of Internet of Things (IoT era. Humans can efficiently control the devices around their environment as per requirements because of IoT, the communication between different devices brings more flexibility in surrounding. Useful data is also gathered from some of these devices to create Big Data; where, further analysis assist in making life easier by developing good business models corresponding to user needs, enhance scientific research, formulating weather prediction or monitoring systems and contributing in other relative fields as well. Thus, in this research a remotely deployable IoT enabled Wind Sonic Anemometer has been designed and deployed to calculate average wind speed, direction, and gust. The proposed design is remotely deployable, user-friendly, power efficient and cost-effective because of opted modules i.e., ultrasonic sensors, GSM module, and solar panel. The testbed was also deployed at the roof of Computer & Information Systems Engineering (CIS department, NED UET. Further, its calibration has been carried out by using long short-term memory (LSTM, a deep learning technique; where ground truth data has been gathered from mechanical wind speed sensor (NRG-40 H deployed at top of Industrial & Manufacturing (IM department of NED UET. The obtained results are satisfactory and the performance of designed sensor is also good under various weather conditions.

  15. Describing and Enhancing Collaboration at the Computer

    Directory of Open Access Journals (Sweden)

    Ken Beatty

    2002-06-01

    Full Text Available Computer-based learning materials differ from classroom practice in that they seldom explicitly offer opportunities for collaboration. Despite this, students do collaborate, helping one another through the content and affordances of computer materials. But, in doing so, students meet with challenges. Paradoxically, these challenges can either inspire or discourage learning and second-language acquisition. This paper, based on research with twenty Hong Kong university students in a controlled experiment, evaluates challenges to collaboration at the computer as evidenced by discourse. The students were videotaped and their discourse transcribed and evaluated both qualitatively and quantitatively, according to a set of discourse markers created to describe collaborative, non-collaborative and ambiguous strategies. The paper begins by exploring the differences between collaboration and similar terms such as teamwork and cooperative learning then goes on to define collaboration in the context of computer-assisted learning. It ends by presenting practical suggestions for software designers, teachers and students to enhance collaboration at the computer.

  16. Synthesis of the unmanned aerial vehicle remote control augmentation system

    International Nuclear Information System (INIS)

    Tomczyk, Andrzej

    2014-01-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system

  17. Synthesis of the unmanned aerial vehicle remote control augmentation system

    Energy Technology Data Exchange (ETDEWEB)

    Tomczyk, Andrzej, E-mail: A.Tomczyk@prz.edu.pl [Department of Avionics and Control Systems, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstañców Warszawy 12, 35-959 Rzeszów (Poland)

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  18. Environments for online maritime simulators with cloud computing capabilities

    Science.gov (United States)

    Raicu, Gabriel; Raicu, Alexandra

    2016-12-01

    This paper presents the cloud computing environments, network principles and methods for graphical development in realistic naval simulation, naval robotics and virtual interactions. The aim of this approach is to achieve a good simulation quality in large networked environments using open source solutions designed for educational purposes. Realistic rendering of maritime environments requires near real-time frameworks with enhanced computing capabilities during distance interactions. E-Navigation concepts coupled with the last achievements in virtual and augmented reality will enhance the overall experience leading to new developments and innovations. We have to deal with a multiprocessing situation using advanced technologies and distributed applications using remote ship scenario and automation of ship operations.

  19. Students as Virtual Scientists: An exploration of students' and teachers' perceived realness of a remote electron microscopy investigation

    Science.gov (United States)

    Childers, Gina; Jones, M. Gail

    2015-10-01

    Remote access technologies enable students to investigate science by utilizing scientific tools and communicating in real-time with scientists and researchers with only a computer and an Internet connection. Very little is known about student perceptions of how real remote investigations are and how immersed the students are in the experience. This study, conducted with high school students and their teachers, explored the impact of students' perception of ownership and virtual presence during a remote investigation using a scanning electron microscope. Students were randomly assigned to one of two treatment groups: students able to select their own insect to use during the remote investigation, and students that did not select their own insects to view during the remote investigation. The results of this study showed that students in the experimental group who had choice and ownership of their insect reported being more present (less distracted) during the remote investigation than students in the control group, whereas students in the control group reported controlling the technology was easier than the experimental group. Students indicated the remote investigation was very real; however, the teachers of these students were less likely to describe the investigation as being real. The results of this study have practical implications for designing remote learning environments.

  20. Bearing load distribution studies in a multi bearing rotor system and a remote computing method based on the internet

    International Nuclear Information System (INIS)

    Yang, Zhao Jian; Peng, Ze Jun; Kim, Seock Sam

    2004-01-01

    A model in the form of a Bearing Load Distribution (BLD) matrix in the Multi Bearing Rotor System (MBRS) is established by a transfer matrix equation with the consideration of a bearing load, elevation and uniform load distribution. The concept of Bearing Load Sensitivity (BLS) is proposed and matrices for load and elevation sensitivity are obtained. In order to share MBRS design resources on the internet with remote customers, the basic principle of Remote Computing (RC) based on the internet is introduced ; the RC of the BLD and BLS is achieved by Microsoft Active Server Pages (ASP) technology

  1. Longbow: A Lightweight Remote Job Submission Tool

    Directory of Open Access Journals (Sweden)

    James Gebbie-Rayet

    2016-01-01

    Full Text Available We present Longbow, a lightweight console-based remote job submission tool and library. Longbow allows the user to quickly and simply run jobs on high performance computing facilities without leaving their familiar desktop environment. Not only does Longbow greatly simplify the management of compute- intensive jobs for experienced researchers, it also lowers the technical barriers surrounding high perfor-mance computation for the next generation of scientists and engineers. Longbow has already been used to remotely submit jobs in a number of projects and has the potential to redefine the manner in which high performance computers are used.

  2. Effects of Family Socioeconomic Status on Parents’ Views Concerning the Integration of Computers into Preschool Classrooms

    Directory of Open Access Journals (Sweden)

    Triantafillia Natsiopoulou

    2013-01-01

    Full Text Available Background: The rapid growth of ICT has led to an important increase in the use of computers in preschool age. However the benefits of this use are a debatable issue. Some focus on the positive effects of computers on learning and kids’ cognitive development while others believe that computers may negatively affect their social and motivational impact.Aim: The aim of this research was to study Greek parents’ views on preschools’ computer programs and how these views are influenced by the family’s socioeconomic level.Methodology: The survey involved 280 parents of children aged 3-5 years, of whom 140 were in the upper socioeconomic level and the other 140 in a lower one.Results: The upper socioeconomic level parents thought that the use of computers was appropriate for preschool children more than parents of lower socioeconomic status (P=0.01. and that its inclusion in the preschool center’s program would work in favor for children who have no computer at home (P=0.00. Parents with higher socioeconomic status felt more than the others that such a program can support the provision of knowledge (P=0.00, the development of mathematical (P=0.00 and linguistic skills (P=0.00 and entertain children (P=0.04. Furthermore, the upper socioeconomic level parents as opposed to the other group do not consider that the computer will remove preschool educator from their leading and teaching role (P=0.04 or reduce their communication with the preschoolers (P=0.00.Conclusions: The results of this study revealed that Greek parents, especially those of higher socioeconomic level, have a positive view on the integration of a computer program into the preschoolclassroom.

  3. Remote oil spill detector for oil terminals and API separators

    International Nuclear Information System (INIS)

    Fitch, R.

    1993-01-01

    Oil leaks from moored tankers, ruptured pipes, and other sources often go unnoticed until significant quantities have polluted the waters. Technology is available to detect oil on water, and a number of methods have been tried with varying success. Floating detection/alarm devices, while potentially offering accurate analysis of samples, have drawbacks. These systems need to be tethered and serviced with new batteries, and they sample only the immediate areas where they are situated. One potential answer to these problems is a remote-sensing system that has one master base station and a number of slave detectors. An inexpensive remote-sensing device has been developed using mostly off-the-shelf hardware. The unit consists of low-light sensors mounted on a mast or rail, each having a 20-degree field of view. The sensors are contained in explosion-proof housings to Zone 1 standard and provide video data to the host computer station via land line or radio link. The computer, on recognizing the oil, calculates the area with respect to time and decides if the spill is significant enough to warrant an alarm. The system operates day or night; in the daytime using the sun's rays and at night using artificial light

  4. The coastline remote sensing survey for Zhao Shu Island in Xisha Islands based on WorldView-2

    Science.gov (United States)

    Li, Li; Zhong, Chang; Kong, Fanping

    2014-11-01

    Due to diastrophism, tide action and human activities, the coastline is always in flux. There are lots of coral islands in the south sea of China. Remote sensing survey for the coastline not only can reassert the necessity and importance of coral protection, but also can provide basic data and scientific basis for island ecologic protection, reasonable utilization of land resources. The study area named Zhao Shu Island lies in Jintong Islands of Xisha. It is a coral island which has people inhabited. Using WorldView-2 satellite remote sensing images as data sources we carry out three phases of coastline investigation and monitoring. The satellite data phases are 2002, 2010 and 2013. Firstly, affirm the bands valuable for color composition on the basis of spectral and correlation analysis. Then extract the coastline by a series of image process, such as image correction, fusion, waterline extraction and coastline revision. Finally determine the coastline types and length by artificial interpretation. The results show that the island length is gradually smaller, which means the island area is reducing. The beach bedrock coast in northern island was eroded seriously especially during the period between 2010 and 2013. In addition, the shoal head shape in the western island changed a lot.

  5. Development of a remote inspection system for NSSS components

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Kim, Jae Hee; Lee, Jae Cheol

    2004-03-01

    Different operating systems of computerized inspection equipment cause serious problems in graphic user interface between control computers of inspection equipment and remote user computers. Management cost of interface version is very expensive even if the system has been developed. A solution for the interface problems in accessing the remote inspection system is web-based technology. But time-delay problem of web and java, a compiled type S/W that cooperates with web in control computers of inspection equipment is necessary to solve it. This report describes solutions for developing a remote inspection system based on web and java technology

  6. Remote maintenance development

    International Nuclear Information System (INIS)

    Zook, C.R.

    1979-01-01

    The concept of remote maintenance as it pertains to nuclear fuel fabrication facilities is quite unique. The future may require completely remote facilities where maintenance will be performed by hybrid manipulators/robots. These units will be capable of being preprogrammed for automatic operation or manually operated with the operator becoming a part of the closed loop control system. These robots will mesh television, computer control, and direct force feedback manual control in a usable new concept of robotics

  7. Person-related determinants of TV viewing and computer time in a cohort of young Dutch adults: Who sits the most?

    NARCIS (Netherlands)

    Uijtdewilligen, L.; Singh, A.S.; Chin A Paw, M.J.M.; Twisk, J.W.R.; van Mechelen, W.

    2015-01-01

    We aimed to assess the associations of person-related factors with leisure time television (TV) viewing and computer time among young adults. We analyzed self-reported TV viewing (h/week) and leisure computer time (h/week) from 475 Dutch young adults (47% male) who had participated in the Amsterdam

  8. ORION - the OMEGA Remote Interactive On-line System

    CERN Document Server

    Russell, R D; Krieger, M

    1973-01-01

    ORION is a system which permits the manipulation of files, records and characters, remote job submittal and retrieval of output files including the direct loading of remote on-line computers. The system uses the computer hardware of the OMEGA project at CERN, and is designed to assist researchers in development and debugging of their programs.

  9. A comparison between digital images viewed on a picture archiving and communication system diagnostic workstation and on a PC-based remote viewing system by emergency physicians.

    Science.gov (United States)

    Parasyn, A; Hanson, R M; Peat, J K; De Silva, M

    1998-02-01

    Picture Archiving and Communication Systems (PACS) make possible the viewing of radiographic images on computer workstations located where clinical care is delivered. By the nature of their work this feature is particularly useful for emergency physicians who view radiographic studies for information and use them to explain results to patients and their families. However, the high cost of PACS diagnostic workstations with fuller functionality places limits on the number of and therefore the accessibility to workstations in the emergency department. This study was undertaken to establish how well less expensive personal computer-based workstations would work to support these needs of emergency physicians. The study compared the outcome of observations by 5 emergency physicians on a series of radiographic studies containing subtle abnormalities displayed on both a PACS diagnostic workstation and on a PC-based workstation. The 73 digitized radiographic studies were randomly arranged on both types of workstation over four separate viewing sessions for each emergency physician. There was no statistical difference between a PACS diagnostic workstation and a PC-based workstation in this trial. The mean correct ratings were 59% on the PACS diagnostic workstations and 61% on the PC-based workstations. These findings also emphasize the need for prompt reporting by a radiologist.

  10. Farm Management Support on Cloud Computing Platform: A System for Cropland Monitoring Using Multi-Source Remotely Sensed Data

    Science.gov (United States)

    Coburn, C. A.; Qin, Y.; Zhang, J.; Staenz, K.

    2015-12-01

    Food security is one of the most pressing issues facing humankind. Recent estimates predict that over one billion people don't have enough food to meet their basic nutritional needs. The ability of remote sensing tools to monitor and model crop production and predict crop yield is essential for providing governments and farmers with vital information to ensure food security. Google Earth Engine (GEE) is a cloud computing platform, which integrates storage and processing algorithms for massive remotely sensed imagery and vector data sets. By providing the capabilities of storing and analyzing the data sets, it provides an ideal platform for the development of advanced analytic tools for extracting key variables used in regional and national food security systems. With the high performance computing and storing capabilities of GEE, a cloud-computing based system for near real-time crop land monitoring was developed using multi-source remotely sensed data over large areas. The system is able to process and visualize the MODIS time series NDVI profile in conjunction with Landsat 8 image segmentation for crop monitoring. With multi-temporal Landsat 8 imagery, the crop fields are extracted using the image segmentation algorithm developed by Baatz et al.[1]. The MODIS time series NDVI data are modeled by TIMESAT [2], a software package developed for analyzing time series of satellite data. The seasonality of MODIS time series data, for example, the start date of the growing season, length of growing season, and NDVI peak at a field-level are obtained for evaluating the crop-growth conditions. The system fuses MODIS time series NDVI data and Landsat 8 imagery to provide information of near real-time crop-growth conditions through the visualization of MODIS NDVI time series and comparison of multi-year NDVI profiles. Stakeholders, i.e., farmers and government officers, are able to obtain crop-growth information at crop-field level online. This unique utilization of GEE in

  11. Web Development Techniques and Remote Laboratories

    Directory of Open Access Journals (Sweden)

    Doru Ursutiu

    2009-08-01

    Full Text Available In the actual context of the world economic and financial crisis, any source that causes economy is welcomed. In the technical educational system such a source is represented by the implementation of remote labs. These allow, among other things, the sharing of modern technology between several centers and also the saving of power by using an adequate energetic management. This paper presents a solution for implementing remote labs by using web technologies that are platform independent from the client point of view. Such a lab implementation exemplification is materialized by remote controlling the NI-ELVIS platform.

  12. Remote Instrumentation for eScience and Related Aspects

    CERN Document Server

    Lawenda, Marcin; Meyer, Norbert; Pugliese, Roberto; Węglarz, Jan; Zappatore, Sandro

    2012-01-01

    Making scientific instruments a manageable resource over distributed computing infrastructures such as the grid has been a key focal point of e-science research in recent years. It is now known by the generic term ‘remote instrumentation’, and is the subject of this useful volume that covers a range of perspectives on the topic reflected by the contributions to the 2010 workshop on remote instrumentation held in Poznań, Poland. E-science itself is a complex set of disciplines requiring computationally intensive distributed operations, high-speed networking, and collaborative working tools. As such, it is most often (and correctly) associated with grid- and cloud-computing infrastructures and middleware. The contributions to this publication consider broader aspects of the theme of remote instrumentation applied to e-science, as well as exploring related technologies that enable the implementation of truly distributed and coordinated laboratories. Among the topics discussed are remote instrumentation and ...

  13. QUANTUM DISCORD AND QUANTUM COMPUTING - AN APPRAISAL

    OpenAIRE

    Datta, Animesh; Shaji, Anil

    2011-01-01

    We discuss models of computing that are beyond classical. The primary motivation is to unearth the cause of nonclassical advantages in computation. Completeness results from computational complexity theory lead to the identification of very disparate problems, and offer a kaleidoscopic view into the realm of quantum enhancements in computation. Emphasis is placed on the `power of one qubit' model, and the boundary between quantum and classical correlations as delineated by quantum discord. A ...

  14. ORION-the Omega Remote Interactive On-line System

    CERN Document Server

    Russell, R D; Levratt, B; Lipps, H; Sparrman, P

    1974-01-01

    ORION is a system which permits the manipulation of files, records and characters, remote job submittal and retrieval of output files including the direct loading of remote on-line computers. The system uses the computer hardware of the OMEGA project at CERN and is designed to assist researchers in development and debugging of their programs. (10 refs).

  15. Computer-aided detection of breast masses: Four-view strategy for screening mammography

    International Nuclear Information System (INIS)

    Wei Jun; Chan Heangping; Zhou Chuan; Wu Yita; Sahiner, Berkman; Hadjiiski, Lubomir M.; Roubidoux, Marilyn A.; Helvie, Mark A.

    2011-01-01

    Purpose: To improve the performance of a computer-aided detection (CAD) system for mass detection by using four-view information in screening mammography. Methods: The authors developed a four-view CAD system that emulates radiologists' reading by using the craniocaudal and mediolateral oblique views of the ipsilateral breast to reduce false positives (FPs) and the corresponding views of the contralateral breast to detect asymmetry. The CAD system consists of four major components: (1) Initial detection of breast masses on individual views, (2) information fusion of the ipsilateral views of the breast (referred to as two-view analysis), (3) information fusion of the corresponding views of the contralateral breast (referred to as bilateral analysis), and (4) fusion of the four-view information with a decision tree. The authors collected two data sets for training and testing of the CAD system: A mass set containing 389 patients with 389 biopsy-proven masses and a normal set containing 200 normal subjects. All cases had four-view mammograms. The true locations of the masses on the mammograms were identified by an experienced MQSA radiologist. The authors randomly divided the mass set into two independent sets for cross validation training and testing. The overall test performance was assessed by averaging the free response receiver operating characteristic (FROC) curves of the two test subsets. The FP rates during the FROC analysis were estimated by using the normal set only. The jackknife free-response ROC (JAFROC) method was used to estimate the statistical significance of the difference between the test FROC curves obtained with the single-view and the four-view CAD systems. Results: Using the single-view CAD system, the breast-based test sensitivities were 58% and 77% at the FP rates of 0.5 and 1.0 per image, respectively. With the four-view CAD system, the breast-based test sensitivities were improved to 76% and 87% at the corresponding FP rates, respectively

  16. An efficient network for interconnecting remote monitoring instruments and computers

    International Nuclear Information System (INIS)

    Halbig, J.K.; Gainer, K.E.; Klosterbuer, S.F.

    1994-01-01

    Remote monitoring instrumentation must be connected with computers and other instruments. The cost and intrusiveness of installing cables in new and existing plants presents problems for the facility and the International Atomic Energy Agency (IAEA). The authors have tested a network that could accomplish this interconnection using mass-produced commercial components developed for use in industrial applications. Unlike components in the hardware of most networks, the components--manufactured and distributed in North America, Europe, and Asia--lend themselves to small and low-powered applications. The heart of the network is a chip with three microprocessors and proprietary network software contained in Read Only Memory. In addition to all nonuser levels of protocol, the software also contains message authentication capabilities. This chip can be interfaced to a variety of transmission media, for example, RS-485 lines, fiber topic cables, rf waves, and standard ac power lines. The use of power lines as the transmission medium in a facility could significantly reduce cabling costs

  17. Remote consultation and diagnosis in medical imaging using a global PACS backbone network

    Science.gov (United States)

    Martinez, Ralph; Sutaria, Bijal N.; Kim, Jinman; Nam, Jiseung

    1993-10-01

    A Global PACS is a national network which interconnects several PACS networks at medical and hospital complexes using a national backbone network. A Global PACS environment enables new and beneficial operations between radiologists and physicians, when they are located in different geographical locations. One operation allows the radiologist to view the same image folder at both Local and Remote sites so that a diagnosis can be performed. The paper describes the user interface, database management, and network communication software which has been developed in the Computer Engineering Research Laboratory and Radiology Research Laboratory. Specifically, a design for a file management system in a distributed environment is presented. In the remote consultation and diagnosis operation, a set of images is requested from the database archive system and sent to the Local and Remote workstation sites on the Global PACS network. Viewing the same images, the radiologists use pointing overlay commands, or frames to point out features on the images. Each workstation transfers these frames, to the other workstation, so that an interactive session for diagnosis takes place. In this phase, we use fixed frames and variable size frames, used to outline an object. The data pockets for these frames traverses the national backbone in real-time. We accomplish this feature by using TCP/IP protocol sockets for communications. The remote consultation and diagnosis operation has been tested in real-time between the University Medical Center and the Bowman Gray School of Medicine at Wake Forest University, over the Internet. In this paper, we show the feasibility of the operation in a Global PACS environment. Future improvements to the system will include real-time voice and interactive compressed video scenarios.

  18. Remote input/output station

    CERN Multimedia

    1972-01-01

    A general view of the remote input/output station installed in building 112 (ISR) and used for submitting jobs to the CDC 6500 and 6600. The card reader on the left and the line printer on the right are operated by programmers on a self-service basis.

  19. Hybrid photovoltaic system control for enhancing sustainable energy. Economic aspects

    International Nuclear Information System (INIS)

    Leva, Sonia; Roscia, Mariacristina; Zaninelli, Dario

    2005-01-01

    The paper introduces hybrid photovoltaic/diesel generation systems for supplying remote power plant taking into account the enhancement of sustainable energy on the economic point of view. In particular, a new monitoring and control device is presented in order to carry out the optimum energy flows and a cost evaluation is performed on a real plant showing the effect and weight of the economical sustainability and economical saving. (authors)

  20. 10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.

    Science.gov (United States)

    2010-01-01

    ... on the remote afterloader unit, on the control console, and in the facility; (3) Viewing and intercom... 10 Energy 1 2010-01-01 2010-01-01 false Additional technical requirements for mobile remote... MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery...

  1. Advanced LabVIEW Labs

    International Nuclear Information System (INIS)

    Jones, Eric D.

    1999-01-01

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW to create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in ''G'' a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn ''G''. Without going into details here, ''G'' incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the ''perfect environment in which to

  2. 24-channel dual microcontroller-based voltage controller for ion optics remote control

    Science.gov (United States)

    Bengtsson, L.

    2018-05-01

    The design of a 24-channel voltage control instrument for Wenzel Elektronik N1130 NIM modules is described. This instrument is remote controlled from a LabVIEW GUI on a host Windows computer and is intended for ion optics control in electron affinity measurements on negative ions at the CERN-ISOLDE facility. Each channel has a resolution of 12 bits and has a normally distributed noise with a standard deviation of <1 mV. The instrument is designed as a standard 2-unit NIM module where the electronic hardware consists of a printed circuit board with two asynchronously operating microcontrollers.

  3. Investigating the influence of eating habits, body weight and television programme preferences on television viewing time and domestic computer usage.

    Science.gov (United States)

    Raptou, Elena; Papastefanou, Georgios; Mattas, Konstadinos

    2017-01-01

    The present study explored the influence of eating habits, body weight and television programme preference on television viewing time and domestic computer usage, after adjusting for sociodemographic characteristics and home media environment indicators. In addition, potential substitution or complementarity in screen time was investigated. Individual level data were collected via questionnaires that were administered to a random sample of 2,946 Germans. The econometric analysis employed a seemingly unrelated bivariate ordered probit model to conjointly estimate television viewing time and time engaged in domestic computer usage. Television viewing and domestic computer usage represent two independent behaviours in both genders and across all age groups. Dietary habits have a significant impact on television watching with less healthy food choices associated with increasing television viewing time. Body weight is found to be positively correlated with television screen time in both men and women, and overweight individuals have a higher propensity for heavy television viewing. Similar results were obtained for age groups where an increasing body mass index (BMI) in adults over 24 years old is more likely to be positively associated with a higher duration of television watching. With respect to dietary habits of domestic computer users, participants aged over 24 years of both genders seem to adopt more healthy dietary patterns. A downward trend in the BMI of domestic computer users was observed in women and adults aged 25-60 years. On the contrary, young domestic computer users 18-24 years old have a higher body weight than non-users. Television programme preferences also affect television screen time with clear differences to be observed between genders and across different age groups. In order to reduce total screen time, health interventions should target different types of screen viewing audiences separately.

  4. Monitoring land- and water-use dynamics in the Columbia Plateau using remote-sensing computer analysis and integration techniques

    International Nuclear Information System (INIS)

    Wukelic, G.E.; Foote, H.P.; Blair, S.C.; Begej, C.D.

    1981-09-01

    This study successfully utilized advanced, remote-sensing computer-analysis techniques to quantify and map land- and water-use trends potentially relevant to siting, developing, and operating a national high-level nuclear waste repository on the US Department of Energy's (DOE) Hanford Site in eastern Washington State. Specifically, using a variety of digital data bases (primarily multidate Landsat data) and digital analysis programs, the study produced unique numerical data and integrated data reference maps relevant to regional (Columbia Plateau) and localized (Pasco Basin) hydrologic considerations associated with developing such a facility. Accordingly, study results should directly contribute to the preparation of the Basalt Waste Isolation Project site-characterization report currently in progress. Moreover, since all study data developed are in digital form, they can be called upon to contribute to furute reference repository location monitoring and reporting efforts, as well as be utilized in other DOE programmatic areas having technical and/or environmental interest in the Columbia Plateau region. The results obtained indicate that multidate digital Landsat data provide an inexpensive, up-to-date, and accurate data base and reference map of natural and cultural features existing in any region. These data can be (1) computer enhanced to highlight selected surface features of interest; (2) processed/analyzed to provide regional land-cover/use information and trend data; and (3) combined with other line and point data files to accomodate interactive, correlative analyses and integrated color-graphic displays to aid interpretation and modeling efforts

  5. Remote operated vehicle with carbon dioxide blasting (ROVCO2)

    International Nuclear Information System (INIS)

    Resnick, A.M.

    1995-01-01

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO 2 ), as shown in a front view, is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO 2 xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. Figure 2 shows a block diagram with the various subsystems labeled

  6. 14'' x 17'' film recorder for computer-enhanced scans

    International Nuclear Information System (INIS)

    Morris, A.C. Jr.; Barclay, T.R.; Akin, T.E.; Hansard, M.C.; Gibbs, W.D.; Modzelewski, C.U.

    1976-01-01

    Physician acceptance of computer-enhanced radionuclide scan results, presented in the form of small Polaroid pictures, has been very limited for a number of subjective reasons. A new recorder was designed and constructed that presents the results of computer augmented scans through a medium that is quite familiar to doctors, the standard 14 in. x 17 in. x-ray film

  7. Remote participation at JET Task Force work: users' experience

    International Nuclear Information System (INIS)

    Suttrop, W.; Kinna, D.; Farthing, J.; Hemming, O.; How, J.; Schmidt, V.

    2002-01-01

    The Joint European Torus (JET) fusion experiment is now operated with strong involvement of physicists from outside research laboratories, which often requires remote participation in JET physics experiments. Users' experience with tools for remote collaborative work is reported, including remote computer and data access, remote meetings, shared documentation and various other communication channels

  8. Remote monitoring using technologies from the Internet and World Wide Web

    International Nuclear Information System (INIS)

    Puckett, J.M.; Burczyk, L.

    1997-01-01

    Recent developments in Internet technologies are changing and enhancing how one processes and exchanges information. These developments include software and hardware in support of multimedia applications on the World Wide Web. In this paper the authors describe these technologies as they have applied them to remote monitoring and show how they will allow the International Atomic Energy Agency to efficiently review and analyze remote monitoring data for verification of material movements. The authors have developed demonstration software that illustrates several safeguards data systems using the resources of the Internet and Web to access and review data. This Web demo allows the user to directly observe sensor data, to analyze simulated safeguards data, and to view simulated on-line inventory data. Future activities include addressing the technical and security issues associated with using the Web to interface with existing and planned monitoring systems at nuclear facilities. Some of these issues are authentication, encryption, transmission of large quantities of data, and data compression

  9. Development of a standard methodology for optimizing remote visual display for nuclear-maintenance tasks

    International Nuclear Information System (INIS)

    Clarke, M.M.; Garin, J.; Preston-Anderson, A.

    1981-01-01

    The aim of the present study is to develop a methodology for optimizing remote viewing systems for a fuel recycle facility (HEF) being designed at Oak Ridge National Laboratory (ORNL). An important feature of this design involves the Remotex concept: advanced servo-controlled master/slave manipulators, with remote television viewing, will totally replace direct human contact with the radioactive environment. Therefore, the design of optimal viewing conditions is a critical component of the overall man/machine system. A methodology has been developed for optimizing remote visual displays for nuclear maintenance tasks. The usefulness of this approach has been demonstrated by preliminary specification of optimal closed circuit TV systems for such tasks

  10. Computer-assisted navigational surgery enhances safety in dental implantology.

    Science.gov (United States)

    Ng, F C; Ho, K H; Wexler, A

    2005-06-01

    Dental implants are increasingly used to restore missing dentition. These titanium implants are surgically installed in the edentulous alveolar ridge and allowed to osteointegrate with the bone during the healing phase. After osseo-integration, the implant is loaded with a prosthesis to replace the missing tooth. Conventional implant treatment planning uses study models, wax-ups and panoramic x-rays to prefabricate surgical stent to guide the preparation of the implant site. The drilling into the alveolar ridge is invariably a "blind" procedure as the part of the drill in bone is not visible. Stereotactic systems were first introduced into neurosurgery in 1986. Since then, computer-assisted navigational technology has brought major advances to neuro-, midface and orthopaedic surgeries, and more recently, to implant placement. This paper illustrates the use of real-time computer-guided navigational technology in enhancing safety in implant surgical procedures. Real-time computer-guided navigational technology enhances accuracy and precision of the surgical procedure, minimises complications and facilitates surgery in challenging anatomical locations.

  11. A generic remote method invocation for intensive data processing

    International Nuclear Information System (INIS)

    Neto, A.; Alves, D.; Fernandes, H.; Ferreira, J.S.; Varandas, C.A.F.

    2006-01-01

    Based on the Extensible Markup Language (XML) and the Remote Method Invocation (RMI) standards, a client/server remote data analysis application has been developed for intensive data processing. This GRID oriented philosophy allows a powerful tool to maintain updated code and centralized computational resources. Another major feature is the ability to share proprietary algorithms in remote computers without the need of local code and libraries installation and maintenance. The 16 CPU Orionte cluster in operation at Centro de Fusao Nuclear (CFN) is currently used to provide remote data analysis. The codes running in languages such as Octave, C, Fortran or IDL are called through a script remote invocation and data is released to the client as soon as available. The remote calculations parameters are described in an XML file containing the configuration for the server runtime environment. Since the execution is made by calling a script any program can be launched to perform the analysis, the only requirement is the implementation of the protocol described in XML. Some plasma properties of the CFN tokamak (ISTTOK) that require heavy computational resources are already obtained using this approach, allowing ready inter-shot analysis and parameterization decisions

  12. A generic remote method invocation for intensive data processing

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisbon (Portugal)]. E-mail: andre.neto@cfn.ist.utl.pt; Alves, D. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisbon (Portugal); Fernandes, H. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisbon (Portugal); Ferreira, J.S. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisbon (Portugal); Varandas, C.A.F. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisbon (Portugal)

    2006-07-15

    Based on the Extensible Markup Language (XML) and the Remote Method Invocation (RMI) standards, a client/server remote data analysis application has been developed for intensive data processing. This GRID oriented philosophy allows a powerful tool to maintain updated code and centralized computational resources. Another major feature is the ability to share proprietary algorithms in remote computers without the need of local code and libraries installation and maintenance. The 16 CPU Orionte cluster in operation at Centro de Fusao Nuclear (CFN) is currently used to provide remote data analysis. The codes running in languages such as Octave, C, Fortran or IDL are called through a script remote invocation and data is released to the client as soon as available. The remote calculations parameters are described in an XML file containing the configuration for the server runtime environment. Since the execution is made by calling a script any program can be launched to perform the analysis, the only requirement is the implementation of the protocol described in XML. Some plasma properties of the CFN tokamak (ISTTOK) that require heavy computational resources are already obtained using this approach, allowing ready inter-shot analysis and parameterization decisions.

  13. Remote sensing of land surface temperature: The directional viewing effect

    International Nuclear Information System (INIS)

    Smith, J.A.; Schmugge, T.J.; Ballard, J.R. Jr.

    1997-01-01

    Land Surface Temperature (LST) is an important parameter in understanding global environmental change because it controls many of the underlying processes in the energy budget at the surface and heat and water transport between the surface and the atmosphere. The measurement of LST at a variety of spatial and temporal scales and extension to global coverage requires remote sensing means to achieve these goals. Land surface temperature and emissivity products are currently being derived from satellite and aircraft remote sensing data using a variety of techniques to correct for atmospheric effects. Implicit in the commonly employed approaches is the assumption of isotropy in directional thermal infrared exitance. The theoretical analyses indicate angular variations in apparent infrared temperature will typically yield land surface temperature errors ranging from 1 to 4 C unless corrective measures are applied

  14. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.

    Science.gov (United States)

    Wang, Menghua

    2016-05-30

    To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude

  15. An evaluation of Public servant awareness and use of GIS/Remote ...

    African Journals Online (AJOL)

    UDOKA ASIYANBOLA

    Key words: Public servant, Geographical Information Systems (GIS), Remote ... Also in Nigeria, there are some private firms and government institutions offering ... with the GIS/remote sensing technologies adoption and utilization with a view to ...

  16. Architectures of Remote Monitoring Systems for a Nuclear Power Plant

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Lee, Jae Cheol; Kim, Jae Hee

    2006-01-01

    Aina(Artificial Intelligence for Nuclear Applications) have developed remote monitoring systems since the 1990's. We have been interested in the safety of reactor vessel, steam generator, pipes, valves and pumps. We have developed several remote inspection systems and will develop some remote care systems for a nuclear power plant. There were critical problems for building remote monitoring systems for mass data processing and remote user interface techniques in the middle of the 1990's. The network capacity wasn't sufficient to transfer the monitoring data to a remote computer. Various computer operating systems require various remote user interfaces. Java provides convenient and powerful interface facilities and the network transfer speed was increased greatly in the 2000's. Java is a good solution for a remote user interface but it can't work standalone in remote monitoring applications. The restrictions of Java make it impossible to build real time based applications. We use Java and a traditional language to improve this problem. We separate the remote user interface and the monitoring application

  17. Remote Sensing for Inland Water Quality Monitoring: A U.S. Army Corps of Engineers Perspective

    Science.gov (United States)

    2011-10-01

    remote sensing has experienced an increasing role in water quality studies, largely due to technological advances, including instrument/sensor and algorithm/image processing improvements. The primary strength of remote sensing over traditional techniques includes the ability to provide a synoptic view of water quality for more effective monitoring of spatial and temporal variation. In addition, remote sensing offers capabilities for viewing water quality in multiple waterbodies over a large region at one time, a more

  18. Computer-enhanced thallium scintigrams in asymptomatic men with abnormal exercise tests

    International Nuclear Information System (INIS)

    Uhl, G.S.; Kay, T.N.; Hickman, J.R. Jr.

    1981-01-01

    The use of treadmill testing in asymptomatic patients and those with an atypical chest pain syndrome is increasing, yet the proportion of false positive stress electrocardiograms increases as the prevalence of disease decreases. To determine the diagnostic accuracy of computer-enhanced thallium perfusion scintigraphy in this subgroup of patients, multigated thallium scans were obtained after peak exercise and 3 or 4 hours after exercise and the raw images enhanced by a computer before interpretations were made. The patient group consisted of 191 asymptomatic U.S. Air force aircrewmen who had an abnormal exercise electrocardiogram. Of these, 135 had normal coronary angiographic findings, 15 had subcritical coronary stenosis (less than 50 percent diameter narrowing) and 41 had significant coronary artery disease. Use of computer enhancement resulted in only four false positive and two false negative scintigrams. The small subgroup with subcritical coronary disease had equivocal results on thallium scintigraphy, 10 men having abnormal scans and 5 showing no defects. The clinical significance of such subcritical disease in unclear, but it can be detected with thallium scintigraphy. Thallium scintigrams that have been enhanced by readily available computer techniques are an accurate diagnostic tool even in asymptomatic patients with an easily interpretable abnormal maximal stress electrocardiogram. Thallium scans can be effectively used in counseling asymptomatic patients on the likelihood of their having coronary artery disease

  19. Remote Experimental Site: A command and analysis center for ''Big Physics'' experimentation

    International Nuclear Information System (INIS)

    Casper, T.A.; Lennon, W.J.

    1991-09-01

    The next generation of tokamaks, ITER or BPX, will be characterized by an even greater emphasis on joint operation and experimentation. With anticipation of an increased number and diversity of collaborations, we are preparing for such shared facilities by developing a systematic approach to remote, joint physics operation involving experimental teams at several locations. The local area network of computers used for control and data acquisition on present and future experiments can be extended over a wide area network to provide a mechanism for remote operation of subsystems required for physics experiments. The technology required for high bandwidth (≥45Mbps) connections between multiple sites either exists or will be available over the next few years. With the rapid development of high performance workstations, network interfaces, distributed computing, and video conferencing, we can proceed with the development of a system of control and analysis sites to provide for consistent, efficient, and continuing collaborations. Early establishment of such sites could also enhance existing joint design and development efforts. 2 refs., 3 figs

  20. Enhanced fault-tolerant quantum computing in d-level systems.

    Science.gov (United States)

    Campbell, Earl T

    2014-12-05

    Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.

  1. Association between TV viewing, computer use and overweight, determinants and competing activities of screen time in 4- to 13-year-old children.

    Science.gov (United States)

    de Jong, E; Visscher, T L S; HiraSing, R A; Heymans, M W; Seidell, J C; Renders, C M

    2013-01-01

    TV viewing and computer use is associated with childhood overweight, but it remains unclear as to how these behaviours could best be targeted. The aim of this study was to determine to what extent the association between TV viewing, computer use and overweight is explained by other determinants of overweight, to find determinants of TV viewing and computer use in the home environment and to investigate competing activities. A cross-sectional study was carried out among 4072 children aged 4-13 years in the city of Zwolle, the Netherlands. Data collection consisted of measured height, weight and waist circumference, and a parental questionnaire on socio-demographic characteristics, child's nutrition, physical activity (PA) and sedentary behaviour. Associations were studied with logistic regression analyses, for older and younger children, boys and girls separately. The odds ratio (OR) of being overweight was 1.70 (95% confidence interval (CI): 1.07-2.72) for viewing TV >1.5 h among 4- to 8-year-old children adjusted for all potential confounders. Computer use was not significantly associated with overweight. Determinants of TV viewing were as follows: having >2 TVs in the household (OR: 2.38; 95% CI: 1.66-3.41), a TV in the child's bedroom and not having rules on TV viewing. TV viewing and computer use were both associated with shorter sleep duration and not with less PA. Association between TV viewing and overweight is not explained by socio-demographic variables, drinking sugared drinks and eating snacks. Factors in the home environment influence children's TV viewing. Parents have a central role as they determine the number of TVs, rules and also their children's bedtime. Therefore, interventions to reduce screen time should support parents in making home environmental changes, especially when the children are young.

  2. The Role of Telematic Practices in Computer Engineering: A Low-cost Remote Power Control in a Network Lab

    Directory of Open Access Journals (Sweden)

    Tomas Mateo Sanguino

    2012-05-01

    Full Text Available The present paper describes a practical solution of e-learning laboratory devoted to the study of computer networks. This laboratory has been proven with two groups of students from the University of Huelva (Spain during two academic years. In order to achieve this objective, it has been necessary to create an entire network infrastructure that includes both the telematic access to the laboratory equipment and the remote power control. The interest of this work lies in an economical and simple system of remote control and telematic access with a twofold objective. On the one hand, to develop distance practices with attendance appearance by means of real hardware systems, not simulated. On the other hand, to reduce the power consumption regarding other proposals of remote labs with permanent power connection, providing herein an on demand connection only when required. As a result, a versatile and flexible laboratory has been put into practice whose basic network topology allows transferring traditional practices to telematic practices in a natural way and without harsh changes

  3. Developing the next generation of diverse computer scientists: the need for enhanced, intersectional computing identity theory

    Science.gov (United States)

    Rodriguez, Sarah L.; Lehman, Kathleen

    2017-10-01

    This theoretical paper explores the need for enhanced, intersectional computing identity theory for the purpose of developing a diverse group of computer scientists for the future. Greater theoretical understanding of the identity formation process specifically for computing is needed in order to understand how students come to understand themselves as computer scientists. To ensure that the next generation of computer scientists is diverse, this paper presents a case for examining identity development intersectionally, understanding the ways in which women and underrepresented students may have difficulty identifying as computer scientists and be systematically oppressed in their pursuit of computer science careers. Through a review of the available scholarship, this paper suggests that creating greater theoretical understanding of the computing identity development process will inform the way in which educational stakeholders consider computer science practices and policies.

  4. Computer Aided Teaching in Photogrammetry, Remote Sensing, and Geomatics - A Status Review

    Science.gov (United States)

    Vyas, A.; Koenig, G.

    2014-04-01

    Education and training play vital role in the utilization of the technology. Shared and coordinated knowledge that geospatial technology and GIS deliver provides a deeper understanding of our present and will also help to better understand our future development. But it is not enough to explain new technological developments during congresses or workshops; it is also necessary to promote these new ideas and to distribute the knowledge by applying new learning strategies. This paper will review the status of computer aided teaching advances during the last decade, with a particular emphasis on photogrammetry, remote sensing, and geomatics. Some best practise examples will be presented featuring prominently recent Massive Open Online Courses (MOOCs) related to our fields. The consideration of mainly free online learning resources will include a commentary on quality and perceived effectiveness.

  5. Enhancing Nursing Education with Remote Access Laboratories

    Directory of Open Access Journals (Sweden)

    Leslie Alan Bowtell

    2012-12-01

    Full Text Available Abstract—Given the vast coverage area and dispersed population centres in which nursing professionals practice in Australia, Remote Access Laboratory (RAL based learning activities would seem to be an ideal match. However while they are commonplace in engineering faculties; in other disciplines such activities are not widely used. This may well be due to the intricacies of these practicals not being as straightforward and readily reproducible as typical physics or science experiments. In our chosen case, the safe practice of intravenous pump driver operations and related clinical reasoning skills are important components for the training of both registered nurses and nursing students. The aim of this research project is to develop and trial remote access technologies that enable nursing students to test their knowledge, skills, and clinical reasoning with intravenous infusion pump drivers. This has been possible by extending the concept of RAL from a physical and tangible experiment, to more conceptual experimentation in any form conducted remotely. In such a context clinical reasoning becomes possible. This paper discusses a prototype system that has been built with collaborative input from the Faculty of Engineering and Surveying and the Department of Nursing and Midwifery. An initial evaluation with a group of nursing students has been completed to assess if such activities can assist with the training of student nurses. Previous work has identified the need to scaffold learning activities that rely on RAL technology; the key conclusion in this paper is that in the context of nursing this has to be taken a step further. RAL activities here require contextualisation to become an effective learning tool.

  6. A Cloud Computing-Enabled Spatio-Temporal Cyber-Physical Information Infrastructure for Efficient Soil Moisture Monitoring

    Directory of Open Access Journals (Sweden)

    Lianjie Zhou

    2016-06-01

    Full Text Available Comprehensive surface soil moisture (SM monitoring is a vital task in precision agriculture applications. SM monitoring includes remote sensing imagery monitoring and in situ sensor-based observational monitoring. Cloud computing can increase computational efficiency enormously. A geographical web service was developed to assist in agronomic decision making, and this tool can be scaled to any location and crop. By integrating cloud computing and the web service-enabled information infrastructure, this study uses the cloud computing-enabled spatio-temporal cyber-physical infrastructure (CESCI to provide an efficient solution for soil moisture monitoring in precision agriculture. On the server side of CESCI, diverse Open Geospatial Consortium web services work closely with each other. Hubei Province, located on the Jianghan Plain in central China, is selected as the remote sensing study area in the experiment. The Baoxie scientific experimental field in Wuhan City is selected as the in situ sensor study area. The results show that the proposed method enhances the efficiency of remote sensing imagery mapping and in situ soil moisture interpolation. In addition, the proposed method is compared to other existing precision agriculture infrastructures. In this comparison, the proposed infrastructure performs soil moisture mapping in Hubei Province in 1.4 min and near real-time in situ soil moisture interpolation in an efficient manner. Moreover, an enhanced performance monitoring method can help to reduce costs in precision agriculture monitoring, as well as increasing agricultural productivity and farmers’ net-income.

  7. Contrast-enhanced fluorodeoxyglucose positron emission tomography/contrast-enhanced computed tomography in mediastinal T-cell lymphoma with superior vena cava syndrome

    International Nuclear Information System (INIS)

    Santhosh, Sampath; Gorla, Arun Kumar Reddy; Bhattacharya, Anish; Varma, Subhash Chander; Mittal, Bhagwant Rai

    2016-01-01

    Positron emission tomography-computed tomography (PET/CT) is a routine investigation for the staging of lymphomas. Contrast-enhanced computed tomography is mandatory whenever parenchymal lesions, especially in the liver and spleen are suspected. We report a rare case of primary mediastinal T-cell lymphoma evaluated with contrast-enhanced PET/CT that showed features of superior vena cava syndrome

  8. Value of radio density determined by enhanced computed tomography for the differential diagnosis of lung masses

    International Nuclear Information System (INIS)

    Xie, Min

    2011-01-01

    Lung masses are often difficult to differentiate when their clinical symptoms and shapes or densities on computed tomography images are similar. However, with different pathological contents, they may appear differently on plain and enhanced computed tomography. Objectives: To determine the value of enhanced computed tomography for the differential diagnosis of lung masses based on the differences in radio density with and without enhancement. Patients and Methods: Thirty-six patients with lung cancer, 36 with pulmonary tuberculosis and 10 with inflammatory lung pseudo tumors diagnosed by computed tomography and confirmed by pathology in our hospital were selected. The mean ±SD radio densities of lung masses in the three groups of patients were calculated based on the results of plain and enhanced computed tomography. Results: There were no significant differences in the radio densities of the masses detected by plain computed tomography among patients with inflammatory lung pseudo tumors, tuberculosis and lung cancer (P> 0.05). However, there were significant differences (P< 0.01)between all the groups in terms of radio densities of masses detected by enhanced computed tomography. Conclusions: The radio densities of lung masses detected by enhanced computed tomography could potentially be used to differentiate between lung cancer, pulmonary tuberculosis and inflammatory lung pseudo tumors.

  9. Identification of Enhancers In Human: Advances In Computational Studies

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2016-01-01

    Finally, we take a step further by developing a novel feature selection method suitable for defining a computational framework capable of analyzing the genomic content of enhancers and reporting cell-line specific predictive signatures.

  10. MEDXVIEWER: PROVIDING A WEB-ENABLED WORKSTATION ENVIRONMENT FOR COLLABORATIVE AND REMOTE MEDICAL IMAGING VIEWING, PERCEPTION STUDIES AND READER TRAINING.

    Science.gov (United States)

    Looney, P T; Young, K C; Halling-Brown, M D

    2016-06-01

    MedXViewer (Medical eXtensible Viewer) has been developed to address the need for workstation-independent, picture archiving and communication system (PACS)-less viewing and interaction with anonymised medical images. The aim of this paper is to describe the design and features of MedXViewer as well as to introduce the new features available in the latest release (version 1.2). MedXViewer currently supports digital mammography and tomosynthesis. The flexible software design used to develop MedXViewer allows it to be easily extended to support other imaging modalities. Regions of interest can be drawn by a user, and any associated information about a mark, an image or a study can be added. The questions and settings can be easily configured depending on the need of the research allowing both ROC and FROC studies to be performed. Complex tree-like questions can be asked where a given answer presents the user to new questions. The hanging protocol can be specified for each study. Panning, windowing, zooming and moving through slices are all available while modality-specific features can be easily enabled, e.g. quadrant zooming in digital mammography and tomosynthesis studies. MedXViewer can integrate with a web-based image database OPTIMAM Medical Image Database allowing results and images to be stored centrally. The software can, alternatively, run without a network connection where the images and results can be encrypted and stored locally on a machine or external drive. MedXViewer has been used for running remote paper-less observer studies and is capable of providing a training infrastructure and coordinating remote collaborative viewing sessions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  12. 3D medical collaboration technology to enhance emergency healthcare

    DEFF Research Database (Denmark)

    Welch, Gregory F; Sonnenwald, Diane H.; Fuchs, Henry

    2009-01-01

    Two-dimensional (2D) videoconferencing has been explored widely in the past 15-20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address...... these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays...... or with mobile devices such as personal digital assistants (PDAs). The remote professionals' viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing...

  13. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    Science.gov (United States)

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  14. MedXViewer: providing a web-enabled workstation environment for collaborative and remote medical imaging viewing, perception studies and reader training

    International Nuclear Information System (INIS)

    Looney, P.T.; Young, K.C.; Halling-Brown, M.D.

    2016-01-01

    MedXViewer (Medical extensible Viewer) has been developed to address the need for workstation-independent, picture archiving and communication system (PACS)-less viewing and interaction with anonymised medical images. The aim of this paper is to describe the design and features of MedXViewer as well as to introduce the new features available in the latest release (version 1.2). MedXViewer currently supports digital mammography and tomosynthesis. The flexible software design used to develop MedXViewer allows it to be easily extended to support other imaging modalities. Regions of interest can be drawn by a user, and any associated information about a mark, an image or a study can be added. The questions and settings can be easily configured depending on the need of the research allowing both ROC and FROC studies to be performed. Complex tree-like questions can be asked where a given answer presents the user to new questions. The hanging protocol can be specified for each study. Panning, windowing, zooming and moving through slices are all available while modality-specific features can be easily enabled, e.g. quadrant zooming in digital mammography and tomosynthesis studies. MedXViewer can integrate with a web-based image database OPTIMAM Medical Image Database allowing results and images to be stored centrally. The software can, alternatively, run without a network connection where the images and results can be encrypted and stored locally on a machine or external drive. MedXViewer has been used for running remote paper-less observer studies and is capable of providing a training infrastructure and coordinating remote collaborative viewing sessions. (authors)

  15. Association between TV viewing, computer use and overweight, determinants and competing activities of screen time in 4- to 13-year-old children

    NARCIS (Netherlands)

    de Jong, E; Visscher, T L S; HiraSing, R.A.; Heijmans, M.W.; Seidell, J C; Renders, C M

    OBJECTIVE: TV viewing and computer use is associated with childhood overweight, but it remains unclear as to how these behaviours could best be targeted. The aim of this study was to determine to what extent the association between TV viewing, computer use and overweight is explained by other

  16. Enhancement pattern of hilar cholangiocarcinoma: Contrast-enhanced ultrasound versus contrast-enhanced computed tomography

    International Nuclear Information System (INIS)

    Xu Huixiong; Chen Lida; Xie Xiaoyan; Xie Xiaohua; Xu Zuofeng; Liu Guangjian; Lin Manxia; Wang Zhu; Lu Mingde

    2010-01-01

    Objective: To compare the enhancement pattern of hilar cholangiocarcinoma on contrast-enhanced ultrasound (CEUS) with that on contrast-enhanced computed tomography (CECT). Methods: Thirty-two consecutive patients with pathologically proven hilar cholangiocarcinomas were evaluated by both low mechanical index CEUS and CECT. The enhancement feature of the tumor, portal vein infiltration, and lesion conspicuity on them was investigated. Results: In the arterial phase, the numbers of the lesions showing hyperenhancement, isoenhancement, and hypoenhancement, were 14 (43.8%), 14 (43.8%), and 4 (12.6%), on CEUS, and 12 (37.5%), 9 (28.1%), and 11 (34.4%), on CECT (P = 0.162). In portal phase, the numbers of the lesions showing hypoenhancement, isoenhancement, and hyperenhancement were 30 (93.8%), 1 (3.1%), and 1 (3.1%), on CEUS, and 23 (71.9%), 8 (25.0%), and 1 (3.1%), on CECT (P = 0.046). The detection rates for portal vein infiltration were 84.2% (16/19) for baseline ultrasound, 89.5% (17/19) for CEUS, and 78.9% (15/19) for CECT (all P > 0.05 between every two groups). CEUS significantly improved the lesion conspicuity in comparison with CECT. CEUS and CECT made correct diagnoses in 30 (93.8%) and 25 (78.1%) lesions prior to pathological examination (P = 0.125). Conclusion: The enhancement pattern of hilar cholangiocarcinoma on CEUS was similar with that on CECT in arterial phase, whereas in portal phase hilar cholangiocarcinoma shows hypoenhancement more likely on CEUS. CEUS and CECT lead to similar results in evaluating portal vein infiltration and diagnosis of this entity.

  17. Enhancement pattern of hilar cholangiocarcinoma: Contrast-enhanced ultrasound versus contrast-enhanced computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Xu Huixiong, E-mail: xuhuixiong@hotmail.co [Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou 510080 (China); Chen Lida; Xie Xiaoyan; Xie Xiaohua; Xu Zuofeng; Liu Guangjian; Lin Manxia; Wang Zhu [Department of Medical Ultrasonics, The First Affiliated Hospital, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou 510080 (China); Lu Mingde, E-mail: lumd@21cn.co [Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou 510080 (China)

    2010-08-15

    Objective: To compare the enhancement pattern of hilar cholangiocarcinoma on contrast-enhanced ultrasound (CEUS) with that on contrast-enhanced computed tomography (CECT). Methods: Thirty-two consecutive patients with pathologically proven hilar cholangiocarcinomas were evaluated by both low mechanical index CEUS and CECT. The enhancement feature of the tumor, portal vein infiltration, and lesion conspicuity on them was investigated. Results: In the arterial phase, the numbers of the lesions showing hyperenhancement, isoenhancement, and hypoenhancement, were 14 (43.8%), 14 (43.8%), and 4 (12.6%), on CEUS, and 12 (37.5%), 9 (28.1%), and 11 (34.4%), on CECT (P = 0.162). In portal phase, the numbers of the lesions showing hypoenhancement, isoenhancement, and hyperenhancement were 30 (93.8%), 1 (3.1%), and 1 (3.1%), on CEUS, and 23 (71.9%), 8 (25.0%), and 1 (3.1%), on CECT (P = 0.046). The detection rates for portal vein infiltration were 84.2% (16/19) for baseline ultrasound, 89.5% (17/19) for CEUS, and 78.9% (15/19) for CECT (all P > 0.05 between every two groups). CEUS significantly improved the lesion conspicuity in comparison with CECT. CEUS and CECT made correct diagnoses in 30 (93.8%) and 25 (78.1%) lesions prior to pathological examination (P = 0.125). Conclusion: The enhancement pattern of hilar cholangiocarcinoma on CEUS was similar with that on CECT in arterial phase, whereas in portal phase hilar cholangiocarcinoma shows hypoenhancement more likely on CEUS. CEUS and CECT lead to similar results in evaluating portal vein infiltration and diagnosis of this entity.

  18. Use of remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Fournel, E; Gouilloux, C

    1977-01-01

    Paper traces the development of remote monitoring devices, since their first appearance for safety purposes. Discusses their uses in coal mines: working and safety (definitions); sources and channels of information (transmission of information by automatic or verbal means); mine control stations; duties and responsibilities of persons in charge. Examines the contribution made by remote monitoring to management in production sector. Gives examples of assistance given to production management showing a very advantageous result on balance, by their use. The use of computers in real time and in batched mode is compared. Discusses their use in monitoring mine atmosphere. Very favorable results have already been obtained in France and abroad. The broadening scope and future of remote monitoring is considered.

  19. Augmented virtualised reality-Applications and benefits in remote handling for fusion

    International Nuclear Information System (INIS)

    King, Ryan; Hamilton, David

    2009-01-01

    Over the last 10 years VR has been used at JET in an increasingly important role. It now finds use in various aspects of task preparation including planning, mock-up, training and task overview. It also plays an important role in actual operations where it is used to gain a more complete view of the work area. The JET VR implementation does not have on-line monitoring of the remote environment and the robot modelling has accuracy limitations, so this system cannot be used as the primary means of viewing. Work is currently underway with the aim of allowing such as system to run at ITER with full remote environment monitoring with high enough precision and accuracy so as to allow its use as the primary viewing method. This paper looks at how this augmented virtualised reality solution would be applied and considers some of the additional benefits AVR could have in remote handling for fusion.

  20. Piping stress analysis with personal computers

    International Nuclear Information System (INIS)

    Revesz, Z.

    1987-01-01

    The growing market of the personal computers is providing an increasing number of professionals with unprecedented and surprisingly inexpensive computing capacity, which if using with powerful software, can enhance immensely the engineers capabilities. This paper focuses on the possibilities which opened in piping stress analysis by the widespread distribution of personal computers, on the necessary changes in the software and on the limitations of using personal computers for engineering design and analysis. Reliability and quality assurance aspects of using personal computers for nuclear applications are also mentioned. The paper resumes with personal views of the author and experiences gained during interactive graphic piping software development for personal computers. (orig./GL)

  1. Remote operation and maintenance demonstration facility at ORNL

    International Nuclear Information System (INIS)

    Harvey, H.W.; Floyd, S.D.; Kuban, D.P.; Singletary, B.H.; Stradley, J.G.

    1978-01-01

    The Remote Operation and Maintenance Facility is a versatile facility arranged to mock up various hot cell configurations. Modular units of simulated shielding and viewing windows were built to provide flexibility in arrangement. The facility is fully equipped with hoists, manipulators, television, and other basic equipment and services necessary to provide capability for both remote operation and maintenance of several selected functional process equipment groups

  2. Simulation platform for remote participants in fusion experiments

    International Nuclear Information System (INIS)

    Barrera, E.; Ruiz, M.; Lopez, S.; Vega, J.; Sanchez, E.

    2004-01-01

    One of the major challenges in remote participation in fusion experiments is the control from remote locations of the data acquisition and treatment process. In an optimum situation, the remote researcher should be able to control the data acquisition configuration parameters, and data processing, specifying the results that must be returned to him. The simulation platform presented here, allows the researcher to develop and test complex algorithms in a high level graphical language (LabVIEW), which includes powerful data processing libraries. These algorithms will be downloaded later into the data acquisition system. Furthermore, the platform allows the simulation of hardware data acquisition, which include the following points: (a) simulation of channel configuration from one or several data acquisition cards (channels used, sample frequencies, etc.), (b) generation of buffered simulated data (it is also possible the use of raw data, acquired in previous experiments, as simulated data), and (c) reproduction of hardware behavior (except, of course, in terms of real time behavior and real data). For this purpose, Virtual Instruments (VIs) libraries written in LabVIEW will be provided to the remote developers. These VIs will be replaced later, in the data acquisition system, by their homologous VIs that actually interface with the hardware. This facility will allow remote researchers to verify the correct behavior of their own data processing algorithms before downloading them into the data acquisition system

  3. Educational Computer Utilization and Computer Communications.

    Science.gov (United States)

    Singh, Jai P.; Morgan, Robert P.

    As part of an analysis of educational needs and telecommunications requirements for future educational satellite systems, three studies were carried out. 1) The role of the computer in education was examined and both current status and future requirements were analyzed. Trade-offs between remote time sharing and remote batch process were explored…

  4. Monitoring land and water uses in the Columbia Plateau using remote-sensing computer analysis and integration techniques

    International Nuclear Information System (INIS)

    Leonhart, L.S.; Wukelic, G.E.; Foote, H.P.; Blair, S.C.

    1983-09-01

    This study successfully utilized advanced, remote-sensing computer-analysis techniques to quantify and map land- and water-use trends potentially relevant to siting, developing, and operating a high-level national, nuclear waste repository on the US Department of Energy's Hanford Site in eastern Washington State. Specifically, using a variety of digital data bases (primarily multidate LANDSAT data) and digital analysis programs, the study produced unique numerical data and integrated data reference maps relevant to regional (Columbia Plateau) and localized (Pasco Basin) hydrologic considerations associated with developing such a facility. Because all study data developed are in digital form, they can be called upon to contribute to future reference repository location monitoring and reporting efforts, as well as to be utilized in other US Department of Energy programmatic areas having technical and/or environmental interest in the Columbia Plateau region. The results obtained indicate that multidate digital LANDSAT data provide an inexpensive, up-to-date, and accurate data base and reference map of natural and cultural features existing in any region. These data can be (1) computer enhanced to highlight selected surface features of interest; (2) processed/analyzed to provide regional land cover/use information and trend data; and (3) combined with other line and point data files to accommodate interactive, correlative analyses and integrated colorgraphic displays to aid interpretation and modeling efforts. Once the digital base is established, selected site information can be assessed immediately, various forms of data can be accessed concurrently or separately, and data sets may be displayed or mapped at any scale. Available editing software provides the opportunity to generate credible scenarios for a site while preserving the actual data base. 6 references

  5. A systematic review of clinician and staff views on the acceptability of incorporating remote monitoring technology into primary care.

    Science.gov (United States)

    Davis, Melinda M; Freeman, Michele; Kaye, Jeffrey; Vuckovic, Nancy; Buckley, David I

    2014-05-01

    Remote monitoring technology (RMT) may enhance healthcare quality and reduce costs. RMT adoption depends on perceptions of the end-user (e.g., patients, caregivers, healthcare providers). We conducted a systematic review exploring the acceptability and feasibility of RMT use in routine adult patient care, from the perspectives of primary care clinicians, administrators, and clinic staff. We searched the databases of Medline, IEEE Xplore, and Compendex for original articles published from January 1996 through February 2013. We manually screened bibliographies of pertinent studies and consulted experts to identify English-language studies meeting our inclusion criteria. Of 939 citations identified, 15 studies reported in 16 publications met inclusion criteria. Studies were heterogeneous by country, type of RMT used, patient and provider characteristics, and method of implementation and evaluation. Clinicians, staff, and administrators generally held positive views about RMTs. Concerns emerged regarding clinical relevance of RMT data, changing clinical roles and patterns of care (e.g., reduced quality of care from fewer patient visits, overtreatment), insufficient staffing or time to monitor and discuss RMT data, data incompatibility with a clinic's electronic health record (EHR), and unclear legal liability regarding response protocols. This small body of heterogeneous literature suggests that for RMTs to be adopted in primary care, researchers and developers must ensure clinical relevance, support adequate infrastructure, streamline data transmission into EHR systems, attend to changing care patterns and professional roles, and clarify response protocols. There is a critical need to engage end-users in the development and implementation of RMT.

  6. Remote Sensing Tropical Coral Reefs: The View from Above

    Science.gov (United States)

    Purkis, Sam J.

    2018-01-01

    Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis—it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.

  7. Remote Sensing Tropical Coral Reefs: The View from Above.

    Science.gov (United States)

    Purkis, Sam J

    2018-01-03

    Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis-it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.

  8. Hybrid soft computing approaches research and applications

    CERN Document Server

    Dutta, Paramartha; Chakraborty, Susanta

    2016-01-01

    The book provides a platform for dealing with the flaws and failings of the soft computing paradigm through different manifestations. The different chapters highlight the necessity of the hybrid soft computing methodology in general with emphasis on several application perspectives in particular. Typical examples include (a) Study of Economic Load Dispatch by Various Hybrid Optimization Techniques, (b) An Application of Color Magnetic Resonance Brain Image Segmentation by ParaOptiMUSIG activation Function, (c) Hybrid Rough-PSO Approach in Remote Sensing Imagery Analysis,  (d) A Study and Analysis of Hybrid Intelligent Techniques for Breast Cancer Detection using Breast Thermograms, and (e) Hybridization of 2D-3D Images for Human Face Recognition. The elaborate findings of the chapters enhance the exhibition of the hybrid soft computing paradigm in the field of intelligent computing.

  9. LXI Technologies for Remote Labs: An Extension of the VISIR Project

    OpenAIRE

    Jaime Irurzun; Olga Dziabenko; Pablo Orduña; Diego Lopez-de-Ipiña; Ignacio Angulo; Javier García-Zubia; Unai Hernandez-Jayo

    2010-01-01

    Several remote labs to support analog circuits are presented in this work. They are analyzed from the software and the hardware point of view. VISIR remote lab is one of these labs. After this analysis, a new VISIR remote lab approach is presented. This extension of the VISIR project is based on LXI technologies with the aim of becoming it in a remote lab easily interchangeable with other instruments. The addition of new components and experiments is also easier and cheaper.

  10. ATLAS Distributed Computing in LHC Run2

    CERN Document Server

    Campana, Simone; The ATLAS collaboration

    2015-01-01

    The ATLAS Distributed Computing infrastructure has evolved after the first period of LHC data taking in order to cope with the challenges of the upcoming LHC Run2. An increased data rate and computing demands of the Monte-Carlo simulation, as well as new approaches to ATLAS analysis, dictated a more dynamic workload management system (ProdSys2) and data management system (Rucio), overcoming the boundaries imposed by the design of the old computing model. In particular, the commissioning of new central computing system components was the core part of the migration toward the flexible computing model. The flexible computing utilization exploring the opportunistic resources such as HPC, cloud, and volunteer computing is embedded in the new computing model, the data access mechanisms have been enhanced with the remote access, and the network topology and performance is deeply integrated into the core of the system. Moreover a new data management strategy, based on defined lifetime for each dataset, has been defin...

  11. Experience with Remote Job Execution

    International Nuclear Information System (INIS)

    Lynch, Vickie E.; Cobb, John W; Green, Mark L.; Kohl, James Arthur; Miller, Stephen D.; Ren, Shelly; Smith, Bradford C.; Vazhkudai, Sudharshan S.

    2008-01-01

    The Neutron Science Portal at Oak Ridge National Laboratory submits jobs to the TeraGrid for remote job execution. The TeraGrid is a network of high performance computers supported by the US National Science Foundation. There are eleven partner facilities with over a petaflop of peak computing performance and sixty petabytes of long-term storage. Globus is installed on a local machine and used for job submission. The graphical user interface is produced by java coding that reads an XML file. After submission, the status of the job is displayed in a Job Information Service window which queries globus for the status. The output folder produced in the scratch directory of the TeraGrid machine is returned to the portal with globus-url-copy command that uses the gridftp servers on the TeraGrid machines. This folder is copied from the stage-in directory of the community account to the user's results directory where the output can be plotted using the portal's visualization services. The primary problem with remote job execution is diagnosing execution problems. We have daily tests of submitting multiple remote jobs from the portal. When these jobs fail on a computer, it is difficult to diagnose the problem from the globus output. Successes and problems will be presented

  12. An Enhanced Text-Mining Framework for Extracting Disaster Relevant Data through Social Media and Remote Sensing Data Fusion

    Science.gov (United States)

    Scheele, C. J.; Huang, Q.

    2016-12-01

    In the past decade, the rise in social media has led to the development of a vast number of social media services and applications. Disaster management represents one of such applications leveraging massive data generated for event detection, response, and recovery. In order to find disaster relevant social media data, current approaches utilize natural language processing (NLP) methods based on keywords, or machine learning algorithms relying on text only. However, these approaches cannot be perfectly accurate due to the variability and uncertainty in language used on social media. To improve current methods, the enhanced text-mining framework is proposed to incorporate location information from social media and authoritative remote sensing datasets for detecting disaster relevant social media posts, which are determined by assessing the textual content using common text mining methods and how the post relates spatiotemporally to the disaster event. To assess the framework, geo-tagged Tweets were collected for three different spatial and temporal disaster events: hurricane, flood, and tornado. Remote sensing data and products for each event were then collected using RealEarthTM. Both Naive Bayes and Logistic Regression classifiers were used to compare the accuracy within the enhanced text-mining framework. Finally, the accuracies from the enhanced text-mining framework were compared to the current text-only methods for each of the case study disaster events. The results from this study address the need for more authoritative data when using social media in disaster management applications.

  13. Landslide hazard assessment along a mountain highway in the Indian Himalayan Region (IHR) using remote sensing and computational models

    Science.gov (United States)

    Krishna, Akhouri P.; Kumar, Santosh

    2013-10-01

    Landslide hazard assessments using computational models, such as artificial neural network (ANN) and frequency ratio (FR), were carried out covering one of the important mountain highways in the Central Himalaya of Indian Himalayan Region (IHR). Landslide influencing factors were either calculated or extracted from spatial databases including recent remote sensing data of LANDSAT TM, CARTOSAT digital elevation model (DEM) and Tropical Rainfall Measuring Mission (TRMM) satellite for rainfall data. ANN was implemented using the multi-layered feed forward architecture with different input, output and hidden layers. This model based on back propagation algorithm derived weights for all possible parameters of landslides and causative factors considered. The training sites for landslide prone and non-prone areas were identified and verified through details gathered from remote sensing and other sources. Frequency Ratio (FR) models are based on observed relationships between the distribution of landslides and each landslide related factor. FR model implementation proved useful for assessing the spatial relationships between landslide locations and factors contributing to its occurrence. Above computational models generated respective susceptibility maps of landslide hazard for the study area. This further allowed the simulation of landslide hazard maps on a medium scale using GIS platform and remote sensing data. Upon validation and accuracy checks, it was observed that both models produced good results with FR having some edge over ANN based mapping. Such statistical and functional models led to better understanding of relationships between the landslides and preparatory factors as well as ensuring lesser levels of subjectivity compared to qualitative approaches.

  14. [Management of inpatient glucose in non-critical care setting: impact of a proactive intervention based on a point-of-care of system with remote viewing of capillary blood glucose].

    Science.gov (United States)

    Amor, Antonio J; Ríos, Paola A; Graupera, Iolanda; Conget, Ignacio; Esmatjes, Enric; Comallonga, Teresa; Vidal, Josep

    2014-05-06

    The management of hyperglycemia in conventional wards is suboptimal. The objective of our study was to evaluate the efficacy of a proactive intervention supported by point-of-care system with remote viewing of capillary blood glucose (CBG) on glycemic control as compared to usual care in non-critical surgical patients. Two sequential periods of 2 months were defined. In the first phase (control, CPh), in which the surgical team was in charge of glycemic control, capillary glucose levels were recorded by StatStrip(®) system, and endocrinological support was provided upon surgeons request. In a second phase (intervention, IPh), the endocrinologist proceeded based on remotely-viewed CBG values. We compared the use of basal-bolus therapy and the degree of glycemic control between the 2 study periods. The IPh was associated with greater use of basal-bolus regimens (21.4 vs. 58.3%; P=.003). The average CBG during the CPh was 161 ± 64 vs. 142 ± 48 mg/dL during the IPh (Premote viewing of CBG is associated with improved glycemic control in non-critical patients, without any further increase in the number of hypoglycaemic recordings. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  15. Remote Experiments in Control Engineering Education Laboratory

    Directory of Open Access Journals (Sweden)

    Milica B Naumović

    2008-05-01

    Full Text Available This paper presents Automatic Control Engineering Laboratory (ACEL - WebLab, an under-developed, internet-based remote laboratory for control engineering education at the Faculty of Electronic Engineering in Niš. Up to now, the remote laboratory integrates two physical systems (velocity servo system and magnetic levitation system and enables some levels of measurement and control. To perform experiments in ACEL-WebLab, the "LabVIEW Run Time Engine"and a standard web browser are needed.

  16. DataView: a computational visualisation system for multidisciplinary design and analysis

    Science.gov (United States)

    Wang, Chengen

    2016-01-01

    Rapidly processing raw data and effectively extracting underlining information from huge volumes of multivariate data become essential to all decision-making processes in sectors like finance, government, medical care, climate analysis, industries, science, etc. Remarkably, visualisation is recognised as a fundamental technology that props up human comprehension, cognition and utilisation of burgeoning amounts of heterogeneous data. This paper presents a computational visualisation system, named DataView, which has been developed for graphically displaying and capturing outcomes of multiphysics problem-solvers widely used in engineering fields. The DataView is functionally composed of techniques for table/diagram representation, and graphical illustration of scalar, vector and tensor fields. The field visualisation techniques are implemented on the basis of a range of linear and non-linear meshes, which flexibly adapts to disparate data representation schemas adopted by a variety of disciplinary problem-solvers. The visualisation system has been successfully applied to a number of engineering problems, of which some illustrations are presented to demonstrate effectiveness of the visualisation techniques.

  17. The Potential of AI Techniques for Remote Sensing

    Science.gov (United States)

    Estes, J. E.; Sailer, C. T. (Principal Investigator); Tinney, L. R.

    1984-01-01

    The current status of artificial intelligence AI technology is discussed along with imagery data management, database interrogation, and decision making. Techniques adapted from the field of artificial intelligence (AI) have significant, wide ranging impacts upon computer-assisted remote sensing analysis. AI based techniques offer a powerful and fundamentally different approach to many remote sensing tasks. In addition to computer assisted analysis, AI techniques can also aid onboard spacecraft data processing and analysis and database access and query.

  18. Computer-enhanced thallium scintigrams in asymptomatic men with abnormal exercise tests

    International Nuclear Information System (INIS)

    Uhl, G.S.; Kay, T.N.; Hickman, J.R. Jr.

    1981-01-01

    The usefulness of computer-enhanced thallium-201 myocardial perfusion scintigraphy in excluding the diagnosis of coronary artery disease in asymptomatic patients showing abnormal exercise electrocardiograms is evaluated. Multigated thallium scans were obtained immediately following and 3 or 4 hours after maximal exercise testing in 191 consecutive asymptomatic Air Force aircrew members who had shown abnormal exercise electrocardiograms and who were due to undergo coronary angiography. Computer enhancement of the raw images is found to lead to four false positive and two false negative scintigrams as revealed by angiographic results, while the group of 15 with subcritical coronary disease exhibited equivocal results. Results reveal that enhanced thallium scintigrams are an accurate diagnostics tool in detecting myocardial ischemia in asymptomatic patients and may be used in counseling asymptomatic patients on their likelihood of having coronary artery disease

  19. Remote Access to Instrumental Analysis for Distance Education in Science

    Directory of Open Access Journals (Sweden)

    Dietmar Kennepohl

    2005-11-01

    Full Text Available Remote access to experiments offers distance educators another tool to integrate a strong laboratory component within a science course. Since virtually all modern chemical instrumental analysis in industry now use devices operated by a computer interface, remote control of instrumentation is not only relatively facile, it enhances students’ opportunity to learn the subject matter and be exposed to “real world” contents. Northern Alberta Institute of Technology (NAIT and Athabasca University are developing teaching laboratories based on the control of analytical instruments in real-time via an Internet connection. Students perform real-time analysis using equipment, methods, and skills that are common to modern analytical laboratories (or sophisticated teaching laboratories. Students obtain real results using real substances to arrive at real conclusions, just as they would if they were in a physical laboratory with the equipment; this approach allows students to access to conduct instrumental science experiments, thus providing them with an advantageous route to upgrade their laboratory skills while learning at a distance.

  20. Web based remote instrumentation and control

    International Nuclear Information System (INIS)

    Dhekne, P.S.; Patil, Jitendra; Kulkarni, Jitendra; Babu, Prasad; Lad, U.C.; Rahurkar, A.G.; Kaura, H.K.

    2001-01-01

    The Web-based technology provides a very powerful communication medium for transmitting effectively multimedia information containing data generated from various sources, which may be in the form of audio, video, text, still or moving images etc. Large number of sophisticated web based software tools are available that can be used to monitor and control distributed electronic instrumentation projects. For example data can be collected online from various smart sensors/instruments such as images from CCD camera, pressure/ humidity sensor, light intensity transducer, smoke detectors etc and uploaded in real time to a central web server. This information can be processed further, to take control action in real time from any remote client, of course with due security care. The web-based technology offers greater flexibility, higher functionality, and high degree of integration providing standardization. Further easy to use standard browser based interface at the client end to monitor, view and control the desired process parameters allow you to cut down the development time and cost to a great extent. A system based on a web client-server approach has been designed and developed at Computer division, BARC and is operational since last year to monitor and control remotely various environmental parameters of distributed computer centers. In this paper we shall discuss details of this system, its current status and additional features which are currently under development. This type of system is typically very useful for Meteorology, Environmental monitoring of Nuclear stations, Radio active labs, Nuclear waste immobilization plants, Medical and Biological research labs., Security surveillance and in many such distributed situations. A brief description of various tools used for this project such as Java, CGI, Java Script, HTML, VBScript, M-JPEG, TCP/IP, UDP, RTP etc. along with their merits/demerits have also been included

  1. Web Based Remote Access Microcontroller Laboratory

    OpenAIRE

    H. Çimen; İ. Yabanova; M. Nartkaya; S. M. Çinar

    2008-01-01

    This paper presents a web based remote access microcontroller laboratory. Because of accelerated development in electronics and computer technologies, microcontroller-based devices and appliances are found in all aspects of our daily life. Before the implementation of remote access microcontroller laboratory an experiment set is developed by teaching staff for training microcontrollers. Requirement of technical teaching and industrial applications are considered when expe...

  2. Analysis of ring enhancement in the cranial computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seung Jae; Chung, Yong In; Chang, Kee Hyun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    1980-12-15

    A total of 83 cases with ring enhancement in the cranial computed tomography were radiologically analyzed to determine the specific CT findings of the primary and metastatic brain tumor, inflammatory disease, resolving hematoma, and cerebral infarction. The brief results are as follows. Glioblastoma multiform show a characteristic thick or thin irregular ring enhancement with significant mass effect and surrounding edema. Most of the metastatic tumors also show irregular thick or thin walled ring enhancement with significant surrounding edema. Tumoral hemorrhage was observed in the metastatic melanoma, breast cancer, and lung cancer. The brain abscess usually show characteristic thin regular and smooth ring enhancement with moderate peripheral edema. The parasitic cysts also show thin regular ring enhancement with different degree of surrounding edema. Ring enhancement in resolving hematomas and cerebral infarctions usually occurs about 10-30 days after the onset of symptoms, which shows thin and regular ring pattern without significant surrounding edema.

  3. Analysis of ring enhancement in the cranial computed tomography

    International Nuclear Information System (INIS)

    Huh, Seung Jae; Chung, Yong In; Chang, Kee Hyun

    1980-01-01

    A total of 83 cases with ring enhancement in the cranial computed tomography were radiologically analyzed to determine the specific CT findings of the primary and metastatic brain tumor, inflammatory disease, resolving hematoma, and cerebral infarction. The brief results are as follows. Glioblastoma multiform show a characteristic thick or thin irregular ring enhancement with significant mass effect and surrounding edema. Most of the metastatic tumors also show irregular thick or thin walled ring enhancement with significant surrounding edema. Tumoral hemorrhage was observed in the metastatic melanoma, breast cancer, and lung cancer. The brain abscess usually show characteristic thin regular and smooth ring enhancement with moderate peripheral edema. The parasitic cysts also show thin regular ring enhancement with different degree of surrounding edema. Ring enhancement in resolving hematomas and cerebral infarctions usually occurs about 10-30 days after the onset of symptoms, which shows thin and regular ring pattern without significant surrounding edema

  4. Remote Operation and Maintenance Demonstration Facility at ORNL

    International Nuclear Information System (INIS)

    Harvey, H.W.; Floyd, S.D; Kuban, D.P.; Singletary, B.H.; Stradley, J.G.

    1978-01-01

    The Remote Operation and Maintenance Facility is a versatile facility arranged to mock-up various hot-cell configurations. Modular units of simulated shielding and viewing windows were built to provide flexibility in arrangement. The facility is fully equipped with hoists, manipulators, television, and the other basic equipment and services necessary to provide capability for both remote operation and maintenance of several selected functional process equipment groups. 6 figures

  5. LXI Technologies for Remote Labs: An Extension of the VISIR Project

    Directory of Open Access Journals (Sweden)

    Jaime Irurzun

    2010-09-01

    Full Text Available Several remote labs to support analog circuits are presented in this work. They are analyzed from the software and the hardware point of view. VISIR remote lab is one of these labs. After this analysis, a new VISIR remote lab approach is presented. This extension of the VISIR project is based on LXI technologies with the aim of becoming it in a remote lab easily interchangeable with other instruments. The addition of new components and experiments is also easier and cheaper.

  6. Delayed contrast-enhanced computed tomography in patients with known or suspected cardiac sarcoidosis: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Aikawa, Tadao; Naya, Masanao; Obara, Masahiko [Hokkaido University Graduate School of Medicine, Sapporo (Japan); Oyama-Manabe, Noriko; Kudo, Kohsuke [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology, Sapporo (Japan); Ohira, Hiroshi; Sugimoto, Ayako; Tsujino, Ichizo [Hokkaido University Graduate School of Medicine, First Department of Medicine, Sapporo (Japan); Manabe, Osamu; Tamaki, Nagara [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Sapporo (Japan); Tsutsui, Hiroyuki [Kyushu University, Department of Cardiovascular Medicine, Fukuoka (Japan)

    2017-10-15

    To evaluate the diagnostic value of delayed contrast-enhanced computed tomography (DE-CT) for cardiac sarcoidosis (CS) in patients with or without implantable devices, including a quantitative comparison with late gadolinium enhancement cardiac magnetic resonance (LGE-CMR). Twenty-four patients (mean age, 64 ± 9 years; 17 women) with known or suspected CS underwent retrospective electrocardiogram-gated DE-CT at 80 kV with knowledge-based iterative model reconstruction. Fourteen patients without implantable devices also underwent LGE-CMR, while ten with pacemakers or implantable cardioverter-defibrillators did not. The presence of hyperenhanced myocardium was assessed visually and quantitatively using a 5-standard deviation threshold above the mean of remote myocardium. Inter-observer agreement for visual detection of hyperenhanced segments on DE-CT was excellent in patients with implantable devices and in those without (κ = 0.91 and κ = 0.94, respectively). Comparisons of the percent area of hyperenhanced myocardium between DE-CT and LGE-CMR on both per-patient and per-segment analyses showed good correlations (r = 0.96 and r = 0.83, respectively; p < 0.001). The sensitivity and specificity of DE-CT for the diagnosis of CS were 94% and 33%. The extent of hyperenhanced lesion with DE-CT showed good agreement with LGE-CMR results. DE-CT showed high sensitivity for detecting CS and may be useful particularly in patients with contraindications to CMR. (orig.)

  7. MR-based field-of-view extension in MR/PET: B0 homogenization using gradient enhancement (HUGE).

    Science.gov (United States)

    Blumhagen, Jan O; Ladebeck, Ralf; Fenchel, Matthias; Scheffler, Klaus

    2013-10-01

    In whole-body MR/PET, the human attenuation correction can be based on the MR data. However, an MR-based field-of-view (FoV) is limited due to physical restrictions such as B0 inhomogeneities and gradient nonlinearities. Therefore, for large patients, the MR image and the attenuation map might be truncated and the attenuation correction might be biased. The aim of this work is to explore extending the MR FoV through B0 homogenization using gradient enhancement in which an optimal readout gradient field is determined to locally compensate B0 inhomogeneities and gradient nonlinearities. A spin-echo-based sequence was developed that computes an optimal gradient for certain regions of interest, for example, the patient's arms. A significant distortion reduction was achieved outside the normal MR-based FoV. This FoV extension was achieved without any hardware modifications. In-plane distortions in a transaxially extended FoV of up to 600 mm were analyzed in phantom studies. In vivo measurements of the patient's arms lying outside the normal specified FoV were compared with and without the use of B0 homogenization using gradient enhancement. In summary, we designed a sequence that provides data for reducing the image distortions due to B0 inhomogeneities and gradient nonlinearities and used the data to extend the MR FoV. Copyright © 2011 Wiley Periodicals, Inc.

  8. Current NASA Earth Remote Sensing Observations

    Science.gov (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  9. Remote participation technologies in the EFDA Laboratories - status and prospects

    International Nuclear Information System (INIS)

    Schmidt, V.; How, J.A.

    2003-01-01

    More than 25 laboratories of the European Fusion Development Agreement (EFDA) have been increasingly using remote participation (RP) technologies for collaborative work on several experiments. We present an overview of the technologies that are employed to provide remote data access, remote computer access, and tele-conference. We also deal with computer network requirements, and support and documentation needs. The biggest application of these tools has been the joint scientific exploitation of the JET Facilities. Increasingly other experiments are operated as shared facilities, and the RP tools are being used in this context. For remote data access there is a clear trend towards MDSplus as common data access layer for multi-experiment data access. Secure Remote Computer access is converging on two different solutions. Video-conference is also converging on two partially inter-operable solutions, whereas the sharing of presentation material is converging on one solution. Remote Control Room participation is being used in two laboratories. Network monitoring has been developed and is now in routine use. The RP work is being done at many laboratories and is co-ordinated by EFDA. A number of items in several fields need still to be tackled and an overview of these is presented. (authors)

  10. Remote participation technologies in the EFDA Laboratories - status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, V. [Associazione EURATOM-ENEA sulla Fusione, Consorzio RFX, Padova (Italy); How, J.A. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    More than 25 laboratories of the European Fusion Development Agreement (EFDA) have been increasingly using remote participation (RP) technologies for collaborative work on several experiments. We present an overview of the technologies that are employed to provide remote data access, remote computer access, and tele-conference. We also deal with computer network requirements, and support and documentation needs. The biggest application of these tools has been the joint scientific exploitation of the JET Facilities. Increasingly other experiments are operated as shared facilities, and the RP tools are being used in this context. For remote data access there is a clear trend towards MDSplus as common data access layer for multi-experiment data access. Secure Remote Computer access is converging on two different solutions. Video-conference is also converging on two partially inter-operable solutions, whereas the sharing of presentation material is converging on one solution. Remote Control Room participation is being used in two laboratories. Network monitoring has been developed and is now in routine use. The RP work is being done at many laboratories and is co-ordinated by EFDA. A number of items in several fields need still to be tackled and an overview of these is presented. (authors)

  11. AN ENHANCED METHOD FOREXTENDING COMPUTATION AND RESOURCES BY MINIMIZING SERVICE DELAY IN EDGE CLOUD COMPUTING

    OpenAIRE

    B.Bavishna*1, Mrs.M.Agalya2 & Dr.G.Kavitha3

    2018-01-01

    A lot of research has been done in the field of cloud computing in computing domain. For its effective performance, variety of algorithms has been proposed. The role of virtualization is significant and its performance is dependent on VM Migration and allocation. More of the energy is absorbed in cloud; therefore, the utilization of numerous algorithms is required for saving energy and efficiency enhancement in the proposed work. In the proposed work, green algorithm has been considered with ...

  12. Computer-Aided Video Differential Planimetry

    Science.gov (United States)

    Tobin, Michael; Djoleto, Ben D.

    1984-08-01

    THE VIDEO DIFFERENTIAL PLANIMETER (VDP)1 is a re-mote sensing instrument that can measure minute changes in the area of any object seen by an optical scanning system. The composite video waveforms obtained by scanning the object against a contrasting back-ground are amplified and shaped to yield a sequence of constant amplitude pulses whose polarity distinguishes the studied area from its background and whose varying widths reflect the dynamics of the viewed object. These pulses are passed through a relatively long time-constant capacitor-resistor circuit and are then fed into an integrator. The net integration voltage resulting from the most recent sequence of object-background time pulses is recorded and the integrator is returned to zero at the end of each video frame. If the object's area remains constant throughout the following frame, the integrator's summation will also remain constant. However, if the object's area varies, the positive and negative time pulses entering the integrator will change, and the integrator's summation will vary proportionately. The addition of a computer interface and a video recorder enhances the versatility and the resolving power of the VDP by permitting the repeated study and analysis of selected portions of the recorded data, thereby uncovering the major sources of the object's dynamics. Among the medical and biological procedures for which COMPUTER-AIDED VIDEO DIFFERENTIAL PLANIMETRY is suitable are Ophthalmoscopy, Endoscopy, Microscopy, Plethysmography, etc. A recent research study in Ophthalmoscopy2 will be cited to suggest a useful application of Video Differential Planimetry.

  13. Quantum processing by remote quantum control

    Science.gov (United States)

    Qiang, Xiaogang; Zhou, Xiaoqi; Aungskunsiri, Kanin; Cable, Hugo; O'Brien, Jeremy L.

    2017-12-01

    Client-server models enable computations to be hosted remotely on quantum servers. We present a novel protocol for realizing this task, with practical advantages when using technology feasible in the near term. Client tasks are realized as linear combinations of operations implemented by the server, where the linear coefficients are hidden from the server. We report on an experimental demonstration of our protocol using linear optics, which realizes linear combination of two single-qubit operations by a remote single-qubit control. In addition, we explain when our protocol can remain efficient for larger computations, as well as some ways in which privacy can be maintained using our protocol.

  14. Interactive Online Tools for Enhancing Student Learning Experiences in Remote Sensing

    Science.gov (United States)

    Joyce, Karen E.; Boitshwarelo, Bopelo; Phinn, Stuart R.; Hill, Greg J. E.; Kelly, Gail D.

    2014-01-01

    The rapid growth in Information and Communications Technologies usage in higher education has provided immense opportunities to foster effective student learning experiences in geography. In particular, remote sensing lends itself to the creative utilization of multimedia technologies. This paper presents a case study of a remote sensing computer…

  15. Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets

    Science.gov (United States)

    Jolliff, Brad L.; Ryder, Graham

    1998-01-01

    It has been more than 25 years since Apollo 17 returned the last of the Apollo lunar samples. Since then, a vast amount of data has been obtained from the study of rocks and soils from the Apollo and Luna sample collections and, more recently, on a set of about a dozen lunar meteorites collected on Earth. Based on direct studies of the samples, many constraints have been established for the age, early differentiation, crust and mantle structure, and subsequent impact modification of the Moon. In addition, geophysical experiments at the surface, as well as remote sensing from orbit and Earth-based telescopic studies, have provided additional datasets about the Moon that constrain the nature of its surface and internal structure. Some might be tempted to say that we know all there is to know about the Moon and that it is time to move on from this simple satellite to more complex objects. However, the ongoing Lunar Prospector mission and the highly successful Clementine mission have provided important clues to the real geological complexity of the Moon, and have shown us that we still do not yet adequately understand the geologic history of Earth's companion. These missions, like Galileo during its lunar flyby, are providing global information viewed through new kinds of windows, and providing a fresh context for models of lunar origin, evolution, and resources, and perhaps even some grist for new questions and new hypotheses. The probable detection and characterization of water ice at the poles, the extreme concentration of Th and other radioactive elements in the Procellarum-Imbrium-Frigon's resurfaced areas of the nearside of the Moon, and the high-resolution gravity modeling enabled by these missions are examples of the kinds of exciting new results that must be integrated with the extant body of knowledge based on sample studies, in situ experiments, and remote-sensing missions to bring about the best possible understanding of the Moon and its history.

  16. Secondary School Mathematics Teachers’ and Students’ Views on Computer Assisted Mathematics Instruction in Turkey: Mathematica Example

    OpenAIRE

    Mehmet Alper Ardıç; Tevfik İşleyen

    2017-01-01

    This study aimed at determining the secondary school mathematics teachers’ and students’ views on computer-assisted mathematics instruction (CAMI) conducted via Mathematica. Accordingly, three mathematics teachers in Adıyaman and nine 10th-grade students participated in the research. Firstly, the researchers trained the mathematics teachers in the Mathematica program, a computer algebra system (CAS) and CAMI. Then, they provided a suitable environment for teachers to practice CAMI with their ...

  17. Three-dimensional television system for remote handling

    International Nuclear Information System (INIS)

    Dumbreck, A.A.; Abel, E.

    1988-01-01

    The paper refers to work previously described on the development of 3-D Television Systems. 3-D TV had been developed with a view to proving whether it was a useful remote handling tool which would be easy to use and comfortable to view. The paper summarizes the work of evaluation trials at UK facilities and reviews the developments which have subsequently taken place. 3-D TV systems have been found to give improved performance in terms of speed and accuracy of operations and to reduce the number of camera views required. (author)

  18. STRIPE: Remote Driving Using Limited Image Data

    Science.gov (United States)

    Kay, Jennifer S.

    1997-01-01

    Driving a vehicle, either directly or remotely, is an inherently visual task. When heavy fog limits visibility, we reduce our car's speed to a slow crawl, even along very familiar roads. In teleoperation systems, an operator's view is limited to images provided by one or more cameras mounted on the remote vehicle. Traditional methods of vehicle teleoperation require that a real time stream of images is transmitted from the vehicle camera to the operator control station, and the operator steers the vehicle accordingly. For this type of teleoperation, the transmission link between the vehicle and operator workstation must be very high bandwidth (because of the high volume of images required) and very low latency (because delayed images can cause operators to steer incorrectly). In many situations, such a high-bandwidth, low-latency communication link is unavailable or even technically impossible to provide. Supervised TeleRobotics using Incremental Polyhedral Earth geometry, or STRIPE, is a teleoperation system for a robot vehicle that allows a human operator to accurately control the remote vehicle across very low bandwidth communication links, and communication links with large delays. In STRIPE, a single image from a camera mounted on the vehicle is transmitted to the operator workstation. The operator uses a mouse to pick a series of 'waypoints' in the image that define a path that the vehicle should follow. These 2D waypoints are then transmitted back to the vehicle, where they are used to compute the appropriate steering commands while the next image is being transmitted. STRIPE requires no advance knowledge of the terrain to be traversed, and can be used by novice operators with only minimal training. STRIPE is a unique combination of computer and human control. The computer must determine the 3D world path designated by the 2D waypoints and then accurately control the vehicle over rugged terrain. The human issues involve accurate path selection, and the

  19. Television viewing, computer use and total screen time in Canadian youth.

    Science.gov (United States)

    Mark, Amy E; Boyce, William F; Janssen, Ian

    2006-11-01

    Research has linked excessive television viewing and computer use in children and adolescents to a variety of health and social problems. Current recommendations are that screen time in children and adolescents should be limited to no more than 2 h per day. To determine the percentage of Canadian youth meeting the screen time guideline recommendations. The representative study sample consisted of 6942 Canadian youth in grades 6 to 10 who participated in the 2001/2002 World Health Organization Health Behaviour in School-Aged Children survey. Only 41% of girls and 34% of boys in grades 6 to 10 watched 2 h or less of television per day. Once the time of leisure computer use was included and total daily screen time was examined, only 18% of girls and 14% of boys met the guidelines. The prevalence of those meeting the screen time guidelines was higher in girls than boys. Fewer than 20% of Canadian youth in grades 6 to 10 met the total screen time guidelines, suggesting that increased public health interventions are needed to reduce the number of leisure time hours that Canadian youth spend watching television and using the computer.

  20. Metrology/viewing system for next generation fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-01-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system

  1. Hepatic blood perfusion estimated by dynamic contrast-enhanced computed tomography in pigs

    DEFF Research Database (Denmark)

    Winterdahl, Michael; Sørensen, Michael; Keiding, Inger Susanne

    2012-01-01

    The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates.......The aim of this study was to determine whether dynamic contrast-enhanced computed tomography (DCE-CT) and the slope method can provide absolute measures of hepatic blood perfusion from the hepatic artery (HA) and portal vein (PV) at experimentally varied blood flow rates....

  2. Elicitation of State and Local User Needs for Future Moderate Resolution Earth Observations: The AmericaView Contribution

    Science.gov (United States)

    French, N. H. F.; Lawrence, R. L.

    2017-12-01

    AmericaView is a nationwide partnership of remote sensing scientists who support the use of Landsat and other public domain remotely sensed data through applied remote sensing research, K-12 and higher STEM education, workforce development, and technology transfer. The national AmericaView program currently has active university-lead members in 39 states, each of which has a "stateview" consortium consisting of some combination of university, agency, non-profit, and other members. This "consortium of consortia" has resulted in a strong and unique nationwide network of remote sensing practitioners. AmericaView has used this network to contribute to the USGS Requirements Capabilities & Analysis for Earth Observations. Participating states have conducted interviews of key remote sensing end users across the country to provide key input at the state and local level for the design and implementation of future U.S. moderate resolution Earth observations.

  3. Multi-Scale Computational Enzymology: Enhancing Our Understanding of Enzymatic Catalysis

    OpenAIRE

    Rami Gherib; Hisham M. Dokainish; James W. Gauld

    2013-01-01

    Elucidating the origin of enzymatic catalysis stands as one the great challenges of contemporary biochemistry and biophysics. The recent emergence of computational enzymology has enhanced our atomistic-level description of biocatalysis as well the kinetic and thermodynamic properties of their mechanisms. There exists a diversity of computational methods allowing the investigation of specific enzymatic properties. Small or large density functional theory models allow the comparison of a pleth...

  4. Robust Concurrent Remote Entanglement Between Two Superconducting Qubits

    Directory of Open Access Journals (Sweden)

    A. Narla

    2016-09-01

    Full Text Available Entangling two remote quantum systems that never interact directly is an essential primitive in quantum information science and forms the basis for the modular architecture of quantum computing. When protocols to generate these remote entangled pairs rely on using traveling single-photon states as carriers of quantum information, they can be made robust to photon losses, unlike schemes that rely on continuous variable states. However, efficiently detecting single photons is challenging in the domain of superconducting quantum circuits because of the low energy of microwave quanta. Here, we report the realization of a robust form of concurrent remote entanglement based on a novel microwave photon detector implemented in the superconducting circuit quantum electrodynamics platform of quantum information. Remote entangled pairs with a fidelity of 0.57±0.01 are generated at 200 Hz. Our experiment opens the way for the implementation of the modular architecture of quantum computation with superconducting qubits.

  5. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    Science.gov (United States)

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  6. Autoimmune pancreatitis: Assessment of the enhanced duct sign on multiphase contrast-enhanced computed tomography

    International Nuclear Information System (INIS)

    Kawai, Yuichi; Suzuki, Kojiro; Itoh, Shigeki; Takada, Akira; Mori, Yoshine; Naganawa, Shinji

    2012-01-01

    Purpose: To assess the usefulness of the computed tomography (CT) finding of main pancreatic duct (MPD) wall enhancement, termed the “enhanced duct sign”, for diagnosis of autoimmune pancreatitis (AIP) in comparison with diagnosis of pancreatic carcinoma and chronic pancreatitis. Materials and methods: Two radiologists independently evaluated the presence or absence of the enhanced duct sign on multiphase contrast-enhanced CT in patients with AIP (n = 55), pancreatic carcinoma (n = 50), and chronic pancreatitis (n = 50). The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of AIP were calculated. In patients demonstrating the enhanced duct sign, additional findings were evaluated by consensus. Results: The enhanced duct sign was more frequently observed in patients with AIP (37/55, 67%) than in patients with pancreatic carcinoma (5/50, 10%) or chronic pancreatitis (0/50, 0%) (P < 0.05). The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the finding were 0.67, 0.95, 0.85, 0.88, and 0.84, respectively. In AIP, the lumen within the enhanced duct was completely or partially invisible in 29 of 37 (78%) patients, and the enhanced duct was observed within the affected pancreatic parenchyma in 35 of 37 (95%) patients. In pancreatic carcinoma, the lumen within the enhanced duct was visible in all patients (5/5, 100%), and the enhanced duct was observed downstream of the tumor (5/5, 100%). Conclusion: The enhanced duct sign is highly specific of AIP.

  7. Autoimmune pancreatitis: Assessment of the enhanced duct sign on multiphase contrast-enhanced computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Yuichi, E-mail: kawai.yuichi@a.mbox.nagoya-u.ac.jp [Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Suzuki, Kojiro, E-mail: kojiro@med.nagoya-u.ac.jp [Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Itoh, Shigeki, E-mail: shigeito@nagoya-1st.jrc.or.jp [Department of Diagnostic Radiology, Japan Red Cross Nagoya Daiichi Hospital, 3-35 Michishita-cho, Nakamura-ku, Nagoya 453-8511 (Japan); Takada, Akira, E-mail: takadaa@med.nagoya-u.ac.jp [Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Mori, Yoshine, E-mail: yoshine@med.nagoya-u.ac.jp [Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Naganawa, Shinji, E-mail: naganawa@med.nagoya-u.ac.jp [Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan)

    2012-11-15

    Purpose: To assess the usefulness of the computed tomography (CT) finding of main pancreatic duct (MPD) wall enhancement, termed the 'enhanced duct sign', for diagnosis of autoimmune pancreatitis (AIP) in comparison with diagnosis of pancreatic carcinoma and chronic pancreatitis. Materials and methods: Two radiologists independently evaluated the presence or absence of the enhanced duct sign on multiphase contrast-enhanced CT in patients with AIP (n = 55), pancreatic carcinoma (n = 50), and chronic pancreatitis (n = 50). The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of AIP were calculated. In patients demonstrating the enhanced duct sign, additional findings were evaluated by consensus. Results: The enhanced duct sign was more frequently observed in patients with AIP (37/55, 67%) than in patients with pancreatic carcinoma (5/50, 10%) or chronic pancreatitis (0/50, 0%) (P < 0.05). The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the finding were 0.67, 0.95, 0.85, 0.88, and 0.84, respectively. In AIP, the lumen within the enhanced duct was completely or partially invisible in 29 of 37 (78%) patients, and the enhanced duct was observed within the affected pancreatic parenchyma in 35 of 37 (95%) patients. In pancreatic carcinoma, the lumen within the enhanced duct was visible in all patients (5/5, 100%), and the enhanced duct was observed downstream of the tumor (5/5, 100%). Conclusion: The enhanced duct sign is highly specific of AIP.

  8. Enhancing Instruction through Constructivism, Cooperative Learning, and Cloud Computing

    Science.gov (United States)

    Denton, David W.

    2012-01-01

    Cloud computing technologies, such as Google Docs and Microsoft Office Live, have the potential to enhance instructional methods predicated on constructivism and cooperative learning. Cloud-based application features like file sharing and online publishing are prompting departments of education across the nation to adopt these technologies.…

  9. The use of computer based instructions to enhance Rwandan ...

    African Journals Online (AJOL)

    Annestar

    (2) To what extent the newly acquired ICT skills impact on teachers' competency? (3) How suitable is computer based instruction to enhance teachers' continuous professional development? Literature review. ICT competency for teachers. Regardless of the quantity and quality of technology available in classrooms, the key ...

  10. Framework for Computation Offloading in Mobile Cloud Computing

    Directory of Open Access Journals (Sweden)

    Dejan Kovachev

    2012-12-01

    Full Text Available The inherently limited processing power and battery lifetime of mobile phones hinder the possible execution of computationally intensive applications like content-based video analysis or 3D modeling. Offloading of computationally intensive application parts from the mobile platform into a remote cloud infrastructure or nearby idle computers addresses this problem. This paper presents our Mobile Augmentation Cloud Services (MACS middleware which enables adaptive extension of Android application execution from a mobile client into the cloud. Applications are developed by using the standard Android development pattern. The middleware does the heavy lifting of adaptive application partitioning, resource monitoring and computation offloading. These elastic mobile applications can run as usual mobile application, but they can also use remote computing resources transparently. Two prototype applications using the MACS middleware demonstrate the benefits of the approach. The evaluation shows that applications, which involve costly computations, can benefit from offloading with around 95% energy savings and significant performance gains compared to local execution only.

  11. Fog-computing concept usage as means to enhance information and control system reliability

    Science.gov (United States)

    Melnik, E. V.; Klimenko, A. B.; Ivanov, D. Ya

    2018-05-01

    This paper focuses on the reliability issue of information and control systems (ICS). The authors propose using the elements of the fog-computing concept to enhance the reliability function. The key idea of fog-computing is to shift computations to the fog-layer of the network, and thus to decrease the workload of the communication environment and data processing components. As for ICS, workload also can be distributed among sensors, actuators and network infrastructure facilities near the sources of data. The authors simulated typical workload distribution situations for the “traditional” ICS architecture and for the one with fogcomputing concept elements usage. The paper contains some models, selected simulation results and conclusion about the prospects of the fog-computing as a means to enhance ICS reliability.

  12. Security analysis and enhancements of an effective biometric-based remote user authentication scheme using smart cards.

    Science.gov (United States)

    An, Younghwa

    2012-01-01

    Recently, many biometrics-based user authentication schemes using smart cards have been proposed to improve the security weaknesses in user authentication system. In 2011, Das proposed an efficient biometric-based remote user authentication scheme using smart cards that can provide strong authentication and mutual authentication. In this paper, we analyze the security of Das's authentication scheme, and we have shown that Das's authentication scheme is still insecure against the various attacks. Also, we proposed the enhanced scheme to remove these security problems of Das's authentication scheme, even if the secret information stored in the smart card is revealed to an attacker. As a result of security analysis, we can see that the enhanced scheme is secure against the user impersonation attack, the server masquerading attack, the password guessing attack, and the insider attack and provides mutual authentication between the user and the server.

  13. Multiuser remote access to distributed heterogeneous system of programmable logic based laboratory equipment for remote digital circuits design labs

    Directory of Open Access Journals (Sweden)

    Mikhail N. Yokhin

    2017-12-01

    Full Text Available The paper contains an analysis of perspective structures of software and hardware equipment of universal digital design laboratories with the purpose of enabling laboratory classes of digital circuit design to be taken remotely. Implementation characteristics and usage experience of some of those structures applied to labs on several hardware related courses of « Computer science and computer engineering» program in NRNU MEPhI are presented. The paper also considers different aspects of usage of remote access enabled laboratory which should be taken into account to substantiate laboratory configuration from technical and economical standpoints. To increase equipment usage efficiency an approach to group several distinct projects to place them on a single FPGA chip is proposed. The paper shows advisability and gives an example of parametrizable virtual stand for remote debugging of FPGA projects.

  14. Remote sensing image ship target detection method based on visual attention model

    Science.gov (United States)

    Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong

    2017-11-01

    The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.

  15. Enhancing Security by System-Level Virtualization in Cloud Computing Environments

    Science.gov (United States)

    Sun, Dawei; Chang, Guiran; Tan, Chunguang; Wang, Xingwei

    Many trends are opening up the era of cloud computing, which will reshape the IT industry. Virtualization techniques have become an indispensable ingredient for almost all cloud computing system. By the virtual environments, cloud provider is able to run varieties of operating systems as needed by each cloud user. Virtualization can improve reliability, security, and availability of applications by using consolidation, isolation, and fault tolerance. In addition, it is possible to balance the workloads by using live migration techniques. In this paper, the definition of cloud computing is given; and then the service and deployment models are introduced. An analysis of security issues and challenges in implementation of cloud computing is identified. Moreover, a system-level virtualization case is established to enhance the security of cloud computing environments.

  16. Graphics metafile interface to ARAC emergency response models for remote workstation study

    International Nuclear Information System (INIS)

    Lawver, B.S.

    1985-01-01

    The Department of Energy's Atmospheric Response Advisory Capability models are executed on computers at a central computer center with the output distributed to accident advisors in the field. The output of these atmospheric diffusion models are generated as contoured isopleths of concentrations. When these isopleths are overlayed with local geography, they become a useful tool to the accident site advisor. ARAC has developed a workstation that is located at potential accident sites. The workstation allows the accident advisor to view color plots of the model results, scale those plots and print black and white hardcopy of the model results. The graphics metafile, also known as Virtual Device Metafile (VDM) allows the models to generate a single device independent output file that is partitioned into geography, isoopleths and labeling information. The metafile is a very compact data storage technique that is output device independent. The metafile frees the model from either generating output for all known graphic devices or requiring the model to be rerun for additional graphic devices. With the partitioned metafile ARAC can transmit to the remote workstation the isopleths and labeling for each model. The geography database may not change and can be transmitted only when needed. This paper describes the important features of the remote workstation and how these features are supported by the device independent graphics metafile

  17. Ocean color remote sensing using polarization properties of reflected sunlight

    Science.gov (United States)

    Frouin, R.; Pouliquen, E.; Breon, F.-M.

    1994-01-01

    The effects of the atmosphere and surface on sunlight backscattered to space by the ocean may be substantially reduced by using the unpolarized component of reflectance instead of total reflectance. At 450 nm, a wavelength of interest in ocean color remote sensing, and for typical conditions, 45% of the unpolarized reflectance may originate from the water body instead of 20% of the total reflectance, which represents a gain of a factor 2.2 in useful signal for water composition retrieval. The best viewing geometries are adjacent to the glitter region; they correspond to scattering angles around 100 deg, but they may change slightly depending on the polarization characteristics of the aerosols. As aerosol optical thickness increases, the atmosphere becomes less efficient at polarizing sunlight, and the enhancement of the water body contribution to unpolarized reflectance is reduced. Since the perturbing effects are smaller on unpolarized reflectance, at least for some viewing geometries, they may be more easily corrected, leading to a more accurate water-leaving signal and, therefore, more accurate estimates of phytoplankton pigment concentration.

  18. Remote monitoring: An implementation on the Gemini System

    International Nuclear Information System (INIS)

    Sheridan, R.; Ondrik, M.; Kadner, S.; Resnik, W.; Chitumbo, K.; Corbell, B.

    1996-01-01

    The Gemini System consists of a sophisticated, digital surveillance unit and a high performance review system. Due to the open architectural design of the Gemini System, it provides an excellent hardware and software platform to support remote monitoring. The present Gemini System provides the user with the following Remote Monitoring features, via a modem interface and powerful support software: state-of-health reporting, alarm reporting, and remote user interface. Future enhancements will contribute significantly to the Gemini''s ability to provide a broader spectrum of network interfaces and remote review

  19. Enhancement of Online Robotics Learning Using Real-Time 3D Visualization Technology

    Directory of Open Access Journals (Sweden)

    Richard Chiou

    2010-06-01

    Full Text Available This paper discusses a real-time e-Lab Learning system based on the integration of 3D visualization technology with a remote robotic laboratory. With the emergence and development of the Internet field, online learning is proving to play a significant role in the upcoming era. In an effort to enhance Internet-based learning of robotics and keep up with the rapid progression of technology, a 3- Dimensional scheme of viewing the robotic laboratory has been introduced in addition to the remote controlling of the robots. The uniqueness of the project lies in making this process Internet-based, and remote robot operated and visualized in 3D. This 3D system approach provides the students with a more realistic feel of the 3D robotic laboratory even though they are working remotely. As a result, the 3D visualization technology has been tested as part of a laboratory in the MET 205 Robotics and Mechatronics class and has received positive feedback by most of the students. This type of research has introduced a new level of realism and visual communications to online laboratory learning in a remote classroom.

  20. Cognitive Callisthenics: Do FPS computer games enhance the player’s cognitive abilities?

    OpenAIRE

    Kearney, Paul

    2005-01-01

    It is widely accepted that educational video games are a valuable resource for learning. Action video games however, are often viewed as mindless entertainment, but research completed recently show other benefits are gained from video games, such as the enhancement of peripheral vision (University of Rochester, 2003). It has long been known that puzzle games such as Tetris enhance the player’s cognitive abilities. Okagaki and Frensch (1994) used Tetris in their research. They found that spati...

  1. Integrating IPix immersive video surveillance with unattended and remote monitoring (UNARM) systems

    International Nuclear Information System (INIS)

    Michel, K.D.; Klosterbuer, S.F.; Langner, D.C.

    2004-01-01

    Commercially available IPix cameras and software are being researched as a means by which an inspector can be virtually immersed into a nuclear facility. A single IPix camera can provide 360 by 180 degree views with full pan-tilt-zoom capability, and with no moving parts on the camera mount. Immersive video technology can be merged into the current Unattended and Remote Monitoring (UNARM) system, thereby providing an integrated system of monitoring capabilities that tie together radiation, video, isotopic analysis, Global Positioning System (GPS), etc. The integration of the immersive video capability with other monitoring methods already in place provides a significantly enhanced situational awareness to the International Atomic Energy Agency (IAEA) inspectors.

  2. The use of computer based instructions to enhance Rwandan ...

    African Journals Online (AJOL)

    This study intended to investigate into the extent to which computers and Internet that are being availed to schools in Rwanda can be used to enhance teachers' ICT competency and continuous professional development. In order to attain this ultimate aim, researchers undertook a Problem Solving and Theory Testing ...

  3. Freeware for GIS and Remote Sensing

    OpenAIRE

    Lena Halounová

    2007-01-01

    Education in remote sensing and GIS is based on software utilization. The software needs to be installed in computer rooms with a certain number of licenses. The commercial software equipment is therefore financially demanding and not only for universities, but especially for students. Internet research brings a long list of free software of various capabilities. The paper shows a present state of GIS, image processing and remote sensing free software.

  4. Linking CATHENA with other computer codes through a remote process

    Energy Technology Data Exchange (ETDEWEB)

    Vasic, A.; Hanna, B.N.; Waddington, G.M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Sabourin, G. [Atomic Energy of Canada Limited, Montreal, Quebec (Canada); Girard, R. [Hydro-Quebec, Montreal, Quebec (Canada)

    2005-07-01

    'Full text:' CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a computer code developed by Atomic Energy of Canada Limited (AECL). The code uses a transient, one-dimensional, two-fluid representation of two-phase flow in piping networks. CATHENA is used primarily for the analysis of postulated upset conditions in CANDU reactors; however, the code has found a wider range of applications. In the past, the CATHENA thermalhydraulics code included other specialized codes, i.e. ELOCA and the Point LEPreau CONtrol system (LEPCON) as callable subroutine libraries. The combined program was compiled and linked as a separately named code. This code organizational process is not suitable for independent development, maintenance, validation and version tracking of separate computer codes. The alternative solution to provide code development independence is to link CATHENA to other computer codes through a Parallel Virtual Machine (PVM) interface process. PVM is a public domain software package, developed by Oak Ridge National Laboratory and enables a heterogeneous collection of computers connected by a network to be used as a single large parallel machine. The PVM approach has been well accepted by the global computing community and has been used successfully for solving large-scale problems in science, industry, and business. Once development of the appropriate interface for linking independent codes through PVM is completed, future versions of component codes can be developed, distributed separately and coupled as needed by the user. This paper describes the coupling of CATHENA to the ELOCA-IST and the TROLG2 codes through a PVM remote process as an illustration of possible code connections. ELOCA (Element Loss Of Cooling Analysis) is the Industry Standard Toolset (IST) code developed by AECL to simulate the thermo-mechanical response of CANDU fuel elements to transient thermalhydraulics boundary conditions. A separate ELOCA driver program

  5. Linking CATHENA with other computer codes through a remote process

    International Nuclear Information System (INIS)

    Vasic, A.; Hanna, B.N.; Waddington, G.M.; Sabourin, G.; Girard, R.

    2005-01-01

    'Full text:' CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a computer code developed by Atomic Energy of Canada Limited (AECL). The code uses a transient, one-dimensional, two-fluid representation of two-phase flow in piping networks. CATHENA is used primarily for the analysis of postulated upset conditions in CANDU reactors; however, the code has found a wider range of applications. In the past, the CATHENA thermalhydraulics code included other specialized codes, i.e. ELOCA and the Point LEPreau CONtrol system (LEPCON) as callable subroutine libraries. The combined program was compiled and linked as a separately named code. This code organizational process is not suitable for independent development, maintenance, validation and version tracking of separate computer codes. The alternative solution to provide code development independence is to link CATHENA to other computer codes through a Parallel Virtual Machine (PVM) interface process. PVM is a public domain software package, developed by Oak Ridge National Laboratory and enables a heterogeneous collection of computers connected by a network to be used as a single large parallel machine. The PVM approach has been well accepted by the global computing community and has been used successfully for solving large-scale problems in science, industry, and business. Once development of the appropriate interface for linking independent codes through PVM is completed, future versions of component codes can be developed, distributed separately and coupled as needed by the user. This paper describes the coupling of CATHENA to the ELOCA-IST and the TROLG2 codes through a PVM remote process as an illustration of possible code connections. ELOCA (Element Loss Of Cooling Analysis) is the Industry Standard Toolset (IST) code developed by AECL to simulate the thermo-mechanical response of CANDU fuel elements to transient thermalhydraulics boundary conditions. A separate ELOCA driver program starts, ends

  6. Effects of a Teacher Professional Development Program on Science Teachers' Views about Using Computers in Teaching and Learning

    Science.gov (United States)

    Çetin, Nagihan Imer

    2016-01-01

    The purpose of this study was to examine science teachers' level of using computers in teaching and the impact of a teacher professional development program (TPDP) on their views regarding utilizing computers in science education. Forty-three in-service science teachers from different regions of Turkey attended a 5 day TPDP. The TPDP was…

  7. Designing remote monitoring systems for long term maintenance and reliability

    International Nuclear Information System (INIS)

    Davis, G.E.; Johnson, G.L.; Schrader, F.D.; Stone, M.A.; Wilson, E.F.

    2001-01-01

    allow the system to tolerate component failures and communication interruptions. To the extent practical, field functions should continue to operate given communications interruptions or failure of central computers. Complete system functionality and history must be restored quickly after communications or central computer functions are restored. The needs for redundant functions to tolerate hardware failure and diverse functions to tolerate common cause (e.g., software errors) failures should be carefully evaluated and addressed in the system design. Fundamental changes to communications backbone are expensive. Careful initial design of this feature is important to minimize the cost and system upset of future upgrades. The design should incorporate performance margin to support future functional enhancements and support open communications protocols that allow new types of equipment to be added to the system without significant changes. Any long-lived system will continually evolve. Therefore, hardware and software design must provide enhancement of capabilities and backward compatibility. Consideration of future system directions in design allows the system to evolve gracefully over time. Doing this requires a good understanding of customer needs and wishes feeding and a strategic plan for system evolution. With this approach, significant enhancements in functionality and migration away from obsolete equipment can happen with out the need for major system outages. Upgrade of field units must be fast, simple, and secure. Storage of field software as firmware provides a high level of software security and allows 'drop-in' software upgrade. Argus software was designed with ease of modification and upgrade in mind. The product uses Ada for most of the software, taking advantage of its packaging and exception handling capability for effective organization of the software. Recent software has been developed using C++ and object-oriented design techniques to improve

  8. A case of ectopic ureteral orifice with hypoplastic kidney diagnosed by enhanced computed tomography

    International Nuclear Information System (INIS)

    Kishi, Mikio; Yoshimoto, Jun; Matsumura, Yosuke; Ohmori, Hiroyuki

    1983-01-01

    A case of ectopic ureteral orifice, 6 year old girl with urinary incontinece, is herein reported. Cystoscopy and excretory urogram showed absense of right half of trigone and non visualizing kidney. By enhanced computed tomography, right hypoplastic kidney was found and right nephrectomy was performed. We emphasize that enhanced computed tomography is very usefull for diagnosis of localization of hypoplastic kidney. (author)

  9. Communication network for decentralized remote tele-science during the Spacelab mission IML-2

    Science.gov (United States)

    Christ, Uwe; Schulz, Klaus-Juergen; Incollingo, Marco

    1994-01-01

    The ESA communication network for decentralized remote telescience during the Spacelab mission IML-2, called Interconnection Ground Subnetwork (IGS), provided data, voice conferencing, video distribution/conferencing and high rate data services to 5 remote user centers in Europe. The combination of services allowed the experimenters to interact with their experiments as they would normally do from the Payload Operations Control Center (POCC) at MSFC. In addition, to enhance their science results, they were able to make use of reference facilities and computing resources in their home laboratory, which typically are not available in the POCC. Characteristics of the IML-2 communications implementation were the adaptation to the different user needs based on modular service capabilities of IGS and the cost optimization for the connectivity. This was achieved by using a combination of traditional leased lines, satellite based VSAT connectivity and N-ISDN according to the simulation and mission schedule for each remote site. The central management system of IGS allows minimization of staffing and the involvement of communications personnel at the remote sites. The successful operation of IGS for IML-2 as a precursor network for the Columbus Orbital Facility (COF) has proven the concept for communications to support the operation of the COF decentralized scenario.

  10. Methods of training the graduate level and professional geologist in remote sensing technology

    Science.gov (United States)

    Kolm, K. E.

    1981-01-01

    Requirements for a basic course in remote sensing to accommodate the needs of the graduate level and professional geologist are described. The course should stress the general topics of basic remote sensing theory, the theory and data types relating to different remote sensing systems, an introduction to the basic concepts of computer image processing and analysis, the characteristics of different data types, the development of methods for geological interpretations, the integration of all scales and data types of remote sensing in a given study, the integration of other data bases (geophysical and geochemical) into a remote sensing study, and geological remote sensing applications. The laboratories should stress hands on experience to reinforce the concepts and procedures presented in the lecture. The geologist should then be encouraged to pursue a second course in computer image processing and analysis of remotely sensed data.

  11. Subsurface remote sensing

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Groves, Joel L.

    2002-01-01

    Subsurface remote sensing measurements are widely used for oil and gas exploration, for oil and gas production monitoring, and for basic studies in the earth sciences. Radiation sensors, often including small accelerator sources, are used to obtain bulk properties of the surrounding strata as well as to provide detailed elemental analyses of the rocks and fluids in rock pores. Typically, instrument packages are lowered into a borehole at the end of a long cable, that may be as long as 10 km, and two-way data and instruction telemetry allows a single radiation instrument to operate in different modes and to send the data to a surface computer. Because these boreholes are often in remote locations throughout the world, the data are frequently transmitted by satellite to various locations around the world for almost real-time analysis and incorporation with other data. The complete system approach that permits rapid and reliable data acquisition, remote analysis and transmission to those making decisions is described

  12. Remote information service access system based on a client-server-service model

    Science.gov (United States)

    Konrad, A.M.

    1996-08-06

    A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user`s local host, thereby providing ease of use and minimal software maintenance for users of that remote service. 16 figs.

  13. Variable disparity-motion estimation based fast three-view video coding

    Science.gov (United States)

    Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo

    2009-02-01

    In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.

  14. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Science.gov (United States)

    2010-04-01

    ... radionuclide applicator system. (a) Identification. A remote controlled radionuclide applicator system is an... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Remote controlled radionuclide applicator system... include patient and equipment supports, component parts, treatment planning computer programs, and...

  15. Cloud Computing in Science and Engineering and the “SciShop.ru” Computer Simulation Center

    Directory of Open Access Journals (Sweden)

    E. V. Vorozhtsov

    2011-12-01

    Full Text Available Various aspects of cloud computing applications for scientific research, applied design, and remote education are described in this paper. An analysis of the different aspects is performed based on the experience from the “SciShop.ru” Computer Simulation Center. This analysis shows that cloud computing technology has wide prospects in scientific research applications, applied developments and also remote education of specialists, postgraduates, and students.

  16. Computation system for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals

  17. Remote control and data processing for measurement of radiation dose

    International Nuclear Information System (INIS)

    Zhou Yu; Luo Yisheng; Guo Yong; Ji Gang; Wang Xinggong; Zhang Hong; Zhang Wenzhong

    2004-01-01

    Objective: To protect the workers from the reactor radiation and to improve the accuracy and efficiency of neutron dose measurement. Methods: With the application of remote control technology, a remote control and automatic measurement system for radiation dose measurement(especially for neutron dose) was set up. A Model 6517A electrometer was operated all automatically over RS-232 serial interface using SCPI commands with a computer. Results: The workers could stay far from the reactor and be able to control the portable computer in site though internet or LAN and then to control the 6517A electrometer to implement the dose measurement. After the measurement, the data were transferred to the remote computer near the workers and shared by many experts at the first time through the net. Conclusion: This is the first time that the remote control technology is applied in radiation dose measurement, which has so far been considered can only be performed at a near place. This new system can meet the need of neutron radiobiology researches as well as of the safety and health of the workers. (author)

  18. Assessing species habitat using Google Street View: a case study of cliff-nesting vultures.

    Science.gov (United States)

    Olea, Pedro P; Mateo-Tomás, Patricia

    2013-01-01

    The assessment of a species' habitat is a crucial issue in ecology and conservation. While the collection of habitat data has been boosted by the availability of remote sensing technologies, certain habitat types have yet to be collected through costly, on-ground surveys, limiting study over large areas. Cliffs are ecosystems that provide habitat for a rich biodiversity, especially raptors. Because of their principally vertical structure, however, cliffs are not easy to study by remote sensing technologies, posing a challenge for many researches and managers working with cliff-related biodiversity. We explore the feasibility of Google Street View, a freely available on-line tool, to remotely identify and assess the nesting habitat of two cliff-nesting vultures (the griffon vulture and the globally endangered Egyptian vulture) in northwestern Spain. Two main usefulness of Google Street View to ecologists and conservation biologists were evaluated: i) remotely identifying a species' potential habitat and ii) extracting fine-scale habitat information. Google Street View imagery covered 49% (1,907 km) of the roads of our study area (7,000 km²). The potential visibility covered by on-ground surveys was significantly greater (mean: 97.4%) than that of Google Street View (48.1%). However, incorporating Google Street View to the vulture's habitat survey would save, on average, 36% in time and 49.5% in funds with respect to the on-ground survey only. The ability of Google Street View to identify cliffs (overall accuracy = 100%) outperformed the classification maps derived from digital elevation models (DEMs) (62-95%). Nonetheless, high-performance DEM maps may be useful to compensate Google Street View coverage limitations. Through Google Street View we could examine 66% of the vultures' nesting-cliffs existing in the study area (n = 148): 64% from griffon vultures and 65% from Egyptian vultures. It also allowed us the extraction of fine-scale features of cliffs

  19. Viewing Teaching Techniques in Enhancing Viewing Comprehension Skills of Undergraduate Students in Literature

    Directory of Open Access Journals (Sweden)

    Ruth Ortega-Dela Cruz

    2017-06-01

    Full Text Available In today’s generation of digital natives, students find it unexciting to sit down and read literary texts in its entirety. Thus, students nowadays hardly understand and appreciate literature as a subject. This calls for additional challenge to teachers who had been used to deliver their lessons or any subject matter in traditional ways. This study used descriptive-correlational research design to unveil the most effective viewing teaching techniques that will help develop the viewing comprehension skills of literature students in a tertiary level. Findings reveal how literature students perceive the use of movies or videos as a powerful viewing teaching technique. Result of chi-square test of independence indicates the viewing teaching techniques are not significantly related to students’ viewing comprehension. This suggests that no single teaching technique suits the learners’ interest and ability to learn. Therefore, teachers can make use of technology combined with other viewing techniques to ensure that students will find a love for literature that will help establish their academic success in the future.

  20. Augmented Reality as a Telemedicine Platform for Remote Procedural Training.

    Science.gov (United States)

    Wang, Shiyao; Parsons, Michael; Stone-McLean, Jordan; Rogers, Peter; Boyd, Sarah; Hoover, Kristopher; Meruvia-Pastor, Oscar; Gong, Minglun; Smith, Andrew

    2017-10-10

    Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an Augmented Reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS) without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER) through mixed reality capture (MRC) and serves as a novel telemedicine platform with remote pointing capabilities. The mentor's hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers' perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform.

  1. Augmented Reality as a Telemedicine Platform for Remote Procedural Training

    Science.gov (United States)

    Wang, Shiyao; Parsons, Michael; Stone-McLean, Jordan; Rogers, Peter; Boyd, Sarah; Hoover, Kristopher; Meruvia-Pastor, Oscar; Gong, Minglun; Smith, Andrew

    2017-01-01

    Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an Augmented Reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS) without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER) through mixed reality capture (MRC) and serves as a novel telemedicine platform with remote pointing capabilities. The mentor’s hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers’ perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform. PMID:28994720

  2. Augmented Reality as a Telemedicine Platform for Remote Procedural Training

    Directory of Open Access Journals (Sweden)

    Shiyao Wang

    2017-10-01

    Full Text Available Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an Augmented Reality (AR system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER through mixed reality capture (MRC and serves as a novel telemedicine platform with remote pointing capabilities. The mentor’s hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers’ perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform.

  3. Freeware for GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Lena Halounová

    2007-12-01

    Full Text Available Education in remote sensing and GIS is based on software utilization. The software needs to be installed in computer rooms with a certain number of licenses. The commercial software equipment is therefore financially demanding and not only for universities, but especially for students. Internet research brings a long list of free software of various capabilities. The paper shows a present state of GIS, image processing and remote sensing free software.

  4. Security Analysis and Enhancements of an Effective Biometric-Based Remote User Authentication Scheme Using Smart Cards

    Directory of Open Access Journals (Sweden)

    Younghwa An

    2012-01-01

    Full Text Available Recently, many biometrics-based user authentication schemes using smart cards have been proposed to improve the security weaknesses in user authentication system. In 2011, Das proposed an efficient biometric-based remote user authentication scheme using smart cards that can provide strong authentication and mutual authentication. In this paper, we analyze the security of Das’s authentication scheme, and we have shown that Das’s authentication scheme is still insecure against the various attacks. Also, we proposed the enhanced scheme to remove these security problems of Das’s authentication scheme, even if the secret information stored in the smart card is revealed to an attacker. As a result of security analysis, we can see that the enhanced scheme is secure against the user impersonation attack, the server masquerading attack, the password guessing attack, and the insider attack and provides mutual authentication between the user and the server.

  5. REMOTE SENSING APPLICATIONS WITH HIGH RELIABILITY IN CHANGJIANG WATER RESOURCE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    L. Ma

    2018-04-01

    Full Text Available Remote sensing technology has been widely used in many fields. But most of the applications cannot get the information with high reliability and high accuracy in large scale, especially for the applications using automatic interpretation methods. We have designed an application-oriented technology system (PIR composed of a series of accurate interpretation techniques,which can get over 85 % correctness in Water Resource Management from the view of photogrammetry and expert knowledge. The techniques compose of the spatial positioning techniques from the view of photogrammetry, the feature interpretation techniques from the view of expert knowledge, and the rationality analysis techniques from the view of data mining. Each interpreted polygon is accurate enough to be applied to the accuracy sensitive projects, such as the Three Gorge Project and the South - to - North Water Diversion Project. In this paper, we present several remote sensing applications with high reliability in Changjiang Water Resource Management,including water pollution investigation, illegal construction inspection, and water conservation monitoring, etc.

  6. Remote Sensing Applications with High Reliability in Changjiang Water Resource Management

    Science.gov (United States)

    Ma, L.; Gao, S.; Yang, A.

    2018-04-01

    Remote sensing technology has been widely used in many fields. But most of the applications cannot get the information with high reliability and high accuracy in large scale, especially for the applications using automatic interpretation methods. We have designed an application-oriented technology system (PIR) composed of a series of accurate interpretation techniques,which can get over 85 % correctness in Water Resource Management from the view of photogrammetry and expert knowledge. The techniques compose of the spatial positioning techniques from the view of photogrammetry, the feature interpretation techniques from the view of expert knowledge, and the rationality analysis techniques from the view of data mining. Each interpreted polygon is accurate enough to be applied to the accuracy sensitive projects, such as the Three Gorge Project and the South - to - North Water Diversion Project. In this paper, we present several remote sensing applications with high reliability in Changjiang Water Resource Management,including water pollution investigation, illegal construction inspection, and water conservation monitoring, etc.

  7. Sensitivity quantification of remote detection NMR and MRI

    Science.gov (United States)

    Granwehr, J.; Seeley, J. A.

    2006-04-01

    A sensitivity analysis is presented of the remote detection NMR technique, which facilitates the spatial separation of encoding and detection of spin magnetization. Three different cases are considered: remote detection of a transient signal that must be encoded point-by-point like a free induction decay, remote detection of an experiment where the transient dimension is reduced to one data point like phase encoding in an imaging experiment, and time-of-flight (TOF) flow visualization. For all cases, the sensitivity enhancement is proportional to the relative sensitivity between the remote detector and the circuit that is used for encoding. It is shown for the case of an encoded transient signal that the sensitivity does not scale unfavorably with the number of encoded points compared to direct detection. Remote enhancement scales as the square root of the ratio of corresponding relaxation times in the two detection environments. Thus, remote detection especially increases the sensitivity of imaging experiments of porous materials with large susceptibility gradients, which cause a rapid dephasing of transverse spin magnetization. Finally, TOF remote detection, in which the detection volume is smaller than the encoded fluid volume, allows partial images corresponding to different time intervals between encoding and detection to be recorded. These partial images, which contain information about the fluid displacement, can be recorded, in an ideal case, with the same sensitivity as the full image detected in a single step with a larger coil.

  8. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  9. Equitable access: Remote and rural communities 'transport needs'

    OpenAIRE

    White, Peter

    2011-01-01

    Transport in rural and remote regions receives considerable attention in research, but this is often focussed on specific means of resolving problems in those regions - for example, the role of demand-responsive bus services, or scope for attracting users to rail services. The aim of this paper is to take a broader view, firstly in defining what constitute rural and remote regions, and secondly in considering a wide range of public transport options available. Experience in Britain will be ta...

  10. Modified Brokk Demolition Machine with Remote Operator Console. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The Low-Cost D and D System modifies a commercially available BROKK demolition system for remote viewing and long tether remote operation that provides a portable facility camera pod and interfaces with the Compact Remote Operator Console (TMS Tech ID 2180) to extend the applicability of the BROKK system to projects that require removal of the operator from the work area due to exposure to radiological, chemical, or industrial hazards. The modified BROKK has been integrated with the Compact Remote Operator Console to provide a true remotely operated low-cost D and D system applicable to a wide range of small D and D demolition tasks across the DOE complex

  11. Software enhancements and modifications to Program FDTD executable on the Cray X-MP computer

    Energy Technology Data Exchange (ETDEWEB)

    Stringer, J.C.

    1987-09-04

    This report summarizes enhancements and modifications to PROGRAM FDTD executable on the Cray X-MP computer system. Specifically, the tasks defined and performed under this effort are revision of the material encoding/decoding scheme to allow material type specification on an individual cell basis; modification of the I/O buffering scheme to maximize the use of available central memory and minimize the number of physical I/O accesses; user interface enhancements. Provide enhanced input/output features for greater flexibility; increased modularity. Divide the code into additional modules for ease of maintenance and future enhancements; and assist in the conversion and testing of FDTD to Floating Point Systems scientific computers and associated peripheral devices.

  12. Current perspective on remote sensing

    International Nuclear Information System (INIS)

    Goodman, R.H.

    1992-01-01

    Surveillance and tracking of oil spills has been a feature of most spill response situations for many years. The simplest and most direct method uses visual observations from an aircraft and hand-plotting of the data on a map. This technique has proven adequate for most small spills and for responses in fair weather. As the size of the spill increases or the weather deteriorates, there is a need to augment visual aerial observations with remote sensing methods. Remote sensing and its associated systems are one of the most technically complex and sophisticated elements of an oil spill response. During the past few years, a number of initiatives have been undertaken to use contemporary electronic and computing systems to develop new and improved remote sensing systems

  13. Utilization of Remote Experimentation in Mobile Devices for Education

    Directory of Open Access Journals (Sweden)

    Willian Rochadel

    2012-07-01

    Full Text Available In this paper the authors intend to demonstrate the utilization of remote experimentation (RE using mobile computational devices in the Science areas of the elementary school, with the purpose to develop practices that will help in the assimilation process of the subjects taught in classroom seeking to interlink them with the daily students’ activities. Allying mobility with RE we intend to minimize the space-temporal barrier giving more availability and speed in the information access. The implemented architecture utilizes technologies and freely distributed softwares with open code resources besides remote experiments developed in the Laboratory of Remote Experimentation (RExLab of Federal University of Santa Catarina (UFSC, in Brazil, through the physical computation platform of the “open hardware” of construction of our own. The utilization of open code computational tools and the integration of hardware to the 3D virtual worlds, accessible through mobile devices, give to the project an innovative face with a high potential for reproducibility and reusability.

  14. The remote handling systems for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Isabel, E-mail: mir@isr.ist.utl.pt [Institute for Systems and Robotics/Instituto Superior Tecnico, Lisboa (Portugal); Damiani, Carlo [Fusion for Energy, Barcelona (Spain); Tesini, Alessandro [ITER Organization, Cadarache (France); Kakudate, Satoshi [ITER Tokamak Device Group, Japan Atomic Energy Agency, Ibaraki (Japan); Siuko, Mikko [VTT Systems Engineering, Tampere (Finland); Neri, Carlo [Associazione EURATOM ENEA, Frascati (Italy)

    2011-10-15

    The ITER remote handling (RH) maintenance system is a key component in ITER operation both for scheduled maintenance and for unexpected situations. It is a complex collection and integration of numerous systems, each one at its turn being the integration of diverse technologies into a coherent, space constrained, nuclearised design. This paper presents an integrated view and recent results related to the Blanket RH System, the Divertor RH System, the Transfer Cask System (TCS), the In-Vessel Viewing System, the Neutral Beam Cell RH System, the Hot Cell RH and the Multi-Purpose Deployment System.

  15. A Telehealth System for Remote Auditory Evoked Potential Monitoring

    OpenAIRE

    Millan, Jorge; Yunda, Leonardo

    2013-01-01

    A portable, Internet-based EEG/Auditory Evoked Potential (AEP) monitoring system was developed for remote electrophysiological studies during sleep. The system records EEG/AEP simultaneously at the subject?s home for increased comfort and flexibility. The system provides simultaneous recording and remote viewing of EEG, EMG and EOG waves and allows on-line averaging of auditory evoked potentials. The design allows the recording of all major AEP components (brainstem, middle and late latency E...

  16. Plants and Human Affairs: Educational Enhancement Via a Computer.

    Science.gov (United States)

    Crovello, Theodore J.; Smith, W. Nelson

    To enhance both teaching and learning in an advanced undergraduate elective course on the interrelationships of plants and human affairs, the computer was used for information retrieval, multiple choice course review, and the running of three simulation models--plant related systems (e.g., the rise in world coffee prices after the 1975 freeze in…

  17. Secure open cloud in data transmission using reference pattern and identity with enhanced remote privacy checking

    Science.gov (United States)

    Vijay Singh, Ran; Agilandeeswari, L.

    2017-11-01

    To handle the large amount of client’s data in open cloud lots of security issues need to be address. Client’s privacy should not be known to other group members without data owner’s valid permission. Sometime clients are fended to have accessing with open cloud servers due to some restrictions. To overcome the security issues and these restrictions related to storing, data sharing in an inter domain network and privacy checking, we propose a model in this paper which is based on an identity based cryptography in data transmission and intermediate entity which have client’s reference with identity that will take control handling of data transmission in an open cloud environment and an extended remote privacy checking technique which will work at admin side. On behalf of data owner’s authority this proposed model will give best options to have secure cryptography in data transmission and remote privacy checking either as private or public or instructed. The hardness of Computational Diffie-Hellman assumption algorithm for key exchange makes this proposed model more secure than existing models which are being used for public cloud environment.

  18. Remote participation for LHD experiments

    International Nuclear Information System (INIS)

    Emoto, M.; Yamamoto, T.; Komada, S.; Nagayama, Y.

    2006-01-01

    To accomplish a large-scale experiment, such as large helical device (LHD) experiment, effective cooperation among institutes is necessary. In order to establish such cooperation, the NIFS provides the following remote participation facilities for the LHD experiments. (1) Remote access: The user can use a virtual private network (VPN) to connect to the LAN. This is the most flexible technique to participate in the experiments. The users who are not familiar with the experiments can log into the remote server running MetaFrame and Linux. In these computers, the required software is already installed. Therefore, the user need not be concerned with installing software. (2) Remote data reference: A mirror server exists to provide physical data to remote users. Moreover, the users can retrieve summarized data via a web server, which provides summarized information of each discharge experiment and graphs of the principal physical data. These graphs are useful for finding the required data quickly. (3) Remote communication and monitoring: For effective remote cooperation, communication between researchers is very important. For this purpose, a video conferencing system and a video streaming service are available. In addition to these facilities, the NIFS introduced Super SINET in 2002. This is an optical-fiber-based network. The backbone speed of this network is 10 Gbps, and the speed is 1 Gbps for direct connections

  19. Remote participation for LHD experiments

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, M. [National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan)]. E-mail: emoto.masahiko@LHD.nifs.ac.jp; Yamamoto, T. [National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Komada, S. [National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan); Nagayama, Y. [National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi, Toki 509-5292 (Japan)

    2006-07-15

    To accomplish a large-scale experiment, such as large helical device (LHD) experiment, effective cooperation among institutes is necessary. In order to establish such cooperation, the NIFS provides the following remote participation facilities for the LHD experiments. (1) Remote access: The user can use a virtual private network (VPN) to connect to the LAN. This is the most flexible technique to participate in the experiments. The users who are not familiar with the experiments can log into the remote server running MetaFrame and Linux. In these computers, the required software is already installed. Therefore, the user need not be concerned with installing software. (2) Remote data reference: A mirror server exists to provide physical data to remote users. Moreover, the users can retrieve summarized data via a web server, which provides summarized information of each discharge experiment and graphs of the principal physical data. These graphs are useful for finding the required data quickly. (3) Remote communication and monitoring: For effective remote cooperation, communication between researchers is very important. For this purpose, a video conferencing system and a video streaming service are available. In addition to these facilities, the NIFS introduced Super SINET in 2002. This is an optical-fiber-based network. The backbone speed of this network is 10 Gbps, and the speed is 1 Gbps for direct connections.

  20. Status of EFDA Remote Participation Tools and Needs

    Energy Technology Data Exchange (ETDEWEB)

    Giese, P. [Association Euratom HAS /KFKI-RMKI, Budapest (Hungary); Castro, R.; Vega, J. [Asociation Euratom/CIEMAT para Fusion, Madrid (Spain); Schwenn, U. [Max-Planck-Institut fur Plasmaphysik, Garching (Germany)

    2009-07-01

    Remote Participation is key to the success of the activities carried out under JET, EFDA Task Forces and Topical Groups. The Remote Participation Technology enables work and collaborations, irrespective of the physical location of the participants. These activities include 5 broad topics. 1) Remote Data and Computer Access: the main methods used in remote computer access are VPN, SSH and Citrix. There is no strong desire to move towards a standard access method. With regards to remote data access MDSplus has become de-facto standard. Thus, it would seem sensible for data access to/from the ITM gateway to also use MDSPlus. 2) Networking: All EFDA relevant NRENs, as well as GEANT2 and Internet2 work close to perfection. There is no real need for global QoS tools. Some of the LANs have to be improved, since some Associates lack proper connections to GEANT2. 3) Distance conferences and Telecommunication: To achieve an adequate quality of remote conferences the use of H.323 based equipment together with EFDATV is recommended within the EFDA community. Several MCUs (DFNVC, ITER, F4E, NIIF) provide multipoint conference services for EFDA. 4) Collaborative Services: Collaborative environments must provide partners with resources to allow them an easy exchange of information: documents, data and audio/video streams. The EFDA Wiki tool developed for exchange of information among the technical contact persons will be open for other users groups. 5) Remote Experiment Participation: Although Remote experiment tools are still rarely implemented, some are well established and stable. The remote real time experiment data access project, which is being developed by CIEMAT, UPM University and JET CODAS, is very interesting for the users community and its results could be an important base for future developments in this field. This document is composed of an abstract followed by the presentation transparencies. (authors)

  1. [Geometry, analysis, and computation in mathematics and applied science]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.

    1994-02-01

    The principal investigators` work on a variety of pure and applied problems in Differential Geometry, Calculus of Variations and Mathematical Physics has been done in a computational laboratory and been based on interactive scientific computer graphics and high speed computation created by the principal investigators to study geometric interface problems in the physical sciences. We have developed software to simulate various physical phenomena from constrained plasma flow to the electron microscope imaging of the microstructure of compound materials, techniques for the visualization of geometric structures that has been used to make significant breakthroughs in the global theory of minimal surfaces, and graphics tools to study evolution processes, such as flow by mean curvature, while simultaneously developing the mathematical foundation of the subject. An increasingly important activity of the laboratory is to extend this environment in order to support and enhance scientific collaboration with researchers at other locations. Toward this end, the Center developed the GANGVideo distributed video software system and software methods for running lab-developed programs simultaneously on remote and local machines. Further, the Center operates a broadcast video network, running in parallel with the Center`s data networks, over which researchers can access stored video materials or view ongoing computations. The graphical front-end to GANGVideo can be used to make ``multi-media mail`` from both ``live`` computing sessions and stored materials without video editing. Currently, videotape is used as the delivery medium, but GANGVideo is compatible with future ``all-digital`` distribution systems. Thus as a byproduct of mathematical research, we are developing methods for scientific communication. But, most important, our research focuses on important scientific problems; the parallel development of computational and graphical tools is driven by scientific needs.

  2. Remote Forensics May Bring the Next Sea Change in E-discovery: Are All Networked Computers Now Readily Accessible Under the Revised Federal Rules of Civil Procedure?

    Directory of Open Access Journals (Sweden)

    AleJoseph J. Schwerha

    2008-09-01

    on geographically dispersed computers remotely.  That process, in general, is often defined as remote forensics. The question is now whether newly available remote forensic solution indicate that all networked computers are readily accessible under the current state of the law.  This article attempts to define remote forensics, examines a selection of applicable court decisions, and then analyzes the currently available commercial software packages that allow remote forensics.

  3. Enhancement in M-Government and mobile computing in developing countries

    CSIR Research Space (South Africa)

    Ogunleye, OS

    2013-11-01

    Full Text Available to the government and the community at large. In this paper, we provide an introduction to the application and new enhancement of mobile technologies and mobile computing in technical government systems. Mobile devices allow allows every citizens to access...

  4. Development of a standard methodology for optimizing remote visual display for nuclear maintenance tasks

    Science.gov (United States)

    Clarke, M. M.; Garin, J.; Prestonanderson, A.

    A fuel recycle facility being designed at Oak Ridge National Laboratory involves the Remotex concept: advanced servo-controlled master/slave manipulators, with remote television viewing, will totally replace direct human contact with the radioactive environment. The design of optimal viewing conditions is a critical component of the overall man/machine system. A methodology was developed for optimizing remote visual displays for nuclear maintenance tasks. The usefulness of this approach was demonstrated by preliminary specification of optimal closed circuit TV systems for such tasks.

  5. Secondary School Mathematics Teachers' and Students' Views on Computer Assisted Mathematics Instruction in Turkey: Mathematica Example

    Science.gov (United States)

    Ardiç, Mehmet Alper; Isleyen, Tevfik

    2017-01-01

    This study aimed at determining the secondary school mathematics teachers' and students' views on computer-assisted mathematics instruction (CAMI) conducted via Mathematica. Accordingly, three mathematics teachers in Adiyaman and nine 10th-grade students participated in the research. Firstly, the researchers trained the mathematics teachers in the…

  6. Frequent Computed Tomography Scanning Due to Incomplete Three-View X-Ray Imaging of the Cervical Spine

    NARCIS (Netherlands)

    Saltzherr, Teun Peter; Beenen, Ludo F. M.; Reitsma, Johannes B.; Luitse, Jan S. K.; Vandertop, W. Peter; Goslings, J. Carel

    2010-01-01

    Background: Conventional C-spine imaging (3-view series) is still widely used in trauma patients, although the utilization of computed tomography (CT) scanning is increasing. The aim of this study was to analyze the value of conventional radiography and the frequency of subsequent CT scanning due to

  7. Improving visibility in limited-view scenarios with dynamic particle-enhanced optoacoustic tomography

    Science.gov (United States)

    Deán-Ben, X. Luís.; Ding, Lu; Razansky, Daniel

    2017-03-01

    Limited-view artefacts affect most optoacoustic (photoacoustic) imaging systems due to geometrical constraints that impede achieving full tomographic coverage as well as limited light penetration into scattering and absorbing objects. Indeed, it has been theoretically established and experimentally verified that accurate optoacoustic images can only be obtained if the imaged sample is fully enclosed (orientations is hampered. These effects are of particular relevance in the case of hand-held scanners with the imaged volume only accessible from one side. Herein, a new approach termed dynamic particle-enhanced optoacoustic tomography (DPOT) is described for accurate structural imaging in limited-view scenarios. The method is based on the non-linear combination of a sequence of tomographic reconstructions representing sparsely distributed moving particles. Good performance of the method is demonstrated in experiments consisting of dynamic visualization of flow of suspended microspheres in three-dimensions. The method is expected to be applicable for improving accuracy of angiographic optoacoustic imaging in living organisms.

  8. An enhanced biometric-based authentication scheme for telecare medicine information systems using elliptic curve cryptosystem.

    Science.gov (United States)

    Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2015-03-01

    The telecare medical information systems (TMISs) enable patients to conveniently enjoy telecare services at home. The protection of patient's privacy is a key issue due to the openness of communication environment. Authentication as a typical approach is adopted to guarantee confidential and authorized interaction between the patient and remote server. In order to achieve the goals, numerous remote authentication schemes based on cryptography have been presented. Recently, Arshad et al. (J Med Syst 38(12): 2014) presented a secure and efficient three-factor authenticated key exchange scheme to remedy the weaknesses of Tan et al.'s scheme (J Med Syst 38(3): 2014). In this paper, we found that once a successful off-line password attack that results in an adversary could impersonate any user of the system in Arshad et al.'s scheme. In order to thwart these security attacks, an enhanced biometric and smart card based remote authentication scheme for TMISs is proposed. In addition, the BAN logic is applied to demonstrate the completeness of the enhanced scheme. Security and performance analyses show that our enhanced scheme satisfies more security properties and less computational cost compared with previously proposed schemes.

  9. Remote laboratory with Raspberry Pi

    OpenAIRE

    Dvorščak, Mihael

    2016-01-01

    The thesis is intended for teachers in junior high school and students of technology education in planning innovational and different learning lessons using information and communication technologies and inductive methods. In thesis is represented an indicative layout of the remote laboratory for educational purposes on the basis of the Raspberry Pi computer. Thesis features used hardware components for this theme, Raspberry Pi computer, its development and commonly used peripheral device...

  10. Dexterous Manipulation: Making Remote Manipulators Easy to Use

    International Nuclear Information System (INIS)

    HARRIGAN, RAYMOND W.; BENNETT, PHIL C.

    2001-01-01

    Perhaps the most basic barrier to the widespread deployment of remote manipulators is that they are very difficult to use. Remote manual operations are fatiguing and tedious, while fully autonomous systems are seldom able to function in changing and unstructured environments. An alternative approach to these extremes is to exploit computer control while leaving the operator in the loop to take advantage of the operator's perceptual and decision-making capabilities. This report describes research that is enabling gradual introduction of computer control and decision making into operator-supervised robotic manipulation systems, and its integration on a commercially available, manually controlled mobile manipulator

  11. Advanced remote handling for future applications: The advanced integrated maintenance system

    International Nuclear Information System (INIS)

    Herndon, J.N.; Kring, C.T.; Rowe, J.C.

    1986-01-01

    The Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory has been developing advanced techniques for remote maintenance of future US fuel reprocessing plants. The developed technology has a wide spectrum of application for other hazardous environments. These efforts are based on the application of teleoperated, force-reflecting servomanipulators for dexterous remote handling with television viewing for large-volume hazardous applications. These developments fully address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in fuel reprocessing. This paper covers the primary emphasis in the present program; the design, fabrication, installation, and operation of a prototype remote handling system for reprocessing applications, the Advanced Integrated Maintenance System

  12. Remote systems and automation in radioactive waste package handling

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Hayward, M.L.

    1987-01-01

    A proof-of-principle test was conducted at the Hanford Engineering Development Laboratory (HEDL) to demonstrate the feasibility of performing cask receiving and unloading operations in a remote and partially automated manner. This development testing showed feasibility of performing critical cask receipt, preparation, and unloading operations from a single control station using remote controls and indirect viewing. Using robotics and remote automation in a cask handling system can result in lower personnel exposure levels and cask turnaround times while maintaining operational flexibility. An automated cask handling system presents a flexible state-of-the-art, cost effective alternative solution to hands-on methods that have been used in the past

  13. Private sector involvement in civil space remote sensing. Volume 2: Appendices

    Science.gov (United States)

    1980-01-01

    The U.S. Space Policy concerning the investment and direct participation in the establishment and operations of remote sensing systems is addressed. Private sector views and state and local government views are presented. Results of a market analysis are pregiven and the economic feasibility of such a program is considered.

  14. TAO-2/SPARTE, a language-enhanced computer aided teleoperation system

    International Nuclear Information System (INIS)

    Gravez, P.; Fournier, R.

    1991-01-01

    TAO-2 is a computer system designed by CEA/DTA/UR for the remote control of nuclear servicing servomanipulators. It results from several years of research which have led to the current availability of an industrial product featuring highly advanced performances. For undersea applications, a development has also been carried out with CYBERNETIX for controlling the new hydraulic arm built by this company. An integral element of TAO-2 is the SPARTE language which deals with off-line task programming and focuses on combined manual, automatic and mixed control modes. Additionally, it takes into account the on-line part of the human operator relative to adjustment, monitoring and incident recovery. Other promising features are hybrid control specification, mechanisms for the management of external events and 'learning by touching' capabilities. The present paper describes the basic principles of TAO-2. It first recalls the fundamentals of Computer Aided Teleoperation (CAT). The functional and hardware architectures which implement the TAO-2 CAT concepts are then outlined. The next parts emphasize the original characteristics of the SPARTE control and programming language. The paper ends with a brief presentation of our approach for CAT symbolic control

  15. International Remote Monitoring Project Embalse Nuclear Power Station, Argentina Embalse Remote Monitoring System

    International Nuclear Information System (INIS)

    Schneider, Sigfried L.; Glidewell, Donnie D.; Bonino, Anibal; Bosler, Gene; Mercer, David; Maxey, Curt; Vones, Jaromir; Martelle, Guy; Busse, James; Kadner, Steve; White, Mike; Rovere, Luis

    1999-01-01

    The Autoridad Regulatoria Nuclear of Argentina (ARN), the International Atomic Energy Agency (IAEA), ABACC, the US Department of Energy, and the US Support Program POTAS, cooperated in the development of a Remote Monitoring System for nuclear nonproliferation efforts. This system was installed at the Embalse Nuclear Power Station last year to evaluate the feasibility of using radiation sensors in monitoring the transfer of spent fuel from the spent fuel pond to dry storage. The key element in this process is to maintain continuity of knowledge throughout the entire transfer process. This project evaluated the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguard efficiency. New technology has been developed to enhance the design of the system to include storage capability on board sensor platforms. This evaluation has led to design enhancements that will assure that no data loss will occur during loss of RF transmission of the sensors

  16. Enabling Remote Activity: Using mobile technology for remote participation in geoscience fieldwork

    Science.gov (United States)

    Davies, Sarah; Collins, Trevor; Gaved, Mark; Bartlett, Jessica; Valentine, Chris; McCann, Lewis

    2010-05-01

    Field-based activities are regarded as essential to the development of a range of professional and personal skills within the geosciences. Students enjoy field activities, preferring these to learning with simulations (Spicer and Stratford 2001), and these improve deeper learning and understanding (Kern and Carpenter, 1984; Elkins and Elkins, 2007). However, some students find it difficult to access these field-based learning opportunities. Field sites may be remote and often require travel across uneven, challenging or potentially dangerous terrain. Mobility-impaired students are particularly limited in their opportunities to participate in field-based learning activities and, as higher education institutions have a responsibility to provide inclusive opportunities for students (UK Disability Discrimination Act 1995, UK Special Education Needs and Disability Rights Act 2001), the need for inclusive fieldwork learning is being increasingly recognised. The Enabling Remote Activity (ERA) project has been investigating how mobile communications technologies might allow field learning experiences to be brought to students who would otherwise find it difficult to participate, and also to enhance activities for all participants. It uses a rapidly deployable, battery-powered wireless network to transmit video, audio, and high resolution still images to connect participants at an accessible location with participants in the field. Crucially, the system uses a transient wireless network, allowing multiple locations to be explored during a field visit, and for plans to be changed dynamically if required. Central to the concept is the requirement for independent investigative learning: students are enabled to participate actively in the learning experience and to direct the investigations, as opposed to being simply remote viewers of the experience. Two ways of using the ERA system have been investigated: remote access and collaborative groupwork. In 2006 and 2008 remote

  17. Neuro-Behcet's syndrome with contrast enhancement on brain computed tomography

    International Nuclear Information System (INIS)

    Yamada, Takeshi; Tobimatsu, Shozo; Itoyama, Yasuto; Goto, Ikuo; Kuroiwa, Yoshigoro

    1986-01-01

    Two cases of neuro-Behcet's syndrome (N-B) with contrast enhancement (enhancement) on brain computed tomography (CT) are reported. Case 1. A 34-year-old man, who had a history of recurrent aphthous stomatitis, developed a left inferior homonymous quadrantanopsia. CT scans showed a large lucent area with a ring-like enhancement (3 cm in diameter) lesion in the right parietooccipital region. When he developed a left hemiplegia, CT scans showed a irregular lucent area with heterogenous enhancement lesions in the right basal ganglia and midbrain. Case 2. A 38-year-old woman, who had a history of recurrent aphthous stomatitis and genital ulcer, developed mental confusion. CT scans showed a large lucent area with a homogenous marked round enhancement lesion in the left basal ganglia. When she developed generalized convulsion, CT scans showed a large lucent area with a heterogenous irregular enhancement lesion in the right occipital lobe. Enhancement lesions were observed in the area corresponded to their neurological symptoms during acute exacerbations and disappeared within three months. Our cases suggest that N-B with acute exacerbations could show transient enhancement on CT. (author)

  18. Geologic remote sensing over the Cottageville, West Virginia, gas field. Final report, August 15, 1977-February 15, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, P. L.; Wagner, H. L.; Shuchman, R. A.

    1979-02-01

    Remote sensing of geologic features was investigated for the purpose of exploration for gas reserves in the eastern Mississippian-Devonian Shales. The Cottageville gas field in Jackson and Mason Counties, West Virginia, was used as a test site for this purpose. Available photographic and multispectral (MSS) images from Landsat were obtained; also 4-channel synthetic aperture radar and 12-channel MSS in the range between ultraviolet and far infrared were gathered by the Environmental Research Institute of Michigan over the test site. The images were first interpreted visually for lineaments. Then the images were enhanced by many different digital computation techniques in addition to analysis and enhancement by optical techniques. Subtle, interpretative lineaments were found which could not be enhanced to an obvious level by the procedures used. Two new spatial enhancement procedures were developed.

  19. Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images.

    Science.gov (United States)

    Zou, Zhengxia; Shi, Zhenwei

    2018-03-01

    We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.

  20. Remote maintenance for a new generation of hot cells

    International Nuclear Information System (INIS)

    Feldman, M.J.; Grant, N.R.

    1987-01-01

    For several years the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory has been developing facility concepts, designing specialized equipment, and testing prototypical hardware for reprocessing spent fuel from fast breeder reactors. The major facility conceptual design, the Hot Experimental Facility, was based on total remote maintenance to increase plant availability and to reduce radiation exposure. This thrust included designing modular equipment to facilitate maintenance and the manipulation necessary to accomplish maintenance. Included in the design repetoire was the development effort in advanced servomanipulator systems, a remote sampling system, television viewing, and a transporter system, television viewing, and a transporter for manipulator positioning. Demonstration of these developed items is currently ongoing, and the technology is available for applications where production operations in highly radioactive environments are required

  1. Association of obesity with physical activity, television viewing, video /computer gaming among school children in Mangalore

    Directory of Open Access Journals (Sweden)

    Sanjay Kini

    2015-01-01

    Full Text Available Introduction: There is an increasing prevalence of obesity worldwide in children which can be attributed to changes in lifestyle such as sedentary habits, television (TV viewing, playing computer games, and consumption of snacks while watching television. The present study was done to find the association between obesity and TV viewing, computer game playing, sedentary lifestyle in children and also with a secondary objective to assess the association between blood pressure and TV/computer game viewing, sedentary lifestyle in children.Materials and methods: A cross sectional study was conducted at 4 high schools and Pre University Colleges (PUC’S in and around Mangalore during the study period of 4 days from 6 -12 august 2014. 509 students were enrolled. Information was gathered by asking the subjects to fill up a structured questionnaire. Nutritional status was assessed based on Body mass index (BMI and waist-hip ratio, waist-height ratio for all subjects. Blood pressure was measured for all the subjects.Results: It was found that among males 2.7% of students were obese and in females it was 2.3%. There was a significant association between blood pressure and consumption of snacks while watching TV and also between blood pressure and their habit of consumption / buying of snacks/ fast-food advertised in TV. A significant association was found between central obesity (Waist-hip ratio and Waist-height ratio and the number of hours of physical activity per week in schools.Conclusion: There is a need to develop preventive intervention like reducing snack consumption while watching TV and increasing the time dedicated to physical activity.

  2. Association of obesity with physical activity, television viewing, video /computer gaming among school children in Mangalore

    Directory of Open Access Journals (Sweden)

    Sanjay Kini

    2015-12-01

    Full Text Available Introduction: There is an increasing prevalence of obesity worldwide in children which can be attributed to changes in lifestyle such as sedentary habits, television (TV viewing, playing computer games, and consumption of snacks while watching television. The present study was done to find the association between obesity and TV viewing, computer game playing, sedentary lifestyle in children and also with a secondary objective to assess the association between blood pressure and TV/computer game viewing, sedentary lifestyle in children. Materials and methods: A cross sectional study was conducted at 4 high schools and Pre University Colleges (PUC’S in and around Mangalore during the study period of 4 days from 6 -12 august 2014. 509 students were enrolled. Information was gathered by asking the subjects to fill up a structured questionnaire. Nutritional status was assessed based on Body mass index (BMI and waist-hip ratio, waist-height ratio for all subjects. Blood pressure was measured for all the subjects. Results: It was found that among males 2.7% of students were obese and in females it was 2.3%. There was a significant association between blood pressure and consumption of snacks while watching TV and also between blood pressure and their habit of consumption / buying of snacks/ fast-food advertised in TV. A significant association was found between central obesity (Waist-hip ratio and Waist-height ratio and the number of hours of physical activity per week in schools. Conclusion: There is a need to develop preventive intervention like reducing snack consumption while watching TV and increasing the time dedicated to physical activity.

  3. Computation system for nuclear reactor core analysis. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals.

  4. Real remote physics experiments across Internet-- inherent part of Integrated e-Learning

    Directory of Open Access Journals (Sweden)

    Frantisek Lustig

    2008-05-01

    Full Text Available Abstract— The implementation of the real remote experiments across the Internet into teaching process, up till now not available, enables introduction of Integrated e-Learning, composed of three components: the real remote experiments across the Internet, the simulation applets and the electronic interactive textbooks. We present here the prospective remote laboratory system with data transfer using Intelligent School Experimental System (ISES as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, only with paste and copy approach of pre-built typical blocks as camera view, controls, graphs, displays etc. In conclusion we summarize the achieved experience with remote experiments.

  5. Finnish remote environmental monitoring field demonstration

    International Nuclear Information System (INIS)

    Toivonen, H.; Leppaenen, A.; Ylaetalo, S.; Lehtinen, J.; Hokkinen, J.; Tarvainen, M.; Crawford, T.; Glidewell, D.; Smartt, H.; Torres, J.

    1997-10-01

    Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland and Sandia National Laboratories (SNL), working under the Finnish Support Program to IAEA Safeguards and the United States Department of Energy (DOE) funded International Remote Monitoring Program (Task FIN E 935), have undertaken a joint effort to demonstrate the use of remote monitoring for environmental air sampling and safeguards applications. The results of the task will be used by the IAEA to identify the feasibility, cost-effectiveness, reliability, advantages, and problems associated with remote environmental monitoring. An essential prerequisite for a reliable remote air sampling system is the protection of samples against tampering. Means must be developed to guarantee that the sampling itself has been performed as designed and the original samples are not substituted with samples produced with other equipment at another site. One such method is to label the samples with an unequivocal tag. In addition, the inspection personnel must have the capability to remotely monitor and access the automated environmental air sampling system through the use of various sensors and video imagery equipment. A unique aspect to this project is the network integration of remote monitoring equipment with a STUK radiation monitoring system. This integration will allow inspectors to remotely view air sampler radiation data and sensor/image data through separate software applications on the same review station. A sensor network and video system will be integrated with the SNL developed Modular Integrated Monitoring System (MIMS) to provide a comprehensive remote monitoring approach for safeguards purposes. This field trial system is being implemented through a multiphase approach for use by STUK, SNL, and for possible future use by the IAEA

  6. Remote systems requirements of the high-yield lithium injection fusion energy converter concept

    International Nuclear Information System (INIS)

    Walker, P.E.

    1978-01-01

    Remote systems will be required in the high-yield lithium injection fusion energy converter power plant proposed by Lawrence Livermore Laboratory. During inspection operations, viewing of the chamber interior and certain pumps, valve fittings, and welds must be done remotely. Ideas for remote maintenance of laser-beam blast baffles, optics, and target material traps are described. Radioisotope sources, their distributions, and exposure rates at various points in the reactor vicinity are presented

  7. A development methodology for a remote inspection system with JAVA and socket

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Lee, Jae Cheol; Kim, Jae Hee

    2004-01-01

    We have developed RISYS (Reactor Inspection System) which inspects reactor vessel welds by an underwater mobile robot. The system consists of a main control computer and an inspection robot which is controlled by the main control computer. Since the environments of the inspection tasks in a nuclear plant, like in other industrial fields, is very poor, serious accidents often happen. Therefore the necessity for remote inspection and control system has increased more and more. We have carried out the research for a remote inspection model for RISYS, and have adopted the world wide web, java, and socket technologies for it. Client interface to access the main control computer that controls the inspection equipment is essential for the development of a remote inspection system. It has been developed with a traditional programming language, for example, Visual C++, Visual Basic and X-Window. However, it is too expensive to vend and maintain the version of a interface program because of the different computer O/S. Nevertheless web and java technologies come to the fore to solve the problems but the java interpreting typed language could incur a performance problem in operating the remote inspection system. We suggest a methodology for developing a remote inspection system with java, a traditional programming language, and a socket programming that solves the java performance problem in this paper

  8. Remote maintenance design for Fusion Experimental Reactor (FER)

    International Nuclear Information System (INIS)

    Tachikawa, K.; Iida, H.; Nishio, S.; Tone, T.; Aota, T.; Iwamoto, T.; Niikura, S.; Nishizawa, H.

    1984-01-01

    Design of Fusion Experimental Reactor, FER, has been conducted by Japan Atomic Energy Research Institute (JAERI) since 1981. Two typical reactors can be classified in general from the viewpoints of remote maintenance among four design concepts of FER. In the case of the type 1 FER, the torus module consists of shield structure and blanket, and the connective joints between toruses provided at the outer region of the reactor. As for the type 2 FER, the shield structure is joined with the vacuum cryostat, and only the blanket module is allowed to move, but connection between toruses are located in the inner region of the reactor. Comparing type 1 with type 2 FER, this paper describes on the remote maintenance of FER including reactor configurations, work procedures, remote systems/equipments, repairing facility and future R and D problems. Reviewing design studies and investigation for the existing robotics technologies, R and D for FER remote maintenance technology should be performed under the reasonable long-term program. The main items of remote technology required to start urgently are multi-purpose manipulator system with performance of dextrousity, tele-viewing system which reduces operator fatigue and remote tests for commercially available components

  9. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus

    Science.gov (United States)

    Amavizca, Edgar; Bashan, Yoav; Ryu, Choong-Min; Farag, Mohamed A.; Bebout, Brad M.; de-Bashan, Luz E.

    2017-01-01

    Remote effects (occurring without physical contact) of two plant growth-promoting bacteria (PGPB) Azospirillum brasilense Cd and Bacilus pumilus ES4 on growth of the green microalga Chlorella sorokiniana UTEX 2714 were studied. The two PGPB remotely enhanced the growth of the microalga, up to six-fold, and its cell volume by about three-fold. In addition to phenotypic changes, both bacteria remotely induced increases in the amounts of total lipids, total carbohydrates, and chlorophyll a in the cells of the microalga, indicating an alteration of the microalga’s physiology. The two bacteria produced large amounts of volatile compounds, including CO2, and the known plant growth-promoting volatile 2,3-butanediol and acetoin. Several other volatiles having biological functions in other organisms, as well as numerous volatile compounds with undefined biological roles, were detected. Together, these bacteria-derived volatiles can positively affect growth and metabolic parameters in green microalgae without physical attachment of the bacteria to the microalgae. This is a new paradigm on how PGPB promote growth of microalgae which may serve to improve performance of Chlorella spp. for biotechnological applications. PMID:28145473

  10. Overview Electrotactile Feedback for Enhancing Human Computer Interface

    Science.gov (United States)

    Pamungkas, Daniel S.; Caesarendra, Wahyu

    2018-04-01

    To achieve effective interaction between a human and a computing device or machine, adequate feedback from the computing device or machine is required. Recently, haptic feedback is increasingly being utilised to improve the interactivity of the Human Computer Interface (HCI). Most existing haptic feedback enhancements aim at producing forces or vibrations to enrich the user’s interactive experience. However, these force and/or vibration actuated haptic feedback systems can be bulky and uncomfortable to wear and only capable of delivering a limited amount of information to the user which can limit both their effectiveness and the applications they can be applied to. To address this deficiency, electrotactile feedback is used. This involves delivering haptic sensations to the user by electrically stimulating nerves in the skin via electrodes placed on the surface of the skin. This paper presents a review and explores the capability of electrotactile feedback for HCI applications. In addition, a description of the sensory receptors within the skin for sensing tactile stimulus and electric currents alsoseveral factors which influenced electric signal to transmit to the brain via human skinare explained.

  11. Transfusion management using a remote-controlled, automated blood storage.

    Science.gov (United States)

    Pagliaro, Pasqualepaolo; Turdo, Rosalia

    2008-04-01

    Generally, the safety of transfusion terapies for patients depends in part on the distribution of the blood products. The prevention of adverse events can be aided by technological means, which, besides improving the traceability of the process, make errors less likely. In this context, the latest frontier in automation and computerisation is the remote-controlled, automated refrigerator for blood storage. Computer cross-matching is an efficient and safe method for assigning blood components, based on Information Technology applied to typing and screening. This method can be extended to the management of an automated blood refrigerator, the programme of which is interfaced with the Transfusion Service's information system. The connection we made in our Service between EmoNet and Hemosafe enables real-time, remote-controlled management of the following aspects of blood component distribution: a) release of autologous and allogeneic units already allocated to a patient, b) release of available units, which can be allocated by remote-control to known patients, in the presence of a valid computer cross-match, c) release of O-negative units of blood for emergencies. Our system combines an information database, which enables computer cross-matching, with an automated refrigerator for blood storage with controlled access managed remotely by the Transfusion Service. The effectiveness and safety of the system were validated during the 4 months of its routine use in the Transfusion Service's outpatient department. The safety and efficiency of the distribution of blood products can and must be increased by the use of technological innovations. With the EmoNet/Hemosafe system, the responsibility for the remote-controlled distribution of red blood cell concentrates remains with the chief of the Transfusion Services, through the use of automated computer procedures and supported by continuous training of technicians and nursing staff.

  12. Sensitivity analysis in remote sensing

    CERN Document Server

    Ustinov, Eugene A

    2015-01-01

    This book contains a detailed presentation of general principles of sensitivity analysis as well as their applications to sample cases of remote sensing experiments. An emphasis is made on applications of adjoint problems, because they are more efficient in many practical cases, although their formulation may seem counterintuitive to a beginner. Special attention is paid to forward problems based on higher-order partial differential equations, where a novel matrix operator approach to formulation of corresponding adjoint problems is presented. Sensitivity analysis (SA) serves for quantitative models of physical objects the same purpose, as differential calculus does for functions. SA provides derivatives of model output parameters (observables) with respect to input parameters. In remote sensing SA provides computer-efficient means to compute the jacobians, matrices of partial derivatives of observables with respect to the geophysical parameters of interest. The jacobians are used to solve corresponding inver...

  13. Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing.

    Science.gov (United States)

    Trudgian, David C; Mirzaei, Hamid

    2012-12-07

    We have extended the functionality of the Central Proteomics Facilities Pipeline (CPFP) to allow use of remote cloud and high performance computing (HPC) resources for shotgun proteomics data processing. CPFP has been modified to include modular local and remote scheduling for data processing jobs. The pipeline can now be run on a single PC or server, a local cluster, a remote HPC cluster, and/or the Amazon Web Services (AWS) cloud. We provide public images that allow easy deployment of CPFP in its entirety in the AWS cloud. This significantly reduces the effort necessary to use the software, and allows proteomics laboratories to pay for compute time ad hoc, rather than obtaining and maintaining expensive local server clusters. Alternatively the Amazon cloud can be used to increase the throughput of a local installation of CPFP as necessary. We demonstrate that cloud CPFP allows users to process data at higher speed than local installations but with similar cost and lower staff requirements. In addition to the computational improvements, the web interface to CPFP is simplified, and other functionalities are enhanced. The software is under active development at two leading institutions and continues to be released under an open-source license at http://cpfp.sourceforge.net.

  14. Person-related determinants of TV viewing and computer time in a cohort of young Dutch adults: Who sits the most?

    Science.gov (United States)

    Uijtdewilligen, L; Singh, A S; Chinapaw, M J M; Twisk, J W R; van Mechelen, W

    2015-10-01

    We aimed to assess the associations of person-related factors with leisure time television (TV) viewing and computer time among young adults. We analyzed self-reported TV viewing (h/week) and leisure computer time (h/week) from 475 Dutch young adults (47% male) who had participated in the Amsterdam Growth and Health Longitudinal Study at the age of 32 and 36 years. Sociodemographic factors (i.e., marital and employment status), physical factors (i.e., skin folds, aerobic fitness, neuromotor fitness, back problems), psychological factors (i.e., problem- and emotion-focused coping, personality), lifestyle (i.e., alcohol consumption, smoking, energy intake, physical activity), and self-rated health (i.e., general health status, mild health complaints) were assessed. Univariable and multivariable generalized estimating equations were performed. Male gender, higher sum of skin folds, lower values of aerobic fitness, higher rigidity, higher self-sufficiency/recalcitrance, and smoking were positively associated with TV time. Male gender, higher sum of skin folds, higher scores on self-esteem, low energy intake, and a not so good general health status were significantly associated with higher computer time. Determinants of TV viewing and computer time were not identical, suggesting that both behaviors (a) have different at-risk populations and (b) should be targeted differently. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Multispectral image enhancement processing for microsat-borne imager

    Science.gov (United States)

    Sun, Jianying; Tan, Zheng; Lv, Qunbo; Pei, Linlin

    2017-10-01

    With the rapid development of remote sensing imaging technology, the micro satellite, one kind of tiny spacecraft, appears during the past few years. A good many studies contribute to dwarfing satellites for imaging purpose. Generally speaking, micro satellites weigh less than 100 kilograms, even less than 50 kilograms, which are slightly larger or smaller than the common miniature refrigerators. However, the optical system design is hard to be perfect due to the satellite room and weight limitation. In most cases, the unprocessed data captured by the imager on the microsatellite cannot meet the application need. Spatial resolution is the key problem. As for remote sensing applications, the higher spatial resolution of images we gain, the wider fields we can apply them. Consequently, how to utilize super resolution (SR) and image fusion to enhance the quality of imagery deserves studying. Our team, the Key Laboratory of Computational Optical Imaging Technology, Academy Opto-Electronics, is devoted to designing high-performance microsat-borne imagers and high-efficiency image processing algorithms. This paper addresses a multispectral image enhancement framework for space-borne imagery, jointing the pan-sharpening and super resolution techniques to deal with the spatial resolution shortcoming of microsatellites. We test the remote sensing images acquired by CX6-02 satellite and give the SR performance. The experiments illustrate the proposed approach provides high-quality images.

  16. Smart Cards and remote entrusting

    Science.gov (United States)

    Aussel, Jean-Daniel; D'Annoville, Jerome; Castillo, Laurent; Durand, Stephane; Fabre, Thierry; Lu, Karen; Ali, Asad

    Smart cards are widely used to provide security in end-to-end communication involving servers and a variety of terminals, including mobile handsets or payment terminals. Sometime, end-to-end server to smart card security is not applicable, and smart cards must communicate directly with an application executing on a terminal, like a personal computer, without communicating with a server. In this case, the smart card must somehow trust the terminal application before performing some secure operation it was designed for. This paper presents a novel method to remotely trust a terminal application from the smart card. For terminals such as personal computers, this method is based on an advanced secure device connected through the USB and consisting of a smart card bundled with flash memory. This device, or USB dongle, can be used in the context of remote untrusting to secure portable applications conveyed in the dongle flash memory. White-box cryptography is used to set the secure channel and a mechanism based on thumbprint is described to provide external authentication when session keys need to be renewed. Although not as secure as end-to-end server to smart card security, remote entrusting with smart cards is easy to deploy for mass-market applications and can provide a reasonable level of security.

  17. Differences in TV Viewing and Computer Game Playing's Relationships with Physical Activity and Eating Behaviors among Adolescents: An NHANES Study

    Science.gov (United States)

    Jashinsky, Jared; Gay, Jennifer; Hansen, Nathan; Muilenburg, Jessica

    2017-01-01

    Background: TV viewing and computer game use may both limit physical activity, but only TV viewing may promote a poorer diet due to exposure to food advertising and availability of the hands for snacking. Purpose: The purpose of this study was to investigate relationships between the different screen times and type 2 diabetes markers among youth.…

  18. Developments in remote participation in plasma physics experiments

    International Nuclear Information System (INIS)

    Blackwell, B.

    1999-01-01

    Recent growth in the size of plasma experiments and developments in network based software have contributed to a high level of interest in remote participation. Highlights of the recent conferences on this subject, and the ensuing 'white paper' are presented, with demonstrations of various Data Server/Web/Java based remote access techniques. These not only allow AINSE/AFRG users convenient access to H-1NF data from their home laboratory, but are (or soon will be) available to and from many overseas laboratories with similar systems. Many large plasma laboratories predict a large increase in remote access in the next two years. Several demonstrations of remote experiment control have been performed over medium speed networks, and several new experiments are planning on remote access from the beginning. In this paper we consider data access rights and security, access to common documents, and access to processed and raw data. The full version of this document can be viewed on the ANU's H-1NF web page at: http://rsphysse.anu.edu.au/

  19. Distributed Information and Control system reliability enhancement by fog-computing concept application

    Science.gov (United States)

    Melnik, E. V.; Klimenko, A. B.; Ivanov, D. Ya

    2018-03-01

    The paper focuses on the information and control system reliability issue. Authors of the current paper propose a new complex approach of information and control system reliability enhancement by application of the computing concept elements. The approach proposed consists of a complex of optimization problems to be solved. These problems are: estimation of computational complexity, which can be shifted to the edge of the network and fog-layer, distribution of computations among the data processing elements and distribution of computations among the sensors. The problems as well as some simulated results and discussion are formulated and presented within this paper.

  20. Assessing species habitat using Google Street View: a case study of cliff-nesting vultures.

    Directory of Open Access Journals (Sweden)

    Pedro P Olea

    Full Text Available The assessment of a species' habitat is a crucial issue in ecology and conservation. While the collection of habitat data has been boosted by the availability of remote sensing technologies, certain habitat types have yet to be collected through costly, on-ground surveys, limiting study over large areas. Cliffs are ecosystems that provide habitat for a rich biodiversity, especially raptors. Because of their principally vertical structure, however, cliffs are not easy to study by remote sensing technologies, posing a challenge for many researches and managers working with cliff-related biodiversity. We explore the feasibility of Google Street View, a freely available on-line tool, to remotely identify and assess the nesting habitat of two cliff-nesting vultures (the griffon vulture and the globally endangered Egyptian vulture in northwestern Spain. Two main usefulness of Google Street View to ecologists and conservation biologists were evaluated: i remotely identifying a species' potential habitat and ii extracting fine-scale habitat information. Google Street View imagery covered 49% (1,907 km of the roads of our study area (7,000 km². The potential visibility covered by on-ground surveys was significantly greater (mean: 97.4% than that of Google Street View (48.1%. However, incorporating Google Street View to the vulture's habitat survey would save, on average, 36% in time and 49.5% in funds with respect to the on-ground survey only. The ability of Google Street View to identify cliffs (overall accuracy = 100% outperformed the classification maps derived from digital elevation models (DEMs (62-95%. Nonetheless, high-performance DEM maps may be useful to compensate Google Street View coverage limitations. Through Google Street View we could examine 66% of the vultures' nesting-cliffs existing in the study area (n = 148: 64% from griffon vultures and 65% from Egyptian vultures. It also allowed us the extraction of fine-scale features of

  1. Virtual analysis of the remote operation of the ACP

    International Nuclear Information System (INIS)

    Yoon, Ji Sup; Kim, Sung Hyun; Song, Tai Gil; Lim, Kwang Mook

    2005-01-01

    The remote operation of the Advanced Spent Fuel Conditioning Process (ACP) is analyzed by using the 3D graphic simulation tools. The ACP equipment operates in intense radiation fields as well as in a high temperature. Thus, the equipment should be designed in consideration of the remote handling and maintenance. As well as suitable remote handling and maintenance method needs to be provided. To provide such remote operation technology, we developed the graphic simulator which provides the capability of verifying the remote operability of the ACP without fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in a computer, not in a real environment. In this way the graphic simulator and substantially reduce the design cost of the remote operation process and the equipment. Also it can provide new operation concept that is more reliable, easier to implement, and easier to understand

  2. Ground-based remote sensing of volcanic CO2 and correlated SO2, HF, HCl, and BrO, in safe-distance from the crater

    Science.gov (United States)

    Butz, Andre; Solvejg Dinger, Anna; Bobrowski, Nicole; Kostinek, Julian; Fieber, Lukas; Fischerkeller, Constanze; Giuffrida, Giovanni Bruno; Hase, Frank; Klappenbach, Friedrich; Kuhn, Jonas; Lübcke, Peter; Tirpitz, Lukas; Tu, Qiansi

    2017-04-01

    Remote sensing of CO2 enhancements in volcanic plumes can be a tool to estimate volcanic CO2 emissions and thereby, to gain insight into the geological carbon cycle and into volcano interior processes. However, remote sensing of the volcanic CO2 is challenged by the large atmospheric background concentrations masking the minute volcanic signal. Here, we report on a demonstrator study conducted in September 2015 at Mt. Etna on Sicily, where we deployed an EM27/SUN Fourier Transform Spectrometer together with a UV spectrometer on a mobile remote sensing platform. The spectrometers were operated in direct-sun viewing geometry collecting cross-sectional scans of solar absorption spectra through the volcanic plume by operating the platform in stop-and-go patterns in 5 to 10 kilometers distance from the crater region. We successfully detected correlated intra-plume enhancements of CO2 and volcanic SO2, HF, HCl, and BrO. The path-integrated volcanic CO2 enhancements amounted to about 0.5 ppm (on top of the ˜400 ppm background). Key to successful detection of volcanic CO2 was A) the simultaneous observation of the O2 total column which allowed for correcting changes in the CO2 column caused by changes in observer altitude and B) the simultaneous measurement of volcanic species co-emitted with CO2 which allowed for discriminating intra-plume and extra-plume observations. The latter were used for subtracting the atmospheric CO2 background. The field study suggests that our remote sensing observatory is a candidate technique for volcano monitoring in safe distance from the crater region.

  3. Dynamic enhanced computed tomographic findings of a perirenal capillary hemangioma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Min; Kim, Sang Won; Kim, Hyun Cheol; Yang, Dal Mo; Ryu, Jung Kyu; Lim, Sung Jig [Kyung Hee University Hospital at Gangdong, Seoul (Korea, Republic of)

    2016-05-15

    Hemangiomas are benign mesenchymal neoplasms that rarely occur in the kidney and perirenal space. Perirenal hemangiomas can mimic the appearance of exophytic renal cell carcinoma or various retroperitoneal tumors. We report a case of perirenal hemangioma detected by dynamic enhanced computed tomography in a 43-year-old female.

  4. ATLAS Distributed Computing in LHC Run2

    International Nuclear Information System (INIS)

    Campana, Simone

    2015-01-01

    The ATLAS Distributed Computing infrastructure has evolved after the first period of LHC data taking in order to cope with the challenges of the upcoming LHC Run-2. An increase in both the data rate and the computing demands of the Monte-Carlo simulation, as well as new approaches to ATLAS analysis, dictated a more dynamic workload management system (Prodsys-2) and data management system (Rucio), overcoming the boundaries imposed by the design of the old computing model. In particular, the commissioning of new central computing system components was the core part of the migration toward a flexible computing model. A flexible computing utilization exploring the use of opportunistic resources such as HPC, cloud, and volunteer computing is embedded in the new computing model; the data access mechanisms have been enhanced with the remote access, and the network topology and performance is deeply integrated into the core of the system. Moreover, a new data management strategy, based on a defined lifetime for each dataset, has been defined to better manage the lifecycle of the data. In this note, an overview of an operational experience of the new system and its evolution is presented. (paper)

  5. Viewing Welds By Computer Tomography

    Science.gov (United States)

    Pascua, Antonio G.; Roy, Jagatjit

    1990-01-01

    Computer tomography system used to inspect welds for root penetration. Source illuminates rotating welded part with fan-shaped beam of x rays or gamma rays. Detectors in circular array on opposite side of part intercept beam and convert it into electrical signals. Computer processes signals into image of cross section of weld. Image displayed on video monitor. System offers only nondestructive way to check penetration from outside when inner surfaces inaccessible.

  6. Improving visual skills: II-remote assessment via Internet.

    Science.gov (United States)

    Powers, Maureen K; Grisham, J David; Wurm, Janice K; Wurm, William C

    2009-02-01

    Even though poor readers often have poor visual skills, such as binocular coordination and oculomotor control, students' visual skills are rarely assessed. Computer assessments have the potential to assist in identifying students whose visual skills are deficient. This study compared assessments made by an Internet-based computer orthoptics program with those of an on-site vision therapist. Students (N = 41) in grades 1 through 8, reading at least 2 levels below grade, were assessed for visual skill dysfunction (including binocular fusion and tracking ability) by a vision therapist at their school in Wisconsin. The therapist determined whether the student had adequate visual skills based on clinical and behavioral observations. A "remote" investigator located in California determined the adequacy of accommodative facility, tracking, and vergence skills in the same students, based on quantitative progress through the modules of an Internet-based computer orthoptics training program during 3 assessment sessions. The on-site therapist made 33 referrals for possible visual skills training (80%). The remote investigator made 25 referrals (61%), all of which were consistent with referrals made by the on-site therapist; thus, no false-positives occurred when using the remote assessment technique. The 8 additional referrals by the therapist were attributed to the ability to observe student behavior during assessment. Remote assessment of visual skills via an Internet orthoptics program may provide a simple means to detect visual skill problems experienced by poor readers.

  7. First operation of the wide-area remote experiment system

    International Nuclear Information System (INIS)

    Furukawa, Y.; Hasegawa, K.; Ueno, G.

    2012-01-01

    The Wide-area Remote Experiment System (WRES) at Spring-8 has been successfully developed. The system communicates with remote users on the basis of SSL/TLS with bi-directional authentication to avoid interference from unauthorized access to the system. The system has a message-filtering system to allow remote users access only to the corresponding beamline equipment and safety interlock system. This is to protect persons inside the experimental station from injury from any accidental motion of heavy equipment. The system also has a video streaming system to monitor samples or experimental equipment. We have tested the system from the point of view of safety, stability, reliability etc. and successfully performed the first experiment from a remote site, i.e., RIKEN's Wako campus, which is 480 km away from Spring-8, at the end of October 2010. (authors)

  8. Remote systems and automation in radioactive waste package handling

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Hayward, M.L.

    1987-01-01

    A proof-of-principle test was conducted at the Hanford Engineering Development Laboratory (HEDL) to demonstrate the feasibility of performing cask receiving and unloading operations in a remote and partially automated manner. This development testing showed feasibility of performing critical cask receipt, preparation, and unloading operations from a single control station using remote controls and indirect viewing. Using robotics and remote automation in a cask handling system can result in lower personnel exposure levels and cask turnaround times while maintaining operational flexibility. An automated cask handling system presents a flexible state-of-the-art, cost effective alternative solution to hands-on methods that have been used in the past. 7 refs., 13 figs

  9. Fully automated reconstruction of three-dimensional vascular tree structures from two orthogonal views using computational algorithms and productionrules

    Science.gov (United States)

    Liu, Iching; Sun, Ying

    1992-10-01

    A system for reconstructing 3-D vascular structure from two orthogonally projected images is presented. The formidable problem of matching segments between two views is solved using knowledge of the epipolar constraint and the similarity of segment geometry and connectivity. The knowledge is represented in a rule-based system, which also controls the operation of several computational algorithms for tracking segments in each image, representing 2-D segments with directed graphs, and reconstructing 3-D segments from matching 2-D segment pairs. Uncertain reasoning governs the interaction between segmentation and matching; it also provides a framework for resolving the matching ambiguities in an iterative way. The system was implemented in the C language and the C Language Integrated Production System (CLIPS) expert system shell. Using video images of a tree model, the standard deviation of reconstructed centerlines was estimated to be 0.8 mm (1.7 mm) when the view direction was parallel (perpendicular) to the epipolar plane. Feasibility of clinical use was shown using x-ray angiograms of a human chest phantom. The correspondence of vessel segments between two views was accurate. Computational time for the entire reconstruction process was under 30 s on a workstation. A fully automated system for two-view reconstruction that does not require the a priori knowledge of vascular anatomy is demonstrated.

  10. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chandra Giri

    2016-09-01

    Full Text Available Mangrove forests, distributed in the tropical and subtropical regions of the world, are in a constant flux. They provide important ecosystem goods and services to nature and society. In recent years, the carbon sequestration potential and protective role of mangrove forests from natural disasters is being highlighted as an effective option for climate change adaptation and mitigation. The forests are under threat from both natural and anthropogenic forces. However, accurate, reliable, and timely information of the distribution and dynamics of mangrove forests of the world is not readily available. Recent developments in the availability and accessibility of remotely sensed data, advancement in image pre-processing and classification algorithms, significant improvement in computing, availability of expertise in handling remotely sensed data, and an increasing awareness of the applicability of remote sensing products has greatly improved our scientific understanding of changing mangrove forest cover attributes. As reported in this special issue, the use of both optical and radar satellite data at various spatial resolutions (i.e., 1 m to 30 m to derive meaningful forest cover attributes (e.g., species discrimination, above ground biomass is on the rise. This multi-sensor trend is likely to continue into the future providing a more complete inventory of global mangrove forest distributions and attribute inventories at enhanced temporal frequency. The papers presented in this “Special Issue” provide important remote sensing monitoring advancements needed to meet future scientific objectives for global mangrove forest monitoring from local to global scales.

  11. Nanostructured interfaces for enhancing mechanical properties of composites: Computational micromechanical studies

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2015-01-01

    Computational micromechanical studies of the effect of nanostructuring and nanoengineering of interfaces, phase and grain boundaries of materials on the mechanical properties and strength of materials and the potential of interface nanostructuring to enhance the materials properties are reviewed....

  12. The Department of Energy Nevada Test Site Remote Area Monitoring System

    International Nuclear Information System (INIS)

    Sanders, L.D.; Hart, O.F.

    1993-01-01

    The Remote Area Monitoring System was developed by Los Alamos National Laboratory (LANL) for DOE test directors at the Nevada Test Site (NTS) to verify radiological conditions are safe after a nuclear test. In the unlikely event of a venting as a result of a nuclear test, this system provides radiological and meteorological data to Weather Service Nuclear Support Office (WSNSO) computers where mesoscale models are used to predict downwind exposure rates. The system uses a combination of hardwired radiation sensors and satellite based data acquisition units with their own radiation sensors to measure exposure rates in remote areas of the NTS. The satellite based data acquisition units are available as small, Portable Remote Area Monitors (RAMs) for rapid deployment, and larger, Semipermanent RAMs that can have meteorological towers. The satellite based stations measure exposure rates and transmit measurements to the GOES (Geostationary Operational Environmental Satellite) where they are relayed to Direct Readout Ground Stations (DRGS) at the NTS and Los Alamos. Computers process the data and display results in the NTS Operations Coordination Center. Los Alamos computers and NTS computers are linked together through a wide area network, providing remote redundant system capability. Recently, LANL, expanded the system to take radiological and meteorological measurements in communities in the western United States. The system was also expanded to acquire data from Remote Automatic Weather Stations (RAWS) that transmit through GOES. The addition of Portable and Semipermanent RAMs to the system has vastly expanded monitoring capabilities at NTS and can be used to take measurements anywhere in this hemisphere

  13. Data management, code deployment, and scientific visualization to enhance scientific discovery in fusion research through advanced computing

    International Nuclear Information System (INIS)

    Schissel, D.P.; Finkelstein, A.; Foster, I.T.; Fredian, T.W.; Greenwald, M.J.; Hansen, C.D.; Johnson, C.R.; Keahey, K.; Klasky, S.A.; Li, K.; McCune, D.C.; Peng, Q.; Stevens, R.; Thompson, M.R.

    2002-01-01

    The long-term vision of the Fusion Collaboratory described in this paper is to transform fusion research and accelerate scientific understanding and innovation so as to revolutionize the design of a fusion energy source. The Collaboratory will create and deploy collaborative software tools that will enable more efficient utilization of existing experimental facilities and more effective integration of experiment, theory, and modeling. The computer science research necessary to create the Collaboratory is centered on three activities: security, remote and distributed computing, and scientific visualization. It is anticipated that the presently envisioned Fusion Collaboratory software tools will require 3 years to complete

  14. Development of a remote tank inspection robotic system

    International Nuclear Information System (INIS)

    Knape, B.P.; Bares, L.C.

    1990-01-01

    RedZone Robotics is currently developing a remote tank inspection (RTI) robotic system for Westinghouse Idaho Nuclear Company (WINCO). WINCO intends to use the RTI robotic system at the Idaho Chemical Processing Plant, a facility that contains a tank farm of several 1,135,500-ell (300,000-gal), 15.2-m (50-ft)-diam, high-level liquid waste storage tanks. The primary purpose of the RTI robotic system is to inspect the interior of these tanks for corrosion that may have been caused by the combined effects of radiation, high temperature, and caustic by the combined effects of radiation, high temperature, and caustic chemicals present inside the tanks. The RTI robotic system features a vertical deployment unit, a robotic arm, and a remote control console and computer [located up to 30.5 m (100 ft) away from the tank site]. All actuators are high torque, electric dc brush motors that are servocontrolled with absolute position feedback. The control system uses RedZone's standardized intelligent controller for enhanced telerobotics, which provides a high speed, multitasking environment on a VME bus. Currently, the robot is controlled in a manual, job-button, control mode; however, control capability is available to develop preprogrammed, automated modes of operation

  15. Remote file inquiry (RFI) system

    Science.gov (United States)

    1975-01-01

    System interrogates and maintains user-definable data files from remote terminals, using English-like, free-form query language easily learned by persons not proficient in computer programming. System operates in asynchronous mode, allowing any number of inquiries within limitation of available core to be active concurrently.

  16. Guidelines for Outsourcing Remote Access.

    Science.gov (United States)

    Hassler, Ardoth; Neuman, Michael

    1996-01-01

    Discusses the advantages and disadvantages of outsourcing remote access to campus computer networks and the Internet, focusing on improved service, cost-sharing, partnerships with vendors, supported protocols, bandwidth, scope of access, implementation, support, network security, and pricing. Includes a checklist for a request for proposals on…

  17. Colour gamut enhancement with remote light conversion mechanism

    Science.gov (United States)

    Koseoglu, D.; Sezer, Y. S.; Karsli, K.

    2018-01-01

    The backlight unit spectrum of liquid crystal displays (LCD) directly affects the colour gamut. With the invention of GaN based blue light emitting diodes (LED), phosphors and quantum dots (QD) have gained considerable scientific interest due to their broad range of applications especially in lighting and display technologies. These phosphors and QDs are used to convert the blue light of the LEDs into white in general lighting. On the other hand, in display systems, they are used to generate red and green bands. There are different application methods such as on-chip and remote configurations. In this study, we concentrate on remote phosphor and QD backlight configurations where the light conversion is done away from the chips. In our display designs, we used GaN based blue LED lateral chips as an excitation source, on the other hand, light conversion layers were placed in backlight units as a thin film for the emission of green and red bands. The mixing ratios of these composite layers were arranged to match the emission spectrum of the blue LEDs and the light conversion layer to the colour filters of the LCD, so that the green, blue, and red bands efficiently widens the colour space. The results were also compared with the on-chip phosphor arrangements.

  18. Results from the July 1981 Workshop on Passive Remote Sensing of the Troposphere

    International Nuclear Information System (INIS)

    Keafer, L.S. Jr.; Reichle, H.G. Jr.

    1982-01-01

    Potential roles of passive remote sensors in the study of the chemistry and related dynamics of the lower atmosphere were defined by a Tropospheric Passive Remote Sensing Workshop, and technology advances required to implement these roles were identified. A promising role is in making global-scale, multilayer measurements of the more abundant trace tropospheric gaseous species (e.g., O 3 , CO, CH 4 , HNO 3 ) and of aerosol thickness and size distribution. It includes both nadirand limb-viewing measurements. Technology advances focus on both scanning- and fixed-spectra, nadir-viewing techniques with resolutions of 0.1 kaysers or better. Balloon- and Shuttle-borne experiments should be performed to study the effects of instrument noise and background fluctuations on data inversion and to determine the utility of simultaneously obtained nadir- and limb-viewing data

  19. The ATLAS Distributed Computing project for LHC Run-2 and beyond.

    CERN Document Server

    Di Girolamo, Alessandro; The ATLAS collaboration

    2015-01-01

    The ATLAS Distributed Computing infrastructure has evolved after the first period of LHC data taking in order to cope with the challenges of the upcoming LHC Run2. An increased data rate and computing demands of the Monte-Carlo simulation, as well as new approaches to ATLAS analysis, dictated a more dynamic workload management system (ProdSys2) and data management system (Rucio), overcoming the boundaries imposed by the design of the old computing model. In particular, the commissioning of new central computing system components was the core part of the migration toward the flexible computing model. The flexible computing utilization exploring the opportunistic resources such as HPC, cloud, and volunteer computing is embedded in the new computing model, the data access mechanisms have been enhanced with the remote access, and the network topology and performance is deeply integrated into the core of the system. Moreover a new data management strategy, based on defined lifetime for each dataset, has been defin...

  20. Remote systems requirements of the High Yield Lithium Injection Fusion Energy (HYLIFE) converter concept

    International Nuclear Information System (INIS)

    Walker, P.E.

    1978-10-01

    Remote systems will be required in the High Yield Lithium Injection Fusion Energy Converter power plant proposed by Lawrence Livermore Laboratory. During inspection operations, viewing of the chamber interior and certain pumps, valve fittings and welds must be done remotely. Ideas for remote maintenance of laser beam blast baffles, optics, and target material traps are described. Radioisotope sources and their distributions, and exposure rates at various points in the reactor vicinity are presented

  1. Independent component analysis of dynamic contrast-enhanced computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Koh, T S [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798 (Singapore); Yang, X [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798 (Singapore); Bisdas, S [Department of Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University Hospital, Theodor-Stern-Kai 7, D-60590 Frankfurt (Germany); Lim, C C T [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore)

    2006-10-07

    Independent component analysis (ICA) was applied on dynamic contrast-enhanced computed tomography images of cerebral tumours to extract spatial component maps of the underlying vascular structures, which correspond to different haemodynamic phases as depicted by the passage of the contrast medium. The locations of arteries, veins and tumours can be separately identified on these spatial component maps. As the contrast enhancement behaviour of the cerebral tumour differs from the normal tissues, ICA yields a tumour component map that reveals the location and extent of the tumour. Tumour outlines can be generated using the tumour component maps, with relatively simple segmentation methods. (note)

  2. A STUDY ON THE EFFECTS OF VIEWING ANGLE VARIATION IN SUGARCANE RADIOMETRIC MEASURES

    Directory of Open Access Journals (Sweden)

    Érika Akemi Saito; Moriya

    Full Text Available Abstract: Remote Sensing techniques, such as field spectroscopy provide information with a large level of detail about spectral characteristics of plants enabling the monitoring of crops. The aim of this study is to analyze the influence of viewing angle in estimating the Bidirectional Reflectance Distribution Function (BRDF for the case of sugarcane. The study on the variation of the spectral reflectance profile can help the improvement of algorithms for correction of BRDF in remote sensing images. Therefore, spectral measurements acquired on nadir and different off-nadir view angle directions were considered in the experiments. Change both anisotropy factor and anisotropy index was determined in order to evaluate the BRDF variability in the spectral data of sugarcane. BRDF correction was applied using the Walthall model, thus reducing the BRDF effects. From the results obtained in the experiments, the spectral signatures showed a similar spectral pattern varying mainly in intensity. The anisotropy factor which showed a similar pattern in all wavelengths. The visual analysis of the spectral reflectance profile of sugarcane showed variation mainly in intensity at different angles. The use of Walthall model reduced the BRDF effects and brought the spectral reflectance profiles acquired on different viewing geometry close to nadir viewing. Therefore, BRDF effects on remote sensing data of vegetation cover can be minimized by applying this model. This conclusion contributes to developing suitable algorithms to produce radiometrically calibrated mosaics with remote sensing images taken by aerial platforms.

  3. Searches over graphs representing geospatial-temporal remote sensing data

    Science.gov (United States)

    Brost, Randolph; Perkins, David Nikolaus

    2018-03-06

    Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.

  4. Application of GPRS and GIS in Boiler Remote Monitoring System

    OpenAIRE

    Hongchao Wang; Yifeng Wu

    2012-01-01

    Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the ...

  5. Test of remote control cutting equipment by Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Akio [Fuji Electric Corp. Research and Development Ltd., Yokosuka, Kanagawa (Japan); Hosoda, Hiroshi

    1997-11-01

    Technology of remote controlled cutting and reduction of generative secondary products have been required to the cutting system for decommissioning nuclear equipments. At a point of view that laser cutting technology by use of a Nd:YAG laser is effective, we have developed the laser cutting machine and carried out cutting tests for several stainless steel plates. This report is described the result of experiment by test equipment, about element technology of remote controlled cutting nuclear equipments. (author)

  6. Test of remote control cutting equipment by Nd:YAG laser

    International Nuclear Information System (INIS)

    Shimizu, Akio; Hosoda, Hiroshi.

    1997-01-01

    Technology of remote controlled cutting and reduction of generative secondary products have been required to the cutting system for decommissioning nuclear equipments. At a point of view that laser cutting technology by use of a Nd:YAG laser is effective, we have developed the laser cutting machine and carried out cutting tests for several stainless steel plates. This report is described the result of experiment by test equipment, about element technology of remote controlled cutting nuclear equipments. (author)

  7. Remote system for counting of nuclear pulses

    International Nuclear Information System (INIS)

    Nieves V, J.A.; Garcia H, J.M.; Aguilar B, M.A.

    1999-01-01

    In this work, it is describe technically the remote system for counting of nuclear pulses, an integral system of the project radiological monitoring in a petroleum distillation tower. The system acquires the counting of incident nuclear particles in a nuclear detector which process this information and send it in serial form, using the RS-485 toward a remote receiver, which can be a Personal computer or any other device capable to interpret the communication protocol. (Author)

  8. Radar image enhancement and simulation as an aid to interpretation and training

    Science.gov (United States)

    Frost, V. S.; Stiles, J. A.; Holtzman, J. C.; Dellwig, L. F.; Held, D. N.

    1980-01-01

    Greatly increased activity in the field of radar image applications in the coming years demands that techniques of radar image analysis, enhancement, and simulation be developed now. Since the statistical nature of radar imagery differs from that of photographic imagery, one finds that the required digital image processing algorithms (e.g., for improved viewing and feature extraction) differ from those currently existing. This paper addresses these problems and discusses work at the Remote Sensing Laboratory in image simulation and processing, especially for systems comparable to the formerly operational SEASAT synthetic aperture radar.

  9. AFFECTIVE COMPUTING AND AUGMENTED REALITY FOR CAR DRIVING SIMULATORS

    Directory of Open Access Journals (Sweden)

    Dragoș Datcu

    2017-12-01

    Full Text Available Car simulators are essential for training and for analyzing the behavior, the responses and the performance of the driver. Augmented Reality (AR is the technology that enables virtual images to be overlaid on views of the real world. Affective Computing (AC is the technology that helps reading emotions by means of computer systems, by analyzing body gestures, facial expressions, speech and physiological signals. The key aspect of the research relies on investigating novel interfaces that help building situational awareness and emotional awareness, to enable affect-driven remote collaboration in AR for car driving simulators. The problem addressed relates to the question about how to build situational awareness (using AR technology and emotional awareness (by AC technology, and how to integrate these two distinct technologies [4], into a unique affective framework for training, in a car driving simulator.

  10. Estimation of aortic time-enhancement curve in pharmacokinetic analysis. Dynamic study by multi-detector row computed tomography

    International Nuclear Information System (INIS)

    Yamaguchi, Isao; Kidoya, Eiji; Higashimura, Kyoji; Hayashi, Hiroyuki; Suzuki, Masayuki

    2007-01-01

    This paper presents an introduction to the development of software that provides a physiologic model of contrast medium enhancement by incorporating available physiologic data and contrast medium pharmacokinetics to predict an organ-specific aortic time-enhancement curve (TEC) in computed tomography (CT) with various contrast medium injection protocols in patients of various heights, weights, cardiac output levels, and so on. The physiologic model of contrast medium enhancement was composed of six compartments for early contrast enhancement pharmacokinetics. Contrast medium is injected via the antecubital vein and distributed to the right side of the heart, the pulmonary compartment, the left side of the heart, and the aorta. It then circulates back to the right side of the heart via the systemic circulation. A computer-based, compartmental model of the aortic system was generated using human physiologic parameters and six differential equations to describe the transport of contrast medium. Aortic TEC generated by the computer-based physiologic model of contrast medium enhancement showed validity and agreement with clinical data and findings published previously. A computer-based physiologic model that may help predict organ-specific CT contrast medium enhancement for different injection protocols was developed. Such a physiologic model may have multiple clinical applications. (author)

  11. Remote observing with NASA's Deep Space Network

    Science.gov (United States)

    Kuiper, T. B. H.; Majid, W. A.; Martinez, S.; Garcia-Miro, C.; Rizzo, J. R.

    2012-09-01

    The Deep Space Network (DSN) communicates with spacecraft as far away as the boundary between the Solar System and the interstellar medium. To make this possible, large sensitive antennas at Canberra, Australia, Goldstone, California, and Madrid, Spain, provide for constant communication with interplanetary missions. We describe the procedures for radioastronomical observations using this network. Remote access to science monitor and control computers by authorized observers is provided by two-factor authentication through a gateway at the Jet Propulsion Laboratory (JPL) in Pasadena. To make such observations practical, we have devised schemes based on SSH tunnels and distributed computing. At the very minimum, one can use SSH tunnels and VNC (Virtual Network Computing, a remote desktop software suite) to control the science hosts within the DSN Flight Operations network. In this way we have controlled up to three telescopes simultaneously. However, X-window updates can be slow and there are issues involving incompatible screen sizes and multi-screen displays. Consequently, we are now developing SSH tunnel-based schemes in which instrument control and monitoring, and intense data processing, are done on-site by the remote DSN hosts while data manipulation and graphical display are done at the observer's host. We describe our approaches to various challenges, our experience with what worked well and lessons learned, and directions for future development.

  12. Improved Interactive Medical-Imaging System

    Science.gov (United States)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  13. An easy-to-build remote laboratory with data transfer using the Internet School Experimental System

    Science.gov (United States)

    Schauer, František; Lustig, František; Dvořák, Jiří; Ožvoldová, Miroslava

    2008-07-01

    The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global features, based on experiment and experimentation. We name this strategy integrated e-learning, and remote experiments across the Internet are the foundation for this strategy. We present both pedagogical and technical reasoning for the remote experiments and outline a simple system based on a server-client approach, and on web services and Java applets. We give here an outline of the prospective remote laboratory system with data transfer using the Internet School Experimental System (ISES) as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, using a paste and copy approach with typical prebuilt blocks such as a camera view, controls, graphs, displays, etc. We have set up and operate at present seven experiments, running round the clock, with more than 12 000 connections since 2005. The experiments are widely used in practical teaching of both university and secondary level physics. The recording of the detailed steps the experimentor takes during the measurement enables detailed study of the psychological aspects of running the experiments. The system is ready for a network of universities to start covering the basic set of physics experiments. In conclusion we summarize the results achieved and experiences of using remote experiments built on the ISES hardware system.

  14. An easy-to-build remote laboratory with data transfer using the Internet School Experimental System

    International Nuclear Information System (INIS)

    Schauer, Frantisek; Ozvoldova, Miroslava; Lustig, Frantisek; Dvorak, JirI

    2008-01-01

    The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global features, based on experiment and experimentation. We name this strategy integrated e-learning, and remote experiments across the Internet are the foundation for this strategy. We present both pedagogical and technical reasoning for the remote experiments and outline a simple system based on a server-client approach, and on web services and Java applets. We give here an outline of the prospective remote laboratory system with data transfer using the Internet School Experimental System (ISES) as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, using a paste and copy approach with typical prebuilt blocks such as a camera view, controls, graphs, displays, etc. We have set up and operate at present seven experiments, running round the clock, with more than 12 000 connections since 2005. The experiments are widely used in practical teaching of both university and secondary level physics. The recording of the detailed steps the experimentor takes during the measurement enables detailed study of the psychological aspects of running the experiments. The system is ready for a network of universities to start covering the basic set of physics experiments. In conclusion we summarize the results achieved and experiences of using remote experiments built on the ISES hardware system

  15. An easy-to-build remote laboratory with data transfer using the Internet School Experimental System

    Energy Technology Data Exchange (ETDEWEB)

    Schauer, Frantisek; Ozvoldova, Miroslava [Trnava University, Faculty of Pedagogy, Department of Physics, Trnava (Slovakia); Lustig, Frantisek; Dvorak, JirI [Charles University, Faculty of Mathematics and Physics, Department of Didactics of Physics, Prague (Czech Republic)], E-mail: fschauer@ft.utb.cz

    2008-07-15

    The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global features, based on experiment and experimentation. We name this strategy integrated e-learning, and remote experiments across the Internet are the foundation for this strategy. We present both pedagogical and technical reasoning for the remote experiments and outline a simple system based on a server-client approach, and on web services and Java applets. We give here an outline of the prospective remote laboratory system with data transfer using the Internet School Experimental System (ISES) as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, using a paste and copy approach with typical prebuilt blocks such as a camera view, controls, graphs, displays, etc. We have set up and operate at present seven experiments, running round the clock, with more than 12 000 connections since 2005. The experiments are widely used in practical teaching of both university and secondary level physics. The recording of the detailed steps the experimentor takes during the measurement enables detailed study of the psychological aspects of running the experiments. The system is ready for a network of universities to start covering the basic set of physics experiments. In conclusion we summarize the results achieved and experiences of using remote experiments built on the ISES hardware system.

  16. An Improved Rotation Forest for Multi-Feature Remote-Sensing Imagery Classification

    Directory of Open Access Journals (Sweden)

    Yingchang Xiu

    2017-11-01

    Full Text Available Multi-feature, especially multi-temporal, remote-sensing data have the potential to improve land cover classification accuracy. However, sometimes it is difficult to utilize all the features efficiently. To enhance classification performance based on multi-feature imagery, an improved rotation forest, combining Principal Component Analysis (PCA and a boosting naïve Bayesian tree (NBTree, is proposed. First, feature extraction was carried out with PCA. The feature set was randomly split into several disjoint subsets; then, PCA was applied to each subset, and new training data for linear extracted features based on original training data were obtained. These steps were repeated several times. Second, based on the new training data, a boosting naïve Bayesian tree was constructed as the base classifier, which aims to achieve lower prediction error than a decision tree in the original rotation forest. At the classification phase, the improved rotation forest has two-layer voting. It first obtains several predictions through weighted voting in a boosting naïve Bayesian tree; then, the first-layer vote predicts by majority to obtain the final result. To examine the classification performance, the improved rotation forest was applied to multi-feature remote-sensing images, including MODIS Enhanced Vegetation Index (EVI imagery time series, MODIS Surface Reflectance products and ancillary data in Shandong Province for 2013. The EVI imagery time series was preprocessed using harmonic analysis of time series (HANTS to reduce the noise effects. The overall accuracy of the final classification result was 89.17%, and the Kappa coefficient was 0.71, which outperforms the original rotation forest and other classifier ensemble results, as well as the NASA land cover product. However, this new algorithm requires more computational time, meaning the efficiency needs to be further improved. Generally, the improved rotation forest has a potential advantage in

  17. Watching elderly and disabled person's physical condition by remotely controlled monorail robot

    Science.gov (United States)

    Nagasaka, Yasunori; Matsumoto, Yoshinori; Fukaya, Yasutoshi; Takahashi, Tomoichi; Takeshita, Toru

    2001-10-01

    We are developing a nursing system using robots and cameras. The cameras are mounted on a remote controlled monorail robot which moves inside a room and watches the elderly. It is necessary to pay attention to the elderly at home or nursing homes all time. This requires staffs to pay attention to them at every time. The purpose of our system is to help those staffs. This study intends to improve such situation. A host computer controls a monorail robot to go in front of the elderly using the images taken by cameras on the ceiling. A CCD camera is mounted on the monorail robot to take pictures of their facial expression or movements. The robot sends the images to a host computer that checks them whether something unusual happens or not. We propose a simple calibration method for positioning the monorail robots to track the moves of the elderly for keeping their faces at center of camera view. We built a small experiment system, and evaluated our camera calibration method and image processing algorithm.

  18. Computer-aided software understanding systems to enhance confidence of scientific codes

    International Nuclear Information System (INIS)

    Sheng, G.; Oeren, T.I.

    1991-01-01

    A unique characteristic of nuclear waste disposal is the very long time span over which the combined engineered and natural containment system must remain effective: hundreds of thousands of years. Since there is no precedent in human history for such an endeavour, simulation with the use of computers is the only means we have of forecasting possible future outcomes quantitatively. The need for reliable models and software to make such forecasts so far into the future is obvious. One of the critical elements necessary to ensure reliability is the degree of reviewability of the computer program. Among others, there are two very important reasons for this. Firstly, if there is to be any chance at all of validating the conceptual models as implemented by the computer code, peer reviewers must be able to see and understand what the program is doing. It is all but impossible to achieve this understanding by just looking at the code due to possible unfamiliarity with the language and often due as well to the length and complexity of the code. Secondly, a thorough understanding of the code is also necessary to carry out code maintenance activities which include among others, error detection, error correction and code modification for purposes of enhancing its performance, functionality or to adapt it to a changed environment. The emerging concepts of computer-aided software understanding and reverse engineering can answer precisely these needs. This paper will discuss the role they can play in enhancing the confidence one has on computer codes and several examples will be provided. Finally a brief discussion of combining state-of-art forward engineering systems with reverse engineering systems will show how powerfully they can contribute to the overall quality assurance of a computer program. (13 refs., 7 figs.)

  19. Status of the remote participation technical co-ordination in the EFDA Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, V. [Associatione Euratom-ENEA sulla Fusione, Padova (Italy); How, J.A. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    This series of 26 slides is dedicated to the status of the remote participation in the EFDA (European fusion development agreement). The main aims of remote participation is to enable fusion scientists and engineers to collaborate as if they were in the same place whatever place it might be: an office, a meeting room, a laboratory or an experiment control room. The different issues that are addressed are: -) remote data access, -) remote computer access, -) tele-conference and -) network issues.

  20. Status of the remote participation technical co-ordination in the EFDA Laboratories

    International Nuclear Information System (INIS)

    Schmidt, V.; How, J.A.

    2003-01-01

    This series of 26 slides is dedicated to the status of the remote participation in the EFDA (European fusion development agreement). The main aims of remote participation is to enable fusion scientists and engineers to collaborate as if they were in the same place whatever place it might be: an office, a meeting room, a laboratory or an experiment control room. The different issues that are addressed are: -) remote data access, -) remote computer access, -) tele-conference and -) network issues