WorldWideScience

Sample records for computer interface surfaces

  1. Computer interfacing

    CERN Document Server

    Dixey, Graham

    1994-01-01

    This book explains how computers interact with the world around them and therefore how to make them a useful tool. Topics covered include descriptions of all the components that make up a computer, principles of data exchange, interaction with peripherals, serial communication, input devices, recording methods, computer-controlled motors, and printers.In an informative and straightforward manner, Graham Dixey describes how to turn what might seem an incomprehensible 'black box' PC into a powerful and enjoyable tool that can help you in all areas of your work and leisure. With plenty of handy

  2. Computer simulation of biomolecule–biomaterial interactions at surfaces and interfaces

    International Nuclear Information System (INIS)

    Wang, Qun; Wang, Meng-hao; Lu, Xiong; Wang, Ke-feng; Zhang, Xing-dong; Liu, Yaling; Zhang, Hong-ping

    2015-01-01

    Biomaterial surfaces and interfaces are intrinsically complicated systems because they involve biomolecules, implanted biomaterials, and complex biological environments. It is difficult to understand the interaction mechanism between biomaterials and biomolecules through conventional experimental methods. Computer simulation is an effective way to study the interaction mechanism at the atomic and molecular levels. In this review, we summarized the recent studies on the interaction behaviors of biomolecules with three types of the most widely used biomaterials: hydroxyapatite (HA), titanium oxide (TiO 2 ), and graphene(G)/graphene oxide(GO). The effects of crystal forms, crystallographic planes, surface defects, doping atoms, and water environments on biomolecules adsorption are discussed in detail. This review provides valuable theoretical guidance for biomaterial designing and surface modification. (topical review)

  3. The advantages of the surface Laplacian in brain-computer interface research.

    Science.gov (United States)

    McFarland, Dennis J

    2015-09-01

    Brain-computer interface (BCI) systems frequently use signal processing methods, such as spatial filtering, to enhance performance. The surface Laplacian can reduce spatial noise and aid in identification of sources. In BCI research, these two functions of the surface Laplacian correspond to prediction accuracy and signal orthogonality. In the present study, an off-line analysis of data from a sensorimotor rhythm-based BCI task dissociated these functions of the surface Laplacian by comparing nearest-neighbor and next-nearest neighbor Laplacian algorithms. The nearest-neighbor Laplacian produced signals that were more orthogonal while the next-nearest Laplacian produced signals that resulted in better accuracy. Both prediction and signal identification are important for BCI research. Better prediction of user's intent produces increased speed and accuracy of communication and control. Signal identification is important for ruling out the possibility of control by artifacts. Identifying the nature of the control signal is relevant both to understanding exactly what is being studied and in terms of usability for individuals with limited motor control. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Universal computer interfaces

    CERN Document Server

    Dheere, RFBM

    1988-01-01

    Presents a survey of the latest developments in the field of the universal computer interface, resulting from a study of the world patent literature. Illustrating the state of the art today, the book ranges from basic interface structure, through parameters and common characteristics, to the most important industrial bus realizations. Recent technical enhancements are also included, with special emphasis devoted to the universal interface adapter circuit. Comprehensively indexed.

  5. The computer graphics interface

    CERN Document Server

    Steinbrugge Chauveau, Karla; Niles Reed, Theodore; Shepherd, B

    2014-01-01

    The Computer Graphics Interface provides a concise discussion of computer graphics interface (CGI) standards. The title is comprised of seven chapters that cover the concepts of the CGI standard. Figures and examples are also included. The first chapter provides a general overview of CGI; this chapter covers graphics standards, functional specifications, and syntactic interfaces. Next, the book discusses the basic concepts of CGI, such as inquiry, profiles, and registration. The third chapter covers the CGI concepts and functions, while the fourth chapter deals with the concept of graphic obje

  6. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors

    Directory of Open Access Journals (Sweden)

    Han Sun

    2018-03-01

    Full Text Available The novel human-computer interface (HCI using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC and Fisher discrimination (FD criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT and recognition rate (RR. The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s

  7. Brain-computer interface

    DEFF Research Database (Denmark)

    2014-01-01

    A computer-implemented method of providing an interface between a user and a processing unit, the method comprising : presenting one or more stimuli to a user, each stimulus varying at a respective stimulation frequency, each stimulation frequency being associated with a respective user......-selectable input; receiving at least one signal indicative of brain activity of the user; and determining, from the received signal, which of the one or more stimuli the user attends to and selecting the user-selectable input associated with the stimulation frequency of the determined stimuli as being a user...

  8. Surface rheology and interface stability.

    Energy Technology Data Exchange (ETDEWEB)

    Yaklin, Melissa A.; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Walker, Lynn; Koehler, Timothy P.; Reichert, Matthew D. (Carnegie Mellon University, Pittsburgh, PA); Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-11-01

    We have developed a mature laboratory at Sandia to measure interfacial rheology, using a combination of home-built, commercially available, and customized commercial tools. An Interfacial Shear Rheometer (KSV ISR-400) was modified and the software improved to increase sensitivity and reliability. Another shear rheometer, a TA Instruments AR-G2, was equipped with a du Nouey ring, bicone geometry, and a double wall ring. These interfacial attachments were compared to each other and to the ISR. The best results with the AR-G2 were obtained with the du Nouey ring. A Micro-Interfacial Rheometer (MIR) was developed in house to obtain the much higher sensitivity given by a smaller probe. However, it was found to be difficult to apply this technique for highly elastic surfaces. Interfaces also exhibit dilatational rheology when the interface changes area, such as occurs when bubbles grow or shrink. To measure this rheological response we developed a Surface Dilatational Rheometer (SDR), in which changes in surface tension with surface area are measured during the oscillation of the volume of a pendant drop or bubble. All instruments were tested with various surfactant solutions to determine the limitations of each. In addition, foaming capability and foam stability were tested and compared with the rheology data. It was found that there was no clear correlation of surface rheology with foaming/defoaming with different types of surfactants, but, within a family of surfactants, rheology could predict the foam stability. Diffusion of surfactants to the interface and the behavior of polyelectrolytes were two subjects studied with the new equipment. Finally, surface rheological terms were added to a finite element Navier-Stokes solver and preliminary testing of the code completed. Recommendations for improved implementation were given. When completed we plan to use the computations to better interpret the experimental data and account for the effects of the underlying bulk

  9. Control by personal computer and Interface 1

    International Nuclear Information System (INIS)

    Kim, Eung Mug; Park, Sun Ho

    1989-03-01

    This book consists of three chapters. The first chapter deals with basic knowledge of micro computer control which are computer system, micro computer system, control of the micro computer and control system for calculator. The second chapter describes Interface about basic knowledge such as 8255 parallel interface, 6821 parallel interface, parallel interface of personal computer, reading BCD code in parallel interface, IEEE-488 interface, RS-232C interface and transmit data in personal computer and a measuring instrument. The third chapter includes control experiment by micro computer, experiment by eight bit computer and control experiment by machine code and BASIC.

  10. Brain-computer interfaces

    DEFF Research Database (Denmark)

    Treder, Matthias S.; Miklody, Daniel; Blankertz, Benjamin

    quality measure'. We were able to show that for stimuli close to the perceptual threshold, there was sometimes a discrepancy between overt responses and brain responses, shedding light on subjects using different response criteria (e.g., more liberal or more conservative). To conclude, brain-computer...... of perceptual and cognitive biases. Furthermore, subjects can only report on stimuli if they have a clear percept of them. On the other hand, the electroencephalogram (EEG), the electrical brain activity measured with electrodes on the scalp, is a more direct measure. It allows us to tap into the ongoing neural...... auditory processing stream. In particular, it can tap brain processes that are pre-conscious or even unconscious, such as the earliest brain responses to sounds stimuli in primary auditory cortex. In a series of studies, we used a machine learning approach to show that the EEG can accurately reflect...

  11. A computational method for sharp interface advection

    DEFF Research Database (Denmark)

    Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje

    2016-01-01

    We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volu...

  12. Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii on computer interface surfaces of hospital wards and association with clinical isolates

    Directory of Open Access Journals (Sweden)

    Ma Ling

    2009-10-01

    Full Text Available Abstract Background Computer keyboards and mice are potential reservoirs of nosocomial pathogens, but routine disinfection for non-water-proof computer devices is a problem. With better hand hygiene compliance of health-care workers (HCWs, the impact of these potential sources of contamination on clinical infection needs to be clarified. Methods This study was conducted in a 1600-bed medical center of southern Taiwan with 47 wards and 282 computers. With education and monitoring program of hand hygiene for HCWs, the average compliance rate was 74% before our surveillance. We investigated the association of methicillin-resistant Staphylococcus aureus (MRSA, Pseudomonas aeruginosa and Acinetobacter baumannii, three leading hospital-acquired pathogens, from ward computer keyboards, mice and from clinical isolates in non-outbreak period by pulsed field gel electrophoresis and antibiogram. Results Our results revealed a 17.4% (49/282 contamination rate of these computer devices by S. aureus, Acinetobacter spp. or Pseudomonas spp. The contamination rates of MRSA and A. baumannii in the ward computers were 1.1% and 4.3%, respectively. No P. aeruginosa was isolated. All isolates from computers and clinical specimens at the same ward showed different pulsotypes. However, A. baumannii isolates on two ward computers had the same pulsotype. Conclusion With good hand hygiene compliance, we found relatively low contamination rates of MRSA, P. aeruginosa and A. baumannii on ward computer interface, and without further contribution to nosocomial infection. Our results suggested no necessity of routine culture surveillance in non-outbreak situation.

  13. Physics of Surfaces and Interfaces

    CERN Document Server

    Ibach, Harald

    2006-01-01

    This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. The Physics of Surfaces and Interfaces is designed as a handbook for the researcher as well as a study-text for graduate students in physics or chemistry with special interest in the surface sciences, material science, or the nanosciences. The experienced researcher, professional or academic teacher will appreciate the opportunity to share many insights and ideas that have grown out of the author's long experience. Readers will likewise appreciate the wide range of topics treated, each supported by extensive references. Graduate students will benefit f...

  14. Surface Waves on Metamaterials Interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    2016-01-01

    We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich...... platform for applications of surface photonics. Most of these surface waves are directional and as such their propagation can be effectively controlled by changing wavelength or material parameters tuning....

  15. Robust Brain-Computer Interfaces

    NARCIS (Netherlands)

    Reuderink, B.

    2011-01-01

    A brain-computer interface (BCI) enables direct communication from the brain to devices, bypassing the traditional pathway of peripheral nerves and muscles. Current BCIs aimed at patients require that the user invests weeks, or even months, to learn the skill to intentionally modify their brain

  16. Brain Computer Interfaces, a Review

    Directory of Open Access Journals (Sweden)

    Luis Fernando Nicolas-Alonso

    2012-01-01

    Full Text Available A brain-computer interface (BCI is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.

  17. Brain Computer Interfaces, a Review

    Science.gov (United States)

    Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime

    2012-01-01

    A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices. PMID:22438708

  18. A computational method for sharp interface advection

    Science.gov (United States)

    Bredmose, Henrik; Jasak, Hrvoje

    2016-01-01

    We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face–interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM® extension and is published as open source. PMID:28018619

  19. A computational method for sharp interface advection.

    Science.gov (United States)

    Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje

    2016-11-01

    We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volume of fluid (VOF) idea of calculating the volume of one of the fluids transported across the mesh faces during a time step. The novelty of the isoAdvector concept consists of two parts. First, we exploit an isosurface concept for modelling the interface inside cells in a geometric surface reconstruction step. Second, from the reconstructed surface, we model the motion of the face-interface intersection line for a general polygonal face to obtain the time evolution within a time step of the submerged face area. Integrating this submerged area over the time step leads to an accurate estimate for the total volume of fluid transported across the face. The method was tested on simple two-dimensional and three-dimensional interface advection problems on both structured and unstructured meshes. The results are very satisfactory in terms of volume conservation, boundedness, surface sharpness and efficiency. The isoAdvector method was implemented as an OpenFOAM ® extension and is published as open source.

  20. Computational design of patterned interfaces using reduced order models

    International Nuclear Information System (INIS)

    Vattre, A.J.; Abdolrahim, N.; Kolluri, K.; Demkowicz, M.J.

    2014-01-01

    Patterning is a familiar approach for imparting novel functionalities to free surfaces. We extend the patterning paradigm to interfaces between crystalline solids. Many interfaces have non-uniform internal structures comprised of misfit dislocations, which in turn govern interface properties. We develop and validate a computational strategy for designing interfaces with controlled misfit dislocation patterns by tailoring interface crystallography and composition. Our approach relies on a novel method for predicting the internal structure of interfaces: rather than obtaining it from resource-intensive atomistic simulations, we compute it using an efficient reduced order model based on anisotropic elasticity theory. Moreover, our strategy incorporates interface synthesis as a constraint on the design process. As an illustration, we apply our approach to the design of interfaces with rapid, 1-D point defect diffusion. Patterned interfaces may be integrated into the microstructure of composite materials, markedly improving performance. (authors)

  1. Electronic Structure of the Perylene / Zinc Oxide Interface: A Computational Study of Photoinduced Electron Transfer and Impact of Surface Defects

    KAUST Repository

    Li, Jingrui

    2015-07-29

    The electronic properties of dye-sensitized semiconductor surfaces consisting of pery- lene chromophores chemisorbed on zinc oxide via different spacer-anchor groups, have been studied at the density-functional-theory level. The energy distributions of the donor states and the rates of photoinduced electron transfer from dye to surface are predicted. We evaluate in particular the impact of saturated versus unsaturated aliphatic spacer groups inserted between the perylene chromophore and the semiconductor as well as the influence of surface defects on the electron-injection rates.

  2. Electronic Structure of the Perylene / Zinc Oxide Interface: A Computational Study of Photoinduced Electron Transfer and Impact of Surface Defects

    KAUST Repository

    Li, Jingrui; Li, Hong; Winget, Paul; Bredas, Jean-Luc

    2015-01-01

    The electronic properties of dye-sensitized semiconductor surfaces consisting of pery- lene chromophores chemisorbed on zinc oxide via different spacer-anchor groups, have been studied at the density-functional-theory level. The energy distributions of the donor states and the rates of photoinduced electron transfer from dye to surface are predicted. We evaluate in particular the impact of saturated versus unsaturated aliphatic spacer groups inserted between the perylene chromophore and the semiconductor as well as the influence of surface defects on the electron-injection rates.

  3. Computational Study on Atomic Structures, Electronic Properties, and Chemical Reactions at Surfaces and Interfaces and in Biomaterials

    Science.gov (United States)

    Takano, Yu; Kobayashi, Nobuhiko; Morikawa, Yoshitada

    2018-06-01

    Through computer simulations using atomistic models, it is becoming possible to calculate the atomic structures of localized defects or dopants in semiconductors, chemically active sites in heterogeneous catalysts, nanoscale structures, and active sites in biological systems precisely. Furthermore, it is also possible to clarify physical and chemical properties possessed by these nanoscale structures such as electronic states, electronic and atomic transport properties, optical properties, and chemical reactivity. It is sometimes quite difficult to clarify these nanoscale structure-function relations experimentally and, therefore, accurate computational studies are indispensable in materials science. In this paper, we review recent studies on the relation between local structures and functions for inorganic, organic, and biological systems by using atomistic computer simulations.

  4. Surface and interface effects in VLSI

    CERN Document Server

    Einspruch, Norman G

    1985-01-01

    VLSI Electronics Microstructure Science, Volume 10: Surface and Interface Effects in VLSI provides the advances made in the science of semiconductor surface and interface as they relate to electronics. This volume aims to provide a better understanding and control of surface and interface related properties. The book begins with an introductory chapter on the intimate link between interfaces and devices. The book is then divided into two parts. The first part covers the chemical and geometric structures of prototypical VLSI interfaces. Subjects detailed include, the technologically most import

  5. Surfaces and interfaces of electronic materials

    CERN Document Server

    Brillson, Leonard J

    2012-01-01

    An advanced level textbook covering geometric, chemical, and electronic structure of electronic materials, and their applications to devices based on semiconductor surfaces, metal-semiconductor interfaces, and semiconductor heterojunctions. Starting with the fundamentals of electrical measurements on semiconductor interfaces, it then describes the importance of controlling macroscopic electrical properties by atomic-scale techniques. Subsequent chapters present the wide range of surface and interface techniques available to characterize electronic, optical, chemical, and structural propertie

  6. Legal Aspects of Brain-Computer Interfaces

    Czech Academy of Sciences Publication Activity Database

    Krausová, Alžběta

    2014-01-01

    Roč. 8, č. 2 (2014) ISSN 1802-5951 Institutional support: RVO:68378122 Keywords : brain-computer interface * human rights * right to privacy, Subject RIV: AG - Legal Sciences http://mujlt.law.muni.cz/index.php

  7. Computer aided surface representation

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R.E.

    1990-02-19

    The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a surface defined on a surface''. Sometimes properties of an already defined surface are desired, which is geometry processing''. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

  8. Computer aided surface representation

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R E

    1987-11-01

    The aims of this research are the creation of new surface forms and the determination of geometric and physical properties of surfaces. The full sweep from constructive mathematics through the implementation of algorithms and the interactive computer graphics display of surfaces is utilized. Both three-dimensional and multi- dimensional surfaces are considered. Particular emphasis is given to the scientific computing solution of Department of Energy problems. The methods that we have developed and that we are proposing to develop allow applications such as: Producing smooth contour maps from measured data, such as weather maps. Modeling the heat distribution inside a furnace from sample measurements. Terrain modeling based on satellite pictures. The investigation of new surface forms includes the topics of triangular interpolants, multivariate interpolation, surfaces defined on surfaces and monotone and/or convex surfaces. The geometric and physical properties considered include contours, the intersection of surfaces, curvatures as a interrogation tool, and numerical integration.

  9. TMS communications software. Volume 1: Computer interfaces

    Science.gov (United States)

    Brown, J. S.; Lenker, M. D.

    1979-01-01

    A prototype bus communications system, which is being used to support the Trend Monitoring System (TMS) as well as for evaluation of the bus concept is considered. Hardware and software interfaces to the MODCOMP and NOVA minicomputers are included. The system software required to drive the interfaces in each TMS computer is described. Documentation of other software for bus statistics monitoring and for transferring files across the bus is also included.

  10. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  11. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  12. Polymer surfaces, interfaces and thin films

    International Nuclear Information System (INIS)

    Stamm, M.

    1996-01-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs

  13. Photonics surface waves on metamaterials interfaces

    DEFF Research Database (Denmark)

    Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V

    2017-01-01

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks...... to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide...... variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general...

  14. RC Circuits: Some Computer-Interfaced Experiments.

    Science.gov (United States)

    Jolly, Pratibha; Verma, Mallika

    1994-01-01

    Describes a simple computer-interface experiment for recording the response of an RC network to an arbitrary input excitation. The setup is used to pose a variety of open-ended investigations in network modeling by varying the initial conditions, input signal waveform, and the circuit topology. (DDR)

  15. The Brain-Computer Interface Cycle

    NARCIS (Netherlands)

    Gerven, Marcel; Farquhar, Jason; Schaefer, Rebecca; Vlek, Rutger; Geuze, Jeroen; Nijholt, Antinus; Ramsay, Nick; Haselager, Pim; Vuurpijl, Louis; Gielen, Stan; Desain, Peter

    2009-01-01

    Brain–computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by impressive applications. The aim of this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the measurement of

  16. Brain-computer interfaces for arts

    NARCIS (Netherlands)

    Gürkök, Hayrettin; Nijholt, Antinus; D' Mello, S.; Pantic, Maja

    2013-01-01

    We experience positive emotions when our hedonic needs, such as virtuosity or relatedness, are satisfied. Creating art is one way of satisfying these needs, so artistic computer applications can be considered as ‘affective’. Artistic braincomputer interfaces (BCIs), which allow people to create art

  17. Electrostatics with Computer-Interfaced Charge Sensors

    Science.gov (United States)

    Morse, Robert A.

    2006-01-01

    Computer interfaced electrostatic charge sensors allow both qualitative and quantitative measurements of electrostatic charge but are quite sensitive to charges accumulating on modern synthetic materials. They need to be used with care so that students can correctly interpret their measurements. This paper describes the operation of the sensors,…

  18. Experiencing Brain-Computer Interface Control

    NARCIS (Netherlands)

    van de Laar, B.L.A.

    2016-01-01

    Brain-Computer Interfaces (BCIs) are systems that extract information from the user’s brain activity and employ it in some way in an interactive system. While historically BCIs were mainly catered towards paralyzed or otherwise physically handicapped users, the last couple of years applications with

  19. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  20. Brain-Computer Interfaces in Medicine

    Science.gov (United States)

    Shih, Jerry J.; Krusienski, Dean J.; Wolpaw, Jonathan R.

    2012-01-01

    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. PMID:22325364

  1. Spectrometer user interface to computer systems

    International Nuclear Information System (INIS)

    Salmon, L.; Davies, M.; Fry, F.A.; Venn, J.B.

    1979-01-01

    A computer system for use in radiation spectrometry should be designed around the needs and comprehension of the user and his operating environment. To this end, the functions of the system should be built in a modular and independent fashion such that they can be joined to the back end of an appropriate user interface. The point that this interface should be designed rather than just allowed to evolve is illustrated by reference to four related computer systems of differing complexity and function. The physical user interfaces in all cases are keyboard terminals, and the virtues and otherwise of these devices are discussed and compared with others. The language interface needs to satisfy a number of requirements, often conflicting. Among these, simplicity and speed of operation compete with flexibility and scope. Both experienced and novice users need to be considered, and any individual's needs may vary from naive to complex. To be efficient and resilient, the implementation must use an operating system, but the user needs to be protected from its complex and unfamiliar syntax. At the same time the interface must allow the user access to all services appropriate to his needs. The user must also receive an image of privacy in a multi-user system. The interface itself must be stable and exhibit continuity between implementations. Some of these conflicting needs have been overcome by the SABRE interface with languages operating at several levels. The foundation is a simple semimnemonic command language that activates indididual and independent functions. The commands can be used with positional parameters or in an interactive dialogue the precise nature of which depends upon the operating environment and the user's experience. A command procedure or macrolanguage allows combinations of commands with conditional branching and arithmetic features. Thus complex but repetitive operations are easily performed

  2. Principles of interfacing computers to medical equipment.

    Science.gov (United States)

    Francis, J L; Martin, T R

    1990-12-01

    Table 3 shows a comparison of the interface standards considered. RS232 has the advantages of availability, flexibility and low cost. Variants on the standard overcome its limitations in data-rate and distance. The Centronics parallel standard is available on most personal computers and is particularly suitable for high data-rates over short distances. Other PC standards such as SCSI are special-purpose interfaces and therefore more difficult to use. GPIB is a robust and well-specified standard often used for the control of laboratory instruments.

  3. INTERFACE DEVICE FOR NONDESTRUCTIVE TESTING OF RESIDUAL SURFACE STRESSES

    Directory of Open Access Journals (Sweden)

    Gennady A. Perepelkin

    2016-01-01

    Full Text Available The paper considers the organization of connection of a personal computer with a device for nondestructive testing of residual surface stresses. The device works is based on the phenomenon of diffraction of ionizing radiation from the crystal lattice near the surface of the crystallites. Proposed software interface to the organization for each type of user: the device developers, administrators, users. Some aspects of the organization of communication microcontroller to a PC via USB-port

  4. Ecological Interface Design for Computer Network Defense.

    Science.gov (United States)

    Bennett, Kevin B; Bryant, Adam; Sushereba, Christen

    2018-05-01

    A prototype ecological interface for computer network defense (CND) was developed. Concerns about CND run high. Although there is a vast literature on CND, there is some indication that this research is not being translated into operational contexts. Part of the reason may be that CND has historically been treated as a strictly technical problem, rather than as a socio-technical problem. The cognitive systems engineering (CSE)/ecological interface design (EID) framework was used in the analysis and design of the prototype interface. A brief overview of CSE/EID is provided. EID principles of design (i.e., direct perception, direct manipulation and visual momentum) are described and illustrated through concrete examples from the ecological interface. Key features of the ecological interface include (a) a wide variety of alternative visual displays, (b) controls that allow easy, dynamic reconfiguration of these displays, (c) visual highlighting of functionally related information across displays, (d) control mechanisms to selectively filter massive data sets, and (e) the capability for easy expansion. Cyber attacks from a well-known data set are illustrated through screen shots. CND support needs to be developed with a triadic focus (i.e., humans interacting with technology to accomplish work) if it is to be effective. Iterative design and formal evaluation is also required. The discipline of human factors has a long tradition of success on both counts; it is time that HF became fully involved in CND. Direct application in supporting cyber analysts.

  5. Brain Computer Interface on Track to Home

    OpenAIRE

    Miralles, Felip; Vargiu, Eloisa; Dauwalder, Stefan; Solà, Marc; Müller-Putz, Gernot; Wriessnegger, Selina C.; Pinegger, Andreas; Kübler, Andrea; Halder, Sebastian; Käthner, Ivo; Martin, Suzanne; Daly, Jean; Armstrong, Elaine; Guger, Christoph; Hintermüller, Christoph

    2015-01-01

    The novel BackHome system offers individuals with disabilities a range of useful services available via brain-computer interfaces (BCIs), to help restore their independence. This is the time such technology is ready to be deployed in the real world, that is, at the target end users' home. This has been achieved by the development of practical electrodes, easy to use software, and delivering telemonitoring and home support capabilities which have been conceived, implemented, and tested within ...

  6. A brain computer interface-based explorer.

    Science.gov (United States)

    Bai, Lijuan; Yu, Tianyou; Li, Yuanqing

    2015-04-15

    In recent years, various applications of brain computer interfaces (BCIs) have been studied. In this paper, we present a hybrid BCI combining P300 and motor imagery to operate an explorer. Our system is mainly composed of a BCI mouse, a BCI speller and an explorer. Through this system, the user can access his computer and manipulate (open, close, copy, paste, and delete) files such as documents, pictures, music, movies and so on. The system has been tested with five subjects, and the experimental results show that the explorer can be successfully operated according to subjects' intentions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Workshop on surface and interface science at the ESRF

    Energy Technology Data Exchange (ETDEWEB)

    Norris, C.; Stierle, A.; Kasper, N.; Dosch, H.; Schmidt, S.; Hufner, S.; Moritz, W.; Fedley, Ch.S.; Rossi, G.; Durr Hermann, A.; Rohlsberger, R.; Dalmas, J.; Oughaddou, H.; Leandri, Ch.; Gay, J.M.; Treglia, G.; Le Lay, G.; Aufray, B.; Bunk, O.; Johnson, R.L.; Frenken, J.W.M.; Lucas, C.A.; Bauer, G.; Zhong, Z.; Springholz, G.; Lechner, R.; Stang, J.; Schulli, T.; Metzger, T.H.; Holy, V.; Woodruff, D.P.; Dellera, C.; Zegenhagen, J.; Robinson, I.; Malachias, A.; Schulli, T.U.; Magalhaes-Paniago, R.; Stoffel, M.; Schmidt, O.G.; Boragno, C.; Buatier de Mongeot, F.; Valbusa, U.; Felici, R.; Yacoby, Y.; Bedzyk, M.J.; Van der Veen, J.F

    2004-07-01

    The main aim of the workshop is to reflect the future of surface and interface research at the high brilliance synchrotron radiation source ESRF taking into account experimental facilities which are becoming available at new synchrotron radiation facilities in Europe. 6 sessions have been organized: 1) surface and interface research and synchrotron radiation - today and tomorrow -, 2) aspects of surface and interface research, 3) real surfaces and interfaces, 4) synchrotron techniques in surface and interface research, 5) new directions in surface and interface research, and 6) surface and interface science at ESRF. This document gathers the abstracts of the presentations.

  8. Workshop on surface and interface science at the ESRF

    International Nuclear Information System (INIS)

    Norris, C.; Stierle, A.; Kasper, N.; Dosch, H.; Schmidt, S.; Hufner, S.; Moritz, W.; Fedley, Ch.S.; Rossi, G.; Durr Hermann, A.; Rohlsberger, R.; Dalmas, J.; Oughaddou, H.; Leandri, Ch.; Gay, J.M.; Treglia, G.; Le Lay, G.; Aufray, B.; Bunk, O.; Johnson, R.L.; Frenken, J.W.M.; Lucas, C.A.; Bauer, G.; Zhong, Z.; Springholz, G.; Lechner, R.; Stang, J.; Schulli, T.; Metzger, T.H.; Holy, V.; Woodruff, D.P.; Dellera, C.; Zegenhagen, J.; Robinson, I.; Malachias, A.; Schulli, T.U.; Magalhaes-Paniago, R.; Stoffel, M.; Schmidt, O.G.; Boragno, C.; Buatier de Mongeot, F.; Valbusa, U.; Felici, R.; Yacoby, Y.; Bedzyk, M.J.; Van der Veen, J.F.

    2004-01-01

    The main aim of the workshop is to reflect the future of surface and interface research at the high brilliance synchrotron radiation source ESRF taking into account experimental facilities which are becoming available at new synchrotron radiation facilities in Europe. 6 sessions have been organized: 1) surface and interface research and synchrotron radiation - today and tomorrow -, 2) aspects of surface and interface research, 3) real surfaces and interfaces, 4) synchrotron techniques in surface and interface research, 5) new directions in surface and interface research, and 6) surface and interface science at ESRF. This document gathers the abstracts of the presentations

  9. Photonics surface waves on metamaterials interfaces.

    Science.gov (United States)

    Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V

    2017-09-12

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.

  10. Brain computer interface for operating a robot

    Science.gov (United States)

    Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed

    2013-10-01

    A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.

  11. Effect of surface stress and irregularity of the interface on the ...

    Indian Academy of Sciences (India)

    Surface stress; irregularity of the interface; magneto-elastic crustal ... stress plays a vital role in the propagation of waves due to the fact that the surface of a ...... Mumbai, for his computational help towards the numerical calculations and graphs.

  12. CAMAPPLE: CAMAC interface to the Apple computer

    International Nuclear Information System (INIS)

    Oxoby, G.J.; Trang, Q.H.; Williams, S.H.

    1981-04-01

    The advent of the personal microcomputer provides a new tool for the debugging, calibration and monitoring of small scale physics apparatus, e.g., a single detector being developed for a larger physics apparatus. With an appropriate interface these microcomputer systems provide a low cost (1/3 the cost of a comparable minicomputer system), convenient, dedicated, portable system which can be used in a fashion similar to that of portable oscilloscopes. Here, an interface between the Apple computer and CAMAC which is now being used to study the detector for a Cerenkov ring-imaging device is described. The Apple is particularly well-suited to this application because of its ease of use, hi-resolution graphics, peripheral bus and documentation support

  13. Camapple: CAMAC interface to the Apple computer

    International Nuclear Information System (INIS)

    Oxoby, G.J.; Trang, Q.H.; Williams, S.H.

    1981-01-01

    The advent of the 'personal' microcomputer provides a new tool for the debugging, calibration and monitoring of small scale physics apparatus, e.g., a single detector being developed for a larger physics apparatus. With an appropriate interface these microcomputer systems provide a low cost (1/3 the cost of a comparable minicomputer system), convenient, dedicated, portable system which can be used in a fashion similar to that of portable oscilliscopes. Here we describe an interface between the Apple computer and CAMAC which is now being used to study the detector for a Cerenkov ring-imaging device. The Apple is particularly well-suited to this application because of its ease of use, hi-resolution graphics, peripheral bus and documentation support. (orig.)

  14. Surface and interface analysis of photovoltaic devices

    International Nuclear Information System (INIS)

    Kazmerski, L.L.

    1983-01-01

    Interface chemistry can control the performance and operational lifetime of solar cells, especially thin-film, polycrystalline devices. The composition and elemental integrity of device surfaces, internal junctions, layer and defect interfces can be related to and dominate the electroptical characteristics of the materials/ devices. This paper examines the compositional properties of external and internal surfaces in polycrystaline solar cells, utilizing high-resolution, complementary surface analysis techniques. The electronic properties of these same regions are evaluated using microelectrical characterization methods. Cell performance, in turn, is explained in terms of these relation-ships. Specifically, two solar cell types are used as examples: (1) the polycrystalline Si homojunction and (2) the (Cd Zn)S/CuInSe 2 heterojunction. Throughout these investigations of photovoltaic devices, the limitations and strengths of the surface and electrical microanalyses techniques are emphasized and discussed. (Author) [pt

  15. Graphical User Interface Programming in Introductory Computer Science.

    Science.gov (United States)

    Skolnick, Michael M.; Spooner, David L.

    Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…

  16. Brain Computer Interfaces for Enhanced Interaction with Mobile Robot Agents

    Science.gov (United States)

    2016-07-27

    SECURITY CLASSIFICATION OF: Brain Computer Interfaces (BCIs) show great potential in allowing humans to interact with computational environments in a...Distribution Unlimited UU UU UU UU 27-07-2016 17-Sep-2013 16-Sep-2014 Final Report: Brain Computer Interfaces for Enhanced Interactions with Mobile Robot...published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Brain Computer Interfaces for Enhanced

  17. Brain-computer interfaces in neurological rehabilitation.

    Science.gov (United States)

    Daly, Janis J; Wolpaw, Jonathan R

    2008-11-01

    Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.

  18. Brain-Computer Interface Spellers: A Review.

    Science.gov (United States)

    Rezeika, Aya; Benda, Mihaly; Stawicki, Piotr; Gembler, Felix; Saboor, Abdul; Volosyak, Ivan

    2018-03-30

    A Brain-Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers.

  19. Brain–Computer Interface Spellers: A Review

    Science.gov (United States)

    Gembler, Felix; Saboor, Abdul

    2018-01-01

    A Brain–Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers. PMID:29601538

  20. Computer representation of molecular surfaces

    International Nuclear Information System (INIS)

    Max, N.L.

    1981-01-01

    This review article surveys recent work on computer representation of molecular surfaces. Several different algorithms are discussed for producing vector or raster drawings of space-filling models formed as the union of spheres. Other smoother surfaces are also considered

  1. Surface computing and collaborative analysis work

    CERN Document Server

    Brown, Judith; Gossage, Stevenson; Hack, Chris

    2013-01-01

    Large surface computing devices (wall-mounted or tabletop) with touch interfaces and their application to collaborative data analysis, an increasingly important and prevalent activity, is the primary topic of this book. Our goals are to outline the fundamentals of surface computing (a still maturing technology), review relevant work on collaborative data analysis, describe frameworks for understanding collaborative processes, and provide a better understanding of the opportunities for research and development. We describe surfaces as display technologies with which people can interact directly, and emphasize how interaction design changes when designing for large surfaces. We review efforts to use large displays, surfaces or mixed display environments to enable collaborative analytic activity. Collaborative analysis is important in many domains, but to provide concrete examples and a specific focus, we frequently consider analysis work in the security domain, and in particular the challenges security personne...

  2. Surface and Interface Studies with Radioactive Ions

    CERN Multimedia

    Weber, A

    2002-01-01

    Investigations on the atomic scale of magnetic surfaces and magnetic multilayers were performed by Perturbed Angular Correlation (PAC) spectroscopy. The unique combination of the Booster ISOLDE facility equipped with a UHV beamline and the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) is ideally suited for such microscopic studies. Main advantages are the choice of problem-oriented radioactive probes and the purity of mass-separated beams. The following results were obtained: $\\,$i) Magnetic hyperfine fields (B$_{hf}$) of Se on Fe, Co, Ni surfaces were determined. The results prompted a theoretical study on the B$_{hf}$ values of the 4sp-elements in adatom position on Ni and Fe, confirming our results and predicting unexpected behaviour for the other elements. $\\,$ii) Exemplarily we have determined B$_{hf}$ values of $^{111}$Cd at many different adsorption sites on Ni surfaces. We found a strong dependence on the coordination number of the probes. With decreasing coordination nu...

  3. Interface control scheme for computer high-speed interface unit

    Science.gov (United States)

    Ballard, B. K.

    1975-01-01

    Control scheme is general and performs for multiplexed and dedicated channels as well as for data-bus interfaces. Control comprises two 64-pin, dual in-line packages, each of which holds custom large-scale integrated array built with silicon-on-sapphire complementary metal-oxide semiconductor technology.

  4. Active Surfaces and Interfaces of Soft Materials

    Science.gov (United States)

    Wang, Qiming

    A variety of intriguing surface patterns have been observed on developing natural systems, ranging from corrugated surface of white blood cells at nanometer scales to wrinkled dog skins at millimeter scales. To mimetically harness functionalities of natural morphologies, artificial transformative skin systems by using soft active materials have been rationally designed to generate versatile patterns for a variety of engineering applications. The study of the mechanics and design of these dynamic surface patterns on soft active materials are both physically interesting and technologically important. This dissertation starts with studying abundant surface patterns in Nature by constructing a unified phase diagram of surface instabilities on soft materials with minimum numbers of physical parameters. Guided by this integrated phase diagram, an electroactive system is designed to investigate a variety of electrically-induced surface instabilities of elastomers, including electro-creasing, electro-cratering, electro-wrinkling and electro-cavitation. Combing experimental, theoretical and computational methods, the initiation, evolution and transition of these instabilities are analyzed. To apply these dynamic surface instabilities to serving engineering and biology, new techniques of Dynamic Electrostatic Lithography and electroactive anti-biofouling are demonstrated.

  5. Multimodal 2D Brain Computer Interface.

    Science.gov (United States)

    Almajidy, Rand K; Boudria, Yacine; Hofmann, Ulrich G; Besio, Walter; Mankodiya, Kunal

    2015-08-01

    In this work we used multimodal, non-invasive brain signal recording systems, namely Near Infrared Spectroscopy (NIRS), disc electrode electroencephalography (EEG) and tripolar concentric ring electrodes (TCRE) electroencephalography (tEEG). 7 healthy subjects participated in our experiments to control a 2-D Brain Computer Interface (BCI). Four motor imagery task were performed, imagery motion of the left hand, the right hand, both hands and both feet. The signal slope (SS) of the change in oxygenated hemoglobin concentration measured by NIRS was used for feature extraction while the power spectrum density (PSD) of both EEG and tEEG in the frequency band 8-30Hz was used for feature extraction. Linear Discriminant Analysis (LDA) was used to classify different combinations of the aforementioned features. The highest classification accuracy (85.2%) was achieved by using features from all the three brain signals recording modules. The improvement in classification accuracy was highly significant (p = 0.0033) when using the multimodal signals features as compared to pure EEG features.

  6. The brain-computer interface cycle.

    Science.gov (United States)

    van Gerven, Marcel; Farquhar, Jason; Schaefer, Rebecca; Vlek, Rutger; Geuze, Jeroen; Nijholt, Anton; Ramsey, Nick; Haselager, Pim; Vuurpijl, Louis; Gielen, Stan; Desain, Peter

    2009-08-01

    Brain-computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by impressive applications. The aim of this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the measurement of brain activity, classification of data, feedback to the subject and the effect of feedback on brain activity. In this article we will review the critical steps of the BCI cycle, the present issues and state-of-the-art results. Moreover, we will develop a vision on how recently obtained results may contribute to new insights in neurocognition and, in particular, in the neural representation of perceived stimuli, intended actions and emotions. Now is the right time to explore what can be gained by embracing real-time, online BCI and by adding it to the set of experimental tools already available to the cognitive neuroscientist. We close by pointing out some unresolved issues and present our view on how BCI could become an important new tool for probing human cognition.

  7. Towards psychologically adaptive brain-computer interfaces

    Science.gov (United States)

    Myrden, A.; Chau, T.

    2016-12-01

    Objective. Brain-computer interface (BCI) performance is sensitive to short-term changes in psychological states such as fatigue, frustration, and attention. This paper explores the design of a BCI that can adapt to these short-term changes. Approach. Eleven able-bodied individuals participated in a study during which they used a mental task-based EEG-BCI to play a simple maze navigation game while self-reporting their perceived levels of fatigue, frustration, and attention. In an offline analysis, a regression algorithm was trained to predict changes in these states, yielding Pearson correlation coefficients in excess of 0.45 between the self-reported and predicted states. Two means of fusing the resultant mental state predictions with mental task classification were investigated. First, single-trial mental state predictions were used to predict correct classification by the BCI during each trial. Second, an adaptive BCI was designed that retrained a new classifier for each testing sample using only those training samples for which predicted mental state was similar to that predicted for the current testing sample. Main results. Mental state-based prediction of BCI reliability exceeded chance levels. The adaptive BCI exhibited significant, but practically modest, increases in classification accuracy for five of 11 participants and no significant difference for the remaining six despite a smaller average training set size. Significance. Collectively, these findings indicate that adaptation to psychological state may allow the design of more accurate BCIs.

  8. Brain Computer Interface on Track to Home.

    Science.gov (United States)

    Miralles, Felip; Vargiu, Eloisa; Dauwalder, Stefan; Solà, Marc; Müller-Putz, Gernot; Wriessnegger, Selina C; Pinegger, Andreas; Kübler, Andrea; Halder, Sebastian; Käthner, Ivo; Martin, Suzanne; Daly, Jean; Armstrong, Elaine; Guger, Christoph; Hintermüller, Christoph; Lowish, Hannah

    2015-01-01

    The novel BackHome system offers individuals with disabilities a range of useful services available via brain-computer interfaces (BCIs), to help restore their independence. This is the time such technology is ready to be deployed in the real world, that is, at the target end users' home. This has been achieved by the development of practical electrodes, easy to use software, and delivering telemonitoring and home support capabilities which have been conceived, implemented, and tested within a user-centred design approach. The final BackHome system is the result of a 3-year long process involving extensive user engagement to maximize effectiveness, reliability, robustness, and ease of use of a home based BCI system. The system is comprised of ergonomic and hassle-free BCI equipment; one-click software services for Smart Home control, cognitive stimulation, and web browsing; and remote telemonitoring and home support tools to enable independent home use for nonexpert caregivers and users. BackHome aims to successfully bring BCIs to the home of people with limited mobility to restore their independence and ultimately improve their quality of life.

  9. Brain Computer Interface on Track to Home

    Directory of Open Access Journals (Sweden)

    Felip Miralles

    2015-01-01

    Full Text Available The novel BackHome system offers individuals with disabilities a range of useful services available via brain-computer interfaces (BCIs, to help restore their independence. This is the time such technology is ready to be deployed in the real world, that is, at the target end users’ home. This has been achieved by the development of practical electrodes, easy to use software, and delivering telemonitoring and home support capabilities which have been conceived, implemented, and tested within a user-centred design approach. The final BackHome system is the result of a 3-year long process involving extensive user engagement to maximize effectiveness, reliability, robustness, and ease of use of a home based BCI system. The system is comprised of ergonomic and hassle-free BCI equipment; one-click software services for Smart Home control, cognitive stimulation, and web browsing; and remote telemonitoring and home support tools to enable independent home use for nonexpert caregivers and users. BackHome aims to successfully bring BCIs to the home of people with limited mobility to restore their independence and ultimately improve their quality of life.

  10. Surface and interface analysis an electrochemists toolbox

    CERN Document Server

    Holze, Rudolf

    2009-01-01

    A broad, almost encyclopedic overview of spectroscopic and other analytical techniques useful for investigations of phase boundaries in electrochemistry is presented. The analysis of electrochemical interfaces and interphases on a microscopic, even molecular level, is of central importance for an improved understanding of the structure and dynamics of these phase boundaries. The gained knowledge will be needed for improvements of methods and applications reaching from electrocatalysis, electrochemical energy conversion, biocompatibility of metals, corrosion protection to galvanic surface treatment and finishing. The book provides an overview as complete as possible and enables the reader to choose methods most suitable for tackling his particular task. It is nevertheless compact and does not flood the reader with the details of review papers.

  11. Integrated computer network high-speed parallel interface

    International Nuclear Information System (INIS)

    Frank, R.B.

    1979-03-01

    As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures

  12. Human-computer interfaces applied to numerical solution of the Plateau problem

    Science.gov (United States)

    Elias Fabris, Antonio; Soares Bandeira, Ivana; Ramos Batista, Valério

    2015-09-01

    In this work we present a code in Matlab to solve the Problem of Plateau numerically, and the code will include human-computer interface. The Problem of Plateau has applications in areas of knowledge like, for instance, Computer Graphics. The solution method will be the same one of the Surface Evolver, but the difference will be a complete graphical interface with the user. This will enable us to implement other kinds of interface like ocular mouse, voice, touch, etc. To date, Evolver does not include any graphical interface, which restricts its use by the scientific community. Specially, its use is practically impossible for most of the Physically Challenged People.

  13. Brain-Computer Interfaces Revolutionizing Human-Computer Interaction

    CERN Document Server

    Graimann, Bernhard; Allison, Brendan

    2010-01-01

    A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.

  14. Open-Box Muscle-Computer Interface: Introduction to Human-Computer Interactions in Bioengineering, Physiology, and Neuroscience Courses

    Science.gov (United States)

    Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.

    2016-01-01

    A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…

  15. Computational method for free surface hydrodynamics

    International Nuclear Information System (INIS)

    Hirt, C.W.; Nichols, B.D.

    1980-01-01

    There are numerous flow phenomena in pressure vessel and piping systems that involve the dynamics of free fluid surfaces. For example, fluid interfaces must be considered during the draining or filling of tanks, in the formation and collapse of vapor bubbles, and in seismically shaken vessels that are partially filled. To aid in the analysis of these types of flow phenomena, a new technique has been developed for the computation of complicated free-surface motions. This technique is based on the concept of a local average volume of fluid (VOF) and is embodied in a computer program for two-dimensional, transient fluid flow called SOLA-VOF. The basic approach used in the VOF technique is briefly described, and compared to other free-surface methods. Specific capabilities of the SOLA-VOF program are illustrated by generic examples of bubble growth and collapse, flows of immiscible fluid mixtures, and the confinement of spilled liquids

  16. Touch Is Everywhere: Floor Surfaces as Ambient Haptic Interfaces.

    Science.gov (United States)

    Visell, Y; Law, A; Cooperstock, J R

    2009-01-01

    Floor surfaces are notable for the diverse roles that they play in our negotiation of everyday environments. Haptic communication via floor surfaces could enhance or enable many computer-supported activities that involve movement on foot. In this paper, we discuss potential applications of such interfaces in everyday environments and present a haptically augmented floor component through which several interaction methods are being evaluated. We describe two approaches to the design of structured vibrotactile signals for this device. The first is centered on a musical phrase metaphor, as employed in prior work on tactile display. The second is based upon the synthesis of rhythmic patterns of virtual physical impact transients. We report on an experiment in which participants were able to identify communication units that were constructed from these signals and displayed via a floor interface at well above chance levels. The results support the feasibility of tactile information display via such interfaces and provide further indications as to how to effectively design vibrotactile signals for them.

  17. Surfaces and Interfaces of Magnetoelectric Oxide Systems

    Science.gov (United States)

    Cao, Shi

    Magnetoelectric materials Cr2O3, hexagonal LuFeO 3 and YbFeO3 are studied in this thesis. The surface of chromia (Cr2O3) has a surface electronic structure distinct from the bulk. Our work shows that placing a Cr2O3 single crystal into a single domain state will result in net Cr2O 3 spin polarization at the boundary, even in the presence of a gold overlayer. From the Cr 2p3/2 X-ray magnetic circular dichroism signal, there is clear evidence of interface polarization with overlayers of both Pd and Pt on chromia. Cobalt thin films on Cr2O3(0001) show larger magnetic contrast in magnetic force microscopy indicating enhancement of perpendicular anisotropy induced by Cr2O3. The interfacial charge transfer between mechanically exfoliated few-layer graphene and Cr2O3(0001) surfaces has been investigated showing hole doping of few-layer graphene. Density functional theory calculations furthermore confirm the p-type nature of the graphene on top of chromia, and suggest that the chromia is able to induce a significant carrier spin polarization in the graphene layer. The surface termination and the nominal valence states for hexagonal LuFeO3 thin films were characterized. The stable surface terminates in a Fe-O layer. This is consistent wit the results of density functional calculations. The structural transition at about 1000 °C, from the hexagonal to the orthorhombic phase of LuFeO3, has been investigated in thin films of LuFeO3. The electronic structure for the conduction bands of both hexagonal and orthorhombic LuFeO3 thin films have been measured. Dramatic differences in both the spectral features and the linear dichroism are observed. We have also studied the ferrimagnetism in h-YbFeO3 by measuring the magnetization of Fe and Yb separately. The results directly show antialignment of magnetization of Yb and Fe ions in h-YbFeO3 at low temperature, with an exchange field on Yb of about 17 kOe. All ferrimagnets, by default, are magnetoelectrics. These findings directly

  18. Computational Complexity of Combinatorial Surfaces

    NARCIS (Netherlands)

    Vegter, Gert; Yap, Chee K.

    1990-01-01

    We investigate the computational problems associated with combinatorial surfaces. Specifically, we present an algorithm (based on the Brahana-Dehn-Heegaard approach) for transforming the polygonal schema of a closed triangulated surface into its canonical form in O(n log n) time, where n is the

  19. Computer simulation study of the nematic-vapour interface in the Gay-Berne model

    Science.gov (United States)

    Rull, Luis F.; Romero-Enrique, José Manuel

    2017-06-01

    We present computer simulations of the vapour-nematic interface of the Gay-Berne model. We considered situations which correspond to either prolate or oblate molecules. We determine the anchoring of the nematic phase and correlate it with the intermolecular potential parameters. On the other hand, we evaluate the surface tension associated to this interface. We find a corresponding states law for the surface tension dependence on the temperature, valid for both prolate and oblate molecules.

  20. Classification Order of Surface-Confined Intermixing at Epitaxial Interface

    Science.gov (United States)

    Michailov, M.

    temperature, the variation of the lattice constant leads to variable misfit which affects the island migration. The cluster/substrate commensurability influences the oscillation behavior of the diffusion coefficient caused by variation in the cluster shape. We discuss the results in a physical model that implies cluster diffusion with size-dependent cluster/substrate misfit. The second problem is devoted to diffusion phenomena in the vicinity of atomic terraces on stepped or vicinal surfaces. Here, we develop a computational model that refines important details of diffusion behavior of adatoms accounting for the energy barriers at specific atomic sites (smooth domains, terraces, and steps) located on the crystal surface. The dynamic competition between energy gained by mixing and substrate strain energy results in diffusion scenario where adatoms form alloyed islands and alloyed stripes in the vicinity of terrace edges. Being in agreement with recent experimental findings, the observed effect of stripe and island alloy formation opens up a way regular surface patterns to be configured at different atomic levels on the crystal surface. The complete surface alloying of the entire interface layer is also briefly discussed with critical analysis and classification of experimental findings and simulation data.

  1. Second harmonic generation spectroscopy on Si surfaces and interfaces

    DEFF Research Database (Denmark)

    Pedersen, Kjeld

    2010-01-01

    Optical second harmonic generation (SHG) spectroscopy studies of Si(111) surfaces and interfaces are reviewed for two types of systems: (1) clean 7 x 7 and root 3 x root 3-Ag reconstructed surfaces prepared under ultra-high vacuum conditions where surface states are excited and (2) interfaces...... in silicon-on-insulator (SOI) structures and thin metal films on Si surfaces where several interfaces contribute to the SHG. In all the systems resonances are seen at interband transitions near the bulk critical points E-1 and E-2. On the clean surfaces a number of resonances appear below the onset of bulk...

  2. X-ray scattering studies of surfaces and interfaces

    International Nuclear Information System (INIS)

    Sanyal, M.K.

    1998-01-01

    Here we shall briefly review the basics and some applications of x-ray specular reflectivity and diffuse scattering techniques. These x-ray scattering techniques are uniquely suited to study of the structure of surfaces and interfaces at atomic resolutions as they are nondestructive and can probe even interfaces which are buried. The study of structure of surfaces and interfaces is not only required in understanding physics in reduced dimensions but is also essential in developing technologically important materials

  3. Brain-Computer Interfacing Embedded in Intelligent and Affective Systems

    NARCIS (Netherlands)

    Nijholt, Antinus

    In this talk we survey recent research views on non-traditional brain-computer interfaces (BCI). That is, interfaces that can process brain activity input, but that are designed for the ‘general population’, rather than for clinical purposes. Control of applications can be made more robust by fusing

  4. HCIDL: Human-computer interface description language for multi-target, multimodal, plastic user interfaces

    Directory of Open Access Journals (Sweden)

    Lamia Gaouar

    2018-06-01

    Full Text Available From the human-computer interface perspectives, the challenges to be faced are related to the consideration of new, multiple interactions, and the diversity of devices. The large panel of interactions (touching, shaking, voice dictation, positioning … and the diversification of interaction devices can be seen as a factor of flexibility albeit introducing incidental complexity. Our work is part of the field of user interface description languages. After an analysis of the scientific context of our work, this paper introduces HCIDL, a modelling language staged in a model-driven engineering approach. Among the properties related to human-computer interface, our proposition is intended for modelling multi-target, multimodal, plastic interaction interfaces using user interface description languages. By combining plasticity and multimodality, HCIDL improves usability of user interfaces through adaptive behaviour by providing end-users with an interaction-set adapted to input/output of terminals and, an optimum layout. Keywords: Model driven engineering, Human-computer interface, User interface description languages, Multimodal applications, Plastic user interfaces

  5. A tactile P300 brain-computer interface

    NARCIS (Netherlands)

    Brouwer, A.M.; Erp, J.B.F. van

    2010-01-01

    De werking van de eerste Brain-Computer-Interface gebaseerd op tactiele EEG response wordt gedemonstreerd en het effect van het aantal gebruikte vibro-tactiele tactoren en stimulus-timing parameters wordt onderzocht

  6. Brain-computer interfaces current trends and applications

    CERN Document Server

    Azar, Ahmad

    2015-01-01

    The success of a BCI system depends as much on the system itself as on the user’s ability to produce distinctive EEG activity. BCI systems can be divided into two groups according to the placement of the electrodes used to detect and measure neurons firing in the brain. These groups are: invasive systems, electrodes are inserted directly into the cortex are used for single cell or multi unit recording, and electrocorticography (EcoG), electrodes are placed on the surface of the cortex (or dura); noninvasive systems, they are placed on the scalp and use electroencephalography (EEG) or magnetoencephalography (MEG) to detect neuron activity. The book is basically divided into three parts. The first part of the book covers the basic concepts and overviews of Brain Computer Interface. The second part describes new theoretical developments of BCI systems. The third part covers views on real applications of BCI systems.

  7. Workshops of the Sixth International Brain–Computer Interface Meeting : brain–computer interfaces past, present, and future

    NARCIS (Netherlands)

    Huggins, Jane E.; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O.; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K.R.; Ramsey, Nick F.; Nijholt, Anton; Müller-Putz, Gernot R.; McFarland, Dennis J.; Mattia, Donatella; Lance, Brent J.; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H.; Collinger, Jennifer L.; Chavarriaga, Ricardo; Chasey, Steven M.; Bleichner, Martin G.; Batista, Aaron; Anderson, Charles W.; Aarnoutse, Erik J.

    2017-01-01

    The Sixth International Brain–Computer Interface (BCI) Meeting was held 30 May–3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain–machine interface research. Topics included BCI for specific

  8. Overview Electrotactile Feedback for Enhancing Human Computer Interface

    Science.gov (United States)

    Pamungkas, Daniel S.; Caesarendra, Wahyu

    2018-04-01

    To achieve effective interaction between a human and a computing device or machine, adequate feedback from the computing device or machine is required. Recently, haptic feedback is increasingly being utilised to improve the interactivity of the Human Computer Interface (HCI). Most existing haptic feedback enhancements aim at producing forces or vibrations to enrich the user’s interactive experience. However, these force and/or vibration actuated haptic feedback systems can be bulky and uncomfortable to wear and only capable of delivering a limited amount of information to the user which can limit both their effectiveness and the applications they can be applied to. To address this deficiency, electrotactile feedback is used. This involves delivering haptic sensations to the user by electrically stimulating nerves in the skin via electrodes placed on the surface of the skin. This paper presents a review and explores the capability of electrotactile feedback for HCI applications. In addition, a description of the sensory receptors within the skin for sensing tactile stimulus and electric currents alsoseveral factors which influenced electric signal to transmit to the brain via human skinare explained.

  9. Engineering brain-computer interfaces: past, present and future.

    Science.gov (United States)

    Hughes, M A

    2014-06-01

    Electricity governs the function of both nervous systems and computers. Whilst ions move in polar fluids to depolarize neuronal membranes, electrons move in the solid-state lattices of microelectronic semiconductors. Joining these two systems together, to create an iono-electric brain-computer interface, is an immense challenge. However, such interfaces offer (and in select clinical contexts have already delivered) a method of overcoming disability caused by neurological or musculoskeletal pathology. To fulfill their theoretical promise, several specific challenges demand consideration. Rate-limiting steps cover a diverse range of disciplines including microelectronics, neuro-informatics, engineering, and materials science. As those who work at the tangible interface between brain and outside world, neurosurgeons are well placed to contribute to, and inform, this cutting edge area of translational research. This article explores the historical background, status quo, and future of brain-computer interfaces; and outlines the challenges to progress and opportunities available to the clinical neurosciences community.

  10. Computational approach to Riemann surfaces

    CERN Document Server

    Klein, Christian

    2011-01-01

    This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first...

  11. Brain-Computer Interfaces : Beyond Medical Applications

    NARCIS (Netherlands)

    Erp, J.B.F. van; Lotte, F.; Tangermann, M.

    2012-01-01

    Brain-computer interaction has already moved from assistive care to applications such as gaming. Improvements in usability, hardware, signal processing, and system integration should yield applications in other nonmedical areas.

  12. The Impact of User Interface on Young Children's Computational Thinking

    Science.gov (United States)

    Pugnali, Alex; Sullivan, Amanda; Bers, Marina Umaschi

    2017-01-01

    Aim/Purpose: Over the past few years, new approaches to introducing young children to computational thinking have grown in popularity. This paper examines the role that user interfaces have on children's mastery of computational thinking concepts and positive interpersonal behaviors. Background: There is a growing pressure to begin teaching…

  13. Touch-based Brain Computer Interfaces: State of the art

    NARCIS (Netherlands)

    Erp, J.B.F. van; Brouwer, A.M.

    2014-01-01

    Brain Computer Interfaces (BCIs) rely on the user's brain activity to control equipment or computer devices. Many BCIs are based on imagined movement (called active BCIs) or the fact that brain patterns differ in reaction to relevant or attended stimuli in comparison to irrelevant or unattended

  14. Distributed user interfaces for clinical ubiquitous computing applications.

    Science.gov (United States)

    Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik

    2005-08-01

    Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.

  15. Brain-machine and brain-computer interfaces.

    Science.gov (United States)

    Friehs, Gerhard M; Zerris, Vasilios A; Ojakangas, Catherine L; Fellows, Mathew R; Donoghue, John P

    2004-11-01

    The idea of connecting the human brain to a computer or machine directly is not novel and its potential has been explored in science fiction. With the rapid advances in the areas of information technology, miniaturization and neurosciences there has been a surge of interest in turning fiction into reality. In this paper the authors review the current state-of-the-art of brain-computer and brain-machine interfaces including neuroprostheses. The general principles and requirements to produce a successful connection between human and artificial intelligence are outlined and the authors' preliminary experience with a prototype brain-computer interface is reported.

  16. Interfacing the Paramesh Computational Libraries to the Cactus Computational Framework, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We will design and implement an interface between the Paramesh computational libraries, developed and used by groups at NASA GSFC, and the Cactus computational...

  17. Surface Science at the Solid Liquid Interface

    Science.gov (United States)

    1993-10-06

    prominent experimental avenue, developed originally by Hubbard et al,_ involves emersing monocrystalline elec- As for metal surfaces in ultrahigh vacuum...reliable means of both preparing and dosateizn ordered monocrystalline metal surfaces in UHV has led to ing appropriate molecular components of...surface atoms in place of bottom panel of Fig. 2, equal intensity contours are shown 23 underlying surface atoms, the compression is 24/23 - I in the

  18. Quantitative sputter profiling at surfaces and interfaces

    International Nuclear Information System (INIS)

    Kirschner, J.; Etzkorn, H.W.

    1981-01-01

    The key problem in quantitative sputter profiling, that of a sliding depth scale has been solved by combined Auger/X-ray microanalysis. By means of this technique and for the model system Ge/Si (amorphous) the following questions are treated quantitatively: shape of the sputter profiles when sputtering through an interface and origin of their asymmetry; precise location of the interface plane on the depth profile; broadening effects due to limited depth of information and their correction; origin and amount of bombardment induced broadening for different primary ions and energies; depth dependence of the broadening, and basic limits to depth resolution. Comparisons are made to recent theoretical calculations based on recoil mixing in the collision cascade and very good agreement is found

  19. Human-Computer Interfaces for Wearable Computers: A Systematic Approach to Development and Evaluation

    OpenAIRE

    Witt, Hendrik

    2007-01-01

    The research presented in this thesis examines user interfaces for wearable computers.Wearable computers are a special kind of mobile computers that can be worn on the body. Furthermore, they integrate themselves even more seamlessly into different activities than a mobile phone or a personal digital assistant can.The thesis investigates the development and evaluation of user interfaces for wearable computers. In particular, it presents fundamental research results as well as supporting softw...

  20. Interfacing computers and the internet with your allergy practice.

    Science.gov (United States)

    Bernstein, Jonathan A

    2004-10-01

    Computers and the internet have begun to play a prominent role in the medical profession and, in particular, the allergy specialty. Computer technology is being used more frequently for patient and physician education, asthma management in children and adults, including environmental control, generating patient databases for research and clinical practice and in marketing and e-commerce. This article will review how computers and the internet have begun to interface with the allergy subspecialty practice in these various areas.

  1. Man-machine interfaces analysis system based on computer simulation

    International Nuclear Information System (INIS)

    Chen Xiaoming; Gao Zuying; Zhou Zhiwei; Zhao Bingquan

    2004-01-01

    The paper depicts a software assessment system, Dynamic Interaction Analysis Support (DIAS), based on computer simulation technology for man-machine interfaces (MMI) of a control room. It employs a computer to simulate the operation procedures of operations on man-machine interfaces in a control room, provides quantified assessment, and at the same time carries out analysis on operational error rate of operators by means of techniques for human error rate prediction. The problems of placing man-machine interfaces in a control room and of arranging instruments can be detected from simulation results. DIAS system can provide good technical supports to the design and improvement of man-machine interfaces of the main control room of a nuclear power plant

  2. Self-assembling nanoparticles at surfaces and interfaces

    NARCIS (Netherlands)

    Kinge, S.S.; Crego Calama, Mercedes; Reinhoudt, David

    2008-01-01

    Nanoparticles are the focus of much attention due to their astonishing properties and numerous possibilities for applications in nanotechnology. For realising versatile functions, assembly of nanoparticles in regular patterns on surfaces and at interfaces is required. Assembling nanoparticles

  3. Computer-Based Tools for Evaluating Graphical User Interfaces

    Science.gov (United States)

    Moore, Loretta A.

    1997-01-01

    The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.

  4. Computer organization and design the hardware/software interface

    CERN Document Server

    Hennessy, John L

    1994-01-01

    Computer Organization and Design: The Hardware/Software Interface presents the interaction between hardware and software at a variety of levels, which offers a framework for understanding the fundamentals of computing. This book focuses on the concepts that are the basis for computers.Organized into nine chapters, this book begins with an overview of the computer revolution. This text then explains the concepts and algorithms used in modern computer arithmetic. Other chapters consider the abstractions and concepts in memory hierarchies by starting with the simplest possible cache. This book di

  5. Personal computer interface for temmperature measuring in the cutting process with turning

    International Nuclear Information System (INIS)

    Trajchevski, Neven; Filipovski, Velimir; Kuzinonovski, Mikolaj

    2004-01-01

    The computer development aided reserch systems in the investigations of the characteristics of the surface layar forms conditions for decreasing of the measuring uncertainty. Especially important is the fact that the usage of open and self made measuring systems accomplishes the demands for a total control of the research process. This paper describes an original personal computer interface which is used in the newly built computer aided reserrch system for temperatute measuring in the machining with turning. This interface consists of optically-coupled linear isolation amplifier and an analog to digital (A/D) converter. It is designed for measuring of the themo- voltage that is a generated from the natural thermocouple workpiece-cutting tool. That is achived by digitalizing the value of the thermo-voltage in data which is transmitted to the personal computer. The interface realization is a result of the research activity of the faculty of Mechanical Engineering and the Faculty of Electrical Engineering in Skopje.

  6. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    Science.gov (United States)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  7. Surface and interface electronic structure: Three year activity report

    International Nuclear Information System (INIS)

    Kevan, S.D.

    1992-01-01

    The 3-year activity report covers surface structure and phonon anomalies (surface reconstruction on W(001) and Mo(001), adsorbate lateral ordering, surface Fermi contours and phonon anomalies on Pt(111) and Pd(001)), adsorbate vibrational damping, charge transfer in momentum space: W(011)-K, surface states and resonances (relativistic effects ampersand computations, surface resonances)

  8. Human-computer interface incorporating personal and application domains

    Science.gov (United States)

    Anderson, Thomas G [Albuquerque, NM

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  9. The Emotiv EPOC interface paradigm in Human-Computer Interaction

    OpenAIRE

    Ancău Dorina; Roman Nicolae-Marius; Ancău Mircea

    2017-01-01

    Numerous studies have suggested the use of decoded error potentials in the brain to improve human-computer communication. Together with state-of-the-art scientific equipment, experiments have also tested instruments with more limited performance for the time being, such as Emotiv EPOC. This study presents a review of these trials and a summary of the results obtained. However, the level of these results indicates a promising prospect for using this headset as a human-computer interface for er...

  10. Guest editorial: Brain/neuronal computer games interfaces and interaction

    OpenAIRE

    Coyle, D.; Principe, J.; Lotte, F.; Nijholt, Antinus

    2013-01-01

    Nowadays brainwave or electroencephalogram (EEG) controlled games controllers are adding new options to satisfy the continual demand for new ways to interact with games, following trends such as the Nintendo® Wii, Microsoft® Kinect and Playstation® Move which are based on accelerometers and motion capture. EEG-based brain-computer games interaction are controlled through brain-computer interface (BCI) technology which requires sophisticated signal processing to produce a low communication ban...

  11. High Performance Computing - Power Application Programming Interface Specification.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  12. Digital quality control of the camera computer interface

    International Nuclear Information System (INIS)

    Todd-Pokropek, A.

    1983-01-01

    A brief description is given of how the gamma camera-computer interface works and what kind of errors can occur. Quality control tests of the interface are then described which include 1) tests of static performance e.g. uniformity, linearity, 2) tests of dynamic performance e.g. basic timing, interface count-rate, system count-rate, 3) tests of special functions e.g. gated acquisition, 4) tests of the gamma camera head, and 5) tests of the computer software. The tests described are mainly acceptance and routine tests. Many of the tests discussed are those recommended by an IAEA Advisory Group for inclusion in the IAEA control schedules for nuclear medicine instrumentation. (U.K.)

  13. X-ray scattering at liquid surfaces and interfaces

    International Nuclear Information System (INIS)

    Daillant, Jean

    2000-01-01

    X-ray and neutron reflectivity techniques have become quite popular for the analysis of surfaces and interfaces over the last ten years. In this review, we discuss the specific aspects of both specular and diffuse x-ray reflectivity at liquid interfaces. We start from a model liquid surface for which the scattering cross-section can be calculated in terms of thermally excited capillary and acoustic waves, and we examine in detail the experimental consequences of the large bulk scattering and of the low q divergence of the surface scattering. Deviations from the simple calculated behaviour point to interesting phenomena which can be studied in detail, like the appearance of a bending stiffness. The method is illustrated through the discussion of representative studies of liquid surfaces, of surfactant monolayers, of liquid-liquid interfaces and of microemulsions. (author)

  14. Competing and collaborating brains: multi-brain computer interfacing

    NARCIS (Netherlands)

    Nijholt, Antinus; Hassanieu, Aboul Ella; Azar, Ahmad Taher

    2015-01-01

    In this chapter we survey the possibilities of brain-computer interface applications that assume two or more users, where at least one of the users’ brain activity is used as input to the application. Such ‘applications’ were already explored by artists who introduced artistic EEG applications in

  15. The Future of Brain-Computer Interfacing (keynote paper)

    NARCIS (Netherlands)

    Nijholt, Antinus

    In this paper we survey some early applications and research on brain-computer interfacing. We emphasize and revalue the role the views on artistic and playful applications have played. In previous years various road maps for BCI research appeared. The interest in medical applications has guided BCI

  16. Preface (to: Towards Practical Brain-Computer Interfaces)

    NARCIS (Netherlands)

    Allison, Brendan Z.; Dunne, Stephen; Leeb, Robert; Millán, Jose del R.; Allison, Brendan Z.; Dunne, Stephen; Leeb, Robert; Millán, Jose del R.; Nijholt, Antinus

    2012-01-01

    Brain–computer interface (BCI) research is advancing rapidly. The last few years have seen a dramatic rise in journal publications, academic workshops and conferences, books, new products aimed at both healthy and disabled users, research funding from different sources, and media attention. This

  17. An associative Brain-Computer-Interface for acute stroke patients

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Stevenson, Andrew James Thomas; Aliakbaryhosseinabadi, Susan

    2016-01-01

    An efficient innovative Brain-Computer-Interface system that empowers chronic stroke patients to control an artificial activation of their lower limb muscle through task specific motor intent has been tested in the past. In the current study it was applied to acute stroke patients. The system...

  18. Brain-Computer Interface Games: Towards a Framework

    NARCIS (Netherlands)

    Gürkök, Hayrettin; Nijholt, Antinus; Poel, Mannes; Nakatsu, Ryohei; Rauterberg, Matthias; Ciancarini, Paolo

    2015-01-01

    The brain-computer interface (BCI) community has started to consider games as potential applications, while the game community has started to consider BCI as a game controller. However, there is a discrepancy between the BCI games developed by the two communities. This not only adds to the workload

  19. Real-time brain computer interface using imaginary movements

    DEFF Research Database (Denmark)

    El-Madani, Ahmad; Sørensen, Helge Bjarup Dissing; Kjær, Troels W.

    2015-01-01

    Background: Brain Computer Interface (BCI) is the method of transforming mental thoughts and imagination into actions. A real-time BCI system can improve the quality of life of patients with severe neuromuscular disorders by enabling them to communicate with the outside world. In this paper...

  20. Social Interaction in a Cooperative Brain-computer Interface Game

    NARCIS (Netherlands)

    Obbink, Michel; Gürkök, Hayrettin; Plass - Oude Bos, D.; Hakvoort, Gido; Poel, Mannes; Nijholt, Antinus; Camurri, Antonio; Costa, Cristina

    Does using a brain-computer interface (BCI) influence the social interaction between people when playing a cooperative game? By measuring the amount of speech, utterances, instrumental gestures and empathic gestures during a cooperative game where two participants had to reach a certain goal, and

  1. Brain-computer interfacing under distraction: an evaluation study

    DEFF Research Database (Denmark)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes

    2016-01-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach...

  2. Brain-Computer Interface Games: Towards a Framework.

    NARCIS (Netherlands)

    Gürkök, Hayrettin; Nijholt, Antinus; Poel, Mannes; Herrlich, Marc; Malaka, Rainer; Masuch, Maic

    2012-01-01

    The brain-computer interface (BCI) community started to consider games as potential applications while the games community started to consider BCI as a game controller. However, there is a discrepancy between the BCI games developed by the two communities. In this paper, we propose a preliminary BCI

  3. Tutorial: Signal Processing in Brain-Computer Interfaces

    NARCIS (Netherlands)

    Garcia Molina, G.

    2010-01-01

    Research in Electroencephalogram (EEG) based Brain-Computer Interfaces (BCIs) has been considerably expanding during the last few years. Such an expansion owes to a large extent to the multidisciplinary and challenging nature of BCI research. Signal processing undoubtedly constitutes an essential

  4. Measuring Emotion Regulation with Single Dry Electrode Brain Computer Interface

    NARCIS (Netherlands)

    van der Wal, C.N.; Irrmischer, M.; Guo, Y.; Friston, K.; Faisal, A.; Hill, S.; Peng, H.

    2015-01-01

    Wireless brain computer interfaces (BCI’s) are promising for new intelligent applications in which emotions are detected by measuring brain activity. Applications, such as serious games and video game therapy, are measuring and using the user’s emotional state in order to determine the intensity

  5. Third Workshop on Affective Brain-Computer Interfaces: introduction

    NARCIS (Netherlands)

    Mühl, C.; Chanel, G.; Allison, B.; Nijholt, Antinus

    2013-01-01

    Following the first and second workshop on affective brain-computer interfaces, held in conjunction with ACII in Amsterdam (2009) and Memphis (2011), the third workshop explores the advantages and limitations of using neurophysiological signals for the automatic recognition of affective and

  6. Computational analysis of acoustic transmission through periodically perforated interfaces

    Directory of Open Access Journals (Sweden)

    Rohan E.

    2009-06-01

    Full Text Available The objective of the paper is to demonstrate the homogenization approach applied to modelling the acoustic transmission on perforated interfaces embedded in the acoustic fluid. We assume a layer, with periodically perforated obstacles, separating two half-spaces filled with the fluid. The homogenization method provides limit transmission conditions which can be prescribed at the homogenized surface representing the "limit" interface. The conditions describe relationship between jump of the acoustic pressures and the transversal acoustic velocity, on introducing the "in-layer pressure" which describes wave propagation in the tangent directions with respect to the interface.This approach may serve as a relevant tool for optimal design of devices aimed at attenuation of the acoustic waves, such as the engine exhaust mufflers or other structures fitted with sieves and grillages. We present numerical examples of wave propagation in a muffler-like structure illustrating viability of the approach when complex 3D geometries of the interface perforation are considered.

  7. Surface and interface sciences of Li-ion batteries. -Research progress in electrode-electrolyte interface-

    Science.gov (United States)

    Minato, Taketoshi; Abe, Takeshi

    2017-12-01

    The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode-electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface are described for the further development of Li-ion batteries.

  8. Interface tracking computations of bubble dynamics in nucleate flow boiling

    International Nuclear Information System (INIS)

    Giustini, G.

    2015-01-01

    The boiling process is of utter importance for the design and operation of water-cooled nuclear reactors. Despite continuous effort over the past decades, a fully mechanistic model of boiling in the presence of a solid surface has not yet been achieved. Uncertainties exist at fundamental level, since the microscopic phenomena governing nucleate boiling are still not understood, and as regards 'component scale' modelling, which relies heavily on empirical representations of wall boiling. Accurate models of these phenomena at sub-milli-metric scale are capable of elucidating the various processes and to produce quantitative data needed for up-scaling. Within this context, Direct Numerical Simulation (DNS) represents a powerful tool for CFD analysis of boiling flows. In this contribution, DNS coupled with an Interface Tracking method (Y. Sato, B. Niceno, Journal of Computational Physics, Volume 249, 15 September 2013, Pages 127-161) are used to analyse the hydrodynamics and heat transfer associated with heat diffusion controlled bubble growth at a solid substrate during nucleate flow boiling. The growth of successive bubbles from a single nucleation site is simulated with a computational model that includes heat conduction in the solid substrate and evaporation from the liquid film (micro-layer) present beneath the bubble. Bubble evolution is investigated and the additional (with respect to single phase convection) heat transfer mechanisms due to the ebullition cycle are quantified. The simulations show that latent heat exchange due to evaporation in the micro-layer and sensible heat exchange during the waiting time after bubble departure are the main heat transfer mechanisms. It is found that the presence of an imposed flow normal to the bubble rising path determines a complex velocity and temperature distribution near the nucleation site. This conditions can result in bubble sliding, and influence bubble shape, departure diameter and departure frequency

  9. A multi-purpose brain-computer interface output device.

    Science.gov (United States)

    Thompson, David E; Huggins, Jane E

    2011-10-01

    While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as stand-alone communication and control systems, rather than as interfaces to existing systems built for these purposes. An individual communication and control system may be powerful or flexible, but no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCls could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e., without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems.

  10. A Multi-purpose Brain-Computer Interface Output Device

    Science.gov (United States)

    Thompson, David E; Huggins, Jane E

    2012-01-01

    While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as standalone communication and control systems, rather than as interfaces to existing systems built for these purposes. While an individual communication and control system may be powerful or flexible, no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCIs could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e. without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems. PMID:22208120

  11. Development of a Graphical User Interface to Visualize Surface Observations

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.L.

    1998-07-13

    Thousands of worldwide observing stations provide meteorological information near the earth's surface as often as once each hour. This surface data may be plotted on geographical maps to provide the meteorologist useful information regarding weather patterns for a region of interest. This report describes the components and applications of a graphical user interface which have been developed to visualize surface observations at any global location and time of interest.

  12. A visual interface to computer programs for linkage analysis.

    Science.gov (United States)

    Chapman, C J

    1990-06-01

    This paper describes a visual approach to the input of information about human families into computer data bases, making use of the GEM graphic interface on the Atari ST. Similar approaches could be used on the Apple Macintosh or on the IBM PC AT (to which it has been transferred). For occasional users of pedigree analysis programs, this approach has considerable advantages in ease of use and accessibility. An example of such use might be the analysis of risk in families with Huntington disease using linked RFLPs. However, graphic interfaces do make much greater demands on the programmers of these systems.

  13. APPLYING ARTIFICIAL INTELLIGENCE TECHNIQUES TO HUMAN-COMPUTER INTERFACES

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1988-01-01

    A description is given of UIMS (User Interface Management System), a system using a variety of artificial intelligence techniques to build knowledge-based user interfaces combining functionality and information from a variety of computer systems that maintain, test, and configure customer telephone...... and data networks. Three artificial intelligence (AI) techniques used in UIMS are discussed, namely, frame representation, object-oriented programming languages, and rule-based systems. The UIMS architecture is presented, and the structure of the UIMS is explained in terms of the AI techniques....

  14. Surface currents on the plasma-vacuum interface in MHD equilibria

    Science.gov (United States)

    Hanson, James

    2017-10-01

    The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the interface. While this surface current may be small in MHD equilibrium, it is readily computed in terms of the magnetic potentials in both the interior and exterior regions, evaluated on the surface. If only the external magnetic potential is known (as in VMEC), then the surface current can be computed from the discontinuity of the tangential field across the interface. Examples of the surface current for VMEC equilibria will be shown for a zero-pressure stellarator equilibrium. Field-line following of the vacuum magnetic field shows magnetic islands within the plasma region.

  15. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the

  16. [The current state of the brain-computer interface problem].

    Science.gov (United States)

    Shurkhay, V A; Aleksandrova, E V; Potapov, A A; Goryainov, S A

    2015-01-01

    It was only 40 years ago that the first PC appeared. Over this period, rather short in historical terms, we have witnessed the revolutionary changes in lives of individuals and the entire society. Computer technologies are tightly connected with any field, either directly or indirectly. We can currently claim that computers are manifold superior to a human mind in terms of a number of parameters; however, machines lack the key feature: they are incapable of independent thinking (like a human). However, the key to successful development of humankind is collaboration between the brain and the computer rather than competition. Such collaboration when a computer broadens, supplements, or replaces some brain functions is known as the brain-computer interface. Our review focuses on real-life implementation of this collaboration.

  17. Control of a mobile robot through brain computer interface

    Directory of Open Access Journals (Sweden)

    Robinson Jimenez Moreno

    2015-07-01

    Full Text Available This paper poses a control interface to command the movement of a mobile robot according to signals captured from the user's brain. These signals are acquired and interpreted by Emotiv EPOC device, a 14-electrode type sensor which captures electroencephalographic (EEG signals with high resolution, which, in turn, are sent to a computer for processing. One brain-computer interface (BCI was developed based on the Emotiv software and SDK in order to command the mobile robot from a distance. Functionality tests are performed with the sensor to discriminate shift intentions of a user group, as well as with a fuzzy controller to hold the direction in case of concentration loss. As conclusion, it was possible to obtain an efficient system for robot movements by brain commands.

  18. Surface and Interface Physics of Correlated Electron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Millis, Andrew [Columbia Univ., New York, NY (United States)

    2004-09-01

    The {\\it Surface and Interface Physics of Correlated Electron Materials} research program provided conceptual understanding of and theoretical methodologies for understanding the properties of surfaces and interfaces involving materials exhibiting strong electronic correlations. The issues addressed in this research program are important for basic science, because the behavior of correlated electron superlattices is a crucial challenge to and crucial test of our understanding of the grand-challenge problem of correlated electron physics and are important for our nation's energy future because correlated interfaces offer opportunities for the control of phenomena needed for energy and device applications. Results include new physics insights, development of new methods, and new predictions for materials properties.

  19. Ethical aspects of brain computer interfaces: a scoping review

    OpenAIRE

    Burwell, Sasha; Sample, Matthew; Racine, Eric

    2017-01-01

    Background Brain-Computer Interface (BCI) is a set of technologies that are of increasing interest to researchers. BCI has been proposed as assistive technology for individuals who are non-communicative or paralyzed, such as those with amyotrophic lateral sclerosis or spinal cord injury. The technology has also been suggested for enhancement and entertainment uses, and there are companies currently marketing BCI devices for those purposes (e.g., gaming) as well as health-related purposes (e.g...

  20. Vibrotactile Feedback for Brain-Computer Interface Operation

    OpenAIRE

    Cincotti, Febo; Kauhanen, Laura; Aloise, Fabio; Palomäki, Tapio; Caporusso, Nicholas; Jylänki, Pasi; Mattia, Donatella; Babiloni, Fabio; Vanacker, Gerolf; Nuttin, Marnix; Marciani, Maria Grazia; Millán, José del R.

    2007-01-01

    To be correctly mastered, brain-computer interfaces (BCIs) need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (i...

  1. Shaping of neuronal activity through a Brain Computer Interface

    OpenAIRE

    Valero-Aguayo, Luis; Silva-Sauer, Leandro; Velasco-Alvarez, Ricardo; Ron-Angevin, Ricardo

    2014-01-01

    Neuronal responses are human actions which can be measured by an EEG, and which imply changes in waves when neurons are synchronized. This activity could be changed by principles of behaviour analysis. This research tests the efficacy of the behaviour shaping procedure to progressively change neuronal activity, so that those brain responses are adapted according to the differential reinforcement of visual feedback. The Brain Computer Interface (BCI) enables us to record the EEG in real ti...

  2. The Emotiv EPOC interface paradigm in Human-Computer Interaction

    Directory of Open Access Journals (Sweden)

    Ancău Dorina

    2017-01-01

    Full Text Available Numerous studies have suggested the use of decoded error potentials in the brain to improve human-computer communication. Together with state-of-the-art scientific equipment, experiments have also tested instruments with more limited performance for the time being, such as Emotiv EPOC. This study presents a review of these trials and a summary of the results obtained. However, the level of these results indicates a promising prospect for using this headset as a human-computer interface for error decoding.

  3. Comparison of four classification methods for brain-computer interface

    Czech Academy of Sciences Publication Activity Database

    Frolov, A.; Húsek, Dušan; Bobrov, P.

    2011-01-01

    Roč. 21, č. 2 (2011), s. 101-115 ISSN 1210-0552 R&D Projects: GA MŠk(CZ) 1M0567; GA ČR GA201/05/0079; GA ČR GAP202/10/0262 Institutional research plan: CEZ:AV0Z10300504 Keywords : brain computer interface * motor imagery * visual imagery * EEG pattern classification * Bayesian classification * Common Spatial Patterns * Common Tensor Discriminant Analysis Subject RIV: IN - Informatics, Computer Science Impact factor: 0.646, year: 2011

  4. A brain-computer interface controlled mail client.

    Science.gov (United States)

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Wang, Cong

    2013-01-01

    In this paper, we propose a brain-computer interface (BCI) based mail client. This system is controlled by hybrid features extracted from scalp-recorded electroencephalographic (EEG). We emulate the computer mouse by the motor imagery-based mu rhythm and the P300 potential. Furthermore, an adaptive P300 speller is included to provide text input function. With this BCI mail client, users can receive, read, write mails, as well as attach files in mail writing. The system has been tested on 3 subjects. Experimental results show that mail communication with this system is feasible.

  5. Optimizing the Usability of Brain-Computer Interfaces.

    Science.gov (United States)

    Zhang, Yin; Chase, Steve M

    2018-03-22

    Brain-computer interfaces are in the process of moving from the laboratory to the clinic. These devices act by reading neural activity and using it to directly control a device, such as a cursor on a computer screen. An open question in the field is how to map neural activity to device movement in order to achieve the most proficient control. This question is complicated by the fact that learning, especially the long-term skill learning that accompanies weeks of practice, can allow subjects to improve performance over time. Typical approaches to this problem attempt to maximize the biomimetic properties of the device in order to limit the need for extensive training. However, it is unclear if this approach would ultimately be superior to performance that might be achieved with a nonbiomimetic device once the subject has engaged in extended practice and learned how to use it. Here we approach this problem using ideas from optimal control theory. Under the assumption that the brain acts as an optimal controller, we present a formal definition of the usability of a device and show that the optimal postlearning mapping can be written as the solution of a constrained optimization problem. We then derive the optimal mappings for particular cases common to most brain-computer interfaces. Our results suggest that the common approach of creating biomimetic interfaces may not be optimal when learning is taken into account. More broadly, our method provides a blueprint for optimal device design in general control-theoretic contexts.

  6. Interface between computational fluid dynamics (CFD) and plant analysis computer codes

    International Nuclear Information System (INIS)

    Coffield, R.D.; Dunckhorst, F.F.; Tomlinson, E.T.; Welch, J.W.

    1993-01-01

    Computational fluid dynamics (CFD) can provide valuable input to the development of advanced plant analysis computer codes. The types of interfacing discussed in this paper will directly contribute to modeling and accuracy improvements throughout the plant system and should result in significant reduction of design conservatisms that have been applied to such analyses in the past

  7. Interface design of VSOP'94 computer code for safety analysis

    International Nuclear Information System (INIS)

    Natsir, Khairina; Andiwijayakusuma, D.; Wahanani, Nursinta Adi; Yazid, Putranto Ilham

    2014-01-01

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects

  8. Interface design of VSOP'94 computer code for safety analysis

    Science.gov (United States)

    Natsir, Khairina; Yazid, Putranto Ilham; Andiwijayakusuma, D.; Wahanani, Nursinta Adi

    2014-09-01

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.

  9. Surface and interface strains studied by x-ray diffraction

    International Nuclear Information System (INIS)

    Akimoto, Koichi; Emoto, Takashi; Ichimiya, Ayahiko

    1998-01-01

    The authors have developed a technique of X-ray diffraction in order to measure strain fields near semiconductor surface and interface. The diffraction geometry is using the extremely asymmetric Bragg-case bulk reflection of a small incident angle to the surface and a large angle exiting from the surface. The incident angle of the X-rays is set near critical angle of total reflection by tuning X-ray energy of synchrotron radiation at the Photon Factory, Japan. For thermally grown-silicon oxide/Si(100) interface, the X-ray intensity of the silicon substrate 311 reflection has been measured. From comparison of the full width at half maxima (FWHM) of X-ray rocking curves of various thickness of silicon oxides, it has been revealed that silicon substrate lattice is highly strained in the thin (less than about 5 nm) silicon oxide/silicon system. In order to know the original silicon surface strain, the authors have also performed the same kind of measurements in the ultra-high vacuum chamber. A clean Si(111) 7x7 surface gives sharper X-ray diffraction peak than that of the native oxide/Si(111) system. From these measurements, it is concluded that the thin silicon oxide film itself gives strong strain fields to the silicon substrates, which may be the reason of the existence of the structural transition layer at the silicon oxide/Si interface

  10. Near infrared spectroscopy based brain-computer interface

    Science.gov (United States)

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  11. A brain-computer interface to support functional recovery

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Sørensen, Helge Bjarup Dissing

    2013-01-01

    Brain-computer interfaces (BCI) register changes in brain activity and utilize this to control computers. The most widely used method is based on registration of electrical signals from the cerebral cortex using extracranially placed electrodes also called electroencephalography (EEG). The features...... extracted from the EEG may, besides controlling the computer, also be fed back to the patient for instance as visual input. This facilitates a learning process. BCI allow us to utilize brain activity in the rehabilitation of patients after stroke. The activity of the cerebral cortex varies with the type...... of movement we imagine, and by letting the patient know the type of brain activity best associated with the intended movement the rehabilitation process may be faster and more efficient. The focus of BCI utilization in medicine has changed in recent years. While we previously focused on devices facilitating...

  12. Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate

    Science.gov (United States)

    ... Home Current Issue Past Issues Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate Past Issues / ... of this page please turn Javascript on. A brain-computer interface (BCI) system This brain-computer interface (BCI) system ...

  13. Human-computer interface glove using flexible piezoelectric sensors

    Science.gov (United States)

    Cha, Youngsu; Seo, Jeonggyu; Kim, Jun-Sik; Park, Jung-Min

    2017-05-01

    In this note, we propose a human-computer interface glove based on flexible piezoelectric sensors. We select polyvinylidene fluoride as the piezoelectric material for the sensors because of advantages such as a steady piezoelectric characteristic and good flexibility. The sensors are installed in a fabric glove by means of pockets and Velcro bands. We detect changes in the angles of the finger joints from the outputs of the sensors, and use them for controlling a virtual hand that is utilized in virtual object manipulation. To assess the sensing ability of the piezoelectric sensors, we compare the processed angles from the sensor outputs with the real angles from a camera recoding. With good agreement between the processed and real angles, we successfully demonstrate the user interaction system with the virtual hand and interface glove based on the flexible piezoelectric sensors, for four hand motions: fist clenching, pinching, touching, and grasping.

  14. Mechatronics Interface for Computer Assisted Prostate Surgery Training

    Science.gov (United States)

    Altamirano del Monte, Felipe; Padilla Castañeda, Miguel A.; Arámbula Cosío, Fernando

    2006-09-01

    In this work is presented the development of a mechatronics device to simulate the interaction of the surgeon with the surgical instrument (resectoscope) used during a Transurethral Resection of the Prostate (TURP). Our mechatronics interface is part of a computer assisted system for training in TURP, which is based on a 3D graphics model of the prostate which can be deformed and resected interactively by the user. The mechatronics interface, is the device that the urology residents will manipulate to simulate the movements performed during surgery. Our current prototype has five degrees of freedom, which are enough to have a realistic simulation of the surgery movements. Two of these degrees of freedom are linear, to determinate the linear displacement of the resecting loop and the other three are rotational to determinate three directions and amounts of rotation.

  15. III-V nanoelectronics and related surface/interface issues

    International Nuclear Information System (INIS)

    Hasegawa, Hideki

    2003-01-01

    The conventional logic gate architecture is not suitable for high-density integration of quantum devices which are non-robust and extremely structure- and charge-sensitive. In this paper, our novel hexagonal binary-decision-diagram (BDD) quantum circuit approach for III-V nanoelectronics is reviewed and related critical surface/interface issues for high-density integration are discussed. First, the basic concept and actual implementation method of our approach are explained, giving examples of novel BDD quantum integrated circuits where nanowire networks are controlled by nanoscale Schottky wrap gates. For high-density integration, growth of embedded sub-10 nm III-V quantum wire networks by selective molecular beam epitaxy (MBE) on patterned substrates is described, including effects of atomic hydrogen irradiation and kinetic control of wire width. The key processing issue lies in understanding and control of nanostructure surfaces/interfaces. Behavior of nanoscale Schottky gates, recent scanning tunneling microscopy (STM)/scanning tunneling spectroscopy (STS) studies of surface states, and successful removal of surface states by MBE-grown silicon interface control layer are discussed

  16. Catalyzing Inquiry at the Interface of Computing and Biology

    Energy Technology Data Exchange (ETDEWEB)

    John Wooley; Herbert S. Lin

    2005-10-30

    This study is the first comprehensive NRC study that suggests a high-level intellectual structure for Federal agencies for supporting work at the biology/computing interface. The report seeks to establish the intellectual legitimacy of a fundamentally cross-disciplinary collaboration between biologists and computer scientists. That is, while some universities are increasingly favorable to research at the intersection, life science researchers at other universities are strongly impeded in their efforts to collaborate. This report addresses these impediments and describes proven strategies for overcoming them. An important feature of the report is the use of well-documented examples that describe clearly to individuals not trained in computer science the value and usage of computing across the biological sciences, from genes and proteins to networks and pathways, from organelles to cells, and from individual organisms to populations and ecosystems. It is hoped that these examples will be useful to students in the life sciences to motivate (continued) study in computer science that will enable them to be more facile users of computing in their future biological studies.

  17. Encoder-decoder optimization for brain-computer interfaces.

    Science.gov (United States)

    Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam

    2015-06-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  18. Encoder-decoder optimization for brain-computer interfaces.

    Directory of Open Access Journals (Sweden)

    Josh Merel

    2015-06-01

    Full Text Available Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model" and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  19. Surface forces between rough and topographically structured interfaces

    DEFF Research Database (Denmark)

    Thormann, Esben

    2017-01-01

    Within colloidal science, direct or indirect measurements of surface forces represent an important tool for developing a fundamental understanding of colloidal systems, as well as for predictions of the stability of colloidal suspensions. While the general understanding of colloidal interactions...... and manufactured materials, which possess topographical variations. Further, with technological advances in nanotechnology, fabrication of nano- or micro-structured surfaces has become increasingly important for many applications, which calls for a better understanding of the effect of surface topography...... on the interaction between interfaces. This paper presents a review of the current state of understanding of the effect of surface roughness on DLVO forces, as well as on the interactions between topographically structured hydrophobic surfaces in water. While the first case is a natural choice because it represents...

  20. modelling the behaviour of interface surfaces using the finite eleme

    African Journals Online (AJOL)

    user

    Norwell, M.A.. 36. Wingo, etal, Hardware assisted self-collision for rigid and deformable surfaces, Journal of. Tele-operators and Virtual Environments. Dec., 2004. Vol. 13, No 6 pp 681-691. 37. Brian Von Herzen, etal. Geometric Collisions for Time- dependent parametric surfaces. ACM SIGGRAPH Computer Graphics, Aug.,.

  1. Two Surface-Tension Formulations For The Level Set Interface-Tracking Method

    International Nuclear Information System (INIS)

    Shepel, S.V.; Smith, B.L.

    2005-01-01

    The paper describes a comparative study of two surface-tension models for the Level Set interface tracking method. In both models, the surface tension is represented as a body force, concentrated near the interface, but the technical implementation of the two options is different. The first is based on a traditional Level Set approach, in which the surface tension is distributed over a narrow band around the interface using a smoothed Delta function. In the second model, which is based on the integral form of the fluid-flow equations, the force is imposed only in those computational cells through which the interface passes. Both models have been incorporated into the Finite-Element/Finite-Volume Level Set method, previously implemented into the commercial Computational Fluid Dynamics (CFD) code CFX-4. A critical evaluation of the two models, undertaken in the context of four standard Level Set benchmark problems, shows that the first model, based on the smoothed Delta function approach, is the more general, and more robust, of the two. (author)

  2. Brain-computer interface after nervous system injury.

    Science.gov (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  3. Archaeologies of touch interfacing with haptics from electricity to computing

    CERN Document Server

    Parisi, David

    2018-01-01

    David Parisi offers the first full history of new computing technologies known as haptic interfaces--which use electricity, vibration, and force feedback to stimulate the sense of touch--showing how the efforts of scientists and engineers over the past 300 years have gradually remade and redefined our sense of touch. Archaeologies of Touch offers a timely and provocative engagement with the long history of touch technology that helps us confront and question the power relations underpinning the project of giving touch its own set of technical media.

  4. Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future

    Science.gov (United States)

    Huggins, Jane E.; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O.; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K. R.; Ramsey, Nick F.; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J.; Mattia, Donatella; Lance, Brent J.; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H.; Collinger, Jennifer L.; Chavarriaga, Ricardo; Chase, Steven M.; Bleichner, Martin G.; Batista, Aaron; Anderson, Charles W.; Aarnoutse, Erik J.

    2017-01-01

    The Sixth International Brain–Computer Interface (BCI) Meeting was held 30 May–3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain–machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development. PMID:29152523

  5. Workshops of the Sixth International Brain-Computer Interface Meeting: brain-computer interfaces past, present, and future.

    Science.gov (United States)

    Huggins, Jane E; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K R; Ramsey, Nick F; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J; Mattia, Donatella; Lance, Brent J; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H; Collinger, Jennifer L; Chavarriaga, Ricardo; Chase, Steven M; Bleichner, Martin G; Batista, Aaron; Anderson, Charles W; Aarnoutse, Erik J

    2017-01-01

    The Sixth International Brain-Computer Interface (BCI) Meeting was held 30 May-3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain-machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development.

  6. Brain-muscle-computer interface: mobile-phone prototype development and testing.

    Science.gov (United States)

    Vernon, Scott; Joshi, Sanjay S

    2011-07-01

    We report prototype development and testing of a new mobile-phone-based brain-muscle-computer interface for severely paralyzed persons, based on previous results from our group showing that humans may actively create specified power levels in two separate frequency bands of a single surface electromyography (sEMG) signal. EMG activity on the surface of a single face muscle site (auricularis superior) is recorded with a standard electrode. This analog electrical signal is imported into an Android-based mobile phone and digitized via an internal A/D converter. The digital signal is split, and then simultaneously filtered with two band-pass filters to extract total power within two separate frequency bands. The user-modulated power in each frequency band serves as two separate control channels for machine control. After signal processing, the Android phone sends commands to external devices via a Bluetooth interface. Users are trained to use the device via visually based operant conditioning, with simple cursor-to-target activities on the phone screen. The mobile-phone prototype interface is formally evaluated on a single advanced Spinal Muscle Atrophy subject, who has successfully used the interface in his home in evaluation trials and for remote control of a television. Development of this new device will not only guide future interface design for community use, but will also serve as an information technology bridge for in situ data collection to quantify human sEMG manipulation abilities for a relevant population.

  7. Dust Tolerant Commodity Transfer Interface Mechanisms for Planetary Surfaces

    Science.gov (United States)

    Townsend, Ivan I.; Mueller, Robert P.; Tamasy, Gabor J.

    2014-01-01

    Regolith is present on most planetary surfaces such as Earth's moon, Mars, and Asteroids. If human crews and robotic machinery are to operate on these regolith covered surfaces, they must face the consequences of interacting with regolith fines which consist of particles below 100 microns in diameter down to as small as submicron scale particles. Such fine dust will intrude into mechanisms and interfaces causing a variety of problems such as contamination of clean fluid lines, jamming of mechanisms and damaging connector seals and couplings. Since multiple elements must be assembled in space for system level functionality, it will be inevitable that interfaces will be necessary for structural connections, and to pass commodities such as cryogenic liquid propellants, purge and buffer gases, water, breathing air, pressurizing gases, heat exchange fluids, power and data. When fine regolith dust is present in the environment it can be lofted into interfaces where it can compromise the utility of the interface by preventing the connections from being successfully mated, or by inducing fluid leaks or degradation of power and data transmission. A dust tolerant, hand held "quick-disconnect" cryogenic fluids connector housing has been developed at NASA KSC which can be used by astronaut crews to connect flex lines that will transfer propellants and other useful fluids to the end user. In addition, a dust tolerant, automated, cryogenic fluid, multiple connector, power and data interface mechanism prototype has been developed, fabricated and demonstrated by NASA at Kennedy Space Center (KSC). The design and operation of these prototypes are explained and discussed.

  8. Towards SSVEP-based, portable, responsive Brain-Computer Interface.

    Science.gov (United States)

    Kaczmarek, Piotr; Salomon, Pawel

    2015-08-01

    A Brain-Computer Interface in motion control application requires high system responsiveness and accuracy. SSVEP interface consisted of 2-8 stimuli and 2 channel EEG amplifier was presented in this paper. The observed stimulus is recognized based on a canonical correlation calculated in 1 second window, ensuring high interface responsiveness. A threshold classifier with hysteresis (T-H) was proposed for recognition purposes. Obtained results suggest that T-H classifier enables to significantly increase classifier performance (resulting in accuracy of 76%, while maintaining average false positive detection rate of stimulus different then observed one between 2-13%, depending on stimulus frequency). It was shown that the parameters of T-H classifier, maximizing true positive rate, can be estimated by gradient-based search since the single maximum was observed. Moreover the preliminary results, performed on a test group (N=4), suggest that for T-H classifier exists a certain set of parameters for which the system accuracy is similar to accuracy obtained for user-trained classifier.

  9. Computational analysis of RNA-protein interaction interfaces via the Voronoi diagram.

    Science.gov (United States)

    Mahdavi, Sedigheh; Mohades, Ali; Salehzadeh Yazdi, Ali; Jahandideh, Samad; Masoudi-Nejad, Ali

    2012-01-21

    Cellular functions are mediated by various biological processes including biomolecular interactions, such as protein-protein, DNA-protein and RNA-protein interactions in which RNA-Protein interactions are indispensable for many biological processes like cell development and viral replication. Unlike the protein-protein and protein-DNA interactions, accurate mechanisms and structures of the RNA-Protein complexes are not fully understood. A large amount of theoretical evidence have shown during the past several years that computational geometry is the first pace in understanding the binding profiles and plays a key role in the study of intricate biological structures, interactions and complexes. In this paper, RNA-Protein interaction interface surface is computed via the weighted Voronoi diagram of atoms. Using two filter operations provides a natural definition for interface atoms as classic methods. Unbounded parts of Voronoi facets that are far from the complex are trimmed using modified convex hull of atom centers. This algorithm is implemented to a database with different RNA-Protein complexes extracted from Protein Data Bank (PDB). Afterward, the features of interfaces have been computed and compared with classic method. The results show high correlation coefficients between interface size in the Voronoi model and the classical model based on solvent accessibility, as well as high accuracy and precision in comparison to classical model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Evaluation of LDA Ensembles Classifiers for Brain Computer Interface

    International Nuclear Information System (INIS)

    Arjona, Cristian; Pentácolo, José; Gareis, Iván; Atum, Yanina; Gentiletti, Gerardo; Acevedo, Rubén; Rufiner, Leonardo

    2011-01-01

    The Brain Computer Interface (BCI) translates brain activity into computer commands. To increase the performance of the BCI, to decode the user intentions it is necessary to get better the feature extraction and classification techniques. In this article the performance of a three linear discriminant analysis (LDA) classifiers ensemble is studied. The system based on ensemble can theoretically achieved better classification results than the individual counterpart, regarding individual classifier generation algorithm and the procedures for combine their outputs. Classic algorithms based on ensembles such as bagging and boosting are discussed here. For the application on BCI, it was concluded that the generated results using ER and AUC as performance index do not give enough information to establish which configuration is better.

  11. Designing a hands-on brain computer interface laboratory course.

    Science.gov (United States)

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2016-08-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  12. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    International Nuclear Information System (INIS)

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  13. Electronic structure of disordered alloys, surfaces and interfaces

    CERN Document Server

    Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter

    1997-01-01

    At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu­ microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela­ tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand­ ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul­ tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...

  14. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.

    2014-02-05

    The objective of this work is to study the electrostatic response of materials accounting for boundary surfaces with their own (electrostatic) constitutive behaviour. The electric response of materials with (electrostatic) energetic boundary surfaces (surfaces that possess material properties and constitutive structures different from those of the bulk) is formulated in a consistent manner using a variational framework. The forces and moments that appear due to bulk and surface electric fields are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress and the Maxwell stress is examined.

  15. Mental workload during brain-computer interface training.

    Science.gov (United States)

    Felton, Elizabeth A; Williams, Justin C; Vanderheiden, Gregg C; Radwin, Robert G

    2012-01-01

    It is not well understood how people perceive the difficulty of performing brain-computer interface (BCI) tasks, which specific aspects of mental workload contribute the most, and whether there is a difference in perceived workload between participants who are able-bodied and disabled. This study evaluated mental workload using the NASA Task Load Index (TLX), a multi-dimensional rating procedure with six subscales: Mental Demands, Physical Demands, Temporal Demands, Performance, Effort, and Frustration. Able-bodied and motor disabled participants completed the survey after performing EEG-based BCI Fitts' law target acquisition and phrase spelling tasks. The NASA-TLX scores were similar for able-bodied and disabled participants. For example, overall workload scores (range 0-100) for 1D horizontal tasks were 48.5 (SD = 17.7) and 46.6 (SD 10.3), respectively. The TLX can be used to inform the design of BCIs that will have greater usability by evaluating subjective workload between BCI tasks, participant groups, and control modalities. Mental workload of brain-computer interfaces (BCI) can be evaluated with the NASA Task Load Index (TLX). The TLX is an effective tool for comparing subjective workload between BCI tasks, participant groups (able-bodied and disabled), and control modalities. The data can inform the design of BCIs that will have greater usability.

  16. Geophysical characterisation of the groundwater-surface water interface

    Science.gov (United States)

    McLachlan, P. J.; Chambers, J. E.; Uhlemann, S. S.; Binley, A.

    2017-11-01

    Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and processes of the GW-SW interface, and ultimately the implications for water quality and environmental health.

  17. Surface electrostatics: theory and computations

    KAUST Repository

    Chatzigeorgiou, G.; Javili, A.; Steinmann, P.

    2014-01-01

    are also expressed in a consistent manner. The theory is accompanied by numerical examples on porous materials using the finite-element method, where the influence of the surface electric permittivity on the electric displacement, the polarization stress

  18. First principles studies of complex oxide surfaces and interfaces

    International Nuclear Information System (INIS)

    Noguera, Claudine; Finocchi, Fabio; Goniakowski, Jacek

    2004-01-01

    Oxides enter our everyday life and exhibit an impressive variety of physical and chemical properties. The understanding of their behaviour, which is often determined by the electronic and atomic structures of their surfaces and interfaces, is a key question in many fields, such as geology, environmental chemistry, catalysis, thermal coatings, microelectronics, and bioengineering. In the last decade, first principles methods, mainly those based on the density functional theory, have been frequently applied to study complex oxide surfaces and interfaces, complementing the experimental observations. In this work, we discuss some of these contributions, with emphasis on several issues that are especially important when dealing with oxides: the local electronic structure at interfaces, and its connection with chemical reactivity; the charge redistribution and the bonding variations, in relation to screening properties; and the possibility of bridging the gap between model and real systems by taking into account the chemical environments and the effect of finite temperatures, and by performing simulations on systems of an adequate (large) size

  19. Surface- and interface-engineered heterostructures for solar hydrogen generation

    Science.gov (United States)

    Chen, Xiangyan; Li, Yanrui; Shen, Shaohua

    2018-04-01

    Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.

  20. Impurity diffusion, point defect engineering, and surface/interface passivation in germanium

    KAUST Repository

    Chroneos, Alexander I.; Schwingenschlö gl, Udo; Dimoulas, Athanasios Dimoulas

    2012-01-01

    in view of recent results. The importance of electrically active defects on the Ge surface and interfaces is addressed considering strategies to suppress them and to passivate the surfaces/interfaces, bearing in mind their importance for advanced devices

  1. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    Science.gov (United States)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  2. Surface- and interface-plasmon modes on small semiconducting spheres

    International Nuclear Information System (INIS)

    Ugarte, D.; Colliex, C.; Trebbia, P.

    1992-01-01

    The study of the electronic properties of small particles is of major interest because of their intriguing physicochemical properties. The very small electron probes available in scanning transmission electron microscopes offer unique capabilities for investigating small particles with subnanometer spatial resolution. The correlation between electron-energy-loss spectra and energy-filtered images is of great help in pinpointing the excitations under study. This paper presents a theoretical and experimental study of collective excitation modes in the bulk and at the interfaces and surfaces of small spherical silicon particles covered with a thin oxide coating. Among other results, our experimental measurements have shown that there exists a surface-mode excitation at 3--4 eV, precisely localized on the external surface of the oxide layer. Classical dielectric theory is used in interpreting these results, by invoking the presence of an ultrathin conductive layer

  3. EDITORIAL: Focus on Advances in Surface and Interface Science 2008 FOCUS ON ADVANCES IN SURFACE AND INTERFACE SCIENCE 2008

    Science.gov (United States)

    Scheffler, Matthias; Schneider, Wolf-Dieter

    2008-12-01

    Basic research in surface and interface science is highly interdisciplinary, covering the fields of physics, chemistry, biophysics, geo-, atmospheric and environmental sciences, material science, chemical engineering, and more. The various phenomena are interesting by themselves, and they are most important in nearly all modern technologies, as for example electronic, magnetic, and optical devices, sensors, catalysts, lubricants, hard and thermal-barrier coatings, protection against corrosion and crack formation under harsh environments. In fact, detailed understanding of the elementary processes at surfaces is necessary to support and to advance the high technology that very much founds the prosperity and lifestyle of our society. Current state-of-the-art experimental studies of elementary processes at surfaces, of surface properties and functions employ a variety of sophisticated tools. Some are capable of revealing the location and motion of individual atoms. Others measure excitations (electronic, magnetic and vibronic), employing, for example, special light sources such as synchrotrons, high magnetic fields, or free electron lasers. The surprising variety of intriguing physical phenomena at surfaces, interfaces, and nanostructures also pose a persistent challenge for the development of theoretical descriptions, methods, and even basic physical concepts. This second focus issue on the topic of 'Advances in Surface and Interface Science' in New Journal of Physics, following on from last year's successful collection, provides an exciting synoptic view on the latest pertinent developments in the field. Focus on Advances in Surface and Interface Science 2008 Contents Organic layers at metal/electrolyte interfaces: molecular structure and reactivity of viologen monolayers Stephan Breuer, Duc T Pham, Sascha Huemann, Knud Gentz, Caroline Zoerlein, Ralf Hunger, Klaus Wandelt and Peter Broekmann Spin polarized d surface resonance state of fcc Co/Cu(001) K Miyamoto, K

  4. A brain-computer interface to support functional recovery.

    Science.gov (United States)

    Kjaer, Troels W; Sørensen, Helge B

    2013-01-01

    Brain-computer interfaces (BCI) register changes in brain activity and utilize this to control computers. The most widely used method is based on registration of electrical signals from the cerebral cortex using extracranially placed electrodes also called electroencephalography (EEG). The features extracted from the EEG may, besides controlling the computer, also be fed back to the patient for instance as visual input. This facilitates a learning process. BCI allow us to utilize brain activity in the rehabilitation of patients after stroke. The activity of the cerebral cortex varies with the type of movement we imagine, and by letting the patient know the type of brain activity best associated with the intended movement the rehabilitation process may be faster and more efficient. The focus of BCI utilization in medicine has changed in recent years. While we previously focused on devices facilitating communication in the rather few patients with locked-in syndrome, much interest is now devoted to the therapeutic use of BCI in rehabilitation. For this latter group of patients, the device is not intended to be a lifelong assistive companion but rather a 'teacher' during the rehabilitation period. Copyright © 2013 S. Karger AG, Basel.

  5. New generation of 3D desktop computer interfaces

    Science.gov (United States)

    Skerjanc, Robert; Pastoor, Siegmund

    1997-05-01

    Today's computer interfaces use 2-D displays showing windows, icons and menus and support mouse interactions for handling programs and data files. The interface metaphor is that of a writing desk with (partly) overlapping sheets of documents placed on its top. Recent advances in the development of 3-D display technology give the opportunity to take the interface concept a radical stage further by breaking the design limits of the desktop metaphor. The major advantage of the envisioned 'application space' is, that it offers an additional, immediately perceptible dimension to clearly and constantly visualize the structure and current state of interrelations between documents, videos, application programs and networked systems. In this context, we describe the development of a visual operating system (VOS). Under VOS, applications appear as objects in 3-D space. Users can (graphically connect selected objects to enable communication between the respective applications. VOS includes a general concept of visual and object oriented programming for tasks ranging from, e.g., low-level programming up to high-level application configuration. In order to enable practical operation in an office or at home for many hours, the system should be very comfortable to use. Since typical 3-D equipment used, e.g., in virtual-reality applications (head-mounted displays, data gloves) is rather cumbersome and straining, we suggest to use off-head displays and contact-free interaction techniques. In this article, we introduce an autostereoscopic 3-D display and connected video based interaction techniques which allow viewpoint-depending imaging (by head tracking) and visually controlled modification of data objects and links (by gaze tracking, e.g., to pick, 3-D objects just by looking at them).

  6. Characterizing water-metal interfaces and machine learning potential energy surfaces

    Science.gov (United States)

    Ryczko, Kevin

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  7. Computing Visible-Surface Representations,

    Science.gov (United States)

    1985-03-01

    Terzopoulos N00014-75-C-0643 9. PERFORMING ORGANIZATION NAME AMC ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Artificial Inteligence Laboratory AREA A...Massachusetts Institute of lechnolog,. Support lbr the laboratory’s Artificial Intelligence research is provided in part by the Advanced Rtccarcl Proj...dynamically maintaining visible surface representations. Whether the intention is to model human vision or to design competent artificial vision systems

  8. Nanostructured interfaces for enhancing mechanical properties of composites: Computational micromechanical studies

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2015-01-01

    Computational micromechanical studies of the effect of nanostructuring and nanoengineering of interfaces, phase and grain boundaries of materials on the mechanical properties and strength of materials and the potential of interface nanostructuring to enhance the materials properties are reviewed....

  9. Region based Brain Computer Interface for a home control application.

    Science.gov (United States)

    Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan

    2015-08-01

    Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.

  10. From assistance towards restoration with epidural brain-computer interfacing.

    Science.gov (United States)

    Gharabaghi, Alireza; Naros, Georgios; Walter, Armin; Grimm, Florian; Schuermeyer, Marc; Roth, Alexander; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels

    2014-01-01

    Today's implanted brain-computer interfaces make direct contact with the brain or even penetrate the tissue, bearing additional risks with regard to safety and stability. What is more, these approaches aim to control prosthetic devices as assistive tools and do not yet strive to become rehabilitative tools for restoring lost motor function. We introduced a less invasive, implantable interface by applying epidural electrocorticography in a chronic stroke survivor with a persistent motor deficit. He was trained to modulate his natural motor-related oscillatory brain activity by receiving online feedback. Epidural recordings of field potentials in the beta-frequency band projecting onto the anatomical hand knob proved most successful in discriminating between the attempt to move the paralyzed hand and to rest. These spectral features allowed for fast and reliable control of the feedback device in an online closed-loop paradigm. Only seven training sessions were required to significantly improve maximum wrist extension. For patients suffering from severe motor deficits, epidural implants may decode and train the brain activity generated during attempts to move with high spatial resolution, thus facilitating specific and high-intensity practice even in the absence of motor control. This would thus transform them from pure assistive devices to restorative tools in the context of reinforcement learning and neurorehabilitation.

  11. Ethics in published brain-computer interface research

    Science.gov (United States)

    Specker Sullivan, L.; Illes, J.

    2018-02-01

    Objective. Sophisticated signal processing has opened the doors to more research with human subjects than ever before. The increase in the use of human subjects in research comes with a need for increased human subjects protections. Approach. We quantified the presence or absence of ethics language in published reports of brain-computer interface (BCI) studies that involved human subjects and qualitatively characterized ethics statements. Main results. Reports of BCI studies with human subjects that are published in neural engineering and engineering journals are anchored in the rationale of technological improvement. Ethics language is markedly absent, omitted from 31% of studies published in neural engineering journals and 59% of studies in biomedical engineering journals. Significance. As the integration of technological tools with the capacities of the mind deepens, explicit attention to ethical issues will ensure that broad human benefit is embraced and not eclipsed by technological exclusiveness.

  12. Brain-computer interface for alertness estimation and improving

    Science.gov (United States)

    Hramov, Alexander; Maksimenko, Vladimir; Hramova, Marina

    2018-02-01

    Using wavelet analysis of the signals of electrical brain activity (EEG), we study the processes of neural activity, associated with perception of visual stimuli. We demonstrate that the brain can process visual stimuli in two scenarios: (i) perception is characterized by destruction of the alpha-waves and increase in the high-frequency (beta) activity, (ii) the beta-rhythm is not well pronounced, while the alpha-wave energy remains unchanged. The special experiments show that the motivation factor initiates the first scenario, explained by the increasing alertness. Based on the obtained results we build the brain-computer interface and demonstrate how the degree of the alertness can be estimated and controlled in real experiment.

  13. Quality control of the gamma camera/computer interface

    International Nuclear Information System (INIS)

    Busemann-Sokole, E.

    1983-01-01

    Reporting on the conference mentioned, the author indicates that technical inspection of the gamma camera and the attached computer each by themselves is not sufficient. The parts of the interface and the hardware or software can contain sources of error. In order to obtain the best diagnostic image a number of control measurements are recommended dealing with image intensifying, intensifier offset, linearity of transformation, exclusion of 'data drop' or 'bit drop', 2-pulse timing, correct response with different counting rates, and response to triggers (electrocardiogram). The last and most important recommendation is to record in writing particulars of each inspection and control measurement, particulars and solutions of problems and modifications in hardware and software. (Auth.)

  14. Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions.

    Science.gov (United States)

    Huster, René J; Mokom, Zacharais N; Enriquez-Geppert, Stefanie; Herrmann, Christoph S

    2014-01-01

    Neurofeedback training procedures designed to alter a person's brain activity have been in use for nearly four decades now and represent one of the earliest applications of brain-computer interfaces (BCI). The majority of studies using neurofeedback technology relies on recordings of the electroencephalogram (EEG) and applies neurofeedback in clinical contexts, exploring its potential as treatment for psychopathological syndromes. This clinical focus significantly affects the technology behind neurofeedback BCIs. For example, in contrast to other BCI applications, neurofeedback BCIs usually rely on EEG-derived features with only a minimum of additional processing steps being employed. Here, we highlight the peculiarities of EEG-based neurofeedback BCIs and consider their relevance for software implementations. Having reviewed already existing packages for the implementation of BCIs, we introduce our own solution which specifically considers the relevance of multi-subject handling for experimental and clinical trials, for example by implementing ready-to-use solutions for pseudo-/sham-neurofeedback. © 2013.

  15. Papers from the Fifth International Brain-Computer Interface Meeting

    Science.gov (United States)

    Huggins, Jane E.; Wolpaw, Jonathan R.

    2014-06-01

    Brain-computer interfaces (BCIs), also known as brain-machine interfaces (BMIs), translate brain activity into new outputs that replace, restore, enhance, supplement or improve natural brain outputs. BCI research and development has grown rapidly for the past two decades. It is beginning to provide useful communication and control capacities to people with severe neuromuscular disabilities; and it is expanding into new areas such as neurorehabilitation that may greatly increase its clinical impact. At the same time, significant challenges remain, particularly in regard to translating laboratory advances into clinical use. The papers in this special section report some of the work presented at the Fifth International BCI Meeting held on 3-7 June 2013 at the Asilomar Conference Center in Pacific Grove, California, USA. Like its predecessors over the past 15 years, this meeting was supported by the National Institutes of Health, the National Science Foundation, and a variety of other governmental and private sponsors [1]. This fifth meeting was organized and managed by a program committee of BCI researchers from throughout the world [2]. It retained the distinctive retreat-style format developed by the Wadsworth Center researchers who organized and managed the first four meetings. The 301 attendees came from 165 research groups in 29 countries; 37% were students or postdoctoral fellows. Of more than 200 extended abstracts submitted for peer review, 25 were selected for oral presentation [3], and 181 were presented as posters [4] and published in the open-access conference proceedings [5]. The meeting featured 19 highly interactive workshops [6] covering the broad spectrum of BCI research and development, as well as many demonstrations of BCI systems and associated technology. Like the first four meetings, this one included attendees and embraced topics from across the broad spectrum of disciplines essential to effective BCI research and development, including

  16. Oxide/water interfaces: how the surface chemistry modifies interfacial water properties

    International Nuclear Information System (INIS)

    Gaigeot, Marie-Pierre; Sprik, Michiel; Sulpizi, Marialore

    2012-01-01

    The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, ‘ice-like’ and ‘liquid-like’ features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water. (paper)

  17. Multidimensional control using a mobile-phone based brain-muscle-computer interface.

    Science.gov (United States)

    Vernon, Scott; Joshi, Sanjay S

    2011-01-01

    Many well-known brain-computer interfaces measure signals at the brain, and then rely on the brain's ability to learn via operant conditioning in order to control objects in the environment. In our lab, we have been developing brain-muscle-computer interfaces, which measure signals at a single muscle and then rely on the brain's ability to learn neuromuscular skills via operant conditioning. Here, we report a new mobile-phone based brain-muscle-computer interface prototype for severely paralyzed persons, based on previous results from our group showing that humans may actively create specified power levels in two separate frequency bands of a single sEMG signal. Electromyographic activity on the surface of a single face muscle (Auricularis superior) is recorded with a standard electrode. This analog electrical signal is imported into an Android-based mobile phone. User-modulated power in two separate frequency band serves as two separate and simultaneous control channels for machine control. After signal processing, the Android phone sends commands to external devices via Bluetooth. Users are trained to use the device via biofeedback, with simple cursor-to-target activities on the phone screen.

  18. Noncollinear magnetism in surfaces and interfaces of transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Huahai

    2009-09-15

    Noncollinear (NC) magnetism is common in nature, especially when there exist geometrical frustration and chemical imparity in the system. In this work we studied the NC magnetism and the response to external magnetic fields in surfaces and interfaces of transition metals by using an semi-empirical tight-binding (TB) method that parameterized to the ab initio TB-LMTO calculations. We implemented this method to study two systems. The first one is the system of 6 Mn monolayers on Fe(001) substrate. Due to the complex structure and magnetic properties of Mn, we found 23 collinear magnetic configurations but only one NC configuration. The collinear ground state has a layered antiferromagnetic (AFM) coupling which agrees with previous experiments and calculations. In the NC configuration the local AFM coupling in the Mn layers is preserved, but the surface is 90 degree coupled to the substrate. Similar to the experiment in CdCr{sub 2}O{sub 4}, we obtained a collinear plateau in the NC evolution of the average magnetic moment in Mn slab under external magnetic fields. Another is the system of a Cr monolayer on a stepped Fe(001) substrate. As expected, the local AFM coupling in the interface of Cr and Fe are preserved. However, the edge Cr atoms is about 90 coupled to their nearest Fe neighbors. We also simulated the procedure of adding more Cr coverages gradually to a Cr bilayer coverage. As coverages increase, the magnetic moments in the Cr interface reduce, and the collinear plateau becomes wider as coverages increase. However, the saturation fields in both the two systems are extremely high, around 10 kT.We expect that when the effect of temperature is taken into account, and in some proper systems, the saturation fields could be largely reduced to the scale that can be implemented in experiment, and our study may shed light on information storage devices with ultrahigh storage density. (orig.)

  19. Segregation of chain ends to polymer melt surfaces and interfaces

    International Nuclear Information System (INIS)

    Zhao, W.; Zhao, X.; Rafailovich, M.H.; Sokolov, J.; Composto, R.J.; Smith, S.D.; Satkowski, M.; Russell, T.P.; Dozier, W.D.; Mansfield, T.

    1993-01-01

    The conformation of polymer chains in the melt near an impenetrable boundary has recently been studied by molecular dynamics and off-lattice Monte Carlo simulations. Both types of calculations show an enhancement of the chain end density within a distance of approximately two polymer segment lengths of the interface relative to the bulk. In the absence of preferential interactions between monomers and the interface, the segregation arises from minimizing the loss of conformational entropy near an impenetrable boundary; i.e., by positioning an end near the surface, only one unit rather than two is reflected. In order to obtain an experimental measure of this effect, monodisperse polystyrene (PS) chains of molecular weight 63 000 with short blocks of deuterated polystyrene (dPS) at each end were prepared. The block length was kept as short as possible, while yet producing sufficient neutron scattering contrast in order to minimize any preferential surface segregation due to isotopic effects. The synthesis was carried out via living anionic polymerization of a purified styrene monomer in cyclohexane at 60 C, utilizing sec-butyllithium as the initiator. The process was terminated using degassed methanol

  20. Virtual microscopy: merging of computer mediated communication and intuitive interfacing

    Science.gov (United States)

    de Ridder, Huib; de Ridder-Sluiter, Johanna G.; Kluin, Philip M.; Christiaans, Henri H. C. M.

    2009-02-01

    Ubiquitous computing (or Ambient Intelligence) is an upcoming technology that is usually associated with futuristic smart environments in which information is available anytime anywhere and with which humans can interact in a natural, multimodal way. However spectacular the corresponding scenarios may be, it is equally challenging to consider how this technology may enhance existing situations. This is illustrated by a case study from the Dutch medical field: central quality reviewing for pathology in child oncology. The main goal of the review is to assess the quality of the diagnosis based on patient material. The sharing of knowledge in social face-to-face interaction during such meeting is an important advantage. At the same time there is the disadvantage that the experts from the seven Dutch academic medical centers have to travel to the review meeting and that the required logistics to collect and bring patient material and data to the meeting is cumbersome and time-consuming. This paper focuses on how this time-consuming, nonefficient way of reviewing can be replaced by a virtual collaboration system by merging technology supporting Computer Mediated Collaboration and intuitive interfacing. This requires insight in the preferred way of communication and collaboration as well as knowledge about preferred interaction style with a virtual shared workspace.

  1. Performance monitoring for brain-computer-interface actions.

    Science.gov (United States)

    Schurger, Aaron; Gale, Steven; Gozel, Olivia; Blanke, Olaf

    2017-02-01

    When presented with a difficult perceptual decision, human observers are able to make metacognitive judgements of subjective certainty. Such judgements can be made independently of and prior to any overt response to a sensory stimulus, presumably via internal monitoring. Retrospective judgements about one's own task performance, on the other hand, require first that the subject perform a task and thus could potentially be made based on motor processes, proprioceptive, and other sensory feedback rather than internal monitoring. With this dichotomy in mind, we set out to study performance monitoring using a brain-computer interface (BCI), with which subjects could voluntarily perform an action - moving a cursor on a computer screen - without any movement of the body, and thus without somatosensory feedback. Real-time visual feedback was available to subjects during training, but not during the experiment where the true final position of the cursor was only revealed after the subject had estimated where s/he thought it had ended up after 6s of BCI-based cursor control. During the first half of the experiment subjects based their assessments primarily on the prior probability of the end position of the cursor on previous trials. However, during the second half of the experiment subjects' judgements moved significantly closer to the true end position of the cursor, and away from the prior. This suggests that subjects can monitor task performance when the task is performed without overt movement of the body. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Ethical aspects of brain computer interfaces: a scoping review.

    Science.gov (United States)

    Burwell, Sasha; Sample, Matthew; Racine, Eric

    2017-11-09

    Brain-Computer Interface (BCI) is a set of technologies that are of increasing interest to researchers. BCI has been proposed as assistive technology for individuals who are non-communicative or paralyzed, such as those with amyotrophic lateral sclerosis or spinal cord injury. The technology has also been suggested for enhancement and entertainment uses, and there are companies currently marketing BCI devices for those purposes (e.g., gaming) as well as health-related purposes (e.g., communication). The unprecedented direct connection created by BCI between human brains and computer hardware raises various ethical, social, and legal challenges that merit further examination and discussion. To identify and characterize the key issues associated with BCI use, we performed a scoping review of biomedical ethics literature, analyzing the ethics concerns cited across multiple disciplines, including philosophy and medicine. Based on this investigation, we report that BCI research and its potential translation to therapeutic intervention generate significant ethical, legal, and social concerns, notably with regards to personhood, stigma, autonomy, privacy, research ethics, safety, responsibility, and justice. Our review of the literature determined, furthermore, that while these issues have been enumerated extensively, few concrete recommendations have been expressed. We conclude that future research should focus on remedying a lack of practical solutions to the ethical challenges of BCI, alongside the collection of empirical data on the perspectives of the public, BCI users, and BCI researchers.

  3. Neuroanatomical correlates of brain-computer interface performance.

    Science.gov (United States)

    Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi

    2015-04-15

    Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. An optical brain computer interface for environmental control.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Bunce, Scott; Onaral, Banu

    2011-01-01

    A brain computer interface (BCI) is a system that translates neurophysiological signals detected from the brain to supply input to a computer or to control a device. Volitional control of neural activity and its real-time detection through neuroimaging modalities are key constituents of BCI systems. The purpose of this study was to develop and test a new BCI design that utilizes intention-related cognitive activity within the dorsolateral prefrontal cortex using functional near infrared (fNIR) spectroscopy. fNIR is a noninvasive, safe, portable and affordable optical technique with which to monitor hemodynamic changes, in the brain's cerebral cortex. Because of its portability and ease of use, fNIR is amenable to deployment in ecologically valid natural working environments. We integrated a control paradigm in a computerized 3D virtual environment to augment interactivity. Ten healthy participants volunteered for a two day study in which they navigated a virtual environment with keyboard inputs, but were required to use the fNIR-BCI for interaction with virtual objects. Results showed that participants consistently utilized the fNIR-BCI with an overall success rate of 84% and volitionally increased their cerebral oxygenation level to trigger actions within the virtual environment.

  5. Interfacing of home-made photoacoustic spectrometer to computer

    International Nuclear Information System (INIS)

    Dhobale, A.R.; Chaturvedi, T.P.; Venkiteswaran, S.; Sastry, M.D.

    1996-01-01

    This report describes the interfacing of Photo Acoustic Spectrometer (PAS) fabricated in-house to a personal computer. This work was carried out to make a state of the art computer based spectrometer with provision for automatic background correction and also which gives hard copy of the spectrum. This report includes the development of software necessary to acquire data and for further processing of the signal. The monochromator used was modified for obtaining a +5 V pulse for each wavelength position. This pulse was further used for controlling the data acquisition and automatic increment of wavelength. Software program was developed in Quick Basic ver. 4.5 environment for acquisition, storage, display and analysis of the spectrum. The program displays on-line spectrum building up on the monitor. Another program converts the acquired spectrum into a normalized spectrum comparing with carbon spectrum stored already in addition to the S/N ratio improvement. The photo acoustic cell and chopper unit were also modified for improving the performance of the PAS unit. (author). 11 refs., 13 figs., 2 tabs

  6. Surface modes at metallic an photonic crystal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weitao [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponentially with the distance from the surface on both sides of the surface and propagates at the surface. The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect structures at its propagation surface and results in far-field effects. Extraordinary transmission (EOT) and beaming are two examples and they are the subjects I am studying in this thesis. EOT means the transmission through holes in an opaque screen can be much larger than the geometrical optics limitation. Based on our everyday experience about shadows, the transmission equals the filling ratio of the holes in geometrical optics. The conventional diffraction theory also proved that the transmission through a subwavelength circular hole in an infinitely thin perfect electric conductor (PEC) film converges to zero when the hole's dimension is much smaller than the wavelength (40). Recently it is discovered that the transmission can be much larger than the the filling ratio of the holes at some special wavelengths (41). This cannot be explained by conventional theories, so it is called extraordinary transmission. It is generally believed that surface plasmons play an important role (43; 44) in the EOT through a periodic subwavelength hole array in a metallic film. The common theories in literatures are based on these arguments. The surface plasmons cannot be excited by incident plane waves directly because of momentum mismatch. The periodicity of the hole arrays will provide addition momentum. When the momentum-matching condition of surface plasmons is satisfied, the surface plasmons will be excited. Then these surface plasmons will collect the energy along the input surface and carry them to the holes. So the transmission can be bigger than the filling ratio. Based

  7. BCILAB: a platform for brain-computer interface development

    Science.gov (United States)

    Kothe, Christian Andreas; Makeig, Scott

    2013-10-01

    Objective. The past two decades have seen dramatic progress in our ability to model brain signals recorded by electroencephalography, functional near-infrared spectroscopy, etc., and to derive real-time estimates of user cognitive state, response, or intent for a variety of purposes: to restore communication by the severely disabled, to effect brain-actuated control and, more recently, to augment human-computer interaction. Continuing these advances, largely achieved through increases in computational power and methods, requires software tools to streamline the creation, testing, evaluation and deployment of new data analysis methods. Approach. Here we present BCILAB, an open-source MATLAB-based toolbox built to address the need for the development and testing of brain-computer interface (BCI) methods by providing an organized collection of over 100 pre-implemented methods and method variants, an easily extensible framework for the rapid prototyping of new methods, and a highly automated framework for systematic testing and evaluation of new implementations. Main results. To validate and illustrate the use of the framework, we present two sample analyses of publicly available data sets from recent BCI competitions and from a rapid serial visual presentation task. We demonstrate the straightforward use of BCILAB to obtain results compatible with the current BCI literature. Significance. The aim of the BCILAB toolbox is to provide the BCI community a powerful toolkit for methods research and evaluation, thereby helping to accelerate the pace of innovation in the field, while complementing the existing spectrum of tools for real-time BCI experimentation, deployment and use.

  8. Electronic properties of semiconductor surfaces and metal/semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, M.

    2005-05-15

    This thesis reports investigations of the electronic properties of a semiconductor surface (silicon carbide), a reactive metal/semiconductor interface (manganese/silicon) and a non-reactive metal/semiconductor interface (aluminum-magnesium alloy/silicon). The (2 x 1) reconstruction of the 6H-SiC(0001) surface has been obtained by cleaving the sample along the (0001) direction. This reconstruction has not been observed up to now for this compound, and has been compared with those of similar elemental semiconductors of the fourth group of the periodic table. This comparison has been carried out by making use of photoemission spectroscopy, analyzing the core level shifts of both Si 2p and C 1s core levels in terms of charge transfer between atoms of both elements and in different chemical environments. From this comparison, a difference between the reconstruction on the Si-terminated and the C-terminated surface was established, due to the ionic nature of the Si-C bond. The growth of manganese films on Si(111) in the 1-5 ML thickness range has been studied by means of LEED, STM and photoemission spectroscopy. By the complementary use of these surface science techniques, two different phases have been observed for two thickness regimes (<1 ML and >1 ML), which exhibit a different electronic character. The two reconstructions, the (1 x 1)-phase and the ({radical}3 x {radical}3)R30 -phase, are due to silicide formation, as observed in core level spectroscopy. The growth proceeds via island formation in the monolayer regime, while the thicker films show flat layers interrupted by deep holes. On the basis of STM investigations, this growth mode has been attributed to strain due to lattice mismatch between the substrate and the silicide. Co-deposition of Al and Mg onto a Si(111) substrate at low temperature (100K) resulted in the formation of thin alloy films. By varying the relative content of both elements, the thin films exhibited different electronic properties

  9. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    Science.gov (United States)

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  10. Investigation of sizing - from glass fibre surface to composite interface

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro

    significantly. The usage span wide, from furniture and car components to construction materials. Even though, the concept of composites is well known and widely applied, the fundamental principles of the interaction of the constituents, in the composites are still not fully understood. This thesis is a part...... of the sizing from the glass fibre surface to the interface in composites. Through soxhlet extraction with acetone it was possible to remove a part of the sizing from the glass fibres for analysis. By burning off the sizing at 565 ºC a higher mass loss was obtained than from the extraction, indicating...... increased after the removal of sizing by extraction but also when the sizing was removed by burning. This could partly be explained by the sizing being less dense than the glass fibres. For the burned glass fibres compactment of the glass structure also yields an increase in stiffness. The fibre strength...

  11. Effects of muscle fatigue on the usability of a myoelectric human-computer interface.

    Science.gov (United States)

    Barszap, Alexander G; Skavhaug, Ida-Maria; Joshi, Sanjay S

    2016-10-01

    Electromyography-based human-computer interface development is an active field of research. However, knowledge on the effects of muscle fatigue for specific devices is limited. We have developed a novel myoelectric human-computer interface in which subjects continuously navigate a cursor to targets by manipulating a single surface electromyography (sEMG) signal. Two-dimensional control is achieved through simultaneous adjustments of power in two frequency bands through a series of dynamic low-level muscle contractions. Here, we investigate the potential effects of muscle fatigue during the use of our interface. In the first session, eight subjects completed 300 cursor-to-target trials without breaks; four using a wrist muscle and four using a head muscle. The wrist subjects returned for a second session in which a static fatiguing exercise took place at regular intervals in-between cursor-to-target trials. In the first session we observed no declines in performance as a function of use, even after the long period of use. In the second session, we observed clear changes in cursor trajectories, paired with a target-specific decrease in hit rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Molecular Computational Investigation of Electron Transfer Kinetics across Cytochrome-Iron Oxide Interfaces

    International Nuclear Information System (INIS)

    Kerisit, Sebastien N.; Rosso, Kevin M.; Dupuis, Michel; Valiev, Marat

    2007-01-01

    The interface between electron transfer proteins such as cytochromes and solid phase mineral oxides is central to the activity of dissimilatory-metal reducing bacteria. A combination of potential-based molecular dynamics simulations and ab initio electronic structure calculations are used in the framework of Marcus' electron transfer theory to compute elementary electron transfer rates from a well-defined cytochrome model, namely the small tetraheme cytochrome (STC) from Shewanella oneidensis, to surfaces of the iron oxide mineral hematite (a-Fe2O3). Room temperature molecular dynamics simulations show that an isolated STC molecule favors surface attachment via direct contact of hemes I and IV at the poles of the elongated axis, with electron transfer distances as small as 9 Angstroms. The cytochrome remains attached to the mineral surface in the presence of water and shows limited surface diffusion at the interface. Ab initio electronic coupling matrix element (VAB) calculations of configurations excised from the molecular dynamics simulations reveal VAB values ranging from 1 to 20 cm-1, consistent with nonadiabaticity. Using these results, together with experimental data on the redox potential of hematite and hemes in relevant cytochromes and calculations of the reorganization energy from cluster models, we estimate the rate of electron transfer across this model interface to range from 1 to 1000 s-1 for the most exothermic driving force considered in this work, and from 0.01 to 20 s-1 for the most endothermic. This fairly large range of electron transfer rates highlights the sensitivity of the rate upon the electronic coupling matrix element, which is in turn dependent on the fluctuations of the heme configuration at the interface. We characterize this dependence using an idealized bis-imidazole heme to compute from first principles the VAB variation due to porphyrin ring orientation, electron transfer distance, and mineral surface termination. The electronic

  13. Electronic structure of epitaxial chalcopyrite surfaces and interfaces for photovoltaics

    International Nuclear Information System (INIS)

    Hofmann, Andreas

    2012-01-01

    electron states was observed, which can be understood as a higher localization of electronic states and lower crystal quality. In addition, a strong rearrangement of the copper partial density of states was shown. The intimate knowledge of the electric structure was then exploited to demonstrate the valence band discontinuity between CuInSe 2 and CuIn 3 Se 5 . The analysis by photoemission yielded a valence band offset of 0.28 eV, again in reasonable agreement with theoretical results. The p-n-junction in chalcopyrite solar cells is situated near the absorber-buffer interface, which is therefore crucial for the device performance. In this thesis, ZnO deposited from metal-organic precursors on epitaxial CuInSe 2 was investigated as cadmium-free buffer material. In the course of contact formation, the interfacial region of the absorber becomes depleted of copper. Additionally, a thin intrinsic ZnSe layer is formed, prior to the growth of ZnO. The derived band alignments show no dependence on the surface orientation of the chalcopyrite substrate and are consistent with theoretical results. The conduction band lineup is favorable for the application in solar cells.

  14. Detecting Nasal Vowels in Speech Interfaces Based on Surface Electromyography.

    Directory of Open Access Journals (Sweden)

    João Freitas

    Full Text Available Nasality is a very important characteristic of several languages, European Portuguese being one of them. This paper addresses the challenge of nasality detection in surface electromyography (EMG based speech interfaces. We explore the existence of useful information about the velum movement and also assess if muscles deeper down in the face and neck region can be measured using surface electrodes, and the best electrode location to do so. The procedure we adopted uses Real-Time Magnetic Resonance Imaging (RT-MRI, collected from a set of speakers, providing a method to interpret EMG data. By ensuring compatible data recording conditions, and proper time alignment between the EMG and the RT-MRI data, we are able to accurately estimate the time when the velum moves and the type of movement when a nasal vowel occurs. The combination of these two sources revealed interesting and distinct characteristics in the EMG signal when a nasal vowel is uttered, which motivated a classification experiment. Overall results of this experiment provide evidence that it is possible to detect velum movement using sensors positioned below the ear, between mastoid process and the mandible, in the upper neck region. In a frame-based classification scenario, error rates as low as 32.5% for all speakers and 23.4% for the best speaker have been achieved, for nasal vowel detection. This outcome stands as an encouraging result, fostering the grounds for deeper exploration of the proposed approach as a promising route to the development of an EMG-based speech interface for languages with strong nasal characteristics.

  15. User-customized brain computer interfaces using Bayesian optimization

    Science.gov (United States)

    Bashashati, Hossein; Ward, Rabab K.; Bashashati, Ali

    2016-04-01

    Objective. The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject’s brain characteristics. Approach. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. Main Results. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Significance. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.

  16. fNIRS-based brain-computer interfaces: a review

    Directory of Open Access Journals (Sweden)

    Noman eNaseer

    2015-01-01

    Full Text Available A brain-computer interface (BCI is a communication system that allows the use of brain activity to control computers or other external devices. It can, by bypassing the peripheral nervous system, provide a means of communication for people suffering from severe motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation tasks, noise removal methods, feature extraction/selection schemes, and classification techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor cortex, motor imagery tasks were preferred to motor execution tasks since possible proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS showed a significant advantage due to no hair in detecting the cognitive tasks like mental arithmetic, music imagery, emotion induction, etc. In removing physiological noise in fNIRS data, band-pass filtering was mostly used. However, more advanced techniques like adaptive filtering, independent component analysis, multi optodes arrangement, etc. are being pursued to overcome the problem that a band-pass filter cannot be used when both brain and physiological signals occur within a close band. In extracting features related to the desired brain signal, the mean, variance, peak value, slope, skewness, and kurtosis of the noised-removed hemodynamic response were used. For classification, the linear discriminant analysis method provided simple but good performance among others: support vector machine, hidden Markov model, artificial neural network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of initial dips.

  17. User-customized brain computer interfaces using Bayesian optimization.

    Science.gov (United States)

    Bashashati, Hossein; Ward, Rabab K; Bashashati, Ali

    2016-04-01

    The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject's brain characteristics. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.

  18. Sequenced subjective accents for brain-computer interfaces

    Science.gov (United States)

    Vlek, R. J.; Schaefer, R. S.; Gielen, C. C. A. M.; Farquhar, J. D. R.; Desain, P.

    2011-06-01

    Subjective accenting is a cognitive process in which identical auditory pulses at an isochronous rate turn into the percept of an accenting pattern. This process can be voluntarily controlled, making it a candidate for communication from human user to machine in a brain-computer interface (BCI) system. In this study we investigated whether subjective accenting is a feasible paradigm for BCI and how its time-structured nature can be exploited for optimal decoding from non-invasive EEG data. Ten subjects perceived and imagined different metric patterns (two-, three- and four-beat) superimposed on a steady metronome. With an offline classification paradigm, we classified imagined accented from non-accented beats on a single trial (0.5 s) level with an average accuracy of 60.4% over all subjects. We show that decoding of imagined accents is also possible with a classifier trained on perception data. Cyclic patterns of accents and non-accents were successfully decoded with a sequence classification algorithm. Classification performances were compared by means of bit rate. Performance in the best scenario translates into an average bit rate of 4.4 bits min-1 over subjects, which makes subjective accenting a promising paradigm for an online auditory BCI.

  19. [Brain-Computer Interface: the First Clinical Experience in Russia].

    Science.gov (United States)

    Mokienko, O A; Lyukmanov, R Kh; Chernikova, L A; Suponeva, N A; Piradov, M A; Frolov, A A

    2016-01-01

    Motor imagery is suggested to stimulate the same plastic mechanisms in the brain as a real movement. The brain-computer interface (BCI) controls motor imagery by converting EEG during this process into the commands for an external device. This article presents the results of two-stage study of the clinical use of non-invasive BCI in the rehabilitation of patients with severe hemiparesis caused by focal brain damage. It was found that the ability to control BCI did not depend on the duration of a disease, brain lesion localization and the degree of neurological deficit. The first step of the study involved 36 patients; it showed that the efficacy of rehabilitation was higher in the group with the use of BCI (the score on the Action Research Arm Test (ARAT) improved from 1 [0; 2] to 5 [0; 16] points, p = 0.012; no significant improvement was observed in control group). The second step of the study involved 19 patients; the complex BCI-exoskeleton (i.e. with the kinesthetic feedback) was used for motor imagery trainings. The improvement of the motor function of hands was proved by ARAT (the score improved from 2 [0; 37] to 4 [1; 45:5] points, p = 0.005) and Fugl-Meyer scale (from 72 [63; 110 ] to 79 [68; 115] points, p = 0.005).

  20. Brain-computer interfacing under distraction: an evaluation study

    Science.gov (United States)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech

    2016-10-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.

  1. An auditory oddball brain-computer interface for binary choices.

    Science.gov (United States)

    Halder, S; Rea, M; Andreoni, R; Nijboer, F; Hammer, E M; Kleih, S C; Birbaumer, N; Kübler, A

    2010-04-01

    Brain-computer interfaces (BCIs) provide non-muscular communication for individuals diagnosed with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)). In the final stages of the disease, a BCI cannot rely on the visual modality. This study examined a method to achieve high accuracies using auditory stimuli only. We propose an auditory BCI based on a three-stimulus paradigm. This paradigm is similar to the standard oddball but includes an additional target (i.e. two target stimuli, one frequent stimulus). Three versions of the task were evaluated in which the target stimuli differed in loudness, pitch or direction. Twenty healthy participants achieved an average information transfer rate (ITR) of up to 2.46 bits/min and accuracies of 78.5%. Most subjects (14 of 20) achieved their best performance with targets differing in pitch. With this study, the viability of the paradigm was shown for healthy participants and will next be evaluated with individuals diagnosed with ALS or locked-in syndrome (LIS) after stroke. The here presented BCI offers communication with binary choices (yes/no) independent of vision. As it requires only little time per selection, it may constitute a reliable means of communication for patients who lost all motor function and have a short attention span. 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. P300 brain computer interface: current challenges and emerging trends

    Science.gov (United States)

    Fazel-Rezai, Reza; Allison, Brendan Z.; Guger, Christoph; Sellers, Eric W.; Kleih, Sonja C.; Kübler, Andrea

    2012-01-01

    A brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility. PMID:22822397

  3. Evaluation of a Compact Hybrid Brain-Computer Interface System

    Directory of Open Access Journals (Sweden)

    Jaeyoung Shin

    2017-01-01

    Full Text Available We realized a compact hybrid brain-computer interface (BCI system by integrating a portable near-infrared spectroscopy (NIRS device with an economical electroencephalography (EEG system. The NIRS array was located on the subjects’ forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA and baseline (BL tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.

  4. On robust parameter estimation in brain-computer interfacing

    Science.gov (United States)

    Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert

    2017-12-01

    Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.

  5. Vibrotactile Feedback for Brain-Computer Interface Operation

    Directory of Open Access Journals (Sweden)

    Febo Cincotti

    2007-01-01

    Full Text Available To be correctly mastered, brain-computer interfaces (BCIs need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury, we compared vibrotactile and visual feedback, addressing: (I the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II the compatibility of this form of feedback in presence of a visual distracter; (III the performance in presence of a complex visual task on the same (visual or different (tactile sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users.

  6. Quantitative analysis of task selection for brain-computer interfaces

    Science.gov (United States)

    Llera, Alberto; Gómez, Vicenç; Kappen, Hilbert J.

    2014-10-01

    Objective. To assess quantitatively the impact of task selection in the performance of brain-computer interfaces (BCI). Approach. We consider the task-pairs derived from multi-class BCI imagery movement tasks in three different datasets. We analyze for the first time the benefits of task selection on a large-scale basis (109 users) and evaluate the possibility of transferring task-pair information across days for a given subject. Main results. Selecting the subject-dependent optimal task-pair among three different imagery movement tasks results in approximately 20% potential increase in the number of users that can be expected to control a binary BCI. The improvement is observed with respect to the best task-pair fixed across subjects. The best task-pair selected for each subject individually during a first day of recordings is generally a good task-pair in subsequent days. In general, task learning from the user side has a positive influence in the generalization of the optimal task-pair, but special attention should be given to inexperienced subjects. Significance. These results add significant evidence to existing literature that advocates task selection as a necessary step towards usable BCIs. This contribution motivates further research focused on deriving adaptive methods for task selection on larger sets of mental tasks in practical online scenarios.

  7. A Review of Hybrid Brain-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Setare Amiri

    2013-01-01

    Full Text Available Increasing number of research activities and different types of studies in brain-computer interface (BCI systems show potential in this young research area. Research teams have studied features of different data acquisition techniques, brain activity patterns, feature extraction techniques, methods of classifications, and many other aspects of a BCI system. However, conventional BCIs have not become totally applicable, due to the lack of high accuracy, reliability, low information transfer rate, and user acceptability. A new approach to create a more reliable BCI that takes advantage of each system is to combine two or more BCI systems with different brain activity patterns or different input signal sources. This type of BCI, called hybrid BCI, may reduce disadvantages of each conventional BCI system. In addition, hybrid BCIs may create more applications and possibly increase the accuracy and the information transfer rate. However, the type of BCIs and their combinations should be considered carefully. In this paper, after introducing several types of BCIs and their combinations, we review and discuss hybrid BCIs, different possibilities to combine them, and their advantages and disadvantages.

  8. Surface enhanced raman scattering at Ag-Pyridine interface by use of long range surface plasmon

    International Nuclear Information System (INIS)

    Baik, Moon Gu; Ko, Eu; Kwan, Do Kyeong; Lee, Ja Hyung; Chang, Joon Sung

    1990-01-01

    Surface-enhanced Raman scattering (SERS) experiment of pyridine (C 5 H 5 N) has been performed at silverpyridine interface by use of long range surface plasmon (LRSP) which is generated in the Sarid-type attenuated total reflection (ATR) structure consisting of prism, dielectic, metal and dielectic media. Generation of LRSP has been confirmed by observing the propagation of the LRSP. Raman signal of pyridine adsorbed on the silver surface in the above layered structure has been observed and compared with the bulk Raman signal and SERS signal from the chemically adsorbed pyridine. SERS experiment by use of LRSP has not yet reported to the best of our knowledge. (Author)

  9. Multiresolution Computation of Conformal Structures of Surfaces

    Directory of Open Access Journals (Sweden)

    Xianfeng Gu

    2003-10-01

    Full Text Available An efficient multiresolution method to compute global conformal structures of nonzero genus triangle meshes is introduced. The homology, cohomology groups of meshes are computed explicitly, then a basis of harmonic one forms and a basis of holomorphic one forms are constructed. A progressive mesh is generated to represent the original surface at different resolutions. The conformal structure is computed for the coarse level first, then used as the estimation for that of the finer level, by using conjugate gradient method it can be refined to the conformal structure of the finer level.

  10. Usability of Three Electroencephalogram Headsets for Brain-Computer Interfaces: A Within Subject Comparison

    NARCIS (Netherlands)

    Gamboa, H.; Nijboer, Femke; van de Laar, B.L.A.; Plácido da Silva, H.; Gilleade, K.; Gerritsen, Steven; Nijholt, Antinus; Bermúdez i Badia, S.; Poel, Mannes; Fairclough, S.

    Currently the field of brain–computer interfacing is increasingly focused on developing usable brain–computer interfaces (BCIs) to better ensure technology transfer and acceptance. Many studies have investigated the usability of BCI applications as a whole. Here we aim to investigate one specific

  11. Poled-glass devices: Influence of surfaces and interfaces

    DEFF Research Database (Denmark)

    Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin

    2007-01-01

    Devices in periodically poled glass must have a large periodic variation of the built-in field. We show that the periodic variation can be severely degraded by charge dynamics taking place at the external (glass–air) interface or at internal (glass–glass) interfaces if the interfaces have...... the device, one can reveal the existence of imperfect interfaces by use of electric field induced second-harmonic generation....

  12. Some computer graphical user interfaces in radiation therapy.

    Science.gov (United States)

    Chow, James C L

    2016-03-28

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls

  13. User interface issues in supporting human-computer integrated scheduling

    Science.gov (United States)

    Cooper, Lynne P.; Biefeld, Eric W.

    1991-01-01

    The topics are presented in view graph form and include the following: characteristics of Operations Mission Planner (OMP) schedule domain; OMP architecture; definition of a schedule; user interface dimensions; functional distribution; types of users; interpreting user interaction; dynamic overlays; reactive scheduling; and transitioning the interface.

  14. EEG datasets for motor imagery brain-computer interface.

    Science.gov (United States)

    Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan

    2017-07-01

    Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.

  15. Proprioceptive feedback and brain computer interface (BCI based neuroprostheses.

    Directory of Open Access Journals (Sweden)

    Ander Ramos-Murguialday

    Full Text Available Brain computer interface (BCI technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1 motor imagery of the hand movement without any overt movement and without feedback, (2 motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3 passive (the orthosis passively opens and closes the hand without imagery and (4 active (overt movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants. Group 1 (n = 9 received contingent positive feedback (participants' sensorimotor rhythm (SMR desynchronization was directly linked to hand orthosis movements, group 2 (n = 8 contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements and group 3 (n = 7 sham feedback (no link between brain oscillations and orthosis movements. We observed that proprioceptive feedback (feeling and seeing hand movements improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and

  16. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.

    Science.gov (United States)

    Ramos-Murguialday, Ander; Schürholz, Markus; Caggiano, Vittorio; Wildgruber, Moritz; Caria, Andrea; Hammer, Eva Maria; Halder, Sebastian; Birbaumer, Niels

    2012-01-01

    Brain computer interface (BCI) technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1) motor imagery of the hand movement without any overt movement and without feedback, (2) motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3) passive (the orthosis passively opens and closes the hand without imagery) and (4) active (overt) movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants). Group 1 (n = 9) received contingent positive feedback (participants' sensorimotor rhythm (SMR) desynchronization was directly linked to hand orthosis movements), group 2 (n = 8) contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements) and group 3 (n = 7) sham feedback (no link between brain oscillations and orthosis movements). We observed that proprioceptive feedback (feeling and seeing hand movements) improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and passive

  17. A collaborative brain-computer interface for improving human performance.

    Directory of Open Access Journals (Sweden)

    Yijun Wang

    Full Text Available Electroencephalogram (EEG based brain-computer interfaces (BCI have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1 Event-related potentials (ERP averaging, (2 Feature concatenating, and (3 Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100-250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC, which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior.

  18. Brain-computer interface based on intermodulation frequency

    Science.gov (United States)

    Chen, Xiaogang; Chen, Zhikai; Gao, Shangkai; Gao, Xiaorong

    2013-12-01

    Objective. Most recent steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems have used a single frequency for each target, so that a large number of targets require a large number of stimulus frequencies and therefore a wider frequency band. However, human beings show good SSVEP responses only in a limited range of frequencies. Furthermore, this issue is especially problematic if the SSVEP-based BCI takes a PC monitor as a stimulator, which is only capable of generating a limited range of frequencies. To mitigate this issue, this study presents an innovative coding method for SSVEP-based BCI by means of intermodulation frequencies. Approach. Simultaneous modulations of stimulus luminance and color at different frequencies were utilized to induce intermodulation frequencies. Luminance flickered at relatively large frequency (10, 12, 15 Hz), while color alternated at low frequency (0.5, 1 Hz). An attractive feature of the proposed method was that it would substantially increase the number of targets at a single flickering frequency by altering color modulated frequencies. Based on this method, the BCI system presented in this study realized eight targets merely using three flickering frequencies. Main results. The online results obtained from 15 subjects (14 healthy and 1 with stroke) revealed that an average classification accuracy of 93.83% and information transfer rate (ITR) of 33.80 bit min-1 were achieved using our proposed SSVEP-based BCI system. Specifically, 5 out of the 15 subjects exhibited an ITR of 40.00 bit min-1 with a classification accuracy of 100%. Significance. These results suggested that intermodulation frequencies could be adopted as steady responses in BCI, for which our system could be used as a practical BCI system.

  19. Guidelines for the integration of audio cues into computer user interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sumikawa, D.A.

    1985-06-01

    Throughout the history of computers, vision has been the main channel through which information is conveyed to the computer user. As the complexities of man-machine interactions increase, more and more information must be transferred from the computer to the user and then successfully interpreted by the user. A logical next step in the evolution of the computer-user interface is the incorporation of sound and thereby using the sense of ''hearing'' in the computer experience. This allows our visual and auditory capabilities to work naturally together in unison leading to more effective and efficient interpretation of all information received by the user from the computer. This thesis presents an initial set of guidelines to assist interface developers in designing an effective sight and sound user interface. This study is a synthesis of various aspects of sound, human communication, computer-user interfaces, and psychoacoustics. We introduce the notion of an earcon. Earcons are audio cues used in the computer-user interface to provide information and feedback to the user about some computer object, operation, or interaction. A possible construction technique for earcons, the use of earcons in the interface, how earcons are learned and remembered, and the affects of earcons on their users are investigated. This study takes the point of view that earcons are a language and human/computer communication issue and are therefore analyzed according to the three dimensions of linguistics; syntactics, semantics, and pragmatics.

  20. Computational efficiency for the surface renewal method

    Science.gov (United States)

    Kelley, Jason; Higgins, Chad

    2018-04-01

    Measuring surface fluxes using the surface renewal (SR) method requires programmatic algorithms for tabulation, algebraic calculation, and data quality control. A number of different methods have been published describing automated calibration of SR parameters. Because the SR method utilizes high-frequency (10 Hz+) measurements, some steps in the flux calculation are computationally expensive, especially when automating SR to perform many iterations of these calculations. Several new algorithms were written that perform the required calculations more efficiently and rapidly, and that tested for sensitivity to length of flux averaging period, ability to measure over a large range of lag timescales, and overall computational efficiency. These algorithms utilize signal processing techniques and algebraic simplifications that demonstrate simple modifications that dramatically improve computational efficiency. The results here complement efforts by other authors to standardize a robust and accurate computational SR method. Increased speed of computation time grants flexibility to implementing the SR method, opening new avenues for SR to be used in research, for applied monitoring, and in novel field deployments.

  1. Surface, interface and bulk materials characterization using Indus synchrotron sources

    International Nuclear Information System (INIS)

    Phase, Deodatta M.

    2014-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet, soft and hard x-ray photons, are having great impact on physics, chemistry, biology, materials science and other areas research. In particular synchrotron radiation has revolutionized materials characterization techniques by enhancing its capabilities for investigating the structural, electronic and magnetic properties of solids. The availability of synchrotron sources and necessary instrumentation has led to considerable improvements in spectral resolution and intensities. As a result, application scope of different materials characterization techniques has tremendously increased particularly in the analysis of solid surfaces, interfaces and bulk materials. The Indian synchrotron storage ring, Indus-1 and Indus-2 are in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (AlPES) beam line on Indus-1 storage ring of 450 MeV and polarized light beam line for soft x-ray absorption spectroscopy (SXAS) on Indus-2 storage ring of 2.5 GeV. (author)

  2. Improvement of computer complex and interface system for compact nuclear simulator

    International Nuclear Information System (INIS)

    Lee, D. Y.; Park, W. M.; Cha, K. H.; Jung, C. H.; Park, J. C.

    1999-01-01

    CNS(Compact Nuclear Simulator) was developed at the end of 1980s, and have been used as training simulator for staffs of KAERI during 10 years. The operator panel interface cards and the graphic interface cards were designed with special purpose only for CNS. As these interface cards were worn out for 10 years, it was very difficult to get spare parts and to repair them. And the interface cards were damaged by over current happened by shortage of lamp in the operator panel. To solve these problem, the project 'Improvement of Compact Nuclear Simulator' was started from 1997. This paper only introduces about the improvement of computer complex and interface system

  3. A USB 2.0 computer interface for the UCO/Lick CCD cameras

    Science.gov (United States)

    Wei, Mingzhi; Stover, Richard J.

    2004-09-01

    The new UCO/Lick Observatory CCD camera uses a 200 MHz fiber optic cable to transmit image data and an RS232 serial line for low speed bidirectional command and control. Increasingly RS232 is a legacy interface supported on fewer computers. The fiber optic cable requires either a custom interface board that is plugged into the mainboard of the image acquisition computer to accept the fiber directly or an interface converter that translates the fiber data onto a widely used standard interface. We present here a simple USB 2.0 interface for the UCO/Lick camera. A single USB cable connects to the image acquisition computer and the camera's RS232 serial and fiber optic cables plug into the USB interface. Since most computers now support USB 2.0 the Lick interface makes it possible to use the camera on essentially any modern computer that has the supporting software. No hardware modifications or additions to the computer are needed. The necessary device driver software has been written for the Linux operating system which is now widely used at Lick Observatory. The complete data acquisition software for the Lick CCD camera is running on a variety of PC style computers as well as an HP laptop.

  4. Digital interface for bi-directional communication between a computer and a peripheral device

    Science.gov (United States)

    Bond, H. H., Jr. (Inventor); Franklin, C. R.

    1984-01-01

    For transmission of data from the computer to the peripheral, the computer initially clears a flipflop which provides a select signal to a multiplexer. A data available signal or data strobe signal is produced while tht data is being provided to the interface. Setting of the flipflop causes a gate to provide to the peripherial a signal indicating that the interface has data available for transmission. The peripheral provides an acknowledge or strobe signal to transfer the data to the peripheral. For transmission of data from the peripheral to the computer, the computer presents the initially cleared flipflop. A data request signal from the peripheral indicates that the peripheral has data available for transmission to the computer. An acknowledge signal indicates that the interface is ready to receive data from the peripheral and to strobe that data into the interface.

  5. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    International Nuclear Information System (INIS)

    Kobayashi, Kazuya; Liang, Yunfeng; Matsuoka, Toshifumi; Sakka, Tetsuo

    2014-01-01

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules

  6. Electromagnetic surface waves at the interface of a relativistic electron beam with vacuum

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1977-01-01

    The dispersion relation for electromagnetic surface waves propagating at the interface between a relativistic electron beam and vacuum is derived. The excitation of surface modes in a plasma at rest by a relativistic electron beam is discussed

  7. Interfacing external quantum devices to a universal quantum computer.

    Directory of Open Access Journals (Sweden)

    Antonio A Lagana

    Full Text Available We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.

  8. BRAIN-COMPUTER-INTERFACE – SUPPORTED MOTOR IMAGERY TRAININTG FOR PATIENTS WITH HEMIPARESIS

    Directory of Open Access Journals (Sweden)

    O. A. Mokienko

    2013-01-01

    Full Text Available The aim of study was to assess the feasibility of motor imagery supported brain-computer interface in patients with hemiparesis. 13 patients with central paresis of the hand and 15 healthy volunteers were learning to control EEG-based interface with feedback. No differences on interface control quality were found between patients and healthy subjects. The trainings were accompanied by the desynchronization of sensorimotor rhythm. In patients with cortical damage the source of EEG-activity was dislocated.

  9. Playing with your Brain : Brain-Computer Interfaces and Games

    NARCIS (Netherlands)

    Nijholt, Anton; Tan, Desney; Bernhaupt, Regina; Tscheligi, Manfred

    2007-01-01

    In this workshop we investigate a possible role of brain-computer interaction in computer games and entertainment computing. The assumption is that brain activity, whether it is consciously controlled and directed by the user or just recorded in order to obtain information about the user’s affective

  10. Playing with your Brain: Brain-Computer Interfaces and Games

    NARCIS (Netherlands)

    Nijholt, Antinus; Tan, Desney; Bernhaupt, R.; Tscheligi, M.

    2007-01-01

    In this workshop we investigate a possible role of brain-computer interaction in computer games and entertainment computing. The assumption is that brain activity, whether it is consciously controlled and directed by the user or just recorded in order to obtain information about the user’s affective

  11. Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals

    International Nuclear Information System (INIS)

    Liu, Wei; Chen, Jiwei; Liu, Yongquan; Su, Xianyue

    2012-01-01

    In the present Letter, the multiple scattering theory (MST) for calculating the elastic wave band structure of two-dimensional phononic crystals (PCs) is extended to include the interface/surface stress effect at the nanoscale. The interface/surface elasticity theory is employed to describe the nonclassical boundary conditions at the interface/surface and the elastic Mie scattering matrix embodying the interface/surface stress effect is derived. Using this extended MST, the authors investigate the interface/surface stress effect on the elastic wave band structure of two-dimensional PCs, which is demonstrated to be significant when the characteristic size reduces to nanometers. -- Highlights: ► Multiple scattering theory including the interface/surface stress effect. ► Interface/surface elasticity theory to describe the nonclassical boundary conditions. ► Elastic Mie scattering matrix embodying the interface/surface stress effect. ► Interface/surface stress effect would be significant at the nanoscale.

  12. The Brain Computer Interface Future: Time for a Strategy

    Science.gov (United States)

    2013-02-14

    neural processing software developer Mind Technologies, Geger Technologies in Austria and the Sony Corporation in Japan. The WTEC report in 2007...managing photos, video, web surfing, and music , and although in their infancy, researchers have used a web browser interface to control Google...society as a whole. The prospect of BCI entertainment , neuroprostheses, online neuroresearching and marketing, and cognitive performance enhancement

  13. Computer organization and design the hardware/software interface

    CERN Document Server

    Patterson, David A

    2013-01-01

    The 5th edition of Computer Organization and Design moves forward into the post-PC era with new examples, exercises, and material highlighting the emergence of mobile computing and the cloud. This generational change is emphasized and explored with updated content featuring tablet computers, cloud infrastructure, and the ARM (mobile computing devices) and x86 (cloud computing) architectures. Because an understanding of modern hardware is essential to achieving good performance and energy efficiency, this edition adds a new concrete example, "Going Faster," used throughout the text to demonstrate extremely effective optimization techniques. Also new to this edition is discussion of the "Eight Great Ideas" of computer architecture. As with previous editions, a MIPS processor is the core used to present the fundamentals of hardware technologies, assembly language, computer arithmetic, pipelining, memory hierarchies and I/O. Optimization techniques featured throughout the text. It covers parallelism in depth with...

  14. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    International Nuclear Information System (INIS)

    Liedke, Bartosz

    2011-01-01

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general

  15. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liedke, Bartosz

    2011-03-24

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In

  16. Experimental evaluation of multimodal human computer interface for tactical audio applications

    NARCIS (Netherlands)

    Obrenovic, Z.; Starcevic, D.; Jovanov, E.; Oy, S.

    2002-01-01

    Mission critical and information overwhelming applications require careful design of the human computer interface. Typical applications include night vision or low visibility mission navigation, guidance through a hostile territory, and flight navigation and orientation. Additional channels of

  17. An independent brain-computer interface using covert non-spatial visual selective attention

    Science.gov (United States)

    Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K.; Gao, Shangkai

    2010-02-01

    In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 ± 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.

  18. Online LDA BASED brain-computer interface system to aid disabled people

    OpenAIRE

    Apdullah Yayık; Yakup Kutlu

    2017-01-01

    This paper aims to develop brain-computer interface system based on electroencephalography that can aid disabled people in daily life. The system relies on one of the most effective event-related potential wave, P300, which can be elicited by oddball paradigm. Developed application has a basic interaction tool that enables disabled people to convey their needs to other people selecting related objects. These objects pseudo-randomly flash in a visual interface on computer screen. The user must...

  19. Quantitative strain analysis of surfaces and interfaces using extremely asymmetric x-ray diffraction

    International Nuclear Information System (INIS)

    Akimoto, Koichi; Emoto, Takashi

    2010-01-01

    Strain can reduce carrier mobility and the reliability of electronic devices and affect the growth mode of thin films and the stability of nanometer-scale crystals. To control lattice strain, a technique for measuring the minute lattice strain at surfaces and interfaces is needed. Recently, an extremely asymmetric x-ray diffraction method has been developed for this purpose. By employing Darwin's dynamical x-ray diffraction theory, quantitative evaluation of strain at surfaces and interfaces becomes possible. In this paper, we review our quantitative strain analysis studies on native SiO 2 /Si interfaces, reconstructed Si surfaces, Ni/Si(111)-H interfaces, sputtered III-V compound semiconductor surfaces, high-k/Si interfaces, and Au ion-implanted Si. (topical review)

  20. Applications of Computed Tomography to Evaluate Cellular Solid Interfaces

    Science.gov (United States)

    Maisano, Josephine; Marse, Daryl J.; Schilling, Paul J.

    2008-01-01

    The major morphological features - foam cells, voids, knit lines, and the bondline interface were evaluated. The features identified by micro-CT correlate well to those observed by SEM. 3D reconstructions yielded volumetric dimensions for large voids (max 30 mm). Internal voids and groupings of smaller cells at the bondline are concluded to be the cause of the indications noted during the NDE prescreening process.

  1. Neurobionics and the brain-computer interface: current applications and future horizons.

    Science.gov (United States)

    Rosenfeld, Jeffrey V; Wong, Yan Tat

    2017-05-01

    The brain-computer interface (BCI) is an exciting advance in neuroscience and engineering. In a motor BCI, electrical recordings from the motor cortex of paralysed humans are decoded by a computer and used to drive robotic arms or to restore movement in a paralysed hand by stimulating the muscles in the forearm. Simultaneously integrating a BCI with the sensory cortex will further enhance dexterity and fine control. BCIs are also being developed to: provide ambulation for paraplegic patients through controlling robotic exoskeletons; restore vision in people with acquired blindness; detect and control epileptic seizures; and improve control of movement disorders and memory enhancement. High-fidelity connectivity with small groups of neurons requires microelectrode placement in the cerebral cortex. Electrodes placed on the cortical surface are less invasive but produce inferior fidelity. Scalp surface recording using electroencephalography is much less precise. BCI technology is still in an early phase of development and awaits further technical improvements and larger multicentre clinical trials before wider clinical application and impact on the care of people with disabilities. There are also many ethical challenges to explore as this technology evolves.

  2. High Performance Computing - Power Application Programming Interface Specification Version 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Levenhagen, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Olivier, Stephen Lecler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pedretti, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, H. Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Younge, Andrew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  3. PHREEQCI; a graphical user interface for the geochemical computer program PHREEQC

    Science.gov (United States)

    Charlton, Scott R.; Macklin, Clifford L.; Parkhurst, David L.

    1997-01-01

    PhreeqcI is a Windows-based graphical user interface for the geochemical computer program PHREEQC. PhreeqcI provides the capability to generate and edit input data files, run simulations, and view text files containing simulation results, all within the framework of a single interface. PHREEQC is a multipurpose geochemical program that can perform speciation, inverse, reaction-path, and 1D advective reaction-transport modeling. Interactive access to all of the capabilities of PHREEQC is available with PhreeqcI. The interface is written in Visual Basic and will run on personal computers under the Windows(3.1), Windows95, and WindowsNT operating systems.

  4. The Challenge '88 Project: Interfacing of Chemical Instruments to Computers.

    Science.gov (United States)

    Lyons, Jim; Verghese, Manoj

    The main part of this project involved using a computer, either an Apple or an IBM, as a chart recorder for the infrared (IR) and nuclear magnetic resonance (NMR) spectrophotometers. The computer "reads" these machines and displays spectra on its monitor. The graphs can then be stored for future reference and manipulation. The program to…

  5. Enrichment of Human-Computer Interaction in Brain-Computer Interfaces via Virtual Environments

    Directory of Open Access Journals (Sweden)

    Alonso-Valerdi Luz María

    2017-01-01

    Full Text Available Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction (HCI. Those cognitive processes take place while a user navigates and explores a virtual environment (VE and are mainly related to spatial memory storage, attention, and perception. VEs have many distinctive features (e.g., involvement, immersion, and presence that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI. BCI is as a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment. Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few years, researchers have argued that main BCI flaws could be associated with HCI issues. The evidence presented thus far shows that VEs can (1 set out working environmental conditions, (2 maximize the efficiency of BCI control panels, (3 implement navigation systems based not only on user intentions but also on user emotions, and (4 regulate user mental state to increase the differentiation between control and noncontrol modalities.

  6. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    Science.gov (United States)

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  7. Control of a visual keyboard using an electrocorticographic brain-computer interface.

    Science.gov (United States)

    Krusienski, Dean J; Shih, Jerry J

    2011-05-01

    Brain-computer interfaces (BCIs) are devices that enable severely disabled people to communicate and interact with their environments using their brain waves. Most studies investigating BCI in humans have used scalp EEG as the source of electrical signals and focused on motor control of prostheses or computer cursors on a screen. The authors hypothesize that the use of brain signals obtained directly from the cortical surface will more effectively control a communication/spelling task compared to scalp EEG. A total of 6 patients with medically intractable epilepsy were tested for the ability to control a visual keyboard using electrocorticographic (ECOG) signals. ECOG data collected during a P300 visual task paradigm were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in 5 of the 6 people tested. ECOG data from electrodes outside the language cortex contributed to the classifier and enabled participants to write words on a visual keyboard. This is a novel finding because previous invasive BCI research in humans used signals exclusively from the motor cortex to control a computer cursor or prosthetic device. These results demonstrate that ECOG signals from electrodes both overlying and outside the language cortex can reliably control a visual keyboard to generate language output without voice or limb movements.

  8. Competitive Adsorption between Nanoparticles and Surface Active Ions for the Oil-Water Interface.

    Science.gov (United States)

    Hua, Xiaoqing; Bevan, Michael A; Frechette, Joelle

    2018-04-24

    Nanoparticles (NPs) can add functionality (e.g., catalytic, optical, rheological) to an oil-water interface. Adsorption of ∼10 nm NPs can be reversible; however, the mechanisms for adsorption and its effects on surface pressure remain poorly understood. Here we demonstrate how the competitive reversible adsorption of NPs and surfactants at fluid interfaces can lead to independent control of both the adsorbed amount and surface pressure. In contrast to prior work, both species investigated (NPs and surfactants) interact reversibly with the interface and without the surface active species binding to NPs. Independent measurements of the adsorption and surface pressure isotherms allow determination of the equation of state (EOS) of the interface under conditions where the NPs and surfactants are both in dynamic equilibrium with the bulk phase. The adsorption and surface pressure measurements are performed with gold NPs of two different sizes (5 and 10 nm), at two pH values, and across a wide concentration range of surfactant (tetrapentylammonium, TPeA + ) and NPs. We show that free surface active ions compete with NPs for the interface and give rise to larger surface pressures upon the adsorption of NPs. Through a competitive adsorption model, we decouple the contributions of NPs wetting at the interface and their surface activity on the measured surface pressure. We also demonstrate reversible control of adsorbed amount via changes in the surfactant concentration or the aqueous phase pH.

  9. Accident sequence analysis of human-computer interface design

    International Nuclear Information System (INIS)

    Fan, C.-F.; Chen, W.-H.

    2000-01-01

    It is important to predict potential accident sequences of human-computer interaction in a safety-critical computing system so that vulnerable points can be disclosed and removed. We address this issue by proposing a Multi-Context human-computer interaction Model along with its analysis techniques, an Augmented Fault Tree Analysis, and a Concurrent Event Tree Analysis. The proposed augmented fault tree can identify the potential weak points in software design that may induce unintended software functions or erroneous human procedures. The concurrent event tree can enumerate possible accident sequences due to these weak points

  10. Virtual microscopy : Merging of computer mediated collaboration and intuitive interfacing

    NARCIS (Netherlands)

    De Ridder, H.; De Ridder-Sluiter, J.G.; Kluin, P.M.; Christiaans, H.H.C.M.

    2009-01-01

    Ubiquitous computing (or Ambient Intelligence) is an upcoming technology that is usually associated with futuristic smart environments in which information is available anytime anywhere and with which humans can interact in a natural, multimodal way. However spectacular the corresponding scenarios

  11. Computer Program Development Specification for Tactical Interface System.

    Science.gov (United States)

    1981-07-31

    CNTL CNTL TO ONE VT~i.AE CR1 & TWELVE VT100 LCARD READER VIDEO TERMINALS, SIX LA12O) HARD- COPY TERMINALS, & VECTOR GRAPHICS RPO % TERMINAL 17%M DISK...this data into the TIS para - .. meter tables in the TISGBL common area. ICEHANDL will send test interface ICE to PSS in one of two modes: perio- dically...STOPCauss te TI sotwar toexit ,9.*9~ .r .~ * ~%.’h .9~ .. a .~ .. a. 1 , , p * % .’.-:. .m 7 P : SDSS-MMP-BI ." 31 July 1981 TCL commands authorized

  12. Excess electrons at anatase TiO2 surfaces and interfaces: insights from first principles simulations

    Science.gov (United States)

    Selçuk, Sencer; Selloni, Annabella

    2017-07-01

    TiO2 is an important technological material with widespread applications in photocatalysis, photovoltaics and self-cleaning surfaces. Excess electrons from intrinsic defects, dopants and photoexcitation play a key role in the properties of TiO2 that are relevant to its energy-related applications. The picture of excess and photoexcited electrons in TiO2 is based on the polaron model, where the electron forms a localized state that is stabilized by an accompanying lattice distortion. Here, we focus on excess and photoexcited electrons in anatase, the TiO2 polymorph most relevant to photocatalysis and solar energy conversion. For anatase, evidence of both small and large electron polarons has been reported in the literature. In addition, several studies have revealed a remarkable dependence of the photocatalytic activity of anatase on the crystal surface. After an overview of experimental studies, we briefly discuss recent progress in the theoretical description of polaronic states in TiO2, and finally present a more detailed account of our computational studies on the trapping and dynamics of excess electrons near the most common anatase surfaces and aqueous interfaces. The results of these studies provide a bridge between surface science experiments under vacuum conditions and observations of crystal-face-dependent photocatalysis on anatase, and support the idea that optimization of the ratio between different anatase facets can help enhance the photocatalytic activity of this material.

  13. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface

    Science.gov (United States)

    Norton, James J. S.; Lee, Dong Sup; Lee, Jung Woo; Lee, Woosik; Kwon, Ohjin; Won, Phillip; Jung, Sung-Young; Cheng, Huanyu; Jeong, Jae-Woong; Akce, Abdullah; Umunna, Stephen; Na, Ilyoun; Kwon, Yong Ho; Wang, Xiao-Qi; Liu, ZhuangJian; Paik, Ungyu; Huang, Yonggang; Bretl, Timothy; Yeo, Woon-Hong; Rogers, John A.

    2015-01-01

    Recent advances in electrodes for noninvasive recording of electroencephalograms expand opportunities collecting such data for diagnosis of neurological disorders and brain–computer interfaces. Existing technologies, however, cannot be used effectively in continuous, uninterrupted modes for more than a few days due to irritation and irreversible degradation in the electrical and mechanical properties of the skin interface. Here we introduce a soft, foldable collection of electrodes in open, fractal mesh geometries that can mount directly and chronically on the complex surface topology of the auricle and the mastoid, to provide high-fidelity and long-term capture of electroencephalograms in ways that avoid any significant thermal, electrical, or mechanical loading of the skin. Experimental and computational studies establish the fundamental aspects of the bending and stretching mechanics that enable this type of intimate integration on the highly irregular and textured surfaces of the auricle. Cell level tests and thermal imaging studies establish the biocompatibility and wearability of such systems, with examples of high-quality measurements over periods of 2 wk with devices that remain mounted throughout daily activities including vigorous exercise, swimming, sleeping, and bathing. Demonstrations include a text speller with a steady-state visually evoked potential-based brain–computer interface and elicitation of an event-related potential (P300 wave). PMID:25775550

  14. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface.

    Science.gov (United States)

    Norton, James J S; Lee, Dong Sup; Lee, Jung Woo; Lee, Woosik; Kwon, Ohjin; Won, Phillip; Jung, Sung-Young; Cheng, Huanyu; Jeong, Jae-Woong; Akce, Abdullah; Umunna, Stephen; Na, Ilyoun; Kwon, Yong Ho; Wang, Xiao-Qi; Liu, ZhuangJian; Paik, Ungyu; Huang, Yonggang; Bretl, Timothy; Yeo, Woon-Hong; Rogers, John A

    2015-03-31

    Recent advances in electrodes for noninvasive recording of electroencephalograms expand opportunities collecting such data for diagnosis of neurological disorders and brain-computer interfaces. Existing technologies, however, cannot be used effectively in continuous, uninterrupted modes for more than a few days due to irritation and irreversible degradation in the electrical and mechanical properties of the skin interface. Here we introduce a soft, foldable collection of electrodes in open, fractal mesh geometries that can mount directly and chronically on the complex surface topology of the auricle and the mastoid, to provide high-fidelity and long-term capture of electroencephalograms in ways that avoid any significant thermal, electrical, or mechanical loading of the skin. Experimental and computational studies establish the fundamental aspects of the bending and stretching mechanics that enable this type of intimate integration on the highly irregular and textured surfaces of the auricle. Cell level tests and thermal imaging studies establish the biocompatibility and wearability of such systems, with examples of high-quality measurements over periods of 2 wk with devices that remain mounted throughout daily activities including vigorous exercise, swimming, sleeping, and bathing. Demonstrations include a text speller with a steady-state visually evoked potential-based brain-computer interface and elicitation of an event-related potential (P300 wave).

  15. Equilibrium and surface stability of liquid dielectric interface in electrical and gravitational fields

    Energy Technology Data Exchange (ETDEWEB)

    Ievlev, I I; Isers, A B

    1976-01-01

    An examination is made of the problem of locating the stable equilibrium surface shape of the interface between two liquid, uniform, isotropic, ideal dielectrics subject to the force of gravity, surface tension, and electrical forces. The conditions for the equilibrium and surface stability of the interface were obtained from the minimum free energy principle. These conditions are used for solving problems on locating the stable equilibrium interface boundary between two dielectrics positioned between infinite charged vertical plates, between infinite vertical coaxial cylinders, between infinite grounded plates and two horizontal charged thin cylinders placed between them. 8 references, 4 figures.

  16. Development and functional demonstration of a wireless intraoral inductive tongue computer interface for severely disabled persons.

    Science.gov (United States)

    N S Andreasen Struijk, Lotte; Lontis, Eugen R; Gaihede, Michael; Caltenco, Hector A; Lund, Morten Enemark; Schioeler, Henrik; Bentsen, Bo

    2017-08-01

    Individuals with tetraplegia depend on alternative interfaces in order to control computers and other electronic equipment. Current interfaces are often limited in the number of available control commands, and may compromise the social identity of an individual due to their undesirable appearance. The purpose of this study was to implement an alternative computer interface, which was fully embedded into the oral cavity and which provided multiple control commands. The development of a wireless, intraoral, inductive tongue computer was described. The interface encompassed a 10-key keypad area and a mouse pad area. This system was embedded wirelessly into the oral cavity of the user. The functionality of the system was demonstrated in two tetraplegic individuals and two able-bodied individuals Results: The system was invisible during use and allowed the user to type on a computer using either the keypad area or the mouse pad. The maximal typing rate was 1.8 s for repetitively typing a correct character with the keypad area and 1.4 s for repetitively typing a correct character with the mouse pad area. The results suggest that this inductive tongue computer interface provides an esthetically acceptable and functionally efficient environmental control for a severely disabled user. Implications for Rehabilitation New Design, Implementation and detection methods for intra oral assistive devices. Demonstration of wireless, powering and encapsulation techniques suitable for intra oral embedment of assistive devices. Demonstration of the functionality of a rechargeable and fully embedded intra oral tongue controlled computer input device.

  17. Semi-supervised adaptation in ssvep-based brain-computer interface using tri-training

    DEFF Research Database (Denmark)

    Bender, Thomas; Kjaer, Troels W.; Thomsen, Carsten E.

    2013-01-01

    This paper presents a novel and computationally simple tri-training based semi-supervised steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). It is implemented with autocorrelation-based features and a Naïve-Bayes classifier (NBC). The system uses nine characters...

  18. MULTI - multifunctional interface of the IBM XT and AT type personal computers

    International Nuclear Information System (INIS)

    Gross, T.; Kalavski, D.; Rubin, D.; Tulaev, A.B.; Tumanov, A.V.

    1988-01-01

    MULTI multifunctional interface which enables to solve problems of personal computer connestion with physical equipment without application of intermediate buses is described. Parallel 32-digit bidirectional 1/10 register and buffered bus of personal computer represent MULTI base. Ways of MULTI application are described

  19. Mind the Sheep! User Experience Evaluation & Brain-Computer Interface Games

    NARCIS (Netherlands)

    Gürkök, Hayrettin

    2012-01-01

    A brain-computer interface (BCI) infers our actions (e.g. a movement), intentions (e.g. preparation for a movement) and psychological states (e.g. emotion, attention) by interpreting our brain signals. It uses the inferences it makes to manipulate a computer. Although BCIs have long been used

  20. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2017-05-01

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  1. Modification of surface/neuron interfaces for neural cell-type specific responses: a review

    International Nuclear Information System (INIS)

    Chen, Cen; Kong, Xiangdong; Lee, In-Seop

    2016-01-01

    Surface/neuron interfaces have played an important role in neural repair including neural prostheses and tissue engineered scaffolds. This comprehensive literature review covers recent studies on the modification of surface/neuron interfaces. These interfaces are identified in cases both where the surfaces of substrates or scaffolds were in direct contact with cells and where the surfaces were modified to facilitate cell adhesion and controlling cell-type specific responses. Different sources of cells for neural repair are described, such as pheochromocytoma neuronal-like cell, neural stem cell (NSC), embryonic stem cell (ESC), mesenchymal stem cell (MSC) and induced pluripotent stem cell (iPS). Commonly modified methods are discussed including patterned surfaces at micro- or nano-scale, surface modification with conducting coatings, and functionalized surfaces with immobilized bioactive molecules. These approaches to control cell-type specific responses have enormous potential implications in neural repair. (paper)

  2. Ultraclean Si/Si interface formation by surface preparation and direct bonding in ultrahigh vacuum

    DEFF Research Database (Denmark)

    Hermansson, Karin; Grey, Francois; Bengtsson, Stefan

    1998-01-01

    Silicon surfaces have been cleaned and bonded in ultrahigh vacuum, at a pressure in the 10(-10) Torr range. The bonded interfaces show extremely low contamination levels as measured by secondary ion mass spectroscopy. Nevertheless, a potential barrier could be detected at the interface by spreading...

  3. The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Klick, Alwin

    2014-01-01

    Two-photon photoemission electron microscopy (2P-PEEM) is used to measure the real and imaginary part of the dispersion relation of surface plasmon polaritons at different interface systems. A comparison of calculated and measured dispersion data for a gold/vacuum interface demonstrates...

  4. Computer organization and design the hardware/software interface

    CERN Document Server

    Patterson, David A

    2009-01-01

    The classic textbook for computer systems analysis and design, Computer Organization and Design, has been thoroughly updated to provide a new focus on the revolutionary change taking place in industry today: the switch from uniprocessor to multicore microprocessors. This new emphasis on parallelism is supported by updates reflecting the newest technologies with examples highlighting the latest processor designs, benchmarking standards, languages and tools. As with previous editions, a MIPS processor is the core used to present the fundamentals of hardware technologies, assembly language, compu

  5. The Voice as Computer Interface: A Look at Tomorrow's Technologies.

    Science.gov (United States)

    Lange, Holley R.

    1991-01-01

    Discussion of voice as the communications device for computer-human interaction focuses on voice recognition systems for use within a library environment. Voice technologies are described, including voice response and voice recognition; examples of voice systems in use in libraries are examined; and further possibilities, including use with…

  6. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  7. Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke.

    Science.gov (United States)

    Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2014-04-01

    Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.

  8. Electrophysiological Brain Activity during the Control of a Motor Imagery-Based Brain–Computer Interface

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Aziatskaya, G.A.; Bobrov, P.D.; Luykmanov, R. Kh.; Fedotova, I.R.; Húsek, Dušan; Snášel, V.

    2017-01-01

    Roč. 43, č. 5 (2017), s. 501-511 ISSN 0362-1197 Institutional support: RVO:67985807 Keywords : brain–computer interface * neurointerface * EEG * motor imagery * EEG rhythm synchronization and desynchronization * independent component analysis * EEG inverse problem * neurorehabilitation Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

  9. Virtual microscopy: Merging of computer mediated collaboration and intuitive interfacing

    OpenAIRE

    De Ridder, H.; De Ridder-Sluiter, J.G.; Kluin, P.M.; Christiaans, H.H.C.M.

    2009-01-01

    Ubiquitous computing (or Ambient Intelligence) is an upcoming technology that is usually associated with futuristic smart environments in which information is available anytime anywhere and with which humans can interact in a natural, multimodal way. However spectacular the corresponding scenarios may be, it is equally challenging to consider how this technology may enhance existing situations. This is illustrated by a case study from the Dutch medical field: central quality reviewing for pat...

  10. A surface code quantum computer in silicon

    Science.gov (United States)

    Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.

    2015-01-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  11. A surface code quantum computer in silicon.

    Science.gov (United States)

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.

  12. Visibility Aspects Importance of User Interface Reception in Cloud Computing Applications with Increased Automation

    OpenAIRE

    Haxhixhemajli, Denis

    2012-01-01

    Visibility aspects of User Interfaces are important; they deal with the crucial phase of human-computer interaction. They allow users to perform and at the same time hide the complexity of the system. Acceptance of new systems depends on how visibility aspects of the User Interfaces are presented. Human eyes make the first contact with the appearance of any system by so it generates the very beginning of the human – application interaction. In this study it is enforced that visibility aspects...

  13. From coherent to incoherent mismatched interfaces: A generalized continuum formulation of surface stresses

    Science.gov (United States)

    Dingreville, Rémi; Hallil, Abdelmalek; Berbenni, Stéphane

    2014-12-01

    The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. The coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent and incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.

  14. Incorporating modern neuroscience findings to improve brain-computer interfaces: tracking auditory attention.

    Science.gov (United States)

    Wronkiewicz, Mark; Larson, Eric; Lee, Adrian Kc

    2016-10-01

    Brain-computer interface (BCI) technology allows users to generate actions based solely on their brain signals. However, current non-invasive BCIs generally classify brain activity recorded from surface electroencephalography (EEG) electrodes, which can hinder the application of findings from modern neuroscience research. In this study, we use source imaging-a neuroimaging technique that projects EEG signals onto the surface of the brain-in a BCI classification framework. This allowed us to incorporate prior research from functional neuroimaging to target activity from a cortical region involved in auditory attention. Classifiers trained to detect attention switches performed better with source imaging projections than with EEG sensor signals. Within source imaging, including subject-specific anatomical MRI information (instead of using a generic head model) further improved classification performance. This source-based strategy also reduced accuracy variability across three dimensionality reduction techniques-a major design choice in most BCIs. Our work shows that source imaging provides clear quantitative and qualitative advantages to BCIs and highlights the value of incorporating modern neuroscience knowledge and methods into BCI systems.

  15. A Graphical User Interface for the Computational Fluid Dynamics Software OpenFOAM

    OpenAIRE

    Melbø, Henrik Kaald

    2014-01-01

    A graphical user interface for the computational fluid dynamics software OpenFOAM has been constructed. OpenFOAM is a open source and powerful numerical software, but has much to be wanted in the field of user friendliness. In this thesis the basic operation of OpenFOAM will be introduced and the thesis will emerge in a graphical user interface written in PyQt. The graphical user interface will make the use of OpenFOAM simpler, and hopefully make this powerful tool more available for the gene...

  16. Surface and interface electronic structure: Sixth year activity report

    International Nuclear Information System (INIS)

    Kevan, S.D.

    1992-01-01

    Several productive runs were made on beamline U4A at NSLS. An upgrade of angle-resolved photoemission spectrometer was largely completed on the beamline. Progress was made on studies of surface states and reconstruction on Mo(001) and W(001), and of surface states and resonances on Pt(111)

  17. A covert attention P300-based brain-computer interface: Geospell.

    Science.gov (United States)

    Aloise, Fabio; Aricò, Pietro; Schettini, Francesca; Riccio, Angela; Salinari, Serenella; Mattia, Donatella; Babiloni, Fabio; Cincotti, Febo

    2012-01-01

    The Farwell and Donchin P300 speller interface is one of the most widely used brain-computer interface (BCI) paradigms for writing text. Recent studies have shown that the recognition accuracy of the P300 speller decreases significantly when eye movement is impaired. This report introduces the GeoSpell interface (Geometric Speller), which implements a stimulation framework for a P300-based BCI that has been optimised for operation in covert visual attention. We compared the Geospell with the P300 speller interface under overt attention conditions with regard to effectiveness, efficiency and user satisfaction. Ten healthy subjects participated in the study. The performance of the GeoSpell interface in covert attention was comparable with that of the P300 speller in overt attention. As expected, the effectiveness of the spelling decreased with the new interface in covert attention. The NASA task load index (TLX) for workload assessment did not differ significantly between the two modalities. This study introduces and evaluates a gaze-independent, P300-based brain-computer interface, the efficacy and user satisfaction of which were comparable with those off the classical P300 speller. Despite a decrease in effectiveness due to the use of covert attention, the performance of the GeoSpell far exceeded the threshold of accuracy with regard to effective spelling.

  18. Free surface modelling with two-fluid model and reduced numerical diffusion of the interface

    International Nuclear Information System (INIS)

    Strubelj, Luka; Tiselj, Izrok

    2008-01-01

    Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening

  19. Computer organization and design the hardware/software interface

    CERN Document Server

    Patterson, David A

    2011-01-01

    This Fourth Revised Edition of Computer Organization and Design includes a complete set of updated and new exercises, along with improvements and changes suggested by instructors and students. Focusing on the revolutionary change taking place in industry today--the switch from uniprocessor to multicore microprocessors--this classic textbook has a modern and up-to-date focus on parallelism in all its forms. Examples highlighting multicore and GPU processor designs are supported with performance and benchmarking data. As with previous editions, a MIPS processor is the core used to pres

  20. Automatic pitch detection for a computer game interface

    International Nuclear Information System (INIS)

    Fonseca Solis, Juan M.

    2015-01-01

    A software able to recognize notes played by musical instruments is created through automatic pitch recognition. A pitch recognition algorithm is embedded into a software project, using the C implementation of SWIPEP. A memory game is chosen for project. A sequence of notes is listened and played by user to the computer, using a soprano recorder flute. The basic concepts to understand the acoustic phenomena involved are explained. The paper is aimed for all students with basic programming knowledge and want to incorporate sound processing to their projects. (author) [es

  1. Computer organization and design the hardware/software interface

    CERN Document Server

    Patterson, David A

    2007-01-01

    What's New in the Third Edition, Revised Printing. The same great book gets better! This revised printing features all of the original content along with these additional features:. • Appendix A (Assemblers, Linkers, and the SPIM Simulator) has been moved from the CD-ROM into the printed book. • Corrections and bug fixes. Third Edition features. New pedagogical features. • Understanding Program Performance. - Analyzes key performance issues from the programmer's perspective. • Check Yourself Questions. - Helps students assess their understanding of key points of a section. • Computers In the R

  2. Investigation and evaluation into the usability of human-computer interfaces using a typical CAD system

    Energy Technology Data Exchange (ETDEWEB)

    Rickett, J D

    1987-01-01

    This research program covers three topics relating to the human-computer interface namely, voice recognition, tools and techniques for evaluation, and user and interface modeling. An investigation into the implementation of voice-recognition technologies examines how voice recognizers may be evaluated in commercial software. A prototype system was developed with the collaboration of FEMVIEW Ltd. (marketing a CAD package). A theoretical approach to evaluation leads to the hypothesis that human-computer interaction is affected by personality, influencing types of dialogue, preferred methods for providing helps, etc. A user model based on personality traits, or habitual-behavior patterns (HBP) is presented. Finally, a practical framework is provided for the evaluation of human-computer interfaces. It suggests that evaluation is an integral part of design and that the iterative use of evaluation techniques throughout the conceptualization, design, implementation and post-implementation stages will ensure systems that satisfy the needs of the users and fulfill the goal of usability.

  3. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    International Nuclear Information System (INIS)

    Angermann, Heike

    2014-01-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D it (E), and density D it,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on

  4. A Conceptual Architecture for Adaptive Human-Computer Interface of a PT Operation Platform Based on Context-Awareness

    Directory of Open Access Journals (Sweden)

    Qing Xue

    2014-01-01

    Full Text Available We present a conceptual architecture for adaptive human-computer interface of a PT operation platform based on context-awareness. This architecture will form the basis of design for such an interface. This paper describes components, key technologies, and working principles of the architecture. The critical contents covered context information modeling, processing, relationship establishing between contexts and interface design knowledge by use of adaptive knowledge reasoning, and visualization implementing of adaptive interface with the aid of interface tools technology.

  5. The Impact of User Interface on Young Children’s Computational Thinking

    Directory of Open Access Journals (Sweden)

    Amanda Sullivan

    2017-07-01

    Full Text Available Aim/Purpose: Over the past few years, new approaches to introducing young children to computational thinking have grown in popularity. This paper examines the role that user interfaces have on children’s mastery of computational thinking concepts and positive interpersonal behaviors. Background: There is a growing pressure to begin teaching computational thinking at a young age. This study explores the affordances of two very different programming interfaces for teaching computational thinking: a graphical coding application on the iPad (ScratchJr and tangible programmable robotics kit (KIBO. Methodology\t: This study used a mixed-method approach to explore the learning experiences that young children have with tangible and graphical coding interfaces. A sample of children ages four to seven (N = 28 participated. Findings: Results suggest that type of user interface does have an impact on children’s learning, but is only one of many factors that affect positive academic and socio-emotional experiences. Tangible and graphical interfaces each have qualities that foster different types of learning

  6. A high speed, selective multi-ADC to computer data transfer interface, for nuclear physics experiments

    International Nuclear Information System (INIS)

    Arctaedius, T.; Ekstroem, R.E.

    1986-08-01

    A link connecting up to fifteen Analog to Digital Converters with a computer, through a Direct Memory Access interface, is described. The interface decides which of the connected ADC:s that participate in an event, and transfers the output-data from these to the computer, accompanied with a 2-byte word identifying the participating ADC:s. This data format can be recorded on tape without further transformations, and is easy to unfold at the off-line analysis. Data transfer is accomplished in less than a few microseconds, which is made possible by the use of high speed TTL circuits. (authors)

  7. Overlapped flowers yield detection using computer-based interface

    Directory of Open Access Journals (Sweden)

    Anuradha Sharma

    2016-09-01

    Full Text Available Precision agriculture has always dealt with the accuracy and timely information about agricultural products. With the help of computer hardware and software technology designing a decision support system that could generate flower yield information and serve as base for management and planning of flower marketing is made so easy. Despite such technologies, some problem still arise, for example, a colour homogeneity of a specimen which cannot be obtained similar to actual colour of image and overlapping of image. In this paper implementing a new ‘counting algorithm’ for overlapped flower is being discussed. For implementing this algorithm, some techniques and operations such as colour image segmentation technique, image segmentation, using HSV colour space and morphological operations have been used. In this paper used two most popular colour space; those are RGB and HSV. HSV colour space decouples brightness from a chromatic component in the image, by which it provides better result in case for occlusion and overlapping.

  8. Brain-Computer Interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair.

    Science.gov (United States)

    Ron-Angevin, Ricardo; Velasco-Álvarez, Francisco; Fernández-Rodríguez, Álvaro; Díaz-Estrella, Antonio; Blanca-Mena, María José; Vizcaíno-Martín, Francisco Javier

    2017-05-30

    Certain diseases affect brain areas that control the movements of the patients' body, thereby limiting their autonomy and communication capacity. Research in the field of Brain-Computer Interfaces aims to provide patients with an alternative communication channel not based on muscular activity, but on the processing of brain signals. Through these systems, subjects can control external devices such as spellers to communicate, robotic prostheses to restore limb movements, or domotic systems. The present work focus on the non-muscular control of a robotic wheelchair. A proposal to control a wheelchair through a Brain-Computer Interface based on the discrimination of only two mental tasks is presented in this study. The wheelchair displacement is performed with discrete movements. The control signals used are sensorimotor rhythms modulated through a right-hand motor imagery task or mental idle state. The peculiarity of the control system is that it is based on a serial auditory interface that provides the user with four navigation commands. The use of two mental tasks to select commands may facilitate control and reduce error rates compared to other endogenous control systems for wheelchairs. Seventeen subjects initially participated in the study; nine of them completed the three sessions of the proposed protocol. After the first calibration session, seven subjects were discarded due to a low control of their electroencephalographic signals; nine out of ten subjects controlled a virtual wheelchair during the second session; these same nine subjects achieved a medium accuracy level above 0.83 on the real wheelchair control session. The results suggest that more extensive training with the proposed control system can be an effective and safe option that will allow the displacement of a wheelchair in a controlled environment for potential users suffering from some types of motor neuron diseases.

  9. Neuroengineering tools/applications for bidirectional interfaces, brain computer interfaces, and neuroprosthetic implants - a review of recent progress

    Directory of Open Access Journals (Sweden)

    Ryan M Rothschild

    2010-10-01

    Full Text Available The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain-computer interfaces (BCIs, bidirectional interfaces and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography (EEG and near-infrared spectroscopy (NIRS. Then the problem of gliosis and solutions for (semi- permanent implant biocompatibility such as innovative implant coatings, materials and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators (IPGs and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation (TMS are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques.

  10. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    Science.gov (United States)

    Renaud, Gilles

    Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having

  11. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  12. Wyrm: A Brain-Computer Interface Toolbox in Python.

    Science.gov (United States)

    Venthur, Bastian; Dähne, Sven; Höhne, Johannes; Heller, Hendrik; Blankertz, Benjamin

    2015-10-01

    In the last years Python has gained more and more traction in the scientific community. Projects like NumPy, SciPy, and Matplotlib have created a strong foundation for scientific computing in Python and machine learning packages like scikit-learn or packages for data analysis like Pandas are building on top of it. In this paper we present Wyrm ( https://github.com/bbci/wyrm ), an open source BCI toolbox in Python. Wyrm is applicable to a broad range of neuroscientific problems. It can be used as a toolbox for analysis and visualization of neurophysiological data and in real-time settings, like an online BCI application. In order to prevent software defects, Wyrm makes extensive use of unit testing. We will explain the key aspects of Wyrm's software architecture and design decisions for its data structure, and demonstrate and validate the use of our toolbox by presenting our approach to the classification tasks of two different data sets from the BCI Competition III. Furthermore, we will give a brief analysis of the data sets using our toolbox, and demonstrate how we implemented an online experiment using Wyrm. With Wyrm we add the final piece to our ongoing effort to provide a complete, free and open source BCI system in Python.

  13. Brain-computer interface based on generation of visual images.

    Directory of Open Access Journals (Sweden)

    Pavel Bobrov

    Full Text Available This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP classifier.

  14. What Do IT-People Know About the (Nordic) History of Computers and User Interfaces?

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    2009-01-01

    :  This paper reports a preliminary, empirical exploration of what IT-people know about the history of computers and user interfaces.  The principal motivation for the study is that the younger generations such as students in IT seem to know very little about these topics.  The study employed...... to become the designation or even the icon for the computer.  In other words, one of the key focal points in the area of human-computer interaction: to make the computer as such invisible seems to have been successful...

  15. Self-consistent Green’s-function technique for surfaces and interfaces

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1991-01-01

    We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short...... ranged, and only a few layers close to the interface need be treated self-consistently via a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface energies that are in excellent agreement with earlier calculations. For the bcc(110) surface of the alkali metals, we find...

  16. Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Zaibing; Mi, W. B.; Aboljadayel, Razan; Zhang, Bei; Zhang, Q.; Gonzalez Barba, Priscila; Manchon, Aurelien; Zhang, Xixiang

    2012-01-01

    . By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced

  17. Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Zaibing

    2012-09-27

    In this paper, we report the results of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers with perpendicular magnetic anisotropy. The surface scattering effect has been extracted from the total anomalous Hall effect. By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced by rapid thermal annealing modifies not only the magnetization and longitudinal resistivity but also the anomalous Hall effect; a large exponent γ ∼ 5.7 has been attributed to interface scattering-dominated anomalous Hall effect.

  18. Interfacing biomembrane mimetic polymer surfaces with living cells - Surface modification for reliable bioartificial liver

    International Nuclear Information System (INIS)

    Iwasaki, Yasuhiko; Takami, Utae; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2008-01-01

    The surface design used for reducing nonspecific biofouling is one of the most important issues for the fabrication of medical devices. We present here a newly synthesized a carbohydrate-immobilized phosphorylcholine polymer for surface modification of medical devices to control the interface with living cells. A random copolymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate (BMA), and 2-lactobionamidoethyl methacrylate (LAMA) was synthesized by conventional radical polymerization. The monomer feeding ratio in the copolymer was adjusted to 24/75/1 (MPC/BMA/LAMA). The copolymer (PMBL1.0) could be coated by solvent evaporation from an ethanol solution. Cells of the human hepatocellular liver carcinoma cell line (HepG2) having asialoglycoprotein receptors (ASGPRs) were seeded on PMBL1.0 or poly(BMA) (PBMA)-coated PET plates. On PBMA, many adherent cells were observed and were well spread with monolayer adhesion. HepG2 adhesion was observed on PMBL1.0 because the cell has ASGPRs. Furthermore, some of the cells adhering to PMBL1.0 had a spheroid formation and similarly shaped spheroids were scattered on the surface. According to confocal laser microscopic observation after 96 h cultivation, it was found that albumin production preferentially occurred in the center of the spheroid. The albumin production of the cells that adhered to PBMA was sparse. The amount of albumin production per unit cell that adhered to PMBL1.0 was determined by ELISA and was significantly higher than that which adhered to PBMA. Long-term cultivation of HepG2 was also performed using hollow fiber mini-modules coated with PMBL1.0. The concentration of albumin produced from HepG2 increased continuously for one month. In the mini-module, the function of HepG2 was effectively preserved for that period. On the hollow fiber membrane, spheroid formation of HepG2 cells was also observed. In conclusion, PMBL1.0 can provide a suitable surface for the cultivation of

  19. UIMX: A User Interface Management System For Scientific Computing With X Windows

    Science.gov (United States)

    Foody, Michael

    1989-09-01

    Applications with iconic user interfaces, (for example, interfaces with pulldown menus, radio buttons, and scroll bars), such as those found on Apple's Macintosh computer and the IBM PC under Microsoft's Presentation Manager, have become very popular, and for good reason. They are much easier to use than applications with traditional keyboard-oriented interfaces, so training costs are much lower and just about anyone can use them. They are standardized between applications, so once you learn one application you are well along the way to learning another. The use of one reinforces the common elements between applications of the interface, and, as a result, you remember how to use them longer. Finally, for the developer, their support costs can be much lower because of their ease of use.

  20. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future.

    Science.gov (United States)

    Huggins, Jane E; Guger, Christoph; Allison, Brendan; Anderson, Charles W; Batista, Aaron; Brouwer, Anne-Marie A-M; Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward

    2014-01-01

    The Fifth International Brain-Computer Interface (BCI) Meeting met June 3-7 th , 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development.

  1. High Performance Computing - Power Application Programming Interface Specification Version 1.4

    Energy Technology Data Exchange (ETDEWEB)

    Laros III, James H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DeBonis, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelly, Suzanne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Levenhagen, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Olivier, Stephen Lecler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pedretti, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  2. Software and man-machine interface considerations for a nuclear plant computer replacement and upgrade project

    International Nuclear Information System (INIS)

    Diamond, G.; Robinson, E.

    1984-01-01

    Some of the key software functions and Man-Machine Interface considerations in a computer replacement and upgrade project for a nuclear power plant are described. The project involves the installation of two separate computer systems: an Emergency Response Facilities Computer System (ERFCS) and a Plant Process Computer System (PPCS). These systems employ state-of-the-art computer hardware and software. The ERFCS is a new system intended to provide enhanced functions to meet NRC post-TMI guidelines. The PPCS is intended to replace and upgrade an existing obsolete plant computer system. A general overview of the hardware and software aspects of the replacement and upgrade is presented. The work done to develop the upgraded Man-Machine Interface is described. For the ERFCS, a detailed discussion is presented of the work done to develop logic to evaluate the readiness and performance of safety systems and their supporting functions. The Man-Machine Interface considerations of reporting readiness and performance to the operator are discussed. Finally, the considerations involved in the implementation of this logic in real-time software are discussed.. For the PPCS, a detailed discussion is presented of some new features

  3. Design guidelines for the use of audio cues in computer interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sumikawa, D.A.; Blattner, M.M.; Joy, K.I.; Greenberg, R.M.

    1985-07-01

    A logical next step in the evolution of the computer-user interface is the incorporation of sound thereby using our senses of ''hearing'' in our communication with the computer. This allows our visual and auditory capacities to work in unison leading to a more effective and efficient interpretation of information received from the computer than by sight alone. In this paper we examine earcons, which are audio cues, used in the computer-user interface to provide information and feedback to the user about computer entities (these include messages and functions, as well as states and labels). The material in this paper is part of a larger study that recommends guidelines for the design and use of audio cues in the computer-user interface. The complete work examines the disciplines of music, psychology, communication theory, advertising, and psychoacoustics to discover how sound is utilized and analyzed in those areas. The resulting information is organized according to the theory of semiotics, the theory of signs, into the syntax, semantics, and pragmatics of communication by sound. Here we present design guidelines for the syntax of earcons. Earcons are constructed from motives, short sequences of notes with a specific rhythm and pitch, embellished by timbre, dynamics, and register. Compound earcons and family earcons are introduced. These are related motives that serve to identify a family of related cues. Examples of earcons are given.

  4. The computer-controlled GPIB-RS232 interface for data transmission

    International Nuclear Information System (INIS)

    Bai Xiaowei

    1993-01-01

    A kind of RS232-GPIB interface circuit is introduced, which provides communication between the serial system and the instrument with GPIB. Port P 1 of 8031 is used to select function mode as listener, talker or others. Under the control of a personal computer, the data communication is completed both in serial and the parallel modes

  5. Ethical Issues in Brain-Computer Interface Research, Development, and Dissemination

    NARCIS (Netherlands)

    Vlek, Rutger; Steines, David; Szibbo, Dyana; Kübler, Andrea; Schneider, Mary-Jane; Haselager, Pim; Nijboer, Femke

    The steadily growing field of brain-computer interfacing (BCI) may develop useful technologies, with a potential impact not only on individuals, but also on society as a whole. At the same time, the development of BCI presents significant ethical and legal challenges. In a workshop during the 4th

  6. Detection of User Independent Single Trial ERPs in Brain Computer Interfaces: An Adaptive Spatial Filtering Approach

    DEFF Research Database (Denmark)

    Leza, Cristina; Puthusserypady, Sadasivan

    2017-01-01

    Brain Computer Interfaces (BCIs) use brain signals to communicate with the external world. The main challenges to address are speed, accuracy and adaptability. Here, a novel algorithm for P300 based BCI spelling system is presented, specifically suited for single-trial detection of Event...

  7. Evaluating a multi-player brain-computer interface game: challenge versus co-experience

    NARCIS (Netherlands)

    Gürkök, Hayrettin; Volpe, G; Reidsma, Dennis; Poel, Mannes; Camurri, A.; Obbink, Michel; Nijholt, Antinus

    2013-01-01

    Brain–computer interfaces (BCIs) have started to be considered as game controllers. The low level of control they provide prevents them from providing perfect control but allows the design of challenging games which can be enjoyed by players. Evaluation of enjoyment, or user experience (UX), is

  8. Myndplay: Measuring Attention Regulation with Single Dry Electrode Brain Computer Interface

    NARCIS (Netherlands)

    van der Wal, C.N.; Irrmischer, M.; Guo, Y.; Friston, K.; Faisal, A.; Hill, S.; Peng, H.

    2015-01-01

    Future applications for the detection of attention can be helped by the development and validation of single electrode brain computer interfaces that are small and user-friendly. The two objectives of this study were: to (1) understand the correlates of attention regulation as detected with the

  9. Brain-computer interface using P300 and virtual reality: A gaming approach for treating ADHD

    DEFF Research Database (Denmark)

    Rohani, Darius Adam; Sørensen, Helge Bjarup Dissing; Puthusserypady, Sadasivan

    2014-01-01

    This paper presents a novel brain-computer interface (BCI) system aiming at the rehabilitation of attention-deficit/hyperactive disorder in children. It uses the P300 potential in a series of feedback games to improve the subjects' attention. We applied a support vector machine (SVM) using temporal...

  10. Performance of Brain-computer Interfacing based on tactile selective sensation and motor imagery

    DEFF Research Database (Denmark)

    Yao, Lin; Sheng, Xinjun; Mrachacz-Kersting, Natalie

    2018-01-01

    We proposed a multi-class tactile brain-computer interface that utilizes stimulus-induced oscillatory dynamics. It was hypothesized that somatosensory attention can modulate tactile induced oscillation changes, which can decode different sensation attention tasks. Subjects performed four tactile...

  11. Ownership and Agency of an Independent Supernumerary Hand Induced by an Imitation Brain-Computer Interface.

    Science.gov (United States)

    Bashford, Luke; Mehring, Carsten

    2016-01-01

    To study body ownership and control, illusions that elicit these feelings in non-body objects are widely used. Classically introduced with the Rubber Hand Illusion, these illusions have been replicated more recently in virtual reality and by using brain-computer interfaces. Traditionally these illusions investigate the replacement of a body part by an artificial counterpart, however as brain-computer interface research develops it offers us the possibility to explore the case where non-body objects are controlled in addition to movements of our own limbs. Therefore we propose a new illusion designed to test the feeling of ownership and control of an independent supernumerary hand. Subjects are under the impression they control a virtual reality hand via a brain-computer interface, but in reality there is no causal connection between brain activity and virtual hand movement but correct movements are observed with 80% probability. These imitation brain-computer interface trials are interspersed with movements in both the subjects' real hands, which are in view throughout the experiment. We show that subjects develop strong feelings of ownership and control over the third hand, despite only receiving visual feedback with no causal link to the actual brain signals. Our illusion is crucially different from previously reported studies as we demonstrate independent ownership and control of the third hand without loss of ownership in the real hands.

  12. As We May Think and Be: Brain-computer interfaces to expand the substrate of mind

    Directory of Open Access Journals (Sweden)

    Mijail Demian Serruya

    2015-04-01

    Full Text Available Over a half-century ago, the scientist Vannevar Bush explored the conundrum of how to tap the exponentially rising sea of human knowledge for the betterment of humanity. In his description of a hypothetical electronic library he dubbed the memex, he anticipated internet search and online encyclopedias (Bush, 1945. By blurring the boundary between brain and computer, brain-computer interfaces (BCI could lead to more efficient use of electronic resources (Schalk, 2008. We could expand the substrate of the mind itself rather than merely interfacing it to external computers. Components of brain-computer interfaces could be re-arranged to create brain-brain interfaces, or tightly interconnected links between a person’s brain and ectopic neural modules. Such modules – whether sitting in a bubbling Petri dish, rendered in reciprocally linked integrated circuits, or implanted in our belly – would mark the first step on to a path of breaking out of the limitations imposed by our phylogenetic past Novel BCI architectures could generate novel abilities to navigate and access information that might speed translational science efforts and push the boundaries of human knowledge in an unprecedented manner.

  13. Bigger data for big data: from Twitter to brain-computer interfaces.

    Science.gov (United States)

    Roesch, Etienne B; Stahl, Frederic; Gaber, Mohamed Medhat

    2014-02-01

    We are sympathetic with Bentley et al.'s attempt to encompass the wisdom of crowds in a generative model, but posit that a successful attempt at using big data will include more sensitive measurements, more varied sources of information, and will also build from the indirect information available through technology, from ancillary technical features to data from brain-computer interfaces.

  14. Ethical Issues in Brain-Computer Interface Research, Development, and Dissemination

    NARCIS (Netherlands)

    Vlek, R.J.; Steines, D.; Szibbo, D.; Kübler, A.; Schneider, M.J.; Haselager, W.F.G.; Nijboer, F.

    2012-01-01

    The steadily growing field of brain–computer interfacing (BCI) may develop useful technologies, with a potential impact not only on individuals, but also on society as a whole. At the same time, the development of BCI presents significant ethical and legal challenges. In a workshop during the 4th

  15. Hacking the brain: Brain-computer interfacing technology and the ethics of neurosecurity

    NARCIS (Netherlands)

    Ienca, M.; Haselager, W.F.G.

    2016-01-01

    Brain-computer interfacing technologies are used as assistive technologies for patients as well as healthy subjects to control devices solely by brain activity. Yet the risks associated with the misuse of these technologies remain largely unexplored. Recent findings have shown that BCIs are

  16. The Asilomar Survey: Stakeholders' Opinions on Ethical Issues Related to Brain-Computer Interfacing

    NARCIS (Netherlands)

    Nijboer, Femke; Clausen, Jens; Allison, Brendan Z.; Haselager, Pim

    2013-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4th International BCI conference, which took place

  17. The Asilomar Survey: Stakeholders’ Opinions on Ethical Issues Related to Brain-Computer Interfacing

    NARCIS (Netherlands)

    Nijboer, F.; Clausen, J.; Allison, B.Z.; Haselager, W.F.G.

    2013-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4th International BCI conference, which took place

  18. Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience

    NARCIS (Netherlands)

    Jensen, O.; Bahramisharif, A.; Oostenveld, R.; Klanke, S.; Hadjipapas, A.; Okazaki, Y.O.; Gerven, M.A.J. van

    2011-01-01

    Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain-computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for

  19. Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience

    NARCIS (Netherlands)

    Jensen, O.; Bahramisharif, A.; Oostenveld, R.; Klanke, S.; Hadjipapas, A.; Okazaki, Y.O.; Gerven, M.A.J. van

    2011-01-01

    Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain–computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for

  20. Citation analysis of Computer Standards & Interfaces: Technical or also non-technical focus?

    NARCIS (Netherlands)

    G. van de Kaa (Geerten); H.J. de Vries (Henk); B. Baskaran (Balakumaran)

    2015-01-01

    textabstractThis paper analyzes to which extent research published in Computer Standards & Interfaces (CSI) has a technical focus. We find that CSI has been following its scope very closely in the last three years and that the majority of its publications have a technical focus. Articles published

  1. Toward affective brain-computer interfaces : exploring the neurophysiology of affect during human media interaction

    NARCIS (Netherlands)

    Mühl, C.

    2012-01-01

    Affective Brain-Computer Interfaces (aBCI), the sensing of emotions from brain activity, seems a fantasy from the realm of science fiction. But unlike faster-than-light travel or teleportation, aBCI seems almost within reach due to novel sensor technologies, the advancement of neuroscience, and the

  2. Touch in Computer-Mediated Environments: An Analysis of Online Shoppers' Touch-Interface User Experiences

    Science.gov (United States)

    Chung, Sorim

    2016-01-01

    Over the past few years, one of the most fundamental changes in current computer-mediated environments has been input devices, moving from mouse devices to touch interfaces. However, most studies of online retailing have not considered device environments as retail cues that could influence users' shopping behavior. In this research, I examine the…

  3. Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor

    Science.gov (United States)

    Park, Jun Hong

    For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part

  4. Selection of suitable hand gestures for reliable myoelectric human computer interface.

    Science.gov (United States)

    Castro, Maria Claudia F; Arjunan, Sridhar P; Kumar, Dinesh K

    2015-04-09

    Myoelectric controlled prosthetic hand requires machine based identification of hand gestures using surface electromyogram (sEMG) recorded from the forearm muscles. This study has observed that a sub-set of the hand gestures have to be selected for an accurate automated hand gesture recognition, and reports a method to select these gestures to maximize the sensitivity and specificity. Experiments were conducted where sEMG was recorded from the muscles of the forearm while subjects performed hand gestures and then was classified off-line. The performances of ten gestures were ranked using the proposed Positive-Negative Performance Measurement Index (PNM), generated by a series of confusion matrices. When using all the ten gestures, the sensitivity and specificity was 80.0% and 97.8%. After ranking the gestures using the PNM, six gestures were selected and these gave sensitivity and specificity greater than 95% (96.5% and 99.3%); Hand open, Hand close, Little finger flexion, Ring finger flexion, Middle finger flexion and Thumb flexion. This work has shown that reliable myoelectric based human computer interface systems require careful selection of the gestures that have to be recognized and without such selection, the reliability is poor.

  5. A finite-density calculation of the surface tension of isotropic-nematic interfaces

    International Nuclear Information System (INIS)

    Moore, B.G.; McMullen, W.E.

    1992-01-01

    The surface tension of the isotropic-nematic interface in a fluid of intermediate-sized hard particles is studied and calculated. The transition from isotropic to nematic is fixed to occur in a continuous fashion by varying the biaxiality of the model particles. A reversal in the preferred orientation of the bulk nematic relative to the isotropic-nematic interface suggests an oblique orientation of the bulk nematic. 32 refs., 8 figs

  6. Physical and chemical properties of materials surfaces and interfaces

    International Nuclear Information System (INIS)

    Barbier, G.; Chevarier, A.; Chevarier, N.; Duclot, J.C.; Jaffrezic, C.; Leblond, E.; Millard-Pinard, N.; Marest, G.; Moncoffre, N.; Plantier, A.; Somatri, R.

    1998-01-01

    These studies are based on the combination of ion implantation and nuclear analysis techniques. They are performed on metals, semiconductors and ceramic materials in collaboration with laboratories involved in the elaboration of these materials. The different studies are the following: 1. surface treatment of aluminium using ion beam techniques; 2. hydrogen release in new plasma facing materials in Tokamak devices; 3. development of ion beam analysis methods to determine elementary depth profiles in thin films used in micro electronics; 4. Moessbauer studies of oxides prepared by laser ablation and ion implantation. (authors)

  7. Study of Surface States at the Semiconductor/electrolyte Interface of Liquid-Junction Solar Cells.

    Science.gov (United States)

    Siripala, Withana P.

    The existence of surface states at the semiconductor electrolyte interface of photoelectrochemical (PEC) cells plays a major role in determining the performance of the device in regard to the potential distribution and transport mechanisms of photogenerated carriers at the interface. We have investigated the n-TiO(,2)/electrolyte interface using three experimental techniques: relaxation spectrum analysis, photocurrent spectroscopy, and electrolyte electroreflectance (EER) spectroscopy. The effect of Fermi level pinning at the CdIn(,2)SE(,4)/aqueous-polysulfide interface was also studied using EER. Three distinct surface states were observed at the n-TiO(,2)/aqueous-electrolyte interface. The dominant state, which tails from the conduction band edge, is primarily responsible for the surface recombination of photocarriers at the interface. The second surface state, observed at 0.8 eV below the conduction band of TiO(,2), originates in the dark charge transfer intermediates (TiO(,2)-H). It is proposed that the sub-bandgap (SBG) photocurrent-potential behavior is a result of the mechanism of dynamic formation and annihilation of these surface states. The third surface state was at 1.3 eV below the conduction band of TiO(,2), and the SBG EER measurements show this state is "intrinsic" to the surface. These states were detected with SBG EER and impedance measurements in the presence of electrolytes that can adsorb on the surface of TiO(,2). Surface concentration of these states was evaluated with impedance measurements. EER measurements on a CdIn(,2)Se(,4)/polysulfide system have shown that the EER spectrum is sensitive to the surface preparation of the sample. The EER signal was quenched as the surface was driven to strong depletion, owing to Fermi level pinning at the interface in the presence of a high density of surface states. The full analysis of this effect enables us to measure the change in the flatband potential, as a function of the electrode potential, and

  8. Characterization of semiconductor surfaces and interfaces by high energy ion scattering

    International Nuclear Information System (INIS)

    Narusawa, Tadashi; Kobayashi, K.L.I.; Nakashima, Hisao

    1984-01-01

    The use of surface peak, which appears in MeV ion channeling experiments, is demonstrated as a local probe for direct and quantitative measurements of atomic displacements smaller than --0.1A. The atomic structures of GaAs(001)-c(4x4) clean surface and hydrogen-absorbed (1x1) surface are analyzed by this technique as well as the interface atomic structures of GaAs(001)-SiOsub(x) and Si(111)-Pd systems. (author)

  9. Generation of Electricity at Graphene Interface Governed by Underlying Surface Dipole Induced Ion Adsorption

    Science.gov (United States)

    Yang, Shanshan; Su, Yudan; Wu, Qiong; Zhang, Yuanbo; Tian, Chuanshan

    Aqueous droplet moving along graphene surface can produce electricity This interesting phenomenon provided environment-friendly means to harvest energy from graphene interface in contact with sea wave or rain droplets. However, microscopically, the nature of charge adsorption at the graphene interface is still unclear. Here, utilizing sum-frequency spectroscopy in combined with measurement of electrical power generation, the origin of charge adsorption on graphene was investigated. It was found that the direct ion-graphene interaction is negligibly small, contrary to the early speculation, but the ordered surface dipole from the supporting substrate, such as PET, is responsible for ion adsorption at the interface. Graphene serves as a conductive layer with mild screening of Coulomb interaction when aqueous droplet slips over the surface. These results pave the way for optimization of energy harvesting efficiency of graphene-based device.

  10. Impurity diffusion, point defect engineering, and surface/interface passivation in germanium

    KAUST Repository

    Chroneos, Alexander I.

    2012-01-26

    In recent years germanium has been emerging as a mainstream material that could have important applications in the microelectronics industry. The principle aim of this study is to review investigations of the diffusion of technologically important p- and n-type dopants as well as surface and interface passivation issues in germanium. The diffusion of impurities in germanium is interrelated to the formation of clusters whenever possible, and possibilities for point defect engineering are discussed in view of recent results. The importance of electrically active defects on the Ge surface and interfaces is addressed considering strategies to suppress them and to passivate the surfaces/interfaces, bearing in mind their importance for advanced devices. © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. What happens when iron becomes wet? Observation of reactions at interfaces between liquid and metal surfaces

    CERN Document Server

    Kimura, M

    2003-01-01

    Synchrotron-radiation has been applied to investigation of interfaces between liquid and metal surfaces, with a special attention to corrosion. Three topics are shown: (1) nano structures of rusts formed on steel after atmospheric corrosion. Evolution of 'Fe(O, OH) sub 6 network' is the key to understand how the durable rusts prevent from formation of more rusts. (2) In situ observation of reactions at the interface has been carried out for localized corrosion of stainless steel. It is shown that change in states of Cr sup 3 sup + and Br sup - ions near the interface is deeply related with a breakout of the passivation film. (3) A structural phase transformation on a Cu sub 3 Au(001) surface was investigated. Ordering remains even at a temperature higher than the bulk-critical temperature, showing surface-induced ordering. These approaches gives us crucial information for a new steel-product. (author)

  12. Electroencephalogram-Based Brain–Computer Interface and Lower-Limb Prosthesis Control: A Case Study

    Directory of Open Access Journals (Sweden)

    Douglas P. Murphy

    2017-12-01

    Full Text Available ObjectiveThe purpose of this study was to establish the feasibility of manipulating a prosthetic knee directly by using a brain–computer interface (BCI system in a transfemoral amputee. Although the other forms of control could be more reliable and quick (e.g., electromyography control, the electroencephalography (EEG-based BCI may provide amputees an alternative way to control a prosthesis directly from brain.MethodsA transfemoral amputee subject was trained to activate a knee-unlocking switch through motor imagery of the movement of his lower extremity. Surface scalp electrodes transmitted brain wave data to a software program that was keyed to activate the switch when the event-related desynchronization in EEG reached a certain threshold. After achieving more than 90% reliability for switch activation by EEG rhythm-feedback training, the subject then progressed to activating the knee-unlocking switch on a prosthesis that turned on a motor and unlocked a prosthetic knee. The project took place in the prosthetic department of a Veterans Administration medical center. The subject walked back and forth in the parallel bars and unlocked the knee for swing phase and for sitting down. The success of knee unlocking through this system was measured. Additionally, the subject filled out a questionnaire on his experiences.ResultsThe success of unlocking the prosthetic knee mechanism ranged from 50 to 100% in eight test segments.ConclusionThe performance of the subject supports the feasibility for BCI control of a lower extremity prosthesis using surface scalp EEG electrodes. Investigating direct brain control in different types of patients is important to promote real-world BCI applications.

  13. Fully Implanted Brain-Computer Interface in a Locked-In Patient with ALS.

    Science.gov (United States)

    Vansteensel, Mariska J; Pels, Elmar G M; Bleichner, Martin G; Branco, Mariana P; Denison, Timothy; Freudenburg, Zachary V; Gosselaar, Peter; Leinders, Sacha; Ottens, Thomas H; Van Den Boom, Max A; Van Rijen, Peter C; Aarnoutse, Erik J; Ramsey, Nick F

    2016-11-24

    Options for people with severe paralysis who have lost the ability to communicate orally are limited. We describe a method for communication in a patient with late-stage amyotrophic lateral sclerosis (ALS), involving a fully implanted brain-computer interface that consists of subdural electrodes placed over the motor cortex and a transmitter placed subcutaneously in the left side of the thorax. By attempting to move the hand on the side opposite the implanted electrodes, the patient accurately and independently controlled a computer typing program 28 weeks after electrode placement, at the equivalent of two letters per minute. The brain-computer interface offered autonomous communication that supplemented and at times supplanted the patient's eye-tracking device. (Funded by the Government of the Netherlands and the European Union; ClinicalTrials.gov number, NCT02224469 .).

  14. Student teaching and research laboratory focusing on brain-computer interface paradigms--A creative environment for computer science students.

    Science.gov (United States)

    Rutkowski, Tomasz M

    2015-08-01

    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.

  15. SEM examination and analysis of the interface character in surface modified aramid-epoxy composite

    International Nuclear Information System (INIS)

    Hussain, S.; Khan, M.B.; Hussain, R.

    2011-01-01

    The surface of Kevlar fibers is chemically modified by treatment with Phthalic anhydride (PA) and the effect is examined by SEM for the laser cut, three point bending and interlaminar shear delaminated surfaces. The surface modification improved the adhesion to epoxy resin that clearly leads to cohesive fracture as opposed to interfacial failure in the untreated specimen. SEM reveals marginal surface roughening of fibers without compromising their strength. The interface modification technique described in this paper is attractive thermodynamically as it does not compromise surface free energy of the polymer matrix or that of the fiber itself to enhance wet ability. (author)

  16. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, Heike, E-mail: angermann@helmholtz-berlin.de

    2014-09-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D{sub it}(E), and density D{sub it,min} of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly

  17. Optimal design method for a digital human–computer interface based on human reliability in a nuclear power plant. Part 3: Optimization method for interface task layout

    International Nuclear Information System (INIS)

    Jiang, Jianjun; Wang, Yiqun; Zhang, Li; Xie, Tian; Li, Min; Peng, Yuyuan; Wu, Daqing; Li, Peiyao; Ma, Congmin; Shen, Mengxu; Wu, Xing; Weng, Mengyun; Wang, Shiwei; Xie, Cen

    2016-01-01

    Highlights: • The authors present an optimization algorithm for interface task layout. • The performing process of the proposed algorithm was depicted. • The performance evaluation method adopted neural network method. • The optimization layouts of an event interface tasks were obtained by experiments. - Abstract: This is the last in a series of papers describing the optimal design for a digital human–computer interface of a nuclear power plant (NPP) from three different points based on human reliability. The purpose of this series is to propose different optimization methods from varying perspectives to decrease human factor events that arise from the defects of a human–computer interface. The present paper mainly solves the optimization method as to how to effectively layout interface tasks into different screens. The purpose of this paper is to decrease human errors by reducing the distance that an operator moves among different screens in each operation. In order to resolve the problem, the authors propose an optimization process of interface task layout for digital human–computer interface of a NPP. As to how to automatically layout each interface task into one of screens in each operation, the paper presents a shortest moving path optimization algorithm with dynamic flag based on human reliability. To test the algorithm performance, the evaluation method uses neural network based on human reliability. The less the human error probabilities are, the better the interface task layouts among different screens are. Thus, by analyzing the performance of each interface task layout, the optimization result is obtained. Finally, the optimization layouts of spurious safety injection event interface tasks of the NPP are obtained by an experiment, the proposed methods has a good accuracy and stabilization.

  18. Longitudinal propagation of nonlinear surface Alfven waves at a magnetic interface in a compressible atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M S

    1988-08-01

    Nonlinear Alfven surface wave propagation at a magnetic interface in a compressible fluid is considered. It is supposed that the magnetic field directions at both sides of the interface and the direction of wave propagation coincide. The equation governing time-evolution of nonlinear small-amplitude waves is derived by the method of multiscale expansions. This equation is similar to the equation for nonlinear Alfven surface waves in an incompressible fluid derived previously. The numerical solution of the equation shows that a sinusoidal disturbance overturns, i.e. infinite gradients arise.

  19. Surface State Capture Cross-Section at the Interface between Silicon and Hafnium Oxide

    Directory of Open Access Journals (Sweden)

    Fu-Chien Chiu

    2013-01-01

    Full Text Available The interfacial properties between silicon and hafnium oxide (HfO2 are explored by the gated-diode method and the subthreshold measurement. The density of interface-trapped charges, the current induced by surface defect centers, the surface recombination velocity, and the surface state capture cross-section are obtained in this work. Among the interfacial properties, the surface state capture cross-section is approximately constant even if the postdeposition annealing condition is changed. This effective capture cross-section of surface states is about 2.4 × 10−15 cm2, which may be an inherent nature in the HfO2/Si interface.

  20. A simple interface to computational fluid dynamics programs for building environment simulations

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, III, C R; Chen, Q [Massachusetts Institute of Technology, Cambridge, MA (United States)

    2000-07-01

    It is becoming a popular practice for architects and HVAC engineers to simulate airflow in and around buildings by computational fluid dynamics (CFD) methods in order to predict indoor and outdoor environment. However, many CFD programs are crippled by a historically poor and inefficient user interface system, particularly for users with little training in numerical simulation. This investigation endeavors to create a simplified CFD interface (SCI) that allows architects and buildings engineers to use CFD without excessive training. The SCI can be easily integrated into new CFD programs. (author)

  1. Sensory System for Implementing a Human—Computer Interface Based on Electrooculography

    Directory of Open Access Journals (Sweden)

    Sergio Ortega

    2010-12-01

    Full Text Available This paper describes a sensory system for implementing a human–computer interface based on electrooculography. An acquisition system captures electrooculograms and transmits them via the ZigBee protocol. The data acquired are analysed in real time using a microcontroller-based platform running the Linux operating system. The continuous wavelet transform and neural network are used to process and analyse the signals to obtain highly reliable results in real time. To enhance system usability, the graphical interface is projected onto special eyewear, which is also used to position the signal-capturing electrodes.

  2. Interfacing a fieldable multichannel analyzer to a MicroVAX computer

    International Nuclear Information System (INIS)

    Litherland, K.R.; Johnson, M.W.

    1990-01-01

    This paper reports on software written for interfacing the D.S. Davidson Model 2056 portable multichannel analyzer to a MicroVAX computer running the VMS operating system. The operational objective of the software is to give the user a nearly transparent mechanism for controlling the analyzer with functions equivalent to those on the analyzer's own keyboard, thus minimizing the training requirement for the user. The software is written in VMS enhanced Fortran and consists of a main control program, several subprocesses, and libraries containing graphics commands and other information. Interfaces to other commercially available software packages for data storage and manipulation are provided. Problems encountered and their programming solutions are discussed

  3. Design of a Computer-Controlled, Random-Access Slide Projector Interface. Final Report (April 1974 - November 1974).

    Science.gov (United States)

    Kirby, Paul J.; And Others

    The design, development, test, and evaluation of an electronic hardware device interfacing a commercially available slide projector with a plasma panel computer terminal is reported. The interface device allows an instructional computer program to select slides for viewing based upon the lesson student situation parameters of the instructional…

  4. Brain computer interfaces as intelligent sensors for enhancing human-computer interaction

    NARCIS (Netherlands)

    Poel, M.; Nijboer, F.; Broek, E.L. van den; Fairclough, S.; Nijholt, A.

    2012-01-01

    BCIs are traditionally conceived as a way to control apparatus, an interface that allows you to act on" external devices as a form of input control. We propose an alternative use of BCIs, that of monitoring users as an additional intelligent sensor to enrich traditional means of interaction. This

  5. Brain computer interfaces as intelligent sensors for enhancing human-computer interaction

    NARCIS (Netherlands)

    Poel, Mannes; Nijboer, Femke; van den Broek, Egon; Fairclough, Stephen; Morency, Louis-Philippe; Bohus, Dan; Aghajan, Hamid; Nijholt, Antinus; Cassell, Justine; Epps, Julien

    2012-01-01

    BCIs are traditionally conceived as a way to control apparatus, an interface that allows you to "act on" external devices as a form of input control. We propose an alternative use of BCIs, that of monitoring users as an additional intelligent sensor to enrich traditional means of interaction. This

  6. Probing the hydration water diffusion of macromolecular surfaces and interfaces

    International Nuclear Information System (INIS)

    Ortony, Julia H; Cheng, Chi-Yuan; Franck, John M; Pavlova, Anna; Hunt, Jasmine; Han, Songi; Kausik, Ravinath

    2011-01-01

    We probe the translational dynamics of the hydration water surrounding the macromolecular surfaces of selected polyelectrolytes, lipid vesicles and intrinsically disordered proteins with site specificity in aqueous solutions. These measurements are made possible by the recent development of a new instrumental and methodological approach based on Overhauser dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy. This technique selectively amplifies 1 H NMR signals of hydration water around a spin label that is attached to a molecular site of interest. The selective 1 H NMR amplification within molecular length scales of a spin label is achieved by utilizing short-distance range (∼r -3 ) magnetic dipolar interactions between the 1 H spin of water and the electron spin of a nitroxide radical-based label. Key features include the fact that only minute quantities (<10 μl) and dilute (≥100 μM) sample concentrations are needed. There is no size limit on the macromolecule or molecular assembly to be analyzed. Hydration water with translational correlation times between 10 and 800 ps is measured within ∼10 A distance of the spin label, encompassing the typical thickness of a hydration layer with three water molecules across. The hydration water moving within this time scale has significant implications, as this is what is modulated whenever macromolecules or molecular assemblies undergo interactions, binding or conformational changes. We demonstrate, with the examples of polymer complexation, protein aggregation and lipid-polymer interaction, that the measurements of interfacial hydration dynamics can sensitively and site specifically probe macromolecular interactions.

  7. Investigation of surface charge density on solid–liquid interfaces by modulating the electrical double layer

    International Nuclear Information System (INIS)

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-01-01

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid–liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid–liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid–liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid–liquid interfaces. (paper)

  8. Cost-effective computations with boundary interface operators in elliptic problems

    International Nuclear Information System (INIS)

    Khoromskij, B.N.; Mazurkevich, G.E.; Nikonov, E.G.

    1993-01-01

    The numerical algorithm for fast computations with interface operators associated with the elliptic boundary value problems (BVP) defined on step-type domains is presented. The algorithm is based on the asymptotically almost optimal technique developed for treatment of the discrete Poincare-Steklov (PS) operators associated with the finite-difference Laplacian on rectangles when using the uniform grid with a 'displacement by h/2'. The approach can be regarded as an extension of the method proposed for the partial solution of the finite-difference Laplace equation to the case of displaced grids and mixed boundary conditions. It is shown that the action of the PS operator for the Dirichlet problem and mixed BVP can be computed with expenses of the order of O(Nlog 2 N) both for arithmetical operations and computer memory needs, where N is the number of unknowns on the rectangle boundary. The single domain algorithm is applied to solving the multidomain elliptic interface problems with piecewise constant coefficients. The numerical experiments presented confirm almost linear growth of the computational costs and memory needs with respect to the dimension of the discrete interface problem. 14 refs., 3 figs., 4 tabs

  9. Facial pressure zones of an oronasal interface for noninvasive ventilation: a computer model analysis

    Directory of Open Access Journals (Sweden)

    Luana Souto Barros

    2014-12-01

    Full Text Available OBJECTIVE: To study the effects of an oronasal interface (OI for noninvasive ventilation, using a three-dimensional (3D computational model with the ability to simulate and evaluate the main pressure zones (PZs of the OI on the human face. METHODS: We used a 3D digital model of the human face, based on a pre-established geometric model. The model simulated soft tissues, skull, and nasal cartilage. The geometric model was obtained by 3D laser scanning and post-processed for use in the model created, with the objective of separating the cushion from the frame. A computer simulation was performed to determine the pressure required in order to create the facial PZs. We obtained descriptive graphical images of the PZs and their intensity. RESULTS: For the graphical analyses of each face-OI model pair and their respective evaluations, we ran 21 simulations. The computer model identified several high-impact PZs in the nasal bridge and paranasal regions. The variation in soft tissue depth had a direct impact on the amount of pressure applied (438-724 cmH2O. CONCLUSIONS: The computer simulation results indicate that, in patients submitted to noninvasive ventilation with an OI, the probability of skin lesion is higher in the nasal bridge and paranasal regions. This methodology could increase the applicability of biomechanical research on noninvasive ventilation interfaces, providing the information needed in order to choose the interface that best minimizes the risk of skin lesion.

  10. Adhesion Evaluation of Asphalt-Aggregate Interface Using Surface Free Energy Method

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-02-01

    Full Text Available The influence of organic additives (Sasobit and RH and water on the adhesion of the asphalt-aggregate interface was studied according to the surface free energy theory. Two asphalt binders (SK-70 and SK-90, and two aggregate types (limestone and basalt were used in this study. The sessile drop method was employed to test surface free energy components of asphalt, organic additives and aggregates. The adhesion models of the asphalt-aggregate interface in dry and wet conditions were established, and the adhesion work was calculated subsequently. The energy ratios were built to evaluate the effect of organic additives and water on the adhesiveness of the asphalt-aggregate interface. The results indicate that the addition of organic additives can enhance the adhesion of the asphalt-aggregate interface in dry conditions, because organic additives reduced the surface free energy of asphalt. However, the organic additives have hydrophobic characteristics and are sensitive to water. As a result, the adhesiveness of the asphalt-aggregate interface of the asphalt containing organic additives in wet conditions sharply decreased due to water damage to asphalt and organic additives. Furthermore, the compatibility of asphalt, aggregate with organic additive was noted and discussed.

  11. Data communications in a parallel active messaging interface of a parallel computer

    Science.gov (United States)

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-11-12

    Data communications in a parallel active messaging interface (`PAMI`) of a parallel computer composed of compute nodes that execute a parallel application, each compute node including application processors that execute the parallel application and at least one management processor dedicated to gathering information regarding data communications. The PAMI is composed of data communications endpoints, each endpoint composed of a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources. Embodiments function by gathering call site statistics describing data communications resulting from execution of data communications instructions and identifying in dependence upon the call cite statistics a data communications algorithm for use in executing a data communications instruction at a call site in the parallel application.

  12. Data communications in a parallel active messaging interface of a parallel computer

    Science.gov (United States)

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-10-29

    Data communications in a parallel active messaging interface (`PAMI`) of a parallel computer, the parallel computer including a plurality of compute nodes that execute a parallel application, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources, including receiving in an origin endpoint of the PAMI a data communications instruction, the instruction characterized by an instruction type, the instruction specifying a transmission of transfer data from the origin endpoint to a target endpoint and transmitting, in accordance with the instruction type, the transfer data from the origin endpoint to the target endpoint.

  13. Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Markus Moosmann

    2017-08-01

    Full Text Available Underwater air retention of superhydrophobic hierarchically structured surfaces is of increasing interest for technical applications. Persistent air layers (the Salvinia effect are known from biological species, for example, the floating fern Salvinia or the backswimmer Notonecta. The use of this concept opens up new possibilities for biomimetic technical applications in the fields of drag reduction, antifouling, anticorrosion and under water sensing. Current knowledge regarding the shape of the air–water interface is insufficient, although it plays a crucial role with regards to stability in terms of diffusion and dynamic conditions. Optical methods for imaging the interface have been limited to the micrometer regime. In this work, we utilized a nondynamic and nondestructive atomic force microscopy (AFM method to image the interface of submerged superhydrophobic structures with nanometer resolution. Up to now, only the interfaces of nanobubbles (acting almost like solids have been characterized by AFM at these dimensions. In this study, we show for the first time that it is possible to image the air–water interface of submerged hierarchically structured (micro-pillars surfaces by AFM in contact mode. By scanning with zero resulting force applied, we were able to determine the shape of the interface and thereby the depth of the water penetrating into the underlying structures. This approach is complemented by a second method: the interface was scanned with different applied force loads and the height for zero force was determined by linear regression. These methods open new possibilities for the investigation of air-retaining surfaces, specifically in terms of measuring contact area and in comparing different coatings, and thus will lead to the development of new applications.

  14. Surface plasmon on topological insulator/dielectric interface enhanced ZnO ultraviolet photoluminescence

    Directory of Open Access Journals (Sweden)

    Zhi-Min Liao

    2012-06-01

    Full Text Available It has recently been predicted that the surface plasmons are allowed to exist on the interface between a topological insulator and vacuum. Surface plasmons can be employed to enhance the optical emission from various illuminants. Here, we study the photoluminescence properties of the ZnO/Bi2Te3 hybrid structures. Thin flakes of Bi2Te3, a typical three-dimensional topological insulator, were prepared on ZnO crystal surface by mechanical exfoliation method. The ultraviolet emission from ZnO was found to be enhanced by the Bi2Te3 thin flakes, which was attributed to the surface plasmon – photon coupling at the Bi2Te3/ZnO interface.

  15. The surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. (I). General expression

    Science.gov (United States)

    M. C. Sagis, Leonard

    2001-03-01

    In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.

  16. The Self-Paced Graz Brain-Computer Interface: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Reinhold Scherer

    2007-01-01

    Full Text Available We present the self-paced 3-class Graz brain-computer interface (BCI which is based on the detection of sensorimotor electroencephalogram (EEG rhythms induced by motor imagery. Self-paced operation means that the BCI is able to determine whether the ongoing brain activity is intended as control signal (intentional control or not (non-control state. The presented system is able to automatically reduce electrooculogram (EOG artifacts, to detect electromyographic (EMG activity, and uses only three bipolar EEG channels. Two applications are presented: the freeSpace virtual environment (VE and the Brainloop interface. The freeSpace is a computer-game-like application where subjects have to navigate through the environment and collect coins by autonomously selecting navigation commands. Three subjects participated in these feedback experiments and each learned to navigate through the VE and collect coins. Two out of the three succeeded in collecting all three coins. The Brainloop interface provides an interface between the Graz-BCI and Google Earth.

  17. Scattering of acoustic waves from a surface in the presence of an anharmonic interface

    DEFF Research Database (Denmark)

    Kulak, A.; Lodziana, Zbigniew; Srokowski, T.

    2002-01-01

    Energy transfer coefficient (analogue of LDOS) and aperiodicity index are defined to characterise the nonlinear response and the surface resonances in a thin layer separated from the underlying bulk crystal by an anharmonic interface. Regions of periodic, aperiodic and intermittent motion of the ...

  18. Improved Targeting Through Collaborative Decision-Making and Brain Computer Interfaces

    Science.gov (United States)

    Stoica, Adrian; Barrero, David F.; McDonald-Maier, Klaus

    2013-01-01

    This paper reports a first step toward a brain-computer interface (BCI) for collaborative targeting. Specifically, we explore, from a broad perspective, how the collaboration of a group of people can increase the performance on a simple target identification task. To this end, we requested a group of people to identify the location and color of a sequence of targets appearing on the screen and measured the time and accuracy of the response. The individual results are compared to a collective identification result determined by simple majority voting, with random choice in case of drawn. The results are promising, as the identification becomes significantly more reliable even with this simple voting and a small number of people (either odd or even number) involved in the decision. In addition, the paper briefly analyzes the role of brain-computer interfaces in collaborative targeting, extending the targeting task by using a BCI instead of a mechanical response.

  19. Detecting Mental States by Machine Learning Techniques: The Berlin Brain-Computer Interface

    Science.gov (United States)

    Blankertz, Benjamin; Tangermann, Michael; Vidaurre, Carmen; Dickhaus, Thorsten; Sannelli, Claudia; Popescu, Florin; Fazli, Siamac; Danóczy, Márton; Curio, Gabriel; Müller, Klaus-Robert

    The Berlin Brain-Computer Interface Brain-Computer Interface (BBCI) uses a machine learning approach to extract user-specific patterns from high-dimensional EEG-features optimized for revealing the user's mental state. Classical BCI applications are brain actuated tools for patients such as prostheses (see Section 4.1) or mental text entry systems ([1] and see [2-5] for an overview on BCI). In these applications, the BBCI uses natural motor skills of the users and specifically tailored pattern recognition algorithms for detecting the user's intent. But beyond rehabilitation, there is a wide range of possible applications in which BCI technology is used to monitor other mental states, often even covert ones (see also [6] in the fMRI realm). While this field is still largely unexplored, two examples from our studies are exemplified in Sections 4.3 and 4.4.

  20. Online LDA BASED brain-computer interface system to aid disabled people

    Directory of Open Access Journals (Sweden)

    Apdullah Yayık

    2017-06-01

    Full Text Available This paper aims to develop brain-computer interface system based on electroencephalography that can aid disabled people in daily life. The system relies on one of the most effective event-related potential wave, P300, which can be elicited by oddball paradigm. Developed application has a basic interaction tool that enables disabled people to convey their needs to other people selecting related objects. These objects pseudo-randomly flash in a visual interface on computer screen. The user must focus on related object to convey desired needs. The system can convey desired needs correctly by detecting P300 wave in acquired 14-channel EEG signal and classifying using linear discriminant analysis classifier just in 15 seconds. Experiments have been carried out on 19 volunteers to validate developed BCI system. As a result, accuracy rate of 90.83% is achieved in online performance.

  1. Mobile Interfaces: Liquids as a Perfect Structural Material for Multifunctional, Antifouling Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Grinthal, A; Aizenberg, J

    2014-01-14

    Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design and fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions able to operate in harsh, changing environments not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. With nearly unlimited design possibilities and unmatched interfacial properties, liquid materials as long-term stable interfaces yet in their fully liquid state may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.

  2. Efficient Computations and Representations of Visible Surfaces.

    Science.gov (United States)

    1979-12-01

    position as stated. The smooth contour generator may lie along a sharp ridge, for instance. Richards & Stevens -28- 6m lace contout s ?S ,.......... ceoonec...From understanding computation to understanding neural circuitry. Neurosci. Res. Prog. Bull. 13. 470-488. Metelli, F. 1970 An algebraic development of

  3. Brain Computer Interface for Micro-controller Driven Robot Based on Emotiv Sensors

    OpenAIRE

    Parth Gargava; Krishna Asawa

    2017-01-01

    A Brain Computer Interface (BCI) is developed to navigate a micro-controller based robot using Emotiv sensors. The BCI system has a pipeline of 5 stages- signal acquisition, pre-processing, feature extraction, classification and CUDA inter- facing. It shall aid in serving a prototype for physical movement of neurological patients who are unable to control or operate on their muscular movements. All stages of the pipeline are designed to process bodily actions like eye blinks to command naviga...

  4. Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury

    OpenAIRE

    Rupp, Rüdiger

    2014-01-01

    Brain computer interfaces (BCIs) are devices that measure brain activities and translate them into control signals used for a variety of applications. Among them are systems for communication, environmental control, neuroprostheses, exoskeletons, or restorative therapies. Over the last years the technology of BCIs has reached a level of matureness allowing them to be used not only in research experiments supervised by scientists, but also in clinical routine with patients with neurological im...

  5. Touch in Computer-Mediated Environments: An Analysis of Online Shoppers’ Touch-Interface User Experiences

    OpenAIRE

    Chung, Sorim

    2016-01-01

    Over the past few years, one of the most fundamental changes in current computer-mediated environments has been input devices, moving from mouse devices to touch interfaces. However, most studies of online retailing have not considered device environments as retail cues that could influence users’ shopping behavior. In this research, I examine the underlying mechanisms between input device environments and shoppers’ decision-making processes. In particular, I investigate the impact of input d...

  6. Adaptive learning with covariate shift-detection for motor imagery-based brain–computer interface

    OpenAIRE

    Raza, H; Cecotti, H; Li, Y; Prasad, G

    2015-01-01

    A common assumption in traditional supervised learning is the similar probability distribution of data between the training phase and the testing/operating phase. When transitioning from the training to testing phase, a shift in the probability distribution of input data is known as a covariate shift. Covariate shifts commonly arise in a wide range of real-world systems such as electroencephalogram-based brain–computer interfaces (BCIs). In such systems, there is a necessity for continuous mo...

  7. A computer interface for processing multi-parameter data of multiple event types

    International Nuclear Information System (INIS)

    Katayama, I.; Ogata, H.

    1980-01-01

    A logic circuit called a 'Raw Data Processor (RDP)' which functions as an interface between ADCs and the PDP-11 computer has been developed at RCNP, Osaka University for general use. It enables data processing simultaneously for numbers of events of various types up to 16, and an arbitrary combination of ADCs of any number up to 14 can be assigned to each event type by means of a pinboard matrix. The details of the RDP and its application are described. (orig.)

  8. The Asilomar Survey: Stakeholders? Opinions on Ethical Issues Related to Brain-Computer Interfacing

    OpenAIRE

    Nijboer, Femke; Clausen, Jens; Allison, Brendan Z.; Haselager, Pim

    2011-01-01

    Brain-Computer Interface (BCI) research and (future) applications raise important ethical issues that need to be addressed to promote societal acceptance and adequate policies. Here we report on a survey we conducted among 145 BCI researchers at the 4th International BCI conference, which took place in May–June 2010 in Asilomar, California. We assessed respondents’ opinions about a number of topics. First, we investigated preferences for terminology and definitions relating to BCIs. Second, w...

  9. Spectral Transfer Learning using Information Geometry for a User-Independent Brain-Computer Interface

    OpenAIRE

    Nicholas Roy Waytowich; Nicholas Roy Waytowich; Vernon Lawhern; Vernon Lawhern; Addison Bohannon; Addison Bohannon; Kenneth Ball; Brent Lance

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry and recreation. However, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter- individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this p...

  10. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    OpenAIRE

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; Ball, Kenneth R.; Lance, Brent J.

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this p...

  11. Development of a graphical interface computer code for reactor fuel reloading optimization

    International Nuclear Information System (INIS)

    Do Quang Binh; Nguyen Phuoc Lan; Bui Xuan Huy

    2007-01-01

    This report represents the results of the project performed in 2007. The aim of this project is to develop a graphical interface computer code that allows refueling engineers to design fuel reloading patterns for research reactor using simulated graphical model of reactor core. Besides, this code can perform refueling optimization calculations based on genetic algorithms as well as simulated annealing. The computer code was verified based on a sample problem, which relies on operational and experimental data of Dalat research reactor. This code can play a significant role in in-core fuel management practice at nuclear research reactor centers and in training. (author)

  12. Fully Online Multicommand Brain-Computer Interface with Visual Neurofeedback Using SSVEP Paradigm

    Directory of Open Access Journals (Sweden)

    Pablo Martinez

    2007-01-01

    Full Text Available We propose a new multistage procedure for a real-time brain-machine/computer interface (BCI. The developed system allows a BCI user to navigate a small car (or any other object on the computer screen in real time, in any of the four directions, and to stop it if necessary. Extensive experiments with five young healthy subjects confirmed the high performance of the proposed online BCI system. The modular structure, high speed, and the optimal frequency band characteristics of the BCI platform are features which allow an extension to a substantially higher number of commands in the near future.

  13. Multi parametric card to personal computers interface based in ispLSI1016 circuits

    International Nuclear Information System (INIS)

    Osorio Deliz, J.F.; Toledo Acosta, R.B.; Arista Romeu, E.

    1997-01-01

    It is described the design and principal characteristic of the interface circuit for a 16 bit multi parametric add on card for IBM or compatible microcomputer which content two communication channels of direct memory access and bidirectional between the card and the computer, an interrupt controller, a programmable address register, a default add res register of the card, a four channels multiplexer, as well as the decoder logic of the 80C186 and computer. The circuit was designed with two programmable logic devices ispL1016, which allowed drastically to diminish the quantity of utilized components and get a more flexible design in less time better characteristics

  14. Calculation of surface potentials at the silica–water interface using molecular dynamics: Challenges and opportunities

    Science.gov (United States)

    Lowe, Benjamin M.; Skylaris, Chris-Kriton; Green, Nicolas G.; Shibuta, Yasushi; Sakata, Toshiya

    2018-04-01

    Continuum-based methods are important in calculating electrostatic properties of interfacial systems such as the electric field and surface potential but are incapable of providing sufficient insight into a range of fundamentally and technologically important phenomena which occur at atomistic length-scales. In this work a molecular dynamics methodology is presented for interfacial electric field and potential calculations. The silica–water interface was chosen as an example system, which is highly relevant for understanding the response of field-effect transistors sensors (FET sensors). Detailed validation work is presented, followed by the simulated surface charge/surface potential relationship. This showed good agreement with experiment at low surface charge density but at high surface charge density the results highlighted challenges presented by an atomistic definition of the surface potential. This methodology will be used to investigate the effect of surface morphology and biomolecule addition; both factors which are challenging using conventional continuum models.

  15. Evolution of the Brain Computing Interface (BCI and Proposed Electroencephalography (EEG Signals Based Authentication Model

    Directory of Open Access Journals (Sweden)

    Ramzan Qaseem

    2018-01-01

    Full Text Available With current advancements in the field of Brain Computer interface it is required to study how it will affect the other technologies currently in use. In this paper, the authors motivate the need of Brain Computing Interface in the era of IoT (Internet of Things, and analyze how BCI in the presence of IoT could have serious privacy breach if not protected by new kind of more secure protocols. Security breach and hacking has been around for a long time but now we are sensitive towards data as our lives depend on it. When everything is interconnected through IoT and considering that we control all interconnected things by means of our brain using BCI (Brain Computer Interface, the meaning of security breach becomes much more sensitive than in the past. This paper describes the old security methods being used for authentication and how they can be compromised. Considering the sensitivity of data in the era of IoT, a new form of authentication is required, which should incorporate BCI rather than usual authentication techniques.

  16. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    Science.gov (United States)

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-02-06

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.

  17. Training to use a commercial brain-computer interface as access technology: a case study.

    Science.gov (United States)

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Davies, T Claire; Owens, R Glynn

    2016-01-01

    This case study describes how an individual with spastic quadriplegic cerebral palsy was trained over a period of four weeks to use a commercial electroencephalography (EEG)-based brain-computer interface (BCI). The participant spent three sessions exploring the system, and seven sessions playing a game focused on EEG feedback training of left and right arm motor imagery and a customised, training game paradigm was employed. The participant showed improvement in the production of two distinct EEG patterns. The participant's performance was influenced by motivation, fatigue and concentration. Six weeks post-training the participant could still control the BCI and used this to type a sentence using an augmentative and alternative communication application on a wirelessly linked device. The results from this case study highlight the importance of creating a dynamic, relevant and engaging training environment for BCIs. Implications for Rehabilitation Customising a training paradigm to suit the users' interests can influence adherence to assistive technology training. Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces, which require little set up time, may be used as access technology for individuals with severe disabilities.

  18. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience

    Science.gov (United States)

    Stone, Wendy; Kroukamp, Otini; Korber, Darren R.; McKelvie, Jennifer; Wolfaardt, Gideon M.

    2016-01-01

    The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation. PMID:27746774

  19. Brain-Computer Interfaces Applying Our Minds to Human-computer Interaction

    CERN Document Server

    Tan, Desney S

    2010-01-01

    For generations, humans have fantasized about the ability to create devices that can see into a person's mind and thoughts, or to communicate and interact with machines through thought alone. Such ideas have long captured the imagination of humankind in the form of ancient myths and modern science fiction stories. Recent advances in cognitive neuroscience and brain imaging technologies have started to turn these myths into a reality, and are providing us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that monitor physical p

  20. User interfaces for computational science: A domain specific language for OOMMF embedded in Python

    Science.gov (United States)

    Beg, Marijan; Pepper, Ryan A.; Fangohr, Hans

    2017-05-01

    Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i) the re-compilation of source code, (ii) the use of configuration files, (iii) the graphical user interface, and (iv) embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF). We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.

  1. User interfaces for computational science: A domain specific language for OOMMF embedded in Python

    Directory of Open Access Journals (Sweden)

    Marijan Beg

    2017-05-01

    Full Text Available Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i the re-compilation of source code, (ii the use of configuration files, (iii the graphical user interface, and (iv embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF. We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.

  2. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    International Nuclear Information System (INIS)

    Arora, Swati; Singh, Vinamrita; Arora, Manoj; Pal Tandon, Ram

    2012-01-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10 12 -10 13 cm -2 eV -1 , which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  3. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Swati, E-mail: drswatia@yahoo.com [Department of Physics, Zakir Husain College, University of Delhi, Delhi 110002 (India); Singh, Vinamrita [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arora, Manoj [Department of Physics, Ramjas College, University of Delhi, Delhi 110007 (India); Pal Tandon, Ram [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2012-08-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10{sup 12}-10{sup 13} cm{sup -2} eV{sup -1}, which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  4. Efficient numerical methods for simulating surface tension of multi-component mixtures with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2015-08-01

    Surface tension significantly impacts subsurface flow and transport, and it is the main cause of capillary effect, a major immiscible two-phase flow mechanism for systems with a strong wettability preference. In this paper, we consider the numerical simulation of the surface tension of multi-component mixtures with the gradient theory of fluid interfaces. Major numerical challenges include that the system of the Euler-Lagrange equations is solved on the infinite interval and the coefficient matrix is not positive definite. We construct a linear transformation to reduce the Euler-Lagrange equations, and naturally introduce a path function, which is proven to be a monotonic function of the spatial coordinate variable. By using the linear transformation and the path function, we overcome the above difficulties and develop the efficient methods for calculating the interface and its interior compositions. Moreover, the computation of the surface tension is also simplified. The proposed methods do not need to solve the differential equation system, and they are easy to be implemented in practical applications. Numerical examples are tested to verify the efficiency of the proposed methods. © 2014 Elsevier B.V.

  5. Contribution to the study of techniques of measurement of interface surface area in bubble flows

    International Nuclear Information System (INIS)

    Veteau, Jean-Michel

    1981-01-01

    This research thesis addresses problems raised by the measurement of the interface area per volume unit in duct bubble flows. The author first reports a literature survey of existing methods (photographic, chemical and optical methods) which give access to the value of the parameter which is commonly named 'specific surface area'. He analyses under which conditions these methods lead to a rigorous determination of the SVIM (mean integral volume surface). The author highlights the theoretical contributions of models related to each of these methods which are indeed global methods as they allow the interface surface area to be directly obtained in a given volume of a two-phase mixture. Then, the author reports the development of an original technique based on the use of phase detecting local probes. In the next part, the author compares photographic and optical methods, on the one hand, and optical and local methods, on the other hand. Recommendations are made for the development of local methods [fr

  6. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task

    Science.gov (United States)

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.

    2014-12-01

    Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet

  7. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.

    Science.gov (United States)

    Revechkis, Boris; Aflalo, Tyson N S; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A

    2014-12-01

    To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like 'Face in a Crowd' task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the 'Crowd') using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a 'Crowd Off' condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.

  8. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian, E-mail: florian.maier@fau.de [Lehrstuhl für Physikalische Chemie II, FAU Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen (Germany)

    2016-04-15

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  9. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    International Nuclear Information System (INIS)

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian

    2016-01-01

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  10. Interface design of VSOP'94 computer code for safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Natsir, Khairina, E-mail: yenny@batan.go.id; Andiwijayakusuma, D.; Wahanani, Nursinta Adi [Center for Development of Nuclear Informatics - National Nuclear Energy Agency, PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia); Yazid, Putranto Ilham [Center for Nuclear Technology, Material and Radiometry- National Nuclear Energy Agency, Jl. Tamansari No.71, Bandung 40132 (Indonesia)

    2014-09-30

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.

  11. Two ions coupled to an optical cavity : from an enhanced quantum computer interface towards distributed quantum computing

    International Nuclear Information System (INIS)

    Casabone, B.

    2015-01-01

    Distributed quantum computing, an approach to scale up the computational power of quantum computers, requires entanglement between nodes of a quantum network. In our research group, two building blocks of schemes to entangle two ion-based quantum computers using cavity-based quantum interfaces have recently been demonstrated: ion-photon entanglement and ion-photon state mapping. In this thesis work, we extend the first building block in order to entangle two ions located in the same optical cavity. The entanglement generated by this protocol is efficient and heralded, and as it does not rely on the fact that ions interact with the same cavity, our results are a stepping stone towards the efficient generation of entanglement of remote ion-based quantum computers. In the second part of this thesis, we discuss how collective effects can be used to improve the performance of a cavity-based quantum interface. We show that by using two ions in the so-called superradiant state, the coupling strength between the two ions and the optical cavity is effectively increased compared to the single-ion case. As a complementary result, the creation of a state of two ions that exhibits a reduced coupling strength to the optical cavity, i.e., a subradiant state, is shown. Finally, we demonstrate a direct application of the increased coupling strength that the superradiant state exhibits by showing an enhanced version of the ion-photon state mapping process. By using the current setup and a second one that is being assembled, we intend to build a quantum network. The heralded ion-ion entanglement protocol presented in this thesis work will be used to entangle ions located in both setups, an experiment that requires photons generated in both apparatuses to be indistinguishable. Collective effects then can be used to modify the waveform of photons exiting the cavity in order to effect the desired photon indistinguishability. (author) [de

  12. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Zhao, Yanyan; Mølhave, Kristian

    2017-01-01

    advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO₂ micro and nano structures, and present the principles and growth mechanisms of TiO₂ nanostructures via different strategies...

  13. US Army Weapon Systems Human-Computer Interface (WSHCI) style guide, Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Avery, L.W.; O`Mara, P.A.; Shepard, A.P.

    1996-09-30

    A stated goal of the U.S. Army has been the standardization of the human computer interfaces (HCIS) of its system. Some of the tools being used to accomplish this standardization are HCI design guidelines and style guides. Currently, the Army is employing a number of style guides. While these style guides provide good guidance for the command, control, communications, computers, and intelligence (C4I) domain, they do not necessarily represent the more unique requirements of the Army`s real time and near-real time (RT/NRT) weapon systems. The Office of the Director of Information for Command, Control, Communications, and Computers (DISC4), in conjunction with the Weapon Systems Technical Architecture Working Group (WSTAWG), recognized this need as part of their activities to revise the Army Technical Architecture (ATA). To address this need, DISC4 tasked the Pacific Northwest National Laboratory (PNNL) to develop an Army weapon systems unique HCI style guide. This document, the U.S. Army Weapon Systems Human-Computer Interface (WSHCI) Style Guide, represents the first version of that style guide. The purpose of this document is to provide HCI design guidance for RT/NRT Army systems across the weapon systems domains of ground, aviation, missile, and soldier systems. Each domain should customize and extend this guidance by developing their domain-specific style guides, which will be used to guide the development of future systems within their domains.

  14. Surface stress and large-scale self-organization at organic-metal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pollinger, Florian

    2009-01-22

    The role of elastic interactions, particularly for the self-organized formation of periodically faceted interfaces, was investigated in this thesis for archetype organic-metal interfaces. The cantilever bending technique was applied to study the change of surface stress upon formation of the interface between 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) and Ag(111). The main focus of this work was on the investigation of the formation of the long-range ordered, self-organized faceted PTCDA/Ag(10 8 7) interface. Reciprocal space maps of this interface were recorded both by spot profile analysis low energy electron diffraction (SPA-LEED) and low energy electron microscopy (LEEM) in selected area LEED mode. Complementary to the reciprocal data, also microscopic real-space LEEM data were used to characterize the morphology of this interface. Six different facet faces ((111), (532), (743), (954), (13 9 5), and (542)) were observed for the preparation path of molecular adsorption on the substrate kept at 550 K. Facet-sensitive dark-field LEEM localized these facets to grow in homogeneous areas of microscopic extensions. The temperature-dependence of the interface formation was studied in a range between 418 K and 612 K in order to learn more about the kinetics of the process. Additional steeper facets of 27 inclination with respect to the (111) surface were observed in the low temperature regime. Furthermore, using facet-sensitive dark-field LEEM, spatial and size distributions of specific facets were studied for the different temperatures. Moreover, the facet dimensions were statistically analyzed. The total island size of the facets follows an exponential distribution, indicating a random growth mode in absence of any mutual facet interactions. While the length distribution of the facets also follows an exponential distribution, the width distribution is peaked, reflecting the high degree of lateral order. This anisotropy is temperature-dependent and occurs

  15. Versatile Density Functionals for Computational Surface Science

    DEFF Research Database (Denmark)

    Wellendorff, Jess

    Density functional theory (DFT) emerged almost 50 years ago. Since then DFT has established itself as the central electronic structure methodology for simulating atomicscale systems from a few atoms to a few hundred atoms. This success of DFT is due to a very favorable accuracy-to-computational c......Density functional theory (DFT) emerged almost 50 years ago. Since then DFT has established itself as the central electronic structure methodology for simulating atomicscale systems from a few atoms to a few hundred atoms. This success of DFT is due to a very favorable accuracy...... resampling techniques, thereby systematically avoiding problems with overfitting. The first ever density functional presenting both reliable accuracy and convincing error estimation is generated. The methodology is general enough to be applied to more complex functional forms with higher-dimensional fitting...

  16. Computation of Surface Integrals of Curl Vector Fields

    Science.gov (United States)

    Hu, Chenglie

    2007-01-01

    This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…

  17. Near-Surface Seismic Velocity Data: A Computer Program For ...

    African Journals Online (AJOL)

    A computer program (NESURVELANA) has been developed in Visual Basic Computer programming language to carry out a near surface velocity analysis. The method of analysis used includes: Algorithms design and Visual Basic codes generation for plotting arrival time (ms) against geophone depth (m) employing the ...

  18. Treatment of human-computer interface in a decision support system

    International Nuclear Information System (INIS)

    Heger, A.S.; Duran, F.A.; Cox, R.G.

    1992-01-01

    One of the most challenging applications facing the computer community is development of effective adaptive human-computer interface. This challenge stems from the complex nature of the human part of this symbiosis. The application of this discipline to the environmental restoration and waste management is further complicated due to the nature of environmental data. The information that is required to manage environmental impacts of human activity is fundamentally complex. This paper will discuss the efforts at Sandia National Laboratories in developing the adaptive conceptual model manager within the constraint of the environmental decision-making. A computer workstation, that hosts the Conceptual Model Manager and the Sandia Environmental Decision Support System will also be discussed

  19. Fencing data transfers in a parallel active messaging interface of a parallel computer

    Science.gov (United States)

    Blocksome, Michael A.; Mamidala, Amith R.

    2015-06-02

    Fencing data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task; the compute nodes coupled for data communications through the PAMI and through data communications resources including at least one segment of shared random access memory; including initiating execution through the PAMI of an ordered sequence of active SEND instructions for SEND data transfers between two endpoints, effecting deterministic SEND data transfers through a segment of shared memory; and executing through the PAMI, with no FENCE accounting for SEND data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all SEND instructions initiated prior to execution of the FENCE instruction for SEND data transfers between the two endpoints.

  20. Endpoint-based parallel data processing in a parallel active messaging interface of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-08-12

    Endpoint-based parallel data processing in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI composed of data communications endpoints, each endpoint including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes coupled for data communications through the PAMI, including establishing a data communications geometry, the geometry specifying, for tasks representing processes of execution of the parallel application, a set of endpoints that are used in collective operations of the PAMI including a plurality of endpoints for one of the tasks; receiving in endpoints of the geometry an instruction for a collective operation; and executing the instruction for a collective operation through the endpoints in dependence upon the geometry, including dividing data communications operations among the plurality of endpoints for one of the tasks.

  1. Cognitive assessment of executive functions using brain computer interface and eye-tracking

    Directory of Open Access Journals (Sweden)

    P. Cipresso

    2013-03-01

    Full Text Available New technologies to enable augmentative and alternative communication in Amyotrophic Lateral Sclerosis (ALS have been recently used in several studies. However, a comprehensive battery for cognitive assessment has not been implemented yet. Brain computer interfaces are innovative systems able to generate a control signal from brain responses conveying messages directly to a computer. Another available technology for communication purposes is the Eye-tracker system, that conveys messages from eye-movement to a computer. In this study we explored the use of these two technologies for the cognitive assessment of executive functions in a healthy population and in a ALS patient, also verifying usability, pleasantness, fatigue, and emotional aspects related to the setting. Our preliminary results may have interesting implications for both clinical practice (the availability of an effective tool for neuropsychological evaluation of ALS patients and ethical issues.

  2. On the tip of the tongue: learning typing and pointing with an intra-oral computer interface.

    Science.gov (United States)

    Caltenco, Héctor A; Breidegard, Björn; Struijk, Lotte N S Andreasen

    2014-07-01

    To evaluate typing and pointing performance and improvement over time of four able-bodied participants using an intra-oral tongue-computer interface for computer control. A physically disabled individual may lack the ability to efficiently control standard computer input devices. There have been several efforts to produce and evaluate interfaces that provide individuals with physical disabilities the possibility to control personal computers. Training with the intra-oral tongue-computer interface was performed by playing games over 18 sessions. Skill improvement was measured through typing and pointing exercises at the end of each training session. Typing throughput improved from averages of 2.36 to 5.43 correct words per minute. Pointing throughput improved from averages of 0.47 to 0.85 bits/s. Target tracking performance, measured as relative time on target, improved from averages of 36% to 47%. Path following throughput improved from averages of 0.31 to 0.83 bits/s and decreased to 0.53 bits/s with more difficult tasks. Learning curves support the notion that the tongue can rapidly learn novel motor tasks. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, which makes the tongue a feasible input organ for computer control. Intra-oral computer interfaces could provide individuals with severe upper-limb mobility impairments the opportunity to control computers and automatic equipment. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, but does not cause fatigue easily and might be invisible to other people, which is highly prioritized by assistive device users. Combination of visual and auditory feedback is vital for a good performance of an intra-oral computer interface and helps to reduce involuntary or erroneous activations.

  3. Analysis of defects near the surface and the interface of semiconductors by monoenergetic positron beam

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro

    1989-01-01

    A monoenergetic low-speed positron beam line is constructed and a study is made on defects near the surface and the interface of semiconductors by using the beam line. Sodium-22 is used as beam source. Ion implantation, though being an essential technique for semiconductor integrated circuit production, can introduce lattice defects, affecting the yield and reliability of the resultant semiconductor devices. Some observations are made on the dependence of the Doppler broadening on the depth, and the ΔS-E relationship in P + -ion implanted SiO 2 (43nm)-Si. These observations demonstrate that monoenergetic positron beam is useful to detect hole-type defects resulting from ion implantation over a very wide range of defect density. Another study is made for the detection of defects near an interface. Positrons are expected to drift when left in an electric field with a gradient. Observations made here show that positrons can be concentrated at any desired interface by introducing an electric field intensity gradient in the oxide. This process also serves for accurate measurement of the electronic structure at the interface, and the effect of ion implantation and radiations on the interface. (N.K.)

  4. Computation of Mach reflection from rigid and yielding surfaces

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Wilson, S.S.

    1976-01-01

    The present discussion centers on a theoretical description of one aspect of the irregular or Mach reflection from solid surfaces. The discussion is restricted to analytical considerations and some preliminary results using model approximations to the surface interaction phenomena. Currently, full numerical simulations of the irregular reflection surface interaction dynamics have not been obtained since the method is still under development. Discussion of the numerical method is, therefore, restricted to some special procedures for the gas-solid surface boundary dynamics. The discussion is divided into an introductory section briefly describing a particular Mach reflection process. Subsequently, some of the considerations on boundary conditions are submitted for numerical treatment of the gas-solid interface. Analysis and discussion of a yielding solid surface subjected to impulsive loading from an intense gas shock wave follows. This is used as a guide for the development of the numerical procedure. Mach reflection processes are then briefly reviewed with special attention for similitude and singular perturbation features

  5. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics.

    Science.gov (United States)

    Ayres, Daniel L; Darling, Aaron; Zwickl, Derrick J; Beerli, Peter; Holder, Mark T; Lewis, Paul O; Huelsenbeck, John P; Ronquist, Fredrik; Swofford, David L; Cummings, Michael P; Rambaut, Andrew; Suchard, Marc A

    2012-01-01

    Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.

  6. Close contacts at the interface: Experimental-computational synergies for solving complexity problems

    Science.gov (United States)

    Torras, Juan; Zanuy, David; Bertran, Oscar; Alemán, Carlos; Puiggalí, Jordi; Turón, Pau; Revilla-López, Guillem

    2018-02-01

    The study of material science has been long devoted to the disentanglement of bulk structures which mainly entails finding the inner structure of materials. That structure is accountable for a major portion of materials' properties. Yet, as our knowledge of these "backbones" enlarged so did the interest for the materials' boundaries properties which means the properties at the frontier with the surrounding environment that is called interface. The interface is thus to be understood as the sum of the material's surface plus the surrounding environment be it in solid, liquid or gas phase. The study of phenomena at this interface requires both the use of experimental and theoretical techniques and, above all, a wise combination of them in order to shed light over the most intimate details at atomic, molecular and mesostructure levels. Here, we report several cases to be used as proof of concept of the results achieved when studying interface phenomena by combining a myriad of experimental and theoretical tools to overcome the usual limitation regardind atomic detail, size and time scales and systems of complex composition. Real world examples of the combined experimental-theoretical work and new tools, software, is offered to the readers.

  7. Effect of police mobile computer terminal interface design on officer driving distraction.

    Science.gov (United States)

    Zahabi, Maryam; Kaber, David

    2018-02-01

    Several crash reports have identified in-vehicle distraction to be a primary cause of emergency vehicle crashes especially in law enforcement. Furthermore, studies have found that mobile computer terminals (MCTs) are the most frequently used in-vehicle technology for police officers. Twenty police officers participated in a driving simulator-based assessment of visual behavior, performance, workload and situation awareness with current and enhanced MCT interface designs. In general, results revealed MCT use while driving to decrease officer visual attention to the roadway, but usability improvements can reduce the level of visual distraction and secondary-task completion time. Results also suggest that use of MCTs while driving significantly reduces perceived level of driving environment awareness for police officers and increases cognitive workload. These findings may be useful for MCT manufacturers in improving interface designs to increase police officer and civilian safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Flexusi Interface Builder For Computer Based Accelerator Monitoring And Control System

    CERN Document Server

    Kurakin, V G; Kurakin, P V

    2004-01-01

    We have developed computer code for any desired graphics user interface designing for monitoring and control system at the executable level. This means that operator can build up measurement console consisting of virtual devices before or even during real experiment without recompiling source file. Such functionality results in number of advantages comparing with traditional programming. First of all any risk disappears to introduce bug into source code. Another important thing is the fact the both program developers and operator staff do not interface in developing ultimate product (measurement console). Thus, small team without detailed project can design even very complicated monitoring and control system. For the reason mentioned below, approach suggested is especially helpful for large complexes to be monitored and control, accelerator being among them. The program code consists of several modules, responsible for data acquisition, control and representation. Borland C++ Builder technologies based on VCL...

  9. A distributed, graphical user interface based, computer control system for atomic physics experiments.

    Science.gov (United States)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  10. A distributed, graphical user interface based, computer control system for atomic physics experiments

    Science.gov (United States)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  11. An Eulerian method for computation of multimaterial impact with ENO shock-capturing and sharp interfaces

    CERN Document Server

    Udaykumar, H S; Belk, D M; Vanden, K J

    2003-01-01

    A technique is presented for the numerical simulation of high-speed multimaterial impact. Of particular interest is the interaction of solid impactors with targets. The computations are performed on a fixed Cartesian mesh by casting the equations governing material deformation in Eulerian conservation law form. The advantage of the Eulerian setting is the disconnection of the mesh from the boundary deformation allowing for large distortions of the interfaces. Eigenvalue analysis reveals that the system of equations is hyperbolic for the range of materials and impact velocities of interest. High-order accurate ENO shock-capturing schemes are used along with interface tracking techniques to evolve sharp immersed boundaries. The numerical technique is designed to tackle the following physical phenomena encountered during impact: (1) high velocities of impact leading to large deformations of the impactor as well as targets; (2) nonlinear wave-propagation and the development of shocks in the materials; (3) modelin...

  12. EDITORIAL: Special section on gaze-independent brain-computer interfaces Special section on gaze-independent brain-computer interfaces

    Science.gov (United States)

    Treder, Matthias S.

    2012-08-01

    Restoring the ability to communicate and interact with the environment in patients with severe motor disabilities is a vision that has been the main catalyst of early brain-computer interface (BCI) research. The past decade has brought a diversification of the field. BCIs have been examined as a tool for motor rehabilitation and their benefit in non-medical applications such as mental-state monitoring for improved human-computer interaction and gaming has been confirmed. At the same time, the weaknesses of some approaches have been pointed out. One of these weaknesses is gaze-dependence, that is, the requirement that the user of a BCI system voluntarily directs his or her eye gaze towards a visual target in order to efficiently operate a BCI. This not only contradicts the main doctrine of BCI research, namely that BCIs should be independent of muscle activity, but it can also limit its real-world applicability both in clinical and non-medical settings. It is only in a scenario devoid of any motor activity that a BCI solution is without alternative. Gaze-dependencies have surfaced at two different points in the BCI loop. Firstly, a BCI that relies on visual stimulation may require users to fixate on the target location. Secondly, feedback is often presented visually, which implies that the user may have to move his or her eyes in order to perceive the feedback. This special section was borne out of a BCI workshop on gaze-independent BCIs held at the 2011 Society for Applied Neurosciences (SAN) Conference and has then been extended with additional contributions from other research groups. It compiles experimental and methodological work that aims toward gaze-independent communication and mental-state monitoring. Riccio et al review the current state-of-the-art in research on gaze-independent BCIs [1]. Van der Waal et al present a tactile speller that builds on the stimulation of the fingers of the right and left hand [2]. H¨ohne et al analyze the ergonomic aspects

  13. A computer-aided surface roughness measurement system

    International Nuclear Information System (INIS)

    Hughes, F.J.; Schankula, M.H.

    1983-11-01

    A diamond stylus profilometer with computer-based data acquisitions/analysis system is being used to characterize surfaces of reactor components and materials, and to examine the effects of surface topography on thermal contact conductance. The current system is described; measurement problems and system development are discussed in general terms and possible future improvements are outlined

  14. Multipole surface solitons supported by the interface between linear media and nonlocal nonlinear media

    International Nuclear Information System (INIS)

    Shi, Zhiwei; Li, Huagang; Guo, Qi

    2012-01-01

    We address multipole surface solitons occurring at the interface between a linear medium and a nonlocal nonlinear medium. We show the impact of nonlocality, the propagation constant, and the linear index difference of two media on the properties of the surface solitons. We find that there exist a threshold value of the degree of the nonlocality at the same linear index difference of two media, only when the degree of the nonlocality goes beyond the value, the multipole surface solitons can be stable. -- Highlights: ► We show the impact of nonlocality and the linear index difference of two media on the properties of the surface solitons. ► For the surface solitons, only when the degree of the nonlocality goes beyond a threshold value, they can be stable. ► The number of poles and the index difference of two media can all influence the threshold value.

  15. User’s Emotions and Usability Study of a Brain-Computer Interface Applied to People with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Alejandro Rafael García Ramírez

    2018-02-01

    Full Text Available People with motor and communication disorders face serious challenges in interacting with computers. To enhance this functionality, new human-computer interfaces are being studied. In this work, a brain-computer interface based on the Emotiv Epoc is used to analyze human-computer interactions in cases of cerebral palsy. The Phrase-Composer software was developed to interact with the brain-computer interface. A system usability evaluation was carried out with the participation of three specialists from The Fundação Catarinense de Educação especial (FCEE and four cerebral palsy volunteers. Even though the System Usability Scale (SUS score was acceptable, several challenges remain. Raw electroencephalography (EEG data were also analyzed in order to assess the user’s emotions during their interaction with the communication device. This study brings new evidences about human-computer interaction related to individuals with cerebral palsy.

  16. A structural approach to constructing perspective efficient and reliable human-computer interfaces

    International Nuclear Information System (INIS)

    Balint, L.

    1989-01-01

    The principles of human-computer interface (HCI) realizations are investigated with the aim of getting closer to a general framework and thus, to a more or less solid background of constructing perspective efficient, reliable and cost-effective human-computer interfaces. On the basis of characterizing and classifying the different HCI solutions, the fundamental problems of interface construction are pointed out especially with respect to human error occurrence possibilities. The evolution of HCI realizations is illustrated by summarizing the main properties of past, present and foreseeable future interface generations. HCI modeling is pointed out to be a crucial problem in theoretical and practical investigations. Suggestions concerning HCI structure (hierarchy and modularity), HCI functional dynamics (mapping from input to output information), minimization of human error caused system failures (error-tolerance, error-recovery and error-correcting) as well as cost-effective HCI design and realization methodology (universal and application-oriented vs. application-specific solutions) are presented. The concept of RISC-based and SCAMP-type HCI components is introduced with the aim of having a reduced interaction scheme in communication and a well defined architecture in HCI components' internal structure. HCI efficiency and reliability are dealt with, by taking into account complexity and flexibility. The application of fast computerized prototyping is also briefly investigated as an experimental device of achieving simple, parametrized, invariant HCI models. Finally, a concise outline of an approach of how to construct ideal HCI's is also suggested by emphasizing the open questions and the need of future work related to the proposals, as well. (author). 14 refs, 6 figs

  17. Bond strength of resin-resin interfaces contaminated with saliva and submitted to different surface treatments

    Directory of Open Access Journals (Sweden)

    Adilson Yoshio Furuse

    2007-12-01

    Full Text Available The purpose of this study was to investigate the effect of different surface treatments on shear bond strength of saliva-contaminated resin-resin interfaces. Flat resin surfaces were fabricated. In the control group, no contamination or surface treatment was performed. The resin surfaces of the experimental groups were contaminated with saliva and air-dried, and then submitted to: (G1 rinsing with water and drying; (G2 application of an adhesive system; (G3 rinsing and drying, abrasion with finishing disks, etching and application of adhesive system; (G4 rinsing and drying, etching, application of silane and adhesive system. Resin cylinders were placed over the treated surfaces. The specimens were stored in water or ethanol. Shear bond strength tests were performed and the mode of failure was evaluated. Data were submitted to two-way ANOVA and Dunnett T3 test. Contamination of resin-resin interfaces with saliva significantly reduced shear strength, especially after prolonged storage (p<0.05. Similar values to the original bond strength were obtained after abrasion and application of adhesive (G3 or etching and application of silane and adhesive (G4. If contamination occurs, a surface treatment is required to guarantee an adequate interaction between the resin increments.

  18. Micro and nanostructural characterization of surfaces and interfaces of Portland cement mortars using atomic force microscopy

    International Nuclear Information System (INIS)

    Barreto, M.F.O.; Brandao, P.R.G.

    2014-01-01

    The characterization of Portland cement mortars is very important in the study the interfaces and surfaces that make up the system grout/ceramic block. In this sense, scanning electron microscopy and energy-dispersive (X-ray) spectrometer are important tools in investigating the morphology and chemical aspects. However, more detailed topographic information can be necessary in the characterization process. In this work, the aim was to characterize topographically surfaces and interfaces of mortars applied onto ceramic blocks. This has been accomplished by using the atomic force microscope (AFM) - MFP-3D-SA Asylum Research. To date, the results obtained from this research show that the characterization of cementitious materials with the help of AFM has an important contribution in the investigation and differentiation of hydrated calcium silicates (CSH), calcium hydroxide (Ca(OH)2, ettringite and calcium carbonate by providing morphological and micro topographical data, which are extremely important and reliable for the understanding of cementitious materials. (author)

  19. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    Science.gov (United States)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  20. Interface formation between hydrocarbon ring molecules and III-V semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Passmann, Regina

    2008-08-15

    In this work a systematical study to investigate the adsorption structures of small hydrocarbon ring shaped molecules on III-V semiconductor surfaces with Photo-Emission Spectroscopy (PES), Reflectance Anisotropy Spectroscopy (RAS), Scanning Tunneling Microscopy (STM) as well as Low Electron Energy Diffraction (LEED) was performed. To investigate the influence of the surface structure in detail the surface dimer configuration to the adsorption process of organic molecules GaAs(001) surfaces, the c(4 x 4), the (2 x 4) and the (4 x 2) have been investigated as well as the adsorption of cyclopentene on the InP(001)(2 x 4) reconstructed surface. In the direct comparison it is shown that cyclopentene bonds to the InP(001)(2 x 4) surface via a cycloaddition like reaction. During this adsorption the double bond splits which is in contrast to the adsorption of cyclopentene on the GaAs(001) surfaces. Therefrom it is concluded that the surface geometry has an influence on the resulting adsorption structure. In order to investigate the influence of the intra-molecular double bonds, cyclopentene (one double bond), 1,4-cyclohexadiene (two double bonds) and benzene (three double bonds) were used for the characterization of the interface formation. With the investigations on the GaAs(001) reconstructed surfaces it was shown that a dependency of the bonding configuration on the intra-molecular double bonds exists. During the adsorption of cyclopentene no evidence was found that the double bond has to be involved in the interface formation while during the adsorption of 1,4-cyclohexadiene and benzene the double bonds are involved. Furthermore it was found that a bonding to As atoms of the surface is more likely than a bonding to Ga atoms. (orig.)

  1. Interface formation between hydrocarbon ring molecules and III-V semiconductor surfaces

    International Nuclear Information System (INIS)

    Passmann, Regina

    2008-01-01

    In this work a systematical study to investigate the adsorption structures of small hydrocarbon ring shaped molecules on III-V semiconductor surfaces with Photo-Emission Spectroscopy (PES), Reflectance Anisotropy Spectroscopy (RAS), Scanning Tunneling Microscopy (STM) as well as Low Electron Energy Diffraction (LEED) was performed. To investigate the influence of the surface structure in detail the surface dimer configuration to the adsorption process of organic molecules GaAs(001) surfaces, the c(4 x 4), the (2 x 4) and the (4 x 2) have been investigated as well as the adsorption of cyclopentene on the InP(001)(2 x 4) reconstructed surface. In the direct comparison it is shown that cyclopentene bonds to the InP(001)(2 x 4) surface via a cycloaddition like reaction. During this adsorption the double bond splits which is in contrast to the adsorption of cyclopentene on the GaAs(001) surfaces. Therefrom it is concluded that the surface geometry has an influence on the resulting adsorption structure. In order to investigate the influence of the intra-molecular double bonds, cyclopentene (one double bond), 1,4-cyclohexadiene (two double bonds) and benzene (three double bonds) were used for the characterization of the interface formation. With the investigations on the GaAs(001) reconstructed surfaces it was shown that a dependency of the bonding configuration on the intra-molecular double bonds exists. During the adsorption of cyclopentene no evidence was found that the double bond has to be involved in the interface formation while during the adsorption of 1,4-cyclohexadiene and benzene the double bonds are involved. Furthermore it was found that a bonding to As atoms of the surface is more likely than a bonding to Ga atoms. (orig.)

  2. Dynamics at Solid State Surfaces and Interfaces, Volume 1 Current Developments

    CERN Document Server

    Bovensiepen, Uwe; Wolf, Martin

    2010-01-01

    This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques. The whole is rounded off by a look at future developments.

  3. [The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli].

    Science.gov (United States)

    Ganin, I P; Kaplan, A Ia

    2014-01-01

    The P300 based brain-computer interface requires the detection of P300 wave of brain event-related potentials. Most of its users learn the BCI control in several minutes and after the short classifier training they can type a text on the computer screen or assemble an image of separate fragments in simple BCI-based video games. Nevertheless, insufficient attractiveness for users and conservative stimuli organization in this BCI may restrict its integration into real information processes control. At the same time initial movement of object (motion-onset stimuli) may be an independent factor that induces P300 wave. In current work we checked the hypothesis that complex "flash + movement" stimuli together with drastic and compact stimuli organization on the computer screen may be much more attractive for user while operating in P300 BCI. In 20 subjects research we showed the effectiveness of our interface. Both accuracy and P300 amplitude were higher for flashing stimuli and complex "flash + movement" stimuli compared to motion-onset stimuli. N200 amplitude was maximal for flashing stimuli, while for "flash + movement" stimuli and motion-onset stimuli it was only a half of it. Similar BCI with complex stimuli may be embedded into compact control systems requiring high level of user attention under impact of negative external effects obstructing the BCI control.

  4. Towards Effective Non-Invasive Brain-Computer Interfaces Dedicated to Gait Rehabilitation Systems

    Directory of Open Access Journals (Sweden)

    Thierry Castermans

    2013-12-01

    Full Text Available In the last few years, significant progress has been made in the field of walk rehabilitation. Motor cortex signals in bipedal monkeys have been interpreted to predict walk kinematics. Epidural electrical stimulation in rats and in one young paraplegic has been realized to partially restore motor control after spinal cord injury. However, these experimental trials are far from being applicable to all patients suffering from motor impairments. Therefore, it is thought that more simple rehabilitation systems are desirable in the meanwhile. The goal of this review is to describe and summarize the progress made in the development of non-invasive brain-computer interfaces dedicated to motor rehabilitation systems. In the first part, the main principles of human locomotion control are presented. The paper then focuses on the mechanisms of supra-spinal centers active during gait, including results from electroencephalography, functional brain imaging technologies [near-infrared spectroscopy (NIRS, functional magnetic resonance imaging (fMRI, positron-emission tomography (PET, single-photon emission-computed tomography (SPECT] and invasive studies. The first brain-computer interface (BCI applications to gait rehabilitation are then presented, with a discussion about the different strategies developed in the field. The challenges to raise for future systems are identified and discussed. Finally, we present some proposals to address these challenges, in order to contribute to the improvement of BCI for gait rehabilitation.

  5. Pairwise structure alignment specifically tuned for surface pockets and interaction interfaces

    KAUST Repository

    Cui, Xuefeng

    2015-09-09

    To detect and evaluate the similarities between the three-dimensional (3D) structures of two molecules, various kinds of methods have been proposed for the pairwise structure alignment problem [6, 9, 7, 11]. The problem plays important roles when studying the function and the evolution of biological molecules. Recently, pairwise structure alignment methods have been extended and applied on surface pocket structures [10, 3, 5] and interaction interface structures [8, 4]. The results show that, even when there are no global similarities discovered between the global sequences and the global structures, biological molecules or complexes could share similar functions because of well conserved pockets and interfaces. Thus, pairwise pocket and interface structure alignments are promising to unveil such shared functions that cannot be discovered by the well-studied global sequence and global structure alignments. State-of-the-art methods for pairwise pocket and interface structure alignments [4, 5] are direct extensions of the classic pairwise protein structure alignment methods, and thus such methods share a few limitations. First, the goal of the classic protein structure alignment methods is to align single-chain protein structures (i.e., a single fragment of residues connected by peptide bonds). However, we observed that pockets and interfaces tend to consist of tens of extremely short backbone fragments (i.e., three or fewer residues connected by peptide bonds). Thus, existing pocket and interface alignment methods based on the protein structure alignment methods still rely on the existence of long-enough backbone fragments, and the fragmentation issue of pockets and interfaces rises the risk of missing the optimal alignments. Moreover, existing interface structure alignment methods focus on protein-protein interfaces, and require a "blackbox preprocessing" before aligning protein-DNA and protein-RNA interfaces. Therefore, we introduce the PROtein STucture Alignment

  6. On the physics of both surface overcharging and charge reversal at heterophase interfaces.

    Science.gov (United States)

    Wang, Zhi-Yong; Zhang, Pengli; Ma, Zengwei

    2018-02-07

    The conventional paradigm for characterizing surface overcharging and charge reversal is based on the so-called Stern layer, in which surface dissociation reaction and specific chemical adsorption are assumed to take place. In this article, a series of Monte Carlo simulations have been applied to obtain useful insights into the underlying physics responsible for these two kinds of anomalous phenomena at the interface of two dielectrics, with special emphasis on the case of divalent counterions that are more relevant in natural and biological environments. At a weakly charged surface, it is found that independent of the type of surface charge distribution and the dielectric response of the solution, the overcharging event is universally driven by the ion size-asymmetric effect. Exceptionally, the overcharging still persists when the surface is highly charged but is only restricted to the case of discrete surface charge in a relatively low dielectric medium. As compared to the adsorption onto the homogeneously smeared charge surface that has the same average affinity for counterions, on the other hand, charge reversal under the action of a dielectric response can be substantially enhanced in the discrete surface charge representation due to strong association of counterions with interfacial groups, and the degree of enhancement depends in a nontrivial way on the reduction of the medium dielectric constant and the steric effects of finite ion size. Rather interestingly, the charge reversal is of high relevance to the overcharging of interfaces because the overwhelming interfacial association forces the coions closer to the surface due to their smaller size than the counterions. Upon the addition of a monovalent salt to the solution, the interfacial association with divalent counterions makes surface overcharging and charge reversal widely unaffected, in contrast to the prevailing notion that screening of surface charge of a homogeneous nature is determined by the

  7. Atlas-free surface reconstruction of the cortical grey-white interface in infants.

    Directory of Open Access Journals (Sweden)

    François Leroy

    Full Text Available BACKGROUND: The segmentation of the cortical interface between grey and white matter in magnetic resonance images (MRI is highly challenging during the first post-natal year. First, the heterogeneous brain maturation creates important intensity fluctuations across regions. Second, the cortical ribbon is highly folded creating complex shapes. Finally, the low tissue contrast and partial volume effects hamper cortex edge detection in parts of the brain. METHODS AND FINDINGS: We present an atlas-free method for segmenting the grey-white matter interface of infant brains in T2-weighted (T2w images. We used a broad characterization of tissue using features based not only on local contrast but also on geometric properties. Furthermore, inaccuracies in localization were reduced by the convergence of two evolving surfaces located on each side of the inner cortical surface. Our method has been applied to eleven brains of one- to four-month-old infants. Both quantitative validations against manual segmentations and sulcal landmarks demonstrated good performance for infants younger than two months old. Inaccuracies in surface reconstruction increased with age in specific brain regions where the tissue contrast decreased with maturation, such as in the central region. CONCLUSIONS: We presented a new segmentation method which achieved good to very good performance at the grey-white matter interface depending on the infant age. This method should reduce manual intervention and could be applied to pathological brains since it does not require any brain atlas.

  8. Oblique surface waves at an interface between a metal-dielectric superlattice and an isotropic dielectric

    International Nuclear Information System (INIS)

    Vuković, Slobodan M; Miret, Juan J; Zapata-Rodriguez, Carlos J; Jakšić, Zoran

    2012-01-01

    We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal-dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal-dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.

  9. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    Science.gov (United States)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99 in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text chat communications, manipulation of procedureschecklists, cataloguingannotating images, scientific note taking, human-robot interaction, and control of suit andor other EVA systems.

  10. Influence of dilution and nature of the interaction on surface and interface magnetism

    International Nuclear Information System (INIS)

    Tsallis, C.

    1986-01-01

    The recent theoretical effort of the Rio de Janeiro/CBPF group on surface magnetism is tutorially reviewed. Within a real space renormalization group framework, we analyse the influence of factors such as the number of states per spin (q-state Potts model), the signs of the coupling constants (mixed ferro and antiferromagnetic interactions), the presence of a second semi-infinite bulk (interface case), the symmetry of the interaction (anisotropic Heisenberg model), and surface and/or bulk dilution (bond quenched model). A variety of interesting physical effects emerges. (Autor) [pt

  11. Filamentation of a surface plasma wave over a semiconductor-free space interface

    Science.gov (United States)

    Kumar, Gagan; Tripathi, V. K.

    2007-12-01

    A large amplitude surface plasma wave (SPW), propagating over a semiconductor-free space interface, is susceptible to filamentation instability. A small perturbation in the amplitude of the SPW across the direction of propagation exerts a ponderomotive force on free electrons and holes, causing spatial modulation in free carrier density and hence the effective permittivity ɛeff of the semiconductor. The regions with higher ɛeff attract more power from the nieghborhood, leading to the growth of the perturbation. The growth rate increases with the intensity of the surface wave. It decreases with the frequency of the SPW.

  12. Effect of substrate surface on electromigration-induced sliding at hetero-interfaces

    International Nuclear Information System (INIS)

    Kumar, Praveen; Dutta, Indranath

    2013-01-01

    Electromigration (EM)-induced interfacial sliding between a metal film and Si substrate occurs when (i) only few grains exist across the width of the film and (ii) diffusivity through the interfacial region is significantly greater than diffusivity through the film. Here, the effect of the substrate surface layer on the kinetics of EM-induced interfacial sliding is assessed using Si substrates coated with various thin film interlayers. The kinetics of interfacial sliding, and therefore the EM-driven mass flow rate, strongly depends on the type of the interlayer (and hence the substrate surface composition), such that strongly bonded interfaces with slower interfacial diffusivity produce slower sliding. (paper)

  13. Advances in Human-Computer Interaction: Graphics and Animation Components for Interface Design

    Science.gov (United States)

    Cipolla Ficarra, Francisco V.; Nicol, Emma; Cipolla-Ficarra, Miguel; Richardson, Lucy

    We present an analysis of communicability methodology in graphics and animation components for interface design, called CAN (Communicability, Acceptability and Novelty). This methodology has been under development between 2005 and 2010, obtaining excellent results in cultural heritage, education and microcomputing contexts. In studies where there is a bi-directional interrelation between ergonomics, usability, user-centered design, software quality and the human-computer interaction. We also present the heuristic results about iconography and layout design in blogs and websites of the following countries: Spain, Italy, Portugal and France.

  14. Feature Extraction on Brain Computer Interfaces using Discrete Dyadic Wavelet Transform: Preliminary Results

    International Nuclear Information System (INIS)

    Gareis, I; Gentiletti, G; Acevedo, R; Rufiner, L

    2011-01-01

    The purpose of this work is to evaluate different feature extraction alternatives to detect the event related evoked potential signal on brain computer interfaces, trying to minimize the time employed and the classification error, in terms of sensibility and specificity of the method, looking for alternatives to coherent averaging. In this context the results obtained performing the feature extraction using discrete dyadic wavelet transform using different mother wavelets are presented. For the classification a single layer perceptron was used. The results obtained with and without the wavelet decomposition were compared; showing an improvement on the classification rate, the specificity and the sensibility for the feature vectors obtained using some mother wavelets.

  15. Brain-computer interface research a state-of-the-art summary

    CERN Document Server

    Allison, Brendan; Edlinger, Günter; Leuthardt, E C

    Brain-computer interfaces (BCIs) are rapidly developing into a mainstream, worldwide research endeavor. With so many new groups and projects, it can be difficult to identify the best ones. This book summarizes ten leading projects from around the world. About 60 submissions were received in 2011 for the highly competitive BCI Research Award, and an international jury selected the top ten. This Brief gives a concise but carefully illustrated and fully up-to-date description of each of these projects, together with an introduction and concluding chapter by the editors.

  16. Portable non-invasive brain-computer interface: challenges and opportunities of optical modalities

    Science.gov (United States)

    Scholl, Clara A.; Hendrickson, Scott M.; Swett, Bruce A.; Fitch, Michael J.; Walter, Erich C.; McLoughlin, Michael P.; Chevillet, Mark A.; Blodgett, David W.; Hwang, Grace M.

    2017-05-01

    The development of portable non-invasive brain computer interface technologies with higher spatio-temporal resolution has been motivated by the tremendous success seen with implanted devices. This talk will discuss efforts to overcome several major obstacles to viability including approaches that promise to improve spatial and temporal resolution. Optical approaches in particular will be highlighted and the potential benefits of both Blood-Oxygen Level Dependent (BOLD) and Fast Optical Signal (FOS) will be discussed. Early-stage research into the correlations between neural activity and FOS will be explored.

  17. EXPERIMENTAL AND THEORETICAL FOUNDATIONS AND PRACTICAL IMPLEMENTATION OF TECHNOLOGY BRAIN-COMPUTER INTERFACE

    Directory of Open Access Journals (Sweden)

    A. Ya. Kaplan

    2013-01-01

    Full Text Available Technology brain-computer interface (BCI allow saperson to learn how to control external devices via thevoluntary regulation of own EEG directly from the brain without the involvement in the process of nerves and muscles. At the beginning the main goal of BCI was to replace or restore motor function to people disabled by neuromuscular disorders. Currently, the task of designing the BCI increased significantly, more capturing different aspects of life a healthy person. This article discusses the theoretical, experimental and technological base of BCI development and systematized critical fields of real implementation of these technologies.

  18. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Jiang, Ning; Stevenson, Andrew James Thomas

    2016-01-01

    Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here, we evaluate the effect and the underlying mechanisms of three BCI training sessions in a double-blind-sham-controlled design. The applied BCI......-associative group. Fugl-Meyer motor scores (0.8±0.46 point difference p=0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. For the BCI as applied here, the precise coupling between the brain command...

  19. Using real-time fMRI brain-computer interfacing to treat eating disorders.

    Science.gov (United States)

    Sokunbi, Moses O

    2018-05-15

    Real-time functional magnetic resonance imaging based brain-computer interfacing (fMRI neurofeedback) has shown encouraging outcomes in the treatment of psychiatric and behavioural disorders. However, its use in the treatment of eating disorders is very limited. Here, we give a brief overview of how to design and implement fMRI neurofeedback intervention for the treatment of eating disorders, considering the basic and essential components. We also attempt to develop potential adaptations of fMRI neurofeedback intervention for the treatment of anorexia nervosa, bulimia nervosa and binge eating disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. [Research of controlling of smart home system based on P300 brain-computer interface].

    Science.gov (United States)

    Wang, Jinjia; Yang, Chengjie

    2014-08-01

    Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.

  1. South African sign language human-computer interface in the context of the national accessibility portal

    CSIR Research Space (South Africa)

    Olivrin, GJ

    2006-02-01

    Full Text Available example, between a deaf person who can sign and an able person or a person with a different disability who cannot sign). METHODOLOGY A signing avatar is set up to work together with a chatterbot. The chatterbot is a natural language dialogue interface... are then offered in sign language as the replies are interpreted by a signing avatar, a living character that can reproduce human-like gestures and expressions. To make South African Sign Language (SASL) available digitally, computational models of the language...

  2. Brain-computer interface research a state-of-the-art summary 3

    CERN Document Server

    Guger, Christoph; Allison, Brendan

    2014-01-01

    This book provides a cutting-edge overview of the latest developments in Brain-Computer-Interfaces (BCIs), reported by leading research groups. As the reader will discover, BCI research is moving ahead rapidly, with many new ideas, research initiatives, and improved technologies, e.g. BCIs that enable people to communicate just by thinking - without any movement at all. Several different groups are helping severely disabled users communicate using BCIs, and BCI technology is also being extended to facilitate recovery from stroke, epilepsy, and other conditions. Each year, hundreds of the top

  3. Si Interface Barrier Modification on Memristor for Brain-Inspired Computing

    Science.gov (United States)

    Wu, Wei; Wu, Huaqiang; Gao, Bin; Qian, He

    2017-06-01

    Memristor is an emerging technology aimed at implementing neuromorphic computing in hardware system. Resistive random access memory (RRAM) is a kind of memristor with excellent performance, but abrupt switching in the set process influences the efficiency of neuromorphic system. In this study, we present an interface switching memristor device based on TiN/Si/TaOx/TiN stack and CMOS compatible fabrication process to achieve gradually resistive switching both in set and reset processes. The devices show a more than 10 switching window. The related switching mechanism is discussed.

  4. Diamond beamline I07: a beamline for surface and interface diffraction.

    Science.gov (United States)

    Nicklin, Chris; Arnold, Tom; Rawle, Jonathan; Warne, Adam

    2016-09-01

    Beamline I07 at Diamond Light Source is dedicated to the study of the structure of surfaces and interfaces for a wide range of sample types, from soft matter to ultrahigh vacuum. The beamline operates in the energy range 8-30 keV and has two endstations. The first houses a 2+3 diffractometer, which acts as a versatile platform for grazing-incidence techniques including surface X-ray diffraction, grazing-incidence small- (and wide-) angle X-ray scattering, X-ray reflectivity and grazing-incidence X-ray diffraction. A method for deflecting the X-rays (a double-crystal deflector) has been designed and incorporated into this endstation, extending the surfaces that can be studied to include structures formed on liquid surfaces or at liquid-liquid interfaces. The second experimental hutch contains a similar diffractometer with a large environmental chamber mounted on it, dedicated to in situ ultrahigh-vacuum studies. It houses a range of complementary surface science equipment including a scanning tunnelling microscope, low-energy electron diffraction and X-ray photoelectron spectroscopy ensuring that correlations between the different techniques can be performed on the same sample, in the same chamber. This endstation allows accurate determination of well ordered structures, measurement of growth behaviour during molecular beam epitaxy and has also been used to measure coherent X-ray diffraction from nanoparticles during alloying.

  5. Brain-computer interface: changes in performance using virtual reality techniques.

    Science.gov (United States)

    Ron-Angevin, Ricardo; Díaz-Estrella, Antonio

    2009-01-09

    The ability to control electroencephalographic (EEG) signals when different mental tasks are carried out would provide a method of communication for people with serious motor function problems. This system is known as a brain-computer interface (BCI). Due to the difficulty of controlling one's own EEG signals, a suitable training protocol is required to motivate subjects, as it is necessary to provide some type of visual feedback allowing subjects to see their progress. Conventional systems of feedback are based on simple visual presentations, such as a horizontal bar extension. However, virtual reality is a powerful tool with graphical possibilities to improve BCI-feedback presentation. The objective of the study is to explore the advantages of the use of feedback based on virtual reality techniques compared to conventional systems of feedback. Sixteen untrained subjects, divided into two groups, participated in the experiment. A group of subjects was trained using a BCI system, which uses conventional feedback (bar extension), and another group was trained using a BCI system, which submits subjects to a more familiar environment, such as controlling a car to avoid obstacles. The obtained results suggest that EEG behaviour can be modified via feedback presentation. Significant differences in classification error rates between both interfaces were obtained during the feedback period, confirming that an interface based on virtual reality techniques can improve the feedback control, specifically for untrained subjects.

  6. Brain-computer interfaces increase whole-brain signal to noise.

    Science.gov (United States)

    Papageorgiou, T Dorina; Lisinski, Jonathan M; McHenry, Monica A; White, Jason P; LaConte, Stephen M

    2013-08-13

    Brain-computer interfaces (BCIs) can convert mental states into signals to drive real-world devices, but it is not known if a given covert task is the same when performed with and without BCI-based control. Using a BCI likely involves additional cognitive processes, such as multitasking, attention, and conflict monitoring. In addition, it is challenging to measure the quality of covert task performance. We used whole-brain classifier-based real-time functional MRI to address these issues, because the method provides both classifier-based maps to examine the neural requirements of BCI and classification accuracy to quantify the quality of task performance. Subjects performed a covert counting task at fast and slow rates to control a visual interface. Compared with the same task when viewing but not controlling the interface, we observed that being in control of a BCI improved task classification of fast and slow counting states. Additional BCI control increased subjects' whole-brain signal-to-noise ratio compared with the absence of control. The neural pattern for control consisted of a positive network comprised of dorsal parietal and frontal regions and the anterior insula of the right hemisphere as well as an expansive negative network of regions. These findings suggest that real-time functional MRI can serve as a platform for exploring information processing and frontoparietal and insula network-based regulation of whole-brain task signal-to-noise ratio.

  7. SSVEP and ANN based optimal speller design for Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    Irshad Ahmad Ansari

    2015-07-01

    Full Text Available This work put forwards an optimal BCI (Brain Computer Interface speller design based on Steady State Visual Evoked Potentials (SSVEP and Artificial Neural Network (ANN in order to help the people with severe motor impairments. This work is carried out to enhance the accuracy and communication rate of  BCI system. To optimize the BCI system, the work has been divided into two steps: First, designing of an encoding technique to choose characters from the speller interface and the second is the development and implementation of feature extraction algorithm to acquire optimal features, which is used to train the BCI system for classification using neural network. Optimization of speller interface is focused on representation of character matrix and its designing parameters. Then again, a lot of deliberations made in order to optimize selection of features and user’s time window. Optimized system works nearly the same with the new user and gives character per minute (CPM of 13 ± 2 with an average accuracy of 94.5% by choosing first two harmonics of power spectral density as the feature vectors and using the 2 second time window for each selection. Optimized BCI performs better with experienced users with an average accuracy of 95.1%. Such a good accuracy has not been reported before in account of fair enough CPM.DOI: 10.15181/csat.v2i2.1059

  8. Electronic structure at metal-smiconductor surfaces and interfaces: effects of disorder

    International Nuclear Information System (INIS)

    Rodrigues, D.E.

    1988-01-01

    The main concern of this work is the study of the electronic structure at metal and semiconductor surfaces or interfaces, with special emphasis in the effects of disorder and local microstructure upon them. Various factors which determine this structure are presented and those of central importance are identified. A model that allows the efficient and exact calculation of the local density of states at disordered interfaces is described. This model is based on a tight-binding hamiltonian that has enough flexibility so as to allow an adequate description of real solids. The disorder is taken into account by including stochastic perturbations in the diagonal elements of the hamiltonian in a site orbital basis. These perturbations are taken at each layer from a lorentzian probability distribution. An exact expression for the calculation of the local density of states is derived and applied to a model surface built up from a type orbitals arranged in a simple cubic lattice. The effects of disorder on the local densities of states and on the existence of surface Tamm states are studied. The properties of the electronic states with this kind of model of disorder are considered. The self-consistent calculation of the electronic structure of the Si(111) - (1x1) surface is presented. The effects of disorder on the electronic properties such as the work function or the position of surface states within the gap are evaluated. The surface of the metallic compound NiSi 2 is also treated. The first self-consistent calculation of the electronic structure of its (111) surface is presented. The electronic structure of the Si/NiSi 2 (111) interfaces is calculated for the two types of junctions that can be grown experimentally. The origin of the difference between the Schottky barrier heights at both interfaces is discussed. The results are compared with available experimental data. The implications of this calculation on existing theories about the microscopic mechanism that causes

  9. 3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

    International Nuclear Information System (INIS)

    Pupurs, A; Varna, J

    2012-01-01

    Fiber/matrix interface debond growth is one of the main mechanisms of damage evolution in unidirectional (UD) polymer composites. Because for polymer composites the fiber strain to failure is smaller than for the matrix multiple fiber breaks occur at random positions when high mechanical stress is applied to the composite. The energy released due to each fiber break is usually larger than necessary for the creation of a fiber break therefore a partial debonding of fiber/matrix interface is typically observed. Thus the stiffness reduction of UD composite is contributed both from the fiber breaks and from the interface debonds. The aim of this paper is to analyze the debond growth in carbon fiber/epoxy and glass fiber/epoxy UD composites using fracture mechanics principles by calculation of energy release rate G II . A 3-D FEM model is developed for calculation of energy release rate for fiber/matrix interface debonds at different locations in the composite including the composite surface region where the stress state differs from the one in the bulk composite. In the model individual partially debonded fiber is surrounded by matrix region and embedded in a homogenized composite.

  10. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    Science.gov (United States)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  11. Design of a Workstation for People with Upper-Limb Disabilities Using a Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    John E. Muñoz-Cardona

    2013-11-01

    Full Text Available  This paper shows the design of work-station for work-related inclusion people upper-limb disability. The system involves the use of novel brain computer interface used to bridge the user-computer interaction. Our hope objective is elucidating functional, technological, ergonomic and procedural aspects to runaway operation station; with propose to scratch barrier to impossibility access to TIC’s tools and work done for individual disability person. We found access facility ergonomics, adaptability and portable issue of workstation are most important design criteria. Prototype implementations in workplace environment have TIR estimate of 43% for retrieve. Finally we list a typology of services that could be the most appropriate for the process of labor including: telemarketing, telesales, telephone surveys, order taking, social assistance in disasters, general information and inquiries, reservations at tourist sites, technical support, emergency, online support and after-sales services.

  12. Joint Time-Frequency-Space Classification of EEG in a Brain-Computer Interface Application

    Directory of Open Access Journals (Sweden)

    Molina Gary N Garcia

    2003-01-01

    Full Text Available Brain-computer interface is a growing field of interest in human-computer interaction with diverse applications ranging from medicine to entertainment. In this paper, we present a system which allows for classification of mental tasks based on a joint time-frequency-space decorrelation, in which mental tasks are measured via electroencephalogram (EEG signals. The efficiency of this approach was evaluated by means of real-time experimentations on two subjects performing three different mental tasks. To do so, a number of protocols for visualization, as well as training with and without feedback, were also developed. Obtained results show that it is possible to obtain good classification of simple mental tasks, in view of command and control, after a relatively small amount of training, with accuracies around 80%, and in real time.

  13. Processing data communications events by awakening threads in parallel active messaging interface of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2016-03-15

    Processing data communications events in a parallel active messaging interface (`PAMI`) of a parallel computer that includes compute nodes that execute a parallel application, with the PAMI including data communications endpoints, and the endpoints are coupled for data communications through the PAMI and through other data communications resources, including determining by an advance function that there are no actionable data communications events pending for its context, placing by the advance function its thread of execution into a wait state, waiting for a subsequent data communications event for the context; responsive to occurrence of a subsequent data communications event for the context, awakening by the thread from the wait state; and processing by the advance function the subsequent data communications event now pending for the context.

  14. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control.

    Science.gov (United States)

    Blankertz, Benjamin; Acqualagna, Laura; Dähne, Sven; Haufe, Stefan; Schultze-Kraft, Matthias; Sturm, Irene; Ušćumlic, Marija; Wenzel, Markus A; Curio, Gabriel; Müller, Klaus-Robert

    2016-01-01

    The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.

  15. An online hybrid brain-computer interface combining multiple physiological signals for webpage browse.

    Science.gov (United States)

    Long Chen; Zhongpeng Wang; Feng He; Jiajia Yang; Hongzhi Qi; Peng Zhou; Baikun Wan; Dong Ming

    2015-08-01

    The hybrid brain computer interface (hBCI) could provide higher information transfer rate than did the classical BCIs. It included more than one brain-computer or human-machine interact paradigms, such as the combination of the P300 and SSVEP paradigms. Research firstly constructed independent subsystems of three different paradigms and tested each of them with online experiments. Then we constructed a serial hybrid BCI system which combined these paradigms to achieve the functions of typing letters, moving and clicking cursor, and switching among them for the purpose of browsing webpages. Five subjects were involved in this study. They all successfully realized these functions in the online tests. The subjects could achieve an accuracy above 90% after training, which met the requirement in operating the system efficiently. The results demonstrated that it was an efficient system capable of robustness, which provided an approach for the clinic application.

  16. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    Science.gov (United States)

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  17. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    Science.gov (United States)

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  18. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control

    Directory of Open Access Journals (Sweden)

    Benjamin Blankertz

    2016-11-01

    Full Text Available The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.

  19. Computer simulation of the topography evolution on ion bombarded surfaces

    CERN Document Server

    Zier, M

    2003-01-01

    The development of roughness on ion bombarded surfaces (facets, ripples) on single crystalline and amorphous homogeneous solids plays an important role for example in depth profiling techniques. To verify a faceting mechanism based not only on sputtering by directly impinging ions but also on the contribution of reflected ions and the redeposition of sputtered material a computer simulation has been carried out. The surface in this model is treated as a two-dimensional line segment profile. The model describes the topography evolution on ion bombarded surfaces including the growth mechanism of a facetted surface, using only the interplay of reflected and primary ions and redeposited atoms.

  20. U.S. Army weapon systems human-computer interface style guide. Version 2

    Energy Technology Data Exchange (ETDEWEB)

    Avery, L.W.; O`Mara, P.A.; Shepard, A.P.; Donohoo, D.T.

    1997-12-31

    A stated goal of the US Army has been the standardization of the human computer interfaces (HCIs) of its system. Some of the tools being used to accomplish this standardization are HCI design guidelines and style guides. Currently, the Army is employing a number of HCI design guidance documents. While these style guides provide good guidance for the command, control, communications, computers, and intelligence (C4I) domain, they do not necessarily represent the more unique requirements of the Army`s real time and near-real time (RT/NRT) weapon systems. The Office of the Director of Information for Command, Control, Communications, and Computers (DISC4), in conjunction with the Weapon Systems Technical Architecture Working Group (WSTAWG), recognized this need as part of their activities to revise the Army Technical Architecture (ATA), now termed the Joint Technical Architecture-Army (JTA-A). To address this need, DISC4 tasked the Pacific Northwest National Laboratory (PNNL) to develop an Army weapon systems unique HCI style guide, which resulted in the US Army Weapon Systems Human-Computer Interface (WSHCI) Style Guide Version 1. Based on feedback from the user community, DISC4 further tasked PNNL to revise Version 1 and publish Version 2. The intent was to update some of the research and incorporate some enhancements. This document provides that revision. The purpose of this document is to provide HCI design guidance for the RT/NRT Army system domain across the weapon systems subdomains of ground, aviation, missile, and soldier systems. Each subdomain should customize and extend this guidance by developing their domain-specific style guides, which will be used to guide the development of future systems within their subdomains.

  1. 3D Graphical User Interface on Personal Computer using P5 Data Glove

    OpenAIRE

    Ms Khyati r. Nirmal

    2011-01-01

    This paper presents Essential Reality works on 3D HCI for changing 2D visual to 3D visual. The mouse is the critical interface to handle 3D graphical objects. Using data glove its possible to put it on like a normal glove and it then acts as an input device that senses finger movements and hand position and orientation (3 coordinates) in real time. The limitation of surface do not allow large no of windows and icons to be positioned on the screen. If more no of windows are forcibly open some ...

  2. Integrated multimodal human-computer interface and augmented reality for interactive display applications

    Science.gov (United States)

    Vassiliou, Marius S.; Sundareswaran, Venkataraman; Chen, S.; Behringer, Reinhold; Tam, Clement K.; Chan, M.; Bangayan, Phil T.; McGee, Joshua H.

    2000-08-01

    We describe new systems for improved integrated multimodal human-computer interaction and augmented reality for a diverse array of applications, including future advanced cockpits, tactical operations centers, and others. We have developed an integrated display system featuring: speech recognition of multiple concurrent users equipped with both standard air- coupled microphones and novel throat-coupled sensors (developed at Army Research Labs for increased noise immunity); lip reading for improving speech recognition accuracy in noisy environments, three-dimensional spatialized audio for improved display of warnings, alerts, and other information; wireless, coordinated handheld-PC control of a large display; real-time display of data and inferences from wireless integrated networked sensors with on-board signal processing and discrimination; gesture control with disambiguated point-and-speak capability; head- and eye- tracking coupled with speech recognition for 'look-and-speak' interaction; and integrated tetherless augmented reality on a wearable computer. The various interaction modalities (speech recognition, 3D audio, eyetracking, etc.) are implemented a 'modality servers' in an Internet-based client-server architecture. Each modality server encapsulates and exposes commercial and research software packages, presenting a socket network interface that is abstracted to a high-level interface, minimizing both vendor dependencies and required changes on the client side as the server's technology improves.

  3. Initial constructs for patient-centered outcome measures to evaluate brain-computer interfaces.

    Science.gov (United States)

    Andresen, Elena M; Fried-Oken, Melanie; Peters, Betts; Patrick, Donald L

    2016-10-01

    The authors describe preliminary work toward the creation of patient-centered outcome (PCO) measures to evaluate brain-computer interface (BCI) as an assistive technology (AT) for individuals with severe speech and physical impairments (SSPI). In Phase 1, 591 items from 15 existing measures were mapped to the International Classification of Functioning, Disability and Health (ICF). In Phase 2, qualitative interviews were conducted with eight people with SSPI and seven caregivers. Resulting text data were coded in an iterative analysis. Most items (79%) were mapped to the ICF environmental domain; over half (53%) were mapped to more than one domain. The ICF framework was well suited for mapping items related to body functions and structures, but less so for items in other areas, including personal factors. Two constructs emerged from qualitative data: quality of life (QOL) and AT. Component domains and themes were identified for each. Preliminary constructs, domains and themes were generated for future PCO measures relevant to BCI. Existing instruments are sufficient for initial items but do not adequately match the values of people with SSPI and their caregivers. Field methods for interviewing people with SSPI were successful, and support the inclusion of these individuals in PCO research. Implications for Rehabilitation Adapted interview methods allow people with severe speech and physical impairments to participate in patient-centered outcomes research. Patient-centered outcome measures are needed to evaluate the clinical implementation of brain-computer interface as an assistive technology.

  4. Tactile event-related potentials in amyotrophic lateral sclerosis (ALS): Implications for brain-computer interface.

    Science.gov (United States)

    Silvoni, S; Konicar, L; Prats-Sedano, M A; Garcia-Cossio, E; Genna, C; Volpato, C; Cavinato, M; Paggiaro, A; Veser, S; De Massari, D; Birbaumer, N

    2016-01-01

    We investigated neurophysiological brain responses elicited by a tactile event-related potential paradigm in a sample of ALS patients. Underlying cognitive processes and neurophysiological signatures for brain-computer interface (BCI) are addressed. We stimulated the palm of the hand in a group of fourteen ALS patients and a control group of ten healthy participants and recorded electroencephalographic signals in eyes-closed condition. Target and non-target brain responses were analyzed and classified offline. Classification errors served as the basis for neurophysiological brain response sub-grouping. A combined behavioral and quantitative neurophysiological analysis of sub-grouped data showed neither significant between-group differences, nor significant correlations between classification performance and the ALS patients' clinical state. Taking sequential effects of stimuli presentation into account, analyses revealed mean classification errors of 19.4% and 24.3% in healthy participants and ALS patients respectively. Neurophysiological correlates of tactile stimuli presentation are not altered by ALS. Tactile event-related potentials can be used to monitor attention level and task performance in ALS and may constitute a viable basis for future BCIs. Implications for brain-computer interface implementation of the proposed method for patients in critical conditions, such as the late stage of ALS and the (completely) locked-in state, are discussed. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. An efficient ERP-based brain-computer interface using random set presentation and face familiarity.

    Directory of Open Access Journals (Sweden)

    Seul-Ki Yeom

    Full Text Available Event-related potential (ERP-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column (RC-based paradigm with our approach that combines a random set presentation paradigm with (non- self-face stimuli. Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI setup.

  6. Quantum neural network-based EEG filtering for a brain-computer interface.

    Science.gov (United States)

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  7. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.

    Science.gov (United States)

    Heo, Jeong; Yoon, Heenam; Park, Kwang Suk

    2017-06-23

    Amyotrophic lateral sclerosis (ALS) patients whose voluntary muscles are paralyzed commonly communicate with the outside world using eye movement. There have been many efforts to support this method of communication by tracking or detecting eye movement. An electrooculogram (EOG), an electro-physiological signal, is generated by eye movements and can be measured with electrodes placed around the eye. In this study, we proposed a new practical electrode position on the forehead to measure EOG signals, and we developed a wearable forehead EOG measurement system for use in Human Computer/Machine interfaces (HCIs/HMIs). Four electrodes, including the ground electrode, were placed on the forehead. The two channels were arranged vertically and horizontally, sharing a positive electrode. Additionally, a real-time eye movement classification algorithm was developed based on the characteristics of the forehead EOG. Three applications were employed to evaluate the proposed system: a virtual keyboard using a modified Bremen BCI speller and an automatic sequential row-column scanner, and a drivable power wheelchair. The mean typing speeds of the modified Bremen brain-computer interface (BCI) speller and automatic row-column scanner were 10.81 and 7.74 letters per minute, and the mean classification accuracies were 91.25% and 95.12%, respectively. In the power wheelchair demonstration, the user drove the wheelchair through an 8-shape course without collision with obstacles.

  8. Personality Trait and Facial Expression Filter-Based Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Seongah Chin

    2013-02-01

    Full Text Available In this paper, we present technical approaches that bridge the gap in the research related to the use of brain-computer interfaces for entertainment and facial expressions. Such facial expressions that reflect an individual's personal traits can be used to better realize artificial facial expressions in a gaming environment based on a brain-computer interface. First, an emotion extraction filter is introduced in order to classify emotions on the basis of the users' brain signals in real time. Next, a personality trait filter is defined to classify extrovert and introvert types, which manifest as five traits: very extrovert, extrovert, medium, introvert and very introvert. In addition, facial expressions derived from expression rates are obtained by an extrovert-introvert fuzzy model through its defuzzification process. Finally, we confirm this validation via an analysis of the variance of the personality trait filter, a k-fold cross validation of the emotion extraction filter, an accuracy analysis, a user study of facial synthesis and a test case game.

  9. Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces

    Science.gov (United States)

    Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong

    2004-10-01

    Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.

  10. Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary.

    Science.gov (United States)

    Li, J; Guo, L-X; Zeng, H; Han, X-B

    2009-06-01

    A message-passing-interface (MPI)-based parallel finite-difference time-domain (FDTD) algorithm for the electromagnetic scattering from a 1-D randomly rough sea surface is presented. The uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different processors is illustrated for one sea surface realization, and the computation time of the parallel FDTD algorithm is dramatically reduced compared to a single-process implementation. Finally, some numerical results are shown, including the backscattering characteristics of sea surface for different polarization and the bistatic scattering from a sea surface with large incident angle and large wind speed.

  11. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    Science.gov (United States)

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  12. Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.

    Science.gov (United States)

    Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E

    2018-01-18

    Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO 4 ) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO 4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO 4 /KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO 4 /KPi electrolyte interface.

  13. Evaluation of underground pipe-structure interface for surface impact load

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen, E-mail: swang@terrapower.com

    2017-06-15

    Highlights: • A simple method is proposed for the evaluation of underground pipelines for surface impact load considering the effect of a nearby pipe-structure interface. • The proposed simple method can be used to evaluate the magnitude of damage within a short period of time after accidental drop occurs. • The proposed method is applied in a practical example and compared by using finite element analysis. - Abstract: Nuclear safety related buried pipelines need to be assessed for the effects of postulated surface impact loads. In published solutions, the buried pipe is often considered within an elastic half space without interference with other underground structures. In the case that a surface impact occurs in short distance from an underground pipe-structure interface, this boundary condition will further complicate the buried pipe evaluation. Neglecting such boundary effect in the assessment may lead to underestimating potential damage of buried pipeline, and jeopardizing safety of the nuclear power plant. Comprehensive analysis of such structure-pipe-soil system is often subjected to availability of state-of-art finite element tools, as well as costly and time consuming. Simple, but practical conservative techniques have not been established. In this study, a mechanics based solution is proposed in order to assess the magnitude of damage to a buried pipeline beneath a heavy surface impact considering the effect of a nearby pipe-structure interface. The proposed approach provides an easy to use tool in the early stage of evaluation before the decision of applying more costly technique can be made by owner of the nuclear facility.

  14. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    International Nuclear Information System (INIS)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-01-01

    Graphical abstract: - Highlights: • In situ adsorption behaviors of TES on PA6 surface were clarified by QCM. • Highest adsorption of TES on PA6 was obtained in pH 3 and 0.1 M solution. • Molecular layers of TES with uniform structures were prepared on PA6 surface. • TES layer improved PA6 local heat resistance from 150 °C to 230 °C. • TES molecular layer successfully reduced Ag ion to Ag"0. - Abstract: Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag"+ ion to Ag"0. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  15. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Jing [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Aisawa, Sumio, E-mail: aisawa@iwate-u.ac.jp [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Hirahara, Hidetoshi [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kudo, Takahiro [Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan); Mori, Kunio [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan)

    2016-04-15

    Graphical abstract: - Highlights: • In situ adsorption behaviors of TES on PA6 surface were clarified by QCM. • Highest adsorption of TES on PA6 was obtained in pH 3 and 0.1 M solution. • Molecular layers of TES with uniform structures were prepared on PA6 surface. • TES layer improved PA6 local heat resistance from 150 °C to 230 °C. • TES molecular layer successfully reduced Ag ion to Ag{sup 0}. - Abstract: Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag{sup +} ion to Ag{sup 0}. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  16. Evaluation of underground pipe-structure interface for surface impact load

    International Nuclear Information System (INIS)

    Wang, Shen

    2017-01-01

    Highlights: • A simple method is proposed for the evaluation of underground pipelines for surface impact load considering the effect of a nearby pipe-structure interface. • The proposed simple method can be used to evaluate the magnitude of damage within a short period of time after accidental drop occurs. • The proposed method is applied in a practical example and compared by using finite element analysis. - Abstract: Nuclear safety related buried pipelines need to be assessed for the effects of postulated surface impact loads. In published solutions, the buried pipe is often considered within an elastic half space without interference with other underground structures. In the case that a surface impact occurs in short distance from an underground pipe-structure interface, this boundary condition will further complicate the buried pipe evaluation. Neglecting such boundary effect in the assessment may lead to underestimating potential damage of buried pipeline, and jeopardizing safety of the nuclear power plant. Comprehensive analysis of such structure-pipe-soil system is often subjected to availability of state-of-art finite element tools, as well as costly and time consuming. Simple, but practical conservative techniques have not been established. In this study, a mechanics based solution is proposed in order to assess the magnitude of damage to a buried pipeline beneath a heavy surface impact considering the effect of a nearby pipe-structure interface. The proposed approach provides an easy to use tool in the early stage of evaluation before the decision of applying more costly technique can be made by owner of the nuclear facility.

  17. Flexible microelectrode array for interfacing with the surface of neural ganglia

    Science.gov (United States)

    Sperry, Zachariah J.; Na, Kyounghwan; Parizi, Saman S.; Chiel, Hillel J.; Seymour, John; Yoon, Euisik; Bruns, Tim M.

    2018-06-01

    Objective. The dorsal root ganglia (DRG) are promising nerve structures for sensory neural interfaces because they provide centralized access to primary afferent cell bodies and spinal reflex circuitry. In order to harness this potential, new electrode technologies are needed which take advantage of the unique properties of DRG, specifically the high density of neural cell bodies at the dorsal surface. Here we report initial in vivo results from the development of a flexible non-penetrating polyimide electrode array interfacing with the surface of ganglia. Approach. Multiple layouts of a 64-channel iridium electrode (420 µm2) array were tested, with pitch as small as 25 µm. The buccal ganglia of invertebrate sea slug Aplysia californica were used to develop handling and recording techniques with ganglionic surface electrode arrays (GSEAs). We also demonstrated the GSEA’s capability to record single- and multi-unit activity from feline lumbosacral DRG related to a variety of sensory inputs, including cutaneous brushing, joint flexion, and bladder pressure. Main results. We recorded action potentials from a variety of Aplysia neurons activated by nerve stimulation, and units were observed firing simultaneously on closely spaced electrode sites. We also recorded single- and multi-unit activity associated with sensory inputs from feline DRG. We utilized spatial oversampling of action potentials on closely-spaced electrode sites to estimate the location of neural sources at between 25 µm and 107 µm below the DRG surface. We also used the high spatial sampling to demonstrate a possible spatial sensory map of one feline’s DRG. We obtained activation of sensory fibers with low-amplitude stimulation through individual or groups of GSEA electrode sites. Significance. Overall, the GSEA has been shown to provide a variety of information types from ganglia neurons and to have significant potential as a tool for neural mapping and interfacing.

  18. Spin-Polarized Hybridization at the interface between different 8-hydroxyquinolates and the Cr(001) surface

    Science.gov (United States)

    Wang, Jingying; Deloach, Andrew; Dougherty, Daniel B.; Dougherty Lab Team

    Organic materials attract a lot of attention due to their promising applications in spintronic devices. It is realized that spin-polarized metal/organic interfacial hybridization plays an important role to improve efficiency of organic spintronic devices. Hybridized interfacial states help to increase spin injection at the interface. Here we report spin-resolved STM measurements of single tris(8-hydroxyquinolinato) aluminum molecules adsorbed on the antiferromagnetic Cr(001). Our observations show a spin-polarized interface state between Alq3 and Cr(001). Tris(8-hydroxyquinolinato) chromium has also been studied and compared with Alq3, which exhibits different spin-polarized hybridization with the Cr(001) surface state than Alq3. We attribute the differences to different character of molecular orbitals in the two different quinolates.

  19. InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description.

    Science.gov (United States)

    Virieux, Héloïse; Le Troedec, Marianne; Cros-Gagneux, Arnaud; Ojo, Wilfried-Solo; Delpech, Fabien; Nayral, Céline; Martinez, Hervé; Chaudret, Bruno

    2012-12-05

    Advanced (1)H, (13)C, and (31)P solution- and solid-state NMR studies combined with XPS were used to probe, at the molecular scale, the composition (of the core, the shell, and the interface) and the surface chemistry of InP/ZnS core/shell quantum dots prepared via a non-coordinating solvent strategy. The interface between the mismatched InP and ZnS phases is composed of an amorphous mixed oxide phase incorporating InPO(x) (with x = 3 and predominantly 4), In(2)O(3), and InO(y)(OH)(3-2y) (y = 0, 1). Thanks to the analysis of the underlying reaction mechanisms, we demonstrate that the oxidation of the upper part of the InP core is the consequence of oxidative conditions brought by decarboxylative coupling reactions (ketonization). These reactions occur during both the core preparation and the coating process, but according to different mechanisms.

  20. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    Science.gov (United States)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone