WorldWideScience

Sample records for computer simulation model

  1. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  2. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    Science.gov (United States)

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2018-02-01

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  3. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Methodology of modeling and measuring computer architectures for plasma simulations

    Science.gov (United States)

    Wang, L. P. T.

    1977-01-01

    A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.

  5. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Uses of Computer Simulation Models in Ag-Research and Everyday Life

    Science.gov (United States)

    When the news media talks about models they could be talking about role models, fashion models, conceptual models like the auto industry uses, or computer simulation models. A computer simulation model is a computer code that attempts to imitate the processes and functions of certain systems. There ...

  7. Overview of Computer Simulation Modeling Approaches and Methods

    Science.gov (United States)

    Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett

    2005-01-01

    The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...

  8. Tutorial: Parallel Computing of Simulation Models for Risk Analysis.

    Science.gov (United States)

    Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D

    2016-10-01

    Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.

  9. Computer simulations of the random barrier model

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Dyre, Jeppe

    2002-01-01

    A brief review of experimental facts regarding ac electronic and ionic conduction in disordered solids is given followed by a discussion of what is perhaps the simplest realistic model, the random barrier model (symmetric hopping model). Results from large scale computer simulations are presented...

  10. Computer Simulation (Microcultures): An Effective Model for Multicultural Education.

    Science.gov (United States)

    Nelson, Jorge O.

    This paper presents a rationale for using high-fidelity computer simulation in planning for and implementing effective multicultural education strategies. Using computer simulation, educators can begin to understand and plan for the concept of cultural sensitivity in delivering instruction. The model promises to emphasize teachers' understanding…

  11. COMPUTER MODEL AND SIMULATION OF A GLOVE BOX PROCESS

    International Nuclear Information System (INIS)

    Foster, C.

    2001-01-01

    The development of facilities to deal with the disposition of nuclear materials at an acceptable level of Occupational Radiation Exposure (ORE) is a significant issue facing the nuclear community. One solution is to minimize the worker's exposure though the use of automated systems. However, the adoption of automated systems for these tasks is hampered by the challenging requirements that these systems must meet in order to be cost effective solutions in the hazardous nuclear materials processing environment. Retrofitting current glove box technologies with automation systems represents potential near-term technology that can be applied to reduce worker ORE associated with work in nuclear materials processing facilities. Successful deployment of automation systems for these applications requires the development of testing and deployment strategies to ensure the highest level of safety and effectiveness. Historically, safety tests are conducted with glove box mock-ups around the finished design. This late detection of problems leads to expensive redesigns and costly deployment delays. With wide spread availability of computers and cost effective simulation software it is possible to discover and fix problems early in the design stages. Computer simulators can easily create a complete model of the system allowing a safe medium for testing potential failures and design shortcomings. The majority of design specification is now done on computer and moving that information to a model is relatively straightforward. With a complete model and results from a Failure Mode Effect Analysis (FMEA), redesigns can be worked early. Additional issues such as user accessibility, component replacement, and alignment problems can be tackled early in the virtual environment provided by computer simulation. In this case, a commercial simulation package is used to simulate a lathe process operation at the Los Alamos National Laboratory (LANL). The Lathe process operation is indicative of

  12. Reproducibility in Computational Neuroscience Models and Simulations

    Science.gov (United States)

    McDougal, Robert A.; Bulanova, Anna S.; Lytton, William W.

    2016-01-01

    Objective Like all scientific research, computational neuroscience research must be reproducible. Big data science, including simulation research, cannot depend exclusively on journal articles as the method to provide the sharing and transparency required for reproducibility. Methods Ensuring model reproducibility requires the use of multiple standard software practices and tools, including version control, strong commenting and documentation, and code modularity. Results Building on these standard practices, model sharing sites and tools have been developed that fit into several categories: 1. standardized neural simulators, 2. shared computational resources, 3. declarative model descriptors, ontologies and standardized annotations; 4. model sharing repositories and sharing standards. Conclusion A number of complementary innovations have been proposed to enhance sharing, transparency and reproducibility. The individual user can be encouraged to make use of version control, commenting, documentation and modularity in development of models. The community can help by requiring model sharing as a condition of publication and funding. Significance Model management will become increasingly important as multiscale models become larger, more detailed and correspondingly more difficult to manage by any single investigator or single laboratory. Additional big data management complexity will come as the models become more useful in interpreting experiments, thus increasing the need to ensure clear alignment between modeling data, both parameters and results, and experiment. PMID:27046845

  13. A computer simulation model to compute the radiation transfer of mountainous regions

    Science.gov (United States)

    Li, Yuguang; Zhao, Feng; Song, Rui

    2011-11-01

    In mountainous regions, the radiometric signal recorded at the sensor depends on a number of factors such as sun angle, atmospheric conditions, surface cover type, and topography. In this paper, a computer simulation model of radiation transfer is designed and evaluated. This model implements the Monte Carlo ray-tracing techniques and is specifically dedicated to the study of light propagation in mountainous regions. The radiative processes between sun light and the objects within the mountainous region are realized by using forward Monte Carlo ray-tracing methods. The performance of the model is evaluated through detailed comparisons with the well-established 3D computer simulation model: RGM (Radiosity-Graphics combined Model) based on the same scenes and identical spectral parameters, which shows good agreements between these two models' results. By using the newly developed computer model, series of typical mountainous scenes are generated to analyze the physical mechanism of mountainous radiation transfer. The results show that the effects of the adjacent slopes are important for deep valleys and they particularly affect shadowed pixels, and the topographic effect needs to be considered in mountainous terrain before accurate inferences from remotely sensed data can be made.

  14. Modeling and simulation the computer science of illusion

    CERN Document Server

    Raczynski, Stanislaw

    2006-01-01

    Simulation is the art of using tools - physical or conceptual models, or computer hardware and software, to attempt to create the illusion of reality. The discipline has in recent years expanded to include the modelling of systems that rely on human factors and therefore possess a large proportion of uncertainty, such as social, economic or commercial systems. These new applications make the discipline of modelling and simulation a field of dynamic growth and new research. Stanislaw Raczynski outlines the considerable and promising research that is being conducted to counter the problems of

  15. Defining epidemics in computer simulation models: How do definitions influence conclusions?

    Directory of Open Access Journals (Sweden)

    Carolyn Orbann

    2017-06-01

    Full Text Available Computer models have proven to be useful tools in studying epidemic disease in human populations. Such models are being used by a broader base of researchers, and it has become more important to ensure that descriptions of model construction and data analyses are clear and communicate important features of model structure. Papers describing computer models of infectious disease often lack a clear description of how the data are aggregated and whether or not non-epidemic runs are excluded from analyses. Given that there is no concrete quantitative definition of what constitutes an epidemic within the public health literature, each modeler must decide on a strategy for identifying epidemics during simulation runs. Here, an SEIR model was used to test the effects of how varying the cutoff for considering a run an epidemic changes potential interpretations of simulation outcomes. Varying the cutoff from 0% to 15% of the model population ever infected with the illness generated significant differences in numbers of dead and timing variables. These results are important for those who use models to form public health policy, in which questions of timing or implementation of interventions might be answered using findings from computer simulation models.

  16. Using Computer Simulations for Promoting Model-based Reasoning. Epistemological and Educational Dimensions

    Science.gov (United States)

    Develaki, Maria

    2017-11-01

    Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students' ability to reason and evaluate in a scientific way. This paper aims (a) to contribute to an extended understanding of the nature and pedagogical importance of model-based reasoning and (b) to exemplify how using computer simulations can support students' model-based reasoning. We provide first a background for both scientific reasoning and computer simulations, based on the relevant philosophical views and the related educational discussion. This background suggests that the model-based framework provides an epistemologically valid and pedagogically appropriate basis for teaching scientific reasoning and for helping students develop sounder reasoning and decision-taking abilities and explains how using computer simulations can foster these abilities. We then provide some examples illustrating the use of computer simulations to support model-based reasoning and evaluation activities in the classroom. The examples reflect the procedure and criteria for evaluating models in science and demonstrate the educational advantages of their application in classroom reasoning activities.

  17. Comprehensive Simulation Lifecycle Management for High Performance Computing Modeling and Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are significant logistical barriers to entry-level high performance computing (HPC) modeling and simulation (M IllinoisRocstar) sets up the infrastructure for...

  18. Atomic-level computer simulation

    International Nuclear Information System (INIS)

    Adams, J.B.; Rockett, Angus; Kieffer, John; Xu Wei; Nomura, Miki; Kilian, K.A.; Richards, D.F.; Ramprasad, R.

    1994-01-01

    This paper provides a broad overview of the methods of atomic-level computer simulation. It discusses methods of modelling atomic bonding, and computer simulation methods such as energy minimization, molecular dynamics, Monte Carlo, and lattice Monte Carlo. ((orig.))

  19. Computer modeling of road bridge for simulation moving load

    Directory of Open Access Journals (Sweden)

    Miličić Ilija M.

    2016-01-01

    Full Text Available In this paper is shown computational modelling one span road structures truss bridge with the roadway on the upper belt of. Calculation models were treated as planar and spatial girders made up of 1D finite elements with applications for CAA: Tower and Bridge Designer 2016 (2nd Edition. The conducted computer simulations results are obtained for each comparison of the impact of moving load according to the recommendations of the two standards SRPS and AASHATO. Therefore, it is a variant of the bridge structure modeling application that provides Bridge Designer 2016 (2nd Edition identical modeled in an environment of Tower. As important information for the selection of a computer applications point out that the application Bridge Designer 2016 (2nd Edition we arent unable to treat the impacts moving load model under national standard - V600. .

  20. Computer models and simulations of IGCC power plants with Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Furimsky, E.

    1999-07-01

    In this paper, three steady state computer models for simulation of IGCC power plants with Shell, Texaco and BGL (British Gas Lurgi) gasifiers will be presented. All models were based on a study by Bechtel for Nova Scotia Power Corporation. They were built by using Advanced System for Process Engineering (ASPEN) steady state simulation software together with Fortran programs developed in house. Each model was integrated from several sections which can be simulated independently, such as coal preparation, gasification, gas cooling, acid gas removing, sulfur recovery, gas turbine, heat recovery steam generation, and steam cycle. A general description of each process, model's overall structure, capability, testing results, and background reference will be given. The performance of some Canadian coals on these models will be discussed as well. The authors also built a computer model of IGCC power plant with Kellogg-Rust-Westinghouse gasifier, however, due to limitation of paper length, it is not presented here.

  1. Mathematical and computational modeling and simulation fundamentals and case studies

    CERN Document Server

    Moeller, Dietmar P F

    2004-01-01

    Mathematical and Computational Modeling and Simulation - a highly multi-disciplinary field with ubiquitous applications in science and engineering - is one of the key enabling technologies of the 21st century. This book introduces to the use of Mathematical and Computational Modeling and Simulation in order to develop an understanding of the solution characteristics of a broad class of real-world problems. The relevant basic and advanced methodologies are explained in detail, with special emphasis on ill-defined problems. Some 15 simulation systems are presented on the language and the logical level. Moreover, the reader can accumulate experience by studying a wide variety of case studies. The latter are briefly described within the book but their full versions as well as some simulation software demos are available on the Web. The book can be used for University courses of different level as well as for self-study. Advanced sections are marked and can be skipped in a first reading or in undergraduate courses...

  2. Methodology for characterizing modeling and discretization uncertainties in computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

    2000-03-01

    This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

  3. A computational model to generate simulated three-dimensional breast masses

    Energy Technology Data Exchange (ETDEWEB)

    Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N., E-mail: wernick@iit.edu [Medical Imaging Research Center, Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Schmidt, Robert A. [Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Nishikawa, Robert M. [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States)

    2015-02-15

    Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and

  4. A computational model to generate simulated three-dimensional breast masses

    International Nuclear Information System (INIS)

    Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N.; Schmidt, Robert A.; Nishikawa, Robert M.

    2015-01-01

    Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and

  5. Interactive virtual simulation using a 3D computer graphics model for microvascular decompression surgery.

    Science.gov (United States)

    Oishi, Makoto; Fukuda, Masafumi; Hiraishi, Tetsuya; Yajima, Naoki; Sato, Yosuke; Fujii, Yukihiko

    2012-09-01

    The purpose of this paper is to report on the authors' advanced presurgical interactive virtual simulation technique using a 3D computer graphics model for microvascular decompression (MVD) surgery. The authors performed interactive virtual simulation prior to surgery in 26 patients with trigeminal neuralgia or hemifacial spasm. The 3D computer graphics models for interactive virtual simulation were composed of the brainstem, cerebellum, cranial nerves, vessels, and skull individually created by the image analysis, including segmentation, surface rendering, and data fusion for data collected by 3-T MRI and 64-row multidetector CT systems. Interactive virtual simulation was performed by employing novel computer-aided design software with manipulation of a haptic device to imitate the surgical procedures of bone drilling and retraction of the cerebellum. The findings were compared with intraoperative findings. In all patients, interactive virtual simulation provided detailed and realistic surgical perspectives, of sufficient quality, representing the lateral suboccipital route. The causes of trigeminal neuralgia or hemifacial spasm determined by observing 3D computer graphics models were concordant with those identified intraoperatively in 25 (96%) of 26 patients, which was a significantly higher rate than the 73% concordance rate (concordance in 19 of 26 patients) obtained by review of 2D images only (p computer graphics model provided a realistic environment for performing virtual simulations prior to MVD surgery and enabled us to ascertain complex microsurgical anatomy.

  6. Simulation of quantum computers

    NARCIS (Netherlands)

    De Raedt, H; Michielsen, K; Hams, AH; Miyashita, S; Saito, K; Landau, DP; Lewis, SP; Schuttler, HB

    2001-01-01

    We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software

  7. Simulation of quantum computers

    NARCIS (Netherlands)

    Raedt, H. De; Michielsen, K.; Hams, A.H.; Miyashita, S.; Saito, K.

    2000-01-01

    We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software

  8. MAPPS (Maintenance Personnel Performance Simulation): a computer simulation model for human reliability analysis

    International Nuclear Information System (INIS)

    Knee, H.E.; Haas, P.M.

    1985-01-01

    A computer model has been developed, sensitivity tested, and evaluated capable of generating reliable estimates of human performance measures in the nuclear power plant (NPP) maintenance context. The model, entitled MAPPS (Maintenance Personnel Performance Simulation), is of the simulation type and is task-oriented. It addresses a number of person-machine, person-environment, and person-person variables and is capable of providing the user with a rich spectrum of important performance measures including mean time for successful task performance by a maintenance team and maintenance team probability of task success. These two measures are particularly important for input to probabilistic risk assessment (PRA) studies which were the primary impetus for the development of MAPPS. The simulation nature of the model along with its generous input parameters and output variables allows its usefulness to extend beyond its input to PRA

  9. Simulation models for computational plasma physics: Concluding report

    International Nuclear Information System (INIS)

    Hewett, D.W.

    1994-01-01

    In this project, the authors enhanced their ability to numerically simulate bounded plasmas that are dominated by low-frequency electric and magnetic fields. They moved towards this goal in several ways; they are now in a position to play significant roles in the modeling of low-frequency electromagnetic plasmas in several new industrial applications. They have significantly increased their facility with the computational methods invented to solve the low frequency limit of Maxwell's equations (DiPeso, Hewett, accepted, J. Comp. Phys., 1993). This low frequency model is called the Streamlined Darwin Field model (SDF, Hewett, Larson, and Doss, J. Comp. Phys., 1992) has now been implemented in a fully non-neutral SDF code BEAGLE (Larson, Ph.D. dissertation, 1993) and has further extended to the quasi-neutral limit (DiPeso, Hewett, Comp. Phys. Comm., 1993). In addition, they have resurrected the quasi-neutral, zero-electron-inertia model (ZMR) and began the task of incorporating internal boundary conditions into this model that have the flexibility of those in GYMNOS, a magnetostatic code now used in ion source work (Hewett, Chen, ICF Quarterly Report, July--September, 1993). Finally, near the end of this project, they invented a new type of banded matrix solver that can be implemented on a massively parallel computer -- thus opening the door for the use of all their ADI schemes on these new computer architecture's (Mattor, Williams, Hewett, submitted to Parallel Computing, 1993)

  10. Modelling physics detectors in a computer aided design system for simulation purposes

    International Nuclear Information System (INIS)

    Ahvenainen, J.; Oksakivi, T.; Vuoskoski, J.

    1995-01-01

    The possibility of transferring physics detector models from computer aided design systems into physics simulation packages like GEANT is receiving increasing attention. The problem of exporting detector models constructed in CAD systems into GEANT is well known. We discuss the problem and describe an application, called DDT, which allows one to design detector models in a CAD system and then transfer the models into GEANT for simulation purposes. (orig.)

  11. Protein adsorption on nanoparticles: model development using computer simulation

    International Nuclear Information System (INIS)

    Shao, Qing; Hall, Carol K

    2016-01-01

    The adsorption of proteins on nanoparticles results in the formation of the protein corona, the composition of which determines how nanoparticles influence their biological surroundings. We seek to better understand corona formation by developing models that describe protein adsorption on nanoparticles using computer simulation results as data. Using a coarse-grained protein model, discontinuous molecular dynamics simulations are conducted to investigate the adsorption of two small proteins (Trp-cage and WW domain) on a model nanoparticle of diameter 10.0 nm at protein concentrations ranging from 0.5 to 5 mM. The resulting adsorption isotherms are well described by the Langmuir, Freundlich, Temkin and Kiselev models, but not by the Elovich, Fowler–Guggenheim and Hill–de Boer models. We also try to develop a generalized model that can describe protein adsorption equilibrium on nanoparticles of different diameters in terms of dimensionless size parameters. The simulation results for three proteins (Trp-cage, WW domain, and GB3) on four nanoparticles (diameter  =  5.0, 10.0, 15.0, and 20.0 nm) illustrate both the promise and the challenge associated with developing generalized models of protein adsorption on nanoparticles. (paper)

  12. HRP's Healthcare Spin-Offs Through Computational Modeling and Simulation Practice Methodologies

    Science.gov (United States)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Peng, Grace; Morrison, Tina; Erdemir, Ahmet; Myers, Jerry

    2014-01-01

    Spaceflight missions expose astronauts to novel operational and environmental conditions that pose health risks that are currently not well understood, and perhaps unanticipated. Furthermore, given the limited number of humans that have flown in long duration missions and beyond low Earth-orbit, the amount of research and clinical data necessary to predict and mitigate these health and performance risks are limited. Consequently, NASA's Human Research Program (HRP) conducts research and develops advanced methods and tools to predict, assess, and mitigate potential hazards to the health of astronauts. In this light, NASA has explored the possibility of leveraging computational modeling since the 1970s as a means to elucidate the physiologic risks of spaceflight and develop countermeasures. Since that time, substantial progress has been realized in this arena through a number of HRP funded activates such as the Digital Astronaut Project (DAP) and the Integrated Medical Model (IMM). Much of this success can be attributed to HRP's endeavor to establish rigorous verification, validation, and credibility (VV&C) processes that ensure computational models and simulations (M&S) are sufficiently credible to address issues within their intended scope. This presentation summarizes HRP's activities in credibility of modeling and simulation, in particular through its outreach to the community of modeling and simulation practitioners. METHODS: The HRP requires all M&S that can have moderate to high impact on crew health or mission success must be vetted in accordance to NASA Standard for Models and Simulations, NASA-STD-7009 (7009) [5]. As this standard mostly focuses on engineering systems, the IMM and DAP have invested substantial efforts to adapt the processes established in this standard for their application to biological M&S, which is more prevalent in human health and performance (HHP) and space biomedical research and operations [6,7]. These methods have also generated

  13. Static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation.

    Science.gov (United States)

    Liu, Jun; Zhang, Liqun; Cao, Dapeng; Wang, Wenchuan

    2009-12-28

    Polymer nanocomposites (PNCs) often exhibit excellent mechanical, thermal, electrical and optical properties, because they combine the performances of both polymers and inorganic or organic nanoparticles. Recently, computer modeling and simulation are playing an important role in exploring the reinforcement mechanism of the PNCs and even the design of functional PNCs. This report provides an overview of the progress made in past decades in the investigation of the static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation. Emphases are placed on exploring the mechanisms at the molecular level for the dispersion of nanoparticles in nanocomposites, the effects of nanoparticles on chain conformation and glass transition temperature (T(g)), as well as viscoelastic and mechanical properties. Finally, some future challenges and opportunities in computer modeling and simulation of PNCs are addressed.

  14. Efficient scatter model for simulation of ultrasound images from computed tomography data

    Science.gov (United States)

    D'Amato, J. P.; Lo Vercio, L.; Rubi, P.; Fernandez Vera, E.; Barbuzza, R.; Del Fresno, M.; Larrabide, I.

    2015-12-01

    Background and motivation: Real-time ultrasound simulation refers to the process of computationally creating fully synthetic ultrasound images instantly. Due to the high value of specialized low cost training for healthcare professionals, there is a growing interest in the use of this technology and the development of high fidelity systems that simulate the acquisitions of echographic images. The objective is to create an efficient and reproducible simulator that can run either on notebooks or desktops using low cost devices. Materials and methods: We present an interactive ultrasound simulator based on CT data. This simulator is based on ray-casting and provides real-time interaction capabilities. The simulation of scattering that is coherent with the transducer position in real time is also introduced. Such noise is produced using a simplified model of multiplicative noise and convolution with point spread functions (PSF) tailored for this purpose. Results: The computational efficiency of scattering maps generation was revised with an improved performance. This allowed a more efficient simulation of coherent scattering in the synthetic echographic images while providing highly realistic result. We describe some quality and performance metrics to validate these results, where a performance of up to 55fps was achieved. Conclusion: The proposed technique for real-time scattering modeling provides realistic yet computationally efficient scatter distributions. The error between the original image and the simulated scattering image was compared for the proposed method and the state-of-the-art, showing negligible differences in its distribution.

  15. Computer simulation of ductile fracture

    International Nuclear Information System (INIS)

    Wilkins, M.L.; Streit, R.D.

    1979-01-01

    Finite difference computer simulation programs are capable of very accurate solutions to problems in plasticity with large deformations and rotation. This opens the possibility of developing models of ductile fracture by correlating experiments with equivalent computer simulations. Selected experiments were done to emphasize different aspects of the model. A difficult problem is the establishment of a fracture-size effect. This paper is a study of the strain field around notched tensile specimens of aluminum 6061-T651. A series of geometrically scaled specimens are tested to fracture. The scaled experiments are conducted for different notch radius-to-diameter ratios. The strains at fracture are determined from computer simulations. An estimate is made of the fracture-size effect

  16. [Economic benefits of overlapping induction: investigation using a computer simulation model].

    Science.gov (United States)

    Hunziker, S; Baumgart, A; Denz, C; Schüpfer, G

    2009-06-01

    The aim of this study was to investigate the potential economic benefit of overlapping anaesthesia induction given that all patient diagnosis-related groups (AP DRG) are used as the model for hospital reimbursement. A computer simulation model was used for this purpose. Due to the resource-intensive production process, the operating room (OR) environment is the most expensive part of the supply chain for surgical disciplines. The economical benefit of a parallel production process (additional personnel, adaptation of the process) as compared to a conventional serial layout was assessed. A computer-based simulation method was used with commercially available simulation software. Assumptions for revenues were made by reimbursement based on AP DRG. Based on a system analysis a model for the computer simulation was designed on a step-by-step abstraction process. In the model two operating rooms were used for parallel processing and two operating rooms for a serial production process. Six different types of surgical procedures based on historical case durations were investigated. The contribution margin was calculated based on the increased revenues minus the cost for the additional anaesthesia personnel. Over a period of 5 weeks 41 additional surgical cases were operated under the assumption of duration of surgery of 89+/-4 min (mean+/-SD). The additional contribution margin was CHF 104,588. In the case of longer surgical procedures with 103+/-25 min duration (mean+/-SD), an increase of 36 cases was possible in the same time period and the contribution margin was increased by CHF 384,836. When surgical cases with a mean procedural time of 243+/-55 min were simulated, 15 additional cases were possible. Therefore, the additional contribution margin was CHF 321,278. Although costs increased in this simulation when a serial production process was changed to a parallel system layout due to more personnel, an increase of the contribution margin was possible, especially with

  17. Trends in Social Science: The Impact of Computational and Simulative Models

    Science.gov (United States)

    Conte, Rosaria; Paolucci, Mario; Cecconi, Federico

    This paper discusses current progress in the computational social sciences. Specifically, it examines the following questions: Are the computational social sciences exhibiting positive or negative developments? What are the roles of agent-based models and simulation (ABM), network analysis, and other "computational" methods within this dynamic? (Conte, The necessity of intelligent agents in social simulation, Advances in Complex Systems, 3(01n04), 19-38, 2000; Conte 2010; Macy, Annual Review of Sociology, 143-166, 2002). Are there objective indicators of scientific growth that can be applied to different scientific areas, allowing for comparison among them? In this paper, some answers to these questions are presented and discussed. In particular, comparisons among different disciplines in the social and computational sciences are shown, taking into account their respective growth trends in the number of publication citations over the last few decades (culled from Google Scholar). After a short discussion of the methodology adopted, results of keyword-based queries are presented, unveiling some unexpected local impacts of simulation on the takeoff of traditionally poorly productive disciplines.

  18. Definition, modeling and simulation of a grid computing system for high throughput computing

    CERN Document Server

    Caron, E; Tsaregorodtsev, A Yu

    2006-01-01

    In this paper, we study and compare grid and global computing systems and outline the benefits of having an hybrid system called dirac. To evaluate the dirac scheduling for high throughput computing, a new model is presented and a simulator was developed for many clusters of heterogeneous nodes belonging to a local network. These clusters are assumed to be connected to each other through a global network and each cluster is managed via a local scheduler which is shared by many users. We validate our simulator by comparing the experimental and analytical results of a M/M/4 queuing system. Next, we do the comparison with a real batch system and we obtain an average error of 10.5% for the response time and 12% for the makespan. We conclude that the simulator is realistic and well describes the behaviour of a large-scale system. Thus we can study the scheduling of our system called dirac in a high throughput context. We justify our decentralized, adaptive and oppor! tunistic approach in comparison to a centralize...

  19. 9th Annual Conference of the North East Polytechnics Mathematical Modelling & Computer Simulation Group

    CERN Document Server

    Bradley, R

    1987-01-01

    In recent years, mathematical modelling allied to computer simulation has emerged as en effective and invaluable design tool for industry and a discipline in its own right. This has been reflected in the popularity of the growing number of courses and conferences devoted to the area. The North East Polytechnics Mathematical Modelling and Computer Simulation Group has a balanced representation of academics and industrialists and, as a Group, has the objective of promoting a continuing partnership between the Polytechnics in the North East and local industry. Prior to the present conference the Group has organised eight conferences with a variety of themes related to mathematical modelling and computer simulation. The theme chosen for the Polymodel 9 Conference held in Newcastle upon Tyne in May 1986 was Industrial Vibration Modelling, which is particularly approp riate for 'Industry Year' and is an area which continues to present industry and academics with new and challenging problems. The aim of the Conferen...

  20. Computational model to simulate the interplay effect in dynamic IMRT delivery

    International Nuclear Information System (INIS)

    Yoganathan, S A; Maria Das, K J; Kumar, Shaleen

    2014-01-01

    The purpose of this study was to develop and experimentally verify a patient specific model for simulating the interplay effect in a DMLC based IMRT delivery. A computational model was developed using MATLAB program to incorporate the interplay effect in a 2D beams eye view fluence of dynamic IMRT fields. To simulate interplay effect, the model requires two inputs: IMRT field (DMLC file with dose rate and MU) and the patient specific respiratory motion. The interplay between the DMLC leaf motion and target was simulated for three lung patients. The target trajectory data was acquired using RPM system during the treatment simulation. The model was verified experimentally for the same patients using Imatrix 2D array device placed over QUASAR motion platform in CL2100 linac. The simulated fluences and measured fluences were compared with the TPS generated static fluence (no motion) using an in-house developed gamma evaluation program (2%/2mm). The simulated results were well within agreement with the measured. Comparison of the simulated and measured fluences with the TPS static fluence resulted 55.3% and 58.5% pixels passed the gamma criteria. A patient specific model was developed and validated for simulating the interplay effect in the dynamic IMRT delivery. This model can be clinically used to quantify the dosimetric uncertainty due to the interplay effect prior to the treatment delivery.

  1. Ravenscar Computational Model compliant AADL Simulation on LEON2

    Directory of Open Access Journals (Sweden)

    Roberto Varona-Gómez

    2013-02-01

    Full Text Available AADL has been proposed for designing and analyzing SW and HW architectures for real-time mission-critical embedded systems. Although the Behavioral Annex improves its simulation semantics, AADL is a language for analyzing architectures and not for simulating them. AADS-T is an AADL simulation tool that supports the performance analysis of the AADL specification throughout the refinement process from the initial system architecture until the complete, detailed application and execution platform are developed. In this way, AADS-T enables the verification of the initial timing constraints during the complete design process. In this paper we focus on the compatibility of AADS-T with the Ravenscar Computational Model (RCM as part of the TASTE toolset. Its flexibility enables AADS-T to support different processors. In this work we have focused on performing the simulation on a LEON2 processor.

  2. HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.

    2016-06-01

    Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is the inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.

  3. Development of a Computational Simulation Model for Conflict Management in Team Building

    Directory of Open Access Journals (Sweden)

    W. M. Wang

    2011-05-01

    Full Text Available Conflict management is one of the most important issues in leveraging organizational competitiveness. However, traditional social scientists built theories or models in this area which were mostly expressed in words and diagrams are insufficient. Social science research based on computational modeling and simulation is beginning to augment traditional theory building. Simulation provides a method for people to try their actions out in a way that is cost effective, faster, appropriate, flexible, and ethical. In this paper, a computational simulation model for conflict management in team building is presented. The model is designed and used to explore the individual performances related to the combination of individuals who have a range of conflict handling styles, under various types of resources and policies. The model is developed based on agent-based modeling method. Each of the agents has one of the five conflict handling styles: accommodation, compromise, competition, contingency, and learning. There are three types of scenarios: normal, convex, and concave. There are two types of policies: no policy, and a reward and punishment policy. Results from running the model are also presented. The simulation has led us to derive two implications concerning conflict management. First, a concave type of resource promotes competition, while convex type of resource promotes compromise and collaboration. Second, the performance ranking of different styles can be influenced by introducing different policies. On the other hand, it is possible for us to promote certain style by introducing different policies.

  4. A web-based, collaborative modeling, simulation, and parallel computing environment for electromechanical systems

    Directory of Open Access Journals (Sweden)

    Xiaoliang Yin

    2015-03-01

    Full Text Available Complex electromechanical system is usually composed of multiple components from different domains, including mechanical, electronic, hydraulic, control, and so on. Modeling and simulation for electromechanical system on a unified platform is one of the research hotspots in system engineering at present. It is also the development trend of the design for complex electromechanical system. The unified modeling techniques and tools based on Modelica language provide a satisfactory solution. To meet with the requirements of collaborative modeling, simulation, and parallel computing for complex electromechanical systems based on Modelica, a general web-based modeling and simulation prototype environment, namely, WebMWorks, is designed and implemented. Based on the rich Internet application technologies, an interactive graphic user interface for modeling and post-processing on web browser was implemented; with the collaborative design module, the environment supports top-down, concurrent modeling and team cooperation; additionally, service-oriented architecture–based architecture was applied to supply compiling and solving services which run on cloud-like servers, so the environment can manage and dispatch large-scale simulation tasks in parallel on multiple computing servers simultaneously. An engineering application about pure electric vehicle is tested on WebMWorks. The results of simulation and parametric experiment demonstrate that the tested web-based environment can effectively shorten the design cycle of the complex electromechanical system.

  5. Distributed simulation of large computer systems

    International Nuclear Information System (INIS)

    Marzolla, M.

    2001-01-01

    Sequential simulation of large complex physical systems is often regarded as a computationally expensive task. In order to speed-up complex discrete-event simulations, the paradigm of Parallel and Distributed Discrete Event Simulation (PDES) has been introduced since the late 70s. The authors analyze the applicability of PDES to the modeling and analysis of large computer system; such systems are increasingly common in the area of High Energy and Nuclear Physics, because many modern experiments make use of large 'compute farms'. Some feasibility tests have been performed on a prototype distributed simulator

  6. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    Science.gov (United States)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  7. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  8. Quantification of remodeling parameter sensitivity - assessed by a computer simulation model

    DEFF Research Database (Denmark)

    Thomsen, J.S.; Mosekilde, Li.; Mosekilde, Erik

    1996-01-01

    We have used a computer simulation model to evaluate the effect of several bone remodeling parameters on vertebral cancellus bone. The menopause was chosen as the base case scenario, and the sensitivity of the model to the following parameters was investigated: activation frequency, formation bal....... However, the formation balance was responsible for the greater part of total mass loss....

  9. Highway traffic simulation on multi-processor computers

    Energy Technology Data Exchange (ETDEWEB)

    Hanebutte, U.R.; Doss, E.; Tentner, A.M.

    1997-04-01

    A computer model has been developed to simulate highway traffic for various degrees of automation with a high level of fidelity in regard to driver control and vehicle characteristics. The model simulates vehicle maneuvering in a multi-lane highway traffic system and allows for the use of Intelligent Transportation System (ITS) technologies such as an Automated Intelligent Cruise Control (AICC). The structure of the computer model facilitates the use of parallel computers for the highway traffic simulation, since domain decomposition techniques can be applied in a straight forward fashion. In this model, the highway system (i.e. a network of road links) is divided into multiple regions; each region is controlled by a separate link manager residing on an individual processor. A graphical user interface augments the computer model kv allowing for real-time interactive simulation control and interaction with each individual vehicle and road side infrastructure element on each link. Average speed and traffic volume data is collected at user-specified loop detector locations. Further, as a measure of safety the so- called Time To Collision (TTC) parameter is being recorded.

  10. Efficiency using computer simulation of Reverse Threshold Model Theory on assessing a “One Laptop Per Child” computer versus desktop computer

    Directory of Open Access Journals (Sweden)

    Supat Faarungsang

    2017-04-01

    Full Text Available The Reverse Threshold Model Theory (RTMT model was introduced based on limiting factor concepts, but its efficiency compared to the Conventional Model (CM has not been published. This investigation assessed the efficiency of RTMT compared to CM using computer simulation on the “One Laptop Per Child” computer and a desktop computer. Based on probability values, it was found that RTMT was more efficient than CM among eight treatment combinations and an earlier study verified that RTMT gives complete elimination of random error. Furthermore, RTMT has several advantages over CM and is therefore proposed to be applied to most research data.

  11. Cognitive models embedded in system simulation models

    International Nuclear Information System (INIS)

    Siegel, A.I.; Wolf, J.J.

    1982-01-01

    If we are to discuss and consider cognitive models, we must first come to grips with two questions: (1) What is cognition; (2) What is a model. Presumably, the answers to these questions can provide a basis for defining a cognitive model. Accordingly, this paper first places these two questions into perspective. Then, cognitive models are set within the context of computer simulation models and a number of computer simulations of cognitive processes are described. Finally, pervasive issues are discussed vis-a-vis cognitive modeling in the computer simulation context

  12. Cluster computing software for GATE simulations

    International Nuclear Information System (INIS)

    Beenhouwer, Jan de; Staelens, Steven; Kruecker, Dirk; Ferrer, Ludovic; D'Asseler, Yves; Lemahieu, Ignace; Rannou, Fernando R.

    2007-01-01

    Geometry and tracking (GEANT4) is a Monte Carlo package designed for high energy physics experiments. It is used as the basis layer for Monte Carlo simulations of nuclear medicine acquisition systems in GEANT4 Application for Tomographic Emission (GATE). GATE allows the user to realistically model experiments using accurate physics models and time synchronization for detector movement through a script language contained in a macro file. The downside of this high accuracy is long computation time. This paper describes a platform independent computing approach for running GATE simulations on a cluster of computers in order to reduce the overall simulation time. Our software automatically creates fully resolved, nonparametrized macros accompanied with an on-the-fly generated cluster specific submit file used to launch the simulations. The scalability of GATE simulations on a cluster is investigated for two imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT). Due to a higher sensitivity, PET simulations are characterized by relatively high data output rates that create rather large output files. SPECT simulations, on the other hand, have lower data output rates but require a long collimator setup time. Both of these characteristics hamper scalability as a function of the number of CPUs. The scalability of PET simulations is improved here by the development of a fast output merger. The scalability of SPECT simulations is improved by greatly reducing the collimator setup time. Accordingly, these two new developments result in higher scalability for both PET and SPECT simulations and reduce the computation time to more practical values

  13. Launch Site Computer Simulation and its Application to Processes

    Science.gov (United States)

    Sham, Michael D.

    1995-01-01

    This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.

  14. Exploring Students' Computational Thinking Skills in Modeling and Simulation Projects: : A Pilot Study

    NARCIS (Netherlands)

    Grgurina, Natasa; van Veen, Klaas; Barendsen, Erik; Zwaneveld, Bert; Suhre, Cor; Gal-Ezer, Judith; Sentance, Sue; Vahrenhold, Jan

    2015-01-01

    Computational Thinking (CT) is gaining a lot of attention in education. We explored how to discern the occurrences of CT in the projects of 12th grade high school students in the computer science (CS) course. Within the projects, they constructed models and ran simulations of phenomena from other

  15. HTTR plant dynamic simulation using a hybrid computer

    International Nuclear Information System (INIS)

    Shimazaki, Junya; Suzuki, Katsuo; Nabeshima, Kunihiko; Watanabe, Koichi; Shinohara, Yoshikuni; Nakagawa, Shigeaki.

    1990-01-01

    A plant dynamic simulation of High-Temperature Engineering Test Reactor has been made using a new-type hybrid computer. This report describes a dynamic simulation model of HTTR, a hybrid simulation method for SIMSTAR and some results obtained from dynamics analysis of HTTR simulation. It concludes that the hybrid plant simulation is useful for on-line simulation on account of its capability of computation at high speed, compared with that of all digital computer simulation. With sufficient accuracy, 40 times faster computation than real time was reached only by changing an analog time scale for HTTR simulation. (author)

  16. Alternative energy technologies an introduction with computer simulations

    CERN Document Server

    Buxton, Gavin

    2014-01-01

    Introduction to Alternative Energy SourcesGlobal WarmingPollutionSolar CellsWind PowerBiofuelsHydrogen Production and Fuel CellsIntroduction to Computer ModelingBrief History of Computer SimulationsMotivation and Applications of Computer ModelsUsing Spreadsheets for SimulationsTyping Equations into SpreadsheetsFunctions Available in SpreadsheetsRandom NumbersPlotting DataMacros and ScriptsInterpolation and ExtrapolationNumerical Integration and Diffe

  17. Quasi-monte carlo simulation and variance reduction techniques substantially reduce computational requirements of patient-level simulation models: An application to a discrete event simulation model

    NARCIS (Netherlands)

    Treur, M.; Postma, M.

    2014-01-01

    Objectives: Patient-level simulation models provide increased flexibility to overcome the limitations of cohort-based approaches in health-economic analysis. However, computational requirements of reaching convergence is a notorious barrier. The objective was to assess the impact of using

  18. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y W [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Zhang, L F [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Huang, J P [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China)

    2007-07-20

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property.

  19. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    International Nuclear Information System (INIS)

    Chen, Y W; Zhang, L F; Huang, J P

    2007-01-01

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property

  20. Integrating surrogate models into subsurface simulation framework allows computation of complex reactive transport scenarios

    Science.gov (United States)

    De Lucia, Marco; Kempka, Thomas; Jatnieks, Janis; Kühn, Michael

    2017-04-01

    Reactive transport simulations - where geochemical reactions are coupled with hydrodynamic transport of reactants - are extremely time consuming and suffer from significant numerical issues. Given the high uncertainties inherently associated with the geochemical models, which also constitute the major computational bottleneck, such requirements may seem inappropriate and probably constitute the main limitation for their wide application. A promising way to ease and speed-up such coupled simulations is achievable employing statistical surrogates instead of "full-physics" geochemical models [1]. Data-driven surrogates are reduced models obtained on a set of pre-calculated "full physics" simulations, capturing their principal features while being extremely fast to compute. Model reduction of course comes at price of a precision loss; however, this appears justified in presence of large uncertainties regarding the parametrization of geochemical processes. This contribution illustrates the integration of surrogates into the flexible simulation framework currently being developed by the authors' research group [2]. The high level language of choice for obtaining and dealing with surrogate models is R, which profits from state-of-the-art methods for statistical analysis of large simulations ensembles. A stand-alone advective mass transport module was furthermore developed in order to add such capability to any multiphase finite volume hydrodynamic simulator within the simulation framework. We present 2D and 3D case studies benchmarking the performance of surrogates and "full physics" chemistry in scenarios pertaining the assessment of geological subsurface utilization. [1] Jatnieks, J., De Lucia, M., Dransch, D., Sips, M.: "Data-driven surrogate model approach for improving the performance of reactive transport simulations.", Energy Procedia 97, 2016, p. 447-453. [2] Kempka, T., Nakaten, B., De Lucia, M., Nakaten, N., Otto, C., Pohl, M., Chabab [Tillner], E., Kühn, M

  1. Computer simulation of the martensite transformation in a model two-dimensional body

    International Nuclear Information System (INIS)

    Chen, S.; Khachaturyan, A.G.; Morris, J.W. Jr.

    1979-05-01

    An analytical model of a martensitic transformation in an idealized body is constructed and used to carry out a computer simulation of the transformation in a pseudo-two-dimensional crystal. The reaction is assumed to proceed through the sequential transformation of elementary volumes (elementary martensitic particles, EMP) via the Bain strain. The elastic interaction between these volumes is computed and the transformation path chosen so as to minimize the total free energy. The model transformation shows interesting qualitative correspondencies with the known features of martensitic transformations in typical solids

  2. Computer simulation of the martensite transformation in a model two-dimensional body

    International Nuclear Information System (INIS)

    Chen, S.; Khachaturyan, A.G.; Morris, J.W. Jr.

    1979-06-01

    An analytical model of a martensitic transformation in an idealized body is constructed and used to carry out a computer simulation of the transformation in a pseudo-two-dimensional crystal. The reaction is assumed to proceed through the sequential transformation of elementary volumes (elementary martensitic particles, EMP) via the Bain strain. The elastic interaction between these volumes is computed and the transformation path chosen so as to minimize the total free energy. The model transformation shows interesting qualitative correspondencies with the known features of martensitic transformations in typical solids

  3. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, M.; Esch, M. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  4. Computer simulation modeling of recreation use: Current status, case studies, and future directions

    Science.gov (United States)

    David N. Cole

    2005-01-01

    This report compiles information about recent progress in the application of computer simulation modeling to planning and management of recreation use, particularly in parks and wilderness. Early modeling efforts are described in a chapter that provides an historical perspective. Another chapter provides an overview of modeling options, common data input requirements,...

  5. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. Computer Based ... universities, and later did system analysis, ... sonal computers (PC) and low cost software packages and tools. They can serve as useful learning experience through student projects. Models are .... Let us consider a numerical example: to calculate the velocity of a trainer aircraft ...

  6. A virtual surgical training system that simulates cutting of soft tissue using a modified pre-computed elastic model.

    Science.gov (United States)

    Toe, Kyaw Kyar; Huang, Weimin; Yang, Tao; Duan, Yuping; Zhou, Jiayin; Su, Yi; Teo, Soo-Kng; Kumar, Selvaraj Senthil; Lim, Calvin Chi-Wan; Chui, Chee Kong; Chang, Stephen

    2015-08-01

    This work presents a surgical training system that incorporates cutting operation of soft tissue simulated based on a modified pre-computed linear elastic model in the Simulation Open Framework Architecture (SOFA) environment. A precomputed linear elastic model used for the simulation of soft tissue deformation involves computing the compliance matrix a priori based on the topological information of the mesh. While this process may require a few minutes to several hours, based on the number of vertices in the mesh, it needs only to be computed once and allows real-time computation of the subsequent soft tissue deformation. However, as the compliance matrix is based on the initial topology of the mesh, it does not allow any topological changes during simulation, such as cutting or tearing of the mesh. This work proposes a way to modify the pre-computed data by correcting the topological connectivity in the compliance matrix, without re-computing the compliance matrix which is computationally expensive.

  7. Computer Simulations, Disclosure and Duty of Care

    Directory of Open Access Journals (Sweden)

    John Barlow

    2006-05-01

    Full Text Available Computer simulations provide cost effective methods for manipulating and modeling 'reality'. However they are not real. They are imitations of a system or event, real or fabricated, and as such mimic, duplicate or represent that system or event. The degree to which a computer simulation aligns with and reproduces the ‘reality’ of the system or event it attempts to mimic or duplicate depends upon many factors including the efficiency of the simulation algorithm, the processing power of the computer hardware used to run the simulation model, and the expertise, assumptions and prejudices of those concerned with designing, implementing and interpreting the simulation output. Computer simulations in particular are increasingly replacing physical experimentation in many disciplines, and as a consequence, are used to underpin quite significant decision-making which may impact on ‘innocent’ third parties. In this context, this paper examines two interrelated issues: Firstly, how much and what kind of information should a simulation builder be required to disclose to potential users of the simulation? Secondly, what are the implications for a decision-maker who acts on the basis of their interpretation of a simulation output without any reference to its veracity, which may in turn comprise the safety of other parties?

  8. Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory

    Science.gov (United States)

    Westera, Wim

    2018-01-01

    This paper presents a computational model for simulating how people learn from serious games. While avoiding the combinatorial explosion of a games micro-states, the model offers a meso-level pathfinding approach, which is guided by cognitive flow theory and various concepts from learning sciences. It extends a basic, existing model by exposing…

  9. Numerical characteristics of quantum computer simulation

    Science.gov (United States)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  10. Towards an integrative computational model for simulating tumor growth and response to radiation therapy

    Science.gov (United States)

    Marrero, Carlos Sosa; Aubert, Vivien; Ciferri, Nicolas; Hernández, Alfredo; de Crevoisier, Renaud; Acosta, Oscar

    2017-11-01

    Understanding the response to irradiation in cancer radiotherapy (RT) may help devising new strategies with improved tumor local control. Computational models may allow to unravel the underlying radiosensitive mechanisms intervening in the dose-response relationship. By using extensive simulations a wide range of parameters may be evaluated providing insights on tumor response thus generating useful data to plan modified treatments. We propose in this paper a computational model of tumor growth and radiation response which allows to simulate a whole RT protocol. Proliferation of tumor cells, cell life-cycle, oxygen diffusion, radiosensitivity, RT response and resorption of killed cells were implemented in a multiscale framework. The model was developed in C++, using the Multi-formalism Modeling and Simulation Library (M2SL). Radiosensitivity parameters extracted from literature enabled us to simulate in a regular grid (voxel-wise) a prostate cell tissue. Histopathological specimens with different aggressiveness levels extracted from patients after prostatectomy were used to initialize in silico simulations. Results on tumor growth exhibit a good agreement with data from in vitro studies. Moreover, standard fractionation of 2 Gy/fraction, with a total dose of 80 Gy as a real RT treatment was applied with varying radiosensitivity and oxygen diffusion parameters. As expected, the high influence of these parameters was observed by measuring the percentage of survival tumor cell after RT. This work paves the way to further models allowing to simulate increased doses in modified hypofractionated schemes and to develop new patient-specific combined therapies.

  11. Computer simulation of liquid crystals

    International Nuclear Information System (INIS)

    McBride, C.

    1999-01-01

    Molecular dynamics simulation performed on modern computer workstations provides a powerful tool for the investigation of the static and dynamic characteristics of liquid crystal phases. In this thesis molecular dynamics computer simulations have been performed for two model systems. Simulations of 4,4'-di-n-pentyl-bibicyclo[2.2.2]octane demonstrate the growth of a structurally ordered phase directly from an isotropic fluid. This is the first time that this has been achieved for an atomistic model. The results demonstrate a strong coupling between orientational ordering and molecular shape, but indicate that the coupling between molecular conformational changes and molecular reorientation is relatively weak. Simulations have also been performed for a hybrid Gay-Berne/Lennard-Jones model resulting in thermodynamically stable nematic and smectic phases. Frank elastic constants have been calculated for the nematic phase formed by the hybrid model through analysis of the fluctuations of the nematic director, giving results comparable with those found experimentally. Work presented in this thesis also describes the parameterization of the torsional potential of a fragment of a dimethyl siloxane polymer chain, disiloxane diol (HOMe 2 Si) 2 O, using ab initio quantum mechanical calculations. (author)

  12. Analyzing Robotic Kinematics Via Computed Simulations

    Science.gov (United States)

    Carnahan, Timothy M.

    1992-01-01

    Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.

  13. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, W.; Esch, M.

    1992-09-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study is undertaken in order to show the advantage of this biome model in comprehensively diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rain fall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential North-East shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favorable for the existence of certain biomes, not as a prediction of a future distribution of biomes. (orig.).

  14. Finite element simulation of nanoindentation tests using a macroscopic computational model

    International Nuclear Information System (INIS)

    Khelifa, Mourad; Fierro, Vanessa; Celzard, Alain

    2014-01-01

    The aim of this work was to develop a numerical procedure to simulate nanoindentation tests using a macroscopic computational model. Both theoretical and numerical aspects of the proposed methodology, based on the coupling of isotropic elasticity and anisotropic plasticity described with the quadratic criterion of Hill are presented to model this behaviour. The anisotropic plastic behaviour accounts for the mixed nonlinear hardening (isotropic and kinematic) under large plastic deformation. Nanoindentation tests were simulated to analyse the nonlinear mechanical behaviour of aluminium alloy. The predicted results of the finite element (FE) modelling are in good agreement with the experimental data, thereby confirming the accuracy level of the suggested FE method of analysis. The effects of some technological and mechanical parameters known to have an influence during the nanoindentation tests were also investigated.

  15. Inversion based on computational simulations

    International Nuclear Information System (INIS)

    Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.

    1998-01-01

    A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal

  16. Subject-specific computer simulation model for determining elbow loading in one-handed tennis backhand groundstrokes.

    Science.gov (United States)

    King, Mark A; Glynn, Jonathan A; Mitchell, Sean R

    2011-11-01

    A subject-specific angle-driven computer model of a tennis player, combined with a forward dynamics, equipment-specific computer model of tennis ball-racket impacts, was developed to determine the effect of ball-racket impacts on loading at the elbow for one-handed backhand groundstrokes. Matching subject-specific computer simulations of a typical topspin/slice one-handed backhand groundstroke performed by an elite tennis player were done with root mean square differences between performance and matching simulations of elbow loading for a topspin and slice one-handed backhand groundstroke is relatively small. In this study, the relatively small differences in elbow loading may be due to comparable angle-time histories at the wrist and elbow joints with the major kinematic differences occurring at the shoulder. Using a subject-specific angle-driven computer model combined with a forward dynamics, equipment-specific computer model of tennis ball-racket impacts allows peak internal loading, net impulse, and shock due to ball-racket impact to be calculated which would not otherwise be possible without impractical invasive techniques. This study provides a basis for further investigation of the factors that may increase elbow loading during tennis strokes.

  17. Biomass Gasifier for Computer Simulation; Biomassa foergasare foer Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Jens; Leveau, Andreas; Hulteberg, Christian [Nordlight AB, Limhamn (Sweden)

    2011-08-15

    This report is an effort to summarize the existing data on biomass gasifiers as the authors have taken part in various projects aiming at computer simulations of systems that include biomass gasification. Reliable input data is paramount for any computer simulation, but so far there is no easy-accessible biomass gasifier database available for this purpose. This study aims at benchmarking current and past gasifier systems in order to create a comprehensive database for computer simulation purposes. The result of the investigation is presented in a Microsoft Excel sheet, so that the user easily can implement the data in their specific model. In addition to provide simulation data, the technology is described briefly for every studied gasifier system. The primary pieces of information that are sought for are temperatures, pressures, stream compositions and energy consumption. At present the resulting database contains 17 gasifiers, with one or more gasifier within the different gasification technology types normally discussed in this context: 1. Fixed bed 2. Fluidised bed 3. Entrained flow. It also contains gasifiers in the range from 100 kW to 120 MW, with several gasifiers in between these two values. Finally, there are gasifiers representing both direct and indirect heating. This allows for a more qualified and better available choice of starting data sets for simulations. In addition to this, with multiple data sets available for several of the operating modes, sensitivity analysis of various inputs will improve simulations performed. However, there have been fewer answers to the survey than expected/hoped for, which could have improved the database further. However, the use of online sources and other public information has to some extent counterbalanced the low response frequency of the survey. In addition to that, the database is preferred to be a living document, continuously updated with new gasifiers and improved information on existing gasifiers.

  18. Understanding Islamist political violence through computational social simulation

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jennifer H [Los Alamos National Laboratory; Mackerrow, Edward P [Los Alamos National Laboratory; Patelli, Paolo G [Los Alamos National Laboratory; Eberhardt, Ariane [Los Alamos National Laboratory; Stradling, Seth G [Los Alamos National Laboratory

    2008-01-01

    Understanding the process that enables political violence is of great value in reducing the future demand for and support of violent opposition groups. Methods are needed that allow alternative scenarios and counterfactuals to be scientifically researched. Computational social simulation shows promise in developing 'computer experiments' that would be unfeasible or unethical in the real world. Additionally, the process of modeling and simulation reveals and challenges assumptions that may not be noted in theories, exposes areas where data is not available, and provides a rigorous, repeatable, and transparent framework for analyzing the complex dynamics of political violence. This paper demonstrates the computational modeling process using two simulation techniques: system dynamics and agent-based modeling. The benefits and drawbacks of both techniques are discussed. In developing these social simulations, we discovered that the social science concepts and theories needed to accurately simulate the associated psychological and social phenomena were lacking.

  19. Parallel Computing for Brain Simulation.

    Science.gov (United States)

    Pastur-Romay, L A; Porto-Pazos, A B; Cedron, F; Pazos, A

    2017-01-01

    The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Automatic Model Generation Framework for Computational Simulation of Cochlear Implantation.

    Science.gov (United States)

    Mangado, Nerea; Ceresa, Mario; Duchateau, Nicolas; Kjer, Hans Martin; Vera, Sergio; Dejea Velardo, Hector; Mistrik, Pavel; Paulsen, Rasmus R; Fagertun, Jens; Noailly, Jérôme; Piella, Gemma; González Ballester, Miguel Ángel

    2016-08-01

    Recent developments in computational modeling of cochlear implantation are promising to study in silico the performance of the implant before surgery. However, creating a complete computational model of the patient's anatomy while including an external device geometry remains challenging. To address such a challenge, we propose an automatic framework for the generation of patient-specific meshes for finite element modeling of the implanted cochlea. First, a statistical shape model is constructed from high-resolution anatomical μCT images. Then, by fitting the statistical model to a patient's CT image, an accurate model of the patient-specific cochlea anatomy is obtained. An algorithm based on the parallel transport frame is employed to perform the virtual insertion of the cochlear implant. Our automatic framework also incorporates the surrounding bone and nerve fibers and assigns constitutive parameters to all components of the finite element model. This model can then be used to study in silico the effects of the electrical stimulation of the cochlear implant. Results are shown on a total of 25 models of patients. In all cases, a final mesh suitable for finite element simulations was obtained, in an average time of 94 s. The framework has proven to be fast and robust, and is promising for a detailed prognosis of the cochlear implantation surgery.

  1. Predictive Capability Maturity Model for computational modeling and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

  2. Computer Simulation of a Hardwood Processing Plant

    Science.gov (United States)

    D. Earl Kline; Philip A. Araman

    1990-01-01

    The overall purpose of this paper is to introduce computer simulation as a decision support tool that can be used to provide managers with timely information. A simulation/animation modeling procedure is demonstrated for wood products manufacuring systems. Simulation modeling techniques are used to assist in identifying and solving problems. Animation is used for...

  3. Atomistic computer simulations a practical guide

    CERN Document Server

    Brazdova, Veronika

    2013-01-01

    Many books explain the theory of atomistic computer simulations; this book teaches you how to run them This introductory ""how to"" title enables readers to understand, plan, run, and analyze their own independent atomistic simulations, and decide which method to use and which questions to ask in their research project. It is written in a clear and precise language, focusing on a thorough understanding of the concepts behind the equations and how these are used in the simulations. As a result, readers will learn how to design the computational model and which parameters o

  4. Predicting knee replacement damage in a simulator machine using a computational model with a consistent wear factor.

    Science.gov (United States)

    Zhao, Dong; Sakoda, Hideyuki; Sawyer, W Gregory; Banks, Scott A; Fregly, Benjamin J

    2008-02-01

    Wear of ultrahigh molecular weight polyethylene remains a primary factor limiting the longevity of total knee replacements (TKRs). However, wear testing on a simulator machine is time consuming and expensive, making it impractical for iterative design purposes. The objectives of this paper were first, to evaluate whether a computational model using a wear factor consistent with the TKR material pair can predict accurate TKR damage measured in a simulator machine, and second, to investigate how choice of surface evolution method (fixed or variable step) and material model (linear or nonlinear) affect the prediction. An iterative computational damage model was constructed for a commercial knee implant in an AMTI simulator machine. The damage model combined a dynamic contact model with a surface evolution model to predict how wear plus creep progressively alter tibial insert geometry over multiple simulations. The computational framework was validated by predicting wear in a cylinder-on-plate system for which an analytical solution was derived. The implant damage model was evaluated for 5 million cycles of simulated gait using damage measurements made on the same implant in an AMTI machine. Using a pin-on-plate wear factor for the same material pair as the implant, the model predicted tibial insert wear volume to within 2% error and damage depths and areas to within 18% and 10% error, respectively. Choice of material model had little influence, while inclusion of surface evolution affected damage depth and area but not wear volume predictions. Surface evolution method was important only during the initial cycles, where variable step was needed to capture rapid geometry changes due to the creep. Overall, our results indicate that accurate TKR damage predictions can be made with a computational model using a constant wear factor obtained from pin-on-plate tests for the same material pair, and furthermore, that surface evolution method matters only during the initial

  5. Application of Computer Simulation Modeling to Medication Administration Process Redesign

    OpenAIRE

    Huynh, Nathan; Snyder, Rita; Vidal, Jose M.; Tavakoli, Abbas S.; Cai, Bo

    2012-01-01

    The medication administration process (MAP) is one of the most high-risk processes in health care. MAP workflow redesign can precipitate both unanticipated and unintended consequences that can lead to new medication safety risks and workflow inefficiencies. Thus, it is necessary to have a tool to evaluate the impact of redesign approaches in advance of their clinical implementation. This paper discusses the development of an agent-based MAP computer simulation model that can be used to assess...

  6. Computational simulation of a non-newtonian model of the blood separation process.

    Science.gov (United States)

    De Gruttola, Sandro; Boomsma, Kevin; Poulikakos, Dimos

    2005-12-01

    The aim of this work is to construct a computational fluid dynamics model capable of simulating the transient non-Newtonian process of apheresis. A Lagrangian-Eulerian model has been developed which tracks the blood particles within a two-dimensional flow configuration. Within the Eulerian method, the fluid mass and momentum conservation equations within the separator are solved using the density and the viscosity is calculated from the blood particle concentrations. Subsequently, the displacement of the blood particles is calculated with a Lagrangian method. Hawksley's model for the density of supensions is used in the variable density calculation. The viscosity is calculated with two models based on Vand's rigid particle suspension viscosity concepts, followed by the flow field calculation in the separator. Simulations were performed for various inlet hematocrit values and separator lengths. The simulations are in satisfactory agreement with experimental results reported in literature, indicating a complete separation of plasma and red blood cells (RBCs), as well as nearly complete separation of red blood cells and platelets. No hemolysis was observed in the simulations because the shear rate remained under the critical value of 150 N/m2.

  7. The computer simulation of the resonant network for the B-factory model power supply

    International Nuclear Information System (INIS)

    Zhou, W.; Endo, K.

    1993-07-01

    A high repetition model power supply and the resonant magnet network are simulated with the computer in order to check and improve the design of the power supply for the B-factory booster. We put our key point on a transient behavior of the power supply and the resonant magnet network. The results of the simulation are given. (author)

  8. A model ecosystem experiment and its computational simulation studies

    International Nuclear Information System (INIS)

    Doi, M.

    2002-01-01

    Simplified microbial model ecosystem and its computer simulation model are introduced as eco-toxicity test for the assessment of environmental responses from the effects of environmental impacts. To take the effects on the interactions between species and environment into account, one option is to select the keystone species on the basis of ecological knowledge, and to put it in the single-species toxicity test. Another option proposed is to put the eco-toxicity tests as experimental micro ecosystem study and a theoretical model ecosystem analysis. With these tests, the stressors which are more harmful to the ecosystems should be replace with less harmful ones on the basis of unified measures. Management of radioactive materials, chemicals, hyper-eutrophic, and other artificial disturbances of ecosystem should be discussed consistently from the unified view point of environmental protection. (N.C.)

  9. Computer aided design of Langasite resonant cantilevers: analytical models and simulations

    Science.gov (United States)

    Tellier, C. R.; Leblois, T. G.; Durand, S.

    2010-05-01

    Analytical models for the piezoelectric excitation and for the wet micromachining of resonant cantilevers are proposed. Firstly, computations of metrological performances of micro-resonators allow us to select special cuts and special alignment of the cantilevers. Secondly the self-elaborated simulator TENSOSIM based on the kinematic and tensorial model furnishes etching shapes of cantilevers. As the result the number of selected cuts is reduced. Finally the simulator COMSOL® is used to evaluate the influence of final etching shape on metrological performances and especially on the resonance frequency. Changes in frequency are evaluated and deviating behaviours of structures with less favourable built-ins are tested showing that the X cut is the best cut for LGS resonant cantilevers vibrating in flexural modes (type 1 and type 2) or in torsion mode.

  10. A computational platform for modeling and simulation of pipeline georeferencing systems

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, A.G.; Pellanda, P.C.; Gois, J.A. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Roquette, P.; Pinto, M.; Durao, R. [Instituto de Pesquisas da Marinha (IPqM), Rio de Janeiro, RJ (Brazil); Silva, M.S.V.; Martins, W.F.; Camillo, L.M.; Sacsa, R.P.; Madeira, B. [Ministerio de Ciencia e Tecnologia (CT-PETRO2006MCT), Brasilia, DF (Brazil). Financiadora de Estudos e Projetos (FINEP). Plano Nacional de Ciencia e Tecnologia do Setor Petroleo e Gas Natural

    2009-07-01

    This work presents a computational platform for modeling and simulation of pipeline geo referencing systems, which was developed based on typical pipeline characteristics, on the dynamical modeling of Pipeline Inspection Gauge (PIG) and on the analysis and implementation of an inertial navigation algorithm. The software environment of PIG trajectory simulation and navigation allows the user, through a friendly interface, to carry-out evaluation tests of the inertial navigation system under different scenarios. Therefore, it is possible to define the required specifications of the pipeline geo referencing system components, such as: required precision of inertial sensors, characteristics of the navigation auxiliary system (GPS surveyed control points, odometers etc.), pipeline construction information to be considered in order to improve the trajectory estimation precision, and the signal processing techniques more suitable for the treatment of inertial sensors data. The simulation results are analyzed through the evaluation of several performance metrics usually considered in inertial navigation applications, and 2D and 3D plots of trajectory estimation error and of recovered trajectory in the three coordinates are made available to the user. This paper presents the simulation platform and its constituting modules and defines their functional characteristics and interrelationships.(author)

  11. Noise simulation in cone beam CT imaging with parallel computing

    International Nuclear Information System (INIS)

    Tu, S.-J.; Shaw, Chris C; Chen, Lingyun

    2006-01-01

    We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation

  12. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  13. Electromagnetic Computation and Visualization of Transmission Particle Model and Its Simulation Based on GPU

    Directory of Open Access Journals (Sweden)

    Yingnian Wu

    2014-01-01

    Full Text Available Electromagnetic calculation plays an important role in both military and civic fields. Some methods and models proposed for calculation of electromagnetic wave propagation in a large range bring heavy burden in CPU computation and also require huge amount of memory. Using the GPU to accelerate computation and visualization can reduce the computational burden on the CPU. Based on forward ray-tracing method, a transmission particle model (TPM for calculating electromagnetic field is presented to combine the particle method. The movement of a particle obeys the principle of the propagation of electromagnetic wave, and then the particle distribution density in space reflects the electromagnetic distribution status. The algorithm with particle transmission, movement, reflection, and diffraction is described in detail. Since the particles in TPM are completely independent, it is very suitable for the parallel computing based on GPU. Deduction verification of TPM with the electric dipole antenna as the transmission source is conducted to prove that the particle movement itself represents the variation of electromagnetic field intensity caused by diffusion. Finally, the simulation comparisons are made against the forward and backward ray-tracing methods. The simulation results verified the effectiveness of the proposed method.

  14. The role of computer simulation in nuclear technologies development

    International Nuclear Information System (INIS)

    Tikhonchev, M.Yu.; Shimansky, G.A.; Lebedeva, E.E.; Lichadeev, V. V.; Ryazanov, D.K.; Tellin, A.I.

    2001-01-01

    In the report the role and purposes of computer simulation in nuclear technologies development is discussed. The authors consider such applications of computer simulation as nuclear safety researches, optimization of technical and economic parameters of acting nuclear plant, planning and support of reactor experiments, research and design new devices and technologies, design and development of 'simulators' for operating personnel training. Among marked applications the following aspects of computer simulation are discussed in the report: neutron-physical, thermal and hydrodynamics models, simulation of isotope structure change and damage dose accumulation for materials under irradiation, simulation of reactor control structures. (authors)

  15. Progress in modeling and simulation.

    Science.gov (United States)

    Kindler, E

    1998-01-01

    For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.

  16. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    Science.gov (United States)

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Computer simulation of two-phase flow in nuclear reactors

    International Nuclear Information System (INIS)

    Wulff, W.

    1993-01-01

    Two-phase flow models dominate the requirements of economic resources for the development and use of computer codes which serve to analyze thermohydraulic transients in nuclear power plants. An attempt is made to reduce the effort of analyzing reactor transients by combining purpose-oriented modelling with advanced computing techniques. Six principles are presented on mathematical modeling and the selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited than the two-fluid model for the analysis of two-phase flow in nuclear reactors, because of the latter's closure problems. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost. (orig.)

  18. Scientific computer simulation review

    International Nuclear Information System (INIS)

    Kaizer, Joshua S.; Heller, A. Kevin; Oberkampf, William L.

    2015-01-01

    Before the results of a scientific computer simulation are used for any purpose, it should be determined if those results can be trusted. Answering that question of trust is the domain of scientific computer simulation review. There is limited literature that focuses on simulation review, and most is specific to the review of a particular type of simulation. This work is intended to provide a foundation for a common understanding of simulation review. This is accomplished through three contributions. First, scientific computer simulation review is formally defined. This definition identifies the scope of simulation review and provides the boundaries of the review process. Second, maturity assessment theory is developed. This development clarifies the concepts of maturity criteria, maturity assessment sets, and maturity assessment frameworks, which are essential for performing simulation review. Finally, simulation review is described as the application of a maturity assessment framework. This is illustrated through evaluating a simulation review performed by the U.S. Nuclear Regulatory Commission. In making these contributions, this work provides a means for a more objective assessment of a simulation’s trustworthiness and takes the next step in establishing scientific computer simulation review as its own field. - Highlights: • We define scientific computer simulation review. • We develop maturity assessment theory. • We formally define a maturity assessment framework. • We describe simulation review as the application of a maturity framework. • We provide an example of a simulation review using a maturity framework

  19. Large-scale simulations of error-prone quantum computation devices

    International Nuclear Information System (INIS)

    Trieu, Doan Binh

    2009-01-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2±0.2) x 10 -6 . For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431±0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced technology, i

  20. Basic study on a lower-energy defibrillation method using computer simulation and cultured myocardial cell models.

    Science.gov (United States)

    Yaguchi, A; Nagase, K; Ishikawa, M; Iwasaka, T; Odagaki, M; Hosaka, H

    2006-01-01

    Computer simulation and myocardial cell models were used to evaluate a low-energy defibrillation technique. A generated spiral wave, considered to be a mechanism of fibrillation, and fibrillation were investigated using two myocardial sheet models: a two-dimensional computer simulation model and a two-dimensional experimental model. A new defibrillation technique that has few side effects, which are induced by the current passing into the patient's body, on cardiac muscle is desired. The purpose of the present study is to conduct a basic investigation into an efficient defibrillation method. In order to evaluate the defibrillation method, the propagation of excitation in the myocardial sheet is measured during the normal state and during fibrillation, respectively. The advantages of the low-energy defibrillation technique are then discussed based on the stimulation timing.

  1. THE COMPARISON BETWEEN COMPUTER SIMULATION AND PHYSICAL MODEL IN CALCULATING ILLUMINANCE LEVEL OF ATRIUM BUILDING

    Directory of Open Access Journals (Sweden)

    Sushardjanti Felasari

    2003-01-01

    Full Text Available This research examines the accuracy of computer programmes to simulate the illuminance level in atrium buildings compare to the measurement of those in physical models. The case was taken in atrium building with 4 types of roof i.e. pitched roof, barrel vault roof, monitor pitched roof (both monitor pitched roof and monitor barrel vault roof, and north light roof (both with north orientation and south orientation. The results show that both methods have agreement and disagreement. They show the same pattern of daylight distribution. In the other side, in terms of daylight factors, computer simulation tends to underestimate calculation compared to physical model measurement, while for average and minimum illumination, it tends to overestimate the calculation.

  2. The role of computer simulation in nuclear technology development

    International Nuclear Information System (INIS)

    Tikhonchev, M.Yu.; Shimansky, G.A.; Lebedeva, E.E.; Lichadeev, VV.; Ryazanov, D.K.; Tellin, A.I.

    2000-01-01

    In the report, the role and purpose of computer simulation in nuclear technology development is discussed. The authors consider such applications of computer simulation as: (a) Nuclear safety research; (b) Optimization of technical and economic parameters of acting nuclear plant; (c) Planning and support of reactor experiments; (d) Research and design new devices and technologies; (f) Design and development of 'simulators' for operating personnel training. Among marked applications, the following aspects of computer simulation are discussed in the report: (g) Neutron-physical, thermal and hydrodynamics models; (h) Simulation of isotope structure change and dam- age dose accumulation for materials under irradiation; (i) Simulation of reactor control structures. (authors)

  3. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  4. Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model

    Science.gov (United States)

    Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P.; Russell, MacKenzie R.; Jones, Robert M.; King, Matt; Betterton, Eric A.; Sáez, A. Eduardo

    2014-01-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition. PMID:25621085

  5. Simulation of windblown dust transport from a mine tailings impoundment using a computational fluid dynamics model.

    Science.gov (United States)

    Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P; Russell, MacKenzie R; Jones, Robert M; King, Matt; Betterton, Eric A; Sáez, A Eduardo

    2014-09-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition.

  6. A pedagogical walkthrough of computational modeling and simulation of Wnt signaling pathway using static causal models in MATLAB

    OpenAIRE

    Sinha, Shriprakash

    2016-01-01

    Simulation study in systems biology involving computational experiments dealing with Wnt signaling pathways abound in literature but often lack a pedagogical perspective that might ease the understanding of beginner students and researchers in transition, who intend to work on the modeling of the pathway. This paucity might happen due to restrictive business policies which enforce an unwanted embargo on the sharing of important scientific knowledge. A tutorial introduction to computational mo...

  7. Computer Simulation Performed for Columbia Project Cooling System

    Science.gov (United States)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  8. Application of parallel computing techniques to a large-scale reservoir simulation

    International Nuclear Information System (INIS)

    Zhang, Keni; Wu, Yu-Shu; Ding, Chris; Pruess, Karsten

    2001-01-01

    Even with the continual advances made in both computational algorithms and computer hardware used in reservoir modeling studies, large-scale simulation of fluid and heat flow in heterogeneous reservoirs remains a challenge. The problem commonly arises from intensive computational requirement for detailed modeling investigations of real-world reservoirs. This paper presents the application of a massive parallel-computing version of the TOUGH2 code developed for performing large-scale field simulations. As an application example, the parallelized TOUGH2 code is applied to develop a three-dimensional unsaturated-zone numerical model simulating flow of moisture, gas, and heat in the unsaturated zone of Yucca Mountain, Nevada, a potential repository for high-level radioactive waste. The modeling approach employs refined spatial discretization to represent the heterogeneous fractured tuffs of the system, using more than a million 3-D gridblocks. The problem of two-phase flow and heat transfer within the model domain leads to a total of 3,226,566 linear equations to be solved per Newton iteration. The simulation is conducted on a Cray T3E-900, a distributed-memory massively parallel computer. Simulation results indicate that the parallel computing technique, as implemented in the TOUGH2 code, is very efficient. The reliability and accuracy of the model results have been demonstrated by comparing them to those of small-scale (coarse-grid) models. These comparisons show that simulation results obtained with the refined grid provide more detailed predictions of the future flow conditions at the site, aiding in the assessment of proposed repository performance

  9. Computer simulation of ultrasonic waves in solids

    International Nuclear Information System (INIS)

    Thibault, G.A.; Chaplin, K.

    1992-01-01

    A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the propagation of ultrasonic waves. This report contains a brief summary of the use of ultrasonic waves in non-destructive testing techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types of output received from the model, and an example simulation showing the abilities of the model. (author). 2 refs., 2 figs

  10. The Potential Value of Clostridium difficile Vaccine: An Economic Computer Simulation Model

    Science.gov (United States)

    Lee, Bruce Y.; Popovich, Michael J.; Tian, Ye; Bailey, Rachel R.; Ufberg, Paul J.; Wiringa, Ann E.; Muder, Robert R.

    2010-01-01

    Efforts are currently underway to develop a vaccine against Clostridium difficile infection (CDI). We developed two decision analytic Monte Carlo computer simulation models: (1) an Initial Prevention Model depicting the decision whether to administer C. difficile vaccine to patients at-risk for CDI and (2) a Recurrence Prevention Model depicting the decision whether to administer C. difficile vaccine to prevent CDI recurrence. Our results suggest that a C. difficile vaccine could be cost-effective over a wide range of C. difficile risk, vaccine costs, and vaccine efficacies especially when being used post-CDI treatment to prevent recurrent disease. PMID:20541582

  11. Parallel computing in enterprise modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.; Vanderveen, Keith; Ray, Jaideep; Heath, Zach; Allan, Benjamin A.

    2008-08-01

    This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priori ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.

  12. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management

    Science.gov (United States)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.

    2017-01-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  13. Computational study of nonlinear plasma waves. I. Simulation model and monochromatic wave propagation

    International Nuclear Information System (INIS)

    Matsuda, Y.; Crawford, F.W.

    1975-01-01

    An economical low-noise plasma simulation model originated by Denavit is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation. These tests serve to establish the low-noise features of the model, and to verify the theoretical linear dispersion relation at wave energy levels as low as 10 -6 of the plasma thermal energy: Better quantitative results are obtained, for comparable computing time, than can be obtained by conventional particle simulation models, or direct solution of the Vlasov equation. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories

  14. An integrated computational tool for precipitation simulation

    Science.gov (United States)

    Cao, W.; Zhang, F.; Chen, S.-L.; Zhang, C.; Chang, Y. A.

    2011-07-01

    Computer aided materials design is of increasing interest because the conventional approach solely relying on experimentation is no longer viable within the constraint of available resources. Modeling of microstructure and mechanical properties during precipitation plays a critical role in understanding the behavior of materials and thus accelerating the development of materials. Nevertheless, an integrated computational tool coupling reliable thermodynamic calculation, kinetic simulation, and property prediction of multi-component systems for industrial applications is rarely available. In this regard, we are developing a software package, PanPrecipitation, under the framework of integrated computational materials engineering to simulate precipitation kinetics. It is seamlessly integrated with the thermodynamic calculation engine, PanEngine, to obtain accurate thermodynamic properties and atomic mobility data necessary for precipitation simulation.

  15. Large-scale simulations of error-prone quantum computation devices

    Energy Technology Data Exchange (ETDEWEB)

    Trieu, Doan Binh

    2009-07-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2{+-}0.2) x 10{sup -6}. For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431{+-}0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced

  16. Simulation of biological ion channels with technology computer-aided design.

    Science.gov (United States)

    Pandey, Santosh; Bortei-Doku, Akwete; White, Marvin H

    2007-01-01

    Computer simulations of realistic ion channel structures have always been challenging and a subject of rigorous study. Simulations based on continuum electrostatics have proven to be computationally cheap and reasonably accurate in predicting a channel's behavior. In this paper we discuss the use of a device simulator, SILVACO, to build a solid-state model for KcsA channel and study its steady-state response. SILVACO is a well-established program, typically used by electrical engineers to simulate the process flow and electrical characteristics of solid-state devices. By employing this simulation program, we have presented an alternative computing platform for performing ion channel simulations, besides the known methods of writing codes in programming languages. With the ease of varying the different parameters in the channel's vestibule and the ability of incorporating surface charges, we have shown the wide-ranging possibilities of using a device simulator for ion channel simulations. Our simulated results closely agree with the experimental data, validating our model.

  17. Combination of inquiry learning model and computer simulation to improve mastery concept and the correlation with critical thinking skills (CTS)

    Science.gov (United States)

    Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar

    2016-02-01

    Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.

  18. Computer simulation of stair falls to investigate scenarios in child abuse.

    Science.gov (United States)

    Bertocci, G E; Pierce, M C; Deemer, E; Aguel, F

    2001-09-01

    To demonstrate the usefulness of computer simulation techniques in the investigation of pediatric stair falls. Since stair falls are a common falsely reported injury scenario in child abuse, our specific aim was to investigate the influence of stair characteristics on injury biomechanics of pediatric stair falls by using a computer simulation model. Our long-term goal is to use knowledge of biomechanics to aid in distinguishing between accidents and abuse. A computer simulation model of a 3-year-old child falling down stairs was developed using commercially available simulation software. This model was used to investigate the influence that stair characteristics have on biomechanical measures associated with injury risk. Since femur fractures occur in unintentional and abuse scenarios, biomechanical measures were focused on the lower extremities. The number and slope of steps and stair surface friction and elasticity were found to affect biomechanical measures associated with injury risk. Computer simulation techniques are useful for investigating the biomechanics of stair falls. Using our simulation model, we determined that stair characteristics have an effect on potential for lower extremity injuries. Although absolute values of biomechanical measures should not be relied on in an unvalidated model such as this, relationships between accident-environment factors and biomechanical measures can be studied through simulation. Future efforts will focus on model validation.

  19. Computer simulation of thermal plant operations

    CERN Document Server

    O'Kelly, Peter

    2012-01-01

    This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment.

  20. Computational simulation of water transport in PEM fuel cells using an improved membrane model

    International Nuclear Information System (INIS)

    Cao, J.; Djilali, N.

    2000-01-01

    Computational models and simulation tools can provide valuable insight and guidance for design, performance optimization, and cost reduction of fuel cells. In proton-exchange membrane fuel cells it is particularly important to maintain appropriate water content and temperature in the electrolyte membrane. In this paper we describe a mathematical model for the membrane that takes into account the diffusion of water, the pressure variation, and the electro-osmotic drag in the membrane. Applying conservation laws for water and current and using an empirical relationship between electro-osmotic drag and water content, we obtain a transport equation for water molar concentration and derive a new equation for the electric potential that accounts for variable water content and is more accurate than the conventionally employed Laplace's equation does. The model is coupled with a computational fluid dynamics model for diffusive transport in the electrodes and convective transport in the reactant flow channels. Simulations for a two-dimensional cell are performed over nominal current densities ranging form i=0.1 A/cm≅ to 1.2 A/cm≅. The impact and importance of temperature and pressure non-uniformity, and of two-dimensionality are assessed and discussed. (author)

  1. Seventeenth Workshop on Computer Simulation Studies in Condensed-Matter Physics

    CERN Document Server

    Landau, David P; Schütler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVI

    2006-01-01

    This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.

  2. Computational Analysis and Simulation of Empathic Behaviors: a Survey of Empathy Modeling with Behavioral Signal Processing Framework.

    Science.gov (United States)

    Xiao, Bo; Imel, Zac E; Georgiou, Panayiotis; Atkins, David C; Narayanan, Shrikanth S

    2016-05-01

    Empathy is an important psychological process that facilitates human communication and interaction. Enhancement of empathy has profound significance in a range of applications. In this paper, we review emerging directions of research on computational analysis of empathy expression and perception as well as empathic interactions, including their simulation. We summarize the work on empathic expression analysis by the targeted signal modalities (e.g., text, audio, and facial expressions). We categorize empathy simulation studies into theory-based emotion space modeling or application-driven user and context modeling. We summarize challenges in computational study of empathy including conceptual framing and understanding of empathy, data availability, appropriate use and validation of machine learning techniques, and behavior signal processing. Finally, we propose a unified view of empathy computation and offer a series of open problems for future research.

  3. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.

    Science.gov (United States)

    Liacouras, Peter C; Wayne, Jennifer S

    2007-12-01

    Computational models of musculoskeletal joints and limbs can provide useful information about joint mechanics. Validated models can be used as predictive devices for understanding joint function and serve as clinical tools for predicting the outcome of surgical procedures. A new computational modeling approach was developed for simulating joint kinematics that are dictated by bone/joint anatomy, ligamentous constraints, and applied loading. Three-dimensional computational models of the lower leg were created to illustrate the application of this new approach. Model development began with generating three-dimensional surfaces of each bone from CT images and then importing into the three-dimensional solid modeling software SOLIDWORKS and motion simulation package COSMOSMOTION. Through SOLIDWORKS and COSMOSMOTION, each bone surface file was filled to create a solid object and positioned necessary components added, and simulations executed. Three-dimensional contacts were added to inhibit intersection of the bones during motion. Ligaments were represented as linear springs. Model predictions were then validated by comparison to two different cadaver studies, syndesmotic injury and repair and ankle inversion following ligament transection. The syndesmotic injury model was able to predict tibial rotation, fibular rotation, and anterior/posterior displacement. In the inversion simulation, calcaneofibular ligament extension and angles of inversion compared well. Some experimental data proved harder to simulate accurately, due to certain software limitations and lack of complete experimental data. Other parameters that could not be easily obtained experimentally can be predicted and analyzed by the computational simulations. In the syndesmotic injury study, the force generated in the tibionavicular and calcaneofibular ligaments reduced with the insertion of the staple, indicating how this repair technique changes joint function. After transection of the calcaneofibular

  4. Lessons Learned From the Development and Parameterization of a Computer Simulation Model to Evaluate Task Modification for Health Care Providers.

    Science.gov (United States)

    Kasaie, Parastu; David Kelton, W; Ancona, Rachel M; Ward, Michael J; Froehle, Craig M; Lyons, Michael S

    2018-02-01

    Computer simulation is a highly advantageous method for understanding and improving health care operations with a wide variety of possible applications. Most computer simulation studies in emergency medicine have sought to improve allocation of resources to meet demand or to assess the impact of hospital and other system policies on emergency department (ED) throughput. These models have enabled essential discoveries that can be used to improve the general structure and functioning of EDs. Theoretically, computer simulation could also be used to examine the impact of adding or modifying specific provider tasks. Doing so involves a number of unique considerations, particularly in the complex environment of acute care settings. In this paper, we describe conceptual advances and lessons learned during the design, parameterization, and validation of a computer simulation model constructed to evaluate changes in ED provider activity. We illustrate these concepts using examples from a study focused on the operational effects of HIV screening implementation in the ED. Presentation of our experience should emphasize the potential for application of computer simulation to study changes in health care provider activity and facilitate the progress of future investigators in this field. © 2017 by the Society for Academic Emergency Medicine.

  5. Computer simulation as representation of knowledge in education

    International Nuclear Information System (INIS)

    Krekic, Valerija Pinter; Namestovski, Zolt

    2009-01-01

    According to Aebli's operative method (1963) and Bruner's (1974) theory of representation the development of the process of thinking in teaching has the following phases - levels of abstraction: manipulation with specific things (specific phase), iconic representation (figural phase), symbolic representation (symbolic phase). Modern information technology has contributed to the enrichment of teaching and learning processes, especially in the fields of natural sciences and mathematics and those of production and technology. Simulation appears as a new possibility in the representation of knowledge. According to Guetzkow (1972) simulation is an operative representation of reality from a relevant aspect. It is about a model of an objective system, which is dynamic in itself. If that model is material it is a simple simulation, if it is abstract it is a reflective experiment, that is a computer simulation. This present work deals with the systematization and classification of simulation methods in the teaching of natural sciences and mathematics and of production and technology with special retrospective view on computer simulations and exemplar representation of the place and the role of this modern method of cognition. Key words: Representation of knowledge, modeling, simulation, education

  6. Computational and Simulation Modeling of Political Attitudes: The 'Tiger' Area of Political Culture Research

    Directory of Open Access Journals (Sweden)

    Voinea, Camelia Florela

    2016-01-01

    Full Text Available In almost one century long history, political attitudes modeling research has accumulated a critical mass of theory and method. Its characteristics and particularities have often suggested that political attitude approach to political persuasion modeling reveals a strong theoretical autonomy of concept which entitles it to become a new separate discipline of research. Though this did not actually happen, political attitudes modeling research has remained the most challenging area – the “tiger” – of political culture modeling research. This paper reviews the research literature on the conceptual, computational and simulation modeling of political attitudes developed starting with the beginning of the 20th century until the present times. Several computational and simulation modeling paradigms have provided support to political attitudes modeling research. These paradigms and the shift from one to another are briefly presented for a period of time of almost one century. The dominant paradigmatic views are those inspired by the Newtonian mechanics, and those based on the principle of methodological individualism and the emergence of macro phenomena from the individual interactions at the micro level of a society. This period of time is divided in eight ages covering the history of ideas in a wide range of political domains, going from political attitudes to polity modeling. Internal and external pressures for paradigmatic change are briefly explained.

  7. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.

    Science.gov (United States)

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-08

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.

  8. Computer simulation of fatigue under diametrical compression

    OpenAIRE

    Carmona, H. A.; Kun, F.; Andrade Jr., J. S.; Herrmann, H. J.

    2006-01-01

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue, and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows to follow the development of the fracture process on the macro- and micro-level varying the relative influence of the mechanisms of damage accumulation over the ...

  9. Computer simulation on molten ionic salts

    International Nuclear Information System (INIS)

    Kawamura, K.; Okada, I.

    1978-01-01

    The extensive advances in computer technology have since made it possible to apply computer simulation to the evaluation of the macroscopic and microscopic properties of molten salts. The evaluation of the potential energy in molten salts systems is complicated by the presence of long-range energy, i.e. Coulomb energy, in contrast to simple liquids where the potential energy is easily evaluated. It has been shown, however, that no difficulties are encountered when the Ewald method is applied to the evaluation of Coulomb energy. After a number of attempts had been made to approximate the pair potential, the Huggins-Mayer potential based on ionic crystals became the most often employed. Since it is thought that the only appreciable contribution to many-body potential, not included in Huggins-Mayer potential, arises from the internal electrostatic polarization of ions in molten ionic salts, computer simulation with a provision for ion polarization has been tried recently. The computations, which are employed mainly for molten alkali halides, can provide: (1) thermodynamic data such as internal energy, internal pressure and isothermal compressibility; (2) microscopic configurational data such as radial distribution functions; (3) transport data such as the diffusion coefficient and electrical conductivity; and (4) spectroscopic data such as the intensity of inelastic scattering and the stretching frequency of simple molecules. The computed results seem to agree well with the measured results. Computer simulation can also be used to test the effectiveness of a proposed pair potential and the adequacy of postulated models of molten salts, and to obtain experimentally inaccessible data. A further application of MD computation employing the pair potential based on an ionic model to BeF 2 , ZnCl 2 and SiO 2 shows the possibility of quantitative interpretation of structures and glass transformation phenomena

  10. Macromod: Computer Simulation For Introductory Economics

    Science.gov (United States)

    Ross, Thomas

    1977-01-01

    The Macroeconomic model (Macromod) is a computer assisted instruction simulation model designed for introductory economics courses. An evaluation of its utilization at a community college indicates that it yielded a 10 percent to 13 percent greater economic comprehension than lecture classes and that it met with high student approval. (DC)

  11. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    International Nuclear Information System (INIS)

    Xu, Zuwei; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are

  12. Building Model for the University of Mosul Computer Network Using OPNET Simulator

    Directory of Open Access Journals (Sweden)

    Modhar Modhar A. Hammoudi

    2013-04-01

    Full Text Available This paper aims at establishing a model in OPNET (Optimized Network Engineering Tool simulator for the University of Mosul computer network. The proposed network model was made up of two routers (Cisco 2600, core switch (Cisco6509, two servers, ip 32 cloud and 37 VLANs. These VLANs were connected to the core switch using fiber optic cables (1000BaseX. Three applications were added to test the network model. These applications were FTP (File Transfer Protocol, HTTP (Hyper Text Transfer Protocol and VoIP (Voice over Internet Protocol. The results showed that the proposed model had a positive efficiency on designing and managing the targeted network and can be used to view the data flow in it. Also, the simulation results showed that the maximum number of VoIP service users could be raised upto 5000 users when working under IP Telephony. This means that the ability to utilize VoIP service in this network can be maintained and is better when subjected to IP telephony scheme.

  13. Application of Computer Simulation Modeling to Medication Administration Process Redesign

    Directory of Open Access Journals (Sweden)

    Nathan Huynh

    2012-01-01

    Full Text Available The medication administration process (MAP is one of the most high-risk processes in health care. MAP workflow redesign can precipitate both unanticipated and unintended consequences that can lead to new medication safety risks and workflow inefficiencies. Thus, it is necessary to have a tool to evaluate the impact of redesign approaches in advance of their clinical implementation. This paper discusses the development of an agent-based MAP computer simulation model that can be used to assess the impact of MAP workflow redesign on MAP performance. The agent-based approach is adopted in order to capture Registered Nurse medication administration performance. The process of designing, developing, validating, and testing such a model is explained. Work is underway to collect MAP data in a hospital setting to provide more complex MAP observations to extend development of the model to better represent the complexity of MAP.

  14. Slab cooling system design using computer simulation

    NARCIS (Netherlands)

    Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.

    2007-01-01

    For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for

  15. A computational simulation of long-term synaptic potentiation inducing protocol processes with model of CA3 hippocampal microcircuit.

    Science.gov (United States)

    Świetlik, D; Białowąs, J; Kusiak, A; Cichońska, D

    2018-01-01

    An experimental study of computational model of the CA3 region presents cog-nitive and behavioural functions the hippocampus. The main property of the CA3 region is plastic recurrent connectivity, where the connections allow it to behave as an auto-associative memory. The computer simulations showed that CA3 model performs efficient long-term synaptic potentiation (LTP) induction and high rate of sub-millisecond coincidence detection. Average frequency of the CA3 pyramidal cells model was substantially higher in simulations with LTP induction protocol than without the LTP. The entropy of pyramidal cells with LTP seemed to be significantly higher than without LTP induction protocol (p = 0.0001). There was depression of entropy, which was caused by an increase of forgetting coefficient in pyramidal cells simulations without LTP (R = -0.88, p = 0.0008), whereas such correlation did not appear in LTP simulation (p = 0.4458). Our model of CA3 hippocampal formation microcircuit biologically inspired lets you understand neurophysiologic data. (Folia Morphol 2018; 77, 2: 210-220).

  16. [Animal experimentation, computer simulation and surgical research].

    Science.gov (United States)

    Carpentier, Alain

    2009-11-01

    We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.

  17. Blood flow in intracranial aneurysms treated with Pipeline embolization devices: computational simulation and verification with Doppler ultrasonography on phantom models

    Directory of Open Access Journals (Sweden)

    Anderson Chun On Tsang

    2015-04-01

    Full Text Available Purpose: The aim of this study was to validate a computational fluid dynamics (CFD simulation of flow-diverter treatment through Doppler ultrasonography measurements in patient-specific models of intracranial bifurcation and side-wall aneurysms. Methods: Computational and physical models of patient-specific bifurcation and sidewall aneurysms were constructed from computed tomography angiography with use of stereolithography, a three-dimensional printing technology. Flow dynamics parameters before and after flow-diverter treatment were measured with pulse-wave and color Doppler ultrasonography, and then compared with CFD simulations. Results: CFD simulations showed drastic flow reduction after flow-diverter treatment in both aneurysms. The mean volume flow rate decreased by 90% and 85% for the bifurcation aneurysm and the side-wall aneurysm, respectively. Velocity contour plots from computer simulations before and after flow diversion closely resembled the patterns obtained by color Doppler ultrasonography. Conclusion: The CFD estimation of flow reduction in aneurysms treated with a flow-diverting stent was verified by Doppler ultrasonography in patient-specific phantom models of bifurcation and side-wall aneurysms. The combination of CFD and ultrasonography may constitute a feasible and reliable technique in studying the treatment of intracranial aneurysms with flow-diverting stents.

  18. Computational simulator of robotic manipulators

    International Nuclear Information System (INIS)

    Leal, Alexandre S.; Campos, Tarcisio P.R.

    1995-01-01

    Robotic application for industrial plants is discussed and a computational model for a mechanical manipulator of three links is presented. A neural network feed-forward type has been used to model the dynamic control of the manipulator. A graphic interface was developed in C programming language as a virtual world in order to visualize and simulate the arm movements handling radioactive waste environment. (author). 7 refs, 5 figs

  19. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    Energy Technology Data Exchange (ETDEWEB)

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  20. Computational fluid dynamics simulations and validations of results

    CSIR Research Space (South Africa)

    Sitek, MA

    2013-09-01

    Full Text Available Wind flow influence on a high-rise building is analyzed. The research covers full-scale tests, wind-tunnel experiments and numerical simulations. In the present paper computational model used in simulations is described and the results, which were...

  1. Computer simulation of driven Alfven waves

    International Nuclear Information System (INIS)

    Geary, J.L. Jr.

    1986-01-01

    The first particle simulation study of shear Alfven wave resonance heating is presented. Particle simulation codes self-consistently follow the time evolution of the individual and collective aspects of particle dynamics as well as wave dynamics in a fully nonlinear fashion. Alfven wave heating is a possible means of increasing the temperature of magnetized plasmas. A new particle simulation model was developed for this application that incorporates Darwin's formulation of the electromagnetic fields with a guiding center approximation for electron motion perpendicular to the ambient magnetic field. The implementation of this model and the examination of its theoretical and computational properties are presented. With this model, several cases of Alfven wave heating is examined in both uniform and nonuniform simulation systems in a two dimensional slab. For the inhomogeneous case studies, the kinetic Alfven wave develops in the vicinity of the shear Alfven resonance region

  2. Computer Simulation of the Circulation Subsystem of a Library

    Science.gov (United States)

    Shaw, W. M., Jr.

    1975-01-01

    When circulation data are used as input parameters for a computer simulation of a library's circulation subsystem, the results of the simulation provide information on book availability and delays. The model may be used to simulate alternative loan policies. (Author/LS)

  3. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2018-05-01

    Full Text Available Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal computer, a Graphics Processing Unit (GPU-based, high-performance computing method using the OpenACC application was adopted to parallelize the shallow water model. An unstructured data management method was presented to control the data transportation between the GPU and CPU (Central Processing Unit with minimum overhead, and then both computation and data were offloaded from the CPU to the GPU, which exploited the computational capability of the GPU as much as possible. The parallel model was validated using various benchmarks and real-world case studies. The results demonstrate that speed-ups of up to one order of magnitude can be achieved in comparison with the serial model. The proposed parallel model provides a fast and reliable tool with which to quickly assess flood hazards in large-scale areas and, thus, has a bright application prospect for dynamic inundation risk identification and disaster assessment.

  4. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  5. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  6. Computer simulation of gear tooth manufacturing processes

    Science.gov (United States)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  7. Integration of adaptive process control with computational simulation for spin-forming

    International Nuclear Information System (INIS)

    Raboin, P. J. LLNL

    1998-01-01

    Improvements in spin-forming capabilities through upgrades to a metrology and machine control system and advances in numerical simulation techniques were studied in a two year project funded by Laboratory Directed Research and Development (LDRD) at Lawrence Livermore National Laboratory. Numerical analyses were benchmarked with spin-forming experiments and computational speeds increased sufficiently to now permit actual part forming simulations. Extensive modeling activities examined the simulation speeds and capabilities of several metal forming computer codes for modeling flat plate and cylindrical spin-forming geometries. Shape memory research created the first numerical model to describe this highly unusual deformation behavior in Uranium alloys. A spin-forming metrology assessment led to sensor and data acquisition improvements that will facilitate future process accuracy enhancements, such as a metrology frame. Finally, software improvements (SmartCAM) to the manufacturing process numerically integrate the part models to the spin-forming process and to computational simulations

  8. Quantum simulations with noisy quantum computers

    Science.gov (United States)

    Gambetta, Jay

    Quantum computing is a new computational paradigm that is expected to lie beyond the standard model of computation. This implies a quantum computer can solve problems that can't be solved by a conventional computer with tractable overhead. To fully harness this power we need a universal fault-tolerant quantum computer. However the overhead in building such a machine is high and a full solution appears to be many years away. Nevertheless, we believe that we can build machines in the near term that cannot be emulated by a conventional computer. It is then interesting to ask what these can be used for. In this talk we will present our advances in simulating complex quantum systems with noisy quantum computers. We will show experimental implementations of this on some small quantum computers.

  9. Automatic temperature computation for realistic IR simulation

    Science.gov (United States)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe

    2000-07-01

    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  10. A pedagogical walkthrough of computational modeling and simulation of Wnt signaling pathway using static causal models in MATLAB.

    Science.gov (United States)

    Sinha, Shriprakash

    2016-12-01

    Simulation study in systems biology involving computational experiments dealing with Wnt signaling pathways abound in literature but often lack a pedagogical perspective that might ease the understanding of beginner students and researchers in transition, who intend to work on the modeling of the pathway. This paucity might happen due to restrictive business policies which enforce an unwanted embargo on the sharing of important scientific knowledge. A tutorial introduction to computational modeling of Wnt signaling pathway in a human colorectal cancer dataset using static Bayesian network models is provided. The walkthrough might aid biologists/informaticians in understanding the design of computational experiments that is interleaved with exposition of the Matlab code and causal models from Bayesian network toolbox. The manuscript elucidates the coding contents of the advance article by Sinha (Integr. Biol. 6:1034-1048, 2014) and takes the reader in a step-by-step process of how (a) the collection and the transformation of the available biological information from literature is done, (b) the integration of the heterogeneous data and prior biological knowledge in the network is achieved, (c) the simulation study is designed, (d) the hypothesis regarding a biological phenomena is transformed into computational framework, and (e) results and inferences drawn using d -connectivity/separability are reported. The manuscript finally ends with a programming assignment to help the readers get hands-on experience of a perturbation project. Description of Matlab files is made available under GNU GPL v3 license at the Google code project on https://code.google.com/p/static-bn-for-wnt-signaling-pathway and https: //sites.google.com/site/shriprakashsinha/shriprakashsinha/projects/static-bn-for-wnt-signaling-pathway. Latest updates can be found in the latter website.

  11. A new computer-aided simulation model for polycrystalline silicon film resistors

    Science.gov (United States)

    Ching-Yuan Wu; Weng-Dah Ken

    1983-07-01

    A general transport theory for the I-V characteristics of a polycrystalline film resistor has been derived by including the effects of carrier degeneracy, majority-carrier thermionic-diffusion across the space charge regions produced by carrier trapping in the grain boundaries, and quantum mechanical tunneling through the grain boundaries. Based on the derived transport theory, a new conduction model for the electrical resistivity of polycrystalline film resitors has been developed by incorporating the effects of carrier trapping and dopant segregation in the grain boundaries. Moreover, an empirical formula for the coefficient of the dopant-segregation effects has been proposed, which enables us to predict the dependence of the electrical resistivity of phosphorus-and arsenic-doped polycrystalline silicon films on thermal annealing temperature. Phosphorus-doped polycrystalline silicon resistors have been fabricated by using ion-implantation with doses ranged from 1.6 × 10 11 to 5 × 10 15/cm 2. The dependence of the electrical resistivity on doping concentration and temperature have been measured and shown to be in good agreement with the results of computer simulations. In addition, computer simulations for boron-and arsenic-doped polycrystalline silicon resistors have also been performed and shown to be consistent with the experimental results published by previous authors.

  12. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    Science.gov (United States)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  13. Use of the buble rise model in the simulation of the pressurizer in ALMOD 3 computer code

    International Nuclear Information System (INIS)

    Madeira, A.A.; Camargo, C.T.M.

    1984-01-01

    The implementation of the buble rise model in the ALMOD 3 computer code to simulate the pressurizer of a nuclear power plant is presented. Some transients for Angra I were calculated and results obtained from the original and modified models were compared. (E.G.) [pt

  14. Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist.

    Directory of Open Access Journals (Sweden)

    Brian Drawert

    2016-12-01

    Full Text Available We present StochSS: Stochastic Simulation as a Service, an integrated development environment for modeling and simulation of both deterministic and discrete stochastic biochemical systems in up to three dimensions. An easy to use graphical user interface enables researchers to quickly develop and simulate a biological model on a desktop or laptop, which can then be expanded to incorporate increasing levels of complexity. StochSS features state-of-the-art simulation engines. As the demand for computational power increases, StochSS can seamlessly scale computing resources in the cloud. In addition, StochSS can be deployed as a multi-user software environment where collaborators share computational resources and exchange models via a public model repository. We demonstrate the capabilities and ease of use of StochSS with an example of model development and simulation at increasing levels of complexity.

  15. Formal Analysis of Dynamics Within Philosophy of Mind by Computer Simulation

    NARCIS (Netherlands)

    Bosse, T.; Schut, M.C.; Treur, J.

    2009-01-01

    Computer simulations can be useful tools to support philosophers in validating their theories, especially when these theories concern phenomena showing nontrivial dynamics. Such theories are usually informal, whilst for computer simulation a formally described model is needed. In this paper, a

  16. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    Science.gov (United States)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  17. A Computational Framework for Bioimaging Simulation

    Science.gov (United States)

    Watabe, Masaki; Arjunan, Satya N. V.; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi

    2015-01-01

    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units. PMID:26147508

  18. A Computational Framework for Bioimaging Simulation.

    Science.gov (United States)

    Watabe, Masaki; Arjunan, Satya N V; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi

    2015-01-01

    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.

  19. A Computational Framework for Bioimaging Simulation.

    Directory of Open Access Journals (Sweden)

    Masaki Watabe

    Full Text Available Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.

  20. Creating Electronic Books-Chapters for Computers and Tablets Using Easy Java/JavaScript Simulations, EjsS Modeling Tool

    OpenAIRE

    Wee, Loo Kang

    2015-01-01

    This paper shares my journey (tools used, design principles derived and modeling pedagogy implemented) when creating electronic books-chapters (epub3 format) for computers and tablets using Easy Java/JavaScript Simulations, (old name EJS, new EjsS) Modeling Tool. The theory underpinning this work grounded on learning by doing through dynamic and interactive simulation-models that can be more easily made sense of instead of the static nature of printed materials. I started combining related co...

  1. Modeling and simulation of discrete event systems

    CERN Document Server

    Choi, Byoung Kyu

    2013-01-01

    Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on

  2. A multiprocessor computer simulation model employing a feedback scheduler/allocator for memory space and bandwidth matching and TMR processing

    Science.gov (United States)

    Bradley, D. B.; Irwin, J. D.

    1974-01-01

    A computer simulation model for a multiprocessor computer is developed that is useful for studying the problem of matching multiprocessor's memory space, memory bandwidth and numbers and speeds of processors with aggregate job set characteristics. The model assumes an input work load of a set of recurrent jobs. The model includes a feedback scheduler/allocator which attempts to improve system performance through higher memory bandwidth utilization by matching individual job requirements for space and bandwidth with space availability and estimates of bandwidth availability at the times of memory allocation. The simulation model includes provisions for specifying precedence relations among the jobs in a job set, and provisions for specifying precedence execution of TMR (Triple Modular Redundant and SIMPLEX (non redundant) jobs.

  3. SEMI Modeling and Simulation Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hermina, W.L.

    2000-10-02

    With the exponential growth in the power of computing hardware and software, modeling and simulation is becoming a key enabler for the rapid design of reliable Microsystems. One vision of the future microsystem design process would include the following primary software capabilities: (1) The development of 3D part design, through standard CAD packages, with automatic design rule checks that guarantee the manufacturability and performance of the microsystem. (2) Automatic mesh generation, for 3D parts as manufactured, that permits computational simulation of the process steps, and the performance and reliability analysis for the final microsystem. (3) Computer generated 2D layouts for process steps that utilize detailed process models to generate the layout and process parameter recipe required to achieve the desired 3D part. (4) Science-based computational tools that can simulate the process physics, and the coupled thermal, fluid, structural, solid mechanics, electromagnetic and material response governing the performance and reliability of the microsystem. (5) Visualization software that permits the rapid visualization of 3D parts including cross-sectional maps, performance and reliability analysis results, and process simulation results. In addition to these desired software capabilities, a desired computing infrastructure would include massively parallel computers that enable rapid high-fidelity analysis, coupled with networked compute servers that permit computing at a distance. We now discuss the individual computational components that are required to achieve this vision. There are three primary areas of focus: design capabilities, science-based capabilities and computing infrastructure. Within each of these areas, there are several key capability requirements.

  4. Computer simulation in cell radiobiology

    International Nuclear Information System (INIS)

    Yakovlev, A.Y.; Zorin, A.V.

    1988-01-01

    This research monograph demonstrates the possible ways of using stochastic simulation for exploring cell kinetics, emphasizing the effects of cell radiobiology. In vitro kinetics of normal and irradiated cells is the main subject, but some approaches to the simulation of controlled cell systems are considered as well: the epithelium of the small intestine in mice taken as a case in point. Of particular interest is the evaluation of simulation modelling as a tool for gaining insight into biological processes and hence the new inferences from concrete experimental data, concerning regularities in cell population response to irradiation. The book is intended to stimulate interest among computer science specialists in developing new, more efficient means for the simulation of cell systems and to help radiobiologists in interpreting the experimental data

  5. Development and validation of rear impact computer simulation model of an adult manual transit wheelchair with a seated occupant.

    Science.gov (United States)

    Salipur, Zdravko; Bertocci, Gina

    2010-01-01

    It has been shown that ANSI WC19 transit wheelchairs that are crashworthy in frontal impact exhibit catastrophic failures in rear impact and may not be able to provide stable seating support and thus occupant protection for the wheelchair occupant. Thus far only limited sled test and computer simulation data have been available to study rear impact wheelchair safety. Computer modeling can be used as an economic and comprehensive tool to gain critical knowledge regarding wheelchair integrity and occupant safety. This study describes the development and validation of a computer model simulating an adult wheelchair-seated occupant subjected to a rear impact event. The model was developed in MADYMO and validated rigorously using the results of three similar sled tests conducted to specifications provided in the draft ISO/TC 173 standard. Outcomes from the model can provide critical wheelchair loading information to wheelchair and tiedown manufacturers, resulting in safer wheelchair designs for rear impact conditions. (c) 2009 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. FPGA-accelerated simulation of computer systems

    CERN Document Server

    Angepat, Hari; Chung, Eric S; Hoe, James C; Chung, Eric S

    2014-01-01

    To date, the most common form of simulators of computer systems are software-based running on standard computers. One promising approach to improve simulation performance is to apply hardware, specifically reconfigurable hardware in the form of field programmable gate arrays (FPGAs). This manuscript describes various approaches of using FPGAs to accelerate software-implemented simulation of computer systems and selected simulators that incorporate those techniques. More precisely, we describe a simulation architecture taxonomy that incorporates a simulation architecture specifically designed f

  7. 20170312 - Computer Simulation of Developmental ...

    Science.gov (United States)

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  8. Massively parallel quantum computer simulator

    NARCIS (Netherlands)

    De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.

    2007-01-01

    We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray

  9. Computer simulation study of the nematic-vapour interface in the Gay-Berne model

    Science.gov (United States)

    Rull, Luis F.; Romero-Enrique, José Manuel

    2017-06-01

    We present computer simulations of the vapour-nematic interface of the Gay-Berne model. We considered situations which correspond to either prolate or oblate molecules. We determine the anchoring of the nematic phase and correlate it with the intermolecular potential parameters. On the other hand, we evaluate the surface tension associated to this interface. We find a corresponding states law for the surface tension dependence on the temperature, valid for both prolate and oblate molecules.

  10. SEISMIC SIMULATIONS USING PARALLEL COMPUTING AND THREE-DIMENSIONAL EARTH MODELS TO IMPROVE NUCLEAR EXPLOSION PHENOMENOLOGY AND MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A; Matzel, E; Pasyanos, M; Petersson, A; Sjogreen, B; Bono, C; Vorobiev, O; Antoun, T; Walter, W; Myers, S; Lomov, I

    2008-07-07

    The development of accurate numerical methods to simulate wave propagation in three-dimensional (3D) earth models and advances in computational power offer exciting possibilities for modeling the motions excited by underground nuclear explosions. This presentation will describe recent work to use new numerical techniques and parallel computing to model earthquakes and underground explosions to improve understanding of the wave excitation at the source and path-propagation effects. Firstly, we are using the spectral element method (SEM, SPECFEM3D code of Komatitsch and Tromp, 2002) to model earthquakes and explosions at regional distances using available 3D models. SPECFEM3D simulates anelastic wave propagation in fully 3D earth models in spherical geometry with the ability to account for free surface topography, anisotropy, ellipticity, rotation and gravity. Results show in many cases that 3D models are able to reproduce features of the observed seismograms that arise from path-propagation effects (e.g. enhanced surface wave dispersion, refraction, amplitude variations from focusing and defocusing, tangential component energy from isotropic sources). We are currently investigating the ability of different 3D models to predict path-specific seismograms as a function of frequency. A number of models developed using a variety of methodologies are available for testing. These include the WENA/Unified model of Eurasia (e.g. Pasyanos et al 2004), the global CUB 2.0 model (Shapiro and Ritzwoller, 2002), the partitioned waveform model for the Mediterranean (van der Lee et al., 2007) and stochastic models of the Yellow Sea Korean Peninsula region (Pasyanos et al., 2006). Secondly, we are extending our Cartesian anelastic finite difference code (WPP of Nilsson et al., 2007) to model the effects of free-surface topography. WPP models anelastic wave propagation in fully 3D earth models using mesh refinement to increase computational speed and improve memory efficiency. Thirdly

  11. Computer simulation of human motion in sports biomechanics.

    Science.gov (United States)

    Vaughan, C L

    1984-01-01

    This chapter has covered some important aspects of the computer simulation of human motion in sports biomechanics. First the definition and the advantages and limitations of computer simulation were discussed; second, research on various sporting activities were reviewed. These activities included basic movements, aquatic sports, track and field athletics, winter sports, gymnastics, and striking sports. This list was not exhaustive and certain material has, of necessity, been omitted. However, it was felt that a sufficiently broad and interesting range of activities was chosen to illustrate both the advantages and the pitfalls of simulation. It is almost a decade since Miller [53] wrote a review chapter similar to this one. One might be tempted to say that things have changed radically since then--that computer simulation is now a widely accepted and readily applied research tool in sports biomechanics. This is simply not true, however. Biomechanics researchers still tend to emphasize the descriptive type of study, often unfortunately, when a little theoretical explanation would have been more helpful [29]. What will the next decade bring? Of one thing we can be certain: The power of computers, particularly the readily accessible and portable microcomputer, will expand beyond all recognition. The memory and storage capacities will increase dramatically on the hardware side, and on the software side the trend will be toward "user-friendliness." It is likely that a number of software simulation packages designed specifically for studying human motion [31, 96] will be extensively tested and could gain wide acceptance in the biomechanics research community. Nevertheless, a familiarity with Newtonian and Lagrangian mechanics, optimization theory, and computers in general, as well as practical biomechanical insight, will still be a prerequisite for successful simulation models of human motion. Above all, the biomechanics researcher will still have to bear in mind that

  12. Modeling ground-based timber harvesting systems using computer simulation

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux

    2001-01-01

    Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...

  13. Computer simulations of the restricted primitive model at very low temperature and density

    International Nuclear Information System (INIS)

    Valeriani, Chantal; Camp, Philip J; Zwanikken, Jos W; Van Roij, Rene; Dijkstra, Marjolein

    2010-01-01

    The problem of successfully simulating ionic fluids at low temperature and low density states is well known in the simulation literature: using conventional methods, the system is not able to equilibrate rapidly due to the presence of strongly associated cation-anion pairs. In this paper we present a numerical method for speeding up computer simulations of the restricted primitive model (RPM) at low temperatures (around the critical temperature) and at very low densities (down to 10 -10 σ -3 , where σ is the ion diameter). Experimentally, this regime corresponds to typical concentrations of electrolytes in nonaqueous solvents. As far as we are aware, this is the first time that the RPM has been equilibrated at such extremely low concentrations. More generally, this method could be used to equilibrate other systems that form aggregates at low concentrations.

  14. Kinetics of transformations nucleated on random parallel planes: analytical modelling and computer simulation

    International Nuclear Information System (INIS)

    Rios, Paulo R; Assis, Weslley L S; Ribeiro, Tatiana C S; Villa, Elena

    2012-01-01

    In a classical paper, Cahn derived expressions for the kinetics of transformations nucleated on random planes and lines. He used those as a model for nucleation on the boundaries, edges and vertices of a polycrystal consisting of equiaxed grains. In this paper it is demonstrated that Cahn's expression for random planes may be used in situations beyond the scope envisaged in Cahn's original paper. For instance, we derived an expression for the kinetics of transformations nucleated on random parallel planes that is identical to that formerly obtained by Cahn considering random planes. Computer simulation of transformations nucleated on random parallel planes is carried out. It is shown that there is excellent agreement between simulated results and analytical solutions. Such an agreement is to be expected if both the simulation and the analytical solution are correct. (paper)

  15. Technology computer aided design simulation for VLSI MOSFET

    CERN Document Server

    Sarkar, Chandan Kumar

    2013-01-01

    Responding to recent developments and a growing VLSI circuit manufacturing market, Technology Computer Aided Design: Simulation for VLSI MOSFET examines advanced MOSFET processes and devices through TCAD numerical simulations. The book provides a balanced summary of TCAD and MOSFET basic concepts, equations, physics, and new technologies related to TCAD and MOSFET. A firm grasp of these concepts allows for the design of better models, thus streamlining the design process, saving time and money. This book places emphasis on the importance of modeling and simulations of VLSI MOS transistors and

  16. Implementation of Grid-computing Framework for Simulation in Multi-scale Structural Analysis

    Directory of Open Access Journals (Sweden)

    Data Iranata

    2010-05-01

    Full Text Available A new grid-computing framework for simulation in multi-scale structural analysis is presented. Two levels of parallel processing will be involved in this framework: multiple local distributed computing environments connected by local network to form a grid-based cluster-to-cluster distributed computing environment. To successfully perform the simulation, a large-scale structural system task is decomposed into the simulations of a simplified global model and several detailed component models using various scales. These correlated multi-scale structural system tasks are distributed among clusters and connected together in a multi-level hierarchy and then coordinated over the internet. The software framework for supporting the multi-scale structural simulation approach is also presented. The program architecture design allows the integration of several multi-scale models as clients and servers under a single platform. To check its feasibility, a prototype software system has been designed and implemented to perform the proposed concept. The simulation results show that the software framework can increase the speedup performance of the structural analysis. Based on this result, the proposed grid-computing framework is suitable to perform the simulation of the multi-scale structural analysis.

  17. A Gaussian mixture model based adaptive classifier for fNIRS brain-computer interfaces and its testing via simulation

    Science.gov (United States)

    Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe

    2017-08-01

    Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus  brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.

  18. [The research on bidirectional reflectance computer simulation of forest canopy at pixel scale].

    Science.gov (United States)

    Song, Jin-Ling; Wang, Jin-Di; Shuai, Yan-Min; Xiao, Zhi-Qiang

    2009-08-01

    Computer simulation is based on computer graphics to generate the realistic 3D structure scene of vegetation, and to simulate the canopy regime using radiosity method. In the present paper, the authors expand the computer simulation model to simulate forest canopy bidirectional reflectance at pixel scale. But usually, the trees are complex structures, which are tall and have many branches. So there is almost a need for hundreds of thousands or even millions of facets to built up the realistic structure scene for the forest It is difficult for the radiosity method to compute so many facets. In order to make the radiosity method to simulate the forest scene at pixel scale, in the authors' research, the authors proposed one idea to simplify the structure of forest crowns, and abstract the crowns to ellipsoids. And based on the optical characteristics of the tree component and the characteristics of the internal energy transmission of photon in real crown, the authors valued the optical characteristics of ellipsoid surface facets. In the computer simulation of the forest, with the idea of geometrical optics model, the gap model is considered to get the forest canopy bidirectional reflectance at pixel scale. Comparing the computer simulation results with the GOMS model, and Multi-angle Imaging SpectroRadiometer (MISR) multi-angle remote sensing data, the simulation results are in agreement with the GOMS simulation result and MISR BRF. But there are also some problems to be solved. So the authors can conclude that the study has important value for the application of multi-angle remote sensing and the inversion of vegetation canopy structure parameters.

  19. A Computation Fluid Dynamic Model for Gas Lift Process Simulation in a Vertical Oil Well

    Directory of Open Access Journals (Sweden)

    Kadivar Arash

    2017-03-01

    Full Text Available Continuous gas-lift in a typical oil well was simulated using computational fluid dynamic (CFD technique. A multi fluid model based on the momentum transfer between liquid and gas bubbles was employed to simulate two-phase flow in a vertical pipe. The accuracy of the model was investigated through comparison of numerical predictions with experimental data. The model then was used to study the dynamic behaviour of the two-phase flow around injection point in details. The predictions by the model were compared with other empirical correlations, as well. To obtain an optimum condition of gas-lift, the influence of the effective parameters including the quantity of injected gas, tubing diameter and bubble size distribution were investigated. The results revealed that increasing tubing diameter, the injected gas rate and decreasing bubble diameter improve gas-lift performance.

  20. Estimating social carrying capacity through computer simulation modeling: an application to Arches National Park, Utah

    Science.gov (United States)

    Benjamin Wang; Robert E. Manning; Steven R. Lawson; William A. Valliere

    2001-01-01

    Recent research and management experience has led to several frameworks for defining and managing carrying capacity of national parks and related areas. These frameworks rely on monitoring indicator variables to ensure that standards of quality are maintained. The objective of this study was to develop a computer simulation model to estimate the relationships between...

  1. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    Science.gov (United States)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  2. Challenges in reducing the computational time of QSTS simulations for distribution system analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Deboever, Jeremiah [Georgia Inst. of Technology, Atlanta, GA (United States); Zhang, Xiaochen [Georgia Inst. of Technology, Atlanta, GA (United States); Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grijalva, Santiago [Georgia Inst. of Technology, Atlanta, GA (United States); Therrien, Francis [CME International T& D, St. Bruno, QC (Canada)

    2017-06-01

    The rapid increase in penetration of distributed energy resources on the electric power distribution system has created a need for more comprehensive interconnection modelling and impact analysis. Unlike conventional scenario - based studies , quasi - static time - series (QSTS) simulation s can realistically model time - dependent voltage controllers and the diversity of potential impacts that can occur at different times of year . However, to accurately model a distribution system with all its controllable devices, a yearlong simulation at 1 - second resolution is often required , which could take conventional computers a computational time of 10 to 120 hours when an actual unbalanced distribution feeder is modeled . This computational burden is a clear l imitation to the adoption of QSTS simulation s in interconnection studies and for determining optimal control solutions for utility operations . Our ongoing research to improve the speed of QSTS simulation has revealed many unique aspects of distribution system modelling and sequential power flow analysis that make fast QSTS a very difficult problem to solve. In this report , the most relevant challenges in reducing the computational time of QSTS simulations are presented: number of power flows to solve, circuit complexity, time dependence between time steps, multiple valid power flow solutions, controllable element interactions, and extensive accurate simulation analysis.

  3. Computer simulation of sputtering: A review

    International Nuclear Information System (INIS)

    Robinson, M.T.; Hou, M.

    1992-08-01

    In 1986, H. H. Andersen reviewed attempts to understand sputtering by computer simulation and identified several areas where further research was needed: potential energy functions for molecular dynamics (MD) modelling; the role of inelastic effects on sputtering, especially near the target surface; the modelling of surface binding in models based on the binary collision approximation (BCA); aspects of cluster emission in MD models; and angular distributions of sputtered particles. To these may be added kinetic energy distributions of sputtered particles and the relationships between MD and BCA models, as well as the development of intermediate models. Many of these topics are discussed. Recent advances in BCA modelling include the explicit evaluation of the time in strict BCA codes and the development of intermediate codes able to simulate certain many-particle problems realistically. Developments in MD modelling include the wide-spread use of many-body potentials in sputtering calculations, inclusion of realistic electron excitation and electron-phonon interactions, and several studies of cluster ion impacts on solid surfaces

  4. Computer simulation model for the striped bass young-of-the-year population in the Hudson River

    International Nuclear Information System (INIS)

    Eraslan, A.H.; Van Winkle, W.; Sharp, R.D.; Christensen, S.W.; Goodyear, C.P.; Rush, R.M.; Fulkerson, W.

    1975-09-01

    This report presents a daily transient (tidal-averaged), longitudinally one-dimensional (cross-section-averaged) computer simulation model for the assessment of the entrainment and impingement impacts of power plant operations on young-of-the-year populations of the striped bass, Morone saxatilis, in the Hudson River

  5. Scientific Modeling and simulations

    CERN Document Server

    Diaz de la Rubia, Tomás

    2009-01-01

    Showcases the conceptual advantages of modeling which, coupled with the unprecedented computing power through simulations, allow scientists to tackle the formibable problems of our society, such as the search for hydrocarbons, understanding the structure of a virus, or the intersection between simulations and real data in extreme environments

  6. Modelling computer networks

    International Nuclear Information System (INIS)

    Max, G

    2011-01-01

    Traffic models in computer networks can be described as a complicated system. These systems show non-linear features and to simulate behaviours of these systems are also difficult. Before implementing network equipments users wants to know capability of their computer network. They do not want the servers to be overloaded during temporary traffic peaks when more requests arrive than the server is designed for. As a starting point for our study a non-linear system model of network traffic is established to exam behaviour of the network planned. The paper presents setting up a non-linear simulation model that helps us to observe dataflow problems of the networks. This simple model captures the relationship between the competing traffic and the input and output dataflow. In this paper, we also focus on measuring the bottleneck of the network, which was defined as the difference between the link capacity and the competing traffic volume on the link that limits end-to-end throughput. We validate the model using measurements on a working network. The results show that the initial model estimates well main behaviours and critical parameters of the network. Based on this study, we propose to develop a new algorithm, which experimentally determines and predict the available parameters of the network modelled.

  7. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    OpenAIRE

    Qiang Liu; Yi Qin; Guodong Li

    2018-01-01

    Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal...

  8. A compositional reservoir simulator on distributed memory parallel computers

    International Nuclear Information System (INIS)

    Rame, M.; Delshad, M.

    1995-01-01

    This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. A portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented

  9. Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Christopher B.; Richmond, Marshall C.

    2001-05-01

    This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

  10. Computer simulation of steady-state performance of air-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, R D; Creswick, F A

    1978-03-01

    A computer model by which the performance of air-to-air heat pumps can be simulated is described. The intended use of the model is to evaluate analytically the improvements in performance that can be effected by various component improvements. The model is based on a trio of independent simulation programs originated at the Massachusetts Institute of Technology Heat Transfer Laboratory. The three programs have been combined so that user intervention and decision making between major steps of the simulation are unnecessary. The program was further modified by substituting a new compressor model and adding a capillary tube model, both of which are described. Performance predicted by the computer model is shown to be in reasonable agreement with performance data observed in our laboratory. Planned modifications by which the utility of the computer model can be enhanced in the future are described. User instructions and a FORTRAN listing of the program are included.

  11. Quantitative comparison of hemodynamics in simulated and 3D angiography models of cerebral aneurysms by use of computational fluid dynamics.

    Science.gov (United States)

    Saho, Tatsunori; Onishi, Hideo

    2015-07-01

    In this study, we evaluated hemodynamics using simulated models and determined how cerebral aneurysms develop in simulated and patient-specific models based on medical images. Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM software. Flow velocity, stream line, and wall shear stress (WSS) were evaluated in a simulated model aneurysm with known geometry and in a three-dimensional angiographic model. The ratio of WSS at the aneurysm compared with that at the basilar artery was 1:10 in simulated model aneurysms with a diameter of 10 mm and 1:18 in the angiographic model, indicating similar tendencies. Vortex flow occurred in both model aneurysms, and the WSS decreased in larger model aneurysms. The angiographic model provided accurate CFD information, and the tendencies of simulated and angiographic models were similar. These findings indicate that hemodynamic effects are involved in the development of aneurysms.

  12. SPINET: A Parallel Computing Approach to Spine Simulations

    Directory of Open Access Journals (Sweden)

    Peter G. Kropf

    1996-01-01

    Full Text Available Research in scientitic programming enables us to realize more and more complex applications, and on the other hand, application-driven demands on computing methods and power are continuously growing. Therefore, interdisciplinary approaches become more widely used. The interdisciplinary SPINET project presented in this article applies modern scientific computing tools to biomechanical simulations: parallel computing and symbolic and modern functional programming. The target application is the human spine. Simulations of the spine help us to investigate and better understand the mechanisms of back pain and spinal injury. Two approaches have been used: the first uses the finite element method for high-performance simulations of static biomechanical models, and the second generates a simulation developmenttool for experimenting with different dynamic models. A finite element program for static analysis has been parallelized for the MUSIC machine. To solve the sparse system of linear equations, a conjugate gradient solver (iterative method and a frontal solver (direct method have been implemented. The preprocessor required for the frontal solver is written in the modern functional programming language SML, the solver itself in C, thus exploiting the characteristic advantages of both functional and imperative programming. The speedup analysis of both solvers show very satisfactory results for this irregular problem. A mixed symbolic-numeric environment for rigid body system simulations is presented. It automatically generates C code from a problem specification expressed by the Lagrange formalism using Maple.

  13. The Simulation and Analysis of the Closed Die Hot Forging Process by A Computer Simulation Method

    Directory of Open Access Journals (Sweden)

    Dipakkumar Gohil

    2012-06-01

    Full Text Available The objective of this research work is to study the variation of various parameters such as stress, strain, temperature, force, etc. during the closed die hot forging process. A computer simulation modeling approach has been adopted to transform the theoretical aspects in to a computer algorithm which would be used to simulate and analyze the closed die hot forging process. For the purpose of process study, the entire deformation process has been divided in to finite number of steps appropriately and then the output values have been computed at each deformation step. The results of simulation have been graphically represented and suitable corrective measures are also recommended, if the simulation results do not agree with the theoretical values. This computer simulation approach would significantly improve the productivity and reduce the energy consumption of the overall process for the components which are manufactured by the closed die forging process and contribute towards the efforts in reducing the global warming.

  14. Flow and air conditioning simulations of computer turbinectomized nose models.

    Science.gov (United States)

    Pérez-Mota, J; Solorio-Ordaz, F; Cervantes-de Gortari, J

    2018-04-16

    Air conditioning for the human respiratory system is the most important function of the nose. When obstruction occurs in the nasal airway, turbinectomy is used to correct such pathology. However, mucosal atrophy may occur sometime after this surgery when it is overdone. There is not enough information about long-term recovery of nasal air conditioning performance after partial or total surgery. The purpose of this research was to assess if, based on the flow and temperature/humidity characteristics of the air intake to the choana, partial resection of turbinates is better than total resection. A normal nasal cavity geometry was digitized from tomographic scans and a model was printed in 3D. Dynamic (sinusoidal) laboratory tests and computer simulations of airflow were conducted with full agreement between numerical and experimental results. Computational adaptations were subsequently performed to represent six turbinectomy variations and a swollen nasal cavity case. Streamlines along the nasal cavity and temperature and humidity distributions at the choana indicated that the middle turbinate partial resection is the best alternative. These findings may facilitate the diagnosis of nasal obstruction and can be useful both to plan a turbinectomy and to reduce postoperative discomfort. Graphical Abstract ᅟ.

  15. COMPUTER SIMULATION THE MECHANICAL MOVEMENT BODY BY MEANS OF MATHCAD

    Directory of Open Access Journals (Sweden)

    Leonid Flehantov

    2017-03-01

    Full Text Available Here considered the technique of using computer mathematics system MathCAD for computer implementation of mathematical model of the mechanical motion of the physical body thrown at an angle to the horizon, and its use for educational computer simulation experiment in teaching the fundamentals of mathematical modeling. The advantages of MathCAD as environment of implementation mathematical models in the second stage of higher education are noted. It describes the creation the computer simulation model that allows you to comprehensively analyze the process of mechanical movement of the body, changing the input parameters of the model: the acceleration of gravity, the initial and final position of the body, the initial velocity and angle, the geometric dimensions of the body and goals. The technique aimed at the effective assimilation of basic knowledge and skills of students on the basics of mathematical modeling, it provides an opportunity to better master the basic theoretical principles of mathematical modeling and related disciplines, promotes logical thinking development of students, their motivation to learn discipline, improves cognitive interest, forms skills research activities than creating conditions for the effective formation of professional competence of future specialists.

  16. In pursuit of an accurate spatial and temporal model of biomolecules at the atomistic level: a perspective on computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Alan [The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); Harlen, Oliver G. [University of Leeds, Leeds LS2 9JT (United Kingdom); Harris, Sarah A., E-mail: s.a.harris@leeds.ac.uk [University of Leeds, Leeds LS2 9JT (United Kingdom); University of Leeds, Leeds LS2 9JT (United Kingdom); Khalid, Syma; Leung, Yuk Ming [University of Southampton, Southampton SO17 1BJ (United Kingdom); Lonsdale, Richard [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Philipps-Universität Marburg, Hans-Meerwein Strasse, 35032 Marburg (Germany); Mulholland, Adrian J. [University of Bristol, Bristol BS8 1TS (United Kingdom); Pearson, Arwen R. [University of Leeds, Leeds LS2 9JT (United Kingdom); University of Hamburg, Hamburg (Germany); Read, Daniel J.; Richardson, Robin A. [University of Leeds, Leeds LS2 9JT (United Kingdom); The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom)

    2015-01-01

    The current computational techniques available for biomolecular simulation are described, and the successes and limitations of each with reference to the experimental biophysical methods that they complement are presented. Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational.

  17. Simulation modelling in agriculture: General considerations. | R.I. ...

    African Journals Online (AJOL)

    A computer simulation model is a detailed working hypothesis about a given system. The computer does all the necessary arithmetic when the hypothesis is invoked to predict the future behaviour of the simulated system under given conditions.A general pragmatic approach to model building is discussed; techniques are ...

  18. Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle

    International Nuclear Information System (INIS)

    He Yizhu; Ding Hanlin; Liu Liufa; Shin, Keesam

    2006-01-01

    The morphology, topology and kinetics of normal grain growth in two-dimension were studied by computer simulation using a cellular automata (Canada) model based on the lowest energy principle. The thermodynamic energy that follows Maxwell-Boltzmann statistics has been introduced into this model for the calculation of energy change. The transition that can reduce the system energy to the lowest level is chosen to occur when there is more than one possible transition direction. The simulation results show that the kinetics of normal grain growth follows the Burke equation with the growth exponent m = 2. The analysis of topology further indicates that normal grain growth can be simulated fairly well by the present CA model. The vanishing of grains with different number of sides is discussed in the simulation

  19. Simple Urban Simulation Atop Complicated Models: Multi-Scale Equation-Free Computing of Sprawl Using Geographic Automata

    Directory of Open Access Journals (Sweden)

    Yu Zou

    2013-07-01

    Full Text Available Reconciling competing desires to build urban models that can be simple and complicated is something of a grand challenge for urban simulation. It also prompts difficulties in many urban policy situations, such as urban sprawl, where simple, actionable ideas may need to be considered in the context of the messily complex and complicated urban processes and phenomena that work within cities. In this paper, we present a novel architecture for achieving both simple and complicated realizations of urban sprawl in simulation. Fine-scale simulations of sprawl geography are run using geographic automata to represent the geographical drivers of sprawl in intricate detail and over fine resolutions of space and time. We use Equation-Free computing to deploy population as a coarse observable of sprawl, which can be leveraged to run automata-based models as short-burst experiments within a meta-simulation framework.

  20. Computational multiscale modeling of intergranular cracking

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2011-01-01

    A novel computational approach for simulation of intergranular cracks in a polycrystalline aggregate is proposed in this paper. The computational model includes a topological model of the experimentally determined microstructure of a 400 μm diameter stainless steel wire and automatic finite element discretization of the grains and grain boundaries. The microstructure was spatially characterized by X-ray diffraction contrast tomography and contains 362 grains and some 1600 grain boundaries. Available constitutive models currently include isotropic elasticity for the grain interior and cohesive behavior with damage for the grain boundaries. The experimentally determined lattice orientations are employed to distinguish between resistant low energy and susceptible high energy grain boundaries in the model. The feasibility and performance of the proposed computational approach is demonstrated by simulating the onset and propagation of intergranular cracking. The preliminary numerical results are outlined and discussed.

  1. Computer Simulation and Modeling of CO2 Removal Systems for Exploration 2013-2014

    Science.gov (United States)

    Coker, R.; Knox, J.; Gomez, C.

    2015-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project and the follow-on Life Support Systems (LSS) project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper will describes the testing and 1-D modeling of the combined water desiccant and carbon dioxide sorbent subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  2. Using Physical and Computer Simulations of Collective Behaviour as an Introduction to Modelling Concepts for Applied Biologists

    Science.gov (United States)

    Rands, Sean A.

    2012-01-01

    Models are an important tool in science: not only do they act as a convenient device for describing a system or problem, but they also act as a conceptual tool for framing and exploring hypotheses. Models, and in particular computer simulations, are also an important education tool for training scientists, but it is difficult to teach students the…

  3. Computer simulation of hopper flow

    International Nuclear Information System (INIS)

    Potapov, A.V.; Campbell, C.S.

    1996-01-01

    This paper describes two-dimensional computer simulations of granular flow in plane hoppers. The simulations can reproduce an experimentally observed asymmetric unsteadiness for monodispersed particle sizes, but also could eliminate it by adding a small amount of polydispersity. This appears to be a result of the strong packings that may be formed by monodispersed particles and is thus a noncontinuum effect. The internal stress state was also sampled, which among other things, allows an evaluation of common assumptions made in granular material models. These showed that the internal friction coefficient is far from a constant, which is in contradiction to common models based on plasticity theory which assume that the material is always at the point of imminent yield. Furthermore, it is demonstrated that rapid granular flow theory, another common modeling technique, is inapplicable to this problem even near the exit where the flow is moving its fastest. copyright 1996 American Institute of Physics

  4. Automated Simulation Model Generation

    NARCIS (Netherlands)

    Huang, Y.

    2013-01-01

    One of today's challenges in the field of modeling and simulation is to model increasingly larger and more complex systems. Complex models take long to develop and incur high costs. With the advances in data collection technologies and more popular use of computer-aided systems, more data has become

  5. Evaluation of a subject-specific, torque-driven computer simulation model of one-handed tennis backhand groundstrokes.

    Science.gov (United States)

    Kentel, Behzat B; King, Mark A; Mitchell, Sean R

    2011-11-01

    A torque-driven, subject-specific 3-D computer simulation model of the impact phase of one-handed tennis backhand strokes was evaluated by comparing performance and simulation results. Backhand strokes of an elite subject were recorded on an artificial tennis court. Over the 50-ms period after impact, good agreement was found with an overall RMS difference of 3.3° between matching simulation and performance in terms of joint and racket angles. Consistent with previous experimental research, the evaluation process showed that grip tightness and ball impact location are important factors that affect postimpact racket and arm kinematics. Associated with these factors, the model can be used for a better understanding of the eccentric contraction of the wrist extensors during one-handed backhand ground strokes, a hypothesized mechanism of tennis elbow.

  6. Proceedings of the 17. IASTED international conference on modelling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wamkeue, R. (comp.) [Quebec Univ., Abitibi-Temiscaminque, PQ (Canada)

    2006-07-01

    The International Association of Science and Technology for Development (IASTED) hosted this conference to provide a forum for international researchers and practitioners interested in all areas of modelling and simulation. The conference featured 12 sessions entitled: (1) automation, control and robotics, (2) hydraulic and hydrologic modelling, (3) applications in processes and design optimization, (4) environmental systems, (5) biomedicine and biomechanics, (6) communications, computers and informatics 1, (7) economics, management and operations research 1, (8) modelling and simulation methodologies 1, (9) economics, management and operations research 2, (10) modelling, optimization, identification and simulation, (11) communications, computers and informatics 2, and, (12) modelling and simulation methodologies 2. Participants took the opportunity to present the latest research, results, and ideas in mathematical modelling; physically-based modelling; agent-based modelling; dynamic modelling; 3-dimensional modelling; computational geometry; time series analysis; finite element methods; discrete event simulation; web-based simulation; Monte Carlo simulation; simulation optimization; simulation uncertainty; fuzzy systems; data modelling; computer aided design; and, visualization. Case studies in engineering design were also presented along with simulation tools and languages. The conference also highlighted topical issues in environmental systems modelling such as air modelling and simulation, atmospheric modelling, hazardous materials, mobile source emissions, ecosystem modelling, hydrological modelling, aquatic ecosystems, terrestrial ecosystems, biological systems, agricultural modelling, terrain analysis, meteorological modelling, earth system modelling, climatic modelling, and natural resource management. The conference featured 110 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  7. Overhead Crane Computer Model

    Science.gov (United States)

    Enin, S. S.; Omelchenko, E. Y.; Fomin, N. V.; Beliy, A. V.

    2018-03-01

    The paper has a description of a computer model of an overhead crane system. The designed overhead crane system consists of hoisting, trolley and crane mechanisms as well as a payload two-axis system. With the help of the differential equation of specified mechanisms movement derived through Lagrange equation of the II kind, it is possible to build an overhead crane computer model. The computer model was obtained using Matlab software. Transients of coordinate, linear speed and motor torque of trolley and crane mechanism systems were simulated. In addition, transients of payload swaying were obtained with respect to the vertical axis. A trajectory of the trolley mechanism with simultaneous operation with the crane mechanism is represented in the paper as well as a two-axis trajectory of payload. The designed computer model of an overhead crane is a great means for studying positioning control and anti-sway control systems.

  8. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety...

  9. The challenge of quantum computer simulations of physical phenomena

    International Nuclear Information System (INIS)

    Ortiz, G.; Knill, E.; Gubernatis, J.E.

    2002-01-01

    The goal of physics simulation using controllable quantum systems ('physics imitation') is to exploit quantum laws to advantage, and thus accomplish efficient simulation of physical phenomena. In this Note, we discuss the fundamental concepts behind this paradigm of information processing, such as the connection between models of computation and physical systems. The experimental simulation of a toy quantum many-body problem is described

  10. Multiscale models and stochastic simulation methods for computing rare but key binding events in cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Guerrier, C. [Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, 46 rue d' Ulm, 75005 Paris (France); Holcman, D., E-mail: david.holcman@ens.fr [Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, 46 rue d' Ulm, 75005 Paris (France); Mathematical Institute, Oxford OX2 6GG, Newton Institute (United Kingdom)

    2017-07-01

    The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationally greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.

  11. Multiscale models and stochastic simulation methods for computing rare but key binding events in cell biology

    International Nuclear Information System (INIS)

    Guerrier, C.; Holcman, D.

    2017-01-01

    The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationally greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.

  12. Optimization of energy usage in textile finishing operations. Part I. The simulation of batch dyehouse activities with a general purpose computer model

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J.N. Jr.; Rice, W.T. Jr.

    1980-01-01

    A project to develop a mathematical model capable of simulating the activities in a typical batch dyeing process in the textile industry is described. The model could be used to study the effects of changes in dye-house operations, and to determine effective guidelines for optimal dyehouse performance. The computer model is of a hypothetical dyehouse. The appendices contain a listing of the computer program, sample computer inputs and outputs, and instructions for using the model. (MCW)

  13. PETRI NET MODELING OF COMPUTER VIRUS LIFE CYCLE

    African Journals Online (AJOL)

    Dr Obe

    dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model ... Keywords: Virus lifecycle, Petri nets, modeling. simulation. .... complex process. Figure 2 .... by creating Matlab files for five different computer ...

  14. A scalable approach to modeling groundwater flow on massively parallel computers

    International Nuclear Information System (INIS)

    Ashby, S.F.; Falgout, R.D.; Tompson, A.F.B.

    1995-12-01

    We describe a fully scalable approach to the simulation of groundwater flow on a hierarchy of computing platforms, ranging from workstations to massively parallel computers. Specifically, we advocate the use of scalable conceptual models in which the subsurface model is defined independently of the computational grid on which the simulation takes place. We also describe a scalable multigrid algorithm for computing the groundwater flow velocities. We axe thus able to leverage both the engineer's time spent developing the conceptual model and the computing resources used in the numerical simulation. We have successfully employed this approach at the LLNL site, where we have run simulations ranging in size from just a few thousand spatial zones (on workstations) to more than eight million spatial zones (on the CRAY T3D)-all using the same conceptual model

  15. Some computer simulations based on the linear relative risk model

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1991-10-01

    This report presents the results of computer simulations designed to evaluate and compare the performance of the likelihood ratio statistic and the score statistic for making inferences about the linear relative risk mode. The work was motivated by data on workers exposed to low doses of radiation, and the report includes illustration of several procedures for obtaining confidence limits for the excess relative risk coefficient based on data from three studies of nuclear workers. The computer simulations indicate that with small sample sizes and highly skewed dose distributions, asymptotic approximations to the score statistic or to the likelihood ratio statistic may not be adequate. For testing the null hypothesis that the excess relative risk is equal to zero, the asymptotic approximation to the likelihood ratio statistic was adequate, but use of the asymptotic approximation to the score statistic rejected the null hypothesis too often. Frequently the likelihood was maximized at the lower constraint, and when this occurred, the asymptotic approximations for the likelihood ratio and score statistics did not perform well in obtaining upper confidence limits. The score statistic and likelihood ratio statistics were found to perform comparably in terms of power and width of the confidence limits. It is recommended that with modest sample sizes, confidence limits be obtained using computer simulations based on the score statistic. Although nuclear worker studies are emphasized in this report, its results are relevant for any study investigating linear dose-response functions with highly skewed exposure distributions. 22 refs., 14 tabs

  16. Computer simulation of multiple dynamic photorefractive gratings

    DEFF Research Database (Denmark)

    Buchhave, Preben

    1998-01-01

    The benefits of a direct visualization of space-charge grating buildup are described. The visualization is carried out by a simple repetitive computer program, which simulates the basic processes in the band-transport model and displays the result graphically or in the form of numerical data. The...

  17. Aero-Acoustic Modelling using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Shen, W Z; Soerensen, J N

    2007-01-01

    The splitting technique for aero-acoustic computations is extended to simulate three-dimensional flow and acoustic waves from airfoils. The aero-acoustic model is coupled to a sub-grid-scale turbulence model for Large-Eddy Simulations. In the first test case, the model is applied to compute laminar flow past a NACA 0015 airfoil at a Reynolds number of 800, a Mach number of 0.2 and an angle of attack of 20 deg. The model is then applied to compute turbulent flow past a NACA 0015 airfoil at a Reynolds number of 100 000, a Mach number of 0.2 and an angle of attack of 20 deg. The predicted noise spectrum is compared to experimental data

  18. Computational model for simulation small testing launcher, technical solution

    Energy Technology Data Exchange (ETDEWEB)

    Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro [University POLITEHNICA of Bucharest - Research Center for Aeronautics and Space, Str. Ghe Polizu, nr. 1, Bucharest, Sector 1 (Romania); Cristian, Barbu, E-mail: barbucr@mta.ro [Military Technical Academy, Romania, B-dul. George Coşbuc, nr. 81-83, Bucharest, Sector 5 (Romania); Chelaru, Adrian, E-mail: achelaru@incas.ro [INCAS -National Institute for Aerospace Research Elie Carafoli, B-dul Iuliu Maniu 220, 061126, Bucharest, Sector 6 (Romania)

    2014-12-10

    The purpose of this paper is to present some aspects regarding the computational model and technical solutions for multistage suborbital launcher for testing (SLT) used to test spatial equipment and scientific measurements. The computational model consists in numerical simulation of SLT evolution for different start conditions. The launcher model presented will be with six degrees of freedom (6DOF) and variable mass. The results analysed will be the flight parameters and ballistic performances. The discussions area will focus around the technical possibility to realize a small multi-stage launcher, by recycling military rocket motors. From technical point of view, the paper is focused on national project 'Suborbital Launcher for Testing' (SLT), which is based on hybrid propulsion and control systems, obtained through an original design. Therefore, while classical suborbital sounding rockets are unguided and they use as propulsion solid fuel motor having an uncontrolled ballistic flight, SLT project is introducing a different approach, by proposing the creation of a guided suborbital launcher, which is basically a satellite launcher at a smaller scale, containing its main subsystems. This is why the project itself can be considered an intermediary step in the development of a wider range of launching systems based on hybrid propulsion technology, which may have a major impact in the future European launchers programs. SLT project, as it is shown in the title, has two major objectives: first, a short term objective, which consists in obtaining a suborbital launching system which will be able to go into service in a predictable period of time, and a long term objective that consists in the development and testing of some unconventional sub-systems which will be integrated later in the satellite launcher as a part of the European space program. This is why the technical content of the project must be carried out beyond the range of the existing suborbital

  19. Theory, modeling, and simulation annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations.

  20. Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations

    Science.gov (United States)

    Eskandari Nasrabad, A.; Laghaei, R.

    2018-04-01

    Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.

  1. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  2. Integrating interactive computational modeling in biology curricula.

    Science.gov (United States)

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  3. Scientific and computational challenges of the fusion simulation project (FSP)

    International Nuclear Information System (INIS)

    Tang, W M

    2008-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Project (FSP). The primary objective is to develop advanced software designed to use leadership-class computers for carrying out multiscale physics simulations to provide information vital to delivering a realistic integrated fusion simulation model with unprecedented physics fidelity. This multiphysics capability will be unprecedented in that in the current FES applications domain, the largest-scale codes are used to carry out first-principles simulations of mostly individual phenomena in realistic 3D geometry while the integrated models are much smaller-scale, lower-dimensionality codes with significant empirical elements used for modeling and designing experiments. The FSP is expected to be the most up-to-date embodiment of the theoretical and experimental understanding of magnetically confined thermonuclear plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing a reliable ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices on all relevant time and space scales. From a computational perspective, the fusion energy science application goal to produce high-fidelity, whole-device modeling capabilities will demand computing resources in the petascale range and beyond, together with the associated multicore algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative device involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics

  4. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    Science.gov (United States)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  5. Computer Simulation of Developmental Processes and ...

    Science.gov (United States)

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  6. On efficiency of fire simulation realization: parallelization with greater number of computational meshes

    Science.gov (United States)

    Valasek, Lukas; Glasa, Jan

    2017-12-01

    Current fire simulation systems are capable to utilize advantages of high-performance computer (HPC) platforms available and to model fires efficiently in parallel. In this paper, efficiency of a corridor fire simulation on a HPC computer cluster is discussed. The parallel MPI version of Fire Dynamics Simulator is used for testing efficiency of selected strategies of allocation of computational resources of the cluster using a greater number of computational cores. Simulation results indicate that if the number of cores used is not equal to a multiple of the total number of cluster node cores there are allocation strategies which provide more efficient calculations.

  7. Three-dimensional computer simulation at vehicle collision using dynamic model. Application to various collision types; Rikigaku model ni yoru jidosha shototsuji no sanjigen kyodo simulation. Shushu no shototsu keitai eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M; Morisawa, M [Musashi Institute of Technology, Tokyo (Japan); Sato, T [Keio University, Tokyo (Japan); Kobayashi, K [Molex-Japan Co. Ltd., Tokyo (Japan)

    1997-10-01

    The past study of safety at vehicle collision pays attention to phenomena within the short time from starting collision, and the behavior of rollover is studied separating from that at collision. Most simulations of traffic accident are two-dimensional simulations. Therefore, it is indispensable for vehicle design to the analyze three-dimensional and continuous behavior from crash till stopping. Accordingly, in this study, the three-dimensional behavior of two vehicles at collision was simulated by computer using dynamic models. Then, by comparison of the calculated results with real vehicles` collision test data, it was confirmed that dynamic model of this study was reliable. 10 refs., 6 figs., 3 tabs.

  8. Modeling and Simulation for Safeguards

    International Nuclear Information System (INIS)

    Swinhoe, Martyn T.

    2012-01-01

    The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R and D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.

  9. Computer Networks E-learning Based on Interactive Simulations and SCORM

    Directory of Open Access Journals (Sweden)

    Francisco Andrés Candelas

    2011-05-01

    Full Text Available This paper introduces a new set of compact interactive simulations developed for the constructive learning of computer networks concepts. These simulations, which compose a virtual laboratory implemented as portable Java applets, have been created by combining EJS (Easy Java Simulations with the KivaNS API. Furthermore, in this work, the skills and motivation level acquired by the students are evaluated and measured when these simulations are combined with Moodle and SCORM (Sharable Content Object Reference Model documents. This study has been developed to improve and stimulate the autonomous constructive learning in addition to provide timetable flexibility for a Computer Networks subject.

  10. Computer simulation in nuclear science and engineering

    International Nuclear Information System (INIS)

    Akiyama, Mamoru; Miya, Kenzo; Iwata, Shuichi; Yagawa, Genki; Kondo, Shusuke; Hoshino, Tsutomu; Shimizu, Akinao; Takahashi, Hiroshi; Nakagawa, Masatoshi.

    1992-01-01

    The numerical simulation technology used for the design of nuclear reactors includes the scientific fields of wide range, and is the cultivated technology which grew in the steady efforts to high calculation accuracy through safety examination, reliability verification test, the assessment of operation results and so on. Taking the opportunity of putting numerical simulation to practical use in wide fields, the numerical simulation of five basic equations which describe the natural world and the progress of its related technologies are reviewed. It is expected that numerical simulation technology contributes to not only the means of design study but also the progress of science and technology such as the construction of new innovative concept, the exploration of new mechanisms and substances, of which the models do not exist in the natural world. The development of atomic energy and the progress of computers, Boltzmann's transport equation and its periphery, Navier-Stokes' equation and its periphery, Maxwell's electromagnetic field equation and its periphery, Schroedinger wave equation and its periphery, computational solid mechanics and its periphery, and probabilistic risk assessment and its periphery are described. (K.I.)

  11. Computer Models Simulate Fine Particle Dispersion

    Science.gov (United States)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  12. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  13. Moving on to the modeling and simulation using computational fluid dynamics

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Rohyiza Baan; Muhd Noor Muhd Yunus

    2006-01-01

    The heat is on but not at the co-combustor plant. Using the Computational Fluid Dynamics (CFD), modeling and simulation of an incinerator has been made easy and possible from the comfort of cozy room. CFD has become an important design tool in nearly every industrial field because it provides understanding of flow patterns. CFD provide values for fluid velocity, fluid temperature, pressure and species concentrations throughout a flow domain. MINT has acquired a complete CFD software recently, consisting of GAMBIT, which is use to build geometry and meshing, and FLUENT as the processor or solver. This paper discusses on several trial runs that was carried out on several parts of the co-combustor plant namely the under fire section and the mixing chamber section

  14. Computational biomechanics for medicine imaging, modeling and computing

    CERN Document Server

    Doyle, Barry; Wittek, Adam; Nielsen, Poul; Miller, Karol

    2016-01-01

    The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This volume comprises eighteen of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, UK, Switzerland, Scotland, France and Russia. Some of the interesting topics discussed are: tailored computational models; traumatic brain injury; soft-tissue mechanics; medical image analysis; and clinically-relevant simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.

  15. Parallel reservoir simulator computations

    International Nuclear Information System (INIS)

    Hemanth-Kumar, K.; Young, L.C.

    1995-01-01

    The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90

  16. Computational Aerodynamic Simulations of a 1215 ft/sec Tip Speed Transonic Fan System Model for Acoustic Methods Assessment and Development

    Science.gov (United States)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1215 ft/sec tip speed transonic fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which for this model did not include a split flow path with core and bypass ducts. As a result, it was only necessary to adjust fan rotational speed in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the flow fields at all operating conditions reveals no excessive boundary layer separations or related secondary-flow problems.

  17. Simulating chemistry using quantum computers.

    Science.gov (United States)

    Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán

    2011-01-01

    The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  18. A computer code to simulate X-ray imaging techniques

    International Nuclear Information System (INIS)

    Duvauchelle, Philippe; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-01-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests

  19. A computer code to simulate X-ray imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, Philippe E-mail: philippe.duvauchelle@insa-lyon.fr; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-09-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests.

  20. Beyond Modeling: All-Atom Olfactory Receptor Model Simulations

    Directory of Open Access Journals (Sweden)

    Peter C Lai

    2012-05-01

    Full Text Available Olfactory receptors (ORs are a type of GTP-binding protein-coupled receptor (GPCR. These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can validate experimental functional studies as well as generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level. Here we have shown the specific advantages of simulating the dynamic environment that is associated with OR-odorant interactions. We present a rigorous methodology that ranges from the creation of a computationally-derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs.

  1. Investigations into radiation damages of reactor materials by computer simulation

    International Nuclear Information System (INIS)

    Bronnikov, V.A.

    2004-01-01

    Data on the state of works in European countries in the field of computerized simulation of radiation damages of reactor materials under the context of the international projects ITEM (European Database for Multiscale Modelling) and SIRENA (Simulation of Radiation Effects in Zr-Nb alloys) - computerized simulation of stress corrosion when contact of Zr-Nb alloys with iodine are presented. Computer codes for the simulation of radiation effects in reactor materials were developed. European Database for Multiscale Modelling (EDAM) was organized using the results of the investigations provided in the ITEM project [ru

  2. Accelerating Climate Simulations Through Hybrid Computing

    Science.gov (United States)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  3. Reduced-order modeling (ROM) for simulation and optimization powerful algorithms as key enablers for scientific computing

    CERN Document Server

    Milde, Anja; Volkwein, Stefan

    2018-01-01

    This edited monograph collects research contributions and addresses the advancement of efficient numerical procedures in the area of model order reduction (MOR) for simulation, optimization and control. The topical scope includes, but is not limited to, new out-of-the-box algorithmic solutions for scientific computing, e.g. reduced basis methods for industrial problems and MOR approaches for electrochemical processes. The target audience comprises research experts and practitioners in the field of simulation, optimization and control, but the book may also be beneficial for graduate students alike. .

  4. GPU-accelerated micromagnetic simulations using cloud computing

    Energy Technology Data Exchange (ETDEWEB)

    Jermain, C.L., E-mail: clj72@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Rowlands, G.E.; Buhrman, R.A. [Cornell University, Ithaca, NY 14853 (United States); Ralph, D.C. [Cornell University, Ithaca, NY 14853 (United States); Kavli Institute at Cornell, Ithaca, NY 14853 (United States)

    2016-03-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  5. GPU-accelerated micromagnetic simulations using cloud computing

    International Nuclear Information System (INIS)

    Jermain, C.L.; Rowlands, G.E.; Buhrman, R.A.; Ralph, D.C.

    2016-01-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  6. Introducing Seismic Tomography with Computational Modeling

    Science.gov (United States)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  7. Load/resource matching for period-of-record computer simulation

    International Nuclear Information System (INIS)

    Lindsey, E.D. Jr.; Robbins, G.E. III

    1991-01-01

    The Southwestern Power Administration (Southwestern), an agency of the Department of Energy, is responsible for marketing the power and energy produced at Federal hydroelectric power projects developed by the U.S. Army Corps of Engineers in the southwestern United States. This paper reports that in order to maximize benefits from limited resources, to evaluate proposed changes in the operation of existing projects, and to determine the feasibility and marketability of proposed new projects, Southwestern utilizes a period-of-record computer simulation model created in the 1960's. Southwestern is constructing a new computer simulation model to take advantage of changes in computers, policy, and procedures. Within all hydroelectric power reservoir systems, the ability of the resources to match the load demand is critical and presents complex problems. Therefore, the method used to compare available energy resources to energy load demands is a very important aspect of the new model. Southwestern has developed an innovative method which compares a resource duration curve with a load duration curve, adjusting the resource duration curve to make the most efficient use of the available resources

  8. Energy consumption program: A computer model simulating energy loads in buildings

    Science.gov (United States)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  9. Computer Simulation Western

    International Nuclear Information System (INIS)

    Rasmussen, H.

    1992-01-01

    Computer Simulation Western is a unit within the Department of Applied Mathematics at the University of Western Ontario. Its purpose is the development of computational and mathematical methods for practical problems in industry and engineering and the application and marketing of such methods. We describe the unit and our efforts at obtaining research and development grants. Some representative projects will be presented and future plans discussed. (author)

  10. Effect of Inquiry-Based Computer Simulation Modeling on Pre-Service Teachers' Understanding of Homeostasis and Their Perceptions of Design Features

    Science.gov (United States)

    Chabalengula, Vivien; Fateen, Rasheta; Mumba, Frackson; Ochs, Laura Kathryn

    2016-01-01

    This study investigated the effect of an inquiry-based computer simulation modeling (ICoSM) instructional approach on pre-service science teachers' understanding of homeostasis and its related concepts, and their perceived design features of the ICoSM and simulation that enhanced their conceptual understanding of these concepts. Fifty pre-service…

  11. Computer modeling of commercial refrigerated warehouse facilities

    International Nuclear Information System (INIS)

    Nicoulin, C.V.; Jacobs, P.C.; Tory, S.

    1997-01-01

    The use of computer models to simulate the energy performance of large commercial refrigeration systems typically found in food processing facilities is an area of engineering practice that has seen little development to date. Current techniques employed in predicting energy consumption by such systems have focused on temperature bin methods of analysis. Existing simulation tools such as DOE2 are designed to model commercial buildings and grocery store refrigeration systems. The HVAC and Refrigeration system performance models in these simulations tools model equipment common to commercial buildings and groceries, and respond to energy-efficiency measures likely to be applied to these building types. The applicability of traditional building energy simulation tools to model refrigerated warehouse performance and analyze energy-saving options is limited. The paper will present the results of modeling work undertaken to evaluate energy savings resulting from incentives offered by a California utility to its Refrigerated Warehouse Program participants. The TRNSYS general-purpose transient simulation model was used to predict facility performance and estimate program savings. Custom TRNSYS components were developed to address modeling issues specific to refrigerated warehouse systems, including warehouse loading door infiltration calculations, an evaporator model, single-state and multi-stage compressor models, evaporative condenser models, and defrost energy requirements. The main focus of the paper will be on the modeling approach. The results from the computer simulations, along with overall program impact evaluation results, will also be presented

  12. Ecological impacts of environmental toxicants and radiation on the microbial ecosystem: a model simulation of computational microbiology

    International Nuclear Information System (INIS)

    Doi, Masahiro; Sakashita, Tetsuya; Ishii, Nobuyoshi; Fuma, Shoichi; Takeda, Hiroshi; Miyamoto, Kiriko; Yanagisawa, K.; Nakamura, Yuji; Kawabata, Zenichiro

    2000-01-01

    This study explores a microorganic closed-ecosystem by computer simulation to illustrate symbiosis among populations in the microcosm that consists of heterotroph protozoa, Tetrahymena thermophila B as a consumer, autotroph algae, Euglena gracilis Z as a primary producer and saprotroph Bacteria, Escherichia coli DH5 as decomposer. The simulation program is written as a procedure of StarLogoT1.5.1, which is developed by Center for Connected Learning and Computer-Based Modeling, Tufts University. The virtual microcosm is structured and operated by the following rules; 1) Environment is defined as a lattice model, which consists of 10,201 square patches, 300 micron Wide, 300 micron Length and 100 micron Hight. 2) Each patch has its own attributes, Nutrient, Detritus and absolute coordinates, 3) Components of the species, Tetrahymena, Euglena and E-coli are defined as sub-system, and each sub-system has its own attributes as location, heading direction, cell-age, structured biomass, reserves energy and demographic parameters (assimilation rate, breeding threshold, growth rate, etc.). 4) Each component of the species, Tetrahymena, Euglena and E-coli, lives by foraging (Tetrahymena eats E-coli), excreting its metabolic products to the environment (as a substrate of E-coli), breeding and dying according vital condition. 5) Euglena utilizes sunlight energy by photosynthesis process and produces organic compounds. E-coli breaks down the organic compounds of dead protoplasm or metabolic wastes (Detritus) and releases inorganic substances to construct down stream of food cycle. Virtual ecosystem in this study is named SIM-COSM, a parallel computing model for self-sustaining system of complexity. It found that SIM-COSM is a valuable to illustrate symbiosis among populations in the microcosm, where a feedback mechanism acts in response to disturbances and interactions among species and environment. In the simulation, microbes increased demographic and environmental

  13. Computer simulations of atomic collisions in solids with special emphasis on sputtering

    International Nuclear Information System (INIS)

    Andersen, H.H.

    1986-01-01

    Computer simulations of atomic collisions in solids are traditionally divided into fully interacting or molecular dynamics (MD) simulations on the one side and simulations based on the binary collision approximation (BCA) on the other. The historical development of both branches is followed and other dichotomies viz. between static and dynamic target models and between models using crystalline and amorphous targets are introduced. The influence of the main input parameters, viz. interatomic potentials, surface- and bulk-binding energies and inelasticity is discussed before selected results are treated. Here, results for non-linear effects, clusters, fluctuations and for angular distributions are presented. The review is concluded with a discussion of the influence of computer developments on future simulations. With 392 refs

  14. SHIPBUILDING PRODUCTION PROCESS DESIGN METHODOLOGY USING COMPUTER SIMULATION

    OpenAIRE

    Marko Hadjina; Nikša Fafandjel; Tin Matulja

    2015-01-01

    In this research a shipbuilding production process design methodology, using computer simulation, is suggested. It is expected from suggested methodology to give better and more efficient tool for complex shipbuilding production processes design procedure. Within the first part of this research existing practice for production process design in shipbuilding was discussed, its shortcomings and problem were emphasized. In continuing, discrete event simulation modelling method, as basis of sugge...

  15. Simulation and Noise Analysis of Multimedia Transmission in Optical CDMA Computer Networks

    Directory of Open Access Journals (Sweden)

    Nasaruddin Nasaruddin

    2013-09-01

    Full Text Available This paper simulates and analyzes noise of multimedia transmission in a flexible optical code division multiple access (OCDMA computer network with different quality of service (QoS requirements. To achieve multimedia transmission in OCDMA, we have proposed strict variable-weight optical orthogonal codes (VW-OOCs, which can guarantee the smallest correlation value of one by the optimal design. In developing multimedia transmission for computer network, a simulation tool is essential in analyzing the effectiveness of various transmissions of services. In this paper, implementation models are proposed to analyze the multimedia transmission in the representative of OCDMA computer networks by using MATLAB simulink tools. Simulation results of the models are discussed including spectrums outputs of transmitted signals, superimposed signals, received signals, and eye diagrams with and without noise. Using the proposed models, multimedia OCDMA computer network using the strict VW-OOC is practically evaluated. Furthermore, system performance is also evaluated by considering avalanche photodiode (APD noise and thermal noise. The results show that the system performance depends on code weight, received laser power, APD noise, and thermal noise which should be considered as important parameters to design and implement multimedia transmission in OCDMA computer networks.

  16. Simulation and Noise Analysis of Multimedia Transmission in Optical CDMA Computer Networks

    Directory of Open Access Journals (Sweden)

    Nasaruddin

    2009-11-01

    Full Text Available This paper simulates and analyzes noise of multimedia transmission in a flexible optical code division multiple access (OCDMA computer network with different quality of service (QoS requirements. To achieve multimedia transmission in OCDMA, we have proposed strict variable-weight optical orthogonal codes (VW-OOCs, which can guarantee the smallest correlation value of one by the optimal design. In developing multimedia transmission for computer network, a simulation tool is essential in analyzing the effectiveness of various transmissions of services. In this paper, implementation models are proposed to analyze the multimedia transmission in the representative of OCDMA computer networks by using MATLAB simulink tools. Simulation results of the models are discussed including spectrums outputs of transmitted signals, superimposed signals, received signals, and eye diagrams with and without noise. Using the proposed models, multimedia OCDMA computer network using the strict VW-OOC is practically evaluated. Furthermore, system performance is also evaluated by considering avalanche photodiode (APD noise and thermal noise. The results show that the system performance depends on code weight, received laser power, APD noise, and thermal noise which should be considered as important parameters to design and implement multimedia transmission in OCDMA computer networks.

  17. On turbulence models for rod bundle flow computations

    International Nuclear Information System (INIS)

    Hazi, Gabor

    2005-01-01

    In commercial computational fluid dynamics codes there is more than one turbulence model built in. It is the user responsibility to choose one of those models, suitable for the problem studied. In the last decade, several computations were presented using computational fluid dynamics for the simulation of various problems of the nuclear industry. A common feature in a number of those simulations is that they were performed using the standard k-ε turbulence model without justifying the choice of the model. The simulation results were rarely satisfactory. In this paper, we shall consider the flow in a fuel rod bundle as a case study and discuss why the application of the standard k-ε model fails to give reasonable results in this situation. We also show that a turbulence model based on the Reynolds stress transport equations can provide qualitatively correct results. Generally, our aim is pedagogical, we would like to call the readers attention to the fact that turbulence models have to be selected based on theoretical considerations and/or adequate information obtained from measurements

  18. A hybrid model for the computationally-efficient simulation of the cerebellar granular layer

    Directory of Open Access Journals (Sweden)

    Anna eCattani

    2016-04-01

    Full Text Available The aim of the present paper is to efficiently describe the membrane potential dynamics of neural populations formed by species having a high density difference in specific brain areas. We propose a hybrid model whose main ingredients are a conductance-based model (ODE system and its continuous counterpart (PDE system obtained through a limit process in which the number of neurons confined in a bounded region of the brain tissue is sent to infinity. Specifically, in the discrete model, each cell is described by a set of time-dependent variables, whereas in the continuum model, cells are grouped into populations that are described by a set of continuous variables.Communications between populations, which translate into interactions among the discrete and the continuous models, are the essence of the hybrid model we present here. The cerebellum and cerebellum-like structures show in their granular layer a large difference in the relative density of neuronal species making them a natural testing ground for our hybrid model. By reconstructing the ensemble activity of the cerebellar granular layer network and by comparing our results to a more realistic computational network, we demonstrate that our description of the network activity, even though it is not biophysically detailed, is still capable of reproducing salient features of neural network dynamics. Our modeling approach yields a significant computational cost reduction by increasing the simulation speed at least $270$ times. The hybrid model reproduces interesting dynamics such as local microcircuit synchronization, traveling waves, center-surround and time-windowing.

  19. Minimum-complexity helicopter simulation math model

    Science.gov (United States)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  20. General-purpose parallel simulator for quantum computing

    International Nuclear Information System (INIS)

    Niwa, Jumpei; Matsumoto, Keiji; Imai, Hiroshi

    2002-01-01

    With current technologies, it seems to be very difficult to implement quantum computers with many qubits. It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However, for a large-size problem, the simulation often requires more computational power than is available from sequential processing. Therefore, simulation methods for parallel processors are required. We have developed a general-purpose simulator for quantum algorithms/circuits on the parallel computer (Sun Enterprise4500). It can simulate algorithms/circuits with up to 30 qubits. In order to test efficiency of our proposed methods, we have simulated Shor's factorization algorithm and Grover's database search, and we have analyzed robustness of the corresponding quantum circuits in the presence of both decoherence and operational errors. The corresponding results, statistics, and analyses are presented in this paper

  1. Advanced computational simulations of water waves interacting with wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  2. Performance predictions for solar-chemical convertors by computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Luttmer, J.D.; Trachtenberg, I.

    1985-08-01

    A computer model which simulates the operation of Texas Instruments solar-chemical convertor (SCC) was developed. The model allows optimization of SCC processes, material, and configuration by facilitating decisions on tradeoffs among ease of manufacturing, power conversion efficiency, and cost effectiveness. The model includes various algorithms which define the electrical, electrochemical, and resistance parameters and which describ the operation of the discrete components of the SCC. Results of the model which depict the effect of material and geometric changes on various parameters are presented. The computer-calculated operation is compared with experimentall observed hydrobromic acid electrolysis rates.

  3. Computer simulation of fatigue under diametrical compression

    International Nuclear Information System (INIS)

    Carmona, H. A.; Kun, F.; Andrade, J. S. Jr.; Herrmann, H. J.

    2007-01-01

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows us to follow the development of the fracture process on the macrolevel and microlevel varying the relative influence of the mechanisms of damage accumulation over the load history and healing of microcracks. As a specific example we consider recent experimental results on the fatigue fracture of asphalt. Our numerical simulations show that for intermediate applied loads the lifetime of the specimen presents a power law behavior. Under the effect of healing, more prominent for small loads compared to the tensile strength of the material, the lifetime of the sample increases and a fatigue limit emerges below which no macroscopic failure occurs. The numerical results are in a good qualitative agreement with the experimental findings

  4. Network Modeling and Simulation A Practical Perspective

    CERN Document Server

    Guizani, Mohsen; Khan, Bilal

    2010-01-01

    Network Modeling and Simulation is a practical guide to using modeling and simulation to solve real-life problems. The authors give a comprehensive exposition of the core concepts in modeling and simulation, and then systematically address the many practical considerations faced by developers in modeling complex large-scale systems. The authors provide examples from computer and telecommunication networks and use these to illustrate the process of mapping generic simulation concepts to domain-specific problems in different industries and disciplines. Key features: Provides the tools and strate

  5. Computer modeling of liquid crystals

    International Nuclear Information System (INIS)

    Al-Barwani, M.S.

    1999-01-01

    In this thesis, we investigate several aspects of the behaviour of liquid crystal molecules near interfaces using computer simulation. We briefly discuss experiment, theoretical and computer simulation studies of some of the liquid crystal interfaces. We then describe three essentially independent research topics. The first of these concerns extensive simulations of a liquid crystal formed by long flexible molecules. We examined the bulk behaviour of the model and its structure. Studies of a film of smectic liquid crystal surrounded by vapour were also carried out. Extensive simulations were also done for a long-molecule/short-molecule mixture, studies were then carried out to investigate the liquid-vapour interface of the mixture. Next, we report the results of large scale simulations of soft-spherocylinders of two different lengths. We examined the bulk coexistence of the nematic and isotropic phases of the model. Once the bulk coexistence behaviour was known, properties of the nematic-isotropic interface were investigated. This was done by fitting order parameter and density profiles to appropriate mathematical functions and calculating the biaxial order parameter. We briefly discuss the ordering at the interfaces and make attempts to calculate the surface tension. Finally, in our third project, we study the effects of different surface topographies on creating bistable nematic liquid crystal devices. This was carried out using a model based on the discretisation of the free energy on a lattice. We use simulation to find the lowest energy states and investigate if they are degenerate in energy. We also test our model by studying the Frederiks transition and comparing with analytical and other simulation results. (author)

  6. Quantum Link Models and Quantum Simulation of Gauge Theories

    International Nuclear Information System (INIS)

    Wiese, U.J.

    2015-01-01

    This lecture is about Quantum Link Models and Quantum Simulation of Gauge Theories. The lecture consists out of 4 parts. The first part gives a brief history of Computing and Pioneers of Quantum Computing and Quantum Simulations of Quantum Spin Systems are introduced. The 2nd lecture is about High-Temperature Superconductors versus QCD, Wilson’s Lattice QCD and Abelian Quantum Link Models. The 3rd lecture deals with Quantum Simulators for Abelian Lattice Gauge Theories and Non-Abelian Quantum Link Models. The last part of the lecture discusses Quantum Simulators mimicking ‘Nuclear’ physics and the continuum limit of D-Theorie models. (nowak)

  7. Advanced computers and simulation

    International Nuclear Information System (INIS)

    Ryne, R.D.

    1993-01-01

    Accelerator physicists today have access to computers that are far more powerful than those available just 10 years ago. In the early 1980's, desktop workstations performed less one million floating point operations per second (Mflops), and the realized performance of vector supercomputers was at best a few hundred Mflops. Today vector processing is available on the desktop, providing researchers with performance approaching 100 Mflops at a price that is measured in thousands of dollars. Furthermore, advances in Massively Parallel Processors (MPP) have made performance of over 10 gigaflops a reality, and around mid-decade MPPs are expected to be capable of teraflops performance. Along with advances in MPP hardware, researchers have also made significant progress in developing algorithms and software for MPPS. These changes have had, and will continue to have, a significant impact on the work of computational accelerator physicists. Now, instead of running particle simulations with just a few thousand particles, we can perform desktop simulations with tens of thousands of simulation particles, and calculations with well over 1 million particles are being performed on MPPs. In the area of computational electromagnetics, simulations that used to be performed only on vector supercomputers now run in several hours on desktop workstations, and researchers are hoping to perform simulations with over one billion mesh points on future MPPs. In this paper we will discuss the latest advances, and what can be expected in the near future, in hardware, software and applications codes for advanced simulation of particle accelerators

  8. Computational simulation of the creep-rupture process in filamentary composite materials

    Science.gov (United States)

    Slattery, Kerry T.; Hackett, Robert M.

    1991-01-01

    A computational simulation of the internal damage accumulation which causes the creep-rupture phenomenon in filamentary composite materials is developed. The creep-rupture process involves complex interactions between several damage mechanisms. A statistically-based computational simulation using a time-differencing approach is employed to model these progressive interactions. The finite element method is used to calculate the internal stresses. The fibers are modeled as a series of bar elements which are connected transversely by matrix elements. Flaws are distributed randomly throughout the elements in the model. Load is applied, and the properties of the individual elements are updated at the end of each time step as a function of the stress history. The simulation is continued until failure occurs. Several cases, with different initial flaw dispersions, are run to establish a statistical distribution of the time-to-failure. The calculations are performed on a supercomputer. The simulation results compare favorably with the results of creep-rupture experiments conducted at the Lawrence Livermore National Laboratory.

  9. An Introduction to Parallel Cluster Computing Using PVM for Computer Modeling and Simulation of Engineering Problems

    International Nuclear Information System (INIS)

    Spencer, VN

    2001-01-01

    An investigation has been conducted regarding the ability of clustered personal computers to improve the performance of executing software simulations for solving engineering problems. The power and utility of personal computers continues to grow exponentially through advances in computing capabilities such as newer microprocessors, advances in microchip technologies, electronic packaging, and cost effective gigabyte-size hard drive capacity. Many engineering problems require significant computing power. Therefore, the computation has to be done by high-performance computer systems that cost millions of dollars and need gigabytes of memory to complete the task. Alternately, it is feasible to provide adequate computing in the form of clustered personal computers. This method cuts the cost and size by linking (clustering) personal computers together across a network. Clusters also have the advantage that they can be used as stand-alone computers when they are not operating as a parallel computer. Parallel computing software to exploit clusters is available for computer operating systems like Unix, Windows NT, or Linux. This project concentrates on the use of Windows NT, and the Parallel Virtual Machine (PVM) system to solve an engineering dynamics problem in Fortran

  10. Using computer simulations to facilitate conceptual understanding of electromagnetic induction

    Science.gov (United States)

    Lee, Yu-Fen

    This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit

  11. Computational Model and Numerical Simulation for Submerged Mooring Monitoring Platform’s Dynamical Response

    Directory of Open Access Journals (Sweden)

    He Kongde

    2015-01-01

    Full Text Available Computational model and numerical simulation for submerged mooring monitoring platform were formulated aimed at the dynamical response by the action of flow force, which based on Hopkinson impact load theory, taken into account the catenoid effect of mooring cable and revised the difference of tension and tangential direction action force by equivalent modulus of elasticity. Solved the equation by hydraulics theory and structural mechanics theory of oceaneering, studied the response of buoy on flow force. The validity of model were checked and the results were in good agreement; the result show the buoy will engender biggish heave and swaying displacement, but the swaying displacement got stable quickly and the heaven displacement cause vibration for the vortex-induced action by the flow.

  12. Computational modeling and engineering in pediatric and congenital heart disease.

    Science.gov (United States)

    Marsden, Alison L; Feinstein, Jeffrey A

    2015-10-01

    Recent methodological advances in computational simulations are enabling increasingly realistic simulations of hemodynamics and physiology, driving increased clinical utility. We review recent developments in the use of computational simulations in pediatric and congenital heart disease, describe the clinical impact in modeling in single-ventricle patients, and provide an overview of emerging areas. Multiscale modeling combining patient-specific hemodynamics with reduced order (i.e., mathematically and computationally simplified) circulatory models has become the de-facto standard for modeling local hemodynamics and 'global' circulatory physiology. We review recent advances that have enabled faster solutions, discuss new methods (e.g., fluid structure interaction and uncertainty quantification), which lend realism both computationally and clinically to results, highlight novel computationally derived surgical methods for single-ventricle patients, and discuss areas in which modeling has begun to exert its influence including Kawasaki disease, fetal circulation, tetralogy of Fallot (and pulmonary tree), and circulatory support. Computational modeling is emerging as a crucial tool for clinical decision-making and evaluation of novel surgical methods and interventions in pediatric cardiology and beyond. Continued development of modeling methods, with an eye towards clinical needs, will enable clinical adoption in a wide range of pediatric and congenital heart diseases.

  13. Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models

    Science.gov (United States)

    Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas

    2017-02-01

    A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally

  14. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations.

    Science.gov (United States)

    Hariharan, Prasanna; D'Souza, Gavin A; Horner, Marc; Morrison, Tina M; Malinauskas, Richard A; Myers, Matthew R

    2017-01-01

    A "credible" computational fluid dynamics (CFD) model has the potential to provide a meaningful evaluation of safety in medical devices. One major challenge in establishing "model credibility" is to determine the required degree of similarity between the model and experimental results for the model to be considered sufficiently validated. This study proposes a "threshold-based" validation approach that provides a well-defined acceptance criteria, which is a function of how close the simulation and experimental results are to the safety threshold, for establishing the model validity. The validation criteria developed following the threshold approach is not only a function of Comparison Error, E (which is the difference between experiments and simulations) but also takes in to account the risk to patient safety because of E. The method is applicable for scenarios in which a safety threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in blood contacting devices). The applicability of the new validation approach was tested on the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500 was below the commonly accepted threshold for hemolysis. The CFD results ("S") of velocity and viscous shear stress were compared with inter-laboratory experimental measurements ("D"). The uncertainties in the CFD and experimental results due to input parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD models for both Re = 3500 and 6500 could not be sufficiently validated by performing a direct comparison between CFD and experimental results using the Student's t-test. However, following the threshold-based approach, a Student's t-test comparing |S-D| and |Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for Re = 3500 were statistically similar and the model could be

  15. A computationally fast, reduced model for simulating landslide dynamics and tsunamis generated by landslides in natural terrains

    Science.gov (United States)

    Mohammed, F.

    2016-12-01

    Landslide hazards such as fast-moving debris flows, slow-moving landslides, and other mass flows cause numerous fatalities, injuries, and damage. Landslide occurrences in fjords, bays, and lakes can additionally generate tsunamis with locally extremely high wave heights and runups. Two-dimensional depth-averaged models can successfully simulate the entire lifecycle of the three-dimensional landslide dynamics and tsunami propagation efficiently and accurately with the appropriate assumptions. Landslide rheology is defined using viscous fluids, visco-plastic fluids, and granular material to account for the possible landslide source materials. Saturated and unsaturated rheologies are further included to simulate debris flow, debris avalanches, mudflows, and rockslides respectively. The models are obtained by reducing the fully three-dimensional Navier-Stokes equations with the internal rheological definition of the landslide material, the water body, and appropriate scaling assumptions to obtain the depth-averaged two-dimensional models. The landslide and tsunami models are coupled to include the interaction between the landslide and the water body for tsunami generation. The reduced models are solved numerically with a fast semi-implicit finite-volume, shock-capturing based algorithm. The well-balanced, positivity preserving algorithm accurately accounts for wet-dry interface transition for the landslide runout, landslide-water body interface, and the tsunami wave flooding on land. The models are implemented as a General-Purpose computing on Graphics Processing Unit-based (GPGPU) suite of models, either coupled or run independently within the suite. The GPGPU implementation provides up to 1000 times speedup over a CPU-based serial computation. This enables simulations of multiple scenarios of hazard realizations that provides a basis for a probabilistic hazard assessment. The models have been successfully validated against experiments, past studies, and field data

  16. Efficient computation of electrograms and ECGs in human whole heart simulations using a reaction-eikonal model.

    Science.gov (United States)

    Neic, Aurel; Campos, Fernando O; Prassl, Anton J; Niederer, Steven A; Bishop, Martin J; Vigmond, Edward J; Plank, Gernot

    2017-10-01

    Anatomically accurate and biophysically detailed bidomain models of the human heart have proven a powerful tool for gaining quantitative insight into the links between electrical sources in the myocardium and the concomitant current flow in the surrounding medium as they represent their relationship mechanistically based on first principles. Such models are increasingly considered as a clinical research tool with the perspective of being used, ultimately, as a complementary diagnostic modality. An important prerequisite in many clinical modeling applications is the ability of models to faithfully replicate potential maps and electrograms recorded from a given patient. However, while the personalization of electrophysiology models based on the gold standard bidomain formulation is in principle feasible, the associated computational expenses are significant, rendering their use incompatible with clinical time frames. In this study we report on the development of a novel computationally efficient reaction-eikonal (R-E) model for modeling extracellular potential maps and electrograms. Using a biventricular human electrophysiology model, which incorporates a topologically realistic His-Purkinje system (HPS), we demonstrate by comparing against a high-resolution reaction-diffusion (R-D) bidomain model that the R-E model predicts extracellular potential fields, electrograms as well as ECGs at the body surface with high fidelity and offers vast computational savings greater than three orders of magnitude. Due to their efficiency R-E models are ideally suitable for forward simulations in clinical modeling studies which attempt to personalize electrophysiological model features.

  17. Model reduction for circuit simulation

    CERN Document Server

    Hinze, Michael; Maten, E Jan W Ter

    2011-01-01

    Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the devi

  18. Computer simulation of Wheeler's delayed-choice experiment with photons

    NARCIS (Netherlands)

    Zhao, S.; Yuan, S.; De Raedt, H.; Michielsen, K.

    We present a computer simulation model of Wheeler's delayed-choice experiment that is a one-to-one copy of an experiment reported recently (Jacques V. et al., Science, 315 (2007) 966). The model is solely based on experimental facts, satisfies Einstein's criterion of local causality and does not

  19. Computer simulations of collisionless shock waves

    International Nuclear Information System (INIS)

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  20. Computer Simulation Model to Train Medical Personnel on Glucose Clamp Procedures.

    Science.gov (United States)

    Maghoul, Pooya; Boulet, Benoit; Tardif, Annie; Haidar, Ahmad

    2017-10-01

    A glucose clamp procedure is the most reliable way to quantify insulin pharmacokinetics and pharmacodynamics, but skilled and trained research personnel are required to frequently adjust the glucose infusion rate. A computer environment that simulates glucose clamp experiments can be used for efficient personnel training and development and testing of algorithms for automated glucose clamps. We built 17 virtual healthy subjects (mean age, 25±6 years; mean body mass index, 22.2±3 kg/m 2 ), each comprising a mathematical model of glucose regulation and a unique set of parameters. Each virtual subject simulates plasma glucose and insulin concentrations in response to intravenous insulin and glucose infusions. Each virtual subject provides a unique response, and its parameters were estimated from combined intravenous glucose tolerance test-hyperinsulinemic-euglycemic clamp data using the Bayesian approach. The virtual subjects were validated by comparing their simulated predictions against data from 12 healthy individuals who underwent a hyperglycemic glucose clamp procedure. Plasma glucose and insulin concentrations were predicted by the virtual subjects in response to glucose infusions determined by a trained research staff performing a simulated hyperglycemic clamp experiment. The total amount of glucose infusion was indifferent between the simulated and the real subjects (85±18 g vs. 83±23 g; p=NS) as well as plasma insulin levels (63±20 mU/L vs. 58±16 mU/L; p=NS). The virtual subjects can reliably predict glucose needs and plasma insulin profiles during hyperglycemic glucose clamp conditions. These virtual subjects can be used to train personnel to make glucose infusion adjustments during clamp experiments. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  1. Sensitivity Analysis of Personal Exposure Assessment Using a Computer Simulated Person

    DEFF Research Database (Denmark)

    Brohus, Henrik; Jensen, H. K.

    2009-01-01

    The paper considers uncertainties related to personal exposure assessment using a computer simulated person. CFD is used to simulate a uniform flow field around a human being to determine the personal exposure to a contaminant source. For various vertical locations of a point contaminant source...... three additional factors are varied, namely the velocity, details of the computer simulated person, and the CFD model of the wind channel. The personal exposure is found to be highly dependent on the relative source location. Variation in the range of two orders of magnitude is found. The exposure...

  2. Multiscale paradigms in integrated computational materials science and engineering materials theory, modeling, and simulation for predictive design

    CERN Document Server

    Runge, Keith; Muralidharan, Krishna

    2016-01-01

    This book presents cutting-edge concepts, paradigms, and research highlights in the field of computational materials science and engineering, and provides a fresh, up-to-date perspective on solving present and future materials challenges. The chapters are written by not only pioneers in the fields of computational materials chemistry and materials science, but also experts in multi-scale modeling and simulation as applied to materials engineering. Pedagogical introductions to the different topics and continuity between the chapters are provided to ensure the appeal to a broad audience and to address the applicability of integrated computational materials science and engineering for solving real-world problems.

  3. Structure and dynamics of amorphous polymers: computer simulations compared to experiment and theory

    International Nuclear Information System (INIS)

    Paul, Wolfgang; Smith, Grant D

    2004-01-01

    This contribution considers recent developments in the computer modelling of amorphous polymeric materials. Progress in our capabilities to build models for the computer simulation of polymers from the detailed atomistic scale up to coarse-grained mesoscopic models, together with the ever-improving performance of computers, have led to important insights from computer simulations into the structural and dynamic properties of amorphous polymers. Structurally, chain connectivity introduces a range of length scales from that of the chemical bond to the radius of gyration of the polymer chain covering 2-4 orders of magnitude. Dynamically, this range of length scales translates into an even larger range of time scales observable in relaxation processes in amorphous polymers ranging from about 10 -13 to 10 -3 s or even to 10 3 s when glass dynamics is concerned. There is currently no single simulation technique that is able to describe all these length and time scales efficiently. On large length and time scales basic topology and entropy become the governing properties and this fact can be exploited using computer simulations of coarse-grained polymer models to study universal aspects of the structure and dynamics of amorphous polymers. On the largest length and time scales chain connectivity is the dominating factor leading to the strong increase in longest relaxation times described within the reptation theory of polymer melt dynamics. Recently, many of the universal aspects of this behaviour have been further elucidated by computer simulations of coarse-grained polymer models. On short length scales the detailed chemistry and energetics of the polymer are important, and one has to be able to capture them correctly using chemically realistic modelling of specific polymers, even when the aim is to extract generic physical behaviour exhibited by the specific chemistry. Detailed studies of chemically realistic models highlight the central importance of torsional dynamics

  4. Computer modeling and simulation in inertial confinement fusion

    International Nuclear Information System (INIS)

    McCrory, R.L.; Verdon, C.P.

    1989-03-01

    The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper we describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics. 46 refs., 19 figs., 1 tab

  5. Advanced Simulation and Computing FY17 Implementation Plan, Version 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendrickson, Bruce [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wade, Doug [National Nuclear Security Administration (NNSA), Washington, DC (United States). Office of Advanced Simulation and Computing and Institutional Research and Development; Hoang, Thuc [National Nuclear Security Administration (NNSA), Washington, DC (United States). Computational Systems and Software Environment

    2016-08-29

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.

  6. NeuroManager: A workflow analysis based simulation management engine for computational neuroscience

    Directory of Open Access Journals (Sweden)

    David Bruce Stockton

    2015-10-01

    Full Text Available We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach 1 provides flexibility to adapt to a variety of neuroscience simulators, 2 simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and 3 improves tracking of simulator/simulation evolution. We implemented NeuroManager in Matlab, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in twenty-two stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to Matlab's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project.

  7. Documentation and user guides for SPBLOB: a computer simulation model of the join population dynamics for loblolly pine and the southern pine beetle

    Science.gov (United States)

    John Bishir; James Roberds; Brian Strom; Xiaohai Wan

    2009-01-01

    SPLOB is a computer simulation model for the interaction between loblolly pine (Pinus taeda L.), the economically most important forest crop in the United States, and the southern pine beetle (SPB: Dendroctonus frontalis Zimm.), the major insect pest for this species. The model simulates loblolly pine stands from time of planting...

  8. Computational modelling of string body interaction for the violin family and simulation of wolf notes

    Science.gov (United States)

    Inácio, O.; Antunes, J.; Wright, M. C. M.

    2008-02-01

    Most theoretical studies of bowed-string instruments deal with isolated strings, pinned on fixed supports. In others, the instrument body dynamics have been accounted by using extremely simplified models of the string-body interaction through the instrument bridge. Such models have, nevertheless, been instrumental to the understanding of a very common and musically undesirable phenomenon known as the wolf note—a strong beating interplay between string and body vibrations. Cellos, bad and good, are particularly prone to this problem. In previous work, a computational method that allows efficient time-domain modelling of bowed strings based on a modal approach has been introduced. This has been extended to incorporate the complex dynamics of real-life instrument bodies, and their coupling to the string motions, using experimental dynamical body data. The string is modelled using its unconstrained modes, assuming pinned-pinned boundary conditions at the tailpiece and the nut. At the intermediary bridge location, the string-body coupling is enforced using the body impulse-response or modal data, as measured at the instrument bridge. In the present paper, this computational approach is applied to a specific cello, which provided experimental wolf-behaviour data under several bowing conditions, as well as laboratory measurements of the bridge impulse responses on which the numerical simulations were based. Interesting aspects of the string-body dynamical responses are highlighted by numerical simulations and the corresponding sounds and animations produced. Finally, a qualitative (and, when possible, quantitative) comparison of the experimental and numerical results is presented.

  9. Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer

    Science.gov (United States)

    Satoh, Masaki; Tomita, Hirofumi; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Miyamoto, Yoshiaki; Yamaura, Tsuyoshi; Miyakawa, Tomoki; Nakano, Masuo; Kodama, Chihiro; Noda, Akira T.; Nasuno, Tomoe; Yamada, Yohei; Fukutomi, Yoshiki

    2017-12-01

    This article reviews the major outcomes of a 5-year (2011-2016) project using the K computer to perform global numerical atmospheric simulations based on the non-hydrostatic icosahedral atmospheric model (NICAM). The K computer was made available to the public in September 2012 and was used as a primary resource for Japan's Strategic Programs for Innovative Research (SPIRE), an initiative to investigate five strategic research areas; the NICAM project fell under the research area of climate and weather simulation sciences. Combining NICAM with high-performance computing has created new opportunities in three areas of research: (1) higher resolution global simulations that produce more realistic representations of convective systems, (2) multi-member ensemble simulations that are able to perform extended-range forecasts 10-30 days in advance, and (3) multi-decadal simulations for climatology and variability. Before the K computer era, NICAM was used to demonstrate realistic simulations of intra-seasonal oscillations including the Madden-Julian oscillation (MJO), merely as a case study approach. Thanks to the big leap in computational performance of the K computer, we could greatly increase the number of cases of MJO events for numerical simulations, in addition to integrating time and horizontal resolution. We conclude that the high-resolution global non-hydrostatic model, as used in this five-year project, improves the ability to forecast intra-seasonal oscillations and associated tropical cyclogenesis compared with that of the relatively coarser operational models currently in use. The impacts of the sub-kilometer resolution simulation and the multi-decadal simulations using NICAM are also reviewed.

  10. Identification and simulation of the power quality problems using computer models

    International Nuclear Information System (INIS)

    Abro, M.R.; Memon, A.P.; Memon, Z.A.

    2005-01-01

    The Power Quality has become the main factor in our life. If this quality of power is being polluted over the Electrical Power Network, serious problems could arise within the modem social structure and its conveniences. The Nonlinear Characteristics of various office and Industrial equipment connected to the power grid could cause electrical disturbances to poor power quality. In many cases the electric power consumed is first converted to different form and such conversion process introduces harmonic pollution in the grid. These electrical disturbances could destroy certain sensitive equipment connected to the grid or in some cases could cause them to malfunction. In the huge power network identifying the source of such disturbance without causing interruption to the supply is a big problem. This paper attempts to study the power quality problem caused by typical loads using computer models paving the way to identify the source of the problem. PSB (Power System Blockset) Toolbox of MATLAB is used for this paper, which is designed to provide modem tool that rapidly and easily builds models and simulates the power system. The blockset uses the Simulink environment, allowing a model to be built using simple click and drag procedures. (author)

  11. The null-event method in computer simulation

    International Nuclear Information System (INIS)

    Lin, S.L.

    1978-01-01

    The simulation of collisions of ions moving under the influence of an external field through a neutral gas to non-zero temperatures is discussed as an example of computer models of processes in which a probe particle undergoes a series of interactions with an ensemble of other particles, such that the frequency and outcome of the events depends on internal properties of the second particles. The introduction of null events removes the need for much complicated algebra, leads to a more efficient simulation and reduces the likelihood of logical error. (Auth.)

  12. Light reflection models for computer graphics.

    Science.gov (United States)

    Greenberg, D P

    1989-04-14

    During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future.

  13. Computer simulation as an operational and training aid

    International Nuclear Information System (INIS)

    Lee, D.J.; Tottman-Trayner, E.

    1995-01-01

    The paper describes how the rapid development of desktop computing power, the associated fall in prices, and the advancement of computer graphics technology driven by the entertainment industry has enabled the nuclear industry to achieve improvements in operation and training through the use of computer simulation. Applications are focused on the fuel handling operations at Torness Power Station where visualization through computer modelling is being used to enhance operator awareness and to assist in a number of operational scenarios. It is concluded that there are significant benefits to be gained from the introduction of the facility at Torness as well as other locations. (author)

  14. Simulation modeling and analysis with Arena

    CERN Document Server

    Altiok, Tayfur

    2007-01-01

    Simulation Modeling and Analysis with Arena is a highly readable textbook which treats the essentials of the Monte Carlo discrete-event simulation methodology, and does so in the context of a popular Arena simulation environment.” It treats simulation modeling as an in-vitro laboratory that facilitates the understanding of complex systems and experimentation with what-if scenarios in order to estimate their performance metrics. The book contains chapters on the simulation modeling methodology and the underpinnings of discrete-event systems, as well as the relevant underlying probability, statistics, stochastic processes, input analysis, model validation and output analysis. All simulation-related concepts are illustrated in numerous Arena examples, encompassing production lines, manufacturing and inventory systems, transportation systems, and computer information systems in networked settings.· Introduces the concept of discrete event Monte Carlo simulation, the most commonly used methodology for modeli...

  15. Advanced computational simulation for design and manufacturing of lightweight material components for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, S.; Aramayo, G.A.; Zacharia, T. [Oak Ridge National Lab., TN (United States); Toridis, T.G. [George Washington Univ., Washington, DC (United States); Bandak, F.; Ragland, C.L. [Dept. of Transportation, Washington, DC (United States)

    1997-04-01

    Computational vehicle models for the analysis of lightweight material performance in automobiles have been developed through collaboration between Oak Ridge National Laboratory, the National Highway Transportation Safety Administration, and George Washington University. The vehicle models have been verified against experimental data obtained from vehicle collisions. The crashed vehicles were analyzed, and the main impact energy dissipation mechanisms were identified and characterized. Important structural parts were extracted and digitized and directly compared with simulation results. High-performance computing played a key role in the model development because it allowed for rapid computational simulations and model modifications. The deformation of the computational model shows a very good agreement with the experiments. This report documents the modifications made to the computational model and relates them to the observations and findings on the test vehicle. Procedural guidelines are also provided that the authors believe need to be followed to create realistic models of passenger vehicles that could be used to evaluate the performance of lightweight materials in automotive structural components.

  16. Computer algebra simulation - what can it do?; Was leistet Computer-Algebra-Simulation?

    Energy Technology Data Exchange (ETDEWEB)

    Braun, S. [Visual Analysis AG, Muenchen (Germany)

    2001-07-01

    Shortened development times require new and improved calculation methods. Numeric methods have long become state of the art. However, although numeric simulations provide a better understanding of process parameters, they do not give a feast overview of the interdependences between parameters. Numeric simulations are effective only if all physical parameters are sufficiently known; otherwise, the efficiency will decrease due to the large number of variant calculations required. Computer algebra simulation closes this gap and provides a deeper understanding of the physical fundamentals of technical processes. [German] Neue und verbesserte Berechnungsmethoden sind notwendig, um die staendige Verkuerzung der Entwicklungszyklen zu ermoeglichen. Herkoemmliche Methoden, die auf einem rein numerischen Ansatz basieren, haben sich in vielen Anwendungsbereichen laengst zum Standard entwickelt. Aber nicht nur die staendig kuerzer werdenden Entwicklungszyklen, sondern auch die weiterwachsende Komplexitaet machen es notwendig, ein besseres Verstaendnis der beteiligten Prozessparameter zu gewinnen. Die numerische Simulation besticht zwar durch Detailloesungen, selbst bei komplexen Strukturen und Prozessen, allerdings liefert sie keine schnelle Abschaetzung ueber die Zusammenhaenge zwischen den einzelnen Parametern. Die numerische Simulation ist nur dann effektiv, wenn alle physikalischen Parameter hinreichend bekannt sind; andernfalls sinkt die Effizienz durch die notwendige Anzahl von notwendigen Variantenrechnungen sehr stark. Die Computer-Algebra-Simulation schliesst diese Luecke in dem sie es erlaubt, sich einen tieferen Einblick in die physikalische Funktionsweise technischer Prozesse zu verschaffen. (orig.)

  17. Bibliography for Verification and Validation in Computational Simulation

    International Nuclear Information System (INIS)

    Oberkampf, W.L.

    1998-01-01

    A bibliography has been compiled dealing with the verification and validation of computational simulations. The references listed in this bibliography are concentrated in the field of computational fluid dynamics (CFD). However, references from the following fields are also included: operations research, heat transfer, solid dynamics, software quality assurance, software accreditation, military systems, and nuclear reactor safety. This bibliography, containing 221 references, is not meant to be comprehensive. It was compiled during the last ten years in response to the author's interest and research in the methodology for verification and validation. The emphasis in the bibliography is in the following areas: philosophy of science underpinnings, development of terminology and methodology, high accuracy solutions for CFD verification, experimental datasets for CFD validation, and the statistical quantification of model validation. This bibliography should provide a starting point for individual researchers in many fields of computational simulation in science and engineering

  18. Bibliography for Verification and Validation in Computational Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, W.L.

    1998-10-01

    A bibliography has been compiled dealing with the verification and validation of computational simulations. The references listed in this bibliography are concentrated in the field of computational fluid dynamics (CFD). However, references from the following fields are also included: operations research, heat transfer, solid dynamics, software quality assurance, software accreditation, military systems, and nuclear reactor safety. This bibliography, containing 221 references, is not meant to be comprehensive. It was compiled during the last ten years in response to the author's interest and research in the methodology for verification and validation. The emphasis in the bibliography is in the following areas: philosophy of science underpinnings, development of terminology and methodology, high accuracy solutions for CFD verification, experimental datasets for CFD validation, and the statistical quantification of model validation. This bibliography should provide a starting point for individual researchers in many fields of computational simulation in science and engineering.

  19. Urban Flow and Pollutant Dispersion Simulation with Multi-scale coupling of Meteorological Model with Computational Fluid Dynamic Analysis

    Science.gov (United States)

    Liu, Yushi; Poh, Hee Joo

    2014-11-01

    The Computational Fluid Dynamics analysis has become increasingly important in modern urban planning in order to create highly livable city. This paper presents a multi-scale modeling methodology which couples Weather Research and Forecasting (WRF) Model with open source CFD simulation tool, OpenFOAM. This coupling enables the simulation of the wind flow and pollutant dispersion in urban built-up area with high resolution mesh. In this methodology meso-scale model WRF provides the boundary condition for the micro-scale CFD model OpenFOAM. The advantage is that the realistic weather condition is taken into account in the CFD simulation and complexity of building layout can be handled with ease by meshing utility of OpenFOAM. The result is validated against the Joint Urban 2003 Tracer Field Tests in Oklahoma City and there is reasonably good agreement between the CFD simulation and field observation. The coupling of WRF- OpenFOAM provide urban planners with reliable environmental modeling tool in actual urban built-up area; and it can be further extended with consideration of future weather conditions for the scenario studies on climate change impact.

  20. Framework for utilizing computational devices within simulation

    Directory of Open Access Journals (Sweden)

    Miroslav Mintál

    2013-12-01

    Full Text Available Nowadays there exist several frameworks to utilize a computation power of graphics cards and other computational devices such as FPGA, ARM and multi-core processors. The best known are either low-level and need a lot of controlling code or are bounded only to special graphic cards. Furthermore there exist more specialized frameworks, mainly aimed to the mathematic field. Described framework is adjusted to use in a multi-agent simulations. Here it provides an option to accelerate computations when preparing simulation and mainly to accelerate a computation of simulation itself.

  1. Repository simulation model: Final report

    International Nuclear Information System (INIS)

    1988-03-01

    This report documents the application of computer simulation for the design analysis of the nuclear waste repository's waste handling and packaging operations. The Salt Repository Simulation Model was used to evaluate design alternatives during the conceptual design phase of the Salt Repository Project. Code development and verification was performed by the Office of Nuclear Waste Isolation (ONWL). The focus of this report is to relate the experience gained during the development and application of the Salt Repository Simulation Model to future repository design phases. Design of the repository's waste handling and packaging systems will require sophisticated analysis tools to evaluate complex operational and logistical design alternatives. Selection of these design alternatives in the Advanced Conceptual Design (ACD) and License Application Design (LAD) phases must be supported by analysis to demonstrate that the repository design will cost effectively meet DOE's mandated emplacement schedule and that uncertainties in the performance of the repository's systems have been objectively evaluated. Computer simulation of repository operations will provide future repository designers with data and insights that no other analytical form of analysis can provide. 6 refs., 10 figs

  2. Models and simulations

    International Nuclear Information System (INIS)

    Lee, M.J.; Sheppard, J.C.; Sullenberger, M.; Woodley, M.D.

    1983-09-01

    On-line mathematical models have been used successfully for computer controlled operation of SPEAR and PEP. The same model control concept is being implemented for the operation of the LINAC and for the Damping Ring, which will be part of the Stanford Linear Collider (SLC). The purpose of this paper is to describe the general relationships between models, simulations and the control system for any machine at SLAC. The work we have done on the development of the empirical model for the Damping Ring will be presented as an example

  3. Towards The Deep Model : Understanding Visual Recognition Through Computational Models

    OpenAIRE

    Wang, Panqu

    2017-01-01

    Understanding how visual recognition is achieved in the human brain is one of the most fundamental questions in vision research. In this thesis I seek to tackle this problem from a neurocomputational modeling perspective. More specifically, I build machine learning-based models to simulate and explain cognitive phenomena related to human visual recognition, and I improve computational models using brain-inspired principles to excel at computer vision tasks.I first describe how a neurocomputat...

  4. a Discrete Mathematical Model to Simulate Malware Spreading

    Science.gov (United States)

    Del Rey, A. Martin; Sánchez, G. Rodriguez

    2012-10-01

    With the advent and worldwide development of Internet, the study and control of malware spreading has become very important. In this sense, some mathematical models to simulate malware propagation have been proposed in the scientific literature, and usually they are based on differential equations exploiting the similarities with mathematical epidemiology. The great majority of these models study the behavior of a particular type of malware called computer worms; indeed, to the best of our knowledge, no model has been proposed to simulate the spreading of a computer virus (the traditional type of malware which differs from computer worms in several aspects). In this sense, the purpose of this work is to introduce a new mathematical model not based on continuous mathematics tools but on discrete ones, to analyze and study the epidemic behavior of computer virus. Specifically, cellular automata are used in order to design such model.

  5. An introduction to computer simulation methods applications to physical systems

    CERN Document Server

    Gould, Harvey; Christian, Wolfgang

    2007-01-01

    Now in its third edition, this book teaches physical concepts using computer simulations. The text incorporates object-oriented programming techniques and encourages readers to develop good programming habits in the context of doing physics. Designed for readers at all levels , An Introduction to Computer Simulation Methods uses Java, currently the most popular programming language. Introduction, Tools for Doing Simulations, Simulating Particle Motion, Oscillatory Systems, Few-Body Problems: The Motion of the Planets, The Chaotic Motion of Dynamical Systems, Random Processes, The Dynamics of Many Particle Systems, Normal Modes and Waves, Electrodynamics, Numerical and Monte Carlo Methods, Percolation, Fractals and Kinetic Growth Models, Complex Systems, Monte Carlo Simulations of Thermal Systems, Quantum Systems, Visualization and Rigid Body Dynamics, Seeing in Special and General Relativity, Epilogue: The Unity of Physics For all readers interested in developing programming habits in the context of doing phy...

  6. Universal quantum computation by scattering in the Fermi–Hubbard model

    International Nuclear Information System (INIS)

    Bao, Ning; Hayden, Patrick; Salton, Grant; Thomas, Nathaniel

    2015-01-01

    The Hubbard model may be the simplest model of particles interacting on a lattice, but simulation of its dynamics remains beyond the reach of current numerical methods. In this article, we show that general quantum computations can be encoded into the physics of wave packets propagating through a planar graph, with scattering interactions governed by the fermionic Hubbard model. Therefore, simulating the model on planar graphs is as hard as simulating quantum computation. We give two different arguments, demonstrating that the simulation is difficult both for wave packets prepared as excitations of the fermionic vacuum, and for hole wave packets at filling fraction one-half in the limit of strong coupling. In the latter case, which is described by the t-J model, there is only reflection and no transmission in the scattering events, as would be the case for classical hard spheres. In that sense, the construction provides a quantum mechanical analog of the Fredkin–Toffoli billiard ball computer. (paper)

  7. Climate models on massively parallel computers

    International Nuclear Information System (INIS)

    Vitart, F.; Rouvillois, P.

    1993-01-01

    First results got on massively parallel computers (Multiple Instruction Multiple Data and Simple Instruction Multiple Data) allow to consider building of coupled models with high resolutions. This would make possible simulation of thermoaline circulation and other interaction phenomena between atmosphere and ocean. The increasing of computers powers, and then the improvement of resolution will go us to revise our approximations. Then hydrostatic approximation (in ocean circulation) will not be valid when the grid mesh will be of a dimension lower than a few kilometers: We shall have to find other models. The expert appraisement got in numerical analysis at the Center of Limeil-Valenton (CEL-V) will be used again to imagine global models taking in account atmosphere, ocean, ice floe and biosphere, allowing climate simulation until a regional scale

  8. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent

    2016-01-01

    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  9. Modeling and simulation goals and accomplishments

    International Nuclear Information System (INIS)

    Turinsky, P.

    2013-01-01

    The CASL (Consortium for Advanced Simulation of Light Water Reactors) mission is to develop and apply the Virtual Reactor simulator (VERA) to optimise nuclear power in terms of capital and operating costs, of nuclear waste production and of nuclear safety. An efficient and reliable virtual reactor simulator relies on 3-dimensional calculations, accurate physics models and code coupling. Advances in computer hardware, along with comparable advances in numerical solvers make the VERA project achievable. This series of slides details the VERA project and presents the specificities and performance of the codes involved in the project and ends by listing the computing needs

  10. Topics in computer simulations of statistical systems

    International Nuclear Information System (INIS)

    Salvador, R.S.

    1987-01-01

    Several computer simulations studying a variety of topics in statistical mechanics and lattice gauge theories are performed. The first study describes a Monte Carlo simulation performed on Ising systems defined on Sierpinsky carpets of dimensions between one and four. The critical coupling and the exponent γ are measured as a function of dimension. The Ising gauge theory in d = 4 - epsilon, for epsilon → 0 + , is then studied by performing a Monte Carlo simulation for the theory defined on fractals. A high statistics Monte Carlo simulation for the three-dimensional Ising model is presented for lattices of sizes 8 3 to 44 3 . All the data obtained agrees completely, within statistical errors, with the forms predicted by finite-sizing scaling. Finally, a method to estimate numerically the partition function of statistical systems is developed

  11. Modeling and Simulating Virtual Anatomical Humans

    NARCIS (Netherlands)

    Madehkhaksar, Forough; Luo, Zhiping; Pronost, Nicolas; Egges, Arjan

    2014-01-01

    This chapter presents human musculoskeletal modeling and simulation as a challenging field that lies between biomechanics and computer animation. One of the main goals of computer animation research is to develop algorithms and systems that produce plausible motion. On the other hand, the main

  12. Co-simulation of dynamic systems in parallel and serial model configurations

    International Nuclear Information System (INIS)

    Sweafford, Trevor; Yoon, Hwan Sik

    2013-01-01

    Recent advancement in simulation software and computation hardware make it realizable to simulate complex dynamic systems comprised of multiple submodels developed in different modeling languages. The so-called co-simulation enables one to study various aspects of a complex dynamic system with heterogeneous submodels in a cost-effective manner. Among several different model configurations for co-simulation, synchronized parallel configuration is regarded to expedite the simulation process by simulation multiple sub models concurrently on a multi core processor. In this paper, computational accuracies as well as computation time are studied for three different co-simulation frameworks : integrated, serial, and parallel. for this purpose, analytical evaluations of the three different methods are made using the explicit Euler method and then they are applied to two-DOF mass-spring systems. The result show that while the parallel simulation configuration produces the same accurate results as the integrated configuration, results of the serial configuration, results of the serial configuration show a slight deviation. it is also shown that the computation time can be reduced by running simulation in the parallel configuration. Therefore, it can be concluded that the synchronized parallel simulation methodology is the best for both simulation accuracy and time efficiency.

  13. GEANT4 simulations for Proton computed tomography applications

    International Nuclear Information System (INIS)

    Yevseyeva, Olga; Assis, Joaquim T. de; Evseev, Ivan; Schelin, Hugo R.; Shtejer Diaz, Katherin; Lopes, Ricardo T.

    2011-01-01

    Proton radiation therapy is a highly precise form of cancer treatment. In existing proton treatment centers, dose calculations are performed based on X-ray computed tomography (CT). Alternatively, one could image the tumor directly with proton CT (pCT). Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Thus, the fidelity of proton computed tomography (pCT) simulations as a tool for proton therapy planning depends in the general case on the accuracy of results obtained for the proton interaction with thick absorbers. GEANT4 simulations of proton energy spectra after passing thick absorbers do not agree well with existing experimental data, as showed previously. The spectra simulated for the Bethe-Bloch domain showed an unexpected sensitivity to the choice of low-energy electromagnetic models during the code execution. These observations were done with the GEANT4 version 8.2 during our simulations for pCT. This work describes in more details the simulations of the proton passage through gold absorbers with varied thickness. The simulations were done by modifying only the geometry in the Hadron therapy Example, and for all available choices of the Electromagnetic Physics Models. As the most probable reasons for these effects is some specific feature in the code or some specific implicit parameters in the GEANT4 manual, we continued our study with version 9.2 of the code. Some improvements in comparison with our previous results were obtained. The simulations were performed considering further applications for pCT development. The authors want to thank CNPq, CAPES and 'Fundacao Araucaria' for financial support of this work. (Author)

  14. Computer simulation studies in condensed-matter physics 5. Proceedings

    International Nuclear Information System (INIS)

    Landau, D.P.; Mon, K.K.; Schuettler, H.B.

    1993-01-01

    As the role of computer simulations began to increase in importance, we sensed a need for a ''meeting place'' for both experienced simulators and neophytes to discuss new techniques and results in an environment which promotes extended discussion. As a consequence of these concerns, The Center for Simulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed-Matter Physics. This year's workshop was the fifth in this series and the interest which the scientific community has shown demonstrates quite clearly the useful purpose which the series has served. The workshop was held at the University of Georgia, February 17-21, 1992, and these proceedings from a record of the workshop which is published with the goal of timely dissemination of the papers to a wider audience. The proceedings are divided into four parts. The first part contains invited papers which deal with simulational studies of classical systems and includes an introduction to some new simulation techniques and special purpose computers as well. A separate section of the proceedings is devoted to invited papers on quantum systems including new results for strongly correlated electron and quantum spin models. The third section is comprised of a single, invited description of a newly developed software shell designed for running parallel programs. The contributed presentations comprise the final chapter. (orig.). 79 figs

  15. New exploration on TMSR: modelling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Si, S.; Chen, Q.; Bei, H.; Zhao, J., E-mail: ssy@snerdi.com.cn [Shanghai Nuclear Engineering Research & Design Inst., Shanghai (China)

    2015-07-01

    A tightly coupled multi-physics model for MSR (Molten Salt Reactor) system involving the reactor core and the rest of the primary loop has been developed and employed in an in-house developed computer code TANG-MSR. In this paper, the computer code is used to simulate the behavior of steady state operation and transient for our redesigned TMSR. The presented simulation results demonstrate that the models employed in TANG-MSR can capture major physics phenomena in MSR and the redesigned TMSR has excellent performance of safety and sustainability. (author)

  16. Advanced Simulation and Computing Fiscal Year 14 Implementation Plan, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matzen, M. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-11

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Moreover, ASC’s business model is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive

  17. Turbine modelling for real time simulators

    International Nuclear Information System (INIS)

    Oliveira Barroso, A.C. de; Araujo Filho, F. de

    1992-01-01

    A model for vapor turbines and its peripherals has been developed. All the important variables have been included and emphasis has been given for the computational efficiency to obtain a model able to simulate all the modeled equipment. (A.C.A.S.)

  18. Welding simulation of large-diameter thick-walled stainless steel pipe joints. Fast computation of residual stress and influence of heat source model

    International Nuclear Information System (INIS)

    Maekawa, Akira; Serizawa, Hisashi; Nakacho, Keiji; Murakawa, Hidekazu

    2011-01-01

    There are many weld zones in the apparatus and piping installed in nuclear power plants and residual stress generated in the zone by weld process is the most important influence factor for maintaining structural integrity. Though the weld residual stress is frequently evaluated using numerical simulation, fast simulation techniques have been demanded because of the enormous calculation times used. Recently, the fast weld residual stress evaluation based on three-dimensional accurate analysis became available through development of the Iterative Substructure Method (ISM). In this study, the computational performance of the welding simulation code using the ISM was improved to get faster computations and more accurate welding simulation. By adding functions such as parallel processing, the computation speed was much faster than that of the conventional finite element method code. Furthermore, the accuracy of the improved code was validated by measurements. The influence of two different weld heat source models on the simulation results was also investigated and it was found that the moving heat source was effective to achieve accurate weld simulation for multi-pass welds. (author)

  19. Enhanced Contact Graph Routing (ECGR) MACHETE Simulation Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Clare, Loren P.

    2013-01-01

    Contact Graph Routing (CGR) for Delay/Disruption Tolerant Networking (DTN) space-based networks makes use of the predictable nature of node contacts to make real-time routing decisions given unpredictable traffic patterns. The contact graph will have been disseminated to all nodes before the start of route computation. CGR was designed for space-based networking environments where future contact plans are known or are independently computable (e.g., using known orbital dynamics). For each data item (known as a bundle in DTN), a node independently performs route selection by examining possible paths to the destination. Route computation could conceivably run thousands of times a second, so computational load is important. This work refers to the simulation software model of Enhanced Contact Graph Routing (ECGR) for DTN Bundle Protocol in JPL's MACHETE simulation tool. The simulation model was used for performance analysis of CGR and led to several performance enhancements. The simulation model was used to demonstrate the improvements of ECGR over CGR as well as other routing methods in space network scenarios. ECGR moved to using earliest arrival time because it is a global monotonically increasing metric that guarantees the safety properties needed for the solution's correctness since route re-computation occurs at each node to accommodate unpredicted changes (e.g., traffic pattern, link quality). Furthermore, using earliest arrival time enabled the use of the standard Dijkstra algorithm for path selection. The Dijkstra algorithm for path selection has a well-known inexpensive computational cost. These enhancements have been integrated into the open source CGR implementation. The ECGR model is also useful for route metric experimentation and comparisons with other DTN routing protocols particularly when combined with MACHETE's space networking models and Delay Tolerant Link State Routing (DTLSR) model.

  20. Advanced Simulation and Computing Fiscal Year 2011-2012 Implementation Plan, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, M; Phillips, J; Hpson, J; Meisner, R

    2010-04-22

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model

  1. Computational Simulation on Electrowinning for Used LiCl-KCl salts

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Sung June; Kim, Pyeong Hwa; Hwang, Il Soon [KAERI, Daejeon (Korea, Republic of); Park, Jae Yeong [Korea Institute of Nuclear Safety, Daejoen (Korea, Republic of)

    2016-05-15

    That purification is consisted of electrowinning with liquid metal cathode and selective oxidation with chemical equilibrium by using metal chloride as an oxidizing agent. Actinides and rare earth elements are deposited to liquid cathode in electrowinning and rare earth elements are selectively extracted to molten salt, however, code posited Li react to oxidizing agent prior to rare earth elements which are intended to react in selective oxidation. Also if termination point of actinides deposition in electrowinning is clearly known, we would decrease amount of reacting rare earth elements as well as Li and throughput could be enhanced. For pyroprocess research computational simulation is important to save limited resources and research environment. This study shows computational modeling on electrowinning with Bi cathode by using electrochemical simulation code REFIN. This study shows that it is possible to simulate electrochemical behaviors of at least seven elements (excluding electrode and electrolyte materials) according to real time. In order to enhance accuracy of simulation results, it is suggested that combination of REFIN and CFD modeling on two immiscible liquid to calculate diffusion boundary layer thickness as well.

  2. Assessment of Molecular Modeling & Simulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  3. Accelerating Climate and Weather Simulations through Hybrid Computing

    Science.gov (United States)

    Zhou, Shujia; Cruz, Carlos; Duffy, Daniel; Tucker, Robert; Purcell, Mark

    2011-01-01

    Unconventional multi- and many-core processors (e.g. IBM (R) Cell B.E.(TM) and NVIDIA (R) GPU) have emerged as effective accelerators in trial climate and weather simulations. Yet these climate and weather models typically run on parallel computers with conventional processors (e.g. Intel, AMD, and IBM) using Message Passing Interface. To address challenges involved in efficiently and easily connecting accelerators to parallel computers, we investigated using IBM's Dynamic Application Virtualization (TM) (IBM DAV) software in a prototype hybrid computing system with representative climate and weather model components. The hybrid system comprises two Intel blades and two IBM QS22 Cell B.E. blades, connected with both InfiniBand(R) (IB) and 1-Gigabit Ethernet. The system significantly accelerates a solar radiation model component by offloading compute-intensive calculations to the Cell blades. Systematic tests show that IBM DAV can seamlessly offload compute-intensive calculations from Intel blades to Cell B.E. blades in a scalable, load-balanced manner. However, noticeable communication overhead was observed, mainly due to IP over the IB protocol. Full utilization of IB Sockets Direct Protocol and the lower latency production version of IBM DAV will reduce this overhead.

  4. Generating Computational Models for Serious Gaming

    NARCIS (Netherlands)

    Westera, Wim

    2018-01-01

    Many serious games include computational models that simulate dynamic systems. These models promote enhanced interaction and responsiveness. Under the social web paradigm more and more usable game authoring tools become available that enable prosumers to create their own games, but the inclusion of

  5. Hybrid computer simulation of the dynamics of the Hoger Onderwijs Reactor

    International Nuclear Information System (INIS)

    Moers, J.C.; Vries, J.W. de.

    1976-01-01

    A distributed parameter model for the dynamics of the Hoger Onderwijs Reactor (HOR) at Delft is presented. The neutronic and the thermodynamic part of this model have been separately implemented on the AD4-IBM1800 Hybrid Computer of the Delft University of Technology Computation Centre. A continuous Space/Discrete Time solution method has been employed. Some test results of the simulation are included

  6. An introduction to statistical computing a simulation-based approach

    CERN Document Server

    Voss, Jochen

    2014-01-01

    A comprehensive introduction to sampling-based methods in statistical computing The use of computers in mathematics and statistics has opened up a wide range of techniques for studying otherwise intractable problems.  Sampling-based simulation techniques are now an invaluable tool for exploring statistical models.  This book gives a comprehensive introduction to the exciting area of sampling-based methods. An Introduction to Statistical Computing introduces the classical topics of random number generation and Monte Carlo methods.  It also includes some advanced met

  7. Simulation model of load balancing in distributed computing systems

    Science.gov (United States)

    Botygin, I. A.; Popov, V. N.; Frolov, S. G.

    2017-02-01

    The availability of high-performance computing, high speed data transfer over the network and widespread of software for the design and pre-production in mechanical engineering have led to the fact that at the present time the large industrial enterprises and small engineering companies implement complex computer systems for efficient solutions of production and management tasks. Such computer systems are generally built on the basis of distributed heterogeneous computer systems. The analytical problems solved by such systems are the key models of research, but the system-wide problems of efficient distribution (balancing) of the computational load and accommodation input, intermediate and output databases are no less important. The main tasks of this balancing system are load and condition monitoring of compute nodes, and the selection of a node for transition of the user’s request in accordance with a predetermined algorithm. The load balancing is one of the most used methods of increasing productivity of distributed computing systems through the optimal allocation of tasks between the computer system nodes. Therefore, the development of methods and algorithms for computing optimal scheduling in a distributed system, dynamically changing its infrastructure, is an important task.

  8. Creating science simulations through Computational Thinking Patterns

    Science.gov (United States)

    Basawapatna, Ashok Ram

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction. One aim of the NSF is to integrate these and other computational thinking concepts into the classroom. End-user programming tools offer a unique opportunity to accomplish this goal. An end-user programming tool that allows students with little or no prior experience the ability to create simulations based on phenomena they see in-class could be a first step towards meeting most, if not all, of the above computational thinking goals. This thesis describes the creation, implementation and initial testing of a programming tool, called the Simulation Creation Toolkit, with which users apply high-level agent interactions called Computational Thinking Patterns (CTPs) to create simulations. Employing Computational Thinking Patterns obviates lower behavior-level programming and allows users to directly create agent interactions in a simulation by making an analogy with real world phenomena they are trying to represent. Data collected from 21 sixth grade students with no prior programming experience and 45 seventh grade students with minimal programming experience indicates that this is an effective first step towards enabling students to create simulations in the classroom environment. Furthermore, an analogical reasoning study that looked at how users might apply patterns to create simulations from high- level descriptions with little guidance shows promising results. These initial results indicate that the high level strategy employed by the Simulation Creation Toolkit is a promising strategy towards incorporating Computational Thinking concepts in the classroom environment.

  9. Quantifying Uncertainty from Computational Factors in Simulations of a Model Ballistic System

    Science.gov (United States)

    2017-08-01

    related to the numerical structuring of a problem, such as cell size, domain extent, and system orientation. Depth of penetration of a threat into a... system in the simulation codes is tied to the domain structure , with coordinate axes aligned with cell edges. However, the position of the coordinate...physical systems are generally described by sets of equations involving continuous variables, such as time and position. Computational simulations

  10. ADAM: A computer program to simulate selective-breeding schemes for animals

    DEFF Research Database (Denmark)

    Pedersen, L D; Sørensen, A C; Henryon, M

    2009-01-01

    ADAM is a computer program that models selective breeding schemes for animals using stochastic simulation. The program simulates a population of animals and traces the genetic changes in the population under different selective breeding scenarios. It caters to different population structures......, genetic models, selection strategies, and mating designs. ADAM can be used to evaluate breeding schemes and generate genetic data to test statistical tools...

  11. Computer simulation for sodium-concrete reactions

    International Nuclear Information System (INIS)

    Zhang Bin; Zhu Jizhou

    2006-01-01

    In the liquid metal cooled fast breeder reactors (LMFBRs), direct contacts between sodium and concrete is unavoidable. Due to sodium's high chemical reactivity, sodium would react with concrete violently. Lots of hydrogen gas and heat would be released then. This would harm the ignorantly of the containment. This paper developed a program to simualte sodium-conrete reactions across-the-board. It could give the reaction zone temperature, pool temperature, penetration depth, penetration rate, hydrogen flux and reaction heat and so on. Concrete was considered to be composed of silica and water only in this paper. The variable, the quitient of sodium hydroxide, was introduced in the continuity equation to simulate the chemical reactions more realistically. The product of the net gas flux and boundary depth was ably transformed to that of penetration rate and boundary depth. The complex chemical kinetics equations was simplified under some hypothesises. All the technique applied above simplified the computer simulation consumedly. In other words, they made the computer simulation feasible. Theoretics models that applied in the program and the calculation procedure were expatiated in detail. Good agreements of an overall transient behavior were obtained in the series of sodium-concrete reaction experiment analysis. The comparison between the analytical and experimental results showed the program presented in this paper was creditable and reasonable for simulating the sodium-concrete reactions. This program could be used for nuclear safety judgement. (authors)

  12. Surgical resource utilization in urban terrorist bombing: a computer simulation.

    Science.gov (United States)

    Hirshberg, A; Stein, M; Walden, R

    1999-09-01

    The objective of this study was to analyze the utilization of surgical staff and facilities during an urban terrorist bombing incident. A discrete-event computer model of the emergency room and related hospital facilities was constructed and implemented, based on cumulated data from 12 urban terrorist bombing incidents in Israel. The simulation predicts that the admitting capacity of the hospital depends primarily on the number of available surgeons and defines an optimal staff profile for surgeons, residents, and trauma nurses. The major bottlenecks in the flow of critical casualties are the shock rooms and the computed tomographic scanner but not the operating rooms. The simulation also defines the number of reinforcement staff needed to treat noncritical casualties and shows that radiology is the major obstacle to the flow of these patients. Computer simulation is an important new tool for the optimization of surgical service elements for a multiple-casualty situation.

  13. Computer Simulation Surgery for Mandibular Reconstruction Using a Fibular Osteotomy Guide

    Directory of Open Access Journals (Sweden)

    Woo Shik Jeong

    2014-09-01

    Full Text Available In the present study, a fibular osteotomy guide based on a computer simulation was applied to a patient who had undergone mandibular segmental ostectomy due to oncological complications. This patient was a 68-year-old woman who presented to our department with a biopsy-proven squamous cell carcinoma on her left gingival area. This lesion had destroyed the cortical bony structure, and the patient showed attenuation of her soft tissue along the inferior alveolar nerve, indicating perineural spread of the tumor. Prior to surgery, a three-dimensional computed tomography scan of the facial and fibular bones was performed. We then created a virtual computer simulation of the mandibular segmental defect through which we segmented the fibular to reconstruct the proper angulation in the original mandible. Approximately 2-cm segments were created on the basis of this simulation and applied to the virtually simulated mandibular segmental defect. Thus, we obtained a virtual model of the ideal mandibular reconstruction for this patient with a fibular free flap. We could then use this computer simulation for the subsequent surgery and minimize the bony gaps between the multiple fibular bony segments.

  14. Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware.

    Science.gov (United States)

    Rast, Alexander; Galluppi, Francesco; Davies, Sergio; Plana, Luis; Patterson, Cameron; Sharp, Thomas; Lester, David; Furber, Steve

    2011-11-01

    Dedicated hardware is becoming increasingly essential to simulate emerging very-large-scale neural models. Equally, however, it needs to be able to support multiple models of the neural dynamics, possibly operating simultaneously within the same system. This may be necessary either to simulate large models with heterogeneous neural types, or to simplify simulation and analysis of detailed, complex models in a large simulation by isolating the new model to a small subpopulation of a larger overall network. The SpiNNaker neuromimetic chip is a dedicated neural processor able to support such heterogeneous simulations. Implementing these models on-chip uses an integrated library-based tool chain incorporating the emerging PyNN interface that allows a modeller to input a high-level description and use an automated process to generate an on-chip simulation. Simulations using both LIF and Izhikevich models demonstrate the ability of the SpiNNaker system to generate and simulate heterogeneous networks on-chip, while illustrating, through the network-scale effects of wavefront synchronisation and burst gating, methods that can provide effective behavioural abstractions for large-scale hardware modelling. SpiNNaker's asynchronous virtual architecture permits greater scope for model exploration, with scalable levels of functional and temporal abstraction, than conventional (or neuromorphic) computing platforms. The complete system illustrates a potential path to understanding the neural model of computation, by building (and breaking) neural models at various scales, connecting the blocks, then comparing them against the biology: computational cognitive neuroscience. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Simulation of a small computer of the TRA-1001 type on the BESM computer

    International Nuclear Information System (INIS)

    Galaktionov, V.V.

    1975-01-01

    Considered are the purpose and probable simulation ways of one computer by the other. The emulator (simulation program) is given for a small computer of TRA-1001 type on BESM-6 computer. The simulated computer basic elements are the following: memory (8 K words), central processor, input-output program channel, interruption circuit, computer panel. The work with the input-output devices, teletypes ASP-33, FS-1500 is also simulated. Under actual operation the emulator has been used for translating the programs prepared on punched cards with the aid of translator SLANG-1 by BESM-6 computer. The translator alignment from language COPLAN has been realized with the aid of the emulator

  16. Turbulence modeling for Francis turbine water passages simulation

    International Nuclear Information System (INIS)

    Maruzewski, P; Munch, C; Mombelli, H P; Avellan, F; Hayashi, H; Yamaishi, K; Hashii, T; Sugow, Y

    2010-01-01

    The applications of Computational Fluid Dynamics, CFD, to hydraulic machines life require the ability to handle turbulent flows and to take into account the effects of turbulence on the mean flow. Nowadays, Direct Numerical Simulation, DNS, is still not a good candidate for hydraulic machines simulations due to an expensive computational time consuming. Large Eddy Simulation, LES, even, is of the same category of DNS, could be an alternative whereby only the small scale turbulent fluctuations are modeled and the larger scale fluctuations are computed directly. Nevertheless, the Reynolds-Averaged Navier-Stokes, RANS, model have become the widespread standard base for numerous hydraulic machine design procedures. However, for many applications involving wall-bounded flows and attached boundary layers, various hybrid combinations of LES and RANS are being considered, such as Detached Eddy Simulation, DES, whereby the RANS approximation is kept in the regions where the boundary layers are attached to the solid walls. Furthermore, the accuracy of CFD simulations is highly dependent on the grid quality, in terms of grid uniformity in complex configurations. Moreover any successful structured and unstructured CFD codes have to offer a wide range to the variety of classic RANS model to hybrid complex model. The aim of this study is to compare the behavior of turbulent simulations for both structured and unstructured grids topology with two different CFD codes which used the same Francis turbine. Hence, the study is intended to outline the encountered discrepancy for predicting the wake of turbine blades by using either the standard k-ε model, or the standard k-ε model or the SST shear stress model in a steady CFD simulation. Finally, comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements.

  17. Turbulence modeling for Francis turbine water passages simulation

    Energy Technology Data Exchange (ETDEWEB)

    Maruzewski, P; Munch, C; Mombelli, H P; Avellan, F [Ecole polytechnique federale de Lausanne, Laboratory of Hydraulic Machines Avenue de Cour 33 bis, CH-1007 Lausanne (Switzerland); Hayashi, H; Yamaishi, K; Hashii, T; Sugow, Y, E-mail: pierre.maruzewski@epfl.c [Nippon KOEI Power Systems, 1-22 Doukyu, Aza, Morijyuku, Sukagawa, Fukushima Pref. 962-8508 (Japan)

    2010-08-15

    The applications of Computational Fluid Dynamics, CFD, to hydraulic machines life require the ability to handle turbulent flows and to take into account the effects of turbulence on the mean flow. Nowadays, Direct Numerical Simulation, DNS, is still not a good candidate for hydraulic machines simulations due to an expensive computational time consuming. Large Eddy Simulation, LES, even, is of the same category of DNS, could be an alternative whereby only the small scale turbulent fluctuations are modeled and the larger scale fluctuations are computed directly. Nevertheless, the Reynolds-Averaged Navier-Stokes, RANS, model have become the widespread standard base for numerous hydraulic machine design procedures. However, for many applications involving wall-bounded flows and attached boundary layers, various hybrid combinations of LES and RANS are being considered, such as Detached Eddy Simulation, DES, whereby the RANS approximation is kept in the regions where the boundary layers are attached to the solid walls. Furthermore, the accuracy of CFD simulations is highly dependent on the grid quality, in terms of grid uniformity in complex configurations. Moreover any successful structured and unstructured CFD codes have to offer a wide range to the variety of classic RANS model to hybrid complex model. The aim of this study is to compare the behavior of turbulent simulations for both structured and unstructured grids topology with two different CFD codes which used the same Francis turbine. Hence, the study is intended to outline the encountered discrepancy for predicting the wake of turbine blades by using either the standard k-{epsilon} model, or the standard k-{epsilon} model or the SST shear stress model in a steady CFD simulation. Finally, comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements.

  18. Turbulence modeling for Francis turbine water passages simulation

    Science.gov (United States)

    Maruzewski, P.; Hayashi, H.; Munch, C.; Yamaishi, K.; Hashii, T.; Mombelli, H. P.; Sugow, Y.; Avellan, F.

    2010-08-01

    The applications of Computational Fluid Dynamics, CFD, to hydraulic machines life require the ability to handle turbulent flows and to take into account the effects of turbulence on the mean flow. Nowadays, Direct Numerical Simulation, DNS, is still not a good candidate for hydraulic machines simulations due to an expensive computational time consuming. Large Eddy Simulation, LES, even, is of the same category of DNS, could be an alternative whereby only the small scale turbulent fluctuations are modeled and the larger scale fluctuations are computed directly. Nevertheless, the Reynolds-Averaged Navier-Stokes, RANS, model have become the widespread standard base for numerous hydraulic machine design procedures. However, for many applications involving wall-bounded flows and attached boundary layers, various hybrid combinations of LES and RANS are being considered, such as Detached Eddy Simulation, DES, whereby the RANS approximation is kept in the regions where the boundary layers are attached to the solid walls. Furthermore, the accuracy of CFD simulations is highly dependent on the grid quality, in terms of grid uniformity in complex configurations. Moreover any successful structured and unstructured CFD codes have to offer a wide range to the variety of classic RANS model to hybrid complex model. The aim of this study is to compare the behavior of turbulent simulations for both structured and unstructured grids topology with two different CFD codes which used the same Francis turbine. Hence, the study is intended to outline the encountered discrepancy for predicting the wake of turbine blades by using either the standard k-epsilon model, or the standard k-epsilon model or the SST shear stress model in a steady CFD simulation. Finally, comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements.

  19. Computer simulation of atomic collision processes in solids

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1992-11-01

    Computer simulation is a major tool for studying the interactions of swift ions with solids which underlie processes such as particle backscattering, ion implantation, radiation damage, and sputtering. Numerical models are classed as molecular dynamics or binary collision models, along with some intermediate types. Binary collision models are divided into those for crystalline targets and those for structureless ones. The foundations of such models are reviewed, including interatomic potentials, electron excitations, and relationships among the various types of codes. Some topics of current interest are summarized

  20. Simulating spin models on GPU

    Science.gov (United States)

    Weigel, Martin

    2011-09-01

    Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.

  1. MASADA: A MODELING AND SIMULATION AUTOMATED DATA ANALYSIS FRAMEWORK FOR CONTINUOUS DATA-INTENSIVE VALIDATION OF SIMULATION MODELS

    CERN Document Server

    Foguelman, Daniel Jacob; The ATLAS collaboration

    2016-01-01

    Complex networked computer systems are usually subjected to upgrades and enhancements on a continuous basis. Modeling and simulation of such systems helps with guiding their engineering processes, in particular when testing candi- date design alternatives directly on the real system is not an option. Models are built and simulation exercises are run guided by specific research and/or design questions. A vast amount of operational conditions for the real system need to be assumed in order to focus on the relevant questions at hand. A typical boundary condition for computer systems is the exogenously imposed workload. Meanwhile, in typical projects huge amounts of monitoring information are logged and stored with the purpose of studying the system’s performance in search for improvements. Also research questions change as systems’ operational conditions vary throughout its lifetime. This context poses many challenges to determine the validity of simulation models. As the behavioral empirical base of the sys...

  2. MASADA: A Modeling and Simulation Automated Data Analysis framework for continuous data-intensive validation of simulation models

    CERN Document Server

    Foguelman, Daniel Jacob; The ATLAS collaboration

    2016-01-01

    Complex networked computer systems are usually subjected to upgrades and enhancements on a continuous basis. Modeling and simulation of such systems helps with guiding their engineering processes, in particular when testing candi- date design alternatives directly on the real system is not an option. Models are built and simulation exercises are run guided by specific research and/or design questions. A vast amount of operational conditions for the real system need to be assumed in order to focus on the relevant questions at hand. A typical boundary condition for computer systems is the exogenously imposed workload. Meanwhile, in typical projects huge amounts of monitoring information are logged and stored with the purpose of studying the system’s performance in search for improvements. Also research questions change as systems’ operational conditions vary throughout its lifetime. This context poses many challenges to determine the validity of simulation models. As the behavioral empirical base of the sys...

  3. Analysis of a Model for Computer Virus Transmission

    Directory of Open Access Journals (Sweden)

    Peng Qin

    2015-01-01

    Full Text Available Computer viruses remain a significant threat to computer networks. In this paper, the incorporation of new computers to the network and the removing of old computers from the network are considered. Meanwhile, the computers are equipped with antivirus software on the computer network. The computer virus model is established. Through the analysis of the model, disease-free and endemic equilibrium points are calculated. The stability conditions of the equilibria are derived. To illustrate our theoretical analysis, some numerical simulations are also included. The results provide a theoretical basis to control the spread of computer virus.

  4. Computer Simulation of the Relationship between Selected Properties of PVD Coatings

    Directory of Open Access Journals (Sweden)

    Śliwa A.

    2016-06-01

    Full Text Available The possibility to apply the Finite Element Method to calculate internal stresses which occur in Ti+TiN, Ti+Ti(CxN1-x and Ti+TiC coatings obtained in the magnetron PVD process on the sintered high-speed steel of the PM HS6-5-3-8 type. For the purpose of computer simulation of internal stresses in coatings with the use of MES, the correct model of analyzed specimens was worked out and then it was experimentally verified by comparison of calculation results with the results of computer simulation. Accurate analysis of correlations indicated especially strong dependence between internal stresses and microhardness and between microhardness and erosion resistance what created conditions for establishing the dependence between internal stresses obtained in the result of computer simulation and erosion resistance as basic functional quality of coating. It has essential practical meaning because it allows to estimate predictable erosion resistance of coating exclusively on the base of the results of computer simulation for used parameters in the process of coating manufacturing.

  5. Magnetosphere Modeling: From Cartoons to Simulations

    Science.gov (United States)

    Gombosi, T. I.

    2017-12-01

    Over the last half a century physics-based global computer simulations became a bridge between experiment and basic theory and now it represents the "third pillar" of geospace research. Today, many of our scientific publications utilize large-scale simulations to interpret observations, test new ideas, plan campaigns, or design new instruments. Realistic simulations of the complex Sun-Earth system have been made possible by the dramatically increased power of both computing hardware and numerical algorithms. Early magnetosphere models were based on simple E&M concepts (like the Chapman-Ferraro cavity) and hydrodynamic analogies (bow shock). At the beginning of the space age current system models were developed culminating in the sophisticated Tsyganenko-type description of the magnetic configuration. The first 3D MHD simulations of the magnetosphere were published in the early 1980s. A decade later there were several competing global models that were able to reproduce many fundamental properties of the magnetosphere. The leading models included the impact of the ionosphere by using a height-integrated electric potential description. Dynamic coupling of global and regional models started in the early 2000s by integrating a ring current and a global magnetosphere model. It has been recognized for quite some time that plasma kinetic effects play an important role. Presently, global hybrid simulations of the dynamic magnetosphere are expected to be possible on exascale supercomputers, while fully kinetic simulations with realistic mass ratios are still decades away. In the 2010s several groups started to experiment with PIC simulations embedded in large-scale 3D MHD models. Presently this integrated MHD-PIC approach is at the forefront of magnetosphere simulations and this technique is expected to lead to some important advances in our understanding of magnetosheric physics. This talk will review the evolution of magnetosphere modeling from cartoons to current systems

  6. SU-F-J-178: A Computer Simulation Model Observer for Task-Based Image Quality Assessment in Radiation Therapy

    International Nuclear Information System (INIS)

    Dolly, S; Mutic, S; Anastasio, M; Li, H; Yu, L

    2016-01-01

    Purpose: Traditionally, image quality in radiation therapy is assessed subjectively or by utilizing physically-based metrics. Some model observers exist for task-based medical image quality assessment, but almost exclusively for diagnostic imaging tasks. As opposed to disease diagnosis, the task for image observers in radiation therapy is to utilize the available images to design and deliver a radiation dose which maximizes patient disease control while minimizing normal tissue damage. The purpose of this study was to design and implement a new computer simulation model observer to enable task-based image quality assessment in radiation therapy. Methods: A modular computer simulation framework was developed to resemble the radiotherapy observer by simulating an end-to-end radiation therapy treatment. Given images and the ground-truth organ boundaries from a numerical phantom as inputs, the framework simulates an external beam radiation therapy treatment and quantifies patient treatment outcomes using the previously defined therapeutic operating characteristic (TOC) curve. As a preliminary demonstration, TOC curves were calculated for various CT acquisition and reconstruction parameters, with the goal of assessing and optimizing simulation CT image quality for radiation therapy. Sources of randomness and bias within the system were analyzed. Results: The relationship between CT imaging dose and patient treatment outcome was objectively quantified in terms of a singular value, the area under the TOC (AUTOC) curve. The AUTOC decreases more rapidly for low-dose imaging protocols. AUTOC variation introduced by the dose optimization algorithm was approximately 0.02%, at the 95% confidence interval. Conclusion: A model observer has been developed and implemented to assess image quality based on radiation therapy treatment efficacy. It enables objective determination of appropriate imaging parameter values (e.g. imaging dose). Framework flexibility allows for incorporation

  7. Simulation-based computation of dose to humans in radiological environments

    International Nuclear Information System (INIS)

    Breazeal, N.L.; Davis, K.R.; Watson, R.A.; Vickers, D.S.; Ford, M.S.

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface

  8. Simulation-based computation of dose to humans in radiological environments

    Energy Technology Data Exchange (ETDEWEB)

    Breazeal, N.L. [Sandia National Labs., Livermore, CA (United States); Davis, K.R.; Watson, R.A. [Sandia National Labs., Albuquerque, NM (United States); Vickers, D.S. [Brigham Young Univ., Provo, UT (United States). Dept. of Electrical and Computer Engineering; Ford, M.S. [Battelle Pantex, Amarillo, TX (United States). Dept. of Radiation Safety

    1996-03-01

    The Radiological Environment Modeling System (REMS) quantifies dose to humans working in radiological environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO simulation software. These commercially available products are augmented with custom C code to provide radiation exposure information to, and collect radiation dose information from, workcell simulations. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these databases to compute and accumulate dose to programmable human models operating around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. The entire REMS capability can be operated from a single graphical user interface.

  9. A computer-simulated liver phantom (virtual liver phantom) for multidetector computed tomography evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Funama, Yoshinori [Kumamoto University, Department of Radiological Sciences, School of Health Sciences, Kumamoto (Japan); Awai, Kazuo; Nakayama, Yoshiharu; Liu, Da; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Miyazaki, Osamu; Goto, Taiga [Hitachi Medical Corporation, Tokyo (Japan); Hori, Shinichi [Gate Tower Institute of Image Guided Therapy, Osaka (Japan)

    2006-04-15

    The purpose of study was to develop a computer-simulated liver phantom for hepatic CT studies. A computer-simulated liver phantom was mathematically constructed on a computer workstation. The computer-simulated phantom was calibrated using real CT images acquired by an actual four-detector CT. We added an inhomogeneous texture to the simulated liver by referring to CT images of chronically damaged human livers. The mean CT number of the simulated liver was 60 HU and we added numerous 5-to 10-mm structures with 60{+-}10 HU/mm. To mimic liver tumors we added nodules measuring 8, 10, and 12 mm in diameter with CT numbers of 60{+-}10, 60{+-}15, and 60{+-}20 HU. Five radiologists visually evaluated similarity of the texture of the computer-simulated liver phantom and a real human liver to confirm the appropriateness of the virtual liver images using a five-point scale. The total score was 44 in two radiologists, and 42, 41, and 39 in one radiologist each. They evaluated that the textures of virtual liver were comparable to those of human liver. Our computer-simulated liver phantom is a promising tool for the evaluation of the image quality and diagnostic performance of hepatic CT imaging. (orig.)

  10. Computing elastic‐rebound‐motivated rarthquake probabilities in unsegmented fault models: a new methodology supported by physics‐based simulators

    Science.gov (United States)

    Field, Edward H.

    2015-01-01

    A methodology is presented for computing elastic‐rebound‐based probabilities in an unsegmented fault or fault system, which involves computing along‐fault averages of renewal‐model parameters. The approach is less biased and more self‐consistent than a logical extension of that applied most recently for multisegment ruptures in California. It also enables the application of magnitude‐dependent aperiodicity values, which the previous approach does not. Monte Carlo simulations are used to analyze long‐term system behavior, which is generally found to be consistent with that of physics‐based earthquake simulators. Results cast doubt that recurrence‐interval distributions at points on faults look anything like traditionally applied renewal models, a fact that should be considered when interpreting paleoseismic data. We avoid such assumptions by changing the "probability of what" question (from offset at a point to the occurrence of a rupture, assuming it is the next event to occur). The new methodology is simple, although not perfect in terms of recovering long‐term rates in Monte Carlo simulations. It represents a reasonable, improved way to represent first‐order elastic‐rebound predictability, assuming it is there in the first place, and for a system that clearly exhibits other unmodeled complexities, such as aftershock triggering.

  11. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  12. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.

    Science.gov (United States)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.

  13. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    International Nuclear Information System (INIS)

    Wang, Henry; Ma Yunzhi; Pratx, Guillem; Xing Lei

    2011-01-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)

  14. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henry [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Ma Yunzhi; Pratx, Guillem; Xing Lei, E-mail: hwang41@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305-5847 (United States)

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)

  15. Computer Simulations of Lipid Bilayers and Proteins

    DEFF Research Database (Denmark)

    Sonne, Jacob

    2006-01-01

    The importance of computer simulations in lipid bilayer research has become more prominent for the last couple of decades and as computers get even faster, simulations will play an increasingly important part of understanding the processes that take place in and across cell membranes. This thesis...... entitled Computer simulations of lipid bilayers and proteins describes two molecular dynamics (MD) simulation studies of pure lipid bilayers as well as a study of a transmembrane protein embedded in a lipid bilayer matrix. Below follows a brief overview of the thesis. Chapter 1. This chapter is a short...... in the succeeding chapters is presented. Details on system setups, simulation parameters and other technicalities can be found in the relevant chapters. Chapter 3, DPPC lipid parameters: The quality of MD simulations is intimately dependent on the empirical potential energy function and its parameters, i...

  16. Description of mathematical models and computer programs

    International Nuclear Information System (INIS)

    1977-01-01

    The paper gives a description of mathematical models and computer programs for analysing possible strategies for spent fuel management, with emphasis on economic analysis. The computer programs developed, describe the material flows, facility construction schedules, capital investment schedules and operating costs for the facilities used in managing the spent fuel. The computer programs use a combination of simulation and optimization procedures for the economic analyses. Many of the fuel cycle steps (such as spent fuel discharges, storage at the reactor, and transport to the RFCC) are described in physical and economic terms through simulation modeling, while others (such as reprocessing plant size and commissioning schedules, interim storage facility commissioning schedules etc.) are subjected to economic optimization procedures to determine the approximate lowest-cost plans from among the available feasible alternatives

  17. Quantum simulation of superconductors on quantum computers. Toward the first applications of quantum processors

    Energy Technology Data Exchange (ETDEWEB)

    Dallaire-Demers, Pierre-Luc

    2016-10-07

    Quantum computers are the ideal platform for quantum simulations. Given enough coherent operations and qubits, such machines can be leveraged to simulate strongly correlated materials, where intricate quantum effects give rise to counter-intuitive macroscopic phenomena such as high-temperature superconductivity. Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model. In general, no closed-form solution is known for lattices of more than one spatial dimension, but they can be numerically approximated using cluster methods. To model long-range effects such as order parameters, a powerful method to compute the cluster's Green's function consists in finding its self-energy through a variational principle. As is shown in this thesis, this allows the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model. However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation variables. We show theoretically that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory usage scales linearly with the number of orbitals in the simulated cluster and the number of measurements scales quadratically. We also provide a gate decomposition of the cluster Hamiltonian and a simple planar architecture for a quantum simulator that can also be used to simulate more general fermionic systems. We briefly analyze the Trotter-Suzuki errors and estimate the scaling properties of the algorithm for more complex applications. A quantum computer with a few tens of qubits could therefore simulate the thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.

  18. Quantum simulation of superconductors on quantum computers. Toward the first applications of quantum processors

    International Nuclear Information System (INIS)

    Dallaire-Demers, Pierre-Luc

    2016-01-01

    Quantum computers are the ideal platform for quantum simulations. Given enough coherent operations and qubits, such machines can be leveraged to simulate strongly correlated materials, where intricate quantum effects give rise to counter-intuitive macroscopic phenomena such as high-temperature superconductivity. Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model. In general, no closed-form solution is known for lattices of more than one spatial dimension, but they can be numerically approximated using cluster methods. To model long-range effects such as order parameters, a powerful method to compute the cluster's Green's function consists in finding its self-energy through a variational principle. As is shown in this thesis, this allows the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model. However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation variables. We show theoretically that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory usage scales linearly with the number of orbitals in the simulated cluster and the number of measurements scales quadratically. We also provide a gate decomposition of the cluster Hamiltonian and a simple planar architecture for a quantum simulator that can also be used to simulate more general fermionic systems. We briefly analyze the Trotter-Suzuki errors and estimate the scaling properties of the algorithm for more complex applications. A quantum computer with a few tens of qubits could therefore simulate the thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.

  19. Solving wood chip transport problems with computer simulation.

    Science.gov (United States)

    Dennis P. Bradley; Sharon A. Winsauer

    1976-01-01

    Efficient chip transport operations are difficult to achieve due to frequent and often unpredictable changes in distance to market, chipping rate, time spent at the mill, and equipment costs. This paper describes a computer simulation model that allows a logger to design an efficient transport system in response to these changing factors.

  20. Computational models in physics teaching: a framework

    Directory of Open Access Journals (Sweden)

    Marco Antonio Moreira

    2012-08-01

    Full Text Available The purpose of the present paper is to present a theoretical framework to promote and assist meaningful physics learning through computational models. Our proposal is based on the use of a tool, the AVM diagram, to design educational activities involving modeling and computer simulations. The idea is to provide a starting point for the construction and implementation of didactical approaches grounded in a coherent epistemological view about scientific modeling.

  1. A three-dimensional ground-water-flow model modified to reduce computer-memory requirements and better simulate confining-bed and aquifer pinchouts

    Science.gov (United States)

    Leahy, P.P.

    1982-01-01

    The Trescott computer program for modeling groundwater flow in three dimensions has been modified to (1) treat aquifer and confining bed pinchouts more realistically and (2) reduce the computer memory requirements needed for the input data. Using the original program, simulation of aquifer systems with nonrectangular external boundaries may result in a large number of nodes that are not involved in the numerical solution of the problem, but require computer storage. (USGS)

  2. Large Atmospheric Computation on the Earth Simulator: The LACES Project

    Directory of Open Access Journals (Sweden)

    Michel Desgagné

    2006-01-01

    Full Text Available The Large Atmospheric Computation on the Earth Simulator (LACES project is a joint initiative between Canadian and Japanese meteorological services and academic institutions that focuses on the high resolution simulation of Hurricane Earl (1998. The unique aspect of this effort is the extent of the computational domain, which covers all of North America and Europe with a grid spacing of 1 km. The Canadian Mesoscale Compressible Community (MC2 model is shown to parallelize effectively on the Japanese Earth Simulator (ES supercomputer; however, even using the extensive computing resources of the ES Center (ESC, the full simulation for the majority of Hurricane Earl's lifecycle takes over eight days to perform and produces over 5.2 TB of raw data. Preliminary diagnostics show that the results of the LACES simulation for the tropical stage of Hurricane Earl's lifecycle compare well with available observations for the storm. Further studies involving advanced diagnostics have commenced, taking advantage of the uniquely large spatial extent of the high resolution LACES simulation to investigate multiscale interactions in the hurricane and its environment. It is hoped that these studies will enhance our understanding of processes occurring within the hurricane and between the hurricane and its planetary-scale environment.

  3. Modelling and computer simulation for the manufacture by powder HIPing of Blanket Shield components for ITER

    International Nuclear Information System (INIS)

    Gillia, O.; Bucci, Ph.; Vidotto, F.; Leibold, J.-M.; Boireau, B.; Boudot, C.; Cottin, A.; Lorenzetto, P.; Jacquinot, F.

    2006-01-01

    In components of blanket modules for ITER, intricate cooling networks are needed in order to evacuate all heat coming from the plasma. Hot Isostatic Pressing (HIPing) technology is a very convenient method to produce near net shape components with complex cooling network through massive stainless steel parts by bonding together tubes inserted in grooves machined in bulk stainless steel. Powder is often included in the process so as to release difficulties arising with gaps closure between tube and solid part or between several solid parts. In the mean time, it releases the machining precision needed on the parts to assemble before HIP. However, inserting powder in the assembly means densification, i.e. volume change of powder during the HIP cycle. This leads to global and local shape changes of HIPed parts. In order to control the deformations, modelling and computer simulation are used. This modelling and computer simulation work has been done in support to the fabrication of a shield prototype for the ITER blanket. Problems such as global bending of the whole part and deformations of tubes in their powder bed are addressed. It is important that the part does not bend too much. It is important as well to have circular tube shape after HIP, firstly in order to avoid their rupture during HIP but also because non destructive ultrasonic examination is needed to check the quality of the densification and bonding between tube and powder or solid parts; the insertions of a probe in the tubes requires a minimal circular tube shape. For simulation purposes, the behaviour of the different materials has to be modelled. Although the modelling of the massive stainless steel behaviour is not neglected, the most critical modelling is about power. For this study, a thorough investigation on the powder behaviour has been performed with some in-situ HIP dilatometry experiments and some interrupted HIP cycles on trial parts. These experiments have allowed the identification of a

  4. In pursuit of an accurate spatial and temporal model of biomolecules at the atomistic level: a perspective on computer simulation.

    Science.gov (United States)

    Gray, Alan; Harlen, Oliver G; Harris, Sarah A; Khalid, Syma; Leung, Yuk Ming; Lonsdale, Richard; Mulholland, Adrian J; Pearson, Arwen R; Read, Daniel J; Richardson, Robin A

    2015-01-01

    Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational.

  5. One-dimensional computational modeling on nuclear reactor problems

    International Nuclear Information System (INIS)

    Alves Filho, Hermes; Baptista, Josue Costa; Trindade, Luiz Fernando Santos; Heringer, Juan Diego dos Santos

    2013-01-01

    In this article, we present a computational modeling, which gives us a dynamic view of some applications of Nuclear Engineering, specifically in the power distribution and the effective multiplication factor (keff) calculations. We work with one-dimensional problems of deterministic neutron transport theory, with the linearized Boltzmann equation in the discrete ordinates (SN) formulation, independent of time, with isotropic scattering and then built a software (Simulator) for modeling computational problems used in a typical calculations. The program used in the implementation of the simulator was Matlab, version 7.0. (author)

  6. A computer program for scanning transmission ion microscopy simulation

    International Nuclear Information System (INIS)

    Wu, R.; Shen, H.; Mi, Y.; Sun, M.D.; Yang, M.J.

    2005-01-01

    With the installation of the Scanning Proton Microprobe system at Fudan University, we are in the process of developing a three-dimension reconstruction technique based on scanning transmission ion microscopy-computed tomography (STIM-CT). As the first step, a related computer program of STIM simulation has been established. This program is written in the Visual C++[reg], using the technique of OOP (Object Oriented Programming) and it is a standard multiple-document Windows[reg] program. It can be run with all MS Windows[reg] operating systems. The operating mode is the menu mode, using a multiple process technique. The stopping power theory is based on the Bethe-Bloch formula. In order to simplify the calculation, the improved cylindrical coordinate model was introduced in the program instead of a usual spherical or cylindrical coordinate model. The simulated results of a sample at several rotation angles are presented

  7. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    Science.gov (United States)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  8. Event Based Simulator for Parallel Computing over the Wide Area Network for Real Time Visualization

    Science.gov (United States)

    Sundararajan, Elankovan; Harwood, Aaron; Kotagiri, Ramamohanarao; Satria Prabuwono, Anton

    As the computational requirement of applications in computational science continues to grow tremendously, the use of computational resources distributed across the Wide Area Network (WAN) becomes advantageous. However, not all applications can be executed over the WAN due to communication overhead that can drastically slowdown the computation. In this paper, we introduce an event based simulator to investigate the performance of parallel algorithms executed over the WAN. The event based simulator known as SIMPAR (SIMulator for PARallel computation), simulates the actual computations and communications involved in parallel computation over the WAN using time stamps. Visualization of real time applications require steady stream of processed data flow for visualization purposes. Hence, SIMPAR may prove to be a valuable tool to investigate types of applications and computing resource requirements to provide uninterrupted flow of processed data for real time visualization purposes. The results obtained from the simulation show concurrence with the expected performance using the L-BSP model.

  9. Scientific and Computational Challenges of the Fusion Simulation Program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  10. Scientific and computational challenges of the fusion simulation program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) - a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  11. Common modelling approaches for training simulators for nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    Training simulators for nuclear power plant operating staff have gained increasing importance over the last twenty years. One of the recommendations of the 1983 IAEA Specialists' Meeting on Nuclear Power Plant Training Simulators in Helsinki was to organize a Co-ordinated Research Programme (CRP) on some aspects of training simulators. The goal statement was: ''To establish and maintain a common approach to modelling for nuclear training simulators based on defined training requirements''. Before adapting this goal statement, the participants considered many alternatives for defining the common aspects of training simulator models, such as the programming language used, the nature of the simulator computer system, the size of the simulation computers, the scope of simulation. The participants agreed that it was the training requirements that defined the need for a simulator, the scope of models and hence the type of computer complex that was required, the criteria for fidelity and verification, and was therefore the most appropriate basis for the commonality of modelling approaches. It should be noted that the Co-ordinated Research Programme was restricted, for a variety of reasons, to consider only a few aspects of training simulators. This report reflects these limitations, and covers only the topics considered within the scope of the programme. The information in this document is intended as an aid for operating organizations to identify possible modelling approaches for training simulators for nuclear power plants. 33 refs

  12. Model for transient simulation in a PWR steam circuit

    International Nuclear Information System (INIS)

    Mello, L.A. de.

    1982-11-01

    A computer code (SURF) was developed and used to simulate pressure losses along the tubes of the main steam circuit of a PWR nuclear power plant, and the steam flow through relief and safety valves when pressure reactors its thresholds values. A thermodynamic model of turbines (high and low pressure), and its associated components are simulated too. The SURF computer code was coupled to the GEVAP computer code, complementing the simulation of a PWR nuclear power plant main steam circuit. (Author) [pt

  13. CaliBayes and BASIS: integrated tools for the calibration, simulation and storage of biological simulation models.

    Science.gov (United States)

    Chen, Yuhui; Lawless, Conor; Gillespie, Colin S; Wu, Jake; Boys, Richard J; Wilkinson, Darren J

    2010-05-01

    Dynamic simulation modelling of complex biological processes forms the backbone of systems biology. Discrete stochastic models are particularly appropriate for describing sub-cellular molecular interactions, especially when critical molecular species are thought to be present at low copy-numbers. For example, these stochastic effects play an important role in models of human ageing, where ageing results from the long-term accumulation of random damage at various biological scales. Unfortunately, realistic stochastic simulation of discrete biological processes is highly computationally intensive, requiring specialist hardware, and can benefit greatly from parallel and distributed approaches to computation and analysis. For these reasons, we have developed the BASIS system for the simulation and storage of stochastic SBML models together with associated simulation results. This system is exposed as a set of web services to allow users to incorporate its simulation tools into their workflows. Parameter inference for stochastic models is also difficult and computationally expensive. The CaliBayes system provides a set of web services (together with an R package for consuming these and formatting data) which addresses this problem for SBML models. It uses a sequential Bayesian MCMC method, which is powerful and flexible, providing very rich information. However this approach is exceptionally computationally intensive and requires the use of a carefully designed architecture. Again, these tools are exposed as web services to allow users to take advantage of this system. In this article, we describe these two systems and demonstrate their integrated use with an example workflow to estimate the parameters of a simple model of Saccharomyces cerevisiae growth on agar plates.

  14. Automatic Model Generation Framework for Computational Simulation of Cochlear Implantation

    DEFF Research Database (Denmark)

    Mangado Lopez, Nerea; Ceresa, Mario; Duchateau, Nicolas

    2016-01-01

    . To address such a challenge, we propose an automatic framework for the generation of patient-specific meshes for finite element modeling of the implanted cochlea. First, a statistical shape model is constructed from high-resolution anatomical μCT images. Then, by fitting the statistical model to a patient......'s CT image, an accurate model of the patient-specific cochlea anatomy is obtained. An algorithm based on the parallel transport frame is employed to perform the virtual insertion of the cochlear implant. Our automatic framework also incorporates the surrounding bone and nerve fibers and assigns......Recent developments in computational modeling of cochlear implantation are promising to study in silico the performance of the implant before surgery. However, creating a complete computational model of the patient's anatomy while including an external device geometry remains challenging...

  15. Computer simulation of the time evolution of a quenched model alloy in the nucleation region

    International Nuclear Information System (INIS)

    Marro, J.; Lebowitz, J.L.; Kalos, M.H.

    1979-01-01

    The time evolution of the structure function and of the cluster (or grain) distribution following quenching in a model binary alloy with a small concentration of minority atoms is obtained from computer simulations. The structure function S-bar (k,t) obeys a simple scaling relation, S-bar (k,t) = K -3 F (k/K) with K (t) proportional t/sup -a/, a approx. = 0.25, during the latter and larger part of the evolution. During the same period, the mean cluster size grows approximately linearly with time

  16. Modeling Techniques for a Computational Efficient Dynamic Turbofan Engine Model

    Directory of Open Access Journals (Sweden)

    Rory A. Roberts

    2014-01-01

    Full Text Available A transient two-stream engine model has been developed. Individual component models developed exclusively in MATLAB/Simulink including the fan, high pressure compressor, combustor, high pressure turbine, low pressure turbine, plenum volumes, and exit nozzle have been combined to investigate the behavior of a turbofan two-stream engine. Special attention has been paid to the development of transient capabilities throughout the model, increasing physics model, eliminating algebraic constraints, and reducing simulation time through enabling the use of advanced numerical solvers. The lessening of computation time is paramount for conducting future aircraft system-level design trade studies and optimization. The new engine model is simulated for a fuel perturbation and a specified mission while tracking critical parameters. These results, as well as the simulation times, are presented. The new approach significantly reduces the simulation time.

  17. Radiotherapy Monte Carlo simulation using cloud computing technology.

    Science.gov (United States)

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  18. Radiotherapy Monte Carlo simulation using cloud computing technology

    International Nuclear Information System (INIS)

    Poole, C.M.; Cornelius, I.; Trapp, J.V.; Langton, C.M.

    2012-01-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  19. New Computer Simulations of Macular Neural Functioning

    Science.gov (United States)

    Ross, Muriel D.; Doshay, D.; Linton, S.; Parnas, B.; Montgomery, K.; Chimento, T.

    1994-01-01

    We use high performance graphics workstations and supercomputers to study the functional significance of the three-dimensional (3-D) organization of gravity sensors. These sensors have a prototypic architecture foreshadowing more complex systems. Scaled-down simulations run on a Silicon Graphics workstation and scaled-up, 3-D versions run on a Cray Y-MP supercomputer. A semi-automated method of reconstruction of neural tissue from serial sections studied in a transmission electron microscope has been developed to eliminate tedious conventional photography. The reconstructions use a mesh as a step in generating a neural surface for visualization. Two meshes are required to model calyx surfaces. The meshes are connected and the resulting prisms represent the cytoplasm and the bounding membranes. A finite volume analysis method is employed to simulate voltage changes along the calyx in response to synapse activation on the calyx or on calyceal processes. The finite volume method insures that charge is conserved at the calyx-process junction. These and other models indicate that efferent processes act as voltage followers, and that the morphology of some afferent processes affects their functioning. In a final application, morphological information is symbolically represented in three dimensions in a computer. The possible functioning of the connectivities is tested using mathematical interpretations of physiological parameters taken from the literature. Symbolic, 3-D simulations are in progress to probe the functional significance of the connectivities. This research is expected to advance computer-based studies of macular functioning and of synaptic plasticity.

  20. In-cylinder diesel spray combustion simulations using parallel computation: A performance benchmarking study

    International Nuclear Information System (INIS)

    Pang, Kar Mun; Ng, Hoon Kiat; Gan, Suyin

    2012-01-01

    Highlights: ► A performance benchmarking exercise is conducted for diesel combustion simulations. ► The reduced chemical mechanism shows its advantages over base and skeletal models. ► High efficiency and great reduction of CPU runtime are achieved through 4-node solver. ► Increasing ISAT memory from 0.1 to 2 GB reduces the CPU runtime by almost 35%. ► Combustion and soot processes are predicted well with minimal computational cost. - Abstract: In the present study, in-cylinder diesel combustion simulation was performed with parallel processing on an Intel Xeon Quad-Core platform to allow both fluid dynamics and chemical kinetics of the surrogate diesel fuel model to be solved simultaneously on multiple processors. Here, Cartesian Z-Coordinate was selected as the most appropriate partitioning algorithm since it computationally bisects the domain such that the dynamic load associated with fuel particle tracking was evenly distributed during parallel computations. Other variables examined included number of compute nodes, chemistry sizes and in situ adaptive tabulation (ISAT) parameters. Based on the performance benchmarking test conducted, parallel configuration of 4-compute node was found to reduce the computational runtime most efficiently whereby a parallel efficiency of up to 75.4% was achieved. The simulation results also indicated that accuracy level was insensitive to the number of partitions or the partitioning algorithms. The effect of reducing the number of species on computational runtime was observed to be more significant than reducing the number of reactions. Besides, the study showed that an increase in the ISAT maximum storage of up to 2 GB reduced the computational runtime by 50%. Also, the ISAT error tolerance of 10 −3 was chosen to strike a balance between results accuracy and computational runtime. The optimised parameters in parallel processing and ISAT, as well as the use of the in-house reduced chemistry model allowed accurate

  1. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    International Nuclear Information System (INIS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-01-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula’s material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element’s remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than

  2. Simulation of thermohydraulic phenomena and model test for FBR

    International Nuclear Information System (INIS)

    Satoh, Kazuziro

    1994-01-01

    This paper summarizes the major thermohydraulic phenomena of FBRs and the conventional ways of their model tests, and introduces the recent findings regarding measurement technology and computational science. In the future commercial stage of FBRs, the design optimization will becomes important to improve economy and safety more and more. It is indispensable to use computational science to the plant design and safety evaluation. The most of the model tests will be replaced by the simulation analyses based on computational science. The measurement technology using ultrasonic and the numerical simulation with super parallel computing are considered to be the key technology to realize the design by analysis method. (author)

  3. Fel simulations using distributed computing

    NARCIS (Netherlands)

    Einstein, J.; Biedron, S.G.; Freund, H.P.; Milton, S.V.; Van Der Slot, P. J M; Bernabeu, G.

    2016-01-01

    While simulation tools are available and have been used regularly for simulating light sources, including Free-Electron Lasers, the increasing availability and lower cost of accelerated computing opens up new opportunities. This paper highlights a method of how accelerating and parallelizing code

  4. CUBESIM, Hypercube and Denelcor Hep Parallel Computer Simulation

    International Nuclear Information System (INIS)

    Dunigan, T.H.

    1988-01-01

    1 - Description of program or function: CUBESIM is a set of subroutine libraries and programs for the simulation of message-passing parallel computers and shared-memory parallel computers. Subroutines are supplied to simulate the Intel hypercube and the Denelcor HEP parallel computers. The system permits a user to develop and test parallel programs written in C or FORTRAN on a single processor. The user may alter such hypercube parameters as message startup times, packet size, and the computation-to-communication ratio. The simulation generates a trace file that can be used for debugging, performance analysis, or graphical display. 2 - Method of solution: The CUBESIM simulator is linked with the user's parallel application routines to run as a single UNIX process. The simulator library provides a small operating system to perform process and message management. 3 - Restrictions on the complexity of the problem: Up to 128 processors can be simulated with a virtual memory limit of 6 million bytes. Up to 1000 processes can be simulated

  5. Reproducible computational biology experiments with SED-ML--the Simulation Experiment Description Markup Language.

    Science.gov (United States)

    Waltemath, Dagmar; Adams, Richard; Bergmann, Frank T; Hucka, Michael; Kolpakov, Fedor; Miller, Andrew K; Moraru, Ion I; Nickerson, David; Sahle, Sven; Snoep, Jacky L; Le Novère, Nicolas

    2011-12-15

    The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research

  6. Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language

    Science.gov (United States)

    2011-01-01

    Background The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. Results In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. Conclusions With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from

  7. A Personal Computer-Based Simulator for Nuclear-Heating Reactors

    International Nuclear Information System (INIS)

    Liu Jie; Zhang Zuoyi; Lu Dongsen; Shi Zhengang; Chen Xiaoming; Dong Yujie

    2000-01-01

    A personal computer (PC)-based simulator for nuclear-heating reactors (NHRs), PC-NHR, has been developed to provide an educational tool for understanding the design and operational characteristics of an NHR system. A general description of the reactor system as well as the technical basis for the design and operation of the heating reactor is provided. The basic models and equations for the NHR simulation are then given, which include models of the reactor core, the reactor coolant system, the containment, and the control system. The graphical user interface is described in detail to provide a manual for the user to operate the simulator properly. Steady state and several transients have been simulated. The results of PC-NHR are in good agreement with design data and the results of RETRAN-02. The real-time capability is also confirmed

  8. The advanced computational testing and simulation toolkit (ACTS)

    International Nuclear Information System (INIS)

    Drummond, L.A.; Marques, O.

    2002-01-01

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  9. The advanced computational testing and simulation toolkit (ACTS)

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  10. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Adel Sarofim; Connie Senior

    2004-12-22

    , immersive environment. The Virtual Engineering Framework (VEF), in effect a prototype framework, was developed through close collaboration with NETL supported research teams from Iowa State University Virtual Reality Applications Center (ISU-VRAC) and Carnegie Mellon University (CMU). The VEF is open source, compatible across systems ranging from inexpensive desktop PCs to large-scale, immersive facilities and provides support for heterogeneous distributed computing of plant simulations. The ability to compute plant economics through an interface that coupled the CMU IECM tool to the VEF was demonstrated, and the ability to couple the VEF to Aspen Plus, a commercial flowsheet modeling tool, was demonstrated. Models were interfaced to the framework using VES-Open. Tests were performed for interfacing CAPE-Open-compliant models to the framework. Where available, the developed models and plant simulations have been benchmarked against data from the open literature. The VEF has been installed at NETL. The VEF provides simulation capabilities not available in commercial simulation tools. It provides DOE engineers, scientists, and decision makers with a flexible and extensible simulation system that can be used to reduce the time, technical risk, and cost to develop the next generation of advanced, coal-fired power systems that will have low emissions and high efficiency. Furthermore, the VEF provides a common simulation system that NETL can use to help manage Advanced Power Systems Research projects, including both combustion- and gasification-based technologies.

  11. Advanced Physical Models and Numerical Algorithms to Enable High-Fidelity Aerothermodynamic Simulations of Planetary Entry Vehicles on Emerging Distributed Heterogeneous Computing Architectures

    Data.gov (United States)

    National Aeronautics and Space Administration — The design and qualification of entry systems for planetary exploration largely rely on computational simulations. However, state-of-the-art modeling capabilities...

  12. Accelerator simulation using computers

    International Nuclear Information System (INIS)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ''multi-track'' simulation and analysis code can be used for these applications

  13. LHCb computing model

    CERN Document Server

    Frank, M; Pacheco, Andreu

    1998-01-01

    This document is a first attempt to describe the LHCb computing model. The CPU power needed to process data for the event filter and reconstruction is estimated to be 2.2 \\Theta 106 MIPS. This will be installed at the experiment and will be reused during non data-taking periods for reprocessing. The maximal I/O of these activities is estimated to be around 40 MB/s.We have studied three basic models concerning the placement of the CPU resources for the other computing activities, Monte Carlo-simulation (1:4 \\Theta 106 MIPS) and physics analysis (0:5 \\Theta 106 MIPS): CPU resources may either be located at the physicist's homelab, national computer centres (Regional Centres) or at CERN.The CPU resources foreseen for analysis are sufficient to allow 100 concurrent analyses. It is assumed that physicists will work in physics groups that produce analysis data at an average rate of 4.2 MB/s or 11 TB per month. However, producing these group analysis data requires reading capabilities of 660 MB/s. It is further assu...

  14. Simulation of large scale air detritiation operations by computer modeling and bench-scale experimentation

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Land, R.H.; Maroni, V.A.; Mintz, J.M.

    1978-01-01

    Although some experience has been gained in the design and construction of 0.5 to 5 m 3 /s air-detritiation systems, little information is available on the performance of these systems under realistic conditions. Recently completed studies at ANL have attempted to provide some perspective on this subject. A time-dependent computer model was developed to study the effects of various reaction and soaking mechanisms that could occur in a typically-sized fusion reactor building (approximately 10 5 m 3 ) following a range of tritium releases (2 to 200 g). In parallel with the computer study, a small (approximately 50 liter) test chamber was set up to investigate cleanup characteristics under conditions which could also be simulated with the computer code. Whereas results of computer analyses indicated that only approximately 10 -3 percent of the tritium released to an ambient enclosure should be converted to tritiated water, the bench-scale experiments gave evidence of conversions to water greater than 1%. Furthermore, although the amounts (both calculated and observed) of soaked-in tritium are usually only a very small fraction of the total tritium release, the soaked tritium is significant, in that its continuous return to the enclosure extends the cleanup time beyond the predicted value in the absence of any soaking mechanisms

  15. Aeroelastic simulation using CFD based reduced order models

    International Nuclear Information System (INIS)

    Zhang, W.; Ye, Z.; Li, H.; Yang, Q.

    2005-01-01

    This paper aims at providing an accurate and efficient method for aeroelastic simulation. System identification is used to get the reduced order models of unsteady aerodynamics. Unsteady Euler codes are used to compute the output signals while 3211 multistep input signals are utilized. LS(Least Squares) method is used to estimate the coefficients of the input-output difference model. The reduced order models are then used in place of the unsteady CFD code for aeroelastic simulation. The aeroelastic equations are marched by an improved 4th order Runge-Kutta method that only needs to compute the aerodynamic loads one time at every time step. The computed results agree well with that of the direct coupling CFD/CSD methods. The computational efficiency is improved 1∼2 orders while still retaining the high accuracy. A standard aeroelastic computing example (isogai wing) with S type flutter boundary is computed and analyzed. It is due to the system has more than one neutral points at the Mach range of 0.875∼0.9. (author)

  16. Computer simulation of the self-sputtering of uranium

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1983-01-01

    The sputtering of polycrystalline α-uranium by uranium ions of energies below 10 keV has been studied in the binary collision approximation using the computer simulation program marlowe. Satisfactory agreement of the computed sputtering yields with the small amount of available experimental data was achieved using the Moliere interatomic potential, a semilocal inelastic loss function, and a planar surface binding barrier, all with conventional parameters. The model is used to discuss low energy sputtering processes and the energy and angular distributions of the reflected primaries and the sputtered target particles

  17. Computer Simulation in Information and Communication Engineering

    CERN Multimedia

    Anton Topurov

    2005-01-01

    CSICE'05 Sofia, Bulgaria 20th - 22nd October, 2005 On behalf of the International Scientific Committee, we would like to invite you all to Sofia, the capital city of Bulgaria, to the International Conference in Computer Simulation in Information and Communication Engineering CSICE'05. The Conference is aimed at facilitating the exchange of experience in the field of computer simulation gained not only in traditional fields (Communications, Electronics, Physics...) but also in the areas of biomedical engineering, environment, industrial design, etc. The objective of the Conference is to bring together lectures, researchers and practitioners from different countries, working in the fields of computer simulation in information engineering, in order to exchange information and bring new contribution to this important field of engineering design and education. The Conference will bring you the latest ideas and development of the tools for computer simulation directly from their inventors. Contribution describ...

  18. Computational simulation of laser heat processing of materials

    Science.gov (United States)

    Shankar, Vijaya; Gnanamuthu, Daniel

    1987-04-01

    A computational model simulating the laser heat treatment of AISI 4140 steel plates with a CW CO2 laser beam has been developed on the basis of the three-dimensional, time-dependent heat equation (subject to the appropriate boundary conditions). The solution method is based on Newton iteration applied to a triple-approximate factorized form of the equation. The method is implicit and time-accurate; the maintenance of time-accuracy in the numerical formulation is noted to be critical for the simulation of finite length workpieces with a finite laser beam dwell time.

  19. Predictive modeling of liquid-sodium thermal–hydraulics experiments and computations

    International Nuclear Information System (INIS)

    Arslan, Erkan; Cacuci, Dan G.

    2014-01-01

    Highlights: • We applied the predictive modeling method of Cacuci and Ionescu-Bujor (2010). • We assimilated data from sodium flow experiments. • We used computational fluid dynamics simulations of sodium experiments. • The predictive modeling method greatly reduced uncertainties in predicted results. - Abstract: This work applies the predictive modeling procedure formulated by Cacuci and Ionescu-Bujor (2010) to assimilate data from liquid-sodium thermal–hydraulics experiments in order to reduce systematically the uncertainties in the predictions of computational fluid dynamics (CFD) simulations. The predicted CFD-results for the best-estimate model parameters and results describing sodium-flow velocities and temperature distributions are shown to be significantly more precise than the original computations and experiments, in that the predicted uncertainties for the best-estimate results and model parameters are significantly smaller than both the originally computed and the experimental uncertainties

  20. Computer-simulated images of icosahedral, pentagonal and decagonal clusters of atoms

    International Nuclear Information System (INIS)

    Peng JuLin; Bursill, L.A.

    1989-01-01

    The aim of this work was to assess, by computer-simulation the sensitivity of high-resolution electron microscopy (HREM) images for a set of icosahedral and decagonal clusters, containing 50-400 atoms. An experimental study of both crystalline and quasy-crystalline alloys of A1(Si)Mn is presented, in which carefully-chosen electron optical conditions were established by computer simulation then used to obtain high quality images. It was concluded that while there is a very significant degree of model sensitiveness available, direct inversion from image to structure is not at realistic possibility. A reasonable procedure would be to record experimental images of known complex icosahedral alloys, in a crystalline phase, then use the computer-simulations to identify fingerprint imaging conditions whereby certain structural elements could be identified in images of quasi-crystalline or amorphous specimens. 27 refs., 12 figs., 1 tab

  1. MO-G-17A-04: Internal Dosimetric Calculations for Pediatric Nuclear Imaging Applications, Using Monte Carlo Simulations and High-Resolution Pediatric Computational Models

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitroulas, P; Kagadis, GC [University of Patras, Rion, Ahaia (Greece); Loudos, G [Technical Educational Institute of Athens, Aigaleo, Attiki (Greece)

    2014-06-15

    Purpose: Our purpose is to evaluate the administered absorbed dose in pediatric, nuclear imaging studies. Monte Carlo simulations with the incorporation of pediatric computational models can serve as reference for the accurate determination of absorbed dose. The procedure of the calculated dosimetric factors is described, while a dataset of reference doses is created. Methods: Realistic simulations were executed using the GATE toolkit and a series of pediatric computational models, developed by the “IT'IS Foundation”. The series of the phantoms used in our work includes 6 models in the range of 5–14 years old (3 boys and 3 girls). Pre-processing techniques were applied to the images, to incorporate the phantoms in GATE simulations. The resolution of the phantoms was set to 2 mm3. The most important organ densities were simulated according to the GATE “Materials Database”. Several used radiopharmaceuticals in SPECT and PET applications are being tested, following the EANM pediatric dosage protocol. The biodistributions of the several isotopes used as activity maps in the simulations, were derived by the literature. Results: Initial results of absorbed dose per organ (mGy) are presented in a 5 years old girl from the whole body exposure to 99mTc - SestaMIBI, 30 minutes after administration. Heart, kidney, liver, ovary, pancreas and brain are the most critical organs, in which the S-factors are calculated. The statistical uncertainty in the simulation procedure was kept lower than 5%. The Sfactors for each target organ are calculated in Gy/(MBq*sec) with highest dose being absorbed in kidneys and pancreas (9.29*10{sup 10} and 0.15*10{sup 10} respectively). Conclusion: An approach for the accurate dosimetry on pediatric models is presented, creating a reference dosage dataset for several radionuclides in children computational models with the advantages of MC techniques. Our study is ongoing, extending our investigation to other reference models and

  2. MO-G-17A-04: Internal Dosimetric Calculations for Pediatric Nuclear Imaging Applications, Using Monte Carlo Simulations and High-Resolution Pediatric Computational Models

    International Nuclear Information System (INIS)

    Papadimitroulas, P; Kagadis, GC; Loudos, G

    2014-01-01

    Purpose: Our purpose is to evaluate the administered absorbed dose in pediatric, nuclear imaging studies. Monte Carlo simulations with the incorporation of pediatric computational models can serve as reference for the accurate determination of absorbed dose. The procedure of the calculated dosimetric factors is described, while a dataset of reference doses is created. Methods: Realistic simulations were executed using the GATE toolkit and a series of pediatric computational models, developed by the “IT'IS Foundation”. The series of the phantoms used in our work includes 6 models in the range of 5–14 years old (3 boys and 3 girls). Pre-processing techniques were applied to the images, to incorporate the phantoms in GATE simulations. The resolution of the phantoms was set to 2 mm3. The most important organ densities were simulated according to the GATE “Materials Database”. Several used radiopharmaceuticals in SPECT and PET applications are being tested, following the EANM pediatric dosage protocol. The biodistributions of the several isotopes used as activity maps in the simulations, were derived by the literature. Results: Initial results of absorbed dose per organ (mGy) are presented in a 5 years old girl from the whole body exposure to 99mTc - SestaMIBI, 30 minutes after administration. Heart, kidney, liver, ovary, pancreas and brain are the most critical organs, in which the S-factors are calculated. The statistical uncertainty in the simulation procedure was kept lower than 5%. The Sfactors for each target organ are calculated in Gy/(MBq*sec) with highest dose being absorbed in kidneys and pancreas (9.29*10 10 and 0.15*10 10 respectively). Conclusion: An approach for the accurate dosimetry on pediatric models is presented, creating a reference dosage dataset for several radionuclides in children computational models with the advantages of MC techniques. Our study is ongoing, extending our investigation to other reference models and evaluating the

  3. Computer Simulation in Predicting Biochemical Processes and Energy Balance at WWTPs

    Science.gov (United States)

    Drewnowski, Jakub; Zaborowska, Ewa; Hernandez De Vega, Carmen

    2018-02-01

    Nowadays, the use of mathematical models and computer simulation allow analysis of many different technological solutions as well as testing various scenarios in a short time and at low financial budget in order to simulate the scenario under typical conditions for the real system and help to find the best solution in design or operation process. The aim of the study was to evaluate different concepts of biochemical processes and energy balance modelling using a simulation platform GPS-x and a comprehensive model Mantis2. The paper presents the example of calibration and validation processes in the biological reactor as well as scenarios showing an influence of operational parameters on the WWTP energy balance. The results of batch tests and full-scale campaign obtained in the former work were used to predict biochemical and operational parameters in a newly developed plant model. The model was extended with sludge treatment devices, including anaerobic digester. Primary sludge removal efficiency was found as a significant factor determining biogas production and further renewable energy production in cogeneration. Water and wastewater utilities, which run and control WWTP, are interested in optimizing the process in order to save environment, their budget and decrease the pollutant emissions to water and air. In this context, computer simulation can be the easiest and very useful tool to improve the efficiency without interfering in the actual process performance.

  4. Computer Simulation in Predicting Biochemical Processes and Energy Balance at WWTPs

    Directory of Open Access Journals (Sweden)

    Drewnowski Jakub

    2018-01-01

    Full Text Available Nowadays, the use of mathematical models and computer simulation allow analysis of many different technological solutions as well as testing various scenarios in a short time and at low financial budget in order to simulate the scenario under typical conditions for the real system and help to find the best solution in design or operation process. The aim of the study was to evaluate different concepts of biochemical processes and energy balance modelling using a simulation platform GPS-x and a comprehensive model Mantis2. The paper presents the example of calibration and validation processes in the biological reactor as well as scenarios showing an influence of operational parameters on the WWTP energy balance. The results of batch tests and full-scale campaign obtained in the former work were used to predict biochemical and operational parameters in a newly developed plant model. The model was extended with sludge treatment devices, including anaerobic digester. Primary sludge removal efficiency was found as a significant factor determining biogas production and further renewable energy production in cogeneration. Water and wastewater utilities, which run and control WWTP, are interested in optimizing the process in order to save environment, their budget and decrease the pollutant emissions to water and air. In this context, computer simulation can be the easiest and very useful tool to improve the efficiency without interfering in the actual process performance.

  5. A new model to compute the desired steering torque for steer-by-wire vehicles and driving simulators

    Science.gov (United States)

    Fankem, Steve; Müller, Steffen

    2014-05-01

    This paper deals with the control of the hand wheel actuator in steer-by-wire (SbW) vehicles and driving simulators (DSs). A novel model for the computation of the desired steering torque is presented. The introduced steering torque computation does not only aim to generate a realistic steering feel, which means that the driver should not miss the basic steering functionality of a modern conventional steering system such as an electric power steering (EPS) or hydraulic power steering (HPS), and this in every driving situation. In addition, the modular structure of the steering torque computation combined with suitably selected tuning parameters has the objective to offer a high degree of customisability of the steering feel and thus to provide each driver with his preferred steering feel in a very intuitive manner. The task and the tuning of each module are firstly described. Then, the steering torque computation is parameterised such that the steering feel of a series EPS system is reproduced. For this purpose, experiments are conducted in a hardware-in-the-loop environment where a test EPS is mounted on a steering test bench coupled with a vehicle simulator and parameter identification techniques are applied. Subsequently, how appropriate the steering torque computation mimics the test EPS system is objectively evaluated with respect to criteria concerning the steering torque level and gradient, the feedback behaviour and the steering return ability. Finally, the intuitive tuning of the modular steering torque computation is demonstrated for deriving a sportier steering feel configuration.

  6. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G} for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient

  7. Applied modelling and computing in social science

    CERN Document Server

    Povh, Janez

    2015-01-01

    In social science outstanding results are yielded by advanced simulation methods, based on state of the art software technologies and an appropriate combination of qualitative and quantitative methods. This book presents examples of successful applications of modelling and computing in social science: business and logistic process simulation and optimization, deeper knowledge extractions from big data, better understanding and predicting of social behaviour and modelling health and environment changes.

  8. Computational simulation of concurrent engineering for aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  9. Computational simulation for concurrent engineering of aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  10. Computationally-optimized bone mechanical modeling from high-resolution structural images.

    Directory of Open Access Journals (Sweden)

    Jeremy F Magland

    Full Text Available Image-based mechanical modeling of the complex micro-structure of human bone has shown promise as a non-invasive method for characterizing bone strength and fracture risk in vivo. In particular, elastic moduli obtained from image-derived micro-finite element (μFE simulations have been shown to correlate well with results obtained by mechanical testing of cadaveric bone. However, most existing large-scale finite-element simulation programs require significant computing resources, which hamper their use in common laboratory and clinical environments. In this work, we theoretically derive and computationally evaluate the resources needed to perform such simulations (in terms of computer memory and computation time, which are dependent on the number of finite elements in the image-derived bone model. A detailed description of our approach is provided, which is specifically optimized for μFE modeling of the complex three-dimensional architecture of trabecular bone. Our implementation includes domain decomposition for parallel computing, a novel stopping criterion, and a system for speeding up convergence by pre-iterating on coarser grids. The performance of the system is demonstrated on a dual quad-core Xeon 3.16 GHz CPUs equipped with 40 GB of RAM. Models of distal tibia derived from 3D in-vivo MR images in a patient comprising 200,000 elements required less than 30 seconds to converge (and 40 MB RAM. To illustrate the system's potential for large-scale μFE simulations, axial stiffness was estimated from high-resolution micro-CT images of a voxel array of 90 million elements comprising the human proximal femur in seven hours CPU time. In conclusion, the system described should enable image-based finite-element bone simulations in practical computation times on high-end desktop computers with applications to laboratory studies and clinical imaging.

  11. Advanced Simulation and Computing FY08-09 Implementation Plan Volume 2 Revision 0

    International Nuclear Information System (INIS)

    McCoy, M; Kusnezov, D; Bikkel, T; Hopson, J

    2007-01-01

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  12. Advanced Simulation and Computing FY10-11 Implementation Plan Volume 2, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Carnes, B

    2009-06-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that

  13. Computer-Based Simulation Games in Public Administration Education

    OpenAIRE

    Kutergina Evgeniia

    2017-01-01

    Computer simulation, an active learning technique, is now one of the advanced pedagogical technologies. Th e use of simulation games in the educational process allows students to gain a firsthand understanding of the processes of real life. Public- administration, public-policy and political-science courses increasingly adopt simulation games in universities worldwide. Besides person-to-person simulation games, there are computer-based simulations in public-administration education. Currently...

  14. Simulation-based artifact correction (SBAC) for metrological computed tomography

    Science.gov (United States)

    Maier, Joscha; Leinweber, Carsten; Sawall, Stefan; Stoschus, Henning; Ballach, Frederic; Müller, Tobias; Hammer, Michael; Christoph, Ralf; Kachelrieß, Marc

    2017-06-01

    Computed tomography (CT) is a valuable tool for the metrolocical assessment of industrial components. However, the application of CT to the investigation of highly attenuating objects or multi-material components is often restricted by the presence of CT artifacts caused by beam hardening, x-ray scatter, off-focal radiation, partial volume effects or the cone-beam reconstruction itself. In order to overcome this limitation, this paper proposes an approach to calculate a correction term that compensates for the contribution of artifacts and thus enables an appropriate assessment of these components using CT. Therefore, we make use of computer simulations of the CT measurement process. Based on an appropriate model of the object, e.g. an initial reconstruction or a CAD model, two simulations are carried out. One simulation considers all physical effects that cause artifacts using dedicated analytic methods as well as Monte Carlo-based models. The other one represents an ideal CT measurement i.e. a measurement in parallel beam geometry with a monochromatic, point-like x-ray source and no x-ray scattering. Thus, the difference between these simulations is an estimate for the present artifacts and can be used to correct the acquired projection data or the corresponding CT reconstruction, respectively. The performance of the proposed approach is evaluated using simulated as well as measured data of single and multi-material components. Our approach yields CT reconstructions that are nearly free of artifacts and thereby clearly outperforms commonly used artifact reduction algorithms in terms of image quality. A comparison against tactile reference measurements demonstrates the ability of the proposed approach to increase the accuracy of the metrological assessment significantly.

  15. A deterministic computer simulation model of life-cycle lamb and wool production.

    Science.gov (United States)

    Wang, C T; Dickerson, G E

    1991-11-01

    A deterministic mathematical computer model was developed to simulate effects on life-cycle efficiency of lamb and wool production from genetic improvement of performance traits under alternative management systems. Genetic input parameters can be varied for age at puberty, length of anestrus, fertility, precocity of fertility, number born, milk yield, mortality, growth rate, body fat, and wool growth. Management options include mating systems, lambing intervals, feeding levels, creep feeding, weaning age, marketing age or weight, and culling policy. Simulated growth of animals is linear from birth to inflection point, then slows asymptotically to specified mature empty BW and fat content when nutrition is not limiting. The ME intake requirement to maintain normal condition is calculated daily or weekly for maintenance, protein and fat deposition, wool growth, gestation, and lactation. Simulated feed intake is the minimum of availability, DM physical limit, or ME physiological limit. Tissue catabolism occurs when intake is below the requirement for essential functions. Mortality increases when BW is depressed. Equations developed for calculations of biological functions were validated with published and unpublished experimental data. Lifetime totals are accumulated for TDN, DM, and protein intake and for market lamb equivalent output values of empty body or carcass lean and wool from both lambs and ewes. These measures of efficiency for combinations of genetic, management, and marketing variables can provide the relative economic weighting of traits needed to derive optimal criteria for genetic selection among and within breeds under defined industry production systems.

  16. Teaching emergency medical services management skills using a computer simulation exercise.

    Science.gov (United States)

    Hubble, Michael W; Richards, Michael E; Wilfong, Denise

    2011-02-01

    Simulation exercises have long been used to teach management skills in business schools. However, this pedagogical approach has not been reported in emergency medical services (EMS) management education. We sought to develop, deploy, and evaluate a computerized simulation exercise for teaching EMS management skills. Using historical data, a computer simulation model of a regional EMS system was developed. After validation, the simulation was used in an EMS management course. Using historical operational and financial data of the EMS system under study, students designed an EMS system and prepared a budget based on their design. The design of each group was entered into the model that simulated the performance of the EMS system. Students were evaluated on operational and financial performance of their system design and budget accuracy and then surveyed about their experiences with the exercise. The model accurately simulated the performance of the real-world EMS system on which it was based. The exercise helped students identify operational inefficiencies in their system designs and highlighted budget inaccuracies. Most students rated the exercise as moderately or very realistic in ambulance deployment scheduling, budgeting, personnel cost calculations, demand forecasting, system design, and revenue projections. All students indicated the exercise was helpful in gaining a top management perspective, and 89% stated the exercise was helpful in bridging the gap between theory and reality. Preliminary experience with a computer simulator to teach EMS management skills was well received by students in a baccalaureate paramedic program and seems to be a valuable teaching tool. Copyright © 2011 Society for Simulation in Healthcare

  17. Computer-Based Simulation Games in Public Administration Education

    Directory of Open Access Journals (Sweden)

    Kutergina Evgeniia

    2017-12-01

    Full Text Available Computer simulation, an active learning technique, is now one of the advanced pedagogical technologies. Th e use of simulation games in the educational process allows students to gain a firsthand understanding of the processes of real life. Public- administration, public-policy and political-science courses increasingly adopt simulation games in universities worldwide. Besides person-to-person simulation games, there are computer-based simulations in public-administration education. Currently in Russia the use of computer-based simulation games in Master of Public Administration (MPA curricula is quite limited. Th is paper focuses on computer- based simulation games for students of MPA programmes. Our aim was to analyze outcomes of implementing such games in MPA curricula. We have done so by (1 developing three computer-based simulation games about allocating public finances, (2 testing the games in the learning process, and (3 conducting a posttest examination to evaluate the effect of simulation games on students’ knowledge of municipal finances. Th is study was conducted in the National Research University Higher School of Economics (HSE and in the Russian Presidential Academy of National Economy and Public Administration (RANEPA during the period of September to December 2015, in Saint Petersburg, Russia. Two groups of students were randomly selected in each university and then randomly allocated either to the experimental or the control group. In control groups (n=12 in HSE, n=13 in RANEPA students had traditional lectures. In experimental groups (n=12 in HSE, n=13 in RANEPA students played three simulation games apart from traditional lectures. Th is exploratory research shows that the use of computer-based simulation games in MPA curricula can improve students’ outcomes by 38 %. In general, the experimental groups had better performances on the post-test examination (Figure 2. Students in the HSE experimental group had 27.5 % better

  18. Advanced Simulation and Computing FY09-FY10 Implementation Plan Volume 2, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, L

    2009-04-01

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that

  19. Computational modelling of thermo-mechanical and transport properties of carbon nanotubes

    International Nuclear Information System (INIS)

    Rafii-Tabar, H.

    2004-01-01

    Over the recent years, numerical modelling and computer-based simulation of the properties of carbon nanotubes have become the focal points of research in computational nano-science and its associated fields of computational condensed matter physics and materials modelling. Modelling of the mechanical, thermal and transport properties of nanotubes via numerical simulations forms the central part of this research, concerned with the nano-scale mechanics and nano-scale thermodynamics of nanotubes, and nano-scale adsorption, storage and flow properties in nanotubes. A review of these properties, obtained via computational modelling studies, is presented here. We first introduce the physics of carbon nanotubes, and then present the computational simulation tools that are appropriate for conducting a modelling study at the nano-scales. These include the molecular dynamics (MD), the Monte Carlo (MC), and the ab initio MD simulation methods. A complete range of inter-atomic potentials, of two-body and many-body varieties, that underlie all the modelling studies considered in this review is also given. Mechanical models from continuum-based elasticity theory that have been extensively employed in computing the energetics of nanotubes, or interpret the results from atomistic modelling, are presented and discussed. These include models based on the continuum theory of curved plates, shells, vibrating rods and bending beams. The validity of these continuum-based models has also been examined and the conditions under which they are applicable to nanotube modelling have been listed. Pertinent concepts from continuum theories of stress analysis are included, and the relevant methods for conducting the computation of the stress tensor, elastic constants and elastic modulii at the atomic level are also given. We then survey a comprehensive range of modelling studies concerned with the adsorption and storage of gases, and flow of fluids, in carbon nanotubes of various types. This

  20. Computational modelling of thermo-mechanical and transport properties of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rafii-Tabar, H

    2004-02-01

    Over the recent years, numerical modelling and computer-based simulation of the properties of carbon nanotubes have become the focal points of research in computational nano-science and its associated fields of computational condensed matter physics and materials modelling. Modelling of the mechanical, thermal and transport properties of nanotubes via numerical simulations forms the central part of this research, concerned with the nano-scale mechanics and nano-scale thermodynamics of nanotubes, and nano-scale adsorption, storage and flow properties in nanotubes. A review of these properties, obtained via computational modelling studies, is presented here. We first introduce the physics of carbon nanotubes, and then present the computational simulation tools that are appropriate for conducting a modelling study at the nano-scales. These include the molecular dynamics (MD), the Monte Carlo (MC), and the ab initio MD simulation methods. A complete range of inter-atomic potentials, of two-body and many-body varieties, that underlie all the modelling studies considered in this review is also given. Mechanical models from continuum-based elasticity theory that have been extensively employed in computing the energetics of nanotubes, or interpret the results from atomistic modelling, are presented and discussed. These include models based on the continuum theory of curved plates, shells, vibrating rods and bending beams. The validity of these continuum-based models has also been examined and the conditions under which they are applicable to nanotube modelling have been listed. Pertinent concepts from continuum theories of stress analysis are included, and the relevant methods for conducting the computation of the stress tensor, elastic constants and elastic modulii at the atomic level are also given. We then survey a comprehensive range of modelling studies concerned with the adsorption and storage of gases, and flow of fluids, in carbon nanotubes of various types. This

  1. Enabling Grid Computing resources within the KM3NeT computing model

    Directory of Open Access Journals (Sweden)

    Filippidis Christos

    2016-01-01

    Full Text Available KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that – located at the bottom of the Mediterranean Sea – will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. International collaborative scientific experiments, like KM3NeT, are generating datasets which are increasing exponentially in both complexity and volume, making their analysis, archival, and sharing one of the grand challenges of the 21st century. These experiments, in their majority, adopt computing models consisting of different Tiers with several computing centres and providing a specific set of services for the different steps of data processing such as detector calibration, simulation and data filtering, reconstruction and analysis. The computing requirements are extremely demanding and, usually, span from serial to multi-parallel or GPU-optimized jobs. The collaborative nature of these experiments demands very frequent WAN data transfers and data sharing among individuals and groups. In order to support the aforementioned demanding computing requirements we enabled Grid Computing resources, operated by EGI, within the KM3NeT computing model. In this study we describe our first advances in this field and the method for the KM3NeT users to utilize the EGI computing resources in a simulation-driven use-case.

  2. [Possibilities of computer graphics simulation in orthopedic surgery].

    Science.gov (United States)

    Kessler, P; Wiltfang, J; Teschner, M; Girod, B; Neukam, F W

    2000-11-01

    In addition to standard X-rays, photographic documentation, cephalometric and model analysis, a computer-aided, three-dimensional (3D) simulation system has been developed in close cooperation with the Institute of Communications of the Friedrich-Alexander-Universität Erlangen-Nürnberg. With this simulation system a photorealistic prediction of the expected soft tissue changes can be made. Prerequisites are a 3D reconstruction of the facial skeleton and a 3D laser scan of the face. After data reduction, the two data sets can be matched. Cutting planes enable the transposition of bony segments. The laser scan of the facial surface is combined with the underlying bone via a five-layered soft tissue model to convert bone movements on the soft tissue cover realistically. Further research is necessary to replace the virtual subcutaneous soft tissue model by correct, topographic tissue anatomy.

  3. Genetic fuzzy system modeling and simulation of vascular behaviour

    DEFF Research Database (Denmark)

    Tang, Jiaowei; Boonen, Harrie C.M.

    Background: The purpose of our project is to identify the rule sets and their interaction within the framework of cardiovascular function. By an iterative process of computational simulation and experimental work, we strive to mimic the physiological basis for cardiovascular adaptive changes in c...... the pressure change of different blood vessels. Conclusion: Genetic fuzzy system is one of potential modeling methods in modeling and simulation of vascular behavior.......Background: The purpose of our project is to identify the rule sets and their interaction within the framework of cardiovascular function. By an iterative process of computational simulation and experimental work, we strive to mimic the physiological basis for cardiovascular adaptive changes...... in cardiovascular disease and ultimately improve pharmacotherapy. For this purpose, novel computational approaches incorporating adaptive properties, auto-regulatory control and rule sets will be assessed, properties that are commonly lacking in deterministic models based on differential equations. We hypothesize...

  4. Assessing the relationship between computational speed and precision: a case study comparing an interpreted versus compiled programming language using a stochastic simulation model in diabetes care.

    Science.gov (United States)

    McEwan, Phil; Bergenheim, Klas; Yuan, Yong; Tetlow, Anthony P; Gordon, Jason P

    2010-01-01

    Simulation techniques are well suited to modelling diseases yet can be computationally intensive. This study explores the relationship between modelled effect size, statistical precision, and efficiency gains achieved using variance reduction and an executable programming language. A published simulation model designed to model a population with type 2 diabetes mellitus based on the UKPDS 68 outcomes equations was coded in both Visual Basic for Applications (VBA) and C++. Efficiency gains due to the programming language were evaluated, as was the impact of antithetic variates to reduce variance, using predicted QALYs over a 40-year time horizon. The use of C++ provided a 75- and 90-fold reduction in simulation run time when using mean and sampled input values, respectively. For a series of 50 one-way sensitivity analyses, this would yield a total run time of 2 minutes when using C++, compared with 155 minutes for VBA when using mean input values. The use of antithetic variates typically resulted in a 53% reduction in the number of simulation replications and run time required. When drawing all input values to the model from distributions, the use of C++ and variance reduction resulted in a 246-fold improvement in computation time compared with VBA - for which the evaluation of 50 scenarios would correspondingly require 3.8 hours (C++) and approximately 14.5 days (VBA). The choice of programming language used in an economic model, as well as the methods for improving precision of model output can have profound effects on computation time. When constructing complex models, more computationally efficient approaches such as C++ and variance reduction should be considered; concerns regarding model transparency using compiled languages are best addressed via thorough documentation and model validation.

  5. Software Engineering for Scientific Computer Simulations

    Science.gov (United States)

    Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.

    2004-11-01

    Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.

  6. Computational models of complex systems

    CERN Document Server

    Dabbaghian, Vahid

    2014-01-01

    Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the reader...

  7. High-throughput landslide modelling using computational grids

    Science.gov (United States)

    Wallace, M.; Metson, S.; Holcombe, L.; Anderson, M.; Newbold, D.; Brook, N.

    2012-04-01

    Landslides are an increasing problem in developing countries. Multiple landslides can be triggered by heavy rainfall resulting in loss of life, homes and critical infrastructure. Through computer simulation of individual slopes it is possible to predict the causes, timing and magnitude of landslides and estimate the potential physical impact. Geographical scientists at the University of Bristol have developed software that integrates a physically-based slope hydrology and stability model (CHASM) with an econometric model (QUESTA) in order to predict landslide risk over time. These models allow multiple scenarios to be evaluated for each slope, accounting for data uncertainties, different engineering interventions, risk management approaches and rainfall patterns. Individual scenarios can be computationally intensive, however each scenario is independent and so multiple scenarios can be executed in parallel. As more simulations are carried out the overhead involved in managing input and output data becomes significant. This is a greater problem if multiple slopes are considered concurrently, as is required both for landslide research and for effective disaster planning at national levels. There are two critical factors in this context: generated data volumes can be in the order of tens of terabytes, and greater numbers of simulations result in long total runtimes. Users of such models, in both the research community and in developing countries, need to develop a means for handling the generation and submission of landside modelling experiments, and the storage and analysis of the resulting datasets. Additionally, governments in developing countries typically lack the necessary computing resources and infrastructure. Consequently, knowledge that could be gained by aggregating simulation results from many different scenarios across many different slopes remains hidden within the data. To address these data and workload management issues, University of Bristol particle

  8. Computer Simulation of Hydraulic Systems with Typical Nonlinear Characteristics

    Directory of Open Access Journals (Sweden)

    D. N. Popov

    2017-01-01

    Full Text Available The task was to synthesise an adjustable hydraulic system structure, the mathematical model of which takes into account its inherent nonlinearity. Its solution suggests using a successive computer simulations starting with a structure of the linearized stable hydraulic system, which is then complicated by including the essentially non-linear elements. The hydraulic system thus obtained may be unable to meet the Lyapunov stability criterion and be unstable. This can be eliminated through correcting elements. Control of correction results is provided according to the form of transition processes due to stepwise variation of the control signal.Computer simulation of a throttle-controlled electrohydraulic servo drive with the rotary output element illustrates the proposed method application. A constant pressure power source provides fluid feed for the drive under pressure.For drive simulation the following models were involved: the linear model, the model taking into consideration a non-linearity of the flow-dynamic characteristics of a spool-type valve, and the non-linear models that take into account the dry friction in the spool-type valve, the backlash in the steering angle sensor of the motor shaft.The paper shows possibility of damping oscillation caused by variable hydrodynamic forces through introducing a correction device.The list of references attached contains 16 sources, which were used to justify and explain certain factors of the automatic control theory and the fluid mechanics of unsteady flows.The article presents 6 block-diagrams of the electrohydraulic servo drive and their appropriate transition processes, which have been studied.

  9. Real time simulation of large systems on mini-computer

    International Nuclear Information System (INIS)

    Nakhle, Michel; Roux, Pierre.

    1979-01-01

    Most simulation languages will only accept an explicit formulation of differential equations, and logical variables hold no special status therein. The pace of the suggested methods of integration is limited by the smallest time constant of the model submitted. The NEPTUNIX 2 simulation software has a language that will take implicit equations and an integration method of which the variable pace is not limited by the time constants of the model. This, together with high time and memory ressources optimization of the code generated, makes NEPTUNIX 2 a basic tool for simulation on mini-computers. Since the logical variables are specific entities under centralized control, correct processing of discontinuities and synchronization with a real process are feasible. The NEPTUNIX 2 is the industrial version of NEPTUNIX 1 [fr

  10. Maintenance Personnel Performance Simulation (MAPPS) model

    International Nuclear Information System (INIS)

    Siegel, A.I.; Bartter, W.D.; Wolf, J.J.; Knee, H.E.; Haas, P.M.

    1984-01-01

    A stochastic computer model for simulating the actions and behavior of nuclear power plant maintenance personnel is described. The model considers personnel, environmental, and motivational variables to yield predictions of maintenance performance quality and time to perform. The mode has been fully developed and sensitivity tested. Additional evaluation of the model is now taking place

  11. Validation of the simulator neutronics model

    International Nuclear Information System (INIS)

    Gregory, M.V.

    1984-01-01

    The neutronics model in the SRP reactor training simulator computes the variation with time of the neutron population in the reactor core. The power output of a reactor is directly proportional to the neutron population, thus in a very real sense the neutronics model determines the response of the simulator. The geometrical complexity of the reactor control system in SRP reactors requires the neutronics model to provide a detailed, 3D representation of the reactor core. Existing simulator technology does not allow such a detailed representation to run in real-time in a minicomputer environment, thus an entirely different approach to the problem was required. A prompt jump method has been developed in answer to this need

  12. Six-degree-of-freedom missile simulation using the ADI AD 100 digital computer and ADSIM simulation language

    Science.gov (United States)

    Zwaanenburg, Koos

    1989-01-01

    The use of an AD 100 computer and the ADSIM language in the six-degree-of-freedom digital simulation of an air-to-ground missile is illustrated. The missile is launched from a moving platform, typically a helicopter, and is capable of striking a mobile target up to 10 kilometers away. The missile could be any tactical missile. The performance numbers of the AD 100 show that it is possible to implement a high performance missile model in a real-time simulation without the problems associated with an implementation on a general purpose computer using FORTRAN.

  13. Modelling and simulation of human factors in aviation : Methods and guidelines

    NARCIS (Netherlands)

    Diggelen, J. van; Janssen, J.; Mioch, T.

    2011-01-01

    Modeling and Simulation (M&S) is the use of (computer-) simulated models to develop data as a basis for making managerial or technical decisions. Applications of M&S are wide spread, ranging from system simulation in early design stages, atmosphere modeling for weather forecasting, graphical

  14. A Parallel and Distributed Surrogate Model Implementation for Computational Steering

    KAUST Repository

    Butnaru, Daniel

    2012-06-01

    Understanding the influence of multiple parameters in a complex simulation setting is a difficult task. In the ideal case, the scientist can freely steer such a simulation and is immediately presented with the results for a certain configuration of the input parameters. Such an exploration process is however not possible if the simulation is computationally too expensive. For these cases we present in this paper a scalable computational steering approach utilizing a fast surrogate model as substitute for the time-consuming simulation. The surrogate model we propose is based on the sparse grid technique, and we identify the main computational tasks associated with its evaluation and its extension. We further show how distributed data management combined with the specific use of accelerators allows us to approximate and deliver simulation results to a high-resolution visualization system in real-time. This significantly enhances the steering workflow and facilitates the interactive exploration of large datasets. © 2012 IEEE.

  15. Computer simulation of a 3-phase induction motor

    International Nuclear Information System (INIS)

    Memon, N.A.; Unsworth, P.J.

    2004-01-01

    Computer Simulation of a 3-phase squirrel-cage induction motor is presented in Microsoft QBASIC for understanding trends and various operational modes of an induction motor. Thyristor fed, phase controlled induction motor (three-wire) model has been simulated. In which voltage is applied to the motor stator winding through back-to-back connected thyristors as controlled switches in series with the stator. The simulated induction motor system opens up towards a wide range of investigation/analysis options for research and development work in the field. Key features of the simulation performed are highlighted for development of better understanding of the work done. Complete study of an Induction Motor, starting modes in terms the voltage/current, torque/speed characteristics and their graphical representation produced is presented. Ideal agreement of the simulation results with the notional outcome encourages users to go ahead for various hardware development projects based on the study through the simulation. (author)

  16. Computation of short-time diffusion using the particle simulation method

    International Nuclear Information System (INIS)

    Janicke, L.

    1983-01-01

    The method of particle simulation allows a correct description of turbulent diffusion even in areas near the source and the computation of overall average values (anticipated values). The model is suitable for dealing with complex situation. It is derived from the K-model which describes the dispersion of noxious matter using the diffusion formula. (DG) [de

  17. Development of a Computer Application to Simulate Porous Structures

    Directory of Open Access Journals (Sweden)

    S.C. Reis

    2002-09-01

    Full Text Available Geometric modeling is an important tool to evaluate structural parameters as well as to follow the application of stereological relationships. The obtention, visualization and analysis of volumetric images of the structure of materials, using computational geometric modeling, facilitates the determination of structural parameters of difficult experimental access, such as topological and morphological parameters. In this work, we developed a geometrical model implemented by computer software that simulates random pore structures. The number of nodes, number of branches (connections between nodes and the number of isolated parts, are obtained. Also, the connectivity (C is obtained from this application. Using a list of elements, nodes and branches, generated by the software, in AutoCAD® command line format, the obtained structure can be viewed and analyzed.

  18. Advances in Computational Fluid-Structure Interaction and Flow Simulation Conference

    CERN Document Server

    Takizawa, Kenji

    2016-01-01

    This contributed volume celebrates the work of Tayfun E. Tezduyar on the occasion of his 60th birthday. The articles it contains were born out of the Advances in Computational Fluid-Structure Interaction and Flow Simulation (AFSI 2014) conference, also dedicated to Prof. Tezduyar and held at Waseda University in Tokyo, Japan on March 19-21, 2014. The contributing authors represent a group of international experts in the field who discuss recent trends and new directions in computational fluid dynamics (CFD) and fluid-structure interaction (FSI). Organized into seven distinct parts arranged by thematic topics, the papers included cover basic methods and applications of CFD, flows with moving boundaries and interfaces, phase-field modeling, computer science and high-performance computing (HPC) aspects of flow simulation, mathematical methods, biomedical applications, and FSI. Researchers, practitioners, and advanced graduate students working on CFD, FSI, and related topics will find this collection to be a defi...

  19. Discrete Event Simulation Computers can be used to simulate the ...

    Indian Academy of Sciences (India)

    IAS Admin

    people who use computers every moment of their waking lives, others even ... How is discrete event simulation different from other kinds of simulation? ... time, energy consumption .... Schedule the CustomerDeparture event for this customer.

  20. SIVEH: Numerical Computing Simulation of Wireless Energy-Harvesting Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Pedro Yuste

    2013-09-01

    Full Text Available The paper presents a numerical energy harvesting model for sensor nodes, SIVEH (Simulator I–V for EH, based on I–V hardware tracking. I–V tracking is demonstrated to be more accurate than traditional energy modeling techniques when some of the components present different power dissipation at either different operating voltages or drawn currents. SIVEH numerical computing allows fast simulation of long periods of time—days, weeks, months or years—using real solar radiation curves. Moreover, SIVEH modeling has been enhanced with sleep time rate dynamic adjustment, while seeking energy-neutral operation. This paper presents the model description, a functional verification and a critical comparison with the classic energy approach.

  1. Advanced Simulation and Computing Fiscal Year 2011-2012 Implementation Plan, Revision 0.5

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Phillips, Julia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wampler, Cheryl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meisner, Robert [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2010-09-13

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality, and scientific details); to quantify critical margins and uncertainties; and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from

  2. Protein Simulation Data in the Relational Model.

    Science.gov (United States)

    Simms, Andrew M; Daggett, Valerie

    2012-10-01

    High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost-significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server.

  3. Vernier Caliper and Micrometer Computer Models Using Easy Java Simulation and Its Pedagogical Design Features--Ideas for Augmenting Learning with Real Instruments

    Science.gov (United States)

    Wee, Loo Kang; Ning, Hwee Tiang

    2014-01-01

    This paper presents the customization of Easy Java Simulation models, used with actual laboratory instruments, to create active experiential learning for measurements. The laboratory instruments are the vernier caliper and the micrometer. Three computer model design ideas that complement real equipment are discussed. These ideas involve (1) a…

  4. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  5. Interactive simulation of nuclear power systems using a dedicated minicomputer - computer graphics facility

    International Nuclear Information System (INIS)

    Tye, C.; Sezgen, A.O.

    1980-01-01

    The design of control systems and operational procedures for large scale nuclear power plant poses a difficult optimization problem requiring a lot of computational effort. Plant dynamic simulation using digital minicomputers offers the prospect of relatively low cost computing and when combined with graphical input/output provides a powerful tool for studying such problems. The paper discusses the results obtained from a simulation study carried out at the Computer Graphics Unit of the University of Manchester using a typical station control model for an Advanced Gas Cooled reactor. Particular reference is placed on the use of computer graphics for information display, parameter and control system optimization and techniques for using graphical input for defining and/or modifying the control system topology. Experience gained from this study has shown that a relatively modest minicomputer system can be used for simulating large scale dynamic systems and that highly interactive computer graphics can be used to advantage to relieve the designer of many of the tedious aspects of simulation leaving him free to concentrate on the more creative aspects of his work. (author)

  6. Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Matzen, M. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-16

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.

  7. On the usage of ultrasound computational models for decision making under ambiguity

    Science.gov (United States)

    Dib, Gerges; Sexton, Samuel; Prowant, Matthew; Crawford, Susan; Diaz, Aaron

    2018-04-01

    Computer modeling and simulation is becoming pervasive within the non-destructive evaluation (NDE) industry as a convenient tool for designing and assessing inspection techniques. This raises a pressing need for developing quantitative techniques for demonstrating the validity and applicability of the computational models. Computational models provide deterministic results based on deterministic and well-defined input, or stochastic results based on inputs defined by probability distributions. However, computational models cannot account for the effects of personnel, procedures, and equipment, resulting in ambiguity about the efficacy of inspections based on guidance from computational models only. In addition, ambiguity arises when model inputs, such as the representation of realistic cracks, cannot be defined deterministically, probabilistically, or by intervals. In this work, Pacific Northwest National Laboratory demonstrates the ability of computational models to represent field measurements under known variabilities, and quantify the differences using maximum amplitude and power spectrum density metrics. Sensitivity studies are also conducted to quantify the effects of different input parameters on the simulation results.

  8. Computational steering of GEM based detector simulations

    Science.gov (United States)

    Sheharyar, Ali; Bouhali, Othmane

    2017-10-01

    Gas based detector R&D relies heavily on full simulation of detectors and their optimization before final prototypes can be built and tested. These simulations in particular those with complex scenarios such as those involving high detector voltages or gas with larger gains are computationally intensive may take several days or weeks to complete. These long-running simulations usually run on the high-performance computers in batch mode. If the results lead to unexpected behavior, then the simulation might be rerun with different parameters. However, the simulations (or jobs) may have to wait in a queue until they get a chance to run again because the supercomputer is a shared resource that maintains a queue of other user programs as well and executes them as time and priorities permit. It may result in inefficient resource utilization and increase in the turnaround time for the scientific experiment. To overcome this issue, the monitoring of the behavior of a simulation, while it is running (or live), is essential. In this work, we employ the computational steering technique by coupling the detector simulations with a visualization package named VisIt to enable the exploration of the live data as it is produced by the simulation.

  9. Python for Scientific Computing Education: Modeling of Queueing Systems

    Directory of Open Access Journals (Sweden)

    Vladimiras Dolgopolovas

    2014-01-01

    Full Text Available In this paper, we present the methodology for the introduction to scientific computing based on model-centered learning. We propose multiphase queueing systems as a basis for learning objects. We use Python and parallel programming for implementing the models and present the computer code and results of stochastic simulations.

  10. Accelerating Dust Storm Simulation by Balancing Task Allocation in Parallel Computing Environment

    Science.gov (United States)

    Gui, Z.; Yang, C.; XIA, J.; Huang, Q.; YU, M.

    2013-12-01

    Dust storm has serious negative impacts on environment, human health, and assets. The continuing global climate change has increased the frequency and intensity of dust storm in the past decades. To better understand and predict the distribution, intensity and structure of dust storm, a series of dust storm models have been developed, such as Dust Regional Atmospheric Model (DREAM), the NMM meteorological module (NMM-dust) and Chinese Unified Atmospheric Chemistry Environment for Dust (CUACE/Dust). The developments and applications of these models have contributed significantly to both scientific research and our daily life. However, dust storm simulation is a data and computing intensive process. Normally, a simulation for a single dust storm event may take several days or hours to run. It seriously impacts the timeliness of prediction and potential applications. To speed up the process, high performance computing is widely adopted. By partitioning a large study area into small subdomains according to their geographic location and executing them on different computing nodes in a parallel fashion, the computing performance can be significantly improved. Since spatiotemporal correlations exist in the geophysical process of dust storm simulation, each subdomain allocated to a node need to communicate with other geographically adjacent subdomains to exchange data. Inappropriate allocations may introduce imbalance task loads and unnecessary communications among computing nodes. Therefore, task allocation method is the key factor, which may impact the feasibility of the paralleling. The allocation algorithm needs to carefully leverage the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire system. This presentation introduces two algorithms for such allocation and compares them with evenly distributed allocation method. Specifically, 1) In order to get optimized solutions, a

  11. Optimization of suspension smelting technology by computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lilius, K.; Jokilaakso, A.; Ahokainen, T.; Teppo, O.; Yang Yongxiang [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1996-12-31

    An industrial-scale flash smelting furnace and waste-heat boilers have been modelled by using commercial Computational-Fluid-Dynamics software. The work has proceeded from cold gas flow to heat transfer, combustion, and two-phase flow simulations. In the present study, the modelling task has been divided into three sub-models: (1) the concentrate burner, (2) the flash smelting furnace (reaction shaft and uptake shaft), and (3) the waste-heat boiler. For the concentrate burner, the flow of the process gas and distribution air together with the concentrate or a feed mixture was simulated. Eulerian - Eulerian approach was used for the carrier gas-phase and the dispersed particle-phase. A large parametric study was carried out by simulating a laboratory scale burner with varying turbulence intensities and then extending the simulations to the industrial scale model. For the flash smelting furnace, the simulation work concentrated on gas and gas-particle two-phase flows, as well as the development of combustion model for sulphide concentrate particles. Both Eulerian and Lagrangian approaches have been utilised in describing the particle phase and the spreading of the concentrate in the reaction shaft as well as the particle tracks have been obtained. Combustion of sulphides was first approximated with gaseous combustion by using a built-in combustion model of the software. The real oxidation reactions of the concentrate particles were then coded as a user-defined sub-routine and that was tested with industrial flash smelting cases. For the waste-heat boiler, both flow and heat transfer calculations have been carried out for an old boiler and a modified boiler SULA 2 Research Programme; 23 refs.

  12. Optimization of suspension smelting technology by computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lilius, K; Jokilaakso, A; Ahokainen, T; Teppo, O; Yongxiang, Yang [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    An industrial-scale flash smelting furnace and waste-heat boilers have been modelled by using commercial Computational-Fluid-Dynamics software. The work has proceeded from cold gas flow to heat transfer, combustion, and two-phase flow simulations. In the present study, the modelling task has been divided into three sub-models: (1) the concentrate burner, (2) the flash smelting furnace (reaction shaft and uptake shaft), and (3) the waste-heat boiler. For the concentrate burner, the flow of the process gas and distribution air together with the concentrate or a feed mixture was simulated. Eulerian - Eulerian approach was used for the carrier gas-phase and the dispersed particle-phase. A large parametric study was carried out by simulating a laboratory scale burner with varying turbulence intensities and then extending the simulations to the industrial scale model. For the flash smelting furnace, the simulation work concentrated on gas and gas-particle two-phase flows, as well as the development of combustion model for sulphide concentrate particles. Both Eulerian and Lagrangian approaches have been utilised in describing the particle phase and the spreading of the concentrate in the reaction shaft as well as the particle tracks have been obtained. Combustion of sulphides was first approximated with gaseous combustion by using a built-in combustion model of the software. The real oxidation reactions of the concentrate particles were then coded as a user-defined sub-routine and that was tested with industrial flash smelting cases. For the waste-heat boiler, both flow and heat transfer calculations have been carried out for an old boiler and a modified boiler SULA 2 Research Programme; 23 refs.

  13. Uranium accountability for ATR fuel fabrication: Part II. A computer simulation

    International Nuclear Information System (INIS)

    Dolan, C.A.; Nieschmidt, E.B.; Vegors, S.H. Jr.; Wagner, E.P. Jr.

    1977-08-01

    A stochastic computer model has been designed to simulate the material control system used during the production of fuel plates for the Advanced Test Reactor. Great care has been taken to see that this model follows the manufacturing and measuring processes used. The model is designed so that manufacturing process and measurement parameters are fed in as input; hence, changes in the manufacturing process and measurement procedures are easily simulated. Individual operations in the plant are described by program subroutines. By varying the calling sequence of these subroutines, variations in the manufacturing process may be simulated. By using this model values for MUF and LEMUF may be calculated for predetermined plant operating conditions. Furthermore the effect on MUF and LEMUF produced by changing plant operating procedures and measurement techniques may also be examined. A sample calculation simulating one inventory period of the plant's operation is included

  14. COMPUTATIONAL MODELING OF AIRFLOW IN NONREGULAR SHAPED CHANNELS

    Directory of Open Access Journals (Sweden)

    A. A. Voronin

    2013-05-01

    Full Text Available The basic approaches to computational modeling of airflow in the human nasal cavity are analyzed. Different models of turbulent flow which may be used in order to calculate air velocity and pressure are discussed. Experimental measurement results of airflow temperature are illustrated. Geometrical model of human nasal cavity reconstructed from computer-aided tomography scans and numerical simulation results of airflow inside this model are also given. Spatial distributions of velocity and temperature for inhaled and exhaled air are shown.

  15. Development of a computational framework on fluid-solid mixture flow simulations for the COMPASS code

    International Nuclear Information System (INIS)

    Zhang, Shuai; Morita, Koji; Shirakawa, Noriyuki; Yamamoto, Yuichi

    2010-01-01

    The COMPASS code is designed based on the moving particle semi-implicit method to simulate various complex mesoscale phenomena relevant to core disruptive accidents of sodium-cooled fast reactors. In this study, a computational framework for fluid-solid mixture flow simulations was developed for the COMPASS code. The passively moving solid model was used to simulate hydrodynamic interactions between fluid and solids. Mechanical interactions between solids were modeled by the distinct element method. A multi-time-step algorithm was introduced to couple these two calculations. The proposed computational framework for fluid-solid mixture flow simulations was verified by the comparison between experimental and numerical studies on the water-dam break with multiple solid rods. (author)

  16. Integrative computational models of cardiac arrhythmias -- simulating the structurally realistic heart

    Science.gov (United States)

    Trayanova, Natalia A; Tice, Brock M

    2009-01-01

    Simulation of cardiac electrical function, and specifically, simulation aimed at understanding the mechanisms of cardiac rhythm disorders, represents an example of a successful integrative multiscale modeling approach, uncovering emergent behavior at the successive scales in the hierarchy of structural complexity. The goal of this article is to present a review of the integrative multiscale models of realistic ventricular structure used in the quest to understand and treat ventricular arrhythmias. It concludes with the new advances in image-based modeling of the heart and the promise it holds for the development of individualized models of ventricular function in health and disease. PMID:20628585

  17. Automatic domain updating technique for improving computational efficiency of 2-D flood-inundation simulation

    Science.gov (United States)

    Tanaka, T.; Tachikawa, Y.; Ichikawa, Y.; Yorozu, K.

    2017-12-01

    Flood is one of the most hazardous disasters and causes serious damage to people and property around the world. To prevent/mitigate flood damage through early warning system and/or river management planning, numerical modelling of flood-inundation processes is essential. In a literature, flood-inundation models have been extensively developed and improved to achieve flood flow simulation with complex topography at high resolution. With increasing demands on flood-inundation modelling, its computational burden is now one of the key issues. Improvements of computational efficiency of full shallow water equations are made from various perspectives such as approximations of the momentum equations, parallelization technique, and coarsening approaches. To support these techniques and more improve the computational efficiency of flood-inundation simulations, this study proposes an Automatic Domain Updating (ADU) method of 2-D flood-inundation simulation. The ADU method traces the wet and dry interface and automatically updates the simulation domain in response to the progress and recession of flood propagation. The updating algorithm is as follow: first, to register the simulation cells potentially flooded at initial stage (such as floodplains nearby river channels), and then if a registered cell is flooded, to register its surrounding cells. The time for this additional process is saved by checking only cells at wet and dry interface. The computation time is reduced by skipping the processing time of non-flooded area. This algorithm is easily applied to any types of 2-D flood inundation models. The proposed ADU method is implemented to 2-D local inertial equations for the Yodo River basin, Japan. Case studies for two flood events show that the simulation is finished within two to 10 times smaller time showing the same result as that without the ADU method.

  18. Detailed computer simulation of damage accumulation in ion irradiated crystalline targets

    International Nuclear Information System (INIS)

    Jaraiz, M.; Arias, J.; Bailon, L.A.; Barbolla, J.J.

    1993-01-01

    A new version for the collision cascade simulation program MARLOWE is presented. This version incorporates damage build-up in full detail, i.e every interstitial and vacancy generated is retained throughout the simulation and can become a target in subsequent collisions, unless they recombine at some stage during the implantation. Vacancy-interstitial recombination is simulated by annihilating those pairs whose radius is less than a specified recombination radius. Also, stopped atoms are moved to their nearest lattice interstitial site if it is not occupied. In this way, a fully physical simulation can be carried out in detail, thus preserving a valuable feature of MARLOWE. To overcome the prohibitive computation time and memory required, a scheme has been followed to handle in a suitable way the data generated as the simulation proceeds. The model is described. Examples of memory and computation time requirements and damage accumulation effects on channelling in ion implantation are also presented. (Author)

  19. Computer Modeling of Direct Metal Laser Sintering

    Science.gov (United States)

    Cross, Matthew

    2014-01-01

    A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.

  20. Modeling and simulation of ocean wave propagation using lattice Boltzmann method

    Science.gov (United States)

    Nuraiman, Dian

    2017-10-01

    In this paper, we present on modeling and simulation of ocean wave propagation from the deep sea to the shoreline. This requires high computational cost for simulation with large domain. We propose to couple a 1D shallow water equations (SWE) model with a 2D incompressible Navier-Stokes equations (NSE) model in order to reduce the computational cost. The coupled model is solved using the lattice Boltzmann method (LBM) with the lattice Bhatnagar-Gross-Krook (BGK) scheme. Additionally, a special method is implemented to treat the complex behavior of free surface close to the shoreline. The result shows the coupled model can reduce computational cost significantly compared to the full NSE model.

  1. Clinical application of 3D computer simulation for upper limb surgery

    International Nuclear Information System (INIS)

    Murase, Tsuyoshi; Moritomo, Hisao; Oka, Kunihiro; Arimitsu, Sayuri; Shimada, Kozo

    2008-01-01

    To perform precise orthopaedic surgery, we have been developing a surgical method using a custom-made surgical device designed based on preoperative three-dimensional computer simulation. The purpose of this study was to investigate the preliminary results of its clinical application for corrective osteotomy of the upper extremity. Twenty patients with long bone deformities of the upper extremities (four cubitus varus deformities, nine malunited forearm fractures, six malunited distal radial fractures and one congenital deformity of the forearm) participated in this study. Three-dimensional computer models of the affected bone and the contralateral normal bone were constructed from computed tomography data. By comparing these models, the three-dimensional deformity axis and the accurate amount of deformity around it were quantified. Three-dimensional deformity correction was then simulated. A custom-made osteotomy template was designed and manufactured as a real plastic model aiming to reproduce the preoperative simulation in the actual operation. In the operation, we put the template on the bone surface, cut the bone through a slit on the template, and corrected the deformity as preoperatively simulated, followed by internal fixation. Radiographic and clinical evaluations were made in all cases before surgery and at the most recent follow-up. Corrective osteotomy was achieved as simulated in all cases. All patients had bone fusion within six months. Regarding the cubitus varus deformity, the average carrying angle and tilting angle were 5deg and 28deg after surgery. For malunited forearm fractures, angular deformities on radiographs were nearly nonexistent after surgery. All radiographic parameters in malunited distal radius fractures were normalized. The range of forearm rotation in cases of forearm malunion and that of wrist flexion-extension in cases of malunited distal radius improved after surgery. (author)

  2. High performance computer code for molecular dynamics simulations

    International Nuclear Information System (INIS)

    Levay, I.; Toekesi, K.

    2007-01-01

    Complete text of publication follows. Molecular Dynamics (MD) simulation is a widely used technique for modeling complicated physical phenomena. Since 2005 we are developing a MD simulations code for PC computers. The computer code is written in C++ object oriented programming language. The aim of our work is twofold: a) to develop a fast computer code for the study of random walk of guest atoms in Be crystal, b) 3 dimensional (3D) visualization of the particles motion. In this case we mimic the motion of the guest atoms in the crystal (diffusion-type motion), and the motion of atoms in the crystallattice (crystal deformation). Nowadays, it is common to use Graphics Devices in intensive computational problems. There are several ways to use this extreme processing performance, but never before was so easy to programming these devices as now. The CUDA (Compute Unified Device) Architecture introduced by nVidia Corporation in 2007 is a very useful for every processor hungry application. A Unified-architecture GPU include 96-128, or more stream processors, so the raw calculation performance is 576(!) GFLOPS. It is ten times faster, than the fastest dual Core CPU [Fig.1]. Our improved MD simulation software uses this new technology, which speed up our software and the code run 10 times faster in the critical calculation code segment. Although the GPU is a very powerful tool, it has a strongly paralleled structure. It means, that we have to create an algorithm, which works on several processors without deadlock. Our code currently uses 256 threads, shared and constant on-chip memory, instead of global memory, which is 100 times slower than others. It is possible to implement the total algorithm on GPU, therefore we do not need to download and upload the data in every iteration. On behalf of maximal throughput, every thread run with the same instructions

  3. Reduced order methods for modeling and computational reduction

    CERN Document Server

    Rozza, Gianluigi

    2014-01-01

    This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics.  Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This...

  4. Life system modeling and intelligent computing. Pt. II. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kang; Irwin, George W. (eds.) [Belfast Queen' s Univ. (United Kingdom). School of Electronics, Electrical Engineering and Computer Science; Fei, Minrui; Jia, Li [Shanghai Univ. (China). School of Mechatronical Engineering and Automation

    2010-07-01

    This book is part II of a two-volume work that contains the refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2010 and the International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2010, held in Wuxi, China, in September 2010. The 194 revised full papers presented were carefully reviewed and selected from over 880 submissions and recommended for publication by Springer in two volumes of Lecture Notes in Computer Science (LNCS) and one volume of Lecture Notes in Bioinformatics (LNBI). This particular volume of Lecture Notes in Computer Science (LNCS) includes 55 papers covering 7 relevant topics. The 56 papers in this volume are organized in topical sections on advanced evolutionary computing theory and algorithms; advanced neural network and fuzzy system theory and algorithms; modeling and simulation of societies and collective behavior; biomedical signal processing, imaging, and visualization; intelligent computing and control in distributed power generation systems; intelligent methods in power and energy infrastructure development; intelligent modeling, monitoring, and control of complex nonlinear systems. (orig.)

  5. Computational Aerodynamic Simulations of a 1484 ft/sec Tip Speed Quiet High-Speed Fan System Model for Acoustic Methods Assessment and Development

    Science.gov (United States)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow

  6. Computer simulation of strain-induced ordering in interstitial solutions based on the b.c.c. Ta lattice

    International Nuclear Information System (INIS)

    Blanter, M.S.; Khachaturyan, A.G.

    1980-01-01

    A computer simulation is made of strain-induced ordering of interstitial atoms within octahedral interstices in the Ta host lattice. The calculation technique allows to take into account infinite-range strain-induced interaction. Computer simulation of ordering process enables to model the sequence of structure changes which occur during the ordering process and to find the equilibrium structure of the stable interstitial superstructures. The structures of high-temperature ordering phases obtained by the method of static concentration waves coincide with those obtained by means of computer simulation. However computer simulation enables to predict the structures of low-temperature ordered phases which cannot be obtained by the method of concentration waves. Comparison of computer simulation results and structures of observed ordered phases demonstrates good agreement. (author)

  7. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Y. Salathé

    2015-06-01

    Full Text Available Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

  8. Development of computational science in JAEA. R and D of simulation

    International Nuclear Information System (INIS)

    Nakajima, Norihiro; Araya, Fumimasa; Hirayama, Toshio

    2006-01-01

    R and D of computational science in JAEA (Japan Atomic Energy Agency) is described. Environment of computer, R and D system in CCSE (Center for Computational Science and e-Systems), joint computational science researches in Japan and world, development of computer technologies, the some examples of simulation researches, 3-dimensional image vibrational platform system, simulation researches of FBR cycle techniques, simulation of large scale thermal stress for development of steam generator, simulation research of fusion energy techniques, development of grid computing technology, simulation research of quantum beam techniques and biological molecule simulation researches are explained. Organization of JAEA, development of computational science in JAEA, network of JAEA, international collaboration of computational science, and environment of ITBL (Information-Technology Based Laboratory) project are illustrated. (S.Y.)

  9. Simulation-Based Planning of Optimal Conditions for Industrial Computed Tomography

    DEFF Research Database (Denmark)

    Reisinger, S.; Kasperl, S.; Franz, M.

    2011-01-01

    We present a method to optimise conditions for industrial computed tomography (CT). This optimisation is based on a deterministic simulation. Our algorithm finds task-specific CT equipment settings to achieve optimal exposure parameters by means of an STL-model of the specimen and a raytracing...

  10. Advanced Simulation and Computing FY08-09 Implementation Plan, Volume 2, Revision 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Kusnezov, D; Bickel, T; McCoy, M; Hopson, J

    2007-09-13

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from

  11. Polymer Composites Corrosive Degradation: A Computational Simulation

    Science.gov (United States)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  12. Optimization Model for Web Based Multimodal Interactive Simulations.

    Science.gov (United States)

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-07-15

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.

  13. Practice Makes Perfect: Using a Computer-Based Business Simulation in Entrepreneurship Education

    Science.gov (United States)

    Armer, Gina R. M.

    2011-01-01

    This article explains the use of a specific computer-based simulation program as a successful experiential learning model and as a way to increase student motivation while augmenting conventional methods of business instruction. This model is based on established adult learning principles.

  14. Computer simulation of the structure and properties of non-crystalline oxides

    International Nuclear Information System (INIS)

    Belashchenko, D.K.

    1997-01-01

    The structure data and some properties of non-crystalline (liquid and amorphous) oxide systems are discussed that were obtained using computer simulation methods. The simple oxide models, the homological serii of simple oxides, the models of binary and multi-components oxide systems are considered. Also the results of the simulation of ionic transfer in electric field are discussed. Ionic theory of oxides allows to predict the structure, thermodynamic and other properties for many oxide systems except the phosphate and vanadate oxides and some others

  15. Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons

    Science.gov (United States)

    Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.

  16. Computational simulation of the biomass gasification process in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Rojas Mazaira, Leorlen Y.; Gamez Rodriguez, Abel; Andrade Gregori, Maria Dolores; Armas Cardona, Raul

    2009-01-01

    In an agro-industrial country as Cuba many residues of cultivation like the rice and the cane of sugar take place, besides the forest residues in wooded extensions. Is an interesting application for all this biomass, the gasification technology, by its high efficiency and its positive environmental impact. The computer simulation appears like a useful tool in the researches of parameters of operation of a gas- emitting, because it reduces the number of experiments to realise and the cost of the researches. In the work the importance of the application of the computer simulation is emphasized to anticipate the hydrodynamic behavior of fluidized bed and of the process of combustion of the biomass for different residues and different conditions of operation. A model using CFD for the simulation of the process of combustion in a gas- emitting of biomass sets out of fluidized bed, the hydrodynamic parameters of the multiphasic flow from the elaboration of a computer simulator that allows to form and to vary the geometry of the reactor, as well as the influence of the variation of magnitudes are characterized such as: speed, diameter of the sand and equivalent reason. Experimental results in cylindrical channels appear, to complete the study of the computer simulation realised in 2D. (author)

  17. Computer simulation of chemical nucleation

    International Nuclear Information System (INIS)

    Turner, J.S.

    1979-01-01

    The problem of nucleation at chemical instabilities is investigated by means of microscopic computer simulation. The first-order transition of interest involves a new kind of nucleation arising from chemical transformations rather than physical forces. Here it is the chemical state of matter, and not matter itself, which is spatially localized to form the nucleus for transition between different chemical states. First, the concepts of chemical instability, nonequilibrium phase transition, and dissipative structure are reviewed briefly. Then recently developed methods of reactive molecular dynamics are used to study chemical nucleation in a simple model chemical reactions. Finally, the connection of these studies to nucleation and condensation processes involving physical and chemical interactions is explored. (orig.)

  18. NATO Advanced Study Institute on Advances in the Computer Simulations of Liquid Crystals

    CERN Document Server

    Zannoni, Claudio

    2000-01-01

    Computer simulations provide an essential set of tools for understanding the macroscopic properties of liquid crystals and of their phase transitions in terms of molecular models. While simulations of liquid crystals are based on the same general Monte Carlo and molecular dynamics techniques as are used for other fluids, they present a number of specific problems and peculiarities connected to the intrinsic properties of these mesophases. The field of computer simulations of anisotropic fluids is interdisciplinary and is evolving very rapidly. The present volume covers a variety of techniques and model systems, from lattices to hard particle and Gay-Berne to atomistic, for thermotropics, lyotropics, and some biologically interesting liquid crystals. Contributions are written by an excellent panel of international lecturers and provides a timely account of the techniques and problems in the field.

  19. Simulating WTP Values from Random-Coefficient Models

    OpenAIRE

    Maurus Rischatsch

    2009-01-01

    Discrete Choice Experiments (DCEs) designed to estimate willingness-to-pay (WTP) values are very popular in health economics. With increased computation power and advanced simulation techniques, random-coefficient models have gained an increasing importance in applied work as they allow for taste heterogeneity. This paper discusses the parametrical derivation of WTP values from estimated random-coefficient models and shows how these values can be simulated in cases where they do not have a kn...

  20. Getting computer models to communicate

    International Nuclear Information System (INIS)

    Caremoli, Ch.; Erhard, P.

    1999-01-01

    Today's computers have the processing power to deliver detailed and global simulations of complex industrial processes such as the operation of a nuclear reactor core. So should we be producing new, global numerical models to take full advantage of this new-found power? If so, it would be a long-term job. There is, however, another solution; to couple the existing validated numerical models together so that they work as one. (authors)

  1. Development of the core-model implementation technology for YGN1 simulator

    International Nuclear Information System (INIS)

    Hong, J. H.; Lee, M. S.; Lee, Y. K.; Su, I. Y.

    2004-01-01

    The existing core models for the domestic nuclear power plant simulators for PWRs are entirely imported from the foreign simulator vendor. To solve the time-accuracy problem in the poor capabilities in the computer in the early 1990s, several simplifications and assumptions for the neutronics governing equations were indispensible for the realtime calculations of nuclear phenomena in the core region. To overcome the shortages, a new core model based on the MASTER code certified by the domestic regulatory body (KINS) instead of the existing core models is now being developed especially for the realtime core solver for the YGN-1 simulator. This code is named R-MASTER (Realtime MASTER code). Due to the deficiency of the host computer, it is quitely required to run the R-MASTER code on the separate computer with high performance from the host computer on which all the other models than the core model are running. This paper deals with the applied protocols and procedures to guarantee the realtime communication and calculation of the R-MASTER code

  2. Mesoscopic modelling and simulation of soft matter.

    Science.gov (United States)

    Schiller, Ulf D; Krüger, Timm; Henrich, Oliver

    2017-12-20

    The deformability of soft condensed matter often requires modelling of hydrodynamical aspects to gain quantitative understanding. This, however, requires specialised methods that can resolve the multiscale nature of soft matter systems. We review a number of the most popular simulation methods that have emerged, such as Langevin dynamics, dissipative particle dynamics, multi-particle collision dynamics, sometimes also referred to as stochastic rotation dynamics, and the lattice-Boltzmann method. We conclude this review with a short glance at current compute architectures for high-performance computing and community codes for soft matter simulation.

  3. Computational simulation of the blood separation process.

    Science.gov (United States)

    De Gruttola, Sandro; Boomsma, Kevin; Poulikakos, Dimos; Ventikos, Yiannis

    2005-08-01

    The aim of this work is to construct a computational fluid dynamics model capable of simulating the quasitransient process of apheresis. To this end a Lagrangian-Eulerian model has been developed which tracks the blood particles within a delineated two-dimensional flow domain. Within the Eulerian method, the fluid flow conservation equations within the separator are solved. Taking the calculated values of the flow field and using a Lagrangian method, the displacement of the blood particles is calculated. Thus, the local blood density within the separator at a given time step is known. Subsequently, the flow field in the separator is recalculated. This process continues until a quasisteady behavior is reached. The simulations show good agreement with experimental results. They shows a complete separation of plasma and red blood cells, as well as nearly complete separation of red blood cells and platelets. The white blood cells build clusters in the low concentrate cell bed.

  4. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    OpenAIRE

    Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Potočnik, A.; Mezzacapo, Antonio; Las Heras García, Urtzi; Lamata Manuel, Lucas; Solano Villanueva, Enrique Leónidas; Filipp, S.; Wallraff, A.

    2015-01-01

    Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit...

  5. Analyzing Interaction Patterns to Verify a Simulation/Game Model

    Science.gov (United States)

    Myers, Rodney Dean

    2012-01-01

    In order for simulations and games to be effective for learning, instructional designers must verify that the underlying computational models being used have an appropriate degree of fidelity to the conceptual models of their real-world counterparts. A simulation/game that provides incorrect feedback is likely to promote misunderstanding and…

  6. The Use of Model Matching Video Analysis and Computational Simulation to Study the Ankle Sprain Injury Mechanism

    Directory of Open Access Journals (Sweden)

    Daniel Tik-Pui Fong

    2012-10-01

    Full Text Available Lateral ankle sprains continue to be the most common injury sustained by athletes and create an annual healthcare burden of over $4 billion in the U.S. alone. Foot inversion is suspected in these cases, but the mechanism of injury remains unclear. While kinematics and kinetics data are crucial in understanding the injury mechanisms, ligament behaviour measures – such as ligament strains – are viewed as the potential causal factors of ankle sprains. This review article demonstrates a novel methodology that integrates model matching video analyses with computational simulations in order to investigate injury-producing events for a better understanding of such injury mechanisms. In particular, ankle joint kinematics from actual injury incidents were deduced by model matching video analyses and then input into a generic computational model based on rigid bone surfaces and deformable ligaments of the ankle so as to investigate the ligament strains that accompany these sprain injuries. These techniques may have the potential for guiding ankle sprain prevention strategies and targeted rehabilitation therapies.

  7. Light & Skin Interactions Simulations for Computer Graphics Applications

    CERN Document Server

    Baranoski, Gladimir V G

    2010-01-01

    Light and Skin Interactions immerses you in one of the most fascinating application areas of computer graphics: appearance simulation. The book first illuminates the fundamental biophysical processes that affect skin appearance, and reviews seminal related works aimed at applications in life and health sciences. It then examines four exemplary modeling approaches as well as definitive algorithms that can be used to generate realistic images depicting skin appearance. An accompanying companion site also includes complete code and data sources for the BioSpec model, which is considered to be the

  8. A virtual laboratory notebook for simulation models.

    Science.gov (United States)

    Winfield, A J

    1998-01-01

    In this paper we describe how we have adopted the laboratory notebook as a metaphor for interacting with computer simulation models. This 'virtual' notebook stores the simulation output and meta-data (which is used to record the scientist's interactions with the simulation). The meta-data stored consists of annotations (equivalent to marginal notes in a laboratory notebook), a history tree and a log of user interactions. The history tree structure records when in 'simulation' time, and from what starting point in the tree changes are made to the parameters by the user. Typically these changes define a new run of the simulation model (which is represented as a new branch of the history tree). The tree shows the structure of the changes made to the simulation and the log is required to keep the order in which the changes occurred. Together they form a record which you would normally find in a laboratory notebook. The history tree is plotted in simulation parameter space. This shows the scientist's interactions with the simulation visually and allows direct manipulation of the parameter information presented, which in turn is used to control directly the state of the simulation. The interactions with the system are graphical and usually involve directly selecting or dragging data markers and other graphical control devices around in parameter space. If the graphical manipulators do not provide precise enough control then textual manipulation is still available which allows numerical values to be entered by hand. The Virtual Laboratory Notebook, by providing interesting interactions with the visual view of the history tree, provides a mechanism for giving the user complex and novel ways of interacting with biological computer simulation models.

  9. Fluid simulation for computer graphics

    CERN Document Server

    Bridson, Robert

    2008-01-01

    Animating fluids like water, smoke, and fire using physics-based simulation is increasingly important in visual effects, in particular in movies, like The Day After Tomorrow, and in computer games. This book provides a practical introduction to fluid simulation for graphics. The focus is on animating fully three-dimensional incompressible flow, from understanding the math and the algorithms to the actual implementation.

  10. Investigation of attenuation correction in SPECT using textural features, Monte Carlo simulations, and computational anthropomorphic models.

    Science.gov (United States)

    Spirou, Spiridon V; Papadimitroulas, Panagiotis; Liakou, Paraskevi; Georgoulias, Panagiotis; Loudos, George

    2015-09-01

    To present and evaluate a new methodology to investigate the effect of attenuation correction (AC) in single-photon emission computed tomography (SPECT) using textural features analysis, Monte Carlo techniques, and a computational anthropomorphic model. The GATE Monte Carlo toolkit was used to simulate SPECT experiments using the XCAT computational anthropomorphic model, filled with a realistic biodistribution of (99m)Tc-N-DBODC. The simulated gamma camera was the Siemens ECAM Dual-Head, equipped with a parallel hole lead collimator, with an image resolution of 3.54 × 3.54 mm(2). Thirty-six equispaced camera positions, spanning a full 360° arc, were simulated. Projections were calculated after applying a ± 20% energy window or after eliminating all scattered photons. The activity of the radioisotope was reconstructed using the MLEM algorithm. Photon attenuation was accounted for by calculating the radiological pathlength in a perpendicular line from the center of each voxel to the gamma camera. Twenty-two textural features were calculated on each slice, with and without AC, using 16 and 64 gray levels. A mask was used to identify only those pixels that belonged to each organ. Twelve of the 22 features showed almost no dependence on AC, irrespective of the organ involved. In both the heart and the liver, the mean and SD were the features most affected by AC. In the liver, six features were affected by AC only on some slices. Depending on the slice, skewness decreased by 22-34% with AC, kurtosis by 35-50%, long-run emphasis mean by 71-91%, and long-run emphasis range by 62-95%. In contrast, gray-level non-uniformity mean increased by 78-218% compared with the value without AC and run percentage mean by 51-159%. These results were not affected by the number of gray levels (16 vs. 64) or the data used for reconstruction: with the energy window or without scattered photons. The mean and SD were the main features affected by AC. In the heart, no other feature was

  11. A stylized computational model of the head for the reference Japanese male

    International Nuclear Information System (INIS)

    Yamauchi, M.; Ishikawa, M.; Hoshi, M.

    2005-01-01

    Computational models of human anatomy, along with Monte Carlo radiation transport simulations, have been used by Snyder et al. [MIRD Pamphlet No. 5, revised (The Society of Nuclear Medicine, New York, 1978)], Cristy and Eckerman [ORNL/TM-8381/VI, Oak Ridge National Laboratory, Oak Ridge, TN (1987)] and Zubal et al. [Med. Phys. 21, 299-302 (1994)] to estimate internal organ doses from internal and external radiation sources. These were created using physiological data from Caucasoid subjects but not from other races. There is a need for research to determine whether the obvious differences from the Caucasoid anatomy make these models unsuitable for estimating the absorbed dose in other races such as the Mongoloid. We used the cranial region of the adult Japanese male to represent the Mongoloid race. This region contains organs that are highly sensitive to radiation. The cranial region of a physical phantom produced by KYOTO KAGAKU Co., LTD. using numerical data from a Japanese Reference Man [Tanaka, Nippon Acta. Radiol. 48, 509-513 (1988)] was used to supply the data for the geometry of a stylized computational model. Our computational model was constructed with equations rather than voxel-based, in order to deal with as small a number of parameters as possible in the computer simulation experiment. The accuracy of our computational model was checked by comparing simulated experimental results obtained with MCNP4C with actual doses measured with thermoluminescence dosimeters (TLDs) inside the physical phantom from which our computational model was constructed. The TLDs, whose margin of error is less than ±10%, were arranged at six positions. Co-60 was used as the radiation source. The irradiated dose was 2 Gy in terms of air kerma. In the computer simulation experiments, we used our computational model and Cristy's computational model, whose component data are those of the tissue substitute materials and of the human body as published in ICRU Report 46. The

  12. Computational Modeling and Simulation of Attitude Change. Part 1, Connectionist Models and Simulations of Cognitive Dissonance: an Overview

    OpenAIRE

    Voinea, Camelia Florela

    2013-01-01

    Cognitive Dissonance Theory is considered part of the cognitive consistency theories in Social Psychology. They uncover a class of conceptual models which describe the attitude change as a cognitive consistency-seeking issue. As these conceptual models requested more complex operational expression, algebraic, mathematical and, lately, computational modeling approaches of cognitive consistency have been developed. Part 1 of this work provides an overview of the connectionist modeling of cognit...

  13. Modeling and numerical techniques for high-speed digital simulation of nuclear power plants

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1987-01-01

    Conventional computing methods are contrasted with newly developed high-speed and low-cost computing techniques for simulating normal and accidental transients in nuclear power plants. Six principles are formulated for cost-effective high-fidelity simulation with emphasis on modeling of transient two-phase flow coolant dynamics in nuclear reactors. Available computing architectures are characterized. It is shown that the combination of the newly developed modeling and computing principles with the use of existing special-purpose peripheral processors is capable of achieving low-cost and high-speed simulation with high-fidelity and outstanding user convenience, suitable for detailed reactor plant response analyses

  14. A Computational Model of Cellular Engraftment on Lung Scaffolds.

    Science.gov (United States)

    Pothen, Joshua J; Rajendran, Vignesh; Wagner, Darcy; Weiss, Daniel J; Smith, Bradford J; Ma, Baoshun; Bates, Jason H T

    2016-01-01

    The possibility that stem cells might be used to regenerate tissue is now being investigated for a variety of organs, but these investigations are still essentially exploratory and have few predictive tools available to guide experimentation. We propose, in this study, that the field of lung tissue regeneration might be better served by predictive tools that treat stem cells as agents that obey certain rules of behavior governed by both their phenotype and their environment. Sufficient knowledge of these rules of behavior would then, in principle, allow lung tissue development to be simulated computationally. Toward this end, we developed a simple agent-based computational model to simulate geographic patterns of cells seeded onto a lung scaffold. Comparison of the simulated patterns to those observed experimentally supports the hypothesis that mesenchymal stem cells proliferate preferentially toward the scaffold boundary, whereas alveolar epithelial cells do not. This demonstrates that a computational model of this type has the potential to assist in the discovery of rules of cellular behavior.

  15. CFD Modeling and Simulation in Materials Processing 2018

    OpenAIRE

    Nastac, Laurentiu; Pericleous, Koulis; Sabau, Adrian S.; Zhang, Lifeng; Thomas, Brian G.

    2018-01-01

    This book contains the proceedings of the symposium “CFD Modeling and Simulation in Materials Processing” held at the TMS 2018 Annual Meeting & Exhibition in Phoenix, Arizona, USA, March 11–15, 2018. This symposium dealt with computational fluid dynamics (CFD) modeling and simulation of engineering processes. The papers published in this book were requested from researchers and engineers involved in the modeling of multiscale and multiphase phenomena in material processing systems. The sympos...

  16. Analysis of material flow in metal forming processes by using computer simulation and experiment with model material

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dong Won

    1993-01-01

    The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behaviour in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method. (Author)

  17. Computational fluid dynamics modeling of mixed convection flows in buildings enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Kayne, Alexander; Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)

    2013-07-01

    In recent years Computational Fluid Dynamics (CFD) simulations are increasingly used to model the air circulation and temperature environment inside the rooms of residential and office buildings to gain insight into the relative energy consumptions of various HVAC systems for cooling/heating for climate control and thermal comfort. This requires accurate simulation of turbulent flow and heat transfer for various types of ventilation systems using the Reynolds-Averaged Navier-Stokes (RANS) equations of fluid dynamics. Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) of Navier-Stokes equations is computationally intensive and expensive for simulations of this kind. As a result, vast majority of CFD simulations employ RANS equations in conjunction with a turbulence model. In order to assess the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for accurate simulations, it is critical to validate the calculations against the experimental data. For this purpose, we use three well known benchmark validation cases, one for natural convection in 2D closed vertical cavity, second for forced convection in a 2D rectangular cavity and the third for mixed convection in a 2D square cavity. The simulations are performed on a number of meshes of different density using a number of turbulence models. It is found that k-epsilon two-equation turbulence model with a second-order algorithm on a reasonable mesh gives the best results. This information is then used to determine the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for flows in 3D enclosures with different ventilation systems. In particular two cases are considered for which the experimental data is available. These cases are (1) air flow and heat transfer in a naturally ventilated room and (2) airflow and temperature distribution in an atrium. Good agreement with the experimental data and computations of other investigators is obtained.

  18. Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research.

    Science.gov (United States)

    Erdemir, Ahmet; Hunter, Peter J; Holzapfel, Gerhard A; Loew, Leslie M; Middleton, John; Jacobs, Christopher R; Nithiarasu, Perumal; Löhner, Rainlad; Wei, Guowei; Winkelstein, Beth A; Barocas, Victor H; Guilak, Farshid; Ku, Joy P; Hicks, Jennifer L; Delp, Scott L; Sacks, Michael; Weiss, Jeffrey A; Ateshian, Gerard A; Maas, Steve A; McCulloch, Andrew D; Peng, Grace C Y

    2018-02-01

    The role of computational modeling for biomechanics research and related clinical care will be increasingly prominent. The biomechanics community has been developing computational models routinely for exploration of the mechanics and mechanobiology of diverse biological structures. As a result, a large array of models, data, and discipline-specific simulation software has emerged to support endeavors in computational biomechanics. Sharing computational models and related data and simulation software has first become a utilitarian interest, and now, it is a necessity. Exchange of models, in support of knowledge exchange provided by scholarly publishing, has important implications. Specifically, model sharing can facilitate assessment of reproducibility in computational biomechanics and can provide an opportunity for repurposing and reuse, and a venue for medical training. The community's desire to investigate biological and biomechanical phenomena crossing multiple systems, scales, and physical domains, also motivates sharing of modeling resources as blending of models developed by domain experts will be a required step for comprehensive simulation studies as well as the enhancement of their rigor and reproducibility. The goal of this paper is to understand current perspectives in the biomechanics community for the sharing of computational models and related resources. Opinions on opportunities, challenges, and pathways to model sharing, particularly as part of the scholarly publishing workflow, were sought. A group of journal editors and a handful of investigators active in computational biomechanics were approached to collect short opinion pieces as a part of a larger effort of the IEEE EMBS Computational Biology and the Physiome Technical Committee to address model reproducibility through publications. A synthesis of these opinion pieces indicates that the community recognizes the necessity and usefulness of model sharing. There is a strong will to facilitate

  19. Simulation of mixed bond graphs and block diagrams on personal computers using TUTSIM

    NARCIS (Netherlands)

    Beukeboom, J.J.A.J.; van Dixhoorn, J.J.; Meerman, J.W.

    1985-01-01

    The TUTSIM simulation program for continuous dynamic systems accepts (nonlinear) block diagrams, bond graphs or a free mix of both. The simulation is “hands on” interactive, providing a direct contact with the model. The implementation of the program on existing personal computers (Apple II, IBM PC)

  20. Computable general equilibrium model fiscal year 2013 capability development report

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    This report documents progress made on continued developments of the National Infrastructure Simulation and Analysis Center (NISAC) Computable General Equilibrium Model (NCGEM), developed in fiscal year 2012. In fiscal year 2013, NISAC the treatment of the labor market and tests performed with the model to examine the properties of the solutions computed by the model. To examine these, developers conducted a series of 20 simulations for 20 U.S. States. Each of these simulations compared an economic baseline simulation with an alternative simulation that assumed a 20-percent reduction in overall factor productivity in the manufacturing industries of each State. Differences in the simulation results between the baseline and alternative simulations capture the economic impact of the reduction in factor productivity. While not every State is affected in precisely the same way, the reduction in manufacturing industry productivity negatively affects the manufacturing industries in each State to an extent proportional to the reduction in overall factor productivity. Moreover, overall economic activity decreases when manufacturing sector productivity is reduced. Developers ran two additional simulations: (1) a version of the model for the State of Michigan, with manufacturing divided into two sub-industries (automobile and other vehicle manufacturing as one sub-industry and the rest of manufacturing as the other subindustry); and (2) a version of the model for the United States, divided into 30 industries. NISAC conducted these simulations to illustrate the flexibility of industry definitions in NCGEM and to examine the simulation properties of in more detail.