A History of Computer Numerical Control.
Haggen, Gilbert L.
Computer numerical control (CNC) has evolved from the first significant counting method--the abacus. Babbage had perhaps the greatest impact on the development of modern day computers with his analytical engine. Hollerith's functioning machine with punched cards was used in tabulating the 1890 U.S. Census. In order for computers to become a…
Computer-Numerical-Control and the EMCO Compact 5 Lathe.
Mullen, Frank M.
This laboratory manual is intended for use in teaching computer-numerical-control (CNC) programming using the Emco Maier Compact 5 Lathe. Developed for use at the postsecondary level, this material contains a short introduction to CNC machine tools. This section covers CNC programs, CNC machine axes, and CNC coordinate systems. The following…
Control rod computer code IAMCOS: general theory and numerical methods
International Nuclear Information System (INIS)
West, G.
1982-11-01
IAMCOS is a computer code for the description of mechanical and thermal behavior of cylindrical control rods for fast breeders. This code version was applied, tested and modified from 1979 to 1981. In this report are described the basic model (02 version), theoretical definitions and computation methods [fr
Skowronski, Steven D.
This student guide provides materials for a course designed to instruct the student in the recommended procedures used when setting up tooling and verifying part programs for a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 discusses course content and reviews and demonstrates set-up procedures…
CNC Turning Center Advanced Operations. Computer Numerical Control Operator/Programmer. 444-332.
Skowronski, Steven D.; Tatum, Kenneth
This student guide provides materials for a course designed to introduce the student to the operations and functions of a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 presents course expectations and syllabus, covers safety precautions, and describes the CNC turning center components, CNC…
Stanton, Michael; And Others
1985-01-01
Three reports on the effects of high technology on the nature of work include (1) Stanton on applications and implications of computer-aided design for engineers, drafters, and architects; (2) Nardone on the outlook and training of numerical-control machine tool operators; and (3) Austin and Drake on the future of clerical occupations in automated…
Essential numerical computer methods
Johnson, Michael L
2010-01-01
The use of computers and computational methods has become ubiquitous in biological and biomedical research. During the last 2 decades most basic algorithms have not changed, but what has is the huge increase in computer speed and ease of use, along with the corresponding orders of magnitude decrease in cost. A general perception exists that the only applications of computers and computer methods in biological and biomedical research are either basic statistical analysis or the searching of DNA sequence data bases. While these are important applications they only scratch the surface of the current and potential applications of computers and computer methods in biomedical research. The various chapters within this volume include a wide variety of applications that extend far beyond this limited perception. As part of the Reliable Lab Solutions series, Essential Numerical Computer Methods brings together chapters from volumes 210, 240, 321, 383, 384, 454, and 467 of Methods in Enzymology. These chapters provide ...
Numerical computations with GPUs
Kindratenko, Volodymyr
2014-01-01
This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to
Study on Production Management in Programming of Computer Numerical Control Machines
Directory of Open Access Journals (Sweden)
Gheorghe Popovici
2014-12-01
Full Text Available The paper presents the results of a study regarding the need for technology in programming for machinetools with computer-aided command. Engineering is the science of making skilled things. That is why, in the "factory of the future", programming engineering will have to realise the part processing on MU-CNCs (Computer Numerical Control Machines in the optimum economic variant. There is no "recipe" when it comes to technologies. In order to select the correct variant from among several technical variants, 10 technological requirements are forwarded for the engineer to take into account in MU-CNC programming. It is the first argued synthesis of the need for technological knowledge in MU-CNC programming.
Emerging opportunities in enterprise integration with open architecture computer numerical controls
Hudson, Christopher A.
1997-01-01
The shift to open-architecture machine tool computer numerical controls is providing new opportunities for metal working oriented manufacturers to streamline the entire 'art to part' process. Production cycle times, accuracy, consistency, predictability and process reliability are just some of the factors that can be improved, leading to better manufactured product at lower costs. Open architecture controllers are allowing manufacturers to apply general purpose software and hardware tools increase where previous approaches relied on proprietary and unique hardware and software. This includes DNC, SCADA, CAD, and CAM, where the increasing use of general purpose components is leading to lower cost system that are also more reliable and robust than the past proprietary approaches. In addition, a number of new opportunities exist, which in the past were likely impractical due to cost or performance constraints.
Computing the Alexander Polynomial Numerically
DEFF Research Database (Denmark)
Hansen, Mikael Sonne
2006-01-01
Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically.......Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically....
SINCRO/CAR: An interactive numerical system for computer-aided control engineering and maintenance
International Nuclear Information System (INIS)
Zwingelstein, G.; Despujols, A.
1986-01-01
This presentation describes a dialogue-oriented software implemented on a portable computer for computer-aided engineering and training in control instrumentation and also for on-line verification of the performances of the analog controllers installed on power plants. The SINCRO/CAR software includes algorithms for controller design, simulation, identification, optimization, frequency response and real time data acquisition. Various results obtained on fossil-fired and nuclear plants are given to illustrate the efficiency of the SINCRO/CAR software
Perancangan Coupled Fuzzy Logic Controller pada Prototipe Mesin Computer Numerical Control (CNC
Directory of Open Access Journals (Sweden)
Nabilla Gustiviana
2012-09-01
Full Text Available Tingkat ketelitian mesin CNC dalam membuat suatu kontur merupakan hal yang penting. Adanya gesekan antara mata pahat dengan benda kerja saat melakukan gerakan feeding dalam membentuk suatu kontur dapat berakibat pada kesalahan bentuk kontur yang akan dihasilkan apabila di tiap sumbunya dikontrol secara individu. Untuk mengatasi permasalahan tersebut, maka dirancang kombinasi antara Fuzzy Logic Controller sebagai kontroler individu yang mengatasi permasalahan di tiap sumbu, dengan kontroler koordinasi, yaitu Cross-Coupled Controller. Algoritma dari kontroler ini dibuat dengan menggunakan software LabView 8.6. Hasil simulasi menunjukkan bahwa dengan menambahkan kontroler koordinasi, dapat memperbaiki nilai indeks performansi sebesar 37,5% untuk kontur linier dan 2,78% untuk kontur lingkaran
Computer numerically controlled (CNC) aspheric shaping with toroidal Wheels (Abstract Only)
Ketelsen, D.; Kittrell, W. C.; Kuhn, W. M.; Parks, R. E.; Lamb, George L.; Baker, Lynn
1987-01-01
Contouring with computer numerically controlled (CNC) machines can be accomplished with several different tool geometries and coordinated machine axes. To minimize the number of coordinated axes for nonsymmetric work to three, it is common practice to use a spherically shaped tool such as a ball-end mill. However, to minimize grooving due to the feed and ball radius, it is desirable to use a long ball radius, but there is clearly a practical limit to ball diameter with the spherical tool. We have found that the use of commercially available toroidal wheels permits long effective cutting radii, which in turn improve finish and minimize grooving for a set feed. In addition, toroidal wheels are easier than spherical wheels to center accurately. Cutting parameters are also easier to control because the feed rate past the tool does not change as the slope of the work changes. The drawback to the toroidal wheel is the more complex calculation of the tool path. Of course, once the algorithm is worked out, the tool path is as easily calculated as for a spherical tool. We have performed two experiments with the Large Optical Generator (LOG) that were ideally suited to three-axis contouring--surfaces that have no axis of rotational symmetry. By oscillating the cutting head horizontally or vertically (in addition to the motions required to generate the power of the surface) , and carefully coordinating those motions with table rotation, the mostly astigmatic departure for these surfaces is produced. The first experiment was a pair of reflector molds that together correct the spherical aberration of the Arecibo radio telescope. The larger of these was 5 m in diameter and had a 12 cm departure from the best-fit sphere. The second experiment was the generation of a purely astigmatic surface to demonstrate the feasibility of producing axially symmetric asphe.rics while mounted and rotated about any off-axis point. Measurements of the latter (the first experiment had relatively
DEFF Research Database (Denmark)
Wang, Weizhi; Wu, Minghao; Palm, Johannes
2018-01-01
for almost linear incident waves. First, we show that the computational fluid dynamics simulations have acceptable agreement to experimental data. We then present a verification and validation study focusing on the solution verification covering spatial and temporal discretization, iterative and domain......The wave loads and the resulting motions of floating wave energy converters are traditionally computed using linear radiation–diffraction methods. Yet for certain cases such as survival conditions, phase control and wave energy converters operating in the resonance region, more complete...... dynamics simulations have largely been overlooked in the wave energy sector. In this article, we apply formal verification and validation techniques to computational fluid dynamics simulations of a passively controlled point absorber. The phase control causes the motion response to be highly nonlinear even...
Numerical Analysis of Multiscale Computations
Engquist, Björn; Tsai, Yen-Hsi R
2012-01-01
This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.
Numerical computation of MHD equilibria
International Nuclear Information System (INIS)
Atanasiu, C.V.
1982-10-01
A numerical code for a two-dimensional MHD equilibrium computation has been carried out. The code solves the Grad-Shafranov equation in its integral form, for both formulations: the free-boundary problem and the fixed boundary one. Examples of the application of the code to tokamak design are given. (author)
Numerical precision control and GRACE
International Nuclear Information System (INIS)
Fujimoto, J.; Hamaguchi, N.; Ishikawa, T.; Kaneko, T.; Morita, H.; Perret-Gallix, D.; Tokura, A.; Shimizu, Y.
2006-01-01
The control of the numerical precision of large-scale computations like those generated by the GRACE system for automatic Feynman diagram calculations has become an intrinsic part of those packages. Recently, Hitachi Ltd. has developed in FORTRAN a new library HMLIB for quadruple and octuple precision arithmetic where the number of lost-bits is made available. This library has been tested with success on the 1-loop radiative correction to e + e - ->e + e - τ + τ - . It is shown that the approach followed by HMLIB provides an efficient way to track down the source of numerical significance losses and to deliver high-precision results yet minimizing computing time
Numerical methods in matrix computations
Björck, Åke
2015-01-01
Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work. Åke Björck is a professor emeritus at the Department of Mathematics, Linköping University. He is a Fellow of the Society of Industrial and Applied Mathematics.
Numerical and symbolic scientific computing
Langer, Ulrich
2011-01-01
The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from
Probabilistic numerics and uncertainty in computations.
Hennig, Philipp; Osborne, Michael A; Girolami, Mark
2015-07-08
We deliver a call to arms for probabilistic numerical methods : algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.
International Nuclear Information System (INIS)
Kim, Jungkwun; Allen, Mark G; Yoon, Yong-Kyu
2016-01-01
This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array. (paper)
Numerical Computation of Detonation Stability
Kabanov, Dmitry
2018-06-03
Detonation is a supersonic mode of combustion that is modeled by a system of conservation laws of compressible fluid mechanics coupled with the equations describing thermodynamic and chemical properties of the fluid. Mathematically, these governing equations admit steady-state travelling-wave solutions consisting of a leading shock wave followed by a reaction zone. However, such solutions are often unstable to perturbations and rarely observed in laboratory experiments. The goal of this work is to study the stability of travelling-wave solutions of detonation models by the following novel approach. We linearize the governing equations about a base travelling-wave solution and solve the resultant linearized problem using high-order numerical methods. The results of these computations are postprocessed using dynamic mode decomposition to extract growth rates and frequencies of the perturbations and predict stability of travelling-wave solutions to infinitesimal perturbations. We apply this approach to two models based on the reactive Euler equations for perfect gases. For the first model with a one-step reaction mechanism, we find agreement of our results with the results of normal-mode analysis. For the second model with a two-step mechanism, we find that both types of admissible travelling-wave solutions exhibit the same stability spectra. Then we investigate the Fickett’s detonation analogue coupled with a particular reaction-rate expression. In addition to the linear stability analysis of this model, we demonstrate that it exhibits rich nonlinear dynamics with multiple bifurcations and chaotic behavior.
Research in applied mathematics, numerical analysis, and computer science
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.
Numerical optimization with computational errors
Zaslavski, Alexander J
2016-01-01
This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative. This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s meth...
Numerical computer methods part D
Johnson, Michael L
2004-01-01
The aim of this volume is to brief researchers of the importance of data analysis in enzymology, and of the modern methods that have developed concomitantly with computer hardware. It is also to validate researchers' computer programs with real and synthetic data to ascertain that the results produced are what they expected. Selected Contents: Prediction of protein structure; modeling and studying proteins with molecular dynamics; statistical error in isothermal titration calorimetry; analysis of circular dichroism data; model comparison methods.
Parallel computing: numerics, applications, and trends
National Research Council Canada - National Science Library
Trobec, Roman; Vajteršic, Marián; Zinterhof, Peter
2009-01-01
... and/or distributed systems. The contributions to this book are focused on topics most concerned in the trends of today's parallel computing. These range from parallel algorithmics, programming, tools, network computing to future parallel computing. Particular attention is paid to parallel numerics: linear algebra, differential equations, numerica...
Numerical computer methods part E
Johnson, Michael L
2004-01-01
The contributions in this volume emphasize analysis of experimental data and analytical biochemistry, with examples taken from biochemistry. They serve to inform biomedical researchers of the modern data analysis methods that have developed concomitantly with computer hardware. Selected Contents: A practical approach to interpretation of SVD results; modeling of oscillations in endocrine networks with feedback; quantifying asynchronous breathing; sample entropy; wavelet modeling and processing of nasal airflow traces.
Numerical Optimization Using Desktop Computers
1980-09-11
geophysical, optical and economic analysis to compute a life-cycle cost for a design with a stated energy capacity. NISCO stands for NonImaging ...more efficiently by nonimaging optical systems than by conventional image forming systems. The methodology of designing optimized ronimaging systems...compound parabolic concentrating iWelford, W. T. and Winston, R., The Optics of Nonimaging Concentrators, Light and Solar Energy, p. ix, Academic
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
Fluid Dynamics Theory, Computation, and Numerical Simulation
Pozrikidis, Constantine
2009-01-01
Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...
Glowinski, R; Kuznetsov, Y A; Periaux, Jacques; Neittaanmaki, Pekka; Pironneau, Olivier
2010-01-01
Standing at the intersection of mathematics and scientific computing, this collection of state-of-the-art papers in nonlinear PDEs examines their applications to subjects as diverse as dynamical systems, computational mechanics, and the mathematics of finance.
A method of numerically controlled machine part programming
1970-01-01
Computer program is designed for automatically programmed tools. Preprocessor computes desired tool path and postprocessor computes actual commands causing machine tool to follow specific path. It is used on a Cincinnati ATC-430 numerically controlled machine tool.
Introduction to numerical computation in Pascal
Dew, P M
1983-01-01
Our intention in this book is to cover the core material in numerical analysis normally taught to students on degree courses in computer science. The main emphasis is placed on the use of analysis and programming techniques to produce well-designed, reliable mathematical software. The treatment should be of interest also to students of mathematics, science and engineering who wish to learn how to write good programs for mathematical computations. The reader is assumed to have some acquaintance with Pascal programming. Aspects of Pascal particularly relevant to numerical computation are revised and developed in the first chapter. Although Pascal has some drawbacks for serious numerical work (for example, only one precision for real numbers), the language has major compensating advantages: it is a widely used teaching language that will be familiar to many students and it encourages the writing of clear, well structured programs. By careful use of structure and documentation, we have produced codes that we be...
Numerical computation of linear instability of detonations
Kabanov, Dmitry; Kasimov, Aslan
2017-11-01
We propose a method to study linear stability of detonations by direct numerical computation. The linearized governing equations together with the shock-evolution equation are solved in the shock-attached frame using a high-resolution numerical algorithm. The computed results are processed by the Dynamic Mode Decomposition technique to generate dispersion relations. The method is applied to the reactive Euler equations with simple-depletion chemistry as well as more complex multistep chemistry. The results are compared with those known from normal-mode analysis. We acknowledge financial support from King Abdullah University of Science and Technology.
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2017-01-01
This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...
Directory of Open Access Journals (Sweden)
Ion Stiharu
2010-08-01
Full Text Available Computer numerically controlled (CNC machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA-based sensor node.
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602
Ferrofluids: Modeling, numerical analysis, and scientific computation
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a
Summary of research in applied mathematics, numerical analysis, and computer sciences
1986-01-01
The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.
Kong, Xiangxue; Tang, Lei; Ye, Qiang; Huang, Wenhua; Li, Jianyi
2017-11-01
Accurate and safe posterior thoracic pedicle insertion (PTPI) remains a challenge. Patient-specific drill templates (PDTs) created by rapid prototyping (RP) can assist in posterior thoracic pedicle insertion, but pose biocompatibility risks. The aims of this study were to develop alternative PDTs with computer numerical control (CNC) and assess their feasibility and accuracy in assisting PTPI. Preoperative CT images of 31 cadaveric thoracic vertebras were obtained and then the optimal pedicle screw trajectories were planned. The PDTs with optimal screw trajectories were randomly assigned to be designed and manufactured by CNC or RP in each vertebra. With the guide of the CNC- or RP-manufactured PDTs, the appropriate screws were inserted into the pedicles. Postoperative CT scans were performed to analyze any deviations at entry point and midpoint of the pedicles. The CNC group was found to be significant manufacture-time-shortening, and cost-decreasing, when compared with the RP group (P 0.05). The screw positions were grade 0 in 90.3% and grade 1 in 9.7% of the cases in the CNC group and grade 0 in 93.5% and grade 1 in 6.5% of the cases in the RP group (P = 0.641). CNC-manufactured PDTs are viable for assisting in PTPI with good feasibility and accuracy.
Integrated optical circuits for numerical computation
Verber, C. M.; Kenan, R. P.
1983-01-01
The development of integrated optical circuits (IOC) for numerical-computation applications is reviewed, with a focus on the use of systolic architectures. The basic architecture criteria for optical processors are shown to be the same as those proposed by Kung (1982) for VLSI design, and the advantages of IOCs over bulk techniques are indicated. The operation and fabrication of electrooptic grating structures are outlined, and the application of IOCs of this type to an existing 32-bit, 32-Mbit/sec digital correlator, a proposed matrix multiplier, and a proposed pipeline processor for polynomial evaluation is discussed. The problems arising from the inherent nonlinearity of electrooptic gratings are considered. Diagrams and drawings of the application concepts are provided.
Directory of Open Access Journals (Sweden)
Brown, Andrew
2014-08-01
Full Text Available This paper presents a prototype Stereolithography (STL file format slicing and tool-path generation algorithm, which serves as a data front-end for a Rapid Prototyping (RP entry- level three-dimensional (3-D printer. Used mainly in Additive Manufacturing (AM, 3-D printers are devices that apply plastic, ceramic, and metal, layer by layer, in all three dimensions on a flat surface (X, Y, and Z axis. 3-D printers, unfortunately, cannot print an object without a special algorithm that is required to create the Computer Numerical Control (CNC instructions for printing. An STL algorithm therefore forms a critical component for Layered Manufacturing (LM, also referred to as RP. The purpose of this study was to develop an algorithm that is capable of processing and slicing an STL file or multiple files, resulting in a tool-path, and finally compiling a CNC file for an entry-level 3- D printer. The prototype algorithm was implemented for an entry-level 3-D printer that utilises the Fused Deposition Modelling (FDM process or Solid Freeform Fabrication (SFF process; an AM technology. Following an experimental method, the full data flow path for the prototype algorithm was developed, starting with STL data files, and then processing the STL data file into a G-code file format by slicing the model and creating a tool-path. This layering method is used by most 3-D printers to turn a 2-D object into a 3-D object. The STL algorithm developed in this study presents innovative opportunities for LM, since it allows engineers and architects to transform their ideas easily into a solid model in a fast, simple, and cheap way. This is accomplished by allowing STL models to be sliced rapidly, effectively, and without error, and finally to be processed and prepared into a G-code print file.
International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics
DEVELOPMENTS IN RELIABLE COMPUTING
1999-01-01
The SCAN conference, the International Symposium on Scientific Com puting, Computer Arithmetic and Validated Numerics, takes place bian nually under the joint auspices of GAMM (Gesellschaft fiir Angewandte Mathematik und Mechanik) and IMACS (International Association for Mathematics and Computers in Simulation). SCAN-98 attracted more than 100 participants from 21 countries all over the world. During the four days from September 22 to 25, nine highlighted, plenary lectures and over 70 contributed talks were given. These figures indicate a large participation, which was partly caused by the attraction of the organizing country, Hungary, but also the effec tive support system have contributed to the success. The conference was substantially supported by the Hungarian Research Fund OTKA, GAMM, the National Technology Development Board OMFB and by the J6zsef Attila University. Due to this funding, it was possible to subsidize the participation of over 20 scientists, mainly from Eastern European countries. I...
NINJA: Java for High Performance Numerical Computing
Directory of Open Access Journals (Sweden)
José E. Moreira
2002-01-01
Full Text Available When Java was first introduced, there was a perception that its many benefits came at a significant performance cost. In the particularly performance-sensitive field of numerical computing, initial measurements indicated a hundred-fold performance disadvantage between Java and more established languages such as Fortran and C. Although much progress has been made, and Java now can be competitive with C/C++ in many important situations, significant performance challenges remain. Existing Java virtual machines are not yet capable of performing the advanced loop transformations and automatic parallelization that are now common in state-of-the-art Fortran compilers. Java also has difficulties in implementing complex arithmetic efficiently. These performance deficiencies can be attacked with a combination of class libraries (packages, in Java that implement truly multidimensional arrays and complex numbers, and new compiler techniques that exploit the properties of these class libraries to enable other, more conventional, optimizations. Two compiler techniques, versioning and semantic expansion, can be leveraged to allow fully automatic optimization and parallelization of Java code. Our measurements with the NINJA prototype Java environment show that Java can be competitive in performance with highly optimized and tuned Fortran code.
Numerical Investigations of Dynamic Stall Control
Directory of Open Access Journals (Sweden)
Florin FRUNZULICA
2014-04-01
Full Text Available In this paper we investigated numerically the dynamic stall phenomenon and the possibilities to control it, with application to vertical axis wind turbines (for urban users. The Phenomenon appear at low tip speed ratio (TSR<4 and it has a great impact on structural integrity of the wind turbine and power performances. For this reason we performed a computational study of dynamic stall around NACA 0012 airfoil in pitching motion at relative low Reynolds number (105. Also, we performed the same analysis for four flow control methods: two passive (Gurney flap and slot and two active (blowing jet on the rounded trailing edge and synthetic jet periodically activated. The Results are compared to those of an existing experimental case test.
Numerical discrepancy between serial and MPI parallel computations
Directory of Open Access Journals (Sweden)
Sang Bong Lee
2016-09-01
Full Text Available Numerical simulations of 1D Burgers equation and 2D sloshing problem were carried out to study numerical discrepancy between serial and parallel computations. The numerical domain was decomposed into 2 and 4 subdomains for parallel computations with message passing interface. The numerical solution of Burgers equation disclosed that fully explicit boundary conditions used on subdomains of parallel computation was responsible for the numerical discrepancy of transient solution between serial and parallel computations. Two dimensional sloshing problems in a rectangular domain were solved using OpenFOAM. After a lapse of initial transient time sloshing patterns of water were significantly different in serial and parallel computations although the same numerical conditions were given. Based on the histograms of pressure measured at two points near the wall the statistical characteristics of numerical solution was not affected by the number of subdomains as much as the transient solution was dependent on the number of subdomains.
Computational aspects of linear control
2002-01-01
Many devices (we say dynamical systems or simply systems) behave like black boxes: they receive an input, this input is transformed following some laws (usually a differential equation) and an output is observed. The problem is to regulate the input in order to control the output, that is for obtaining a desired output. Such a mechanism, where the input is modified according to the output measured, is called feedback. The study and design of such automatic processes is called control theory. As we will see, the term system embraces any device and control theory has a wide variety of applications in the real world. Control theory is an interdisci plinary domain at the junction of differential and difference equations, system theory and statistics. Moreover, the solution of a control problem involves many topics of numerical analysis and leads to many interesting computational problems: linear algebra (QR, SVD, projections, Schur complement, structured matrices, localization of eigenvalues, computation of the...
The numerical parallel computing of photon transport
International Nuclear Information System (INIS)
Huang Qingnan; Liang Xiaoguang; Zhang Lifa
1998-12-01
The parallel computing of photon transport is investigated, the parallel algorithm and the parallelization of programs on parallel computers both with shared memory and with distributed memory are discussed. By analyzing the inherent law of the mathematics and physics model of photon transport according to the structure feature of parallel computers, using the strategy of 'to divide and conquer', adjusting the algorithm structure of the program, dissolving the data relationship, finding parallel liable ingredients and creating large grain parallel subtasks, the sequential computing of photon transport into is efficiently transformed into parallel and vector computing. The program was run on various HP parallel computers such as the HY-1 (PVP), the Challenge (SMP) and the YH-3 (MPP) and very good parallel speedup has been gotten
Topics in numerical partial differential equations and scientific computing
2016-01-01
Numerical partial differential equations (PDEs) are an important part of numerical simulation, the third component of the modern methodology for science and engineering, besides the traditional theory and experiment. This volume contains papers that originated with the collaborative research of the teams that participated in the IMA Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing in August 2014.
An Evaluation of Java for Numerical Computing
Directory of Open Access Journals (Sweden)
Brian Blount
1999-01-01
Full Text Available This paper describes the design and implementation of high performance numerical software in Java. Our primary goals are to characterize the performance of object‐oriented numerical software written in Java and to investigate whether Java is a suitable language for such endeavors. We have implemented JLAPACK, a subset of the LAPACK library in Java. LAPACK is a high‐performance Fortran 77 library used to solve common linear algebra problems. JLAPACK is an object‐oriented library, using encapsulation, inheritance, and exception handling. It performs within a factor of four of the optimized Fortran version for certain platforms and test cases. When used with the native BLAS library, JLAPACK performs comparably with the Fortran version using the native BLAS library. We conclude that high‐performance numerical software could be written in Java if a handful of concerns about language features and compilation strategies are adequately addressed.
Numerical computation of homogeneous slope stability.
Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong
2015-01-01
To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).
Numerical Computation of Homogeneous Slope Stability
Directory of Open Access Journals (Sweden)
Shuangshuang Xiao
2015-01-01
Full Text Available To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM and particle swarm optimization algorithm (PSO to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759 were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS.
Numerical characteristics of quantum computer simulation
Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.
2016-12-01
The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.
Computing complex Airy functions by numerical quadrature
A. Gil (Amparo); J. Segura (Javier); N.M. Temme (Nico)
2001-01-01
textabstractIntegral representations are considered of solutions of the Airydifferential equation w''-z, w=0 for computing Airy functions for complex values of z.In a first method contour integral representations of the Airyfunctions are written as non-oscillating
Value-Engineering Review for Numerical Control
Warner, J. L.
1984-01-01
Selecting parts for conversion from conventional machining to numerical control, value-engineering review performed for every part to identify potential changes to part design that result in increased production efficiency.
Computer-controlled attenuator.
Mitov, D; Grozev, Z
1991-01-01
Various possibilities for applying electronic computer-controlled attenuators for the automation of physiological experiments are considered. A detailed description is given of the design of a 4-channel computer-controlled attenuator, in two of the channels of which the output signal can change by a linear step, in the other two channels--by a logarithmic step. This, together with the existence of additional programmable timers, allows to automate a wide range of studies in different spheres of physiology and psychophysics, including vision and hearing.
Numerical computation of generalized importance functions
International Nuclear Information System (INIS)
Gomit, J.M.; Nasr, M.; Ngyuen van Chi, G.; Pasquet, J.P.; Planchard, J.
1981-01-01
Thus far, an important effort has been devoted to developing and applying generalized perturbation theory in reactor physics analysis. In this work we are interested in the calculation of the importance functions by the method of A. Gandini. We have noted that in this method the convergence of the iterative procedure adopted is not rapid. Hence to accelerate this convergence we have used the semi-iterative technique. Two computer codes have been developed for one and two dimensional calculations (SPHINX-1D and SPHINX-2D). The advantage of our calculation was confirmed by some comparative tests in which the iteration number and the computing time were highly reduced with respect to classical calculation (CIAP-1D and CIAP-2D). (orig.) [de
Numerical cosmology: Revealing the universe using computers
International Nuclear Information System (INIS)
Centrella, J.; Matzner, R.A.; Tolman, B.W.
1986-01-01
In this paper the authors present two research projects which study the evolution of different periods in the history of the universe using numerical simulations. The first investigates the synthesis of light elements in an inhomogeneous early universe dominated by shocks and non-linear gravitational waves. The second follows the evolution of large scale structures during the later history of the universe and calculates their effect on the 3K background radiation. Their simulations are carried out using modern supercomputers and make heavy use of multidimensional color graphics, including film to elucidate the results. Both projects provide the authors the opportunity to do experiments in cosmology and assess their results against fundamental cosmological observations
Numerical computation of special functions with applications to physics
CSIR Research Space (South Africa)
Motsepe, K
2008-09-01
Full Text Available Students of mathematical physics, engineering, natural and biological sciences sometimes need to use special functions that are not found in ordinary mathematical software. In this paper a simple universal numerical algorithm is developed to compute...
Computationally efficient methods for digital control
Guerreiro Tome Antunes, D.J.; Hespanha, J.P.; Silvestre, C.J.; Kataria, N.; Brewer, F.
2008-01-01
The problem of designing a digital controller is considered with the novelty of explicitly taking into account the computation cost of the controller implementation. A class of controller emulation methods inspired by numerical analysis is proposed. Through various examples it is shown that these
Numerical aspects for efficient welding computational mechanics
Directory of Open Access Journals (Sweden)
Aburuga Tarek Kh.S.
2014-01-01
Full Text Available The effect of the residual stresses and strains is one of the most important parameter in the structure integrity assessment. A finite element model is constructed in order to simulate the multi passes mismatched submerged arc welding SAW which used in the welded tensile test specimen. Sequentially coupled thermal mechanical analysis is done by using ABAQUS software for calculating the residual stresses and distortion due to welding. In this work, three main issues were studied in order to reduce the time consuming during welding simulation which is the major problem in the computational welding mechanics (CWM. The first issue is dimensionality of the problem. Both two- and three-dimensional models are constructed for the same analysis type, shell element for two dimension simulation shows good performance comparing with brick element. The conventional method to calculate residual stress is by using implicit scheme that because of the welding and cooling time is relatively high. In this work, the author shows that it could use the explicit scheme with the mass scaling technique, and time consuming during the analysis will be reduced very efficiently. By using this new technique, it will be possible to simulate relatively large three dimensional structures.
Univolatility curves in ternary mixtures: geometry and numerical computation
DEFF Research Database (Denmark)
Shcherbakova, Nataliya; Rodriguez-Donis, Ivonne; Abildskov, Jens
2017-01-01
We propose a new non-iterative numerical algorithm allowing computation of all univolatility curves in homogeneous ternary mixtures independently of the presence of the azeotropes. The key point is the concept of generalized univolatility curves in the 3D state space, which allows the main comput...
Numerical methods design, analysis, and computer implementation of algorithms
Greenbaum, Anne
2012-01-01
Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book a...
Wireless infrared computer control
Chen, George C.; He, Xiaofei
2004-04-01
Wireless mouse is not restricted by cable"s length and has advantage over its wired counterpart. However, all the mice available in the market have detection range less than 2 meters and angular coverage less than 180 degrees. Furthermore, commercial infrared mice are based on track ball and rollers to detect movements. This restricts them to be used in those occasions where users want to have dynamic movement, such as presentations and meetings etc. This paper presents our newly developed infrared wireless mouse, which has a detection range of 6 meters and angular coverage of 180 degrees. This new mouse uses buttons instead of traditional track ball and is developed to be a hand-held device like remote controller. It enables users to control cursor with a distance closed to computer and the mouse to be free from computer operation.
Numerical computation of molecular integrals via optimized (vectorized) FORTRAN code
International Nuclear Information System (INIS)
Scott, T.C.; Grant, I.P.; Saunders, V.R.
1997-01-01
The calculation of molecular properties based on quantum mechanics is an area of fundamental research whose horizons have always been determined by the power of state-of-the-art computers. A computational bottleneck is the numerical calculation of the required molecular integrals to sufficient precision. Herein, we present a method for the rapid numerical evaluation of molecular integrals using optimized FORTRAN code generated by Maple. The method is based on the exploitation of common intermediates and the optimization can be adjusted to both serial and vectorized computations. (orig.)
Propulsion controlled aircraft computer
Cogan, Bruce R. (Inventor)
2010-01-01
A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.
A summary of numerical computation for special functions
International Nuclear Information System (INIS)
Zhang Shanjie
1992-01-01
In the paper, special functions frequently encountered in science and engineering calculations are introduced. The computation of the values of Bessel function and elliptic integrals are taken as the examples, and some common algorithms for computing most special functions, such as series expansion for small argument, asymptotic approximations for large argument, polynomial approximations, recurrence formulas and iteration method, are discussed. In addition, the determination of zeros of some special functions, and the other questions related to numerical computation are also discussed
International Nuclear Information System (INIS)
1979-03-01
This paper describes the design and performance of the computer system that will be used to control and monitor the PEP storage ring. Since the design is essentially complete and much of the system is operational, the system is described as it is expected to 1979. Section 1 of the paper describes the system hardware which includes the computer network, the CAMAC data I/O system, and the operator control consoles. Section 2 describes a collection of routines that provide general services to applications programs. These services include a graphics package, data base and data I/O programs, and a director programm for use in operator communication. Section 3 describes a collection of automatic and semi-automatic control programs, known as SCORE, that contain mathematical models of the ring lattice and are used to determine in real-time stable paths for changing beam configuration and energy and for orbit correction. Section 4 describes a collection of programs, known as CALI, that are used for calibration of ring elements
Computer aided control engineering
DEFF Research Database (Denmark)
Szymkat, Maciej; Ravn, Ole
1997-01-01
Current developments in the field of Computer Aided Control Engineering (CACE) have a visible impact on the design methodologies and the structure of the software tools supporting them. Today control engineers has at their disposal libraries, packages or programming environments that may...... in CACE enhancing efficient flow of information between the tools supporting the following phases of the design process. In principle, this flow has to be two-way, and more or less automated, in order to enable the engineer to observe the propagation of the particular design decisions taken at various...... levels.The major conclusions of the paper are related with identifying the factors affecting the software tool integration in a way needed to facilitate design "inter-phase" communication. These are: standard application interfaces, dynamic data exchange mechanisms, code generation techniques and general...
Numerical Methods for Stochastic Computations A Spectral Method Approach
Xiu, Dongbin
2010-01-01
The first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC meth
A textbook of computer based numerical and statistical techniques
Jaiswal, AK
2009-01-01
About the Book: Application of Numerical Analysis has become an integral part of the life of all the modern engineers and scientists. The contents of this book covers both the introductory topics and the more advanced topics such as partial differential equations. This book is different from many other books in a number of ways. Salient Features: Mathematical derivation of each method is given to build the students understanding of numerical analysis. A variety of solved examples are given. Computer programs for almost all numerical methods discussed have been presented in `C` langu
Numerical problems with the Pascal triangle in moment computation
Czech Academy of Sciences Publication Activity Database
Kautsky, J.; Flusser, Jan
2016-01-01
Roč. 306, č. 1 (2016), s. 53-68 ISSN 0377-0427 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : moment computation * Pascal triangle * appropriate polynomial basis * numerical problems Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.357, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0459096.pdf
Numerical computation of aeroacoustic transfer functions for realistic airfoils
De Santana, Leandro Dantas; Miotto, Renato Fuzaro; Wolf, William Roberto
2017-01-01
Based on Amiet's theory formalism, we propose a numerical framework to compute the aeroacoustic transfer function of realistic airfoil geometries. The aeroacoustic transfer function relates the amplitude and phase of an incoming periodic gust to the respective unsteady lift response permitting,
Efficient Numerical Methods for Stochastic Differential Equations in Computational Finance
Happola, Juho
2017-09-19
Stochastic Differential Equations (SDE) offer a rich framework to model the probabilistic evolution of the state of a system. Numerical approximation methods are typically needed in evaluating relevant Quantities of Interest arising from such models. In this dissertation, we present novel effective methods for evaluating Quantities of Interest relevant to computational finance when the state of the system is described by an SDE.
Efficient Numerical Methods for Stochastic Differential Equations in Computational Finance
Happola, Juho
2017-01-01
Stochastic Differential Equations (SDE) offer a rich framework to model the probabilistic evolution of the state of a system. Numerical approximation methods are typically needed in evaluating relevant Quantities of Interest arising from such models. In this dissertation, we present novel effective methods for evaluating Quantities of Interest relevant to computational finance when the state of the system is described by an SDE.
Introduction to Numerical Computation - analysis and Matlab illustrations
DEFF Research Database (Denmark)
Elden, Lars; Wittmeyer-Koch, Linde; Nielsen, Hans Bruun
In a modern programming environment like eg MATLAB it is possible by simple commands to perform advanced calculations on a personal computer. In order to use such a powerful tool efiiciently it is necessary to have an overview of available numerical methods and algorithms and to know about...... are illustrated by examples in MATLAB....
Computer control for remote wind turbine operation
Energy Technology Data Exchange (ETDEWEB)
Manwell, J.F.; Rogers, A.L.; Abdulwahid, U.; Driscoll, J. [Univ. of Massachusetts, Amherst, MA (United States)
1997-12-31
Light weight wind turbines located in harsh, remote sites require particularly capable controllers. Based on extensive operation of the original ESI-807 moved to such a location, a much more sophisticated controller than the original one has been developed. This paper describes the design, development and testing of that new controller. The complete control and monitoring system consists of sensor and control inputs, the control computer, control outputs, and additional equipment. The control code was written in Microsoft Visual Basic on a PC type computer. The control code monitors potential faults and allows the turbine to operate in one of eight states: off, start, run, freewheel, low wind shut down, normal wind shutdown, emergency shutdown, and blade parking. The controller also incorporates two {open_quotes}virtual wind turbines,{close_quotes} including a dynamic model of the machine, for code testing. The controller can handle numerous situations for which the original controller was unequipped.
Computer control applied to accelerators
Crowley-Milling, Michael C
1974-01-01
The differences that exist between control systems for accelerators and other types of control systems are outlined. It is further indicated that earlier accelerators had manual control systems to which computers were added, but that it is essential for the new, large accelerators to include computers in the control systems right from the beginning. Details of the computer control designed for the Super Proton Synchrotron are presented. The method of choosing the computers is described, as well as the reasons for CERN having to design the message transfer system. The items discussed include: CAMAC interface systems, a new multiplex system, operator-to-computer interaction (such as touch screen, computer-controlled knob, and non- linear track-ball), and high-level control languages. Brief mention is made of the contributions of other high-energy research laboratories as well as of some other computer control applications at CERN. (0 refs).
Research on ARM Numerical Control System
Wei, Xu; JiHong, Chen
Computerized Numerical Control (CNC) machine tools is the foundation of modern manufacturing systems, whose advanced digital technology is the key to solve the problem of sustainable development of machine tool manufacturing industry. The paper is to design CNC system embedded on ARM and indicates the hardware design and the software systems supported. On the hardware side: the driving chip of the motor control unit, as the core of components, is MCX314AL of DSP motion control which is developed by NOVA Electronics Co., Ltd. of Japan. It make convenient to control machine because of its excellent performance, simple interface, easy programming. On the Software side, the uC/OS-2 is selected as the embedded operating system of the open source, which makes a detailed breakdown of the modules of the CNC system. Those priorities are designed according to their actual requirements. The ways of communication between the module and the interrupt response are so different that it guarantees real-time property and reliability of the numerical control system. Therefore, it not only meets the requirements of the current social precision machining, but has good man-machine interface and network support to facilitate a variety of craftsmen use.
Numeric computation and statistical data analysis on the Java platform
Chekanov, Sergei V
2016-01-01
Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics for visualization are the key topics of this book. The Python code examples powered by the Java platform can easily be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell. This book equips the reader with a computational platform which, unlike other statistical programs, is not limited by a single programming language. The author focuses on practical programming aspects and covers a broad range of topics, from basic introduction to the Python language on the Java platform (Jython), to descriptive statistics, symbolic calculations, neural networks, non-linear regression analysis and many other data-mining topics. He discusses how to find regularities in real-world data, how to classify data, and how to process data for knowledge discoveries. The code snippets are so short that they easily fit into single pages. Numeric Computation and Statistical Data Analysis ...
Operating System For Numerically Controlled Milling Machine
Ray, R. B.
1992-01-01
OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.
Numerical and analytical solutions for problems relevant for quantum computers
International Nuclear Information System (INIS)
Spoerl, Andreas
2008-01-01
Quantum computers are one of the next technological steps in modern computer science. Some of the relevant questions that arise when it comes to the implementation of quantum operations (as building blocks in a quantum algorithm) or the simulation of quantum systems are studied. Numerical results are gathered for variety of systems, e.g. NMR systems, Josephson junctions and others. To study quantum operations (e.g. the quantum fourier transform, swap operations or multiply-controlled NOT operations) on systems containing many qubits, a parallel C++ code was developed and optimised. In addition to performing high quality operations, a closer look was given to the minimal times required to implement certain quantum operations. These times represent an interesting quantity for the experimenter as well as for the mathematician. The former tries to fight dissipative effects with fast implementations, while the latter draws conclusions in the form of analytical solutions. Dissipative effects can even be included in the optimisation. The resulting solutions are relaxation and time optimised. For systems containing 3 linearly coupled spin (1)/(2) qubits, analytical solutions are known for several problems, e.g. indirect Ising couplings and trilinear operations. A further study was made to investigate whether there exists a sufficient set of criteria to identify systems with dynamics which are invertible under local operations. Finally, a full quantum algorithm to distinguish between two knots was implemented on a spin(1)/(2) system. All operations for this experiment were calculated analytically. The experimental results coincide with the theoretical expectations. (orig.)
Numerically controlled oscillator for the Fermilab Booster
International Nuclear Information System (INIS)
Crisp, J.L.; Ducar, R.J.
1989-01-01
In order to improve the stability of the Fermilab Booster low level rf system, a numerically controlled oscillator system is being constructed. Although the system has not been implemented to date, the design is outlined in this paper. The heart of the new system consists of a numerically synthesized frequency generator manufactured by the Sciteq Company. The 3 GHz/sec rate and 30 to 53 MHz range of the Booster frequency program required the design of a CAMAC based, fast-cycling (1 MHz), 65K x 32 bit, digital function generator. A 1 MHz digital adder and 12 bit analog to digital converter will be used to correct small program errors by phase locking the oscillator to the beam. 6 refs., 1 fig
Numerical computation of gravitational field for general axisymmetric objects
Fukushima, Toshio
2016-10-01
We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (I) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (II) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (I) finite uniform objects covering rhombic spindles and circular toroids, (II) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (III) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.
Numerical methods and computers used in elastohydrodynamic lubrication
Hamrock, B. J.; Tripp, J. H.
1982-01-01
Some of the methods of obtaining approximate numerical solutions to boundary value problems that arise in elastohydrodynamic lubrication are reviewed. The highlights of four general approaches (direct, inverse, quasi-inverse, and Newton-Raphson) are sketched. Advantages and disadvantages of these approaches are presented along with a flow chart showing some of the details of each. The basic question of numerical stability of the elastohydrodynamic lubrication solutions, especially in the pressure spike region, is considered. Computers used to solve this important class of lubrication problems are briefly described, with emphasis on supercomputers.
Development of small scale cluster computer for numerical analysis
Zulkifli, N. H. N.; Sapit, A.; Mohammed, A. N.
2017-09-01
In this study, two units of personal computer were successfully networked together to form a small scale cluster. Each of the processor involved are multicore processor which has four cores in it, thus made this cluster to have eight processors. Here, the cluster incorporate Ubuntu 14.04 LINUX environment with MPI implementation (MPICH2). Two main tests were conducted in order to test the cluster, which is communication test and performance test. The communication test was done to make sure that the computers are able to pass the required information without any problem and were done by using simple MPI Hello Program where the program written in C language. Additional, performance test was also done to prove that this cluster calculation performance is much better than single CPU computer. In this performance test, four tests were done by running the same code by using single node, 2 processors, 4 processors, and 8 processors. The result shows that with additional processors, the time required to solve the problem decrease. Time required for the calculation shorten to half when we double the processors. To conclude, we successfully develop a small scale cluster computer using common hardware which capable of higher computing power when compare to single CPU processor, and this can be beneficial for research that require high computing power especially numerical analysis such as finite element analysis, computational fluid dynamics, and computational physics analysis.
Numerical optimization of circulation control airfoils
Tai, T. C.; Kidwell, G. H., Jr.; Vanderplaats, G. N.
1981-01-01
A numerical procedure for optimizing circulation control airfoils, which consists of the coupling of an optimization scheme with a viscous potential flow analysis for blowing jet, is presented. The desired airfoil is defined by a combination of three baseline shapes (cambered ellipse, and cambered ellipse with drooped and spiralled trailing edges). The coefficients of these shapes are used as design variables in the optimization process. Under the constraints of lift augmentation and lift-to-drag ratios, the optimal airfoils are found to lie between those of cambered ellipse and the drooped trailing edge, towards the latter as the angle of attack increases. Results agree qualitatively with available experimental data.
Numerical simulation of manual operation at MID stand control room
International Nuclear Information System (INIS)
Doca, C.; Dobre, A.; Predescu, D.; Mielcioiu, A.
2003-01-01
Since 2000 at INR Pitesti a package of software products devoted to numerical simulation of manual operations at fueling machine control room was developed. So far, specified, designed, worked out and implemented was the PUPITRU code. The following issues were solved: graphical aspects of specific computer - human operator interface; functional and graphical simulation of the whole associated equipment of the control desk components; implementation of the main notation as used in the automated schemes of the control desk in view of the fast identification of the switches, lamps, instrumentation, etc.; implementation within PUPITRU code of the entire data base used in the frame of MID tests; implementation of a number of about 1000 numerical simulation equations describing specific operational MID testing situations
Computer-Aided Numerical Inversion of Laplace Transform
Directory of Open Access Journals (Sweden)
Umesh Kumar
2000-01-01
Full Text Available This paper explores the technique for the computer aided numerical inversion of Laplace transform. The inversion technique is based on the properties of a family of three parameter exponential probability density functions. The only limitation in the technique is the word length of the computer being used. The Laplace transform has been used extensively in the frequency domain solution of linear, lumped time invariant networks but its application to the time domain has been limited, mainly because of the difficulty in finding the necessary poles and residues. The numerical inversion technique mentioned above does away with the poles and residues but uses precomputed numbers to find the time response. This technique is applicable to the solution of partially differentiable equations and certain classes of linear systems with time varying components.
Numerical study of MHD supersonic flow control
Ryakhovskiy, A. I.; Schmidt, A. A.
2017-11-01
Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.
Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer
Energy Technology Data Exchange (ETDEWEB)
Lucas, D.S.
2004-10-03
This paper covers the basics of the implementation of the control volume method in the context of the Homogeneous Equilibrium Model (HEM)(T/H) code using the conservation equations of mass, momentum, and energy. This primer uses the advection equation as a template. The discussion will cover the basic equations of the control volume portion of the course in the primer, which includes the advection equation, numerical methods, along with the implementation of the various equations via FORTRAN into computer programs and the final result for a three equation HEM code and its validation.
Computer numerical control of machine tools
THYER, G E
1991-01-01
This is a comprehensive textbook catering for BTEC students at NIII and Higher National levels, advanced City and Guilds courses, and the early years of degree courses. It is also ideal for use in industrial retraining and post-experience programmes.
Computer applications in controlled fusion research
International Nuclear Information System (INIS)
Killeen, J.
1975-01-01
The application of computers to controlled thermonuclear research (CTR) is essential. In the near future the use of computers in the numerical modeling of fusion systems should increase substantially. A recent panel has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies is called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. To meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR Laboratories by a communication network. The crucial element needed for success is trained personnel. The number of people with knowledge of plasma science and engineering trained in numerical methods and computer science must be increased substantially in the next few years. Nuclear engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing
Computer applications in controlled fusion research
International Nuclear Information System (INIS)
Killeen, J.
1975-02-01
The role of Nuclear Engineering Education in the application of computers to controlled fusion research can be a very important one. In the near future the use of computers in the numerical modelling of fusion systems should increase substantially. A recent study group has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. In order to meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR laboratories by a communications network. The crucial element that is needed for success is trained personnel. The number of people with knowledge of plasma science and engineering that are trained in numerical methods and computer science is quite small, and must be increased substantially in the next few years. Nuclear Engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing. (U.S.)
Directory of Open Access Journals (Sweden)
Sait Dundar Sofuoglu
2015-08-01
Full Text Available An artificial neural network (ANN approach was employed for the prediction and control of surface roughness (Ra and Rz in a computer numerical control (CNC machine. Experiments were performed on a CNC machine to obtain data used for the training and testing of an ANN. Experimental studies were conducted, and a model based on the experimental results was set up. Five machining parameters (cutter type, tool clearance strategy, spindle speed, feed rate, and depth of cut were used. One hidden layer was used for all models, while there were five neurons in the hidden layer of the Ra and Rz models. The RMSE values were calculated as 1.05 and 3.70. The mean absolute percentage error (MAPE values were calculated as 20.18 and 15.14, which can be considered as a good prediction. The results of the ANN approach were compared with the measured values. It was shown that the ANN prediction model obtained is a useful and effective tool for modeling the Ra and Rz of wood. The results of the present research can be applied in the wood machining industry to reduce energy, time, and cost.
A New Language Design for Prototyping Numerical Computation
Directory of Open Access Journals (Sweden)
Thomas Derby
1996-01-01
Full Text Available To naturally and conveniently express numerical algorithms, considerable expressive power is needed in the languages in which they are implemented. The language Matlab is widely used by numerical analysts for this reason. Expressiveness or ease-of-use can also result in a loss of efficiency, as is the case with Matlab. In particular, because numerical analysts are highly interested in the performance of their algorithms, prototypes are still often implemented in languages such as Fortran. In this article we describe a language design that is intended to both provide expressiveness for numerical computation, and at the same time provide performance guarantees. In our language, EQ, we attempt to include both syntactic and semantic features that correspond closely to the programmer's model of the problem, including unordered equations, large-granularity state transitions, and matrix notation. The resulting language does not fit into standard language categories such as functional or imperative but has features of both paradigms. We also introduce the notion of language dependability, which is the idea that a language should guarantee that certain program transformations are performed by all implementations. We first describe the interesting features of EQ, and then present three examples of algorithms written using it. We also provide encouraging performance results from an initial implementation of our language.
A mutually profitable alliance - Asymptotic expansions and numerical computations
Euvrard, D.
Problems including the flow past a wing airfoil at Mach 1, and the two-dimensional flow past a partially immersed body are used to show the advantages of coupling a standard numerical method for the whole domain where everything is of the order of 1, with an appropriate asymptotic expansion in the vicinity of some singular point. Cases more closely linking the two approaches are then considered. In the localized finite element method, the asymptotic expansion at infinity becomes a convergent series and the problem reduces to a variational form. Combined analytical and numerical methods are used in the singularity distribution method and in the various couplings of finite elements and a Green integral representation to design a subroutine to compute the Green function and its derivatives.
Learning SciPy for numerical and scientific computing
Silva
2013-01-01
A step-by-step practical tutorial with plenty of examples on research-based problems from various areas of science, that prove how simple, yet effective, it is to provide solutions based on SciPy. This book is targeted at anyone with basic knowledge of Python, a somewhat advanced command of mathematics/physics, and an interest in engineering or scientific applications---this is broadly what we refer to as scientific computing.This book will be of critical importance to programmers and scientists who have basic Python knowledge and would like to be able to do scientific and numerical computatio
Numerical analysis of boosting scheme for scalable NMR quantum computation
International Nuclear Information System (INIS)
SaiToh, Akira; Kitagawa, Masahiro
2005-01-01
Among initialization schemes for ensemble quantum computation beginning at thermal equilibrium, the scheme proposed by Schulman and Vazirani [in Proceedings of the 31st ACM Symposium on Theory of Computing (STOC'99) (ACM Press, New York, 1999), pp. 322-329] is known for the simple quantum circuit to redistribute the biases (polarizations) of qubits and small time complexity. However, our numerical simulation shows that the number of qubits initialized by the scheme is rather smaller than expected from the von Neumann entropy because of an increase in the sum of the binary entropies of individual qubits, which indicates a growth in the total classical correlation. This result--namely, that there is such a significant growth in the total binary entropy--disagrees with that of their analysis
Machine Shop. Module 8: CNC (Computerized Numerical Control). Instructor's Guide.
Crosswhite, Dwight
This document consists of materials for a five-unit course on the following topics: (1) safety guidelines; (2) coordinates and dimensions; (3) numerical control math; (4) programming for numerical control machines; and (5) setting and operating the numerical control machine. The instructor's guide begins with a list of competencies covered in the…
A numerical method to compute interior transmission eigenvalues
International Nuclear Information System (INIS)
Kleefeld, Andreas
2013-01-01
In this paper the numerical calculation of eigenvalues of the interior transmission problem arising in acoustic scattering for constant contrast in three dimensions is considered. From the computational point of view existing methods are very expensive, and are only able to show the existence of such transmission eigenvalues. Furthermore, they have trouble finding them if two or more eigenvalues are situated closely together. We present a new method based on complex-valued contour integrals and the boundary integral equation method which is able to calculate highly accurate transmission eigenvalues. So far, this is the first paper providing such accurate values for various surfaces different from a sphere in three dimensions. Additionally, the computational cost is even lower than those of existing methods. Furthermore, the algorithm is capable of finding complex-valued eigenvalues for which no numerical results have been reported yet. Until now, the proof of existence of such eigenvalues is still open. Finally, highly accurate eigenvalues of the interior Dirichlet problem are provided and might serve as test cases to check newly derived Faber–Krahn type inequalities for larger transmission eigenvalues that are not yet available. (paper)
Numerical Construction of Viable Sets for Autonomous Conflict Control Systems
Directory of Open Access Journals (Sweden)
Nikolai Botkin
2014-04-01
Full Text Available A conflict control system with state constraints is under consideration. A method for finding viability kernels (the largest subsets of state constraints where the system can be confined is proposed. The method is related to differential games theory essentially developed by N. N. Krasovskii and A. I. Subbotin. The viability kernel is constructed as the limit of sets generated by a Pontryagin-like backward procedure. This method is implemented in the framework of a level set technique based on the computation of limiting viscosity solutions of an appropriate Hamilton–Jacobi equation. To fulfill this, the authors adapt their numerical methods formerly developed for solving time-dependent Hamilton–Jacobi equations arising from problems with state constraints. Examples of computing viability sets are given.
Stable numerical method in computation of stellar evolution
International Nuclear Information System (INIS)
Sugimoto, Daiichiro; Eriguchi, Yoshiharu; Nomoto, Ken-ichi.
1982-01-01
To compute the stellar structure and evolution in different stages, such as (1) red-giant stars in which the density and density gradient change over quite wide ranges, (2) rapid evolution with neutrino loss or unstable nuclear flashes, (3) hydrodynamical stages of star formation or supernova explosion, (4) transition phases from quasi-static to dynamical evolutions, (5) mass-accreting or losing stars in binary-star systems, and (6) evolution of stellar core whose mass is increasing by shell burning or decreasing by penetration of convective envelope into the core, we face ''multi-timescale problems'' which can neither be treated by simple-minded explicit scheme nor implicit one. This problem has been resolved by three prescriptions; one by introducing the hybrid scheme suitable for the multi-timescale problems of quasi-static evolution with heat transport, another by introducing also the hybrid scheme suitable for the multi-timescale problems of hydrodynamic evolution, and the other by introducing the Eulerian or, in other words, the mass fraction coordinate for evolution with changing mass. When all of them are combined in a single computer code, we can compute numerically stably any phase of stellar evolution including transition phases, as far as the star is spherically symmetric. (author)
Computational techniques for inelastic analysis and numerical experiments
International Nuclear Information System (INIS)
Yamada, Y.
1977-01-01
A number of formulations have been proposed for inelastic analysis, particularly for the thermal elastic-plastic creep analysis of nuclear reactor components. In the elastic-plastic regime, which principally concerns with the time independent behavior, the numerical techniques based on the finite element method have been well exploited and computations have become a routine work. With respect to the problems in which the time dependent behavior is significant, it is desirable to incorporate a procedure which is workable on the mechanical model formulation as well as the method of equation of state proposed so far. A computer program should also take into account the strain-dependent and/or time-dependent micro-structural changes which often occur during the operation of structural components at the increasingly high temperature for a long period of time. Special considerations are crucial if the analysis is to be extended to large strain regime where geometric nonlinearities predominate. The present paper introduces a rational updated formulation and a computer program under development by taking into account the various requisites stated above. (Auth.)
Numerical simulation of NQR/NMR: Applications in quantum computing.
Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C
2011-04-01
A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php. Copyright © 2011 Elsevier Inc. All rights reserved.
Numerical evaluation of methods for computing tomographic projections
International Nuclear Information System (INIS)
Zhuang, W.; Gopal, S.S.; Hebert, T.J.
1994-01-01
Methods for computing forward/back projections of 2-D images can be viewed as numerical integration techniques. The accuracy of any ray-driven projection method can be improved by increasing the number of ray-paths that are traced per projection bin. The accuracy of pixel-driven projection methods can be increased by dividing each pixel into a number of smaller sub-pixels and projecting each sub-pixel. The authors compared four competing methods of computing forward/back projections: bilinear interpolation, ray-tracing, pixel-driven projection based upon sub-pixels, and pixel-driven projection based upon circular, rather than square, pixels. This latter method is equivalent to a fast, bi-nonlinear interpolation. These methods and the choice of the number of ray-paths per projection bin or the number of sub-pixels per pixel present a trade-off between computational speed and accuracy. To solve the problem of assessing backprojection accuracy, the analytical inverse Fourier transform of the ramp filtered forward projection of the Shepp and Logan head phantom is derived
Numerical simulation of information recovery in quantum computers
International Nuclear Information System (INIS)
Salas, P.J.; Sanz, A.L.
2002-01-01
Decoherence is the main problem to be solved before quantum computers can be built. To control decoherence, it is possible to use error correction methods, but these methods are themselves noisy quantum computation processes. In this work, we study the ability of Steane's and Shor's fault-tolerant recovering methods, as well as a modification of Steane's ancilla network, to correct errors in qubits. We test a way to measure correctly ancilla's fidelity for these methods, and state the possibility of carrying out an effective error correction through a noisy quantum channel, even using noisy error correction methods
Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer
Energy Technology Data Exchange (ETDEWEB)
D. S. Lucas
2004-10-01
A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.
Computer control system of TRISTAN
International Nuclear Information System (INIS)
Kurokawa, Shin-ichi; Shinomoto, Manabu; Kurihara, Michio; Sakai, Hiroshi.
1984-01-01
For the operation of a large accelerator, it is necessary to connect an enormous quantity of electro-magnets, power sources, vacuum equipment, high frequency accelerator and so on and to control them harmoniously. For the purpose, a number of computers are adopted, and connected with a network, in this way, a large computer system for laboratory automation which integrates and controls the whole system is constructed. As a distributed system of large scale, the functions such as electro-magnet control, file processing and operation control are assigned to respective computers, and the total control is made feasible by network connection, at the same time, as the interface with controlled equipment, the CAMAC (computer-aided measurement and control) is adopted to ensure the flexibility and the possibility of expansion of the system. Moreover, the language ''NODAL'' having network support function was developed so as to easily make software without considering the composition of more complex distributed system. The accelerator in the TRISTAN project is composed of an electron linear accelerator, an accumulation ring of 6 GeV and a main ring of 30 GeV. Two ring type accelerators must be synchronously operated as one body, and are controlled with one computer system. The hardware and software are outlined. (Kako, I.)
Singularities of robot mechanisms numerical computation and avoidance path planning
Bohigas, Oriol; Ros, Lluís
2017-01-01
This book presents the singular configurations associated with a robot mechanism, together with robust methods for their computation, interpretation, and avoidance path planning. Having such methods is essential as singularities generally pose problems to the normal operation of a robot, but also determine the workspaces and motion impediments of its underlying mechanical structure. A distinctive feature of this volume is that the methods are applicable to nonredundant mechanisms of general architecture, defined by planar or spatial kinematic chains interconnected in an arbitrary way. Moreover, singularities are interpreted as silhouettes of the configuration space when seen from the input or output spaces. This leads to a powerful image that explains the consequences of traversing singular configurations, and all the rich information that can be extracted from them. The problems are solved by means of effective branch-and-prune and numerical continuation methods that are of independent interest in themselves...
Numerical demonstration of neuromorphic computing with photonic crystal cavities.
Laporte, Floris; Katumba, Andrew; Dambre, Joni; Bienstman, Peter
2018-04-02
We propose a new design for a passive photonic reservoir computer on a silicon photonics chip which can be used in the context of optical communication applications, and study it through detailed numerical simulations. The design consists of a photonic crystal cavity with a quarter-stadium shape, which is known to foster interesting mixing dynamics. These mixing properties turn out to be very useful for memory-dependent optical signal processing tasks, such as header recognition. The proposed, ultra-compact photonic crystal cavity exhibits a memory of up to 6 bits, while simultaneously accepting bitrates in a wide region of operation. Moreover, because of the inherent low losses in a high-Q photonic crystal cavity, the proposed design is very power efficient.
CDIAC catalog of numeric data packages and computer model packages
International Nuclear Information System (INIS)
Boden, T.A.; Stoss, F.W.
1993-05-01
The Carbon Dioxide Information Analysis Center acquires, quality-assures, and distributes to the scientific community numeric data packages (NDPs) and computer model packages (CMPs) dealing with topics related to atmospheric trace-gas concentrations and global climate change. These packages include data on historic and present atmospheric CO 2 and CH 4 concentrations, historic and present oceanic CO 2 concentrations, historic weather and climate around the world, sea-level rise, storm occurrences, volcanic dust in the atmosphere, sources of atmospheric CO 2 , plants' response to elevated CO 2 levels, sunspot occurrences, and many other indicators of, contributors to, or components of climate change. This catalog describes the packages presently offered by CDIAC, reviews the processes used by CDIAC to assure the quality of the data contained in these packages, notes the media on which each package is available, describes the documentation that accompanies each package, and provides ordering information. Numeric data are available in the printed NDPs and CMPs, in CD-ROM format, and from an anonymous FTP area via Internet. All CDIAC information products are available at no cost
Fauzi, Ahmad
2017-11-01
Numerical computation has many pedagogical advantages: it develops analytical skills and problem-solving skills, helps to learn through visualization, and enhances physics education. Unfortunately, numerical computation is not taught to undergraduate education physics students in Indonesia. Incorporate numerical computation into the undergraduate education physics curriculum presents many challenges. The main challenges are the dense curriculum that makes difficult to put new numerical computation course and most students have no programming experience. In this research, we used case study to review how to integrate numerical computation into undergraduate education physics curriculum. The participants of this research were 54 students of the fourth semester of physics education department. As a result, we concluded that numerical computation could be integrated into undergraduate education physics curriculum using spreadsheet excel combined with another course. The results of this research become complements of the study on how to integrate numerical computation in learning physics using spreadsheet excel.
Coupling artificial intelligence and numerical computation for engineering design (Invited paper)
Tong, S. S.
1986-01-01
The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.
Mukhadiyev, Nurzhan
2017-05-01
Combustion at extreme conditions, such as a turbulent flame at high Karlovitz and Reynolds numbers, is still a vast and an uncertain field for researchers. Direct numerical simulation of a turbulent flame is a superior tool to unravel detailed information that is not accessible to most sophisticated state-of-the-art experiments. However, the computational cost of such simulations remains a challenge even for modern supercomputers, as the physical size, the level of turbulence intensity, and chemical complexities of the problems continue to increase. As a result, there is a strong demand for computational cost reduction methods as well as in acceleration of existing methods. The main scope of this work was the development of computational and numerical tools for high-fidelity direct numerical simulations of premixed planar flames interacting with turbulence. The first part of this work was KAUST Adaptive Reacting Flow Solver (KARFS) development. KARFS is a high order compressible reacting flow solver using detailed chemical kinetics mechanism; it is capable to run on various types of heterogeneous computational architectures. In this work, it was shown that KARFS is capable of running efficiently on both CPU and GPU. The second part of this work was numerical tools for direct numerical simulations of planar premixed flames: such as linear turbulence forcing and dynamic inlet control. DNS of premixed turbulent flames conducted previously injected velocity fluctuations at an inlet. Turbulence injected at the inlet decayed significantly while reaching the flame, which created a necessity to inject higher than needed fluctuations. A solution for this issue was to maintain turbulence strength on the way to the flame using turbulence forcing. Therefore, a linear turbulence forcing was implemented into KARFS to enhance turbulence intensity. Linear turbulence forcing developed previously by other groups was corrected with net added momentum removal mechanism to prevent mean
Numerical computation of inventory policies, based on the EOQ/sigma-x value for order-point systems
DEFF Research Database (Denmark)
Alstrøm, Poul
2001-01-01
This paper examines the numerical computation of two control parameters, order size and order point in the well-known inventory control model, an (s,Q)system with a beta safety strategy. The aim of the paper is to show that the EOQ/sigma-x value is both sufficient for controlling the system and e...
Numerical computation of inventory policies, based on the EOQ/sigma-x value for order-point systems
DEFF Research Database (Denmark)
Alstrøm, Poul
2000-01-01
This paper examines the numerical computation of two control parameters, order size and order point in the well-known inventory control model, an (s,Q)system with a beta safety strategy. The aim of the paper is to show that the EOQ/sigma-x value is both sufficient for controlling the system and e...
Computer prediction of subsurface radionuclide transport: an adaptive numerical method
International Nuclear Information System (INIS)
Neuman, S.P.
1983-01-01
Radionuclide transport in the subsurface is often modeled with the aid of the advection-dispersion equation. A review of existing computer methods for the solution of this equation shows that there is need for improvement. To answer this need, a new adaptive numerical method is proposed based on an Eulerian-Lagrangian formulation. The method is based on a decomposition of the concentration field into two parts, one advective and one dispersive, in a rigorous manner that does not leave room for ambiguity. The advective component of steep concentration fronts is tracked forward with the aid of moving particles clustered around each front. Away from such fronts the advection problem is handled by an efficient modified method of characteristics called single-step reverse particle tracking. When a front dissipates with time, its forward tracking stops automatically and the corresponding cloud of particles is eliminated. The dispersion problem is solved by an unconventional Lagrangian finite element formulation on a fixed grid which involves only symmetric and diagonal matrices. Preliminary tests against analytical solutions of ne- and two-dimensional dispersion in a uniform steady state velocity field suggest that the proposed adaptive method can handle the entire range of Peclet numbers from 0 to infinity, with Courant numbers well in excess of 1
Computer controlled high voltage system
Energy Technology Data Exchange (ETDEWEB)
Kunov, B; Georgiev, G; Dimitrov, L [and others
1996-12-31
A multichannel computer controlled high-voltage power supply system is developed. The basic technical parameters of the system are: output voltage -100-3000 V, output current - 0-3 mA, maximum number of channels in one crate - 78. 3 refs.
Personal computers in accelerator control
International Nuclear Information System (INIS)
Anderssen, P.S.
1988-01-01
The advent of the personal computer has created a popular movement which has also made a strong impact on science and engineering. Flexible software environments combined with good computational performance and large storage capacities are becoming available at steadily decreasing costs. Of equal importance, however, is the quality of the user interface offered on many of these products. Graphics and screen interaction is available in ways that were only possible on specialized systems before. Accelerator engineers were quick to pick up the new technology. The first applications were probably for controllers and data gatherers for beam measurement equipment. Others followed, and today it is conceivable to make personal computer a standard component of an accelerator control system. This paper reviews the experience gained at CERN so far and describes the approach taken in the design of the common control center for the SPS and the future LEP accelerators. The design goal has been to be able to integrate personal computers into the accelerator control system and to build the operator's workplace around it. (orig.)
Computer controlled testing of batteries
Kuiper, A.C.J.; Einerhand, R.E.F.; Visscher, W.
1989-01-01
A computerized testing device for batteries consists of a power supply, a multiplexer circuit connected to the batteries, a protection circuit, and an IBM Data Aquisition and Control Adapter card, connected to a personal computer. The software is written in Turbo-Pascal and can be easily adapted to
Multiresolution strategies for the numerical solution of optimal control problems
Jain, Sachin
There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a
International Nuclear Information System (INIS)
Damyanova, M; Sabchevski, S; Vasileva, E; Balabanova, E; Zhelyazkov, I; Dankov, P; Malinov, P
2016-01-01
Powerful gyrotrons are necessary as sources of strong microwaves for electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) of magnetically confined plasmas in various reactors (most notably ITER) for controlled thermonuclear fusion. Adequate physical models and efficient problem-oriented software packages are essential tools for numerical studies, analysis, optimization and computer-aided design (CAD) of such high-performance gyrotrons operating in a CW mode and delivering output power of the order of 1-2 MW. In this report we present the current status of our simulation tools (physical models, numerical codes, pre- and post-processing programs, etc.) as well as the computational infrastructure on which they are being developed, maintained and executed. (paper)
Polynomial model inversion control: numerical tests and applications
Novara, Carlo
2015-01-01
A novel control design approach for general nonlinear systems is described in this paper. The approach is based on the identification of a polynomial model of the system to control and on the on-line inversion of this model. Extensive simulations are carried out to test the numerical efficiency of the approach. Numerical examples of applicative interest are presented, concerned with control of the Duffing oscillator, control of a robot manipulator and insulin regulation in a type 1 diabetic p...
Direct numerical simulation of vector-controlled free jets
International Nuclear Information System (INIS)
Tsujimoto, K; Ao, K; Shakouchi, T; Ando, T
2011-01-01
We conduct DNS (direct numerical simulation) of vector controlled free jets. The inflow velocity of jet is periodically oscillated perpendicular to the jet axis. In order to realize the high accurate computation, a discretization in space is performed with hybrid scheme in which Fourier spectral and 6th order compact scheme are adopted. From visualized instantaneous vortex structures, it is found that the flow pattern considerably changes according to the oscillating frequency, i.e., according to the increasing the frequency, wave, bifurcating and flapping modes appear in turn. In order to quantify mixing efficiency under the vector control, as the mixing measure, statistical entropy is investigated. Compared to the uncontrolled jet, the mixing efficiency is improved in order of wavy, flapping and bifurcating modes. Thus the vector control can be expected for the improvement of mixing efficiency. Further to make clear the reason for the mixing enhancement, Snapshot POD and DMD method are applied. The primary flow structures under the vector control are demonstrated.
Numerical and experimental analysis of vertical spray control patternators
Directory of Open Access Journals (Sweden)
F. Sarghini
2013-09-01
Full Text Available The experimental vertical spray control walls have the purpose of picking up the liquid delivered by trained sprayer for providing the liquid distribution profile in height. Theoretically this should correspond to the ideal profile, which consists in a uniform distribution on the vegetation. If the profile is different from the ideal, a parameter setup is required on the sprayer. Nonetheless, some problems are hidden in the aforementioned statements: i no wall measures exactly the distribution profile (i.e. the flow through the sections in the vertical plane, parallel to the direction of advancement of the sprayer. Compared to real profile, sensitive errors are introduced: the evaporation of the drops, the deviation of the air flows caused by the sensors panel themselves; by the possibility that the drops bounce on the wall panels, also due to the current of air that can push the liquid veil laterally or upwards, Moreover, everything varies depending on the geometry of the sensors, air velocity, air humidity; ii no one knows what exactly is the optimal distribution profile. It is often considered as optimal a profile that reflects the amount of leaf area subtended by each section absorber: however, it is evident that the path of the droplets changes according to the sprayer typology (eg. radial-flow or horizontal flows. In this work a combined numerical-experimental approach is adopted, in order to assess some of the aforementioned issues: numerical data obtained by using computational fluid dynamics models are compared and validated with experimental data, in order to assess the reliability of numerical simulations in configurations which are difficult to analyze using an experimental setup.
Control by personal computer and Interface 1
International Nuclear Information System (INIS)
Kim, Eung Mug; Park, Sun Ho
1989-03-01
This book consists of three chapters. The first chapter deals with basic knowledge of micro computer control which are computer system, micro computer system, control of the micro computer and control system for calculator. The second chapter describes Interface about basic knowledge such as 8255 parallel interface, 6821 parallel interface, parallel interface of personal computer, reading BCD code in parallel interface, IEEE-488 interface, RS-232C interface and transmit data in personal computer and a measuring instrument. The third chapter includes control experiment by micro computer, experiment by eight bit computer and control experiment by machine code and BASIC.
Numerical computation of fluid flow in different nonferrous metallurgical reactors
International Nuclear Information System (INIS)
Lackner, A.
1996-10-01
Heat, mass and fluid flow phenomena in metallurgical reactor systems such as smelting cyclones or electrolytic cells are complex and intricately linked through the governing equations of fluid flow, chemical reaction kinetics and chemical thermodynamics. The challenges for the representation of flow phenomena in such reactors as well as the transfers of these concepts to non-specialist modelers (e.g. plant operators and management personnel) can be met through scientific flow visualization techniques. In the first example the fluid flow of the gas phase and of concentrate particles in a smelting cyclone for copper production are calculated three dimensionally. The effect of design parameters (length and diameter of reactor, concentrate feeding tangentially or from the top, ..) and operating conditions are investigated. Single particle traces show, how to increase particle retention time before the particles reach the liquid film flowing down the cyclone wall. Cyclone separators are widely used in the metallurgical and chemical industry for collection of large quantities of dust. Most of the empirical models, which today are applied for the design, are lacking in being valid in the high temperature region. Therefore the numerical prediction of the collection efficiency of dust particles is done. The particle behavior close to the wall is considered by applying a particle restitution model, which calculates individual particle restitution coefficients as functions of impact velocity and impact angle. The effect of design parameters and operating are studied. Moreover, the fluid flow inside a copper refining electrolysis cell is modeled. The simulation is based on density variations in the boundary layer at the electrode surface. Density and thickness of the boundary layer are compared to measurements in a parametric study. The actual inhibitor concentration in the cell is calculated, too. Moreover, a two-phase flow approach is developed to simulate the behavior of
Energy Technology Data Exchange (ETDEWEB)
Lu, Tianfeng [Univ. of Connecticut, Storrs, CT (United States)
2017-02-16
The goal of the proposed research is to create computational flame diagnostics (CFLD) that are rigorous numerical algorithms for systematic detection of critical flame features, such as ignition, extinction, and premixed and non-premixed flamelets, and to understand the underlying physicochemical processes controlling limit flame phenomena, flame stabilization, turbulence-chemistry interactions and pollutant emissions etc. The goal has been accomplished through an integrated effort on mechanism reduction, direct numerical simulations (DNS) of flames at engine conditions and a variety of turbulent flames with transport fuels, computational diagnostics, turbulence modeling, and DNS data mining and data reduction. The computational diagnostics are primarily based on the chemical explosive mode analysis (CEMA) and a recently developed bifurcation analysis using datasets from first-principle simulations of 0-D reactors, 1-D laminar flames, and 2-D and 3-D DNS (collaboration with J.H. Chen and S. Som at Argonne, and C.S. Yoo at UNIST). Non-stiff reduced mechanisms for transportation fuels amenable for 3-D DNS are developed through graph-based methods and timescale analysis. The flame structures, stabilization mechanisms, local ignition and extinction etc., and the rate controlling chemical processes are unambiguously identified through CFLD. CEMA is further employed to segment complex turbulent flames based on the critical flame features, such as premixed reaction fronts, and to enable zone-adaptive turbulent combustion modeling.
Exact Controllability of a Piezoelectric Body. Theory and Numerical Simulation
International Nuclear Information System (INIS)
Miara, Bernadette; Muench, Arnaud
2009-01-01
We study the exact controllability of a three-dimensional body made of a material whose constitutive law introduces an elasticity-electricity coupling. We show that a coupled elastic-electric control acting on the whole boundary of the body drives the system to rest after time large enough. Two-dimensional numerical experiments suggest that controllability can still be achieved by relaxing this restrictive condition using either both controls on a reduced support or elastic control alone
Numerical computing of elastic homogenized coefficients for periodic fibrous tissue
Directory of Open Access Journals (Sweden)
Roman S.
2009-06-01
Full Text Available The homogenization theory in linear elasticity is applied to a periodic array of cylindrical inclusions in rectangular pattern extending to infinity in the inclusions axial direction, such that the deformation of tissue along this last direction is negligible. In the plane of deformation, the homogenization scheme is based on the average strain energy whereas in the third direction it is based on the average normal stress along this direction. Namely, these average quantities have to be the same on a Repeating Unit Cell (RUC of heterogeneous and homogenized media when using a special form of boundary conditions forming by a periodic part and an affine part of displacement. It exists an infinity of RUCs generating the considered array. The computing procedure is tested with different choices of RUC to control that the results of the homogenization process are independent of the kind of RUC we employ. Then, the dependence of the homogenized coefficients on the microstructure can be studied. For instance, a special anisotropy and the role of the inclusion volume are investigated. In the second part of this work, mechanical traction tests are simulated. We consider two kinds of loading, applying a density of force or imposing a displacement. We test five samples of periodic array containing one, four, sixteen, sixty-four and one hundred of RUCs. The evolution of mean stresses, strains and energy with the numbers of inclusions is studied. Evolutions depend on the kind of loading, but not their limits, which could be predicted by simulating traction test of the homogenized medium.
The CESR computer control system
International Nuclear Information System (INIS)
Helmke, R.G.; Rice, D.H.; Strohman, C.
1986-01-01
The control system for the Cornell Electron Storage Ring (CESR) has functioned satisfactorily since its implementation in 1979. Key characteristics are fast tuning response, almost exclusive use of FORTRAN as a programming language, and efficient coordinated ramping of CESR guide field elements. This original system has not, however, been able to keep pace with the increasing complexity of operation of CESR associated with performance upgrades. Limitations in address space, expandability, access to data system-wide, and program development impediments have prompted the undertaking of a major upgrade. The system under development accomodates up to 8 VAX computers for all applications programs. The database and communications semaphores reside in a shared multi-ported memory, and each hardware interface bus is controlled by a dedicated 32 bit micro-processor in a VME based system. (orig.)
Computer systems for nuclear installation data control
International Nuclear Information System (INIS)
1987-09-01
The computer programs developed by Divisao de Instalacoes Nucleares (DIN) from Brazilian CNEN for data control on nuclear installations in Brazil are presented. The following computer programs are described: control of registered companies, control of industrial sources, irradiators and monitors; control of liable person; control of industry irregularities; for elaborating credence tests; for shielding analysis; control of waste refuge [pt
The Application of Visual Basic Computer Programming Language to Simulate Numerical Iterations
Directory of Open Access Journals (Sweden)
Abdulkadir Baba HASSAN
2006-06-01
Full Text Available This paper examines the application of Visual Basic Computer Programming Language to Simulate Numerical Iterations, the merit of Visual Basic as a Programming Language and the difficulties faced when solving numerical iterations analytically, this research paper encourage the uses of Computer Programming methods for the execution of numerical iterations and finally fashion out and develop a reliable solution using Visual Basic package to write a program for some selected iteration problems.
Numerical computation of space shuttle orbiter flow field
Tannehill, John C.
1988-01-01
A new parabolized Navier-Stokes (PNS) code has been developed to compute the hypersonic, viscous chemically reacting flow fields around 3-D bodies. The flow medium is assumed to be a multicomponent mixture of thermally perfect but calorically imperfect gases. The new PNS code solves the gas dynamic and species conservation equations in a coupled manner using a noniterative, implicit, approximately factored, finite difference algorithm. The space-marching method is made well-posed by special treatment of the streamwise pressure gradient term. The code has been used to compute hypersonic laminar flow of chemically reacting air over cones at angle of attack. The results of the computations are compared with the results of reacting boundary-layer computations and show excellent agreement.
Benchmark Numerical Toolkits for High Performance Computing, Phase I
National Aeronautics and Space Administration — Computational codes in physics and engineering often use implicit solution algorithms that require linear algebra tools such as Ax=b solvers, eigenvalue,...
Three numerical methods for the computation of the electrostatic energy
International Nuclear Information System (INIS)
Poenaru, D.N.; Galeriu, D.
1975-01-01
The FORTRAN programs for computation of the electrostatic energy of a body with axial symmetry by Lawrence, Hill-Wheeler and Beringer methods are presented in detail. The accuracy, time of computation and the required memory of these methods are tested at various deformations for two simple parametrisations: two overlapping identical spheres and a spheroid. On this basis the field of application of each method is recomended
Numerical Computational Technique for Scattering from Underwater Objects
T. Ratna Mani; Raj Kumar; Odamapally Vijay Kumar
2013-01-01
This paper presents a computational technique for mono-static and bi-static scattering from underwater objects of different shape such as submarines. The scatter has been computed using finite element time domain (FETD) method, based on the superposition of reflections, from the different elements reaching the receiver at a particular instant in time. The results calculated by this method has been verified with the published results based on ramp response technique. An in-depth parametric s...
Researching on YH100 Numerical Control Servo Press Hydraulic Control System and Control Algorithm
Directory of Open Access Journals (Sweden)
Kai LI
2014-09-01
Full Text Available In order to study the numerical control (NC servo press hydraulic control system and its control algorithm. The numerical control servo press performance and control principle of hydraulic control system are analyzed. According to the flow equation of the hydraulic control valve, hydraulic cylinder flow continuity equation and the force balance equation of the hydraulic cylinder with load press, the mathematical model of hydraulic control system is established. And the servo press hydraulic system transfer function is deduced. Introducing the suitable immune particle swarm control algorithm for servo press hydraulic system, and the control system block diagram is established. Immune algorithm is used to optimize new control parameters of the system and adopt the new optimization results to optimize the system simulation. The simulation result shows that the hydraulic system’s transition time controlled by the immune particle swarm algorithm is shorter than traditional ones, and the control performance is obviously improved. Finally it can be concluded that immune particle swarm PID control have these characteristics such as quickness, stability and accuracy. Applying this principle into application, the obtained YH100 numerical control servo press hydraulic control system meets the requirement.
Numerical approximation of null controls for the heat equation: Ill-posedness and remedies
International Nuclear Information System (INIS)
Münch, Arnaud; Zuazua, Enrique
2010-01-01
The numerical approximation of exact or trajectory controls for the wave equation is known to be a delicate issue, since the pioneering work of Glowinski–Lions in the nineties, because of the anomalous behavior of the high-frequency spurious numerical waves. Various efficient remedies have been developed and analyzed in the last decade to filter out these high-frequency components: Fourier filtering, Tychonoff's regularization, mixed finite-element methods, multi-grid strategies, etc. Recently convergence rate results have also been obtained. This work is devoted to analyzing this issue for the heat equation, which is the opposite paradigm because of its strong dissipativity and smoothing properties. The existing analytical results guarantee that, at least in some simple situations, as in the finite-difference scheme in 1 − d, the null or trajectory controls for numerical approximation schemes converge. This is due to the intrinsic high-frequency damping of the heat equation that is inherited by its numerical approximation schemes. But when developing numerical simulations the topic appears to be much more subtle and difficult. In fact, efficiently computing the null control for a numerical approximation scheme of the heat equation is a difficult problem in itself. The difficulty is strongly related to the regularizing effect of the heat kernel. The controls of minimal L 2 -norm are characterized as minima of quadratic functionals on the solutions of the adjoint heat equation, or its numerical versions. These functionals are shown to be coercive in very large spaces of solutions, sufficient to guarantee the L 2 character of controls, but very far from being identifiable as energy spaces for the adjoint system. The very weak coercivity of the functionals under consideration makes the approximation problem exponentially ill-posed and the functional framework far from being well adapted to standard techniques in numerical analysis. In practice, the controls of the
Pulse cleaning flow models and numerical computation of candle ceramic filters.
Tian, Gui-shan; Ma, Zhen-ji; Zhang, Xin-yi; Xu, Ting-xiang
2002-04-01
Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one-dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.
Energy Technology Data Exchange (ETDEWEB)
Davenport, C. M.
1977-02-01
The mathematical basis for an ultraprecise digital differential analyzer circuit for use as a parabolic interpolator on numerically controlled machines has been established, and scaling and other error-reduction techniques have been developed. An exact computer model is included, along with typical results showing tracking to within an accuracy of one part per million.
On Numerical Stability in Large Scale Linear Algebraic Computations
Czech Academy of Sciences Publication Activity Database
Strakoš, Zdeněk; Liesen, J.
2005-01-01
Roč. 85, č. 5 (2005), s. 307-325 ISSN 0044-2267 R&D Projects: GA AV ČR 1ET400300415 Institutional research plan: CEZ:AV0Z10300504 Keywords : linear algebraic systems * eigenvalue problems * convergence * numerical stability * backward error * accuracy * Lanczos method * conjugate gradient method * GMRES method Subject RIV: BA - General Mathematics Impact factor: 0.351, year: 2005
International Nuclear Information System (INIS)
El-Osery, I.A.
1981-01-01
The purpose of this paper is to discuss the theories, techniques and computer codes that are frequently used in numerical reactor criticality and burnup calculations. It is a part of an integrated nuclear reactor calculation scheme conducted by the Reactors Department, Inshas Nuclear Research Centre. The crude part in numerical reactor criticality and burnup calculations includes the determination of neutron flux distribution which can be obtained in principle as a solution of Boltzmann transport equation. Numerical methods used for solving transport equations are discussed. Emphasis are made on numerical techniques based on multigroup diffusion theory. These numerical techniques include nodal, modal, and finite difference ones. The most commonly known computer codes utilizing these techniques are reviewed. Some of the main computer codes that have been already developed at the Reactors Department and related to numerical reactor criticality and burnup calculations have been presented
Analysis of control rod behavior based on numerical simulation
International Nuclear Information System (INIS)
Ha, D. G.; Park, J. K.; Park, N. G.; Suh, J. M.; Jeon, K. L.
2010-01-01
The main function of a control rod is to control core reactivity change during operation associated with changes in power, coolant temperature, and dissolved boron concentration by the insertion and withdrawal of control rods from the fuel assemblies. In a scram, the control rod assemblies are released from the CRDMs (Control Rod Drive Mechanisms) and, due to gravity, drop rapidly into the fuel assemblies. The control rod insertion time during a scram must be within the time limits established by the overall core safety analysis. To assure the control rod operational functions, the guide thimbles shall not obstruct the insertion and withdrawal of the control rods or cause any damage to the fuel assembly. When fuel assembly bow occurs, it can affect both the operating performance and the core safety. In this study, the drag forces of the control rod are estimated by a numerical simulation to evaluate the guide tube bow effect on control rod withdrawal. The contact condition effects are also considered. A full scale 3D model is developed for the evaluation, and ANSYS - commercial numerical analysis code - is used for this numerical simulation. (authors)
Direct numerical control of machine tools in a nuclear research center by the CAMAC system
International Nuclear Information System (INIS)
Zwoll, K.; Mueller, K.D.; Becks, B.; Erven, W.; Sauer, M.
1977-01-01
The production of mechanical parts in research centers can be improved by connecting several numerically controlled machine tools to a central process computer via a data link. The CAMAC Serial Highway with its expandable structure yields an economic and flexible system for this purpose. The CAMAC System also facilitates the development of modular components controlling the machine tools itself. A CAMAC installation controlling three different machine tools connected to a central computer (PDP11) via the CAMAC Serial Highway is described. Besides this application, part of the CAMAC hardware and software can also be used for a great variety of scientific experiments
COMPUTER CONTROL OF BEHAVIORAL EXPERIMENTS.
SIEGEL, LOUIS
THE LINC COMPUTER PROVIDES A PARTICULAR SCHEDULE OF REINFORCEMENT FOR BEHAVIORAL EXPERIMENTS BY EXECUTING A SEQUENCE OF COMPUTER OPERATIONS IN CONJUNCTION WITH A SPECIALLY DESIGNED INTERFACE. THE INTERFACE IS THE MEANS OF COMMUNICATION BETWEEN THE EXPERIMENTAL CHAMBER AND THE COMPUTER. THE PROGRAM AND INTERFACE OF AN EXPERIMENT INVOLVING A PIGEON…
Numerical computation of FCT equilibria by inverse equilibrium method
International Nuclear Information System (INIS)
Tokuda, Shinji; Tsunematsu, Toshihide; Takeda, Tatsuoki
1986-11-01
FCT (Flux Conserving Tokamak) equilibria were obtained numerically by the inverse equilibrium method. The high-beta tokamak ordering was used to get the explicit boundary conditions for FCT equilibria. The partial differential equation was reduced to the simultaneous quasi-linear ordinary differential equations by using the moment method. The regularity conditions for solutions at the singular point of the equations can be expressed correctly by this reduction and the problem to be solved becomes a tractable boundary value problem on the quasi-linear ordinary differential equations. This boundary value problem was solved by the method of quasi-linearization, one of the shooting methods. Test calculations show that this method provides high-beta tokamak equilibria with sufficiently high accuracy for MHD stability analysis. (author)
Improved methods for computing masses from numerical simulations
Energy Technology Data Exchange (ETDEWEB)
Kronfeld, A.S.
1989-11-22
An important advance in the computation of hadron and glueball masses has been the introduction of non-local operators. This talk summarizes the critical signal-to-noise ratio of glueball correlation functions in the continuum limit, and discusses the case of (q{bar q} and qqq) hadrons in the chiral limit. A new strategy for extracting the masses of excited states is outlined and tested. The lessons learned here suggest that gauge-fixed momentum-space operators might be a suitable choice of interpolating operators. 15 refs., 2 tabs.
1994-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
NUMERICAL COMPUTATION AND PREDICTION OF ELECTRICITY CONSUMPTION IN TOBACCO INDUSTRY
Directory of Open Access Journals (Sweden)
Mirjana Laković
2017-12-01
Full Text Available Electricity is a key energy source in each country and an important condition for economic development. It is necessary to use modern methods and tools to predict energy consumption for different types of systems and weather conditions. In every industrial plant, electricity consumption presents one of the greatest operating costs. Monitoring and forecasting of this parameter provide the opportunity to rationalize the use of electricity and thus significantly reduce the costs. The paper proposes the prediction of energy consumption by a new time-series model. This involves time series models using a set of previously collected data to predict the future load. The most commonly used linear time series models are the AR (Autoregressive Model, MA (Moving Average and ARMA (Autoregressive Moving Average Model. The AR model is used in this paper. Using the AR (Autoregressive Model model, the Monte Carlo simulation method is utilized for predicting and analyzing the energy consumption change in the considered tobacco industrial plant. One of the main parts of the AR model is a seasonal pattern that takes into account the climatic conditions for a given geographical area. This part of the model was delineated by the Fourier transform and was used with the aim of avoiding the model complexity. As an example, the numerical results were performed for tobacco production in one industrial plant. A probabilistic range of input values is used to determine the future probabilistic level of energy consumption.
PWR control rod ejection analysis with the numerical nuclear reactor
International Nuclear Information System (INIS)
Hursin, M.; Kochunas, B.; Downar, T. J.
2008-01-01
During the past several years, a comprehensive high fidelity reactor LWR core modeling capability has been developed and is referred to as the Numerical Nuclear Reactor (NNR). The NNR achieves high fidelity by integrating whole core neutron transport solution and ultra fine mesh computational fluid dynamics/heat transfer solution. The work described in this paper is a preliminary demonstration of the ability of NNR to provide a detailed intra pin power distribution during a control rod ejection accident. The motivation of the work is to quantify the impact on the fuel performance calculation of a more physically accurate representation of the power distribution within the fuel rod during the transient. The paper addresses first, the validation of the transient capability of the neutronic module of the NNR code system, DeCART. For this purpose, a 'mini core' problem consisting of a 3x3 array of typical PWR fuel assemblies is considered. The initial state of the 'mini core' is hot zero power with a control rod partially inserted into the central assembly which is fresh fuel and is adjacent to once and twice burned fuel representative of a realistic PWR arrangement. The thermal hydraulic feedbacks are provided by a simplified fluids and heat conduction solver consistent for both PARCS and DeCART. The control rod is ejected from the central assembly and the transient calculation is performed with DeCART and compared with the results of the U.S. NRC core simulation code PARCS. Because the pin power reconstruction in PARCS is based on steady state intra assembly pin power distributions which do not account for thermal feedback during the transient and which do not take into account neutron leakage from neighboring assemblies during the transient, there are some small differences in the PARCS and DeCART pin power prediction. Intra pin power density information obtained with DeCART represents new information not available with previous generation of methods. The paper then
International Nuclear Information System (INIS)
Kako, T.; Watanabe, T.
1999-04-01
This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)
Energy Technology Data Exchange (ETDEWEB)
Kako, T.; Watanabe, T. [eds.
1999-04-01
This is the proceeding of 'Study on Numerical Methods Related to Plasma Confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. These are also various talks on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. The 14 papers are indexed individually. (J.P.N.)
Minimal features of a computer and its basic software to executs NEPTUNIX 2 numerical step
International Nuclear Information System (INIS)
Roux, Pierre.
1982-12-01
NEPTUNIX 2 is a package which carries out the simulation of complex processes described by numerous non linear algebro-differential equations. Main features are: non linear or time dependent parameters, implicit form, stiff systems, dynamic change of equations leading to discontinuities on some variables. Thus the mathematical model is built with an equation set F(x,x',t,l) = 0, where t is the independent variable, x' the derivative of x and l an ''algebrized'' logical variable. The NEPTUNIX 2 package is divided into two successive major steps: a non numerical step and a numerical step. The non numerical step must be executed on a series 370 IBM computer or a compatible computer. This step generates a FORTRAN language model picture fitted for the computer carrying out the numerical step. The numerical step consists in building and running a mathematical model simulator. This execution step of NEPTUNIX 2 has been designed in order to be transportable on many computers. The present manual describes minimal features of such host computer used for executing the NEPTUNIX 2 numerical step [fr
Numerical simulation of 900 MW control rods impact friction vibration and wear
International Nuclear Information System (INIS)
Jacquart, G.
1993-12-01
Impact-friction vibrations and wear have motivated a great research and development program aiming at understanding the impact and vibration behaviour of these components through experimental and numerical works. This report presents a numerical simulation of the vibrations of a single control rod and of a whole control cluster. Excitation sources for this component are due to hydraulic forces and are situated in the lower part of the rods and in the part of the cluster. Some parametric computations have been carried out on a single rod, to evaluate the effect of the lower excitation source. Different excitation levels, different eccentricities or static forces have been computed and compared to measurements on the MAGALY mock-up representing a complete rod cluster. A numerical model for the complete cluster allowed the evaluation of the upper excitation source effects. This source appears to be less powerful than the lower one. These results have been validated by comparison with MAGALY measurements. At last, some computations were performed with a model of the complete cluster, taking into account the both excitation sources. A parametric study on eccentricity and static forces has been carried out. A comparison with MAGALY measurements seems to be fairly fitting, showing that the numerical results are of the right order of magnitude. Through this numerical study, we have shown that numerical simulation of a complete control rod cluster could be lead, and we have obtained some new informations about impact forces and wear rates that need to be confirmed by more computational or experimental works or in-situ measurements. (author). 10 annexes, 11 refs
Computer control of shielded cell operations
International Nuclear Information System (INIS)
Jeffords, W.R. III.
1987-01-01
This paper describes in detail a computer system to remotely control shielded cell operations. System hardware, software, and design criteria are discussed. We have designed a computer-controlled buret that provides a tenfold improvement over the buret currently in service. A computer also automatically controls cell analyses, calibrations, and maintenance. This system improves conditions for the operators by providing a safer, more efficient working environment and is expandable for future growth and development
Proceedings of the 1982 Army Numerical Analysis and Computers Conference.
1982-08-01
field array WACC (l,J). Configuration types. The cartesian coordinates of the points on the entire boundary of the physical region, i.e., the closed outer...the field array WACC . This calculation is discussed in Ref.[8],where it is noted that the values obtained are not truly optimum in all cases...placed in the field 60 4g array WACC . The addition to the control functions from attraction to specified lines and/or points in the physical region is
Rodriguez, A.; Ibanescu, M.; Iannuzzi, D.; Joannopoulos, J. D.; Johnson, S.T.
2007-01-01
We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy (given sufficient computational resources). Our approach, based on well-established integration of the mean stress tensor evaluated via the
Directory of Open Access Journals (Sweden)
Carlos Augusto do N. Oliveira
2013-01-01
Full Text Available The development of shape memory actuators has enabled noteworthy applications in the mechanical engineering, robotics, aerospace, and oil industries and in medicine. These applications have been targeted on miniaturization and taking full advantage of spaces. This article analyses a Ti-Ni shape memory actuator used as part of a flow control system. A Ti-Ni spring actuator is subjected to thermomechanical training and parameters such as transformation temperature, thermal hysteresis and shape memory effect performance were investigated. These parameters were important for understanding the behavior of the actuator related to martensitic phase transformation during the heating and cooling cycles which it undergoes when in service. The multiple regression methodology was used as a computational tool for analysing data in order to simulate and predict the results for stress and cycles where the experimental data was not developed. The results obtained using the training cycles enable actuators to be characterized and the numerical simulation to be validated.
A virtual component method in numerical computation of cascades for isotope separation
International Nuclear Information System (INIS)
Zeng Shi; Cheng Lu
2014-01-01
The analysis, optimization, design and operation of cascades for isotope separation involve computations of cascades. In analytical analysis of cascades, using virtual components is a very useful analysis method. For complicated cases of cascades, numerical analysis has to be employed. However, bound up to the conventional idea that the concentration of a virtual component should be vanishingly small, virtual component is not yet applied to numerical computations. Here a method of introducing the method of using virtual components to numerical computations is elucidated, and its application to a few types of cascades is explained and tested by means of numerical experiments. The results show that the concentration of a virtual component is not restrained at all by the 'vanishingly small' idea. For the same requirements on cascades, the cascades obtained do not depend on the concentrations of virtual components. (authors)
Ronald E. Coleman
1977-01-01
SEMTAP (Serpentine End Match TApe Program) is an easy and inexpensive method of programing a numerically controlled router for the manufacture of SEM (Serpentine End Matching) joints. The SEMTAP computer program allows the user to issue commands that will accurately direct a numerically controlled router along any SEM path. The user need not be a computer programer to...
A computer controlled tele-cobalt unit
International Nuclear Information System (INIS)
Brace, J.A.
1982-01-01
A computer controlled cobalt treatment unit was commissioned for treating patients in January 1980. Initially the controlling computer was a minicomputer, but now the control of the therapy unit is by a microcomputer. The treatment files, which specify the movement and configurations necessary to deliver the prescribed dose, are produced on the minicomputer and then transferred to the microcomputer using minitape cartridges. The actual treatment unit is based on a standard cobalt unit with a few additional features e.g. the drive motors can be controlled either by the computer or manually. Since the treatment unit is used for both manual and automatic treatments, the operational procedure under computer control is made to closely follow the manual procedure for a single field treatment. The necessary safety features which protect against human, hardware and software errors as well as the advantages and disadvantages of computer controlled radiotherapy are discussed
Logical design for computers and control
Dodd, Kenneth N
1972-01-01
Logical Design for Computers and Control Logical Design for Computers and Control gives an introduction to the concepts and principles, applications, and advancements in the field of control logic. The text covers topics such as logic elements; high and low logic; kinds of flip-flops; binary counting and arithmetic; and Boolean algebra, Boolean laws, and De Morgan's theorem. Also covered are topics such as electrostatics and atomic theory; the integrated circuit and simple control systems; the conversion of analog to digital systems; and computer applications and control. The book is recommend
Customer requirement modeling and mapping of numerical control machine
Directory of Open Access Journals (Sweden)
Zhongqi Sheng
2015-10-01
Full Text Available In order to better obtain information about customer requirement and develop products meeting customer requirement, it is necessary to systematically analyze and handle the customer requirement. This article uses the product service system of numerical control machine as research objective and studies the customer requirement modeling and mapping oriented toward configuration design. It introduces the conception of requirement unit, expounds the customer requirement decomposition rules, and establishes customer requirement model; it builds the house of quality using quality function deployment and confirms the weight of technical feature of product and service; it explores the relevance rules between data using rough set theory, establishes rule database, and solves the target value of technical feature of product. Using economical turning center series numerical control machine as an example, it verifies the rationality of proposed customer requirement model.
Directory of Open Access Journals (Sweden)
F. Ghomanjani
2016-10-01
Full Text Available In the present paper, we apply the Bezier curves method for solving fractional optimal control problems (OCPs and fractional Riccati differential equations. The main advantage of this method is that it can reduce the error of the approximate solutions. Hence, the solutions obtained using the Bezier curve method give good approximations. Some numerical examples are provided to confirm the accuracy of the proposed method. All of the numerical computations have been performed on a PC using several programs written in MAPLE 13.
Numerical investigation of closed-loop control for Hall accelerators
International Nuclear Information System (INIS)
Barral, S.; Miedzik, J.
2011-01-01
Low frequency discharge current oscillations in Hall accelerators are conventionally damped with external inductor-capacitor (LC) or resistor-inductor-capacitor (RLC) networks. The role of such network in the stabilization of the plasma discharge is investigated with a numerical model and the potential advantages of proportional-integral-derivative (PID) closed-loop control over RLC networks are subsequently assessed using either discharge voltage or magnetic field modulation. Simulations confirm the reduction of current oscillations in the presence of a RLC network, but suggest that PID control could ensure nearly oscillation-free operation with little sensitivity toward the PID settings.
Control strategies for friction dampers: numerical assessment and experimental investigations.
Directory of Open Access Journals (Sweden)
Coelho H.T.
2014-01-01
Full Text Available The use of friction dampers has been proposed in a wide variety of mechanical systems for which it is not possible to apply viscoelastic materials, fluid based dampers or others viscous dampers. An important example is the application of friction dampers in aircraft engines to reduce the blades vibration amplitudes. In most cases, friction dampers have been studied in a passive way, however, a significant improvement can be achieved by controlling the normal force in the dampers. The aim of this paper is to study three control strategies for friction dampers based on the hysteresis cycle. The first control strategy maximizes the energy removal in each harmonic oscillation cycle, by calculating the optimum normal force based on the last displacement peak. The second control strategy combines the first one with the maximum energy removal strategy used in the smart spring devices. Finally, is presented the strategy which homogenously modulates the friction force. Numerical studies were performed with these three strategies defining the performance metrics. The best control strategy was applied experimentally. The experimental test rig was fully identified and its parameters were used for the numerical simulations. The obtained results show the good performance for the friction damper and the selected strategy.
Computer vision in control systems
Jain, Lakhmi
2015-01-01
Volume 1 : This book is focused on the recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The Contributions include: · Morphological Image Analysis for Computer Vision Applications. · Methods for Detecting of Structural Changes in Computer Vision Systems. · Hierarchical Adaptive KL-based Transform: Algorithms and Applications. · Automatic Estimation for Parameters of Image Projective Transforms Based on Object-invariant Cores. · A Way of Energy Analysis for Image and Video Sequence Processing. · Optimal Measurement of Visual Motion Across Spatial and Temporal Scales. · Scene Analysis Using Morphological Mathematics and Fuzzy Logic. · Digital Video Stabilization in Static and Dynamic Scenes. · Implementation of Hadamard Matrices for Image Processing. · A Generalized Criterion ...
Robotic Automation in Computer Controlled Polishing
Walker, D. D.; Yu, G.; Bibby, M.; Dunn, C.; Li, H.; Wu, Y.; Zheng, X.; Zhang, P.
2016-02-01
We first present a Case Study - the manufacture of 1.4 m prototype mirror-segments for the European Extremely Large Telescope, undertaken by the National Facility for Ultra Precision Surfaces, at the OpTIC facility operated by Glyndwr University. Scale-up to serial-manufacture demands delivery of a 1.4 m off-axis aspheric hexagonal segment with surface precision robots and computer numerically controlled ('CNC') polishing machines for optical fabrication. The objective was not to assess which is superior. Rather, it was to understand for the first time their complementary properties, leading us to operate them together as a unit, integrated in hardware and software. Three key areas are reported. First is the novel use of robots to automate currently-manual operations on CNC polishing machines, to improve work-throughput, mitigate risk of damage to parts, and reduce dependence on highly-skilled staff. Second is the use of robots to pre-process surfaces prior to CNC polishing, to reduce total process time. The third draws the threads together, describing our vision of the automated manufacturing cell, where the operator interacts at cell rather than machine level. This promises to deliver a step-change in end-to-end manufacturing times and costs, compared with either platform used on its own or, indeed, the state-of-the-art used elsewhere.
A program for the numerical control of a pulse increment system
Energy Technology Data Exchange (ETDEWEB)
Gray, D.C.
1963-08-21
This report will describe the important features of the development of magnetic tapes for the numerical control of a pulse-increment system consisting of a modified Gorton lathe and its associated control unit developed by L. E. Foley of Equipment Development Service, Engineering Services, General Electric Co., Schenectady, N.Y. Included is a description of CUPID (Control and Utilization of Pulse Increment Devices), a FORTRAN program for the design of these tapes on the IBM 7090 computer, and instructions for its operation.
Disk access controller for Multi 8 computer
International Nuclear Information System (INIS)
Segalard, Jean
1970-01-01
After having presented the initial characteristics and weaknesses of the software provided for the control of a memory disk coupled with a Multi 8 computer, the author reports the development and improvement of this controller software. He presents the different constitutive parts of the computer and the operation of the disk coupling and of the direct access to memory. He reports the development of the disk access controller: software organisation, loader, subprograms and statements
Numerical optimization of circulation control airfoil at high subsonic speed
Tai, T. C.; Kidwell, G. H., Jr.
1984-01-01
A numerical procedure for optimizing the design of the circulation control airfoil for use at high subsonic speeds is presented. The procedure consists of an optimization scheme coupled with a viscous potential flow analysis for the blowing jet. The desired airfoil is defined by a combination of three baseline shapes (cambered ellipse and cambered ellipse with drooped and spiraled trailing edges). The coefficients of these shapes are used as design variables in the optimization process. Under the constraints of lift augmentation and lift-to-drag ratios, the airfoil, optimized at free-stream Mach 0.54 and alpha = -2 degrees can be characterized as a cambered ellipse with a drooped trailing edge. Experimental tests support the performance improvement predicted by numerical optimization.
Numerical Studies of a Fluidic Diverter for Flow Control
Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya
2009-01-01
The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.
Numerical models for computation of pollutant-dispersion in the atmosphere
International Nuclear Information System (INIS)
Leder, S.M.; Biesemann-Krueger, A.
1985-04-01
The report describes some models which are used to compute the concentration of emitted pollutants in the lower atmosphere. A dispersion model, developed at the University of Hamburg, is considered in more detail and treated with two different numerical methods. The convergence of the methods is investigated and a comparison of numerical results and dispersion experiments carried out at the Nuclear Research Center Karlsruhe is given. (orig.) [de
International Nuclear Information System (INIS)
Chernyshenko, Dmitri; Fangohr, Hans
2015-01-01
In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetizing tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii). - Highlights: • We study the accuracy of demagnetization in finite difference micromagnetics. • We introduce a new sparse integration method to compute the tensor more accurately. • Newell, sparse integration and asymptotic method are compared for all ranges
Soft computing in intelligent control
Jung, Jin-Woo; Kubota, Naoyuki
2014-01-01
Nowadays, people have tendency to be fond of smarter machines that are able to collect data, make learning, recognize things, infer meanings, communicate with human and perform behaviors. Thus, we have built advanced intelligent control affecting all around societies; automotive, rail, aerospace, defense, energy, healthcare, telecoms and consumer electronics, finance, urbanization. Consequently, users and consumers can take new experiences through the intelligent control systems. We can reshape the technology world and provide new opportunities for industry and business, by offering cost-effective, sustainable and innovative business models. We will have to know how to create our own digital life. The intelligent control systems enable people to make complex applications, to implement system integration and to meet society’s demand for safety and security. This book aims at presenting the research results and solutions of applications in relevance with intelligent control systems. We propose to researchers ...
Numerical computation of soliton dynamics for NLS equations in a driving potential
Directory of Open Access Journals (Sweden)
Marco Caliari
2010-06-01
Full Text Available We provide numerical computations for the soliton dynamics of the nonlinear Schrodinger equation with an external potential. After computing the ground state solution r of a related elliptic equation we show that, in the semi-classical regime, the center of mass of the solution with initial datum built upon r is driven by the solution to $ddot x=- abla V(x$. Finally, we provide examples and analyze the numerical errors in the two dimensional case when V is a harmonic potential.
International Nuclear Information System (INIS)
Kako, T.; Watanabe, T.
2000-06-01
This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)
Energy conserving numerical methods for the computation of complex vortical flows
Allaneau, Yves
One of the original goals of this thesis was to develop numerical tools to help with the design of micro air vehicles. Micro Air Vehicles (MAVs) are small flying devices of only a few inches in wing span. Some people consider that as their size becomes smaller and smaller, it would be increasingly more difficult to keep all the classical control surfaces such as the rudders, the ailerons and the usual propellers. Over the years, scientists took inspiration from nature. Birds, by flapping and deforming their wings, are capable of accurate attitude control and are able to generate propulsion. However, the biomimicry design has its own limitations and it is difficult to place a hummingbird in a wind tunnel to study precisely the motion of its wings. Our approach was to use numerical methods to tackle this challenging problem. In order to precisely evaluate the lift and drag generated by the wings, one needs to be able to capture with high fidelity the extremely complex vortical flow produced in the wake. This requires a numerical method that is stable yet not too dissipative, so that the vortices do not get diffused in an unphysical way. We solved this problem by developing a new Discontinuous Galerkin scheme that, in addition to conserving mass, momentum and total energy locally, also preserves kinetic energy globally. This property greatly improves the stability of the simulations, especially in the special case p=0 when the approximation polynomials are taken to be piecewise constant (we recover a finite volume scheme). In addition to needing an adequate numerical scheme, a high fidelity solution requires many degrees of freedom in the computations to represent the flow field. The size of the smallest eddies in the flow is given by the Kolmogoroff scale. Capturing these eddies requires a mesh counting in the order of Re³ cells, where Re is the Reynolds number of the flow. We show that under-resolving the system, to a certain extent, is acceptable. However our
Vectorization on the star computer of several numerical methods for a fluid flow problem
Lambiotte, J. J., Jr.; Howser, L. M.
1974-01-01
A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.
High Performance Numerical Computing for High Energy Physics: A New Challenge for Big Data Science
International Nuclear Information System (INIS)
Pop, Florin
2014-01-01
Modern physics is based on both theoretical analysis and experimental validation. Complex scenarios like subatomic dimensions, high energy, and lower absolute temperature are frontiers for many theoretical models. Simulation with stable numerical methods represents an excellent instrument for high accuracy analysis, experimental validation, and visualization. High performance computing support offers possibility to make simulations at large scale, in parallel, but the volume of data generated by these experiments creates a new challenge for Big Data Science. This paper presents existing computational methods for high energy physics (HEP) analyzed from two perspectives: numerical methods and high performance computing. The computational methods presented are Monte Carlo methods and simulations of HEP processes, Markovian Monte Carlo, unfolding methods in particle physics, kernel estimation in HEP, and Random Matrix Theory used in analysis of particles spectrum. All of these methods produce data-intensive applications, which introduce new challenges and requirements for ICT systems architecture, programming paradigms, and storage capabilities.
Semi Active Control of Civil Structures, Analytical and Numerical Studies
Kerboua, M.; Benguediab, M.; Megnounif, A.; Benrahou, K. H.; Kaoulala, F.
numerical example of the parallel R-L piezoelectric vibration shunt control simulated with MATLAB® is presented. An analytical study of the resistor-inductor (R-L) passive piezoelectric vibration shunt control of a cantilever beam was undertaken. The modal and strain analyses were performed by varying the material properties and geometric configurations of the piezoelectric transducer in relation to the structure in order to maximize the mechanical strain produced in the piezoelectric transducer.
Towards nanorod LEDs: Numerical predictions and controlled growth
Energy Technology Data Exchange (ETDEWEB)
Koelper, Christopher [Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Computational Electronics and Photonics, Universitaet Kassel, Wilhelmshoeher Allee 71, 34121 Kassel (Germany); Bergbauer, Werner [Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Drechsel, Philipp; Sabathil, Matthias; Strassburg, Martin; Lugauer, Hans-Juergen [Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Witzigmann, Bernd [Computational Electronics and Photonics, Universitaet Kassel, Wilhelmshoeher Allee 71, 34121 Kassel (Germany); Fuendling, Soenke; Li, Shunfeng; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany)
2011-07-15
We present a numerical optimization of nanorod geometries with respect to the optical properties of an electrically driven LED emitting in the green spectral range. It is shown that an overall Purcell enhancement as well as directional emission can be achieved at an emission wavelength of 550 nm with nanorods of 110 nm radius. Position-controlled growth on patterned substrates demonstrates that the required dimensions are accessible by varying growth parameters and growth time in a large volume MOVPE reactor. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Mechatronic Model Based Computed Torque Control of a Parallel Manipulator
Directory of Open Access Journals (Sweden)
Zhiyong Yang
2008-11-01
Full Text Available With high speed and accuracy the parallel manipulators have wide application in the industry, but there still exist many difficulties in the actual control process because of the time-varying and coupling. Unfortunately, the present-day commercial controlles cannot provide satisfying performance for its single axis linear control only. Therefore, aimed at a novel 2-DOF (Degree of Freedom parallel manipulator called Diamond 600, a motor-mechanism coupling dynamic model based control scheme employing the computed torque control algorithm are presented in this paper. First, the integrated dynamic coupling model is deduced, according to equivalent torques between the mechanical structure and the PM (Permanent Magnetism servomotor. Second, computed torque controller is described in detail for the above proposed model. At last, a series of numerical simulations and experiments are carried out to test the effectiveness of the system, and the results verify the favourable tracking ability and robustness.
Mechatronic Model Based Computed Torque Control of a Parallel Manipulator
Directory of Open Access Journals (Sweden)
Zhiyong Yang
2008-03-01
Full Text Available With high speed and accuracy the parallel manipulators have wide application in the industry, but there still exist many difficulties in the actual control process because of the time-varying and coupling. Unfortunately, the present-day commercial controlles cannot provide satisfying performance for its single axis linear control only. Therefore, aimed at a novel 2-DOF (Degree of Freedom parallel manipulator called Diamond 600, a motor-mechanism coupling dynamic model based control scheme employing the computed torque control algorithm are presented in this paper. First, the integrated dynamic coupling model is deduced, according to equivalent torques between the mechanical structure and the PM (Permanent Magnetism servomotor. Second, computed torque controller is described in detail for the above proposed model. At last, a series of numerical simulations and experiments are carried out to test the effectiveness of the system, and the results verify the favourable tracking ability and robustness.
An approach to first principles electronic structure calculation by symbolic-numeric computation
Directory of Open Access Journals (Sweden)
Akihito Kikuchi
2013-04-01
Full Text Available There is a wide variety of electronic structure calculation cooperating with symbolic computation. The main purpose of the latter is to play an auxiliary role (but not without importance to the former. In the field of quantum physics [1-9], researchers sometimes have to handle complicated mathematical expressions, whose derivation seems almost beyond human power. Thus one resorts to the intensive use of computers, namely, symbolic computation [10-16]. Examples of this can be seen in various topics: atomic energy levels, molecular dynamics, molecular energy and spectra, collision and scattering, lattice spin models and so on [16]. How to obtain molecular integrals analytically or how to manipulate complex formulas in many body interactions, is one such problem. In the former, when one uses special atomic basis for a specific purpose, to express the integrals by the combination of already known analytic functions, may sometimes be very difficult. In the latter, one must rearrange a number of creation and annihilation operators in a suitable order and calculate the analytical expectation value. It is usual that a quantitative and massive computation follows a symbolic one; for the convenience of the numerical computation, it is necessary to reduce a complicated analytic expression into a tractable and computable form. This is the main motive for the introduction of the symbolic computation as a forerunner of the numerical one and their collaboration has won considerable successes. The present work should be classified as one such trial. Meanwhile, the use of symbolic computation in the present work is not limited to indirect and auxiliary part to the numerical computation. The present work can be applicable to a direct and quantitative estimation of the electronic structure, skipping conventional computational methods.
Directory of Open Access Journals (Sweden)
M. Boumaza
2015-07-01
Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.
A computable type theory for control systems
P.J. Collins (Pieter); L. Guo; J. Baillieul
2009-01-01
htmlabstractIn this paper, we develop a theory of computable types suitable for the study of control systems. The theory uses type-two effectivity as the underlying computational model, but we quickly develop a type system which can be manipulated abstractly, but for which all allowable operations
Controlling Laboratory Processes From A Personal Computer
Will, H.; Mackin, M. A.
1991-01-01
Computer program provides natural-language process control from IBM PC or compatible computer. Sets up process-control system that either runs without operator or run by workers who have limited programming skills. Includes three smaller programs. Two of them, written in FORTRAN 77, record data and control research processes. Third program, written in Pascal, generates FORTRAN subroutines used by other two programs to identify user commands with device-driving routines written by user. Also includes set of input data allowing user to define user commands to be executed by computer. Requires personal computer operating under MS-DOS with suitable hardware interfaces to all controlled devices. Also requires FORTRAN 77 compiler and device drivers written by user.
A computationally efficient fuzzy control s
Directory of Open Access Journals (Sweden)
Abdel Badie Sharkawy
2013-12-01
Full Text Available This paper develops a decentralized fuzzy control scheme for MIMO nonlinear second order systems with application to robot manipulators via a combination of genetic algorithms (GAs and fuzzy systems. The controller for each degree of freedom (DOF consists of a feedforward fuzzy torque computing system and a feedback fuzzy PD system. The feedforward fuzzy system is trained and optimized off-line using GAs, whereas not only the parameters but also the structure of the fuzzy system is optimized. The feedback fuzzy PD system, on the other hand, is used to keep the closed-loop stable. The rule base consists of only four rules per each DOF. Furthermore, the fuzzy feedback system is decentralized and simplified leading to a computationally efficient control scheme. The proposed control scheme has the following advantages: (1 it needs no exact dynamics of the system and the computation is time-saving because of the simple structure of the fuzzy systems and (2 the controller is robust against various parameters and payload uncertainties. The computational complexity of the proposed control scheme has been analyzed and compared with previous works. Computer simulations show that this controller is effective in achieving the control goals.
Research in progress in applied mathematics, numerical analysis, and computer science
1990-01-01
Research conducted at the Institute in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized. The Institute conducts unclassified basic research in applied mathematics in order to extend and improve problem solving capabilities in science and engineering, particularly in aeronautics and space.
Transfer of numeric ASCII data files between Apple and IBM personal computers.
Allan, R W; Bermejo, R; Houben, D
1986-01-01
Listings for programs designed to transfer numeric ASCII data files between Apple and IBM personal computers are provided with accompanying descriptions of how the software operates. Details of the hardware used are also given. The programs may be easily adapted for transferring data between other microcomputers.
CINDA-3G: Improved Numerical Differencing Analyzer Program for Third-Generation Computers
Gaski, J. D.; Lewis, D. R.; Thompson, L. R.
1970-01-01
The goal of this work was to develop a new and versatile program to supplement or replace the original Chrysler Improved Numerical Differencing Analyzer (CINDA) thermal analyzer program in order to take advantage of the improved systems software and machine speeds of the third-generation computers.
International Nuclear Information System (INIS)
Herrmann, H.J.
1989-01-01
Electrical conductivity diffusion or phonons, have an anomalous behaviour on percolation clusters at the percolation threshold due to the fractality of these clusters. The results that have been found numerically for this anomalous behaviour are reviewed. A special purpose computer built for this purpose is described and the evaluation of the data from this machine is discussed
Numerical computation of the transport matrix in toroidal plasma with a stochastic magnetic field
Zhu, Siqiang; Chen, Dunqiang; Dai, Zongliang; Wang, Shaojie
2018-04-01
A new numerical method, based on integrating along the full orbit of guiding centers, to compute the transport matrix is realized. The method is successfully applied to compute the phase-space diffusion tensor of passing electrons in a tokamak with a stochastic magnetic field. The new method also computes the Lagrangian correlation function, which can be used to evaluate the Lagrangian correlation time and the turbulence correlation length. For the case of the stochastic magnetic field, we find that the order of magnitude of the parallel correlation length can be estimated by qR0, as expected previously.
How to Build an AppleSeed: A Parallel Macintosh Cluster for Numerically Intensive Computing
Decyk, V. K.; Dauger, D. E.
We have constructed a parallel cluster consisting of a mixture of Apple Macintosh G3 and G4 computers running the Mac OS, and have achieved very good performance on numerically intensive, parallel plasma particle-incell simulations. A subset of the MPI message-passing library was implemented in Fortran77 and C. This library enabled us to port code, without modification, from other parallel processors to the Macintosh cluster. Unlike Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. This enables us to move parallel computing from the realm of experts to the main stream of computing.
Numerical Methods for Solution of the Extended Linear Quadratic Control Problem
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Frison, Gianluca; Gade-Nielsen, Nicolai Fog
2012-01-01
In this paper we present the extended linear quadratic control problem, its efficient solution, and a discussion of how it arises in the numerical solution of nonlinear model predictive control problems. The extended linear quadratic control problem is the optimal control problem corresponding...... to the Karush-Kuhn-Tucker system that constitute the majority of computational work in constrained nonlinear and linear model predictive control problems solved by efficient MPC-tailored interior-point and active-set algorithms. We state various methods of solving the extended linear quadratic control problem...... and discuss instances in which it arises. The methods discussed in the paper have been implemented in efficient C code for both CPUs and GPUs for a number of test examples....
Review of The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing
International Nuclear Information System (INIS)
Bailey, David
2005-01-01
In the January 2002 edition of SIAM News, Nick Trefethen announced the '$100, 100-Digit Challenge'. In this note he presented ten easy-to-state but hard-to-solve problems of numerical analysis, and challenged readers to find each answer to ten-digit accuracy. Trefethen closed with the enticing comment: 'Hint: They're hard. If anyone gets 50 digits in total, I will be impressed.' This challenge obviously struck a chord in hundreds of numerical mathematicians worldwide, as 94 teams from 25 nations later submitted entries. Many of these submissions exceeded the target of 50 correct digits; in fact, 20 teams achieved a perfect score of 100 correct digits. Trefethen had offered $100 for the best submission. Given the overwhelming response, a generous donor (William Browning, founder of Applied Mathematics, Inc.) provided additional funds to provide a $100 award to each of the 20 winning teams. Soon after the results were out, four participants, each from a winning team, got together and agreed to write a book about the problems and their solutions. The team is truly international: Bornemann is from Germany, Laurie is from South Africa, Wagon is from the USA, and Waldvogel is from Switzerland. This book provides some mathematical background for each problem, and then shows in detail how each of them can be solved. In fact, multiple solution techniques are mentioned in each case. The book describes how to extend these solutions to much larger problems and much higher numeric precision (hundreds or thousands of digit accuracy). The authors also show how to compute error bounds for the results, so that one can say with confidence that one's results are accurate to the level stated. Numerous numerical software tools are demonstrated in the process, including the commercial products Mathematica, Maple and Matlab. Computer programs that perform many of the algorithms mentioned in the book are provided, both in an appendix to the book and on a website. In the process, the
Computer controlled quality of analytical measurements
International Nuclear Information System (INIS)
Clark, J.P.; Huff, G.A.
1979-01-01
A PDP 11/35 computer system is used in evaluating analytical chemistry measurements quality control data at the Barnwell Nuclear Fuel Plant. This computerized measurement quality control system has several features which are not available in manual systems, such as real-time measurement control, computer calculated bias corrections and standard deviation estimates, surveillance applications, evaluaton of measurement system variables, records storage, immediate analyst recertificaton, and the elimination of routine analysis of known bench standards. The effectiveness of the Barnwell computer system has been demonstrated in gathering and assimilating the measurements of over 1100 quality control samples obtained during a recent plant demonstration run. These data were used to determine equaitons for predicting measurement reliability estimates (bias and precision); to evaluate the measurement system; and to provide direction for modification of chemistry methods. The analytical chemistry measurement quality control activities represented 10% of the total analytical chemistry effort
Computing exact bundle compliance control charts via probability generating functions.
Chen, Binchao; Matis, Timothy; Benneyan, James
2016-06-01
Compliance to evidenced-base practices, individually and in 'bundles', remains an important focus of healthcare quality improvement for many clinical conditions. The exact probability distribution of composite bundle compliance measures used to develop corresponding control charts and other statistical tests is based on a fairly large convolution whose direct calculation can be computationally prohibitive. Various series expansions and other approximation approaches have been proposed, each with computational and accuracy tradeoffs, especially in the tails. This same probability distribution also arises in other important healthcare applications, such as for risk-adjusted outcomes and bed demand prediction, with the same computational difficulties. As an alternative, we use probability generating functions to rapidly obtain exact results and illustrate the improved accuracy and detection over other methods. Numerical testing across a wide range of applications demonstrates the computational efficiency and accuracy of this approach.
A Numerical Proof of Concept for Thermal Flow Control
Directory of Open Access Journals (Sweden)
V. Dragan
2017-02-01
Full Text Available In this paper computational fluid dynamics is used to provide a proof of concept for controlled flow separation using thermal wall interactions with the velocity boundary layer. A 3D case study is presented, using a transition modeling Shear Stress Transport turbulence model. The highly loaded single slot flap airfoil was chosen to be representative for a light aircraft and the flow conditions were modeled after a typical landing speed. In the baseline case, adiabatic walls were considered while in the separation control case, the top surface of the flaps was heated to 500 K. This heating lead to flow separation on the flaps and a significant alteration of the flow pattern across all the elements of the wing. The findings indicate that this control method has potential, with implications in both aeronautical as well as sports and civil engineering applications.
Maślak, Mariusz; Pazdanowski, Michał; Woźniczka, Piotr
2018-01-01
Validation of fire resistance for the same steel frame bearing structure is performed here using three different numerical models, i.e. a bar one prepared in the SAFIR environment, and two 3D models developed within the framework of Autodesk Simulation Mechanical (ASM) and an alternative one developed in the environment of the Abaqus code. The results of the computer simulations performed are compared with the experimental results obtained previously, in a laboratory fire test, on a structure having the same characteristics and subjected to the same heating regimen. Comparison of the experimental and numerically determined displacement evolution paths for selected nodes of the considered frame during the simulated fire exposure constitutes the basic criterion applied to evaluate the validity of the numerical results obtained. The experimental and numerically determined estimates of critical temperature specific to the considered frame and related to the limit state of bearing capacity in fire have been verified as well.
International Nuclear Information System (INIS)
Garratt, T.J.
1989-05-01
Safety assessments of radioactive waste disposal require efficient computer models for the important processes. The present paper is based on an efficient computational technique which can be used to solve a wide variety of safety assessment models. It involves the numerical inversion of analytical solutions to the Laplace-transformed differential equations using a method proposed by Talbot. This method has been implemented on a personal computer in a user-friendly manner. The steps required to implement a particular transform and run the program are outlined. Four examples are described which illustrate the flexibility, accuracy and efficiency of the program. The improvements in computational efficiency described in this paper have application to the probabilistic safety assessment codes ESCORT and MASCOT which are currently under development. Also, it is hoped that the present work will form the basis of software for personal computers which could be used to demonstrate safety assessment procedures to a wide audience. (author)
Present SLAC accelerator computer control system features
International Nuclear Information System (INIS)
Davidson, V.; Johnson, R.
1981-02-01
The current functional organization and state of software development of the computer control system of the Stanford Linear Accelerator is described. Included is a discussion of the distribution of functions throughout the system, the local controller features, and currently implemented features of the touch panel portion of the system. The functional use of our triplex of PDP11-34 computers sharing common memory is described. Also included is a description of the use of pseudopanel tables as data tables for closed loop control functions
Numerical Prediction of Hydromechanical Behaviour of Controllable Pitch Propeller
Directory of Open Access Journals (Sweden)
Saman Tarbiat
2014-01-01
Full Text Available The research described in this paper was carried out to predict hydrodynamic and frictional forces of controllable pitch propeller (CPP that bring about fretting problems in a blade bearing. The governing equations are Reynolds-averaged Navier-Stokes (RANS and are solved by OpenFOAM solver for hydrodynamic forces behind the ship’s wake. Frictional forces are calculated by practical mechanical formulae. Different advance velocities with constant rotational speed for blades are used to achieve hydrodynamic coefficients in open water and the wake behind the propeller. Results are compared at four different pitches. Detailed numerical results of 3D modelling of the propeller, hydrodynamic characteristics, and probability of the fretting motion in the propeller are presented. Results show that the probability of the fretting movement is related to the pitch.
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.
1989-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.
1992-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.
Computer science approach to quantum control
International Nuclear Information System (INIS)
Janzing, D.
2006-01-01
Whereas it is obvious that every computation process is a physical process it has hardly been recognized that many complex physical processes bear similarities to computation processes. This is in particular true for the control of physical systems on the nanoscopic level: usually the system can only be accessed via a rather limited set of elementary control operations and for many purposes only a concatenation of a large number of these basic operations will implement the desired process. This concatenation is in many cases quite similar to building complex programs from elementary steps and principles for designing algorithm may thus be a paradigm for designing control processes. For instance, one can decrease the temperature of one part of a molecule by transferring its heat to the remaining part where it is then dissipated to the environment. But the implementation of such a process involves a complex sequence of electromagnetic pulses. This work considers several hypothetical control processes on the nanoscopic level and show their analogy to computation processes. We show that measuring certain types of quantum observables is such a complex task that every instrument that is able to perform it would necessarily be an extremely powerful computer. Likewise, the implementation of a heat engine on the nanoscale requires to process the heat in a way that is similar to information processing and it can be shown that heat engines with maximal efficiency would be powerful computers, too. In the same way as problems in computer science can be classified by complexity classes we can also classify control problems according to their complexity. Moreover, we directly relate these complexity classes for control problems to the classes in computer science. Unifying notions of complexity in computer science and physics has therefore two aspects: on the one hand, computer science methods help to analyze the complexity of physical processes. On the other hand, reasonable
Upgrade plan for HANARO control computer system
International Nuclear Information System (INIS)
Kim, Min Jin; Kim, Young Ki; Jung, Hwan Sung; Choi, Young San; Woo, Jong Sub; Jun, Byung Jin
2001-01-01
A microprocessor based digital control system, the Multi-Loop Controller (MLC), which was chosen to control HANARO, was introduced to the market in early '80s and it had been used to control petrochemical plant, paper mill and Slowpoke reactor in Canada. Due to the development in computer technology, it has become so outdated model and the production of this model was discontinued a few years ago. Hence difficulty in acquiring the spare parts is expected. To achieve stable reactor control during its lifetime and to avoid possible technical dependency to the manufacturer, a long-term replacement plan for HANARO control computer system is on its way. The plan will include a few steps in its process. This paper briefly introduces the methods of implementation of the process and discusses the engineering activities of the plan
Re-Computation of Numerical Results Contained in NACA Report No. 496
Perry, Boyd, III
2015-01-01
An extensive examination of NACA Report No. 496 (NACA 496), "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen, is described. The examination included checking equations and solution methods and re-computing interim quantities and all numerical examples in NACA 496. The checks revealed that NACA 496 contains computational shortcuts (time- and effort-saving devices for engineers of the time) and clever artifices (employed in its solution methods), but, unfortunately, also contains numerous tripping points (aspects of NACA 496 that have the potential to cause confusion) and some errors. The re-computations were performed employing the methods and procedures described in NACA 496, but using modern computational tools. With some exceptions, the magnitudes and trends of the original results were in fair-to-very-good agreement with the re-computed results. The exceptions included what are speculated to be computational errors in the original in some instances and transcription errors in the original in others. Independent flutter calculations were performed and, in all cases, including those where the original and re-computed results differed significantly, were in excellent agreement with the re-computed results. Appendix A contains NACA 496; Appendix B contains a Matlab(Reistered) program that performs the re-computation of results; Appendix C presents three alternate solution methods, with examples, for the two-degree-of-freedom solution method of NACA 496; Appendix D contains the three-degree-of-freedom solution method (outlined in NACA 496 but never implemented), with examples.
Safety analysis of control rod drive computers
International Nuclear Information System (INIS)
Ehrenberger, W.; Rauch, G.; Schmeil, U.; Maertz, J.; Mainka, E.U.; Nordland, O.; Gloee, G.
1985-01-01
The analysis of the most significant user programmes revealed no errors in these programmes. The evaluation of approximately 82 cumulated years of operation demonstrated that the operating system of the control rod positioning processor has a reliability that is sufficiently good for the tasks this computer has to fulfil. Computers can be used for safety relevant tasks. The experience gained with the control rod positioning processor confirms that computers are not less reliable than conventional instrumentation and control system for comparable tasks. The examination and evaluation of computers for safety relevant tasks can be done with programme analysis or statistical evaluation of the operating experience. Programme analysis is recommended for seldom used and well structured programmes. For programmes with a long, cumulated operating time a statistical evaluation is more advisable. The effort for examination and evaluation is not greater than the corresponding effort for conventional instrumentation and control systems. This project has also revealed that, where it is technologically sensible, process controlling computers or microprocessors can be qualified for safety relevant tasks without undue effort. (orig./HP) [de
Control of peripheral units by satellite computer
International Nuclear Information System (INIS)
Tran, K.T.
1974-01-01
A computer system was developed allowing the control of nuclear physics experiments, and use of the results by means of graphical and conversational assemblies. This system which is made of two computers, one IBM-370/135 and one Telemecanique Electrique T1600, controls the conventional IBM peripherals and also the special ones made in the laboratory, such as data acquisition display and graphics units. The visual display is implemented by a scanning-type television, equipped with a light-pen. These units in themselves are universal, but their specifications were established to meet the requirements of nuclear physics experiments. The input-output channels of the two computers have been connected together by an interface, designed and implemented in the Laboratory. This interface allows the exchange of control signals and data (the data are changed from bytes into word and vice-versa). The T1600 controls the peripherals mentionned above according to the commands of the IBM370. Hence the T1600 has here the part of a satellite computer which allows conversation with the main computer and also insures the control of its special peripheral units [fr
High performance computing in linear control
International Nuclear Information System (INIS)
Datta, B.N.
1993-01-01
Remarkable progress has been made in both theory and applications of all important areas of control. The theory is rich and very sophisticated. Some beautiful applications of control theory are presently being made in aerospace, biomedical engineering, industrial engineering, robotics, economics, power systems, etc. Unfortunately, the same assessment of progress does not hold in general for computations in control theory. Control Theory is lagging behind other areas of science and engineering in this respect. Nowadays there is a revolution going on in the world of high performance scientific computing. Many powerful computers with vector and parallel processing have been built and have been available in recent years. These supercomputers offer very high speed in computations. Highly efficient software, based on powerful algorithms, has been developed to use on these advanced computers, and has also contributed to increased performance. While workers in many areas of science and engineering have taken great advantage of these hardware and software developments, control scientists and engineers, unfortunately, have not been able to take much advantage of these developments
Robot-Arm Dynamic Control by Computer
Bejczy, Antal K.; Tarn, Tzyh J.; Chen, Yilong J.
1987-01-01
Feedforward and feedback schemes linearize responses to control inputs. Method for control of robot arm based on computed nonlinear feedback and state tranformations to linearize system and decouple robot end-effector motions along each of cartesian axes augmented with optimal scheme for correction of errors in workspace. Major new feature of control method is: optimal error-correction loop directly operates on task level and not on joint-servocontrol level.
Configurating computer-controlled bar system
Šuštaršič, Nejc
2010-01-01
The principal goal of my diploma thesis is creating an application for configurating computer-controlled beverages dispensing systems. In the preamble of my thesis I present the theoretical platform for point of sale systems and beverages dispensing systems, which are required for the understanding of the target problematics. As with many other fields, computer tehnologies entered the field of managing bars and restaurants quite some time ago. Basic components of every bar or restaurant a...
Research on numerical control system based on S3C2410 and MCX314AL
Ren, Qiang; Jiang, Tingbiao
2008-10-01
With the rapid development of micro-computer technology, embedded system, CNC technology and integrated circuits, numerical control system with powerful functions can be realized by several high-speed CPU chips and RISC (Reduced Instruction Set Computing) chips which have small size and strong stability. In addition, the real-time operating system also makes the attainment of embedded system possible. Developing the NC system based on embedded technology can overcome some shortcomings of common PC-based CNC system, such as the waste of resources, low control precision, low frequency and low integration. This paper discusses a hardware platform of ENC (Embedded Numerical Control) system based on embedded processor chip ARM (Advanced RISC Machines)-S3C2410 and DSP (Digital Signal Processor)-MCX314AL and introduces the process of developing ENC system software. Finally write the MCX314AL's driver under the embedded Linux operating system. The embedded Linux operating system can deal with multitask well moreover satisfy the real-time and reliability of movement control. NC system has the advantages of best using resources and compact system with embedded technology. It provides a wealth of functions and superior performance with a lower cost. It can be sure that ENC is the direction of the future development.
Computer-aided control system design
International Nuclear Information System (INIS)
Lebenhaft, J.R.
1986-01-01
Control systems are typically implemented using conventional PID controllers, which are then tuned manually during plant commissioning to compensate for interactions between feedback loops. As plants increase in size and complexity, such controllers can fail to provide adequate process regulations. Multivariable methods can be utilized to overcome these limitations. At the Chalk River Nuclear Laboratories, modern control systems are designed and analyzed with the aid of MVPACK, a system of computer programs that appears to the user like a high-level calculator. The software package solves complicated control problems, and provides useful insight into the dynamic response and stability of multivariable systems
Computer-controlled 3-D treatment delivery
International Nuclear Information System (INIS)
Fraass, Benedick A.
1995-01-01
Purpose/Objective: This course will describe the use of computer-controlled treatment delivery techniques for treatment of patients with sophisticated conformal therapy. In particular, research and implementation issues related to clinical use of computer-controlled conformal radiation therapy (CCRT) techniques will be discussed. The possible/potential advantages of CCRT techniques will be highlighted using results from clinical 3-D planning studies. Materials and Methods: In recent years, 3-D treatment planning has been used to develop and implement 3-D conformal therapy treatment techniques, and studies based on these conformal treatments have begun to show the promise of conformal therapy. This work has been followed by the development of commercially-available multileaf collimator and computer control systems for treatment machines. Using these (and other) CCRT devices, various centers are beginning to clinically use complex computer-controlled treatments. Both research and clinical CCRT treatment techniques will be discussed in this presentation. General concepts and requirements for CCRT will be mentioned. Developmental and clinical experience with CCRT techniques from a number of centers will be utilized. Results: Treatment planning, treatment preparation and treatment delivery must be approached in an integrated fashion in order to clinically implement CCRT treatment techniques, and the entire process will be discussed. Various CCRT treatment methodologies will be reviewed from operational, dosimetric, and technical points of view. The discussion will concentrate on CCRT techniques which are likely to see rather wide dissemination over the next several years, including particularly the use of multileaf collimators (MLC), dynamic and segmental conformal therapy, conformal field shaping, and other related techniques. More advanced CCRT techniques, such as the use of individualized intensity modulation of beams or segments, and the use of computer-controlled
Piv Method and Numerical Computation for Prediction of Liquid Steel Flow Structure in Tundish
Directory of Open Access Journals (Sweden)
Cwudziński A.
2015-04-01
Full Text Available This paper presents the results of computer simulations and laboratory experiments carried out to describe the motion of steel flow in the tundish. The facility under investigation is a single-nozzle tundish designed for casting concast slabs. For the validation of the numerical model and verification of the hydrodynamic conditions occurring in the examined tundish furniture variants, obtained from the computer simulations, a physical model of the tundish was employed. State-of-the-art vector flow field analysis measuring systems developed by Lavision were used in the laboratory tests. Computer simulations of liquid steel flow were performed using the commercial program Ansys-Fluent¯. In order to obtain a complete hydrodynamic picture in the tundish furniture variants tested, the computer simulations were performed for both isothermal and non-isothermal conditions.
ASTEC: Controls analysis for personal computers
Downing, John P.; Bauer, Frank H.; Thorpe, Christopher J.
1989-01-01
The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. The project is a follow-on to the INCA (INteractive Controls Analysis) program that has been developed at GSFC over the past five years. While ASTEC makes use of the algorithms and expertise developed for the INCA program, the user interface was redesigned to take advantage of the capabilities of the personal computer. The design philosophy and the current capabilities of the ASTEC software are described.
Control oriented system analysis and feedback control of a numerical sawtooth instability model
Witvoet, G.; Westerhof, E.; Steinbuch, M.; Baar, de M.R.; Doelman, N.J.; Prater, R.
2010-01-01
A combined Porcelli-Kadomtsev numerical sawtooth instability model is analyzed using control oriented identification techniques. The resulting discrete time linear models describe the system’s behavior from crash to crash and is used in the design of a simple discrete time feedback controller, which
3D Printing device adaptable to Computer Numerical Control (CNC)
GARDAN , Julien; Danesi , F.; Roucoules , Lionel; Schneider , A.
2014-01-01
This article presents the development of a 3D printing device for the additive manufacturing adapted to a CNC machining. The application involves the integration of a specific printing head. Additive manufacturing technology is most commonly used for modeling, prototyping, tooling through an exclusive machine or 3D printer. A global review and analysis of technologies show the additive manufacturing presents little independent solutions [6][9]. The problem studied especially the additive manu...
Computer numeric control subaperture aspheric surface polishing—microroughness evaluation
Czech Academy of Sciences Publication Activity Database
Procháska, František; Polák, Jaroslav; Matoušek, O.; Tomka, David
2014-01-01
Roč. 53, č. 9 (2014), 092011-092011 ISSN 0091-3286 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0079 Institutional support: RVO:61389021 Keywords : aspheric polishing * optic surface microroughness evaluation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.954, year: 2014 http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=1901511
Computer control system of TARN-2
International Nuclear Information System (INIS)
Watanabe, S.
1989-01-01
The CAMAC interface system is employed in order to regulate the power supply, beam diagnostic and so on. Five CAMAC stations are located in the TARN-2 area and are linked with a serial highway system. The CAMAC serial highway is driven by a serial highway driver, Kinetic 3992, which is housed in the CAMAC powered crate and regulated by two successive methods. One is regulated by the mini computer through the standard branch-highway crate controller, named Type-A2, and the other is regulated with the microcomputer through the auxiliary crate controller. The CAMAC serial highway comprises the two-way optical cables with a total length of 300 m. Each CAMAC station has the serial and auxiliary crate controllers so as to realize alternative control with the local computer system. Interpreter, INSBASIC, is used in the main control computer. There are many kinds of the 'device control function' of the INSBASIC. Because the 'device control function' implies physical operating procedure of such a device, only knowledge of the logical operating procedure is required. A touch panel system is employed to regulate the complicated control flow without any knowledge of the usage of the device. A rotary encoder system, which is analogous to the potentiometer operation, is also available for smooth adjustment of the setting parameter. (author)
The Preliminary Study for Numerical Computation of 37 Rod Bundle in CANDU Reactor
International Nuclear Information System (INIS)
Jeon, Yu Mi; Bae, Jun Ho; Park, Joo Hwan
2010-01-01
A typical CANDU 6 fuel bundle consists of 37 fuel rods supported by two endplates and separated by spacer pads at various locations. In addition, the bearing pads are brazed to each outer fuel rod with the aim of reducing the contact area between the fuel bundle and the pressure tube. Although the recent progress of CFD methods has provided opportunities for computing the thermal-hydraulic phenomena inside of a fuel channel, it is yet impossible to reflect the detailed shape of rod bundle on the numerical computation due to a lot of computing mesh and memory capacity. Hence, the previous studies conducted a numerical computation for smooth channels without considering spacers, bearing pads. But, it is well known that these components are an important factor to predict the pressure drop and heat transfer rate in a channel. In this study, the new computational method is proposed to solve the complex geometry such as a fuel rod bundle. In front of applying the method to the problem of 37 rod bundle, the validity and the accuracy of the method are tested by applying the method to the simple geometry. Based on the present result, the calculation for the fully shaped 37-rod bundle is scheduled for the future works
The numerical computation of seismic fragility of base-isolated Nuclear Power Plants buildings
International Nuclear Information System (INIS)
Perotti, Federico; Domaneschi, Marco; De Grandis, Silvia
2013-01-01
Highlights: • Seismic fragility of structural components in base isolated NPP is computed. • Dynamic integration, Response Surface, FORM and Monte Carlo Simulation are adopted. • Refined approach for modeling the non-linearities behavior of isolators is proposed. • Beyond-design conditions are addressed. • The preliminary design of the isolated IRIS is the application of the procedure. -- Abstract: The research work here described is devoted to the development of a numerical procedure for the computation of seismic fragilities for equipment and structural components in Nuclear Power Plants; in particular, reference is made, in the present paper, to the case of isolated buildings. The proposed procedure for fragility computation makes use of the Response Surface Methodology to model the influence of the random variables on the dynamic response. To account for stochastic loading, the latter is computed by means of a simulation procedure. Given the Response Surface, the Monte Carlo method is used to compute the failure probability. The procedure is here applied to the preliminary design of the Nuclear Power Plant reactor building within the International Reactor Innovative and Secure international project; the building is equipped with a base isolation system based on the introduction of High Damping Rubber Bearing elements showing a markedly non linear mechanical behavior. The fragility analysis is performed assuming that the isolation devices become the critical elements in terms of seismic risk and that, once base-isolation is introduced, the dynamic behavior of the building can be captured by low-dimensional numerical models
Human-computer interfaces applied to numerical solution of the Plateau problem
Elias Fabris, Antonio; Soares Bandeira, Ivana; Ramos Batista, Valério
2015-09-01
In this work we present a code in Matlab to solve the Problem of Plateau numerically, and the code will include human-computer interface. The Problem of Plateau has applications in areas of knowledge like, for instance, Computer Graphics. The solution method will be the same one of the Surface Evolver, but the difference will be a complete graphical interface with the user. This will enable us to implement other kinds of interface like ocular mouse, voice, touch, etc. To date, Evolver does not include any graphical interface, which restricts its use by the scientific community. Specially, its use is practically impossible for most of the Physically Challenged People.
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
Kabanov, Dmitry; Kasimov, Aslan R.
2018-01-01
We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
Kabanov, Dmitry I.
2017-12-08
We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.
Linear stability analysis of detonations via numerical computation and dynamic mode decomposition
Kabanov, Dmitry
2018-03-20
We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.
International Nuclear Information System (INIS)
Hofland, G.S.; Barton, C.C.
1990-01-01
The computer program FREQFIT is designed to perform regression and statistical chi-squared goodness of fit analysis on one-dimensional or two-dimensional data. The program features an interactive user dialogue, numerous help messages, an option for screen or line printer output, and the flexibility to use practically any commercially available graphics package to create plots of the program's results. FREQFIT is written in Microsoft QuickBASIC, for IBM-PC compatible computers. A listing of the QuickBASIC source code for the FREQFIT program, a user manual, and sample input data, output, and plots are included. 6 refs., 1 fig
Merging AI and numerical modeling for accelerator control
International Nuclear Information System (INIS)
Schultz, D.E.; Silbar, R.R.
1987-01-01
The authors report the beginnings of an experiment to evaluate the power and limitations of artificial intelligence techniques combined with beam-line modeling for solving problems in accelerator control. Using the Knowledge Engineering Environment (KEE) system, they have built a knowledge base that describes the characteristics and the relationships of about 30 devices in a typical accelerator beam line. Each device in the line is categorized and pertinent attributes for each category are defined. Specific values for each device are assigned in the knowledge base to represent static characteristics. Device-specific slots are also provided for dynamic attributes. The definition of these slots reflects the data type and any limitations or restrictions on the range of the data. The authors model relationships between the various beam-line devices using the techniques of rules, active values, and object-oriented models. The knowledge base provides a framework for analyzing faults and offering suggestions to assist in tuning, based on information provided by the accelerator physicists (domain experts) responsible for designing and tuning this beam line. Our knowledge base has a powerful graphical interface. It allows the operator to mouse on an icon for a particular icon in the schematic of the beam line and obtain device-specific information and control over that device. The beam optics code Transport is used to model the beam line numerically. 11 refs., 7 figs
Computed tomography-controlled stereotactic surgery
International Nuclear Information System (INIS)
Matsumoto, Keizo; Shichijo, Fumio; Gyoten, Tetsuya; Tomida, Keisuke; Miyake, Hajime
1986-01-01
A single use of coordinate system of computed tomography (CT) scanner is utilized for CT-controlled stereotactic surgery. Depth, direction and readjustment of target trajectory were defined by known values of cursor number in CT images and numbers of the sliding table indicator. We loaded calculation formulas into hand held computer to obtain immediate answers. Stereotactic apparatus consisted two main parts: the patient's head fixation and probe holder. Surgery was performed in cases of hypertensive intracerebral hemorrhage for evacuation of the hematomas successfully. Target accuracy was satisfactory. With further advance of this surgery, automatic stereotactic control with a special robot machine seeing possible. (author)
Numerical computation of solar neutrino flux attenuated by the MSW mechanism
Kim, Jai Sam; Chae, Yoon Sang; Kim, Jung Dae
1999-07-01
We compute the survival probability of an electron neutrino in its flight through the solar core experiencing the Mikheyev-Smirnov-Wolfenstein effect with all three neutrino species considered. We adopted a hybrid method that uses an accurate approximation formula in the non-resonance region and numerical integration in the non-adiabatic resonance region. The key of our algorithm is to use the importance sampling method for sampling the neutrino creation energy and position and to find the optimum radii to start and stop numerical integration. We further developed a parallel algorithm for a message passing parallel computer. By using an idea of job token, we have developed a dynamical load balancing mechanism which is effective under any irregular load distributions
Mittra, R.; Rushdi, A.
1979-01-01
An approach for computing the geometrical optic fields reflected from a numerically specified surface is presented. The approach includes the step of deriving a specular point and begins with computing the reflected rays off the surface at the points where their coordinates, as well as the partial derivatives (or equivalently, the direction of the normal), are numerically specified. Then, a cluster of three adjacent rays are chosen to define a 'mean ray' and the divergence factor associated with this mean ray. Finally, the ampilitude, phase, and vector direction of the reflected field at a given observation point are derived by associating this point with the nearest mean ray and determining its position relative to such a ray.
CSIR Research Space (South Africa)
Wilke, DN
2012-07-01
Full Text Available problems that utilise remeshing (i.e. the mesh topology is allowed to change) between design updates. Here, changes in mesh topology result in abrupt changes in the discretization error of the computed response. These abrupt changes in turn manifests... in shape optimization but may be present whenever (partial) differential equations are ap- proximated numerically with non-constant discretization methods e.g. remeshing of spatial domains or automatic time stepping in temporal domains. Keywords: Complex...
National Research Council Canada - National Science Library
Harmon, Bruce N; Dobrovitski, Viatcheslav V
2007-01-01
...) have also been developed and applied. Most recently, specific strategies for quantum control have been investigated for realistic systems in order to extend the coherence times for spin-based quantum computing implementations...
Low cost highly available digital control computer
International Nuclear Information System (INIS)
Silvers, M.W.
1986-01-01
When designing digital controllers for critical plant control it is important to provide several features. Among these are reliability, availability, maintainability, environmental protection, and low cost. An examination of several applications has lead to a design that can be produced for approximately $20,000 (1000 control points). This design is compatible with modern concepts in distributed and hierarchical control. The canonical controller element is a dual-redundant self-checking computer that communicates with a cross-strapped, electrically isolated input/output system. The input/output subsystem comprises multiple intelligent input/output cards. These cards accept commands from the primary processor which are validated, executed, and acknowledged. Each card may be hot replaced to facilitate sparing. The implementation of the dual-redundant computer architecture is discussed. Called the FS-86, this computer can be used for a variety of applications. It has most recently found application in the upgrade of San Francisco's Bay Area Rapid Transit (BART) train control currently in progress and has been proposed for feedwater control in a boiling water reactor
Directory of Open Access Journals (Sweden)
Irfan Hussain
2018-06-01
Full Text Available This research work aims at realizing a new compliant robotic actuator for safe human-robotic interaction. In this paper, we present the modeling, control, and numerical simulations of a novel Binary-Controlled Variable Stiffness Actuator (BcVSA aiming to be used for the development of a novel compliant robotic manipulator. BcVSA is the proof of concept of the active revolute joint with the variable recruitment of series-parallel elastic elements. We briefly recall the basic design principle which is based on a stiffness varying mechanism consisting of a motor, three inline clutches, and three torsional springs with stiffness values (K0, 2K0, 4K0 connected to the load shaft and the motor shaft through two planetary sun gear trains with ratios (4:1, 4:1 respectively. We present the design concept, stiffness and dynamic modeling, and control of our BcVSA. We implemented three kinds of Multiple Model Predictive Control (MPC to control our actuator. The main motivation of choosing this controller lies in the fact that working principle of multiple MPC and multiple states space representation (stiffness level of our actuator share similar interests. In particular, we implemented Multiple MPC, Multiple Explicit MPC, and Approximated Multiple Explicit MPC. Numerical simulations are performed in order to evaluate their effectiveness for the future experiments on the prototype of our actuator. The simulation results showed that the Multiple MPC, and the Multiple Explicit MPC have similar results from the robustness point of view. On the other hand, the robustness performance of Approximated Multiple Explicit MPC is not good as compared to other controllers but it works in the offline framework while having the capability to compute the sub-optimal results. We also performed the comparison of MPC based controllers with the Computed Torque Control (CTC, and Linear Quadratic Regulator (LQR. In future, we are planning to test the presented approach on the
Characteristics of the TRISTAN control computer network
International Nuclear Information System (INIS)
Kurokawa, Shinichi; Akiyama, Atsuyoshi; Katoh, Tadahiko; Kikutani, Eiji; Koiso, Haruyo; Oide, Katsunobu; Shinomoto, Manabu; Kurihara, Michio; Abe, Kenichi
1986-01-01
Twenty-four minicomputers forming an N-to-N token-ring network control the TRISTAN accelerator complex. The computers are linked by optical fiber cables with 10 Mbps transmission speed. The software system is based on NODAL, a multicomputer interpretive language developed at the CERN SPS. The high-level services offered to the users of the network are remote execution by the EXEC, EXEC-P and IMEX commands of NODAL and uniform file access throughout the system. The network software was designed to achieve the fast response of the EXEC command. The performance of the network is also reported. Tasks that overload the minicomputers are processed on the KEK central computers. One minicomputer in the network serves as a gateway to KEKNET, which connects the minicomputer network and the central computers. The communication with the central computers is managed within the framework of the KEK NODAL system. NODAL programs communicate with the central computers calling NODAL functions; functions for exchanging data between a data set on the central computers and a NODAL variable, submitting a batch job to the central computers, checking the status of the submitted job, etc. are prepared. (orig.)
SWITCHING POWER FAN CONTROL OF COMPUTER
Directory of Open Access Journals (Sweden)
Oleksandr I. Popovskyi
2010-10-01
Full Text Available Relevance of material presented in the article, due to extensive use of high-performance computers to create modern information systems, including the NAPS of Ukraine. Most computers in NAPS of Ukraine work on Intel Pentium processors at speeds from 600 MHz to 3 GHz and release a lot of heat, which requires the installation of the system unit 2-3 additional fans. The fan is always works on full power, that leads to rapid deterioration and high level (up to 50 dB noise. In order to meet ergonomic requirements it is proposed to іnstall a computer system unit and an additional control unit ventilators, allowing independent control of each fan. The solution is applied at creation of information systems planning research in the National Academy of Pedagogical Sciences of Ukraine on Internet basis.
Advances in Computer, Communication, Control and Automation
011 International Conference on Computer, Communication, Control and Automation
2012-01-01
The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011). 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011) has been held in Zhuhai, China, November 19-20, 2011. This volume topics covered include signal and Image processing, speech and audio Processing, video processing and analysis, artificial intelligence, computing and intelligent systems, machine learning, sensor and neural networks, knowledge discovery and data mining, fuzzy mathematics and Applications, knowledge-based systems, hybrid systems modeling and design, risk analysis and management, system modeling and simulation. We hope that researchers, graduate students and other interested readers benefit scientifically from the proceedings and also find it stimulating in the process.
International Nuclear Information System (INIS)
Hindi, H.; Prabhakar, S.; Fox, J.; Teytelman, D.
1997-12-01
The authors present a technique for the design and verification of efficient bunch-by-bunch controllers for damping longitudinal multibunch instabilities. The controllers attempt to optimize the use of available feedback amplifier power--one of the most expensive components of a feedback system--and define the limits of closed loop system performance. The design technique alternates between analytic computation of single bunch optimal controllers and verification on a multibunch numerical simulator. The simulator identifies unstable coupled bunch modes and predicts their growth and damping rates. The results from the simulator are shown to be in reasonable agreement with analytical calculations based on the single bunch model. The technique is then used to evaluate the performance of a variety of controllers proposed for PEP-II
Automatic control of commercial computer programs
International Nuclear Information System (INIS)
Rezvov, B.A.; Artem'ev, A.N.; Maevskij, A.G.; Demkiv, A.A.; Kirillov, B.F.; Belyaev, A.D.; Artem'ev, N.A.
2010-01-01
The way of automatic control of commercial computer programs is presented. The developed connection of the EXAFS spectrometer automatic system (which is managed by PC for DOS) is taken with the commercial program for the CCD detector control (which is managed by PC for Windows). The described complex system is used for the automation of intermediate amplitude spectra processing in EXAFS spectrum measurements at Kurchatov SR source
Computer networks in future accelerator control systems
International Nuclear Information System (INIS)
Dimmler, D.G.
1977-03-01
Some findings of a study concerning a computer based control and monitoring system for the proposed ISABELLE Intersecting Storage Accelerator are presented. Requirements for development and implementation of such a system are discussed. An architecture is proposed where the system components are partitioned along functional lines. Implementation of some conceptually significant components is reviewed
COMPLEX OF NUMERICAL MODELS FOR COMPUTATION OF AIR ION CONCENTRATION IN PREMISES
Directory of Open Access Journals (Sweden)
M. M. Biliaiev
2016-04-01
Full Text Available Purpose. The article highlights the question about creation the complex numerical models in order to calculate the ions concentration fields in premises of various purpose and in work areas. Developed complex should take into account the main physical factors influencing the formation of the concentration field of ions, that is, aerodynamics of air jets in the room, presence of furniture, equipment, placement of ventilation holes, ventilation mode, location of ionization sources, transfer of ions under the electric field effect, other factors, determining the intensity and shape of the field of concentration of ions. In addition, complex of numerical models has to ensure conducting of the express calculation of the ions concentration in the premises, allowing quick sorting of possible variants and enabling «enlarged» evaluation of air ions concentration in the premises. Methodology. The complex numerical models to calculate air ion regime in the premises is developed. CFD numerical model is based on the use of aerodynamics, electrostatics and mass transfer equations, and takes into account the effect of air flows caused by the ventilation operation, diffusion, electric field effects, as well as the interaction of different polarities ions with each other and with the dust particles. The proposed balance model for computation of air ion regime indoors allows operative calculating the ions concentration field considering pulsed operation of the ionizer. Findings. The calculated data are received, on the basis of which one can estimate the ions concentration anywhere in the premises with artificial air ionization. An example of calculating the negative ions concentration on the basis of the CFD numerical model in the premises with reengineering transformations is given. On the basis of the developed balance model the air ions concentration in the room volume was calculated. Originality. Results of the air ion regime computation in premise, which
International Nuclear Information System (INIS)
Rodriguez, Alejandro; Ibanescu, Mihai; Joannopoulos, J. D.; Johnson, Steven G.; Iannuzzi, Davide
2007-01-01
We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy (given sufficient computational resources). Our approach, based on well-established integration of the mean stress tensor evaluated via the fluctuation-dissipation theorem, is designed to directly exploit fast methods developed for classical computational electromagnetism, since it only involves repeated evaluation of the Green's function for imaginary frequencies (equivalently, real frequencies in imaginary time). We develop the approach by systematically examining various formulations of Casimir forces from the previous decades and evaluating them according to their suitability for numerical computation. We illustrate our approach with a simple finite-difference frequency-domain implementation, test it for known geometries such as a cylinder and a plate, and apply it to new geometries. In particular, we show that a pistonlike geometry of two squares sliding between metal walls, in both two and three dimensions with both perfect and realistic metallic materials, exhibits a surprising nonmonotonic ''lateral'' force from the walls
The Preliminary Study for Numerical Computation of 37 Rod Bundle in CANDU Reactor
International Nuclear Information System (INIS)
Jeon, Yu Mi; Park, Joo Hwan
2010-09-01
A typical CANDU 6 fuel bundle consists of 37 fuel rods supported by two endplates and separated by spacer pads at various locations. In addition, the bearing pads are brazed to each outer fuel rod with the aim of reducing the contact area between the fuel bundle and the pressure tube. Although the recent progress of CFD methods has provided opportunities for computing the thermal-hydraulic phenomena inside of a fuel channel, it is yet impossible to reflect numerical computations on the detailed shape of rod bundle due to challenges with computing mesh and memory capacity. Hence, the previous studies conducted a numerical computation for smooth channels without considering spacers and bearing pads. But, it is well known that these components are an important factor to predict the pressure drop and heat transfer rate in a channel. In this study, the new computational method is proposed to solve complex geometry such as a fuel rod bundle. Before applying a solution to the problem of the 37 rod bundle, the validity and the accuracy of the method are tested by applying the method to simple geometry. The split channel method has been proposed with the aim of computing the fully shaped CANDU fuel channel with detailed components. The validity was tested by applying the method to the single channel problem. The average temperature have similar values for the considered two methods, while the local temperature shows a slight difference by the effect of conduction heat transfer in the solid region of a rod. Based on the present result, the calculation for the fully shaped 37-rod bundle is scheduled for future work
Numerical study of flow control strategies for a simplified square back ground vehicle
Energy Technology Data Exchange (ETDEWEB)
Eulalie, Yoann; Gilotte, Philippe [Plastic Omnium, Avenue du bois des vergnes, F-01150 Sainte-Julie (France); Mortazavi, Iraj, E-mail: iraj.mortazavi@cnam.fr [Team M2N, CNAM Paris, 292 Rue St. Martin, 75003 Paris (France)
2017-06-15
Current automotive trends lead to vertical shapes in the region of the rear tailgates, which induce high aerodynamical losses at the rear wall of vehicles. It is therefore important to work on turbulent wake in order to find drag reduction solutions for the current vehicle design. This paper focuses on flow control strategies, which are designed to interact with shear layers backward from the detachment region, in order to increase pressure values in the wake of a square back bluff body. This study involves large eddy simulation results validated by experimental data. After the first section, which represents experimental validation of LES computations with and without active flow control on an Ahmed bluff body, we will present a wide range of numerical results describing several active and passive flow control solutions leading to drag reductions of up to 10%. The last part of this paper will focus on some fluid mechanisms, which could explain these aerodynamical performances. (paper)
Numerical study of flow control strategies for a simplified square back ground vehicle
International Nuclear Information System (INIS)
Eulalie, Yoann; Gilotte, Philippe; Mortazavi, Iraj
2017-01-01
Current automotive trends lead to vertical shapes in the region of the rear tailgates, which induce high aerodynamical losses at the rear wall of vehicles. It is therefore important to work on turbulent wake in order to find drag reduction solutions for the current vehicle design. This paper focuses on flow control strategies, which are designed to interact with shear layers backward from the detachment region, in order to increase pressure values in the wake of a square back bluff body. This study involves large eddy simulation results validated by experimental data. After the first section, which represents experimental validation of LES computations with and without active flow control on an Ahmed bluff body, we will present a wide range of numerical results describing several active and passive flow control solutions leading to drag reductions of up to 10%. The last part of this paper will focus on some fluid mechanisms, which could explain these aerodynamical performances. (paper)
Computation and control with neural nets
Energy Technology Data Exchange (ETDEWEB)
Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.
1989-10-04
As energies have increased exponentially with time so have the size and complexity of accelerators and control systems. NN may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways e.g. via token, slotted or parallel rings (or Steiner trees) for compatibility with existing systems. Problems and advantages of this approach such as an optimal, real-time Turing machine are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future microprocessors' are predicted and requested on this basis. 19 refs., 18 figs.
Computation and control with neural nets
International Nuclear Information System (INIS)
Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.
1989-01-01
As energies have increased exponentially with time so have the size and complexity of accelerators and control systems. NN may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways e.g. via token, slotted or parallel rings (or Steiner trees) for compatibility with existing systems. Problems and advantages of this approach such as an optimal, real-time Turing machine are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future 'microprocessors' are predicted and requested on this basis. 19 refs., 18 figs
National Ignition Facility integrated computer control system
International Nuclear Information System (INIS)
Van Arsdall, P.J. LLNL
1998-01-01
The NIF design team is developing the Integrated Computer Control System (ICCS), which is based on an object-oriented software framework applicable to event-driven control systems. The framework provides an open, extensible architecture that is sufficiently abstract to construct future mission-critical control systems. The ICCS will become operational when the first 8 out of 192 beams are activated in mid 2000. The ICCS consists of 300 front-end processors attached to 60,000 control points coordinated by a supervisory system. Computers running either Solaris or VxWorks are networked over a hybrid configuration of switched fast Ethernet and asynchronous transfer mode (ATM). ATM carries digital motion video from sensors to operator consoles. Supervisory software is constructed by extending the reusable framework components for each specific application. The framework incorporates services for database persistence, system configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. More than twenty collaborating software applications are derived from the common framework. The framework is interoperable among different kinds of computers and functions as a plug-in software bus by leveraging a common object request brokering architecture (CORBA). CORBA transparently distributes the software objects across the network. Because of the pivotal role played, CORBA was tested to ensure adequate performance
CANDU Digital Control Computer upgrade options
International Nuclear Information System (INIS)
De Jong, M.S.; De Grosbois, J.; Qian, T.
1997-01-01
This paper reviews the evolution of Digital Control Computers (DCC) in CANDU power plants to the present day. Much of this evolution has been to meeting changing control or display requirements as well as the replacement of obsolete, or old and less reliable technology with better equipment that is now available. The current work at AECL and Canadian utilities to investigate DCC upgrade options, alternatives, and strategies are examined. The dependence of a particular upgrade strategy on the overall plant refurbishment plans are also discussed. Presently, the upgrade options range from replacement of individual obsolete system components, to replacement of the entire DCC hardware without changing the software, to complete replacement of the DCCs with a functionally equivalent system using new control computer equipment and software. Key issues, constraints and objectives associated with these DCC upgrade options are highlighted. (author)
Intermittent control: a computational theory of human control.
Gawthrop, Peter; Loram, Ian; Lakie, Martin; Gollee, Henrik
2011-02-01
The paradigm of continuous control using internal models has advanced understanding of human motor control. However, this paradigm ignores some aspects of human control, including intermittent feedback, serial ballistic control, triggered responses and refractory periods. It is shown that event-driven intermittent control provides a framework to explain the behaviour of the human operator under a wider range of conditions than continuous control. Continuous control is included as a special case, but sampling, system matched hold, an intermittent predictor and an event trigger allow serial open-loop trajectories using intermittent feedback. The implementation here may be described as "continuous observation, intermittent action". Beyond explaining unimodal regulation distributions in common with continuous control, these features naturally explain refractoriness and bimodal stabilisation distributions observed in double stimulus tracking experiments and quiet standing, respectively. Moreover, given that human control systems contain significant time delays, a biological-cybernetic rationale favours intermittent over continuous control: intermittent predictive control is computationally less demanding than continuous predictive control. A standard continuous-time predictive control model of the human operator is used as the underlying design method for an event-driven intermittent controller. It is shown that when event thresholds are small and sampling is regular, the intermittent controller can masquerade as the underlying continuous-time controller and thus, under these conditions, the continuous-time and intermittent controller cannot be distinguished. This explains why the intermittent control hypothesis is consistent with the continuous control hypothesis for certain experimental conditions.
Brian Carpenter at the PS control computer
vmo; CERN PhotoLab
1971-01-01
Brian E. Carpenter has been Group Leader of the Communications Systems group at CERN since 1985, following ten years' experience in software for process control systems at CERN, which was interrupted by three years teaching undergraduate computer science at Massey University in New Zealand. He holds a first degree in physics and a Ph.D. in computer science, and is an M.I.E.E. He is Chair of the Internet Architecture Board and an active participant in the Internet Engineering Task Force.
Numerical simulation of the manual operation of the charging/discharging machine (MID) control desk
International Nuclear Information System (INIS)
Doca, C; Dobre, A
2004-01-01
Since the year 2000 at 7th Division TAR of Institute for Nuclear Research - Pitesti continuous efforts were made to implement a software product package devoted to numerical simulation of operations at the test bench of charging/discharging machine (MID). Till now there were specified, designed, worked out and implemented on a computer the PUPITRU code, the present version fulfilling the following requirements: - graphical output specific for the computer/human operator interface: - design at a 1 : 4 scale for each of the 25 drawers of the control desk; - graphical and functional simulation of all the physical objects mounted in these drawers, namely: 12 measuring analog instruments with linear and non-linear dials (ampermeters), 21 measuring digital instruments (voltmeters), 24 two up/down settings switches, 13 switches with three up/down settings, 23 switches with two left/right hand settings, one switch with three left/right hand settings, one switch with four left/right hand settings, 2 switches with five left/right hand settings, 68, 16, 23, 53, 81 signaling lamps of white, yellow, orange, red and green light, respectively; implementation in the frame of PUPITRU code of the main notations used in the automation schemes in the execution design of the control desk, in view of a quick identification of the physical objects: switches, lamps, instruments, etc. ; - implementation in the frame of PUPITRU code of the full database (mnemonics and numerical values) used in the frame of MID tests; - implementation of over 1000 equations of numerical simulation appropriate to the situations characteristic for test bench and MID operation. At the moment, the final functional simulation for all the control desk components is finalized. In this paper a description and a demonstration run of the PUPITRU code is presented. (authors)
International Nuclear Information System (INIS)
Walsh, Jonathan A.; Palmer, Todd S.; Urbatsch, Todd J.
2015-01-01
Highlights: • Generation of discrete differential scattering angle and energy loss cross sections. • Gauss–Radau quadrature utilizing numerically computed cross section moments. • Development of a charged particle transport capability in the Milagro IMC code. • Integration of cross section generation and charged particle transport capabilities. - Abstract: We investigate a method for numerically generating discrete scattering cross sections for use in charged particle transport simulations. We describe the cross section generation procedure and compare it to existing methods used to obtain discrete cross sections. The numerical approach presented here is generalized to allow greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data computed with this method compare favorably with discrete data generated with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code, Milagro. We verify the implementation of charged particle transport in Milagro with analytic test problems and we compare calculated electron depth–dose profiles with another particle transport code that has a validated electron transport capability. Finally, we investigate the integration of the new discrete cross section generation method with the charged particle transport capability in Milagro.
International Nuclear Information System (INIS)
Kumagai, H.
1987-01-01
The spatial correlations in intense ionospheric scintillations were analyzed by comparing numerical results with observational ones. The observational results were obtained by spaced-receiver scintillation measurements of VHF satellite radiowave. The numerical computation was made by using the fourth-order moment equation with fairly realistic ionospheric irregularity models, in which power-law irregularities with spectral index 4, both thin and thick slabs, and both isotropic and anisotropic irregularities, were considered. Evolution of the S(4) index and the transverse correlation function was computed. The numerical result that the transverse correlation distance decreases with the increase in S(4) was consistent with that obtained in the observation, suggesting that multiple scattering plays an important role in the intense scintillations observed. The anisotropy of irregularities proved to act as if the density fluctuation increased. This effect, as well as the effect of slab thickness, was evaluated by the total phase fluctuations that the radiowave experienced in the slab. On the basis of the comparison, the irregularity height and electron-density fluctuation which is necessary to produce a particular strength of scintillation were estimated. 30 references
Teaching Thermal Hydraulics and Numerical Methods: An Introductory Control Volume Primer
International Nuclear Information System (INIS)
D. S. Lucas
2004-01-01
A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com
Bollhöfer, Matthias; Kressner, Daniel; Mehl, Christian; Stykel, Tatjana
2015-01-01
This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on ...
Integrated Computer Controlled Glow Discharge Tube
Kaiser, Erik; Post-Zwicker, Andrew
2002-11-01
An "Interactive Plasma Display" was created for the Princeton Plasma Physics Laboratory to demonstrate the characteristics of plasma to various science education outreach programs. From high school students and teachers, to undergraduate students and visitors to the lab, the plasma device will be a key component in advancing the public's basic knowledge of plasma physics. The device is fully computer controlled using LabVIEW, a touchscreen Graphical User Interface [GUI], and a GPIB interface. Utilizing a feedback loop, the display is fully autonomous in controlling pressure, as well as in monitoring the safety aspects of the apparatus. With a digital convectron gauge continuously monitoring pressure, the computer interface analyzes the input signals, while making changes to a digital flow controller. This function works independently of the GUI, allowing the user to simply input and receive a desired pressure; quickly, easily, and intuitively. The discharge tube is a 36" x 4"id glass cylinder with 3" side port. A 3000 volt, 10mA power supply, is used to breakdown the plasma. A 300 turn solenoid was created to demonstrate the magnetic pinching of a plasma. All primary functions of the device are controlled through the GUI digital controllers. This configuration allows for operators to safely control the pressure (100mTorr-1Torr), magnetic field (0-90Gauss, 7amps, 10volts), and finally, the voltage applied across the electrodes (0-3000v, 10mA).
Flow field measurements using LDA and numerical computation for rod bundle of reactor fuel assembly
International Nuclear Information System (INIS)
Hu Jun; Zou Zunyu
1995-02-01
Local mean velocity and turbulence intensity measurements were obtained with DANTEC 55 X two-dimensional Laser Dopper Anemometry (LDA) for rod bundle of reactor fuel assembly test model which was a 4 x 4 rod bundle. The data were obtained from different experimental cross-sections both upstream and downstream of the model support plate. Measurements performed at test Reynolds numbers of 1.8 x 10 4 ∼3.6 x 10 4 . The results described the local and gross effects of the support plate on upstream and downstream flow distributions. A numerical computation was also given, the experimental results are in good agreement with the numerical one and the others in references. Finally, a few suggestions were proposed for how to use the LDA system well. (11 figs.)
da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.
2018-04-01
A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.
SIVEH: Numerical Computing Simulation of Wireless Energy-Harvesting Sensor Nodes
Directory of Open Access Journals (Sweden)
Pedro Yuste
2013-09-01
Full Text Available The paper presents a numerical energy harvesting model for sensor nodes, SIVEH (Simulator I–V for EH, based on I–V hardware tracking. I–V tracking is demonstrated to be more accurate than traditional energy modeling techniques when some of the components present different power dissipation at either different operating voltages or drawn currents. SIVEH numerical computing allows fast simulation of long periods of time—days, weeks, months or years—using real solar radiation curves. Moreover, SIVEH modeling has been enhanced with sleep time rate dynamic adjustment, while seeking energy-neutral operation. This paper presents the model description, a functional verification and a critical comparison with the classic energy approach.
Future Computer, Communication, Control and Automation
2011 International Conference on Computer, Communication, Control and Automation
2012-01-01
The volume includes a set of selected papers extended and revised from the 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011). 2011 International Conference on Computer, Communication, Control and Automation (3CA 2011) has been held in Zhuhai, China, November 19-20, 2011. This volume topics covered include wireless communications, advances in wireless video, wireless sensors networking, security in wireless networks, network measurement and management, hybrid and discrete-event systems, internet analytics and automation, robotic system and applications, reconfigurable automation systems, machine vision in automation. We hope that researchers, graduate students and other interested readers benefit scientifically from the proceedings and also find it stimulating in the process.
A Computer-Controlled Laser Bore Scanner
Cheng, Charles C.
1980-08-01
This paper describes the design and engineering of a laser scanning system for production applications. The laser scanning techniques, the timing control, the logic design of the pattern recognition subsystem, the digital computer servo control for the loading and un-loading of parts, and the laser probe rotation and its synchronization will be discussed. The laser inspection machine is designed to automatically inspect the surface of precision-bored holes, such as those in automobile master cylinders, without contacting the machined surface. Although the controls are relatively sophisticated, operation of the laser inspection machine is simple. A laser light beam from a commercially available gas laser, directed through a probe, scans the entire surface of the bore. Reflected light, picked up through optics by photoelectric sensors, generates signals that are fed to a mini-computer for processing. A pattern recognition techniques program in the computer determines acceptance or rejection of the part being inspected. The system's acceptance specifications are adjustable and are set to the user's established tolerances. However, the computer-controlled laser system is capable of defining from 10 to 75 rms surface finish, and voids or flaws from 0.0005 to 0.020 inch. Following the successful demonstration with an engineering prototype, the described laser machine has proved its capability to consistently ensure high-quality master brake cylinders. It thus provides a safety improvement for the automotive braking system. Flawless, smooth cylinder bores eliminate premature wearing of the rubber seals, resulting in a longer-lasting master brake cylinder and a safer and more reliable automobile. The results obtained from use of this system, which has been in operation about a year for replacement of a tedious, manual operation on one of the high-volume lines at the Bendix Hydraulics Division, have been very satisfactory.
International Nuclear Information System (INIS)
Colombo, A.G.; Jaarsma, R.J.
1982-01-01
This report describes a conversational computer program which, via Bayes' theorem, numerically combines the prior distribution of a parameter with a likelihood function. Any type of prior and likelihood function can be considered. The present version of the program includes six types of prior and employs the binomial likelihood. As input the program requires the law and parameters of the prior distribution and the sample data. As output it gives the posterior distribution as a histogram. The use of the program for estimating the constant failure rate of an item is briefly described
Computer control of rf at SLAC
International Nuclear Information System (INIS)
Schwarz, H.D.
1985-03-01
The Stanford Linear Accelerator is presently upgraded for the SLAC Linear Collider project. The energy is to be increased from approximately 31 GeV to 50 GeV. Two electron beams and one positron beam are to be accelerated with high demands on the quality of the beams. The beam specifications are shown. To meet these specifications, all parameters influencing the beams have to be under tight control and continuous surveillance. This task is accomplished by a new computer system implemented at SLAC which has, among many other functions, control over rf accelerating fields. 13 refs., 8 figs., 2 tabs
Universal dephasing control during quantum computation
International Nuclear Information System (INIS)
Gordon, Goren; Kurizki, Gershon
2007-01-01
Dephasing is a ubiquitous phenomenon that leads to the loss of coherence in quantum systems and the corruption of quantum information. We present a universal dynamical control approach to combat dephasing during all stages of quantum computation, namely, storage and single- and two-qubit operators. We show that (a) tailoring multifrequency gate pulses to the dephasing dynamics can increase fidelity; (b) cross-dephasing, introduced by entanglement, can be eliminated by appropriate control fields; (c) counterintuitively and contrary to previous schemes, one can increase the gate duration, while simultaneously increasing the total gate fidelity
Interaction and control in wearable computing
International Nuclear Information System (INIS)
Strand, Ole Morten; Johansen, Paal; Droeivoldsmo, Asgeir; Reigstad, Magnus; Olsen, Asle; Helgar, Stein
2004-03-01
This report presents the status of Halden Virtual Reality Centre (HVRC) work with technological solutions for wearable computing to support operations where interaction and control of wearable information and communication systems for plant floor personnel are of importance. The report describes a framework and system prototype developed for testing technology, usability and applicability of eye movements and speech for controlling wearable equipment while having both hands free. Potentially interesting areas for further development are discussed with regard to the effect they have on the work situation for plant floor personnel using computerised wearable systems. (Author)
Picture processing computer to control movement by computer provided vision
Energy Technology Data Exchange (ETDEWEB)
Graefe, V
1983-01-01
The author introduces a multiprocessor system which has been specially developed to enable mechanical devices to interpret pictures presented in real time. The separate processors within this system operate simultaneously and independently. By means of freely moveable windows the processors can concentrate on those parts of the picture that are relevant to the control problem. If a machine is to make a correct response to its observation of a picture of moving objects, it must be able to follow the picture sequence, step by step, in real time. As the usual serially operating processors are too slow for such a task, the author describes three models of a special picture processing computer which it has been necessary to develop. 3 references.
Computer controls for the WITCH experiment
Tandecki, M; Van Gorp, S; Friedag, P; De Leebeeck, V; Beck, D; Brand, H; Weinheimer, C; Breitenfeldt, M; Traykov, E; Mader, J; Roccia, S; Severijns, N; Herlert, A; Wauters, F; Zakoucky, D; Kozlov, V; Soti, G
2011-01-01
The WITCH experiment is a medium-scale experimental set-up located at ISOLDE/CERN. It combines a double Penning trap system with,a retardation spectrometer for energy measurements of recoil ions from beta decay. For a correct operation of such a set-up a whole range of different devices is required. Along with the installation and optimization of the set-up a computer control system was developed to control these devices. The CS-Framework that is developed and maintained at GSI, was chosen as a basis for this control system as it is perfectly suited to handle the distributed nature of a control system.We report here on the required hardware for WITCH, along with the basis of this CS-Framework and the add-ons that were implemented for WITCH. (C) 2010 Elsevier B.V. All rights reserved.
Computational reduction techniques for numerical vibro-acoustic analysis of hearing aids
DEFF Research Database (Denmark)
Creixell Mediante, Ester
. In this thesis, several challenges encountered in the process of modelling and optimizing hearing aids are addressed. Firstly, a strategy for modelling the contacts between plastic parts for harmonic analysis is developed. Irregularities in the contact surfaces, inherent to the manufacturing process of the parts....... Secondly, the applicability of Model Order Reduction (MOR) techniques to lower the computational complexity of hearing aid vibro-acoustic models is studied. For fine frequency response calculation and optimization, which require solving the numerical model repeatedly, a computational challenge...... is encountered due to the large number of Degrees of Freedom (DOFs) needed to represent the complexity of the hearing aid system accurately. In this context, several MOR techniques are discussed, and an adaptive reduction method for vibro-acoustic optimization problems is developed as a main contribution. Lastly...
Numerical Simulation of a Nanosecond-Pulse Discharge for High-Speed Flow Control
Poggie, Jonathan; Adamovich, Igor
2012-10-01
Numerical calculations were carried out to examine the physics of the operation of a nanosecond-pulse, single dielectric barrier discharge in a configuration with planar symmetry. This simplified configuration was chosen as a vehicle to develop a physics based nanosecond discharge model, including realistic air plasma chemistry and compressible bulk gas flow. First, a reduced plasma kinetic model was developed by carrying out a sensitivity analysis of zero-dimensional plasma computations with an extended chemical kinetic model. Transient, one- dimensional discharge computations were then carried out using the reduced kinetic model, incorporating a drift-diffusion formulation for each species, a self-consistent computation of the electric potential using the Poisson equation, and a mass-averaged gas dynamic formulation for the bulk gas motion. Discharge parameters (temperature, pressure, and input waveform) were selected to be representative of recent experiments on bow shock control with a nanosecond discharge in a Mach 5 cylinder flow. The computational results qualitatively reproduce many of the features observed in the experiments, including the rapid thermalization of the input electrical energy and the consequent formation of a weak shock wave. At breakdown, input electrical energy is rapidly transformed (over roughly 1 ns) into ionization products, dissociation products, and electronically excited particles, with subsequent thermalization over a relatively longer time-scale (roughly 10 μs).
Wang, Xiao-Gang; Carrington, Tucker
2018-02-01
We compute numerically exact rovibrational levels of water dimer, with 12 vibrational coordinates, on the accurate CCpol-8sf ab initio flexible monomer potential energy surface [C. Leforestier et al., J. Chem. Phys. 137, 014305 (2012)]. It does not have a sum-of-products or multimode form and therefore quadrature in some form must be used. To do the calculation, it is necessary to use an efficient basis set and to develop computational tools, for evaluating the matrix-vector products required to calculate the spectrum, that obviate the need to store the potential on a 12D quadrature grid. The basis functions we use are products of monomer vibrational wavefunctions and standard rigid-monomer basis functions (which involve products of three Wigner functions). Potential matrix-vector products are evaluated using the F matrix idea previously used to compute rovibrational levels of 5-atom and 6-atom molecules. When the coupling between inter- and intra-monomer coordinates is weak, this crude adiabatic type basis is efficient (only a few monomer vibrational wavefunctions are necessary), although the calculation of matrix elements is straightforward. It is much easier to use than an adiabatic basis. The product structure of the basis is compatible with the product structure of the kinetic energy operator and this facilitates computation of matrix-vector products. Compared with the results obtained using a [6 + 6]D adiabatic approach, we find good agreement for the inter-molecular levels and larger differences for the intra-molecular water bend levels.
Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation
Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab
2015-05-01
3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.
On the potential of computational methods and numerical simulation in ice mechanics
International Nuclear Information System (INIS)
Bergan, Paal G; Cammaert, Gus; Skeie, Geir; Tharigopula, Venkatapathi
2010-01-01
This paper deals with the challenge of developing better methods and tools for analysing interaction between sea ice and structures and, in particular, to be able to calculate ice loads on these structures. Ice loads have traditionally been estimated using empirical data and 'engineering judgment'. However, it is believed that computational mechanics and advanced computer simulations of ice-structure interaction can play an important role in developing safer and more efficient structures, especially for irregular structural configurations. The paper explains the complexity of ice as a material in computational mechanics terms. Some key words here are large displacements and deformations, multi-body contact mechanics, instabilities, multi-phase materials, inelasticity, time dependency and creep, thermal effects, fracture and crushing, and multi-scale effects. The paper points towards the use of advanced methods like ALE formulations, mesh-less methods, particle methods, XFEM, and multi-domain formulations in order to deal with these challenges. Some examples involving numerical simulation of interaction and loads between level sea ice and offshore structures are presented. It is concluded that computational mechanics may prove to become a very useful tool for analysing structures in ice; however, much research is still needed to achieve satisfactory reliability and versatility of these methods.
Achieving high performance in numerical computations on RISC workstations and parallel systems
Energy Technology Data Exchange (ETDEWEB)
Goedecker, S. [Max-Planck Inst. for Solid State Research, Stuttgart (Germany); Hoisie, A. [Los Alamos National Lab., NM (United States)
1997-08-20
The nominal peak speeds of both serial and parallel computers is raising rapidly. At the same time however it is becoming increasingly difficult to get out a significant fraction of this high peak speed from modern computer architectures. In this tutorial the authors give the scientists and engineers involved in numerically demanding calculations and simulations the necessary basic knowledge to write reasonably efficient programs. The basic principles are rather simple and the possible rewards large. Writing a program by taking into account optimization techniques related to the computer architecture can significantly speedup your program, often by factors of 10--100. As such, optimizing a program can for instance be a much better solution than buying a faster computer. If a few basic optimization principles are applied during program development, the additional time needed for obtaining an efficient program is practically negligible. In-depth optimization is usually only needed for a few subroutines or kernels and the effort involved is therefore also acceptable.
International Nuclear Information System (INIS)
Katsaounis, T D
2005-01-01
The scope of this book is to present well known simple and advanced numerical methods for solving partial differential equations (PDEs) and how to implement these methods using the programming environment of the software package Diffpack. A basic background in PDEs and numerical methods is required by the potential reader. Further, a basic knowledge of the finite element method and its implementation in one and two space dimensions is required. The authors claim that no prior knowledge of the package Diffpack is required, which is true, but the reader should be at least familiar with an object oriented programming language like C++ in order to better comprehend the programming environment of Diffpack. Certainly, a prior knowledge or usage of Diffpack would be a great advantage to the reader. The book consists of 15 chapters, each one written by one or more authors. Each chapter is basically divided into two parts: the first part is about mathematical models described by PDEs and numerical methods to solve these models and the second part describes how to implement the numerical methods using the programming environment of Diffpack. Each chapter closes with a list of references on its subject. The first nine chapters cover well known numerical methods for solving the basic types of PDEs. Further, programming techniques on the serial as well as on the parallel implementation of numerical methods are also included in these chapters. The last five chapters are dedicated to applications, modelled by PDEs, in a variety of fields. In summary, the book focuses on the computational and implementational issues involved in solving partial differential equations. The potential reader should have a basic knowledge of PDEs and the finite difference and finite element methods. The examples presented are solved within the programming framework of Diffpack and the reader should have prior experience with the particular software in order to take full advantage of the book. Overall
Distributed computer control system for reactor optimization
International Nuclear Information System (INIS)
Williams, A.H.
1983-01-01
At the Oldbury power station a prototype distributed computer control system has been installed. This system is designed to support research and development into improved reactor temperature control methods. This work will lead to the development and demonstration of new optimal control systems for improvement of plant efficiency and increase of generated output. The system can collect plant data from special test instrumentation connected to dedicated scanners and from the station's existing data processing system. The system can also, via distributed microprocessor-based interface units, make adjustments to the desired reactor channel gas exit temperatures. The existing control equipment will then adjust the height of control rods to maintain operation at these temperatures. The design of the distributed system is based on extensive experience with distributed systems for direct digital control, operator display and plant monitoring. The paper describes various aspects of this system, with particular emphasis on: (1) the hierarchal system structure; (2) the modular construction of the system to facilitate installation, commissioning and testing, and to reduce maintenance to module replacement; (3) the integration of the system into the station's existing data processing system; (4) distributed microprocessor-based interfaces to the reactor controls, with extensive security facilities implemented by hardware and software; (5) data transfer using point-to-point and bussed data links; (6) man-machine communication based on VDUs with computer input push-buttons and touch-sensitive screens; and (7) the use of a software system supporting a high-level engineer-orientated programming language, at all levels in the system, together with comprehensive data link management
Reliable methods for computer simulation error control and a posteriori estimates
Neittaanmäki, P
2004-01-01
Recent decades have seen a very rapid success in developing numerical methods based on explicit control over approximation errors. It may be said that nowadays a new direction is forming in numerical analysis, the main goal of which is to develop methods ofreliable computations. In general, a reliable numerical method must solve two basic problems: (a) generate a sequence of approximations that converges to a solution and (b) verify the accuracy of these approximations. A computer code for such a method must consist of two respective blocks: solver and checker.In this book, we are chie
Manufacturing and application of micro computer for control
International Nuclear Information System (INIS)
Park, Seung Man; Heo, Gyeong; Yun, Jun Young
1990-05-01
This book deals with machine code and assembly program for micro computer. It composed of 20 chapters, which are micro computer system, practice of a storage cell, manufacturing 1 of micro computer, manufacturing 2 of micro computer, manufacturing of micro computer AID-80A, making of machine language, interface like Z80-PIO and 8255A(PPI), counter and timer interface, exercise of basic command, arithmetic operation, arrangement operation, an indicator control, music playing, detection of input of PIO. control of LED of PIO, PIO mode, CTC control by micro computer, SIO control by micro computer and application by micro computer.
Computational domain discretization in numerical analysis of flow within granular materials
Sosnowski, Marcin
2018-06-01
The discretization of computational domain is a crucial step in Computational Fluid Dynamics (CFD) because it influences not only the numerical stability of the analysed model but also the agreement of obtained results and real data. Modelling flow in packed beds of granular materials is a very challenging task in terms of discretization due to the existence of narrow spaces between spherical granules contacting tangentially in a single point. Standard approach to this issue results in a low quality mesh and unreliable results in consequence. Therefore the common method is to reduce the diameter of the modelled granules in order to eliminate the single-point contact between the individual granules. The drawback of such method is the adulteration of flow and contact heat resistance among others. Therefore an innovative method is proposed in the paper: single-point contact is extended to a cylinder-shaped volume contact. Such approach eliminates the low quality mesh elements and simultaneously introduces only slight distortion to the flow as well as contact heat transfer. The performed analysis of numerous test cases prove the great potential of the proposed method of meshing the packed beds of granular materials.
On a numerical strategy to compute gravity currents of non-Newtonian fluids
International Nuclear Information System (INIS)
Vola, D.; Babik, F.; Latche, J.-C.
2004-01-01
This paper is devoted to the presentation of a numerical scheme for the simulation of gravity currents of non-Newtonian fluids. The two dimensional computational grid is fixed and the free-surface is described as a polygonal interface independent from the grid and advanced in time by a Lagrangian technique. Navier-Stokes equations are semi-discretized in time by the Characteristic-Galerkin method, which finally leads to solve a generalized Stokes problem posed on a physical domain limited by the free surface to only a part of the computational grid. To this purpose, we implement a Galerkin technique with a particular approximation space, defined as the restriction to the fluid domain of functions of a finite element space. The decomposition-coordination method allows to deal without any regularization with a variety of non-linear and possibly non-differentiable constitutive laws. Beside more analytical tests, we revisit with this numerical method some simulations of gravity currents of the literature, up to now investigated within the simplified thin-flow approximation framework
WATERLOPP V2/64: A highly parallel machine for numerical computation
Ostlund, Neil S.
1985-07-01
Current technological trends suggest that the high performance scientific machines of the future are very likely to consist of a large number (greater than 1024) of processors connected and communicating with each other in some as yet undetermined manner. Such an assembly of processors should behave as a single machine in obtaining numerical solutions to scientific problems. However, the appropriate way of organizing both the hardware and software of such an assembly of processors is an unsolved and active area of research. It is particularly important to minimize the organizational overhead of interprocessor comunication, global synchronization, and contention for shared resources if the performance of a large number ( n) of processors is to be anything like the desirable n times the performance of a single processor. In many situations, adding a processor actually decreases the performance of the overall system since the extra organizational overhead is larger than the extra processing power added. The systolic loop architecture is a new multiple processor architecture which attemps at a solution to the problem of how to organize a large number of asynchronous processors into an effective computational system while minimizing the organizational overhead. This paper gives a brief overview of the basic systolic loop architecture, systolic loop algorithms for numerical computation, and a 64-processor implementation of the architecture, WATERLOOP V2/64, that is being used as a testbed for exploring the hardware, software, and algorithmic aspects of the architecture.
Numerical analysis and control of the recirculation bubble strength ...
African Journals Online (AJOL)
Numerical investigation of the turbulent jet flows, both central and annular type of jets has been carried out with the introduction of swirl at the inlet using the modified κ −ε model. It was observed that the recirculation bubble generated by the central jet without swirl diminishes in size due to increase in swirl number, while in ...
Systematic control of large computer programs
International Nuclear Information System (INIS)
Goedbloed, J.P.; Klieb, L.
1986-07-01
A package of CCL, UPDATE, and FORTRAN procedures is described which facilitates the systematic control and development of large scientific computer programs. The package provides a general tool box for this purpose which contains many conveniences for the systematic administration of files, editing, reformating of line printer output files, etc. In addition, a small number of procedures is devoted to the problem of structured development of a large computer program which is used by a group of scientists. The essence of the method is contained in three procedures N, R, and X for the creation of a new UPDATE program library, its revision, and execution, resp., and a procedure REVISE which provides a joint editor - UPDATE session which combines the advantages of the two systems, viz. speed and rigor. (Auth.)
Isna Nur Hikmah; Usep Kustiawan
2016-01-01
The reseach’s purpose was to analyze the effect of picture numeric card media toward improvement of the summation computation ability for student with intellectual disability of grade IV in SDLB. Data collected was analyzed with experiment technique and single subject research A-B design. Research result showed that: after being analyzed between condition overlap persentase was 0%. Thus, it could be concluded that there was effect of pictorial numeric card media toward summation computation a...
Tools for remote computing in accelerator control
International Nuclear Information System (INIS)
Anderssen, P.S.; Frammery, V.; Wilcke, R.
1990-01-01
In modern accelerator control systems, the intelligence of the equipment is distributed in the geographical and the logical sense. Control processes for a large variety of tasks reside in both the equipment and the control computers. Hence successful operation hinges on the availability and reliability of the communication infrastructure. The computers are interconnected by a communication system and use remote procedure calls and message passing for information exchange. These communication mechanisms need a well-defined convention, i.e. a protocol. They also require flexibility in both the setup and changes to the protocol specification. The network compiler is a tool which provides the programmer with a means of establishing such a protocol for his application. Input to the network compiler is a single interface description file provided by the programmer. This file is written according to a grammar, and completely specifies the interprocess communication interfaces. Passed through the network compiler, the interface description file automatically produces the additional source code needed for the protocol. Hence the programmer does not have to be concerned about the details of the communication calls. Any further additions and modifications are made easy, because all the information about the interface is kept in a single file. (orig.)
International Nuclear Information System (INIS)
Runchal, A.K.; Sagar, B.; Baca, R.G.; Kline, N.W.
1985-09-01
Postclosure performance assessment of the proposed high-level nuclear waste repository in flood basalts at Hanford requires that the processes of fluid flow, heat transfer, and mass transport be numerically modeled at appropriate space and time scales. A suite of computer models has been developed to meet this objective. The theory of one of these models, named PORFLO, is described in this report. Also presented are a discussion of the numerical techniques in the PORFLO computer code and a few computational test cases. Three two-dimensional equations, one each for fluid flow, heat transfer, and mass transport, are numerically solved in PORFLO. The governing equations are derived from the principle of conservation of mass, momentum, and energy in a stationary control volume that is assumed to contain a heterogeneous, anisotropic porous medium. Broad discrete features can be accommodated by specifying zones with distinct properties, or these can be included by defining an equivalent porous medium. The governing equations are parabolic differential equations that are coupled through time-varying parameters. Computational tests of the model are done by comparisons of simulation results with analytic solutions, with results from other independently developed numerical models, and with available laboratory and/or field data. In this report, in addition to the theory of the model, results from three test cases are discussed. A users' manual for the computer code resulting from this model has been prepared and is available as a separate document. 37 refs., 20 figs., 15 tabs
Computer-controlled radiation monitoring system
International Nuclear Information System (INIS)
Homann, S.G.
1994-01-01
A computer-controlled radiation monitoring system was designed and installed at the Lawrence Livermore National Laboratory's Multiuser Tandem Laboratory (10 MV tandem accelerator from High Voltage Engineering Corporation). The system continuously monitors the photon and neutron radiation environment associated with the facility and automatically suspends accelerator operation if preset radiation levels are exceeded. The system has proved reliable real-time radiation monitoring over the past five years, and has been a valuable tool for maintaining personnel exposure as low as reasonably achievable
Multiaxis, Lightweight, Computer-Controlled Exercise System
Haynes, Leonard; Bachrach, Benjamin; Harvey, William
2006-01-01
The multipurpose, multiaxial, isokinetic dynamometer (MMID) is a computer-controlled system of exercise machinery that can serve as a means for quantitatively assessing a subject s muscle coordination, range of motion, strength, and overall physical condition with respect to a wide variety of forces, motions, and exercise regimens. The MMID is easily reconfigurable and compactly stowable and, in comparison with prior computer-controlled exercise systems, it weighs less, costs less, and offers more capabilities. Whereas a typical prior isokinetic exercise machine is limited to operation in only one plane, the MMID can operate along any path. In addition, the MMID is not limited to the isokinetic (constant-speed) mode of operation. The MMID provides for control and/or measurement of position, force, and/or speed of exertion in as many as six degrees of freedom simultaneously; hence, it can accommodate more complex, more nearly natural combinations of motions and, in so doing, offers greater capabilities for physical conditioning and evaluation. The MMID (see figure) includes as many as eight active modules, each of which can be anchored to a floor, wall, ceiling, or other fixed object. A cable is payed out from a reel in each module to a bar or other suitable object that is gripped and manipulated by the subject. The reel is driven by a DC brushless motor or other suitable electric motor via a gear reduction unit. The motor can be made to function as either a driver or an electromagnetic brake, depending on the required nature of the interaction with the subject. The module includes a force and a displacement sensor for real-time monitoring of the tension in and displacement of the cable, respectively. In response to commands from a control computer, the motor can be operated to generate a required tension in the cable, to displace the cable a required distance, or to reel the cable in or out at a required speed. The computer can be programmed, either locally or via
Katsaounis, T. D.
2005-02-01
equations in Diffpack can be used to derive fully implicit solvers for systems. The proposed techniques are illustrated in terms of two applications, namely a system of PDEs modelling pipeflow and a two-phase porous media flow. Stochastic PDEs is the topic of chapter 7. The first part of the chapter is a simple introduction to stochastic PDEs; basic analytical properties are presented for simple models like transport phenomena and viscous drag forces. The second part considers the numerical solution of stochastic PDEs. Two basic techniques are presented, namely Monte Carlo and perturbation methods. The last part explains how to implement and incorporate these solvers into Diffpack. Chapter 8 describes how to operate Diffpack from Python scripts. The main goal here is to provide all the programming and technical details in order to glue the programming environment of Diffpack with visualization packages through Python and in general take advantage of the Python interfaces. Chapter 9 attempts to show how to use numerical experiments to measure the performance of various PDE solvers. The authors gathered a rather impressive list, a total of 14 PDE solvers. Solvers for problems like Poisson, Navier--Stokes, elasticity, two-phase flows and methods such as finite difference, finite element, multigrid, and gradient type methods are presented. The authors provide a series of numerical results combining various solvers with various methods in order to gain insight into their computational performance and efficiency. In Chapter 10 the authors consider a computationally challenging problem, namely the computation of the electrical activity of the human heart. After a brief introduction on the biology of the problem the authors present the mathematical models involved and a numerical method for solving them within the framework of Diffpack. Chapter 11 and 12 are closely related; actually they could have been combined in a single chapter. Chapter 11 introduces several mathematical
Performance of the TRISTAN computer control network
International Nuclear Information System (INIS)
Koiso, H.; Abe, K.; Akiyama, A.; Katoh, T.; Kikutani, E.; Kurihara, N.; Kurokawa, S.; Oide, K.; Shinomoto, M.
1985-01-01
An N-to-N token ring network of twenty-four minicomputers controls the TRISTAN accelerator complex. The computers are linked by optical fiber cables with 10 Mbps transmission speed. The software system is based on the NODAL, a multi-computer interpreter language developed at CERN SPS. Typical messages exchanged between computers are NODAL programs and NODAL variables transmitted by the EXEC and the REMIT commands. These messages are exchanged as a cluster of packets whose maximum size is 512 bytes. At present, eleven minicomputers are connected to the network and the total length of the ring is 1.5 km. In this condition, the maximum attainable throughput is 980 kbytes/s. The response of a pair of an EXEC and a REMIT transactions which transmit a NODAL array A and one line of program 'REMIT A' and immediately remit the A is measured to be 95+0.039/chi/ ms, where /chi/ is the array size in byte. In ordinary accelerator operations, the maximum channel utilization is 2%, the average packet length is 96 bytes and the transmission rate is 10 kbytes/s
Distributed computer controls for accelerator systems
International Nuclear Information System (INIS)
Moore, T.L.
1988-09-01
A distributed control system has been designed and installed at the Lawrence Livermore National Laboratory Multi-user Tandem Facility using an extremely modular approach in hardware and software. The two tiered, geographically organized design allowed total system implementation with four months with a computer and instrumentation cost of approximately $100K. Since the system structure is modular, application to a variety of facilities is possible. Such a system allows rethinking and operational style of the facilities, making possible highly reproducible and unattended operation. The impact of industry standards, i.e., UNIX, CAMAC, and IEEE-802.3, and the use of a graphics-oriented controls software suite allowed the efficient implementation of the system. The definition, design, implementation, operation and total system performance will be discussed. 3 refs
Quality control in quantitative computed tomography
International Nuclear Information System (INIS)
Jessen, K.A.; Joergensen, J.
1989-01-01
Computed tomography (CT) has for several years been an indispensable tool in diagnostic radiology, but it is only recently that extraction of quantitative information from CT images has been of practical clinical value. Only careful control of the scan parameters, and especially the scan geometry, allows useful information to be obtained; and it can be demonstrated by simple phantom measurements how sensitive a CT system can be to variations in size, shape and position of the phantom in the gantry aperture. Significant differences exist between systems that are not manifested in normal control of image quality and general performance tests. Therefore an actual system has to be analysed for its suitability for quantitative use of the images before critical clinical applications are justified. (author)
Distributed computer controls for accelerator systems
Moore, T. L.
1989-04-01
A distributed control system has been designed and installed at the Lawrence Livermore National Laboratory Multiuser Tandem Facility using an extremely modular approach in hardware and software. The two tiered, geographically organized design allowed total system implantation within four months with a computer and instrumentation cost of approximately $100k. Since the system structure is modular, application to a variety of facilities is possible. Such a system allows rethinking of operational style of the facilities, making possible highly reproducible and unattended operation. The impact of industry standards, i.e., UNIX, CAMAC, and IEEE-802.3, and the use of a graphics-oriented controls software suite allowed the effective implementation of the system. The definition, design, implementation, operation and total system performance will be discussed.
Distributed computer controls for accelerator systems
International Nuclear Information System (INIS)
Moore, T.L.
1989-01-01
A distributed control system has been designed and installed at the Lawrence Livermore National Laboratory Multiuser Tandem Facility using an extremely modular approach in hardware and software. The two tiered, geographically organized design allowed total system implantation within four months with a computer and instrumentation cost of approximately $100k. Since the system structure is modular, application to a variety of facilities is possible. Such a system allows rethinking of operational style of the facilities, making possible highly reproducible and unattended operation. The impact of industry standards, i.e., UNIX, CAMAC, and IEEE-802.3, and the use of a graphics-oriented controls software suite allowed the effective implementation of the system. The definition, design, implementation, operation and total system performance will be discussed. (orig.)
Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques
Melih Guleren, Kursad; Turk, Seyfettin; Mirza Demircan, Osman; Demir, Oguzhan
2018-03-01
Open-source flow solvers are getting more and more popular for the analysis of challenging flow problems in aeronautical and mechanical engineering applications. They are offered under the GNU General Public License and can be run, examined, shared and modified according to user’s requirements. SU2 and OpenFOAM are the two most popular open-source solvers in Computational Fluid Dynamics (CFD) community. In the present study, some passive control methods on the high-speed cavity flows are numerically simulated using these open-source flow solvers along with one commercial flow solver called ANSYS/Fluent. The results are compared with the available experimental data. The solver SU2 are seen to predict satisfactory the mean streamline velocity but not turbulent kinetic energy and overall averaged sound pressure level (OASPL). Whereas OpenFOAM predicts all these parameters nearly as the same levels of ANSYS/Fluent.
Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control
Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya
2010-01-01
The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions
Integration of adaptive process control with computational simulation for spin-forming
International Nuclear Information System (INIS)
Raboin, P. J. LLNL
1998-01-01
Improvements in spin-forming capabilities through upgrades to a metrology and machine control system and advances in numerical simulation techniques were studied in a two year project funded by Laboratory Directed Research and Development (LDRD) at Lawrence Livermore National Laboratory. Numerical analyses were benchmarked with spin-forming experiments and computational speeds increased sufficiently to now permit actual part forming simulations. Extensive modeling activities examined the simulation speeds and capabilities of several metal forming computer codes for modeling flat plate and cylindrical spin-forming geometries. Shape memory research created the first numerical model to describe this highly unusual deformation behavior in Uranium alloys. A spin-forming metrology assessment led to sensor and data acquisition improvements that will facilitate future process accuracy enhancements, such as a metrology frame. Finally, software improvements (SmartCAM) to the manufacturing process numerically integrate the part models to the spin-forming process and to computational simulations
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Kaltenbacher, Manfred
2015-01-01
Like the previous editions also the third edition of this book combines the detailed physical modeling of mechatronic systems and their precise numerical simulation using the Finite Element (FE) method. Thereby, the basic chapter concerning the Finite Element (FE) method is enhanced, provides now also a description of higher order finite elements (both for nodal and edge finite elements) and a detailed discussion of non-conforming mesh techniques. The author enhances and improves many discussions on principles and methods. In particular, more emphasis is put on the description of single fields by adding the flow field. Corresponding to these field, the book is augmented with the new chapter about coupled flow-structural mechanical systems. Thereby, the discussion of computational aeroacoustics is extended towards perturbation approaches, which allows a decomposition of flow and acoustic quantities within the flow region. Last but not least, applications are updated and restructured so that the book meets mode...
Linge, Svein
2016-01-01
This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.
Programming for computations Python : a gentle introduction to numerical simulations with Python
Linge, Svein
2016-01-01
This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.
EVOLVE : a Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II
Coello, Carlos; Tantar, Alexandru-Adrian; Tantar, Emilia; Bouvry, Pascal; Moral, Pierre; Legrand, Pierrick; EVOLVE 2012
2013-01-01
This book comprises a selection of papers from the EVOLVE 2012 held in Mexico City, Mexico. The aim of the EVOLVE is to build a bridge between probability, set oriented numerics and evolutionary computing, as to identify new common and challenging research aspects. The conference is also intended to foster a growing interest for robust and efficient methods with a sound theoretical background. EVOLVE is intended to unify theory-inspired methods and cutting-edge techniques ensuring performance guarantee factors. By gathering researchers with different backgrounds, a unified view and vocabulary can emerge where the theoretical advancements may echo in different domains. Summarizing, the EVOLVE focuses on challenging aspects arising at the passage from theory to new paradigms and aims to provide a unified view while raising questions related to reliability, performance guarantees and modeling. The papers of the EVOLVE 2012 make a contribution to this goal.
Directory of Open Access Journals (Sweden)
He Kongde
2015-01-01
Full Text Available Computational model and numerical simulation for submerged mooring monitoring platform were formulated aimed at the dynamical response by the action of flow force, which based on Hopkinson impact load theory, taken into account the catenoid effect of mooring cable and revised the difference of tension and tangential direction action force by equivalent modulus of elasticity. Solved the equation by hydraulics theory and structural mechanics theory of oceaneering, studied the response of buoy on flow force. The validity of model were checked and the results were in good agreement; the result show the buoy will engender biggish heave and swaying displacement, but the swaying displacement got stable quickly and the heaven displacement cause vibration for the vortex-induced action by the flow.
HYDRA-II: A hydrothermal analysis computer code: Volume 1, Equations and numerics
International Nuclear Information System (INIS)
McCann, R.A.
1987-04-01
HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite difference solution in Cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the Cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations for conservation of momentum are enhanced by the incorporation of directional porosities and permeabilities that aid in modeling solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits of modeling of orthotropic physical properties and film resistances. Several automated procedures are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. This volume, Volume I - Equations and Numerics, describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. Volume II - User's Manual contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a model problem. The final volume, Volume III - Verification/Validation Assessments, presents results of numerical simulations of single- and multiassembly storage systems and comparisons with experimental data. 4 refs
Numerical simulation of fragmentation of hot metal and oxide melts with the computer code IVA3
International Nuclear Information System (INIS)
Mussa, S.; Tromm, W.
1994-01-01
The phenomena of fragmentation of melts caused by water-inlet from the bottom with the computer code IVA3/11,12,13/ are investigated. With the computer code IVA3 three-component-multiphase flows can be numerically simulated. Two geometrical models are used. Both consist of a cylindrical vessel for water lying beneath a cylindrical vessel for melt. The vessels are connected to each other through a hole. Steel and UO 2 melts are. The following parameters were varied: the type of the melt (steel,UO 2 ), the water supply pressure and the geometry of the hole in the bottom plate through which the water and melt vessels are connected. As results of the numerical simulations temperature and pressure versus time curves are plotted. Additionally the volume flow rates and the volume fractions of the various phases in the vessels and the increase in surface and enthalpy of the melt during the time of simulation are depicted. With steel melts the rate of fragmentation increases with increasing water pressure and melt temperature, whereby stable channels are formed in the melt layer showing a very low flow resistance for steam. With UO 2 the formations of channels are also observed. However, these channels are not so stable that they eventually break apart and lead to the fragmentation of the UO 2 melt in drops. The fragmentation of the steel melt in water vessel is less than that of UO 2 . No essential solidification of the melt is observed in the respective duration of the simulations. However, a small drop in the melt temperature is observed. With a slight or no water pressure the melt flows from the upper vessel into the water vessel via the connecting hole. The processes take place in a very slow manner and with such a low steam production so that despite the occuring pressure peaks no sign of steam explosions could be observed. (orig./HP) [de
Khabaza, I M
1960-01-01
Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput
Numerical Nonlinear Robust Control with Applications to Humanoid Robots
2015-07-01
Interpolation: From Ancient Astronomy to Modern Signal and Image Processing,” Proceedings of the IEEE, vol. 90, no. 3, pp. 319–342, Mar. 2002. [100] R...form of the basis functions in (2.2). What remains is the computation of corresponding coefficients in the form of (2.18), which we will describe in...problem that requires a more flexible representation of uncertainties in the system dynamics than what we have previously proposed. In this chapter, we
A Computationally-Efficient Numerical Model to Characterize the Noise Behavior of Metal-Framed Walls
Directory of Open Access Journals (Sweden)
Arun Arjunan
2015-08-01
Full Text Available Architects, designers, and engineers are making great efforts to design acoustically-efficient metal-framed walls, minimizing acoustic bridging. Therefore, efficient simulation models to predict the acoustic insulation complying with ISO 10140 are needed at a design stage. In order to achieve this, a numerical model consisting of two fluid-filled reverberation chambers, partitioned using a metal-framed wall, is to be simulated at one-third-octaves. This produces a large simulation model consisting of several millions of nodes and elements. Therefore, efficient meshing procedures are necessary to obtain better solution times and to effectively utilise computational resources. Such models should also demonstrate effective Fluid-Structure Interaction (FSI along with acoustic-fluid coupling to simulate a realistic scenario. In this contribution, the development of a finite element frequency-dependent mesh model that can characterize the sound insulation of metal-framed walls is presented. Preliminary results on the application of the proposed model to study the geometric contribution of stud frames on the overall acoustic performance of metal-framed walls are also presented. It is considered that the presented numerical model can be used to effectively visualize the noise behaviour of advanced materials and multi-material structures.
Numerical computations of interior transmission eigenvalues for scattering objects with cavities
International Nuclear Information System (INIS)
Peters, Stefan; Kleefeld, Andreas
2016-01-01
In this article we extend the inside-outside duality for acoustic transmission eigenvalue problems by allowing scattering objects that may contain cavities. In this context we provide the functional analytical framework necessary to transfer the techniques that have been used in Kirsch and Lechleiter (2013 Inverse Problems, 29 104011) to derive the inside-outside duality. Additionally, extensive numerical results are presented to show that we are able to successfully detect interior transmission eigenvalues with the inside-outside duality approach for a variety of obstacles with and without cavities in three dimensions. In this context, we also discuss the advantages and disadvantages of the inside-outside duality approach from a numerical point of view. Furthermore we derive the integral equations necessary to extend the algorithm in Kleefeld (2013 Inverse Problems, 29 104012) to compute highly accurate interior transmission eigenvalues for scattering objects with cavities, which we will then use as reference values to examine the accuracy of the inside-outside duality algorithm. (paper)
Numerical research of the optimal control problem in the semi-Markov inventory model
Energy Technology Data Exchange (ETDEWEB)
Gorshenin, Andrey K. [Institute of Informatics Problems, Russian Academy of Sciences, Vavilova str., 44/2, Moscow, Russia MIREA, Faculty of Information Technology (Russian Federation); Belousov, Vasily V. [Institute of Informatics Problems, Russian Academy of Sciences, Vavilova str., 44/2, Moscow (Russian Federation); Shnourkoff, Peter V.; Ivanov, Alexey V. [National research university Higher school of economics, Moscow (Russian Federation)
2015-03-10
This paper is devoted to the numerical simulation of stochastic system for inventory management products using controlled semi-Markov process. The results of a special software for the system’s research and finding the optimal control are presented.
Numerical research of the optimal control problem in the semi-Markov inventory model
International Nuclear Information System (INIS)
Gorshenin, Andrey K.; Belousov, Vasily V.; Shnourkoff, Peter V.; Ivanov, Alexey V.
2015-01-01
This paper is devoted to the numerical simulation of stochastic system for inventory management products using controlled semi-Markov process. The results of a special software for the system’s research and finding the optimal control are presented
Advances in Future Computer and Control Systems v.1
Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)
2012-01-01
FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.
Advances in Future Computer and Control Systems v.2
Lin, Sally; 2012 International Conference on Future Computer and Control Systems(FCCS2012)
2012-01-01
FCCS2012 is an integrated conference concentrating its focus on Future Computer and Control Systems. “Advances in Future Computer and Control Systems” presents the proceedings of the 2012 International Conference on Future Computer and Control Systems(FCCS2012) held April 21-22,2012, in Changsha, China including recent research results on Future Computer and Control Systems of researchers from all around the world.
Cienfuegos, R.; Duarte, L.; Hernandez, E.
2008-12-01
Charasteristic frequencies of gravity waves generated by wind and propagating towards the coast are usually comprised between 0.05Hz and 1Hz. Nevertheless, lower frequecy waves, in the range of 0.001Hz and 0.05Hz, have been observed in the nearshore zone. Those long waves, termed as infragravity waves, are generated by complex nonlinear mechanisms affecting the propagation of irregular waves up to the coast. The groupiness of an incident random wave field may be responsible for producing a slow modulation of the mean water surface thus generating bound long waves travelling at the group speed. Similarly, a quasi- periodic oscillation of the break-point location, will be accompained by a slow modulation of set-up/set-down in the surf zone and generation and release of long waves. If the primary structure of the carrying incident gravity waves is destroyed (e.g. by breaking), forced long waves can be freely released and even reflected at the coast. Infragravity waves can affect port operation through resonating conditions, or strongly affect sediment transport and beach morphodynamics. In the present study we investigate infragravity wave generation mechanisms both, from experiments and numerical computations. Measurements were conducted at the 70-meter long wave tank, located at the Instituto Nacional de Hidraulica (Chile), prepared with a beach of very mild slope of 1/80 in order to produce large surf zone extensions. A random JONSWAP type wave field (h0=0.52m, fp=0.25Hz, Hmo=0.17m) was generated by a piston wave-maker and measurements of the free surface displacements were performed all over its length at high spatial resolution (0.2m to 1m). Velocity profiles were also measured at four verticals inside the surf zone using an ADV. Correlation maps of wave group envelopes and infragravity waves are computed in order to identify long wave generation and dynamics in the experimental set-up. It appears that both mechanisms (groupiness and break-point oscillation) are
Numerical simulation and optimal control in plasma physics
International Nuclear Information System (INIS)
Blum, J.
1989-01-01
The topics covered in this book are: A free boundary problem: the axisymmetric equilibrium of the plasma in a Tokamak; Static control of the plasma boundary by external currents; Existence and control of a solution to the equilibrium problem in a simple case; Study of equilibrium solution branches and application to the stability of horizontal displacements; Identification of the plasma boundary and plasma current density from magnetic measurements; Evolution of the equilibrium at the diffusion time scale; Evolution of the equilibrium of a high aspect-ratio circular plasma; Stability and control of the horizontal displacement of the plasma
Computer utility for interactive instrument control
International Nuclear Information System (INIS)
Day, P.
1975-08-01
A careful study of the ANL laboratory automation needs in 1967 led to the conclusion that a central computer could support all of the real-time needs of a diverse collection of research instruments. A suitable hardware configuration would require an operating system to provide effective protection, fast real-time response and efficient data transfer. An SDS Sigma 5 satisfied all hardware criteria, however it was necessary to write an original operating system; services include program generation, experiment control real-time analysis, interactive graphics and final analysis. The system is providing real-time support for 21 concurrently running experiments, including an automated neutron diffractometer, a pulsed NMR spectrometer and multi-particle detection systems. It guarantees the protection of each user's interests and dynamically assigns core memory, disk space and 9-track magnetic tape usage. Multiplexor hardware capability allows the transfer of data between a user's device and assigned core area at rates of 100,000 bytes/sec. Real-time histogram generation for a user can proceed at rates of 50,000 points/sec. The facility has been self-running (no computer operator) for five years with a mean time between failures of 10 []ays and an uptime of 157 hours/week. (auth)
Numerical aspects of optimal control of penicillin production
Czech Academy of Sciences Publication Activity Database
Pčolka, M.; Čelikovský, Sergej
2014-01-01
Roč. 37, č. 1 (2014), s. 71-81 ISSN 1615-7591 R&D Projects: GA ČR(CZ) GA13-20433S Institutional support: RVO:67985556 Keywords : Optimal control * Nonlinear systems * Fermentation process * Gradient method optimization * Antibiotics production Subject RIV: BC - Control Systems Theory Impact factor: 1.997, year: 2014 http://library.utia.cas.cz/separaty/2014/TR/celikovsky-0424718.pdf
Computer-controlled wall servicing robot
Energy Technology Data Exchange (ETDEWEB)
Lefkowitz, S. [Pentek, Inc., Corapolis, PA (United States)
1995-03-01
After four years of cooperative research, Pentek has unveiled a new robot with the capability to automatically deliver a variety of cleaning, painting, inspection, and surveillance devices to large vertical surfaces. The completely computer-controlled robot can position a working tool on a 50-foot tall by 50-foot wide vertical surface with a repeatability of 1/16 inch. The working end can literally {open_quotes}fly{close_quotes} across the face of a wall at speed of 60 per minute, and can handle working loads of 350 pounds. The robot was originally developed to decontaminate the walls of reactor fueling cavities at commercial nuclear power plants during fuel outages. If these cavities are left to dry after reactor refueling, contamination present in the residue could later become airborne and move throughout the containment building. Decontaminating the cavity during the refueling outage reduces the need for restrictive personal protective equipment during plant operations to limit the dose rates.
Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems
Bäcker, A.
Summary: We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown. Billiard systems and the corresponding quantum billiards are another important class of systems (which are also relevant to applications, for example in mesoscopic physics). We provide a detailed exposition of the boundary integral method, which is one important method to determine the eigenvalues and eigenfunctions of the Helmholtz equation. We discuss several methods to determine the eigenvalues from the Fredholm equation and illustrate them for the stadium billiard. The occurrence of spurious solutions is discussed in detail and illustrated for the circular billiard, the stadium billiard, and the annular sector billiard. We emphasize the role of the normal derivative function to compute the normalization of eigenfunctions, momentum representations or autocorrelation functions in a very efficient and direct way. Some examples for these quantities are given and discussed.
Direct numerical simulation of reactor two-phase flows enabled by high-performance computing
Energy Technology Data Exchange (ETDEWEB)
Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.; Feng, Jinyong; Gouws, Andre; Li, Mengnan; Bolotnov, Igor A.
2018-04-01
Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent research progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.
Numerical analysis of thermal environment control in high density data center
Energy Technology Data Exchange (ETDEWEB)
Kwon, Oh Kyung; Kim, Hyeon Joong; Cha, Dong An [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of)
2012-08-15
Increasing heat generation in CPUs can hamper effective recirculation and by pass because of the large temperature difference between the exhaust and the intake air through a server room. This increases the overall temperature inside a data center and decreases the efficiency of the data center's cooling system. The purpose of the data center's cooling system is to separate the intake and exhaust air by controlling the computer room air conditioner(CRAC). In this study, ICEPAK is used to conduct a numerical analysis of a data center's cooling system. The temperature distribution and the entire room are analyzed for different volumetric flow rates. The optimized volumetric flow rate is found for each CPU power. The heat removal and temperature distribution for CPU powers of 100, 120, and 140W are found to be the best for a volumetric flow rate of 0.15m'3'/s. The numerical analysis is verified through RTI indicators, and the results appear to be the most reliable when the RTI value is 81.
Numerical simulation of side heating for controlling angular ...
Indian Academy of Sciences (India)
In the present study, a 3-D coupled transient thermal analysis model with auxiliary side heating (parallel heating) is developed to control angular distortion. During analysis, parallel heating flames are placed at several locations from weld line in cross direction. A user defined subroutine is used to apply transient heat source ...
Numerical analysis using state space method for vibration control of ...
African Journals Online (AJOL)
ATHARVA
carried out for two cases namely car moving on sagged bridges and car ... the vibrations of steel moment resisting frame in reinforced cement concrete buildings. ... active or semi-active dampers rolled into one (Spencer Jr. and Soong, 1999). ... implementation cost, low power consumption, ease of control, simple design ...
Numerical Algorithms for Deterministic Impulse Control Models with Applications
Grass, D.; Chahim, M.
2012-01-01
Abstract: In this paper we describe three different algorithms, from which two (as far as we know) are new in the literature. We take both the size of the jump as the jump times as decision variables. The first (new) algorithm considers an Impulse Control problem as a (multipoint) Boundary Value
NQR spectrometer controlled by a computer
International Nuclear Information System (INIS)
Stoican, Ovidiu
2002-01-01
Nuclear quadrupole resonance (NQR) is one of the sensitive methods for studying physical and chemical properties of a substance, such as chemical composition, molecular structure, molecular motion and electronic environment. The specifications of the research project require the use of a nuclear quadrupole resonance spectrometer. Design and performances of a pulsed nuclear quadrupole resonance spectrometer prototype covering the range 1-10 MHz are presented. The pulsed NQR method offers considerably higher sensitivity than either the marginal oscillator or super-regenerative methods. Strong echoes are often observed directly with an oscilloscope or a simple receiver. The method allows us to observe two signal categories: free induction decay (fid) and echoes. The block diagram of the pulsed nuclear quadrupole resonance spectrometer is shown. All operations performed by the spectrometer are controlled by a computer. The scanning frequency range, amplitude and width of the RF pulse, additional magnetic field and sample temperature can be controlled by the software. Also it is possible to improve the signal-to-noise ratio using digital filtering applied to the data stored. Automatic operation eliminates operator skill and uncertainty of manual operation. The NQR spectrometer control software is a stand alone executable file, runs on Windows 95/98 platform and does not require the existence of another software package. A graphical interface allows to user an easy control over the spectrometer operations. All measured parameters by the control system interface are saved in the standard data files and can be processed further. The design is readily adaptable for other applications. The sample is contained within an aluminum cylindrical case. The upper end cap of the case can be removed and it allows introducing the sample. On the upper end cap RF and main temperature sensor connector are placed. On the internal side of the bottom end cap a thermoelectric cooler (MELCOR
Computer-based control systems of nuclear power plants
International Nuclear Information System (INIS)
Kalashnikov, V.K.; Shugam, R.A.; Ol'shevsky, Yu.N.
1975-01-01
Computer-based control systems of nuclear power plants may be classified into those using computers for data acquisition only, those using computers for data acquisition and data processing, and those using computers for process control. In the present paper a brief review is given of the functions the systems above mentioned perform, their applications in different nuclear power plants, and some of their characteristics. The trend towards hierarchic systems using control computers with reserves already becomes clear when consideration is made of the control systems applied in the Canadian nuclear power plants that pertain to the first ones equipped with process computers. The control system being now under development for the large Soviet reactors of WWER type will also be based on the use of control computers. That part of the system concerned with controlling the reactor assembly is described in detail
Controlling data transfers from an origin compute node to a target compute node
Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN
2011-06-21
Methods, apparatus, and products are disclosed for controlling data transfers from an origin compute node to a target compute node that include: receiving, by an application messaging module on the target compute node, an indication of a data transfer from an origin compute node to the target compute node; and administering, by the application messaging module on the target compute node, the data transfer using one or more messaging primitives of a system messaging module in dependence upon the indication.
Control strategies for friction dampers: numerical assessment and experimental investigations.
Coelho H.T.; Santos M.B.; Lepore Neto F.P.; Mahfoud J.
2014-01-01
The use of friction dampers has been proposed in a wide variety of mechanical systems for which it is not possible to apply viscoelastic materials, fluid based dampers or others viscous dampers. An important example is the application of friction dampers in aircraft engines to reduce the blades vibration amplitudes. In most cases, friction dampers have been studied in a passive way, however, a significant improvement can be achieved by controlling the normal force in the dampers. The aim of t...
Alcohol control: Mobile sensor system and numerical signal analysis
Seifert, Rolf; Keller, Hubert B.; Conrad, Thorsten; Peter, Jens
2016-01-01
An innovative mobile sensor system for alcohol control in the respiratory air is introduced. The gas sensor included in the sensor system is thermo-cyclically operated. Ethanol is the leading component in this context. However, other components occur in the breathing air which can influence the concentration determination of ethanol. Therefore, mono- ethanol samples and binary gas mixtures are measured by the sensor system and analyzed with a new calibration and evaluation procedure which is ...
Numerical simulation of controlled directional solidification under microgravity conditions
Holl, S.; Roos, D.; Wein, J.
The computer-assisted simulation of solidification processes influenced by gravity has gained increased importance during the previous years regarding ground-based as well as microgravity research. Depending on the specific needs of the investigator, the simulation model ideally covers a broad spectrum of applications. These primarily include the optimization of furnace design in interaction with selected process parameters to meet the desired crystallization conditions. Different approaches concerning the complexity of the simulation models as well as their dedicated applications will be discussed in this paper. Special emphasis will be put on the potential of software tools to increase the scientific quality and cost-efficiency of microgravity experimentation. The results gained so far in the context of TEXUS, FSLP, D-1 and D-2 (preparatory program) experiments, highlighting their simulation-supported preparation and evaluation will be discussed. An outlook will then be given on the possibilities to enhance the efficiency of pre-industrial research in the Columbus era through the incorporation of suitable simulation methods and tools.
Computational issues in alternating projection algorithms for fixed-order control design
DEFF Research Database (Denmark)
Beran, Eric Bengt; Grigoriadis, K.
1997-01-01
Alternating projection algorithms have been introduced recently to solve fixed-order controller design problems described by linear matrix inequalities and non-convex coupling rank constraints. In this work, an extensive numerical experimentation using proposed benchmark fixed-order control design...... examples is used to indicate the computational efficiency of the method. These results indicate that the proposed alternating projections are effective in obtaining low-order controllers for small and medium order problems...
Computer controlled vacuum control system for synchrotron radiation beam lines
International Nuclear Information System (INIS)
Goldberg, S.M.; Wang, C.; Yang, J.
1983-01-01
The increasing number and complexity of vacuum control systems at the Stanford Synchrotron Radiation Laboratory has resulted in the need to computerize its operations in order to lower costs and increase efficiency of operation. Status signals are transmitted through digital and analog serial data links which use microprocessors to monitor vacuum status continuously. Each microprocessor has a unique address and up to 256 can be connected to the host computer over a single RS232 data line. A FORTRAN program on the host computer will request status messages and send control messages via only one RS232 line per beam line, signal the operator when a fault condition occurs, take automatic corrective actions, warn of impending valve failure, and keep a running log of all changes in vacuum status for later recall. Wiring costs are thus greatly reduced and more status conditions can be monitored without adding excessively to the complexity of the system. Operators can then obtain status reports at various locations in the lab quickly without having to read a large number of meter and LED's
Alcohol Control: Mobile Sensor System and Numerical Signal Analysis
Directory of Open Access Journals (Sweden)
Rolf SEIFERT
2016-10-01
Full Text Available An innovative mobile sensor system for alcohol control in the respiratory air is introduced. The gas sensor included in the sensor system is thermo-cyclically operated. Ethanol is the leading component in this context. However, other components occur in the breathing air which can influence the concentration determination of ethanol. Therefore, mono- ethanol samples and binary gas mixtures are measured by the sensor system and analyzed with a new calibration and evaluation procedure which is also incorporated in the system. The applications demonstrate a good substance identification capability of the sensor system and a very good concentration determination of the components.
International Nuclear Information System (INIS)
Corge, Ch.
1969-01-01
Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [fr
International Nuclear Information System (INIS)
Gusev, A.E.; Kozlov, A.A.; Lavrov, K.N.; Sobolev, I.A.
1998-01-01
This paper concerns the problem of Closed Radionuclide Sources (CRS) automated account and control in Moscow city and Moscow region. Information relations structure between authorities and enterprises is shown. Special computer oriented system of CRS turnover monitoring is used for this purposes. Its possibilities and numeric characteristics of database are mentioned. This system benefit and application aspects are discussed in detail. (author)
Directory of Open Access Journals (Sweden)
Isna Nur Hikmah
2016-12-01
Full Text Available The reseach’s purpose was to analyze the effect of picture numeric card media toward improvement of the summation computation ability for student with intellectual disability of grade IV in SDLB. Data collected was analyzed with experiment technique and single subject research A-B design. Research result showed that: after being analyzed between condition overlap persentase was 0%. Thus, it could be concluded that there was effect of pictorial numeric card media toward summation computation ability of student with intellectual disability
Energy Technology Data Exchange (ETDEWEB)
Kako, T.; Watanabe, T. [eds.
2000-06-01
This is the proceeding of 'study on numerical methods related to plasma confinement' held in National Institute for Fusion Science. In this workshop, theoretical and numerical analyses of possible plasma equilibria with their stability properties are presented. There are also various lectures on mathematical as well as numerical analyses related to the computational methods for fluid dynamics and plasma physics. Separate abstracts were presented for 13 of the papers in this report. The remaining 6 were considered outside the subject scope of INIS. (J.P.N.)
Directory of Open Access Journals (Sweden)
Hyung-Jun Kim
2018-01-01
Full Text Available Extreme rainfall causes surface runoff to flow towards lowlands and subterranean facilities, such as subway stations and buildings with underground spaces in densely packed urban areas. These facilities and areas are therefore vulnerable to catastrophic submergence. However, flood modeling of underground space has not yet been adequately studied because there are difficulties in reproducing the associated multiple horizontal layers connected with staircases or elevators. This study proposes a convenient approach to simulate underground inundation when two layers are connected. The main facet of this approach is to compute the flow flux passing through staircases in an upper layer and to transfer the equivalent quantity to a lower layer. This is defined as the ‘adaptive transfer method’. This method overcomes the limitations of 2D modeling by introducing layers connecting concepts to prevent large variations in mesh sizes caused by complicated underlying obstacles or local details. Consequently, this study aims to contribute to the numerical analysis of flow in inundated underground spaces with multiple floors.
Directory of Open Access Journals (Sweden)
Liang Lv
2016-01-01
Full Text Available Computed tomography of chemiluminescence (CTC is a promising technique for combustion diagnostics, providing instantaneous 3D information of flame structures, especially in harsh circumstance. This work focuses on assessing the feasibility of CTC and investigating structures of hydrogen-air premixed laminar flames using CTC. A numerical phantom study was performed to assess the accuracy of the reconstruction algorithm. A well-designed burner was used to generate stable hydrogen-air premixed laminar flames. The OH⁎ chemiluminescence intensity field reconstructed from 37 views using CTC was compared to the OH⁎ chemiluminescence distributions recorded directly by a single ICCD camera from the side view. The flame structures in different flow velocities and equivalence ratios were analyzed using the reconstructions. The results show that the CTC technique can effectively indicate real distributions of the flame chemiluminescence. The height of the flame becomes larger with increasing flow velocities, whereas it decreases with increasing equivalence ratios (no larger than 1. The increasing flow velocities gradually lift the flame reaction zones. A critical cone angle of 4.76 degrees is obtained to avoid blow-off. These results set up a foundation for next studies and the methods can be further developed to reconstruct 3D structures of flames.
Numerical Simulation of Mixing in a Micro-well Scale Bioreactor by Computational Fluid Dynamics
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The introduction of the multi-well plate miniaturisation technology with its associated automated dispensers, readers and integrated systems coupled with advances in life sciences has a propelling effect on the rate at which new potential drug molecules are discovered. The translation of these discoveries to real outcome now demands parallel approaches which allow large numbers of process options to be rapidly assessed. The engineering challenges in achieving this provide the motivation for the proposed work. In this work we used computational fluid dynamics(CFD) analysis to study flow conditions in a gas-liquid contactor which has the potential to be used as a fermenter on a multi-well format. The bioreactor had a working volume of 6.5 mL with the major dimensions equal to those of a single well of a 24-well plate. The 6.5 mL bioreactor was mechanically agitated and aerated by a single sparger placed beneath the bottom impeller. Detailed numerical procedure for solving the governing flow equations is given. The CFD results are combined with population balance equations to establish the size of the bubbles and their distribution in the bioreactor, Power curves with and without aeration are provided based on the simulated results.
The Design of a Templated C++ Small Vector Class for Numerical Computing
Moran, Patrick J.
2000-01-01
We describe the design and implementation of a templated C++ class for vectors. The vector class is templated both for vector length and vector component type; the vector length is fixed at template instantiation time. The vector implementation is such that for a vector of N components of type T, the total number of bytes required by the vector is equal to N * size of (T), where size of is the built-in C operator. The property of having a size no bigger than that required by the components themselves is key in many numerical computing applications, where one may allocate very large arrays of small, fixed-length vectors. In addition to the design trade-offs motivating our fixed-length vector design choice, we review some of the C++ template features essential to an efficient, succinct implementation. In particular, we highlight some of the standard C++ features, such as partial template specialization, that are not supported by all compilers currently. This report provides an inventory listing the relevant support currently provided by some key compilers, as well as test code one can use to verify compiler capabilities.
Directory of Open Access Journals (Sweden)
Qi Wang
2012-01-01
Full Text Available This paper deals with the oscillations of numerical solutions for the nonlinear delay differential equations in physiological control systems. The exponential θ-method is applied to p′(t=β0ωμp(t−τ/(ωμ+pμ(t−τ−γp(t and it is shown that the exponential θ-method has the same order of convergence as that of the classical θ-method. Several conditions under which the numerical solutions oscillate are derived. Moreover, it is proven that every nonoscillatory numerical solution tends to positive equilibrium of the continuous system. Finally, the main results are illustrated with numerical examples.
van Dyk, Danny; Geveler, Markus; Mallach, Sven; Ribbrock, Dirk; Göddeke, Dominik; Gutwenger, Carsten
2009-12-01
We present HONEI, an open-source collection of libraries offering a hardware oriented approach to numerical calculations. HONEI abstracts the hardware, and applications written on top of HONEI can be executed on a wide range of computer architectures such as CPUs, GPUs and the Cell processor. We demonstrate the flexibility and performance of our approach with two test applications, a Finite Element multigrid solver for the Poisson problem and a robust and fast simulation of shallow water waves. By linking against HONEI's libraries, we achieve a two-fold speedup over straight forward C++ code using HONEI's SSE backend, and additional 3-4 and 4-16 times faster execution on the Cell and a GPU. A second important aspect of our approach is that the full performance capabilities of the hardware under consideration can be exploited by adding optimised application-specific operations to the HONEI libraries. HONEI provides all necessary infrastructure for development and evaluation of such kernels, significantly simplifying their development. Program summaryProgram title: HONEI Catalogue identifier: AEDW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv2 No. of lines in distributed program, including test data, etc.: 216 180 No. of bytes in distributed program, including test data, etc.: 1 270 140 Distribution format: tar.gz Programming language: C++ Computer: x86, x86_64, NVIDIA CUDA GPUs, Cell blades and PlayStation 3 Operating system: Linux RAM: at least 500 MB free Classification: 4.8, 4.3, 6.1 External routines: SSE: none; [1] for GPU, [2] for Cell backend Nature of problem: Computational science in general and numerical simulation in particular have reached a turning point. The revolution developers are facing is not primarily driven by a change in (problem-specific) methodology, but rather by the fundamental paradigm shift of the
Huang, Wei-Ren; Huang, Shih-Pu; Tsai, Tsung-Yueh; Lin, Yi-Jyun; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Young, Hong-Tsu
2017-09-01
Spherical lenses lead to forming spherical aberration and reduced optical performance. Consequently, in practice optical system shall apply a combination of spherical lenses for aberration correction. Thus, the volume of the optical system increased. In modern optical systems, aspherical lenses have been widely used because of their high optical performance with less optical components. However, aspherical surfaces cannot be fabricated by traditional full aperture polishing process due to their varying curvature. Sub-aperture computer numerical control (CNC) polishing is adopted for aspherical surface fabrication in recent years. By using CNC polishing process, mid-spatial frequency (MSF) error is normally accompanied during this process. And the MSF surface texture of optics decreases the optical performance for high precision optical system, especially for short-wavelength applications. Based on a bonnet polishing CNC machine, this study focuses on the relationship between MSF surface texture and CNC polishing parameters, which include feed rate, head speed, track spacing and path direction. The power spectral density (PSD) analysis is used to judge the MSF level caused by those polishing parameters. The test results show that controlling the removal depth of single polishing path, through the feed rate, and without same direction polishing path for higher total removal depth can efficiently reduce the MSF error. To verify the optical polishing parameters, we divided a correction polishing process to several polishing runs with different direction polishing paths. Compare to one shot polishing run, multi-direction path polishing plan could produce better surface quality on the optics.
Numerical simulation of energy efficiency measures: control and operational strategies
International Nuclear Information System (INIS)
Ardehali, M. M.
2006-01-01
The inherent limitation in performance of building envelop components and heating ventilating and air conditioning (HVAC) equipment necessitates the examination of operational strategies for improvement in energy-efficient operation of buildings. Due to the ease of installation and increasing availability of electronic controllers, operational strategies that could be programmed are of particular interest. The Iowa Energy Center in the US has taken the initiative to conduct the necessary assessment of current HVAC technology and the commonly-used operational strategies for commercial and industrial buildings, as applied to the midwestern part of the country, with weather and energy cost data for Des Moines, Iowa. The first part of this study focused on the energy consumption and cost effectiveness of HVAC systems. The objectives of the second part is concerned with examination of various operational strategies, namely, night purge (NP), fan optimum start and stop (OSS), condenser water reset (CWR), and chilled water reset (CHWR) applied to order and newer-type commercial office buildings. The indoor air quality requirement are met and the latest applicable energy rates from local utility companies are used. The results show that, in general, NP is not an effective strategy in buildings with low thermal mass storage, OSS reduced fan energy, and CWR and CHWR could be effective and require chillers with multi-stage unloading characteristics. The most operationally efficient strategies are the combination of OSS, CWR, and CHWR for the older-type building, and OSS for the newer-type building. Economically, the most effective is the OSS strategy for the older-type building and the CHWR strategy for the newer-type building.(Author)
Future Communication, Computing, Control and Management Volume 2
2012-01-01
This volume contains revised and extended research articles written by prominent researchers participating in the ICF4C 2011 conference. 2011 International Conference on Future Communication, Computing, Control and Management (ICF4C 2011) has been held on December 16-17, 2011, Phuket, Thailand. Topics covered include intelligent computing, network management, wireless networks, telecommunication, power engineering, control engineering, Signal and Image Processing, Machine Learning, Control Systems and Applications, The book will offer the states of arts of tremendous advances in Computing, Communication, Control, and Management and also serve as an excellent reference work for researchers and graduate students working on Computing, Communication, Control, and Management Research.
Future Communication, Computing, Control and Management Volume 1
2012-01-01
This volume contains revised and extended research articles written by prominent researchers participating in the ICF4C 2011 conference. 2011 International Conference on Future Communication, Computing, Control and Management (ICF4C 2011) has been held on December 16-17, 2011, Phuket, Thailand. Topics covered include intelligent computing, network management, wireless networks, telecommunication, power engineering, control engineering, Signal and Image Processing, Machine Learning, Control Systems and Applications, The book will offer the states of arts of tremendous advances in Computing, Communication, Control, and Management and also serve as an excellent reference work for researchers and graduate students working on Computing, Communication, Control, and Management Research.
Future Computing, Communication, Control and Management Volume 2
2012-01-01
This volume contains revised and extended research articles written by prominent researchers participating in the ICF4C 2011 conference. 2011 International Conference on Future Communication, Computing, Control and Management (ICF4C 2011) has been held on December 16-17, 2011, Phuket, Thailand. Topics covered include intelligent computing, network management, wireless networks, telecommunication, power engineering, control engineering, Signal and Image Processing, Machine Learning, Control Systems and Applications, The book will offer the states of arts of tremendous advances in Computing, Communication, Control, and Management and also serve as an excellent reference work for researchers and graduate students working on Computing, Communication, Control, and Management Research.
Design of analog networks in the control theory formulation. Part 2: Numerical results
Zemliak, A. M.
2005-01-01
The paper presents numerical results of design of nonlinear electronic networks based on the problem formulation in terms of the control theory. Several examples illustrate the prospects of the approach suggested in the first part of the work.
Numerical study comparing RANS and LES approaches on a circulation control airfoil
International Nuclear Information System (INIS)
Rumsey, Christopher L.; Nishino, Takafumi
2011-01-01
Highlights: → RANS compared with LES for circulation control airfoil. → RANS turbulence models need to account for streamline curvature. → RANS models yield higher lift than LES in spite of predicting similar jet separation. - Abstract: A numerical study over a nominally two-dimensional circulation control airfoil is performed using a large-eddy simulation code and two Reynolds-averaged Navier-Stokes codes. Different Coanda jet blowing conditions are investigated. In addition to investigating the influence of grid density, a comparison is made between incompressible and compressible flow solvers. The incompressible equations are found to yield negligible differences from the compressible equations up to at least a jet exit Mach number of 0.64. The effects of different turbulence models are also studied. Models that do not account for streamline curvature effects tend to predict jet separation from the Coanda surface too late, and can produce non-physical solutions at high blowing rates. Three different turbulence models that account for streamline curvature are compared with each other and with large eddy simulation solutions. All three models are found to predict the Coanda jet separation location reasonably well, but one of the models predicts specific flow field details near the Coanda surface prior to separation much better than the other two. All Reynolds-averaged Navier-Stokes computations produce higher circulation than large eddy simulation computations, with different stagnation point location and greater flow acceleration around the nose onto the upper surface. The precise reasons for the higher circulation are not clear, although it is not solely a function of predicting the jet separation location correctly.
Numerical study comparing RANS and LES approaches on a circulation control airfoil
Energy Technology Data Exchange (ETDEWEB)
Rumsey, Christopher L., E-mail: c.l.rumsey@nasa.gov [Computational AeroSciences Branch, NASA Langley Research Center, Hampton, VA 23681-2199 (United States); Nishino, Takafumi [Advanced Supercomputing Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States)
2011-10-15
Highlights: > RANS compared with LES for circulation control airfoil. > RANS turbulence models need to account for streamline curvature. > RANS models yield higher lift than LES in spite of predicting similar jet separation. - Abstract: A numerical study over a nominally two-dimensional circulation control airfoil is performed using a large-eddy simulation code and two Reynolds-averaged Navier-Stokes codes. Different Coanda jet blowing conditions are investigated. In addition to investigating the influence of grid density, a comparison is made between incompressible and compressible flow solvers. The incompressible equations are found to yield negligible differences from the compressible equations up to at least a jet exit Mach number of 0.64. The effects of different turbulence models are also studied. Models that do not account for streamline curvature effects tend to predict jet separation from the Coanda surface too late, and can produce non-physical solutions at high blowing rates. Three different turbulence models that account for streamline curvature are compared with each other and with large eddy simulation solutions. All three models are found to predict the Coanda jet separation location reasonably well, but one of the models predicts specific flow field details near the Coanda surface prior to separation much better than the other two. All Reynolds-averaged Navier-Stokes computations produce higher circulation than large eddy simulation computations, with different stagnation point location and greater flow acceleration around the nose onto the upper surface. The precise reasons for the higher circulation are not clear, although it is not solely a function of predicting the jet separation location correctly.
Professional mathematicians differ from controls in their spatial-numerical associations.
Cipora, Krzysztof; Hohol, Mateusz; Nuerk, Hans-Christoph; Willmes, Klaus; Brożek, Bartosz; Kucharzyk, Bartłomiej; Nęcka, Edward
2016-07-01
While mathematically impaired individuals have been shown to have deficits in all kinds of basic numerical representations, among them spatial-numerical associations, little is known about individuals with exceptionally high math expertise. They might have a more abstract magnitude representation or more flexible spatial associations, so that no automatic left/small and right/large spatial-numerical association is elicited. To pursue this question, we examined the Spatial Numerical Association of Response Codes (SNARC) effect in professional mathematicians which was compared to two control groups: Professionals who use advanced math in their work but are not mathematicians (mostly engineers), and matched controls. Contrarily to both control groups, Mathematicians did not reveal a SNARC effect. The group differences could not be accounted for by differences in mean response speed, response variance or intelligence or a general tendency not to show spatial-numerical associations. We propose that professional mathematicians possess more abstract and/or spatially very flexible numerical representations and therefore do not exhibit or do have a largely reduced default left-to-right spatial-numerical orientation as indexed by the SNARC effect, but we also discuss other possible accounts. We argue that this comparison with professional mathematicians also tells us about the nature of spatial-numerical associations in persons with much less mathematical expertise or knowledge.
Direct design of LPV feedback controllers: technical details and numerical examples
Novara, Carlo
2014-01-01
The paper contains technical details of recent results developed by the author, regarding the design of LPV controllers directly from experimental data. Two numerical examples are also presented, about control of the Duffing oscillator and control of a two-degree-of-freedom manipulator.
Micro-computer control for super-critical He generation
International Nuclear Information System (INIS)
Tamada, Noriharu; Sekine, Takehiro; Tomiyama, Sakutaro
1979-01-01
The development of a large scale refrigeration system is being stimulated by new superconducting techniques representated by a superconducting power cable and a magnet. For the practical operation of such a large system, an automatic control system with a computer is required, because it can attain an effective and systematic operation. For this reason, we examined and developed micro-computer control techniques for supercritical He generation, as a simplified control model of the refrigeration system. The experimental results showed that the computer control system can attain fine controlability, even if the control element is only one magnetic valve, but a BASIK program language of micro-computer, which is convinient and generaly used, isn't enough one to control a more complicated system, because of its low calculating speed. Then we conclude that a more effective program language for micro-computer must be developed to realize practical refrigeration control. (author)
Directory of Open Access Journals (Sweden)
M Pomarède
2016-09-01
Full Text Available Numerical simulation of Vortex-Induced-Vibrations (VIV of a rigid circular elastically-mounted cylinder submitted to a fluid cross-flow has been extensively studied over the past decades, both experimentally and numerically, because of its theoretical and practical interest for understanding Flow-Induced-Vibrations (FIV problems. In this context, the present article aims to expose a numerical study based on fully-coupled fluid-solid computations compared to previously published work [34], [36]. The computational procedure relies on a partitioned method ensuring the coupling between fluid and structure solvers. The fluid solver involves a moving mesh formulation for simulation of the fluid structure interface motion. Energy exchanges between fluid and solid models are ensured through convenient numerical schemes. The present study is devoted to a low Reynolds number configuration. Cylinder motion magnitude, hydrodynamic forces, oscillation frequency and fluid vortex shedding modes are investigated and the “lock-in” phenomenon is reproduced numerically. These numerical results are proposed for code validation purposes before investigating larger industrial applications such as configurations involving tube arrays under cross-flows [4].
Blazevski, Daniel; Franklin, Jennifer
2012-12-01
Scattering theory is a convenient way to describe systems that are subject to time-dependent perturbations which are localized in time. Using scattering theory, one can compute time-dependent invariant objects for the perturbed system knowing the invariant objects of the unperturbed system. In this paper, we use scattering theory to give numerical computations of invariant manifolds appearing in laser-driven reactions. In this setting, invariant manifolds separate regions of phase space that lead to different outcomes of the reaction and can be used to compute reaction rates.
Numerical spin tracking in a synchrotron computer code Spink: Examples (RHIC)
International Nuclear Information System (INIS)
Luccio, A.
1995-01-01
In the course of acceleration of polarized protons in a synchrotron, many depolarizing resonances are encountered. They are classified in two categories: Intrinsic resonances that depend on the lattice structure of the ring and arise from the coupling of betatron oscillations with horizontal magnetic fields, and imperfection resonances caused by orbit distortions due to field errors. In general, the spectrum of resonances vs spin tune Gγ(G = 1.7928, the proton gyromagnetic anomaly, and y the proton relativistic energy ratio) for a given lattice tune ν, or vs ν for a given Gγ, contains a multitude of lines with various amplitudes or resonance strengths. The depolarization due to the resonance lines can be studied by numerically tracking protons with spin in a model accelerator. Tracking will allow one to check the strength of resonances, to study the effects of devices like Siberian Snakes, to find safe lattice tune regions where to operate, and finally to study in detail the operation of special devices such as Spin Flippers. A few computer codes exist that calculate resonance strengths E k and perform tracking, for proton and electron machines. Most relevant to our work for the AGS and RHIC machines are the programs Depol and Snake. Depol, calculates the E k 's by Fourier analysis. The input to Depol is the output of a machine model code, such as Synch or Mad, containing all details of the lattice. Snake, does the tracking, starting from a synthetic machine, that contains a certain number of periods, of FODO cells, of Siberian snakes, etc. We believed the complexities of machines like the AGS or RHIC could not be adequately represented by Snake. Then, we decided to write a new code, Spink, that combines some of the features of Depol and Snake. I.E., Spink reads a Mad output like Depol and tracks as Snake does. The structure of the code and examples for RHIC are described in the following
Computer programs for the numerical modelling of water flow in rock masses
International Nuclear Information System (INIS)
Croney, P.; Richards, L.R.
1985-08-01
Water flow in rock joints provides a very important possible route for the migration of radio-nuclides from radio-active waste within a repository back to the biosphere. Two computer programs DAPHNE and FPM have been developed to model two dimensional fluid flow in jointed rock masses. They have been developed to run on microcomputer systems suitable for field locations. The fluid flows in a number of jointed rock systems have been examined and certain controlling functions identified. A methodology has been developed for assessing the anisotropic permeability of jointed rock. A number of examples of unconfined flow into surface and underground openings have been analysed and ground water lowering, pore water pressures and flow quantities predicted. (author)
Operators manual for a computer controlled impedance measurement system
Gordon, J.
1987-02-01
Operating instructions of a computer controlled impedance measurement system based in Hewlett Packard instrumentation are given. Hardware details, program listings, flowcharts and a practical application are included.
Directory of Open Access Journals (Sweden)
Razali Jidin
2017-10-01
Full Text Available The main feature of a run-off river hydroelectric system is a small size intake pond that overspills when river flow is more than turbines’ intake. As river flow fluctuates, a large proportion of the potential energy is wasted due to the spillages which can occur when turbines are operated manually. Manual operation is often adopted due to unreliability of water level-based controllers at many remote and unmanned run-off river hydropower plants. In order to overcome these issues, this paper proposes a novel method by developing a controller that derives turbine output set points from computed mass flow rate of rivers that feed the hydroelectric system. The computed flow is derived by summation of pond volume difference with numerical integration of both turbine discharge flows and spillages. This approach of estimating river flow allows the use of existing sensors rather than requiring the installation of new ones. All computations, including the numerical integration, have been realized as ladder logics on a programmable logic controller. The implemented controller manages the dynamic changes in the flow rate of the river better than the old point-level based controller, with the aid of a newly installed water level sensor. The computed mass flow rate of the river also allows the controller to straightforwardly determine the number of turbines to be in service with considerations of turbine efficiencies and auxiliary power conservation.
Numerical and Experimental Modal Control of Flexible Rotor Using Electromagnetic Actuator
Directory of Open Access Journals (Sweden)
Edson Hideki Koroishi
2014-01-01
Full Text Available The present work is dedicated to active modal control applied to flexible rotors. The effectiveness of the corresponding techniques for controlling a flexible rotor is tested numerically and experimentally. Two different approaches are used to determine the appropriate controllers. The first uses the linear quadratic regulator and the second approach is the fuzzy modal control. This paper is focused on the electromagnetic actuator, which in this case is part of a hybrid bearing. Due to numerical reasons it was necessary to reduce the size of the model of the rotating system so that the design of the controllers and estimator could be performed. The role of the Kalman estimator in the present contribution is to estimate the modal states of the system and to determine the displacement of the rotor at the position of the hybrid bearing. Finally, numerical and experimental results demonstrate the success of the methodology conveyed.
Computer control in a compton scattering spectrometer
International Nuclear Information System (INIS)
Cui Ningzhuo; Chen Tao; Gong Zhufang; Yang Baozhong; Mo Haiding; Hua Wei; Bian Zuhe
1995-01-01
The authors introduced the hardware and software of computer autocontrol of calibration and data acquisition in a Compton Scattering spectrometer which consists of a HPGe detector, Amplifiers and a MCA
Evolutionary Computing for Intelligent Power System Optimization and Control
DEFF Research Database (Denmark)
This new book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization the...... theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems....
Modeling the state dependent impulse control for computer virus propagation under media coverage
Liang, Xiyin; Pei, Yongzhen; Lv, Yunfei
2018-02-01
A state dependent impulsive control model is proposed to model the spread of computer virus incorporating media coverage. By the successor function, the sufficient conditions for the existence and uniqueness of order-1 periodic solution are presented first. Secondly, for two classes of periodic solutions, the geometric property of successor function and the analogue of the Poincaré criterion are employed to obtain the stability results. These results show that the number of the infective computers is under the threshold all the time. Finally, the theoretic and numerical analysis show that media coverage can delay the spread of computer virus.
Computer simulation system of neural PID control on nuclear reactor
International Nuclear Information System (INIS)
Chen Yuzhong; Yang Kaijun; Shen Yongping
2001-01-01
Neural network proportional integral differential (PID) controller on nuclear reactor is designed, and the control process is simulated by computer. The simulation result show that neutral network PID controller can automatically adjust its parameter to ideal state, and good control result can be gotten in reactor control process
Force-controlled absorption in a fully-nonlinear numerical wave tank
International Nuclear Information System (INIS)
Spinneken, Johannes; Christou, Marios; Swan, Chris
2014-01-01
An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes
Single cell adhesion assay using computer controlled micropipette.
Directory of Open Access Journals (Sweden)
Rita Salánki
Full Text Available Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day. Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min. We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a
Energy Technology Data Exchange (ETDEWEB)
Spoerl, Andreas
2008-06-05
Quantum computers are one of the next technological steps in modern computer science. Some of the relevant questions that arise when it comes to the implementation of quantum operations (as building blocks in a quantum algorithm) or the simulation of quantum systems are studied. Numerical results are gathered for variety of systems, e.g. NMR systems, Josephson junctions and others. To study quantum operations (e.g. the quantum fourier transform, swap operations or multiply-controlled NOT operations) on systems containing many qubits, a parallel C++ code was developed and optimised. In addition to performing high quality operations, a closer look was given to the minimal times required to implement certain quantum operations. These times represent an interesting quantity for the experimenter as well as for the mathematician. The former tries to fight dissipative effects with fast implementations, while the latter draws conclusions in the form of analytical solutions. Dissipative effects can even be included in the optimisation. The resulting solutions are relaxation and time optimised. For systems containing 3 linearly coupled spin (1)/(2) qubits, analytical solutions are known for several problems, e.g. indirect Ising couplings and trilinear operations. A further study was made to investigate whether there exists a sufficient set of criteria to identify systems with dynamics which are invertible under local operations. Finally, a full quantum algorithm to distinguish between two knots was implemented on a spin(1)/(2) system. All operations for this experiment were calculated analytically. The experimental results coincide with the theoretical expectations. (orig.)
EBR-II high-ramp transients under computer control
International Nuclear Information System (INIS)
Forrester, R.J.; Larson, H.A.; Christensen, L.J.; Booty, W.F.; Dean, E.M.
1983-01-01
During reactor run 122, EBR-II was subjected to 13 computer-controlled overpower transients at ramps of 4 MWt/s to qualify the facility and fuel for transient testing of LMFBR oxide fuels as part of the EBR-II operational-reliability-testing (ORT) program. A computer-controlled automatic control-rod drive system (ACRDS), designed by EBR-II personnel, permitted automatic control on demand power during the transients
Computational intelligence applications in modeling and control
Vaidyanathan, Sundarapandian
2015-01-01
The development of computational intelligence (CI) systems was inspired by observable and imitable aspects of intelligent activity of human being and nature. The essence of the systems based on computational intelligence is to process and interpret data of various nature so that that CI is strictly connected with the increase of available data as well as capabilities of their processing, mutually supportive factors. Developed theories of computational intelligence were quickly applied in many fields of engineering, data analysis, forecasting, biomedicine and others. They are used in images and sounds processing and identifying, signals processing, multidimensional data visualization, steering of objects, analysis of lexicographic data, requesting systems in banking, diagnostic systems, expert systems and many other practical implementations. This book consists of 16 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought ...
Isotopic analysis of plutonium by computer controlled mass spectrometry
International Nuclear Information System (INIS)
1974-01-01
Isotopic analysis of plutonium chemically purified by ion exchange is achieved using a thermal ionization mass spectrometer. Data acquisition from and control of the instrument is done automatically with a dedicated system computer in real time with subsequent automatic data reduction and reporting. Separation of isotopes is achieved by varying the ion accelerating high voltage with accurate computer control
Secure cloud computing: benefits, risks and controls
CSIR Research Space (South Africa)
Carroll, M
2011-08-01
Full Text Available Cloud computing presents a new model for IT service delivery and it typically involves over-a-network, on-demand, self-service access, which is dynamically scalable and elastic, utilising pools of often virtualized resources. Through these features...
Experiencing Brain-Computer Interface Control
van de Laar, B.L.A.
2016-01-01
Brain-Computer Interfaces (BCIs) are systems that extract information from the user’s brain activity and employ it in some way in an interactive system. While historically BCIs were mainly catered towards paralyzed or otherwise physically handicapped users, the last couple of years applications with
Brühl, Elisabeth; Buckup, Tiago; Motzkus, Marcus
2018-06-07
Mechanisms and optimal experimental conditions in coherent control still intensely stimulate debates. In this work, a phase-only control mechanism in an open quantum system is investigated experimentally and numerically. Several parameterizations for femtosecond pulse shaping (combination of chirp and multipulses) are exploited in transient absorption of a prototype organic molecule to control population and vibrational coherence in ground and excited states. Experimental results are further numerically simulated and corroborated with a four-level density-matrix model, which reveals a phase-only control mechanism based on the interaction between the tailored phase of the excitation pulse and the induced transient absorption. In spite of performing experiment and numerical simulations in the linear regime of excitation, the control effect amplitude depends non-linearly on the excitation energy and is explained as a pump-dump control mechanism. No evidence of single-photon control is observed with the model. Moreover, our results also show that the control effect on the population and vibrational coherence is highly dependent on the spectral detuning of the excitation spectrum. Contrary to the popular belief in coherent control experiments, spectrally resonant tailored excitation will lead to the control of the excited state only for very specific conditions.
3-D Numerical Realization of Contituent-Level FRP Composites Using X-Ray Computer Tomography
National Aeronautics and Space Administration — Develop met . hods coupling state-of-the-art, nondestructive characterization techniques with three-dimensional, numerical modeling to study the constituent-level...
On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations
Directory of Open Access Journals (Sweden)
H. Montazeri
2012-01-01
Full Text Available We consider a system of nonlinear equations F(x=0. A new iterative method for solving this problem numerically is suggested. The analytical discussions of the method are provided to reveal its sixth order of convergence. A discussion on the efficiency index of the contribution with comparison to the other iterative methods is also given. Finally, numerical tests illustrate the theoretical aspects using the programming package Mathematica.
Numerical Model of Air Valve For Computation of One-dimensional Flow
Directory of Open Access Journals (Sweden)
Daniel HIMR
2014-06-01
Full Text Available The paper is focused on a numerical simulation of unsteady flow in a pipeline. The special attention is paid to a numerical model of an air valve, which has to include all possible regimes: critical/subcritical inflow and critical/subcritical outflow of air. Thermodynamic equation of subcritical mass flow was simplified to get more friendly shape of relevant equations, which enables easier solution of the problem.
Control of Neutralization Process Using Soft Computing
Directory of Open Access Journals (Sweden)
G. Balasubramanian
2008-03-01
Full Text Available A novel model-based nonlinear control strategy is proposed using an experimental pH neutralization process. The control strategy involves a non linear neural network (NN model, in the context of internal model control (IMC. When integrated into the internal model control scheme, the resulting controller is shown to have favorable practical implications as well as superior performance. The designed model based online IMC controller was implemented to a laboratory scaled pH process in real time using dSPACE 1104 interface card. The responses of pH and acid flow rate shows good tracking for both the set point and load chances over the entire nonlinear region.
The Ganil computer control system renewal
International Nuclear Information System (INIS)
David, L.; Lecorche, E.; Luong, T.T.; Ulrich, M.
1990-01-01
Since 1982 the GANIL heavy ion accelerator has been under the control of 16-bit minicomputers MITRA, programmable logic controllers and microprocessorized Camac controllers, structured into a partially centralized system. This control system has to be renewed to meet the increasing demands of the accelerator operation which aims to provide higher quality ion beams under more reliable conditions. This paper gives a brief description of the existing control system and then discusses the main issues of the design and the implementation of the future control system: distributed powerful processors federated through Ethernet and flexible network-wide database access, VME standard and front-end microprocessors, enhanced color graphic tools and workstation based operator interface
Applying improved instrumentation and computer control systems
International Nuclear Information System (INIS)
Bevilacqua, F.; Myers, J.E.
1977-01-01
In-core and out-of-core instrumentation systems for the Cherokee-I reactor are described. The reactor has 61m-core instrument assemblies. Continuous computer monitoring and processing of data from over 300 fixed detectors will be used to improve the manoeuvering of core power. The plant protection system is a standard package for the Combustion Engineering System 80, consisting of two independent systems, the reactor protection system and the engineering safety features activation system, both of which are designed to meet NRC, ANS and IEEE design criteria or standards. The plants protection system has its own computer which provides plant monitoring, alarming, logging and performance calculations. (U.K.)
International Nuclear Information System (INIS)
Trent, D.S.; Eyler, L.L.; Budden, M.J.
1983-09-01
This document describes the numerical methods, current capabilities, and the use of the TEMPEST (Version L, MOD 2) computer program. TEMPEST is a transient, three-dimensional, hydrothermal computer program that is designed to analyze a broad range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. 10 refs., 22 figs., 2 tabs
Rotational control of computer generated holograms.
Preece, Daryl; Rubinsztein-Dunlop, Halina
2017-11-15
We develop a basis for three-dimensional rotation of arbitrary light fields created by computer generated holograms. By adding an extra phase function into the kinoform, any light field or holographic image can be tilted in the focal plane with minimized distortion. We present two different approaches to rotate an arbitrary hologram: the Scheimpflug method and a novel coordinate transformation method. Experimental results are presented to demonstrate the validity of both proposed methods.
Directory of Open Access Journals (Sweden)
Suheel Abdullah Malik
2014-01-01
Full Text Available We present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE and its boundary conditions is formulated. The optimization of the unknown adjustable parameters contained in the fitness function is performed by the hybrid heuristic computation algorithm based on genetic algorithm (GA, interior point algorithm (IPA, and active set algorithm (ASA. The efficiency and the viability of the proposed method are confirmed by solving three examples from physiology. The obtained approximate solutions are found in excellent agreement with the exact solutions as well as some conventional numerical solutions.
Directory of Open Access Journals (Sweden)
Koichi Kobayashi
2013-01-01
Full Text Available We propose computational techniques for model predictive control of large-scale systems with both continuous-valued control inputs and discrete-valued control inputs, which are a class of hybrid systems. In the proposed method, we introduce the notion of virtual control inputs, which are obtained by relaxing discrete-valued control inputs to continuous variables. In online computation, first, we find continuous-valued control inputs and virtual control inputs minimizing a cost function. Next, using the obtained virtual control inputs, only discrete-valued control inputs at the current time are computed in each subsystem. In addition, we also discuss the effect of quantization errors. Finally, the effectiveness of the proposed method is shown by a numerical example. The proposed method enables us to reduce and decentralize the computation load.
Romani, Xiana; Nirschl, Hermann
2010-01-01
Centrifugal separation equipment, such as solid bowl centrifuges, is used to carry out an effective separation of fine particles from industrial fluids. Knowledge of the streams and sedimentation behavior inside solid bowl centrifuges is necessary to determine the geometry and the process parameters that lead to an optimal performance. Regarding a given industrial centrifuge geometry, a grid was built to calculate numerically the multiphase flow of water, air, and particles with a computation...
Towards practical control design using neural computation
Troudet, Terry; Garg, Sanjay; Mattern, Duane; Merrill, Walter
1991-01-01
The objective is to develop neural network based control design techniques which address the issue of performance/control effort tradeoff. Additionally, the control design needs to address the important issue if achieving adequate performance in the presence of actuator nonlinearities such as position and rate limits. These issues are discussed using the example of aircraft flight control. Given a set of pilot input commands, a feedforward net is trained to control the vehicle within the constraints imposed by the actuators. This is achieved by minimizing an objective function which is the sum of the tracking errors, control input rates and control input deflections. A tradeoff between tracking performance and control smoothness is obtained by varying, adaptively, the weights of the objective function. The neurocontroller performance is evaluated in the presence of actuator dynamics using a simulation of the vehicle. Appropriate selection of the different weights in the objective function resulted in the good tracking of the pilot commands and smooth neurocontrol. An extension of the neurocontroller design approach is proposed to enhance its practicality.
VIRTUAL MODELING OF A NUMERICAL CONTROL MACHINE TOOL USED FOR COMPLEX MACHINING OPERATIONS
Directory of Open Access Journals (Sweden)
POPESCU Adrian
2015-11-01
Full Text Available This paper presents the 3D virtual model of the numerical control machine Modustar 100, in terms of machine elements. This is a CNC machine of modular construction, all components allowing the assembly in various configurations. The paper focused on the design of the subassemblies specific to the axes numerically controlled by means of CATIA v5, which contained different drive kinematic chains of different translation modules that ensures translation on X, Y and Z axis. Machine tool development for high speed and highly precise cutting demands employment of advanced simulation techniques witch it reflect on cost of total development of the machine.
Numerical studies of active current profile control in the reversed-field pinch
International Nuclear Information System (INIS)
Dahlin, J-E; Scheffel, J; Anderson, J K
2007-01-01
Quenching of the reversed-field pinch (RFP) dynamo is observed in numerical simulations using current profile control. A novel algorithm employing active feedback of the dynamo field has been utilized. The quasi-steady state achieved represents an important improvement as compared with earlier numerical work and may indicate a direction for the design of future experiments. Both earlier and the novel schemes of feedback control result in quasi-single helicity states. The energy confinement time and poloidal beta are observed to be substantially increased, as compared with the conventional RFP, in both the cases. Different techniques for experimental implementation are discussed
Scalable quantum computation via local control of only two qubits
International Nuclear Information System (INIS)
Burgarth, Daniel; Maruyama, Koji; Murphy, Michael; Montangero, Simone; Calarco, Tommaso; Nori, Franco; Plenio, Martin B.
2010-01-01
We apply quantum control techniques to a long spin chain by acting only on two qubits at one of its ends, thereby implementing universal quantum computation by a combination of quantum gates on these qubits and indirect swap operations across the chain. It is shown that the control sequences can be computed and implemented efficiently. We discuss the application of these ideas to physical systems such as superconducting qubits in which full control of long chains is challenging.
Role of optical computers in aeronautical control applications
Baumbick, R. J.
1981-01-01
The role that optical computers play in aircraft control is determined. The optical computer has the potential high speed capability required, especially for matrix/matrix operations. The optical computer also has the potential for handling nonlinear simulations in real time. They are also more compatible with fiber optic signal transmission. Optics also permit the use of passive sensors to measure process variables. No electrical energy need be supplied to the sensor. Complex interfacing between optical sensors and the optical computer is avoided if the optical sensor outputs can be directly processed by the optical computer.
International Nuclear Information System (INIS)
Soubbaramayer
1977-01-01
A numerical code (CENTAURE) built up with 36000 cards and 343 subroutines to investigate the full interconnected field of velocity, temperature, pressure and isotopic concentration in a gas centrifuge is presented. The complete set of Navier-Stokes equations, continuity equation, energy balance, isotopic diffusion equation and gas state law, form the basis of the model with proper boundary conditions, depending essentially upon the nature of the countercurrent and the thermal condition of the walls. Sources and sinks are located either inside the centrifuge or in the boundaries. The model includes not only the usual terms of CORIOLIS, compressibility, viscosity and thermal diffusivity but also the non linear terms of inertia in momentum equations, thermal convection and viscous dissipation in energy equation. The computation is based on finite element method and direct resolution instead of finite difference and iterative process. The code is quite flexible and well adapted to compute many physical cases in one centrifuge: the computation time per one case is then very small (we work with an IBM-360-91). The numerical results are exploited with the help of a visualisation screen IBM 2250. The possibilities of the code are exposed with numerical illustration. Some results are commented and compared to linear theories
International Nuclear Information System (INIS)
Zee, S.K.
1987-01-01
A numeric algorithm and an associated computer code were developed for the rapid solution of the finite-difference method representation of the few-group neutron-diffusion equations on parallel computers. Applications of the numeric algorithm on both SIMD (vector pipeline) and MIMD/SIMD (multi-CUP/vector pipeline) architectures were explored. The algorithm was successfully implemented in the two-group, 3-D neutron diffusion computer code named DIFPAR3D (DIFfusion PARallel 3-Dimension). Numerical-solution techniques used in the code include the Chebyshev polynomial acceleration technique in conjunction with the power method of outer iteration. For inner iterations, a parallel form of red-black (cyclic) line SOR with automated determination of group dependent relaxation factors and iteration numbers required to achieve specified inner iteration error tolerance is incorporated. The code employs a macroscopic depletion model with trace capability for selected fission products' transients and critical boron. In addition to this, moderator and fuel temperature feedback models are also incorporated into the DIFPAR3D code, for realistic simulation of power reactor cores. The physics models used were proven acceptable in separate benchmarking studies
Sagers, Jason D; Leishman, Timothy W; Blotter, Jonathan D
2009-06-01
Low-frequency sound transmission has long plagued the sound isolation performance of lightweight partitions. Over the past 2 decades, researchers have investigated actively controlled structures to prevent sound transmission from a source space into a receiving space. An approach using active segmented partitions (ASPs) seeks to improve low-frequency sound isolation capabilities. An ASP is a partition which has been mechanically and acoustically segmented into a number of small individually controlled modules. This paper provides a theoretical and numerical development of a single ASP module configuration, wherein each panel of the double-panel structure is independently actuated and controlled by an analog feedback controller. A numerical model is developed to estimate frequency response functions for the purpose of controller design, to understand the effects of acoustic coupling between the panels, to predict the transmission loss of the module in both passive and active states, and to demonstrate that the proposed ASP module will produce bidirectional sound isolation.
International Nuclear Information System (INIS)
Borcherds, P
2003-01-01
The two Numerical Recipes books are marvellous. The principal book, The Art of Scientific Computing, contains program listings for almost every conceivable requirement, and it also contains a well written discussion of the algorithms and the numerical methods involved. The Example Book provides a complete driving program, with helpful notes, for nearly all the routines in the principal book. The first edition of Numerical Recipes: The Art of Scientific Computing was published in 1986 in two versions, one with programs in Fortran, the other with programs in Pascal. There were subsequent versions with programs in BASIC and in C. The second, enlarged edition was published in 1992, again in two versions, one with programs in Fortran (NR(F)), the other with programs in C (NR(C)). In 1996 the authors produced Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing as a supplement, called Volume 2, with the original (Fortran) version referred to as Volume 1. Numerical Recipes in C++ (NR(C++)) is another version of the 1992 edition. The numerical recipes are also available on a CD ROM: if you want to use any of the recipes, I would strongly advise you to buy the CD ROM. The CD ROM contains the programs in all the languages. When the first edition was published I bought it, and have also bought copies of the other editions as they have appeared. Anyone involved in scientific computing ought to have a copy of at least one version of Numerical Recipes, and there also ought to be copies in every library. If you already have NR(F), should you buy the NR(C++) and, if not, which version should you buy? In the preface to Volume 2 of NR(F), the authors say 'C and C++ programmers have not been far from our minds as we have written this volume, and we think that you will find that time spent in absorbing its principal lessons will be amply repaid in the future as C and C++ eventually develop standard parallel extensions'. In the preface and introduction to NR
Numerical and algebraic studies for the control of finite-dimensional quantum systems
International Nuclear Information System (INIS)
Sander, Uwe
2010-01-01
In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)
Numerical and algebraic studies for the control of finite-dimensional quantum systems
Energy Technology Data Exchange (ETDEWEB)
Sander, Uwe
2010-11-18
In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)
Computer control of the SMC polarized target
International Nuclear Information System (INIS)
Le Goff, J.M.; Azoulay, R.; Berglund, P.; Dulya, C.; Gournay, J.F.; Hayashi, N.; Kyynaeraeinen, J.; Magnon, A.; Niinikoski, T.O.; Trentalange, S.
1995-01-01
The SMC polarized target is controlled through VME crates driven by CPUs working under the VxWorks operating system. The CPUs are connected to a SUN workstation which provides the user interface due to a graphical package named SL-GMS. This results in user friendliness, high modularity and flexibility. The system allows the control of: (1) the superconductive solenoid and the transverse dipole: control of the power supplies; automatic reversal of the spin direction by field rotation; acquisition, display and storage of the electric and cryogenic parameters; generation of alarms; and (2) the dilution refrigerator: evaporator level control; acquisition, display and storage of ∼100 cryogenic parameters; and generation of alarms. ((orig.))
An analytically based numerical method for computing view factors in real urban environments
Lee, Doo-Il; Woo, Ju-Wan; Lee, Sang-Hyun
2018-01-01
A view factor is an important morphological parameter used in parameterizing in-canyon radiative energy exchange process as well as in characterizing local climate over urban environments. For realistic representation of the in-canyon radiative processes, a complete set of view factors at the horizontal and vertical surfaces of urban facets is required. Various analytical and numerical methods have been suggested to determine the view factors for urban environments, but most of the methods provide only sky-view factor at the ground level of a specific location or assume simplified morphology of complex urban environments. In this study, a numerical method that can determine the sky-view factors ( ψ ga and ψ wa ) and wall-view factors ( ψ gw and ψ ww ) at the horizontal and vertical surfaces is presented for application to real urban morphology, which are derived from an analytical formulation of the view factor between two blackbody surfaces of arbitrary geometry. The established numerical method is validated against the analytical sky-view factor estimation for ideal street canyon geometries, showing a consolidate confidence in accuracy with errors of less than 0.2 %. Using a three-dimensional building database, the numerical method is also demonstrated to be applicable in determining the sky-view factors at the horizontal (roofs and roads) and vertical (walls) surfaces in real urban environments. The results suggest that the analytically based numerical method can be used for the radiative process parameterization of urban numerical models as well as for the characterization of local urban climate.
Towards an Approach of Semantic Access Control for Cloud Computing
Hu, Luokai; Ying, Shi; Jia, Xiangyang; Zhao, Kai
With the development of cloud computing, the mutual understandability among distributed Access Control Policies (ACPs) has become an important issue in the security field of cloud computing. Semantic Web technology provides the solution to semantic interoperability of heterogeneous applications. In this paper, we analysis existing access control methods and present a new Semantic Access Control Policy Language (SACPL) for describing ACPs in cloud computing environment. Access Control Oriented Ontology System (ACOOS) is designed as the semantic basis of SACPL. Ontology-based SACPL language can effectively solve the interoperability issue of distributed ACPs. This study enriches the research that the semantic web technology is applied in the field of security, and provides a new way of thinking of access control in cloud computing.
The Dark Side of Computer-Mediated Control
DEFF Research Database (Denmark)
Cunha, J. V.; Carugati, Andrea; Leclercq, A.
2015-01-01
of computer-mediated control when work and its electronic representation are loosely coupled, because it is employees who report their work in IT systems. Data from a 15-month ethnographic study of the appropriation of a customer relationship management system in the sales department of a large organization......Research on the dark side of computer-mediated control has explained the consequences of computer-mediated control when work is tightly coupled with its electronic representation because information systems record work automatically. Our study complements prior research by addressing the dark side...
Digital control computer upgrade at the Cernavoda NPP simulator
International Nuclear Information System (INIS)
Ionescu, T.
2006-01-01
The Plant Process Computer equips some Nuclear Power Plants, like CANDU-600, with Centralized Control performed by an assembly of two computers known as Digital Control Computers (DCC) and working in parallel for safely driving of the plan at steady state and during normal maneuvers but also during abnormal transients when the plant is automatically steered to a safe state. The Centralized Control means both hardware and software with obligatory presence in the frame of the Full Scope Simulator and subject to changing its configuration with specific requirements during the plant and simulator life and covered by this subsection
Lan, C. Edward; Ge, Fuying
1989-01-01
Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.
International Nuclear Information System (INIS)
Robb, D.B.; Riches, C.G.; O'Brian, M.J.; Riordan, F.J.
1984-01-01
The University of Washington is a large user of radioactive material. Over 250 authorized programs are working in over 600 labs with nearly 3500 orders of radioactive material per year. The state license sets limits on the total amount of material on campus. There are also limits on sewer disposal. To meet these needs it is necessary to know the amount of material on campus at any time. A computer program was developed which covered many aspects of the radiation safety record needs including inventory control. Inventory is now managed by tracking each order from purchase to disposal. A screen menu as part of the interactive program allows immediate and detailed information about the inventory at time of purchase approval and delivery. Because of this system our knowledge and control of radionuclide work on campus has increased dramatically. A description of how this system is used during ordering, delivery and disposal will be given. Details on the methods to check limits are included along with a summary of the reports made possible by the current data files
Complex system modelling and control through intelligent soft computations
Azar, Ahmad
2015-01-01
The book offers a snapshot of the theories and applications of soft computing in the area of complex systems modeling and control. It presents the most important findings discussed during the 5th International Conference on Modelling, Identification and Control, held in Cairo, from August 31-September 2, 2013. The book consists of twenty-nine selected contributions, which have been thoroughly reviewed and extended before their inclusion in the volume. The different chapters, written by active researchers in the field, report on both current theories and important applications of soft-computing. Besides providing the readers with soft-computing fundamentals, and soft-computing based inductive methodologies/algorithms, the book also discusses key industrial soft-computing applications, as well as multidisciplinary solutions developed for a variety of purposes, like windup control, waste management, security issues, biomedical applications and many others. It is a perfect reference guide for graduate students, r...
Advances in soft computing, intelligent robotics and control
Fullér, Robert
2014-01-01
Soft computing, intelligent robotics and control are in the core interest of contemporary engineering. Essential characteristics of soft computing methods are the ability to handle vague information, to apply human-like reasoning, their learning capability, and ease of application. Soft computing techniques are widely applied in the control of dynamic systems, including mobile robots. The present volume is a collection of 20 chapters written by respectable experts of the fields, addressing various theoretical and practical aspects in soft computing, intelligent robotics and control. The first part of the book concerns with issues of intelligent robotics, including robust xed point transformation design, experimental verification of the input-output feedback linearization of differentially driven mobile robot and applying kinematic synthesis to micro electro-mechanical systems design. The second part of the book is devoted to fundamental aspects of soft computing. This includes practical aspects of fuzzy rule ...
Software of the control computer of HPD scanning device
International Nuclear Information System (INIS)
Belyaev, A.V.; Rubtsov, V.F.; Slepnev, S.K.; Susov, Yu.I.
1979-01-01
Specific features of HPD measuring system are considered which are important for TPA-1001i computer programming, being the control computer of scanning device. The instruction language intended for interacting the computer with HPD electronics is given. Resident, auxiliary and test subprograms including those for interrupt handling, for monitoring, a driver for the operation with a teletype, a loader, a cross-assembler are described
Numerical investigation of the High Temperature Reactor (VHTR) using computational fluid dynamics
International Nuclear Information System (INIS)
Pinto, Joao Pedro C.T.A.; Santos, Andre A. Campagnole dos; Mesquita, Amir Z.
2013-01-01
This work consists to evaluate and continue the study that is being developed in the Laboratory of Thermo-Hydraulics of the CNEN/CDTN (Centro de Desenvolvimento da Tecnologia Nuclear), aiming to validate the methods and procedures used in the numerical calculations of fluid flow in fuel elements of the core of the VHTR
Directory of Open Access Journals (Sweden)
Ahmed M. Elsayed
2013-01-01
Full Text Available Film cooling is vital to gas turbine blades to protect them from high temperatures and hence high thermal stresses. In the current work, optimization of film cooling parameters on a flat plate is investigated numerically. The effect of film cooling parameters such as inlet velocity direction, lateral and forward diffusion angles, blowing ratio, and streamwise angle on the cooling effectiveness is studied, and optimum cooling parameters are selected. The numerical simulation of the coolant flow through flat plate hole system is carried out using the “CFDRC package” coupled with the optimization algorithm “simplex” to maximize overall film cooling effectiveness. Unstructured finite volume technique is used to solve the steady, three-dimensional and compressible Navier-Stokes equations. The results are compared with the published numerical and experimental data of a cylindrically round-simple hole, and the results show good agreement. In addition, the results indicate that the average overall film cooling effectiveness is enhanced by decreasing the streamwise angle for high blowing ratio and by increasing the lateral and forward diffusion angles. Optimum geometry of the cooling hole on a flat plate is determined. In addition, numerical simulations of film cooling on actual turbine blade are performed using the flat plate optimal hole geometry.
Intelligent computational control of multi-fingered dexterous robotic hand
Chen, Disi; Li, Gongfa; Jiang, Guozhang; Fang, Yinfeng; Ju, Zhaojie; Liu, Honghai
2015-01-01
We discuss the intelligent computational control theory and introduce the hardware structure of HIT/DLR II dexterous robotic hand, which is the typical dexterous robotic hand. We show that how DSP or FPGA controller can be used in the dexterous robotic hand. A popular intelligent dexterous robotic hand control system, which named Electromyography (EMG) control is investigated. We introduced some mathematical algorithms in EMG controlling, such as Gauss mixture model (GMM), artificial neural n...
Sheridan, R.; Rooijen, M. van; Giles, O.; Mushtaq, F.; Steenbergen, B.; Mon-Williams, M.; Waterman, A.H.
2017-01-01
Mathematics is often conducted with a writing implement. But is there a relationship between numerical processing and sensorimotor 'pen' control? We asked participants to move a stylus so it crossed an unmarked line at a location specified by a symbolic number (1-9), where number colour indicated
Gilruth, R R; Turner, W N
1941-01-01
Report presents the results of an analysis made of the aileron control characteristics of numerous airplanes tested in flight by the National Advisory Committee for Aeronautics. By the use of previously developed theory, the observed values of pb/2v for the various wing-aileron arrangements were examined to determine the effective section characteristics of the various aileron types.
Numerical Investigation of Flow Control Feasibility with a Trailing Edge Flap
International Nuclear Information System (INIS)
Zhu, W J; Shen, W Z; Sørensen, J N
2014-01-01
This paper concerns a numerical study of employing an adaptive trailing edge flap to control the lift of an airfoil subject to unsteady inflow conditions. The periodically varying inflow is generated by two oscillating airfoils, which are located upstream of the controlled airfoil. To establish the control system, a standard PID controller is implemented in a finite volume based incompressible flow solver. An immersed boundary method is applied to treat the problem of simulating a deformable airfoil trailing edge. The flow field is solved using a 2D Reynolds averaged Navier-Stokes finite volume solver. In order to more accurately simulate wall bounded flows around the immersed boundary, a modified boundary condition is introduced in the k- ω turbulence model. As an example, turbulent flow over a NACA 64418 airfoil with a deformable trailing edge is investigated. Results from numerical simulations are convincing and may give some highlights for practical implementations of trailing edge flap to a wind turbine rotor blade
Computer controls for the WITCH experiment
Czech Academy of Sciences Publication Activity Database
Tandecki, M.; Beck, M.; Beck, D.; Brand, H.; Breitenfeldt, M.; De Leebeeck, V.; Friedag, P.; Herlert, A.; Kozlov, V.; Mader, J.; Roccia, S.; Soti, G.; Traykov, E.; Van Gorp, S.; Wauters, F.; Weinheimer, C.; Zákoucký, Dalibor; Severijns, N.
2011-01-01
Roč. 629, č. 1 (2011), s. 369-405 ISSN 0168-9002 R&D Projects: GA MŠk LA08015 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100523 Keywords : LabVIEW * Control system * Distributed programming Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.207, year: 2011
Yang, Tzuhsiung; Berry, John F
2018-06-04
The computation of nuclear second derivatives of energy, or the nuclear Hessian, is an essential routine in quantum chemical investigations of ground and transition states, thermodynamic calculations, and molecular vibrations. Analytic nuclear Hessian computations require the resolution of costly coupled-perturbed self-consistent field (CP-SCF) equations, while numerical differentiation of analytic first derivatives has an unfavorable 6 N ( N = number of atoms) prefactor. Herein, we present a new method in which grid computing is used to accelerate and/or enable the evaluation of the nuclear Hessian via numerical differentiation: NUMFREQ@Grid. Nuclear Hessians were successfully evaluated by NUMFREQ@Grid at the DFT level as well as using RIJCOSX-ZORA-MP2 or RIJCOSX-ZORA-B2PLYP for a set of linear polyacenes with systematically increasing size. For the larger members of this group, NUMFREQ@Grid was found to outperform the wall clock time of analytic Hessian evaluation; at the MP2 or B2LYP levels, these Hessians cannot even be evaluated analytically. We also evaluated a 156-atom catalytically relevant open-shell transition metal complex and found that NUMFREQ@Grid is faster (7.7 times shorter wall clock time) and less demanding (4.4 times less memory requirement) than an analytic Hessian. Capitalizing on the capabilities of parallel grid computing, NUMFREQ@Grid can outperform analytic methods in terms of wall time, memory requirements, and treatable system size. The NUMFREQ@Grid method presented herein demonstrates how grid computing can be used to facilitate embarrassingly parallel computational procedures and is a pioneer for future implementations.
Software For Computer-Aided Design Of Control Systems
Wette, Matthew
1994-01-01
Computer Aided Engineering System (CAESY) software developed to provide means to evaluate methods for dealing with users' needs in computer-aided design of control systems. Interpreter program for performing engineering calculations. Incorporates features of both Ada and MATLAB. Designed to be flexible and powerful. Includes internally defined functions, procedures and provides for definition of functions and procedures by user. Written in C language.
Controller for computer control of brushless dc motors. [automobile engines
Hieda, L. S. (Inventor)
1981-01-01
A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.
Emergency Flight Control Using Computer-Controlled Thrust
Burcham, Frank W., Jr.; Fullerton, C. Gordon; Stewart, James F.; Gilyard, Glenn B.; Conley, Joseph A.
1995-01-01
Propulsion Controlled Aircraft (PCA) systems are digital electronic control systems undergoing development to provide limited maneuvering ability through variations of individual engine thrusts in multiple-engine airplanes. Provide landing capability when control surfaces inoperable. Incorporated on existing and future airplanes that include digital engine controls, digital flight controls, and digital data buses, adding no weight for additional hardware to airplane. Possible to handle total failure of hydraulic system, depending on how surfaces respond to loss of hydraulic pressure, and broken control cables or linkages. Future airplanes incorporate data from Global Positioning System for guidance to any suitable emergency runway in world.
Numerical simulation of the control of the three-dimensional transition process in boundary layers
Kral, L. D.; Fasel, H. F.
1990-01-01
Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.
Quality control of computational fluid dynamics in indoor environments
DEFF Research Database (Denmark)
Sørensen, Dan Nørtoft; Nielsen, P. V.
2003-01-01
Computational fluid dynamics (CFD) is used routinely to predict air movement and distributions of temperature and concentrations in indoor environments. Modelling and numerical errors are inherent in such studies and must be considered when the results are presented. Here, we discuss modelling as...... the quality of CFD calculations, as well as guidelines for the minimum information that should accompany all CFD-related publications to enable a scientific judgment of the quality of the study....
Decoherence control in quantum computing with simple chirped ...
Indian Academy of Sciences (India)
strate this with selective control of decoherence for a multilevel system with a simple ... The concept of quantum computer (QC) has attracted considerable attention ... as intramolecular vibrational relaxation (IVR), which is the most important ...
Integrated evolutionary computation neural network quality controller for automated systems
Energy Technology Data Exchange (ETDEWEB)
Patro, S.; Kolarik, W.J. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Industrial Engineering
1999-06-01
With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.
Air Traffic Control: Weak Computer Security Practices Jeopardize Flight Safety
1998-05-01
Given the paramount importance of computer security of Air Traffic Control (ATC) systems, Congress asked the General Accounting Office to determine (1) whether the Fedcral Aviation Administration (FAA) is effectively managing physical security at ATC...
Computation of reactor control rod drop time under accident conditions
International Nuclear Information System (INIS)
Dou Yikang; Yao Weida; Yang Renan; Jiang Nanyan
1998-01-01
The computational method of reactor control rod drop time under accident conditions lies mainly in establishing forced vibration equations for the components under action of outside forces on control rod driven line and motion equation for the control rod moving in vertical direction. The above two kinds of equations are connected by considering the impact effects between control rod and its outside components. Finite difference method is adopted to make discretization of the vibration equations and Wilson-θ method is applied to deal with the time history problem. The non-linearity caused by impact is iteratively treated with modified Newton method. Some experimental results are used to validate the validity and reliability of the computational method. Theoretical and experimental testing problems show that the computer program based on the computational method is applicable and reliable. The program can act as an effective tool of design by analysis and safety analysis for the relevant components
ANS main control complex three-dimensional computer model development
International Nuclear Information System (INIS)
Cleaves, J.E.; Fletcher, W.M.
1993-01-01
A three-dimensional (3-D) computer model of the Advanced Neutron Source (ANS) main control complex is being developed. The main control complex includes the main control room, the technical support center, the materials irradiation control room, computer equipment rooms, communications equipment rooms, cable-spreading rooms, and some support offices and breakroom facilities. The model will be used to provide facility designers and operations personnel with capabilities for fit-up/interference analysis, visual ''walk-throughs'' for optimizing maintain-ability, and human factors and operability analyses. It will be used to determine performance design characteristics, to generate construction drawings, and to integrate control room layout, equipment mounting, grounding equipment, electrical cabling, and utility services into ANS building designs. This paper describes the development of the initial phase of the 3-D computer model for the ANS main control complex and plans for its development and use
Computer controlled motor vehicle battery circuit
Energy Technology Data Exchange (ETDEWEB)
Krueger, W.R.; McAuiliffe, G.N.; Schlageter, G.A.
1986-04-01
This patent consists of a motor vehicle having a DC motor, a pedal biased to a released position and depressed by the driver to increase speed. An alternate switching means affects the vehicle speed control, a foot switch is operated by the pedal and operative when the pedal is depressed to close a circuit enabling energization of the alternate switching means. A microprocessor includes a program for controlling operation of the alternate switching means, the foot switch is operative when the pedal is released to open the enabling circuit. The program includes a register which is incremented with each passage of the logic and is responsive to the incremented count in the register to instruct a change in position of the alternate switching means.
Computer control of pulsed tunable dye lasers
International Nuclear Information System (INIS)
Thattey, S.S.; Dongare, A.S.; Suri, B.M.; Nair, L.G.
1992-01-01
Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm -1 , which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm -1 . The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm -1 . (author). 6 refs., 11 figs
International Nuclear Information System (INIS)
Yu Mingrui; Han Weishi; Wang Ge
2014-01-01
Servo-piston hydraulic control rod driving mechanism is a new type built-in driving mechanism which is suitable for integrated reactor and it can be moved continuously. The numerical calculation and analysis of the internal three-dimensional flow field inside the driving mechanism were carried out by the computational fluid dynamics software FLUENT. The result shows that the unique pressure mutation area of flow field inside the driving mechanism is at the place of the servo variable throttle orifice. The differential pressure of the piston can be effectively controlled by changing the gap of variable throttle orifice. When the gap changes within 0.5 mm, the differential pressure can be greatly changed, and then the driving mechanism motion state would be changed too. When the working pressure is 0.1 MPa, the hoisting capacity of the driving mechanism can meet the design requirements, and the flow rate is small. (authors)
Predictive access control for distributed computation
DEFF Research Database (Denmark)
Yang, Fan; Hankin, Chris; Nielson, Flemming
2013-01-01
We show how to use aspect-oriented programming to separate security and trust issues from the logical design of mobile, distributed systems. The main challenge is how to enforce various types of security policies, in particular predictive access control policies — policies based on the future beh...... behavior of a program. A novel feature of our approach is that we can define policies concerning secondary use of data....
Real time computer controlled weld skate
Wall, W. A., Jr.
1977-01-01
A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.
Distributed computer control systems in future nuclear power plants
International Nuclear Information System (INIS)
Yan, G.; L'Archeveque, J.V.R.; Watkins, L.M.
1978-09-01
Good operating experience with computer control in CANDU reactors over the last decade justifies a broadening of the role of digital electronic and computer related technologies in future plants. Functions of electronic systems in the total plant context are reappraised to help evolve an appropriate match between technology and future applications. The systems research, development and demonstration program at CRNL is described, focusing on the projects pertinent to the real-time data acquisition and process control requirements. (author)
Computer-integrated electric-arc melting process control system
Дёмин, Дмитрий Александрович
2014-01-01
Developing common principles of completing melting process automation systems with hardware and creating on their basis rational choices of computer- integrated electricarc melting control systems is an actual task since it allows a comprehensive approach to the issue of modernizing melting sites of workshops. This approach allows to form the computer-integrated electric-arc furnace control system as part of a queuing system “electric-arc furnace - foundry conveyor” and consider, when taking ...
Bergart, Jeffrey G.; And Others
This paper represents a careful study of published works on computer security and access control in computer systems. The study includes a selective annotated bibliography of some eighty-five important published results in the field and, based on these papers, analyzes the state of the art. In annotating these works, the authors try to be…
A Symbolic Computation Approach to Parameterizing Controller for Polynomial Hamiltonian Systems
Directory of Open Access Journals (Sweden)
Zhong Cao
2014-01-01
Full Text Available This paper considers controller parameterization method of H∞ control for polynomial Hamiltonian systems (PHSs, which involves internal stability and external disturbance attenuation. The aims of this paper are to design a controller with parameters to insure that the systems are H∞ stable and propose an algorithm for solving parameters of the controller with symbolic computation. The proposed parameterization method avoids solving Hamilton-Jacobi-Isaacs equations, and thus the obtained controllers with parameters are relatively simple in form and easy in operation. Simulation with a numerical example shows that the controller is effective as it can optimize H∞ control by adjusting parameters. All these results are expected to be of use in the study of H∞ control for nonlinear systems with perturbations.
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions
Broecker, Peter; Trebst, Simon
2016-12-01
In the absence of a fermion sign problem, auxiliary-field (or determinantal) quantum Monte Carlo (DQMC) approaches have long been the numerical method of choice for unbiased, large-scale simulations of interacting many-fermion systems. More recently, the conceptual scope of this approach has been expanded by introducing ingenious schemes to compute entanglement entropies within its framework. On a practical level, these approaches, however, suffer from a variety of numerical instabilities that have largely impeded their applicability. Here we report on a number of algorithmic advances to overcome many of these numerical instabilities and significantly improve the calculation of entanglement measures in the zero-temperature projective DQMC approach, ultimately allowing us to reach similar system sizes as for the computation of conventional observables. We demonstrate the applicability of this improved DQMC approach by providing an entanglement perspective on the quantum phase transition from a magnetically ordered Mott insulator to a band insulator in the bilayer square lattice Hubbard model at half filling.
Hardware replacements and software tools for digital control computers
International Nuclear Information System (INIS)
Walker, R.A.P.; Wang, B-C.; Fung, J.
1996-01-01
Technological obsolescence is an on-going challenge for all computer use. By design, and to some extent good fortune, AECL has had a good track record with respect to the march of obsolescence in CANDU digital control computer technology. Recognizing obsolescence as a fact of life, AECL has undertaken a program of supporting the digital control technology of existing CANDU plants. Other AECL groups are developing complete replacement systems for the digital control computers, and more advanced systems for the digital control computers of the future CANDU reactors. This paper presents the results of the efforts of AECL's DCC service support group to replace obsolete digital control computer and related components and to provide friendlier software technology related to the maintenance and use of digital control computers in CANDU. These efforts are expected to extend the current lifespan of existing digital control computers through their mandated life. This group applied two simple rules; the product, whether new or replacement should have a generic basis, and the products should be applicable to both existing CANDU plants and to 'repeat' plant designs built using current design guidelines. While some exceptions do apply, the rules have been met. The generic requirement dictates that the product should not be dependent on any brand technology, and should back-fit to and interface with any such technology which remains in the control design. The application requirement dictates that the product should have universal use and be user friendly to the greatest extent possible. Furthermore, both requirements were designed to anticipate user involvement, modifications and alternate user defined applications. The replacements for hardware components such as paper tape reader/punch, moving arm disk, contact scanner and Ramtek are discussed. The development of these hardware replacements coincide with the development of a gateway system for selected CANDU digital control
Control mechanism of double-rotator-structure ternary optical computer
Kai, SONG; Liping, YAN
2017-03-01
Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.
A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equation
Directory of Open Access Journals (Sweden)
Hakon A. Hoel
2007-07-01
Full Text Available We consider a numerical scheme for entropy weak solutions of the DP (Degasperis-Procesi equation $u_t - u_{xxt} + 4uu_x = 3u_{x}u_{xx}+ uu_{xxx}$. Multi-shockpeakons, functions of the form $$ u(x,t =sum_{i=1}^n(m_i(t -hbox{sign}(x-x_i(ts_i(te^{-|x-x_i(t|}, $$ are solutions of the DP equation with a special property; their evolution in time is described by a dynamical system of ODEs. This property makes multi-shockpeakons relatively easy to simulate numerically. We prove that if we are given a non-negative initial function $u_0 in L^1(mathbb{R}cap BV(mathbb{R}$ such that $u_{0} - u_{0,x}$ is a positive Radon measure, then one can construct a sequence of multi-shockpeakons which converges to the unique entropy weak solution in $mathbb{R}imes[0,T$ for any $T>0$. From this convergence result, we construct a multi-shockpeakon based numerical scheme for solving the DP equation.
Computer controlled multi-leaf conformation radiotherapy
Energy Technology Data Exchange (ETDEWEB)
Matsuda, T [Tokyo Metropolitan Komagome Hospital (Japan); Inamura, K
1981-10-01
A conformation radiotherapy system with 5-split collimators of which openings can be controlled symmetrically by computerized techniques during rotational irradiation by a linear accelerator has been developed. Outline of the system performance and its clinical applications are described as follows. 1. Profile of the system: The hardware is composed of three parts, namely, the multi-split collimator, the electronic data processor, and the interface between those two parts. 1) The multi-leaf collimator is composed of 5 pairs (10 leaves) diaphragms. It can be mounted to the X-ray head of a linear accelerator when used, and can be dismounted after its use. 2) The electronic data processor sends control signal to the collimator according to the 5-leaf target volume data which can be stored into a minifloppy disc through the curve digitizer previously. This part is composed of a) dedicated micro processor, b) I/O expansion unit, c) color CRT display with key board, d) dual mini-floppy disc unit, e) curve digitizer and f) digital plotter for recording and verification of resulted accuracy. 2. Performance of the system: 1) Maximum field size: 15 cm x 15 cm at isocenter. 2) Maximum elongation ratio of the target volume: 3 : 1 when the longer diameter is 15 cm. 3) Control accuracy: Within +-3 mm deviation from planned beam focus at isocenter. 3. Clinical application: The method of treatment planning and clinical advantages of this irradiation method are explained by raising clinical experiences such as treating brain tumor and rectal cancer.
Computer controlled multi-leaf conformation radiotherapy
International Nuclear Information System (INIS)
Matsuda, Tadayoshi; Inamura, Kiyonari.
1981-01-01
A conformation radiotherapy system with 5-split collimators of which openings can be controlled symmetrically by computerized techniques during rotational irradiation by a linear accelerator has been developed. Outline of the system performance and its clinical applications are described as follows. 1. Profile of the system: The hardware is composed of three parts, namely, the multi-split collimator, the electronic data processor, and the interface between those two parts. 1) The multi-leaf collimator is composed of 5 pairs (10 leaves) diaphragms. It can be mounted to the X-ray head of a linear accelerator when used, and can be dismounted after its use. 2) The electronic data processor sends control signal to the collimator according to the 5-leaf target volume data which can be stored into a minifloppy disc through the curve digitizer previously. This part is composed of a) dedicated micro processor, b) I/O expansion unit, c) color CRT display with key board, d) dual mini-floppy disc unit, e) curve digitizer and f) digital plotter for recording and verification of resulted accuracy. 2. Performance of the system: 1) Maximum field size: 15 cm x 15 cm at isocenter. 2) Maximum elongation ratio of the target volume: 3 : 1 when the longer diameter is 15 cm. 3) Control accuracy: Within +-3 mm deviation from planned beam focus at isocenter. 3. Clinical application: The method of treatment planning and clinical advantages of this irradiation method are explained by raising clinical experiences such as treating brain tumor and rectal cancer. (author)
Computer systems for the control of teletherapy units
International Nuclear Information System (INIS)
Brace, J.A.
1985-01-01
This paper describes a computer-controlled tracking cobalt unit installed at the Royal Free Hospital. It is based on a standard TEM MS90 unit and operates at 90-cm source-axis distance with a geometric field size of 45 x 45 cm at that distance. It has been modified so that it can be used either manually or under computer control. There are nine parameters that can be controlled positionally and two that can be controlled in rate mode; these are presented in a table
Canadell, Marta; Haro, Àlex
2017-12-01
We present several algorithms for computing normally hyperbolic invariant tori carrying quasi-periodic motion of a fixed frequency in families of dynamical systems. The algorithms are based on a KAM scheme presented in Canadell and Haro (J Nonlinear Sci, 2016. doi: 10.1007/s00332-017-9389-y), to find the parameterization of the torus with prescribed dynamics by detuning parameters of the model. The algorithms use different hyperbolicity and reducibility properties and, in particular, compute also the invariant bundles and Floquet transformations. We implement these methods in several 2-parameter families of dynamical systems, to compute quasi-periodic arcs, that is, the parameters for which 1D normally hyperbolic invariant tori with a given fixed frequency do exist. The implementation lets us to perform the continuations up to the tip of the quasi-periodic arcs, for which the invariant curves break down. Three different mechanisms of breakdown are analyzed, using several observables, leading to several conjectures.
Applied research into direct numerical control of A-1 reactor temperature
International Nuclear Information System (INIS)
Karpeta, C.; Volf, K.
1974-01-01
Partial results of research efforts aimed at applying modern control theory in the control of the reactor of the A-1 nuclear power station are presented. A mathematical model of the process dynamics was developed. Some parameters of the model were determined using the results of an experimentally performed reactor scram. The optimal stochastic discrete regulator was determined and closed-loop transients were studied. The possibilities of implementing control routines were investigated using the RPP-16 computer. (author)
Qiang Zhang; Wuqiang Long; Jiangping Tian; Yicong Wang; Xiangyu Meng
2014-01-01
In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI) for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature j...
Extremum-Seeking Control and Applications A Numerical Optimization-Based Approach
Zhang, Chunlei
2012-01-01
Extremum seeking control tracks a varying maximum or minimum in a performance function such as a cost. It attempts to determine the optimal performance of a control system as it operates, thereby reducing downtime and the need for system analysis. Extremum Seeking Control and Applications is divided into two parts. In the first, the authors review existing analog optimization based extremum seeking control including gradient, perturbation and sliding mode based control designs. They then propose a novel numerical optimization based extremum seeking control based on optimization algorithms and state regulation. This control design is developed for simple linear time-invariant systems and then extended for a class of feedback linearizable nonlinear systems. The two main optimization algorithms – line search and trust region methods – are analyzed for robustness. Finite-time and asymptotic state regulators are put forward for linear and nonlinear systems respectively. Further design flexibility is achieved u...
Unified algorithm for partial differential equations and examples of numerical computation
International Nuclear Information System (INIS)
Watanabe, Tsuguhiro
1999-01-01
A new unified algorithm is proposed to solve partial differential equations which describe nonlinear boundary value problems, eigenvalue problems and time developing boundary value problems. The algorithm is composed of implicit difference scheme and multiple shooting scheme and is named as HIDM (Higher order Implicit Difference Method). A new prototype computer programs for 2-dimensional partial differential equations is constructed and tested successfully to several problems. Extension of the computer programs to 3 or more higher order dimension problems will be easy due to the direct product type difference scheme. (author)
Computer controlled drifting of Si(Li) detectors
International Nuclear Information System (INIS)
Landis, D.A.; Wong, Y.K.; Walton, J.T.; Goulding, F.S.
1989-01-01
A relatively inexpensive computer-controlled system for performing the drift process used in fabricating Si(Li) detectors is described. The system employs a small computer to monitor the leakage current, applied voltage and temperature on eight individual drift stations. The associated computer program initializes the drift process, monitors the drift progress and then terminates the drift when an operator set drift time has elapsed. The improved control of the drift with this system has been well demonstrated over the past three years in the fabrication of a variety of Si(Li) detectors. A few representative system responses to detector behavior during the drift process are described
Directory of Open Access Journals (Sweden)
Xin Gu
2017-01-01
Full Text Available The constitutive modeling and numerical implementation of a nonordinary state-based peridynamic (NOSB-PD model corresponding to the classical elastic model are presented. Besides, the numerical instability problem of the NOSB-PD model is analyzed, and a penalty method involving the hourglass force is proposed to control the instabilities. Further, two benchmark problems, the static elastic deformation of a simple supported beam and the elastic wave propagation in a two-dimensional rod, are discussed with the present method. It proves that the penalty instability control method is effective in suppressing the displacement oscillations and improving the accuracy of calculated stress fields with a proper hourglass force coefficient, and the NOSB-PD approach with instability control can analyze the problems of structure deformation and elastic wave propagation well.
Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System
Majumdar, Alok; Saxon, Jeff (Technical Monitor)
2002-01-01
In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.
Energy Technology Data Exchange (ETDEWEB)
Faydide, B. [Commissariat a l`Energie Atomique, Grenoble (France)
1997-07-01
This paper presents the current and planned numerical development for improving computing performance in case of Cathare applications needing real time, like simulator applications. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the general characteristics of the code are presented, dealing with physical models, numerical topics, and validation strategy. Then, the current and planned applications of Cathare in the field of simulators are discussed. Some of these applications were made in the past, using a simplified and fast-running version of Cathare (Cathare-Simu); the status of the numerical improvements obtained with Cathare-Simu is presented. The planned developments concern mainly the Simulator Cathare Release (SCAR) project which deals with the use of the most recent version of Cathare inside simulators. In this frame, the numerical developments are related with the speed up of the calculation process, using parallel processing and improvement of code reliability on a large set of NPP transients.
International Nuclear Information System (INIS)
Faydide, B.
1997-01-01
This paper presents the current and planned numerical development for improving computing performance in case of Cathare applications needing real time, like simulator applications. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the general characteristics of the code are presented, dealing with physical models, numerical topics, and validation strategy. Then, the current and planned applications of Cathare in the field of simulators are discussed. Some of these applications were made in the past, using a simplified and fast-running version of Cathare (Cathare-Simu); the status of the numerical improvements obtained with Cathare-Simu is presented. The planned developments concern mainly the Simulator Cathare Release (SCAR) project which deals with the use of the most recent version of Cathare inside simulators. In this frame, the numerical developments are related with the speed up of the calculation process, using parallel processing and improvement of code reliability on a large set of NPP transients
Application of 2DOF controller for reactor power control. Verification by numerical simulation
International Nuclear Information System (INIS)
Ishikawa, Nobuyuki; Suzuki, Katsuo
1996-09-01
In this report the usefulness of the two degree of freedom (2DOF) control is discussed to improve the reference response characteristics and robustness for reactor power control system. The 2DOF controller consists of feedforward and feedback elements. The feedforward element was designed by model matching method and the feedback element by solving the mixed sensitivity problem of H ∞ control. The 2DOF control gives good performance in both reference response and robustness to disturbance and plant perturbation. The simulation of reactor power control was performed by digitizing the 2DOF controller with the digital control periods of 10[msec]. It is found that the control period of 10[msec] is enough not to make degradation of the control performance by digitizing. (author)
Safety Metrics for Human-Computer Controlled Systems
Leveson, Nancy G; Hatanaka, Iwao
2000-01-01
The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.
Predictive Control of Networked Multiagent Systems via Cloud Computing.
Liu, Guo-Ping
2017-01-18
This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.
International Nuclear Information System (INIS)
Yudov, Y.V.
2001-01-01
The functional part of the KORSAR computer code is based on the computational unit for the reactor system thermal-hydraulics and other thermal power systems with water cooling. The two-phase flow dynamics of the thermal-hydraulic network is modelled by KORSAR in one-dimensional two-fluid (non-equilibrium and nonhomogeneous) approximation with the same pressure of both phases. Each phase is characterized by parameters averaged over the channel sections, and described by the conservation equations for mass, energy and momentum. The KORSAR computer code relies upon a novel approach to mathematical modelling of two-phase dispersed-annular flows. This approach allows a two-fluid model to differentiate the effects of the liquid film and droplets in the gas core on the flow characteristics. A semi-implicit numerical scheme has been chosen for deriving discrete analogs the conservation equations in KORSAR. In the semi-implicit numerical scheme, solution of finite-difference equations is reduced to the problem of determining the pressure field at a new time level. For the one-channel case, the pressure field is found from the solution of a system of linear algebraic equations by using the tri-diagonal matrix method. In the branched network calculation, the matrix of coefficients in the equations describing the pressure field is no longer tri-diagonal but has a sparseness structure. In this case, the system of linear equations for the pressure field can be solved with any of the known classical methods. Such an approach is implemented in the existing best-estimate thermal-hydraulic computer codes (TRAC, RELAP5, etc.) For the KORSAR computer code, we have developed a new non-iterative method for calculating the pressure field in the network of any topology. This method is based on the tri-diagonal matrix method and performs well when solving the thermal-hydraulic network problems. (author)
International Nuclear Information System (INIS)
Ko, Soon Heum; Kim, Na Yong; Nikitopoulos, Dimitris E.; Moldovan, Dorel; Jha, Shantenu
2014-01-01
Numerical approaches are presented to minimize the statistical errors inherently present due to finite sampling and the presence of thermal fluctuations in the molecular region of a hybrid computational fluid dynamics (CFD) - molecular dynamics (MD) flow solution. Near the fluid-solid interface the hybrid CFD-MD simulation approach provides a more accurate solution, especially in the presence of significant molecular-level phenomena, than the traditional continuum-based simulation techniques. It also involves less computational cost than the pure particle-based MD. Despite these advantages the hybrid CFD-MD methodology has been applied mostly in flow studies at high velocities, mainly because of the higher statistical errors associated with low velocities. As an alternative to the costly increase of the size of the MD region to decrease statistical errors, we investigate a few numerical approaches that reduce sampling noise of the solution at moderate-velocities. These methods are based on sampling of multiple simulation replicas and linear regression of multiple spatial/temporal samples. We discuss the advantages and disadvantages of each technique in the perspective of solution accuracy and computational cost.
Computer Security: your car, my control
Stefan Lueders, Computer Security Team
2015-01-01
We have discussed the Internet of Things (IoT) and its security implications already in past issues of the CERN Bulletin, for example in “Today’s paranoia, tomorrow’s reality” (see here). Unfortunately, tomorrow has come. At this years's Black Hat conference researchers presented their findings on how easily your car can be hacked and controlled remotely. Sigh. While these researchers have just shown that they can wirelessly hijack a Jeep Cherokee, others have performed similar studies with SmartCars, Fords, a Tesla, a Corvette, BMWs, Chryslers and Mercedes! With the increasing computerisation of cars, the engine management system, air conditioning, anti-lock braking system, electronic stability programme, etc. are linked to the infotainment, navigation and communication systems, opening the door for these vehicles to be hacked remotely. The now prevalent Bluetooth connection with smartphones is one entry vector to attack your car remotely...
Computer security of NPP instrumentation and control systems: categorization
International Nuclear Information System (INIS)
Klevtsov, A.L.; Simonov, A.A.; Trubchaninov, S.A.
2016-01-01
The paper is devoted to studying categorization of NPP instrumentation and control (I&C) systems from the point of view of computer security and to consideration of the computer security levels and zones used by the International Atomic Energy Agency (IAEA). The paper also describes the computer security degrees and zones regulated by the International Electrotechnical Commission (IEC) standard. The computer security categorization of the systems used by the U.S. Nuclear Regulatory Commission (NRC) is presented. The experts analyzed the main differences in I&C systems computer security categorization accepted by the IAEA, IEC and U.S. NRC. The approaches to categorization that should be advisably used in Ukraine during the development of regulation on NPP I&C systems computer security are proposed in the paper
Farkas, Árpád; Balásházy, Imre
2015-04-01
A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Computer Controlled Chemical Micro-Reactor
International Nuclear Information System (INIS)
Mechtilde, Schaefer; Eduard, Stach; Adreas, Foitzik
2006-01-01
Chemical reactions or chemical equilibria can be influenced and controlled by several parameters. The ratio of two liquid ingredients, the so called reactants or educts, plays an important role in determining the end product and its yield. The reactants must be weighed and accordingly mixed with the conventional batch mode. If the reaction is done in a microreactor or in several parallel working micro-reactors, units for allotting the educts in appropriate quantities are required. In this report we present a novel micro-reactor that allows the constant monitoring of the chemical reaction via Raman spectroscopy. Such monitoring enables an appropriate feedback on the steering parameters for the PC controlled micro-pumps for the appropriate educt flow rate of both liquids to get optimised ratios of ingredients at an optimised total flow rate. The micro-reactors are the core pieces of the design and are easily removable and can therefore be changed at any time to adapt the requirements of the chemical reaction. One type of reactor consists of a stainless steel base containing small scale milled channels covered with anodically bonded Pyrex glass. Another type of reactor has a base of anisotropically etched silicon, and is also covered with anodically bonded Pyrex glass. The glass window allows visual observation of the initial phase interface of the two educts in the reaction channels by optical microscopy and does not affect, in contrast to infrared spectroscopy, the Raman spectroscopic signal for detection of the reaction kinetics. On the basis of a test reaction, we present non-invasive and spatially highly resolved in-situ reaction analysis using Raman spectroscopy measured along the reaction channel at different locations
Chrysler improved numerical differencing analyzer for third generation computers CINDA-3G
Gaski, J. D.; Lewis, D. R.; Thompson, L. R.
1972-01-01
New and versatile method has been developed to supplement or replace use of original CINDA thermal analyzer program in order to take advantage of improved systems software and machine speeds of third generation computers. CINDA-3G program options offer variety of methods for solution of thermal analog models presented in network format.
Santen, van R.A.; Boersma, M.A.M.
1974-01-01
The regular solution model is used to compute the surface enrichment in the (111)- and (100)-faces of silver-gold alloys. Surface enrichment by silver is predicted to increase if the surface plane becomes less saturated and decreases if one raises the temperature. The possible implications of these
International Nuclear Information System (INIS)
Courageot, Estelle
2010-01-01
After a description of the context of radiological accidents (definition, history, context, exposure types, associated clinic symptoms of irradiation and contamination, medical treatment, return on experience) and a presentation of dose assessment in the case of external exposure (clinic, biological and physical dosimetry), this research thesis describes the principles of numerical reconstruction of a radiological accident, presents some computation codes (Monte Carlo code, MCNPX code) and the SESAME tool, and reports an application to an actual case (an accident which occurred in Equator in April 2009). The next part reports the developments performed to modify the posture of voxelized phantoms and the experimental and numerical validations. The last part reports a feasibility study for the reconstruction of radiological accidents occurring in external radiotherapy. This work is based on a Monte Carlo simulation of a linear accelerator, with the aim of identifying the most relevant parameters to be implemented in SESAME in the case of external radiotherapy
International Nuclear Information System (INIS)
Sabchevski, S; Zhelyazkov, I; Benova, E; Atanassov, V; Dankov, P; Thumm, M; Arnold, A; Jin, J; Rzesnicki, T
2006-01-01
Quasi-optical (QO) mode converters are used to transform electromagnetic waves of complex structure and polarization generated in gyrotron cavities into a linearly polarized, Gaussian-like beam suitable for transmission. The efficiency of this conversion as well as the maintenance of low level of diffraction losses are crucial for the implementation of powerful gyrotrons as radiation sources for electron-cyclotron-resonance heating of fusion plasmas. The use of adequate physical models, efficient numerical schemes and up-to-date computer codes may provide the high accuracy necessary for the design and analysis of these devices. In this review, we briefly sketch the most commonly used QO converters, the mathematical base they have been treated on and the basic features of the numerical schemes used. Further on, we discuss the applicability of several commercially available and free software packages, their advantages and drawbacks, for solving QO related problems
Personal computer control system for small size tandem accelerator
Energy Technology Data Exchange (ETDEWEB)
Takayama, Hiroshi; Kawano, Kazuhiro; Shinozaki, Masataka [Nissin - High Voltage Co. Ltd., Kyoto (Japan)
1996-12-01
As the analysis apparatus using tandem accelerator has a lot of control parameter, numbers of control parts set on control panel are so many to make the panel more complex and its operativity worse. In order to improve these faults, development and design of a control system using personal computer for the control panel mainly constituted by conventional hardware parts were tried. Their predominant characteristics are shown as follows: (1) To make the control panel construction simpler and more compact, because the hardware device on the panel surface becomes the smallest limit as required by using a personal computer for man-machine interface. (2) To make control speed more rapid, because sequence control is closed within each block by driving accelerator system to each block and installing local station of the sequencer network at each block. (3) To make expandability larger, because of few improvement of the present hardware by interrupting the sequencer local station into the net and correcting image of the computer when increasing a new beamline. And, (4) to make control system cheaper, because of cheaper investment and easier programming by using the personal computer. (G.K.)
Polynomial curve fitting for control rod worth using least square numerical analysis
International Nuclear Information System (INIS)
Muhammad Husamuddin Abdul Khalil; Mark Dennis Usang; Julia Abdul Karim; Mohd Amin Sharifuldin Salleh
2012-01-01
RTP must have sufficient excess reactivity to compensate the negative reactivity feedback effects such as those caused by the fuel temperature and power defects of reactivity, fuel burn-up and to allow full power operation for predetermined period of time. To compensate this excess reactivity, it is necessary to introduce an amount of negative reactivity by adjusting or controlling the control rods at will. Control rod worth depends largely upon the value of the neutron flux at the location of the rod and reflected by a polynomial curve. Purpose of this paper is to rule out the polynomial curve fitting using least square numerical techniques via MATLAB compatible language. (author)
Bao, Weizhu
2013-01-01
We propose a simple, efficient, and accurate numerical method for simulating the dynamics of rotating Bose-Einstein condensates (BECs) in a rotational frame with or without longrange dipole-dipole interaction (DDI). We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with an angular momentum rotation term and/or long-range DDI, state the twodimensional (2D) GPE obtained from the 3D GPE via dimension reduction under anisotropic external potential, and review some dynamical laws related to the 2D and 3D GPEs. By introducing a rotating Lagrangian coordinate system, the original GPEs are reformulated to GPEs without the angular momentum rotation, which is replaced by a time-dependent potential in the new coordinate system. We then cast the conserved quantities and dynamical laws in the new rotating Lagrangian coordinates. Based on the new formulation of the GPE for rotating BECs in the rotating Lagrangian coordinates, a time-splitting spectral method is presented for computing the dynamics of rotating BECs. The new numerical method is explicit, simple to implement, unconditionally stable, and very efficient in computation. It is spectral-order accurate in space and second-order accurate in time and conserves the mass on the discrete level. We compare our method with some representative methods in the literature to demonstrate its efficiency and accuracy. In addition, the numerical method is applied to test the dynamical laws of rotating BECs such as the dynamics of condensate width, angular momentum expectation, and center of mass, and to investigate numerically the dynamics and interaction of quantized vortex lattices in rotating BECs without or with the long-range DDI.Copyright © by SIAM.
Physical models and numerical methods of the reactor dynamic computer program RETRAN
International Nuclear Information System (INIS)
Kamelander, G.; Woloch, F.; Sdouz, G.; Koinig, H.
1984-03-01
This report describes the physical models and the numerical methods of the reactor dynamic code RETRAN simulating reactivity transients in Light-Water-Reactors. The neutron-physical part of RETRAN bases on the two-group-diffusion equations which are solved by discretization similar to the TWIGL-method. An exponential transformation is applied and the inner iterations are accelerated by a coarse-mesh-rebalancing procedure. The thermo-hydraulic model approximates the equation of state by a built-in steam-water-table and disposes of options for the calculation of heat-conduction coefficients and heat transfer coefficients. (Author) [de
Computation of Nonlinear Backscattering Using a High-Order Numerical Method
Fibich, G.; Ilan, B.; Tsynkov, S.
2001-01-01
The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.
International Nuclear Information System (INIS)
Iooss, B.
2009-01-01
The present document constitutes my Habilitation thesis report. It recalls my scientific activity of the twelve last years, since my PhD thesis until the works completed as a research engineer at CEA Cadarache. The two main chapters of this document correspond to two different research fields both referring to the uncertainty treatment in engineering problems. The first chapter establishes a synthesis of my work on high frequency wave propagation in random medium. It more specifically relates to the study of the statistical fluctuations of acoustic wave travel-times in random and/or turbulent media. The new results mainly concern the introduction of the velocity field statistical anisotropy in the analytical expressions of the travel-time statistical moments according to those of the velocity field. This work was primarily carried by requirements in geophysics (oil exploration and seismology). The second chapter is concerned by the probabilistic techniques to study the effect of input variables uncertainties in numerical models. My main applications in this chapter relate to the nuclear engineering domain which offers a large variety of uncertainty problems to be treated. First of all, a complete synthesis is carried out on the statistical methods of sensitivity analysis and global exploration of numerical models. The construction and the use of a meta-model (inexpensive mathematical function replacing an expensive computer code) are then illustrated by my work on the Gaussian process model (kriging). Two additional topics are finally approached: the high quantile estimation of a computer code output and the analysis of stochastic computer codes. We conclude this memory with some perspectives about the numerical simulation and the use of predictive models in industry. This context is extremely positive for future researches and application developments. (author)
Control in the cockpit: crews vs. computers.
Ropelewski, R
1996-08-01
In the no-holds-barred competition between Boeing and Europe's Airbus Industrie for dominance in the world's commercial jet airliner markets, the question of who--or what--is in charge in the cockpit has been a significant selling point. Airbus, which pioneered highly automated flight controls with its A320 narrow-body transport in the late 1980s, likes to emphasize the "protection" features built into the aircraft through those automated systems. Boeing, which employs many of the same concepts in its new 777 twin-engine widebody transport, tends to put more emphasis on crew involvement in the operation of that aircraft. Is there a difference? In fact, the question has broader implications than those involving the marketing battle between Boeing and Airbus. Airlines, aircraft manufacturers, flight training specialists, human factors gurus, and aviation authorities in various countries are struggling with the isse as automation becomes more and more prevalent on passenger and cargo-carrying aircraft around the world.
Numerical controlled diamond fly cutting machine for grazing incidence X-ray reflection mirrors
International Nuclear Information System (INIS)
Uchida, Fumihiko; Moriyama, Shigeo; Seya, Eiiti
1992-01-01
Synchrotron radiation has reached the stage of practical use, and the application to the wide fields that support future advanced technologies such as spectroscopy, the structural analysis of matters, semiconductor lithography and medical light source is expected. For the optical system of the equipment utilizing synchrotron radiation, the total reflection mirrors of oblique incidence are used for collimating and collecting X-ray. In order to restrain their optical aberration, nonspherical shape is required, and as the manufacturing method with high precision for nonspherical mirrors, a numerically controlled diamond cutting machine was developed. As for the cutting of soft metals with diamond tools, the high precision machining of any form can be done by numerical control, the machining time can be reduced as compared with grinding, and the cooling effect is large in metals. The construction of the cutting machine, the principle of machining, the control system, the method of calculating numerical control data, the investigation of machinable forms and the result of evaluation are reported. (K.I.)
International Nuclear Information System (INIS)
Geroyannis, V.S.
1990-01-01
In this paper, a numerical method, called complex-plane strategy, is implemented in the computation of polytropic models distorted by strong and rapid differential rotation. The differential rotation model results from a direct generalization of the classical model, in the framework of the complex-plane strategy; this generalization yields very strong differential rotation. Accordingly, the polytropic models assume extremely distorted interiors, while their boundaries are slightly distorted. For an accurate simulation of differential rotation, a versatile method, called multiple partition technique is developed and implemented. It is shown that the method remains reliable up to rotation states where other elaborate techniques fail to give accurate results. 11 refs
Use of computational methods for substitution and numerical dosimetry of real bones
International Nuclear Information System (INIS)
Silva, I.C.S.; Gonzalez, K.M.L.; Barbosa, A.J.A.; Lucindo Junior, C.R.; Vieira, J.W.; Lima, F.R.A.
2017-01-01
Estimating the dose that ionizing radiation deposits in the soft tissues of the skeleton within the cavities of the trabecular bones represents one of the greatest difficulties faced by numerical dosimetry. The Numerical Dosimetry Group (GDN/CNPq) Brazil, Recife-PE has used a method based on micro-CT images. The problem of the implementation of micro-CT is the difficulty in obtaining samples of real bones (OR). The objective of this work was to evaluate the sample of a virtual block of trabecular bone through the nonparametric method based on the voxel frequencies (VF) and samples of the climbing plant called Luffa aegyptica, whose dry fruit is known as vegetal bush (BV) substitution of OR samples. For this, a theoretical study of the two techniques developed by the GDN was made. The study showed in both techniques, after the dosimetric evaluations, that the actual sample can be replaced by the synthetic samples, since they have shown dose estimates close to the actual one
A computer-controlled conformal radiotherapy system I: overview
International Nuclear Information System (INIS)
Fraass, Benedick A.; McShan, Daniel L.; Kessler, Marc L.; Matrone, Gwynne M.; Lewis, James D.; Weaver, Tamar A.
1995-01-01
Purpose: Equipment developed for use with computer-controlled conformal radiotherapy (CCRT) treatment techniques, including multileaf collimators and/or computer-control systems for treatment machines, are now available. The purpose of this work is to develop a system that will allow the safe, efficient, and accurate delivery of CCRT treatments as routine clinical treatments, and permit modifications of the system so that the delivery process can be optimized. Methods and Materials: The needs and requirements for a system that can fully support modern computer-controlled treatment machines equipped with multileaf collimators and segmental or dynamic conformal therapy capabilities have been analyzed and evaluated. This analysis has been used to design and then implement a complete approach to the delivery of CCRT treatments. Results: The computer-controlled conformal radiotherapy system (CCRS) described here consists of a process for the delivery of CCRT treatments, and a complex software system that implements the treatment process. The CCRS system described here includes systems for plan transfer, treatment delivery planning, sequencing of the actual treatment delivery process, graphical simulation and verification tools, as well as an electronic chart that is an integral part of the system. The CCRS system has been implemented for use with a number of different treatment machines. The system has been used clinically for more than 2 years to perform CCRT treatments for more than 200 patients. Conclusions: A comprehensive system for the implementation and delivery of computer-controlled conformal radiation therapy (CCRT) plans has been designed and implemented for routine clinical use with multisegment, computer-controlled, multileaf-collimated conformal therapy. The CCRS system has been successfully implemented to perform these complex treatments, and is considered quite important to the clinical use of modern computer-controlled treatment techniques
A computer control system for a research reactor
International Nuclear Information System (INIS)
Crawford, K.C.; Sandquist, G.M.
1987-01-01
Most reactor applications until now, have not required computer control of core output. Commercial reactors are generally operated at a constant power output to provide baseline power. However, if commercial reactor cores are to become load following over a wide range, then centralized digital computer control is required to make the entire facility respond as a single unit to continual changes in power demand. Navy and research reactors are much smaller and simpler and are operated at constant power levels as required, without concern for the number of operators required to operate the facility. For navy reactors, centralized digital computer control may provide space savings and reduced personnel requirements. Computer control offers research reactors versatility to efficiently change a system to develop new ideas. The operation of any reactor facility would be enhanced by a controller that does not panic and is continually monitoring all facility parameters. Eventually very sophisticated computer control systems may be developed which will sense operational problems, diagnose the problem, and depending on the severity of the problem, immediately activate safety systems or consult with operators before taking action
On the formulation and numerical simulation of distributed-order fractional optimal control problems
Zaky, M. A.; Machado, J. A. Tenreiro
2017-11-01
In a fractional optimal control problem, the integer order derivative is replaced by a fractional order derivative. The fractional derivative embeds implicitly the time delays in an optimal control process. The order of the fractional derivative can be distributed over the unit interval, to capture delays of distinct sources. The purpose of this paper is twofold. Firstly, we derive the generalized necessary conditions for optimal control problems with dynamics described by ordinary distributed-order fractional differential equations (DFDEs). Secondly, we propose an efficient numerical scheme for solving an unconstrained convex distributed optimal control problem governed by the DFDE. We convert the problem under consideration into an optimal control problem governed by a system of DFDEs, using the pseudo-spectral method and the Jacobi-Gauss-Lobatto (J-G-L) integration formula. Next, we present the numerical solutions for a class of optimal control problems of systems governed by DFDEs. The convergence of the proposed method is graphically analyzed showing that the proposed scheme is a good tool for the simulation of distributed control problems governed by DFDEs.
Directory of Open Access Journals (Sweden)
Tanja eKäser
2013-08-01
Full Text Available This article presents the design and a first pilot evaluation of the computer-based training program Calcularis for children with developmental dyscalculia (DD or difficulties in learning mathematics. The program has been designed according to insights on the typical and atypical development of mathematical abilities. The learning process is supported through multimodal cues, which encode different properties of numbers. To offer optimal learning conditions, a user model completes the program and allows flexible adaptation to a child’s individual learning and knowledge profile. 32 children with difficulties in learning mathematics completed the 6 to 12-weeks computer training. The children played the game for 20 minutes per day for 5 days a week. The training effects were evaluated using neuropsychological tests. Generally, children benefited significantly from the training regarding number representation and arithmetic operations. Furthermore, children liked to play with the program and reported that the training improved their mathematical abilities.
International Nuclear Information System (INIS)
Abe, H.; Okuda, H.
1994-06-01
We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media
CAMAC system for computer control of microwave spectrometers
International Nuclear Information System (INIS)
Zizka, G.; Turko, B.; Kolbe, B.
1979-01-01
An interface between a microwave spectrometer and a computer is described. It consists of three CAMAC modules and uses a standard CAMAC crate and controller. The hardware, in conjunction with appropriate software routines was designed to synchronize measurements, to collect data, and to control the microwave frequency and other experimental parameters
An improved computer controlled triple-axis neutron spectrometer
International Nuclear Information System (INIS)
Cooper, M.J.; Hall, J.W.; Hutchings, M.T.
1975-07-01
A description is given of the computer-controlled triple-axis neutron spectrometer installed at the PLUTO reactor at Harwell. The reasons for an nature of recent major improvements are discussed. Following a general description of the spectrometer, details are then given of the new computerised control system, including the functions of the various programs which are now available to the user. (author)
Decoherence control in quantum computing with simple chirped ...
Indian Academy of Sciences (India)
We show how the use of optimally shaped pulses to guide the time evolution of a system ('coherent control') can be an effective approach towards quantum computation logic. We demonstrate this with selective control of decoherence for a multilevel system with a simple linearly chirped pulse. We use a multiphoton ...
An efficient and general numerical method to compute steady uniform vortices
Luzzatto-Fegiz, Paolo; Williamson, Charles H. K.
2011-07-01
Steady uniform vortices are widely used to represent high Reynolds number flows, yet their efficient computation still presents some challenges. Existing Newton iteration methods become inefficient as the vortices develop fine-scale features; in addition, these methods cannot, in general, find solutions with specified Casimir invariants. On the other hand, available relaxation approaches are computationally inexpensive, but can fail to converge to a solution. In this paper, we overcome these limitations by introducing a new discretization, based on an inverse-velocity map, which radically increases the efficiency of Newton iteration methods. In addition, we introduce a procedure to prescribe Casimirs and remove the degeneracies in the steady vorticity equation, thus ensuring convergence for general vortex configurations. We illustrate our methodology by considering several unbounded flows involving one or two vortices. Our method enables the computation, for the first time, of steady vortices that do not exhibit any geometric symmetry. In addition, we discover that, as the limiting vortex state for each flow is approached, each family of solutions traces a clockwise spiral in a bifurcation plot consisting of a velocity-impulse diagram. By the recently introduced "IVI diagram" stability approach [Phys. Rev. Lett. 104 (2010) 044504], each turn of this spiral is associated with a loss of stability for the steady flows. Such spiral structure is suggested to be a universal feature of steady, uniform-vorticity flows.
Computer-supported quality control in X-ray diagnosis
International Nuclear Information System (INIS)
Maier, W.; Klotz, E.
1989-01-01
Quality control of X-ray facilities in radiological departments of large hospitals is possible only if the instrumentation used for measurements is interfaced to a computer. The central computer helps to organize the measurements as well as analyse and record the results. It can also be connected to a densitometer and camera for evaluating radiographs of test devices. Other quality control tests are supported by a mobile station with equipment for non-invasive dosimetry measurements. Experience with a computer-supported system in quality control of film and film processing is described and the evaluation methods of ANSI and the German industrial standard DIN are compared. The disadvantage of these methods is the exclusion of film quality parameters, which can make processing control almost worthless. (author)
Cellier , Loïc; Cafieri , Sonia; Messine , Frederic
2013-01-01
International audience; In this paper a numerical study is provided to solve the aircraft conflict avoidance problem through velocity regulation maneuvers. Starting from optimal controlbased model and approaches in which aircraft accelerations are the controls, and by applying the direct shooting technique, we propose to study two different largescale nonlinear optimization problems. In order to compare different possibilities of implementation, two environments (AMPL and MATLAB) and determin...
Abdollahzadehsangroudi, Mohammadmahdi
2014-01-01
The aim of this thesis is to investigate and develop different numerical methodologies for modeling the Dielectric Barrier discharge (DBD) plasma actuators for flow control purposes. Two different modeling approaches were considered; one based on Plasma-fluid model and the other based on a phenomenological model. A three component Plasma fluid model based on the transport equations of charged particles was implemented in this thesis in OpenFOAM, using several techniques to redu...
Directory of Open Access Journals (Sweden)
Olga L. Quintero
Full Text Available Biotechnological processes represent a challenge in the control field, due to their high nonlinearity. In particular, continuous alcoholic fermentation from Zymomonas mobilis (Z.m presents a significant challenge. This bioprocess has high ethanol performance, but it exhibits an oscillatory behavior in process variables due to the influence of inhibition dynamics (rate of ethanol concentration over biomass, substrate, and product concentrations. In this work a new solution for control of biotechnological variables in the fermentation process is proposed, based on numerical methods and linear algebra. In addition, an improvement to a previously reported state estimator, based on particle filtering techniques, is used in the control loop. The feasibility estimator and its performance are demonstrated in the proposed control loop. This methodology makes it possible to develop a controller design through the use of dynamic analysis with a tested biomass estimator in Z.m and without the use of complex calculations.
1989-01-01
IJ-1_1 - from which we deduce: H U 1/ f II Hu A//- + 2M AtAr , and indeed the expected estimate : // un+l //_ lluo/ + (2MT) Ax since nAt _9 T...the propa- gation of a planar premixed flame with one-step chemistry . In this case, diffusive and reactive terms are added to the energy and species...to use exceedingly fine computational scales, to resolve the chemistry and internal fluid layers fully (which would normally be prohibitive in a large
International Nuclear Information System (INIS)
Abe, H.; Okuda, H.
1994-06-01
Soliton propagation in the dielectric media has been simulated by using the nonlinear Lorentz computational model, which was recently developed to study the propagation of electromagnetic waves in a linear and a nonlinear dielectric. The model is constructed by combining a microscopic model used in the semi-classical approximation for dielectric media and the particle model developed for the plasma simulations. The carrier wave frequency is retained in the simulation so that not only the envelope of the soliton but also its phase can be followed in time. It is shown that the model may be useful for studying pulse propagation in the dielectric media
van Ophem, S.; Berkhoff, Arthur P.
2016-01-01
For broadband active noise control applications with a rapidly changing primary path, it is desirable to find algorithms with a rapid convergence, a fast tracking performance, and a low computational cost. Recently, a promising algorithm has been presented, called the fast-array Kalman filter, which
Ophem, S. van; Berkhoff, A.P.
2016-01-01
Summary For broadband active noise control applications with a rapidly changing primary path, it is desirable to find algorithms with a rapid convergence, a fast tracking performance, and a low computational cost. Recently, a promising algorithm has been presented, called the fast-array Kalman