WorldWideScience

Sample records for computer image-guided surgery

  1. Image-guided robotic surgery.

    Science.gov (United States)

    Marescaux, Jacques; Solerc, Luc

    2004-06-01

    Medical image processing leads to an improvement in patient care by guiding the surgical gesture. Three-dimensional models of patients that are generated from computed tomographic scans or magnetic resonance imaging allow improved surgical planning and surgical simulation that offers the opportunity for a surgeon to train the surgical gesture before performing it for real. These two preoperative steps can be used intra-operatively because of the development of augmented reality, which consists of superimposing the preoperative three-dimensional model of the patient onto the real intraoperative view. Augmented reality provides the surgeon with a view of the patient in transparency and can also guide the surgeon, thanks to the real-time tracking of surgical tools during the procedure. When adapted to robotic surgery, this tool tracking enables visual serving with the ability to automatically position and control surgical robotic arms in three dimensions. It is also now possible to filter physiologic movements such as breathing or the heart beat. In the future, by combining augmented reality and robotics, these image-guided robotic systems will enable automation of the surgical procedure, which will be the next revolution in surgery.

  2. Computational Modeling for Enhancing Soft Tissue Image Guided Surgery: An Application in Neurosurgery.

    Science.gov (United States)

    Miga, Michael I

    2016-01-01

    With the recent advances in computing, the opportunities to translate computational models to more integrated roles in patient treatment are expanding at an exciting rate. One area of considerable development has been directed towards correcting soft tissue deformation within image guided neurosurgery applications. This review captures the efforts that have been undertaken towards enhancing neuronavigation by the integration of soft tissue biomechanical models, imaging and sensing technologies, and algorithmic developments. In addition, the review speaks to the evolving role of modeling frameworks within surgery and concludes with some future directions beyond neurosurgical applications.

  3. Fast-MICP for frameless image-guided surgery

    International Nuclear Information System (INIS)

    Lee, Jiann-Der; Huang, Chung-Hsien; Wang, Sheng-Ta; Lin, Chung-Wei; Lee, Shin-Tseng

    2010-01-01

    Purpose: In image-guided surgery (IGS) systems, image-to-physical registration is critical for reliable anatomical information mapping and spatial guidance. Conventional stereotactic frame-based or fiducial-based approaches provide accurate registration but are not patient-friendly. This study proposes a frameless cranial IGS system that uses computer vision techniques to replace the frame or fiducials with the natural features of the patient. Methods: To perform a cranial surgery with the proposed system, the facial surface of the patient is first reconstructed by stereo vision. Accuracy is ensured by capturing parallel-line patterns projected from a calibrated LCD projector. Meanwhile, another facial surface is reconstructed from preoperative computed tomography (CT) images of the patient. The proposed iterative closest point (ICP)-based algorithm [fast marker-added ICP (Fast-MICP)] is then used to register the two facial data sets, which transfers the anatomical information from the CT images to the physical space. Results: Experimental results reveal that the Fast-MICP algorithm reduces the computational cost of marker-added ICP (J.-D. Lee et al., ''A coarse-to-fine surface registration algorithm for frameless brain surgery,'' in Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 836-839) to 10% and achieves comparable registration accuracy, which is under 3 mm target registration error (TRE). Moreover, two types of optical-based spatial digitizing devices can be integrated for further surgical navigation. Anatomical information or image-guided surgical landmarks can be projected onto the patient to obtain an immersive augmented reality environment. Conclusion: The proposed frameless IGS system with stereo vision obtains TRE of less than 3 mm. The proposed Fast-MICP registration algorithm reduces registration time by 90% without compromising accuracy.

  4. Fast-MICP for frameless image-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiann-Der; Huang, Chung-Hsien; Wang, Sheng-Ta; Lin, Chung-Wei; Lee, Shin-Tseng [Department of Electrical Engineering, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Mechatronics, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Neurosurgery and Medical Augmented Reality Research Center, Chang Gung Memorial Hospital, No. 199, Tunghwa Rd., Taipei 105, Taiwan (China)

    2010-09-15

    Purpose: In image-guided surgery (IGS) systems, image-to-physical registration is critical for reliable anatomical information mapping and spatial guidance. Conventional stereotactic frame-based or fiducial-based approaches provide accurate registration but are not patient-friendly. This study proposes a frameless cranial IGS system that uses computer vision techniques to replace the frame or fiducials with the natural features of the patient. Methods: To perform a cranial surgery with the proposed system, the facial surface of the patient is first reconstructed by stereo vision. Accuracy is ensured by capturing parallel-line patterns projected from a calibrated LCD projector. Meanwhile, another facial surface is reconstructed from preoperative computed tomography (CT) images of the patient. The proposed iterative closest point (ICP)-based algorithm [fast marker-added ICP (Fast-MICP)] is then used to register the two facial data sets, which transfers the anatomical information from the CT images to the physical space. Results: Experimental results reveal that the Fast-MICP algorithm reduces the computational cost of marker-added ICP (J.-D. Lee et al., ''A coarse-to-fine surface registration algorithm for frameless brain surgery,'' in Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 836-839) to 10% and achieves comparable registration accuracy, which is under 3 mm target registration error (TRE). Moreover, two types of optical-based spatial digitizing devices can be integrated for further surgical navigation. Anatomical information or image-guided surgical landmarks can be projected onto the patient to obtain an immersive augmented reality environment. Conclusion: The proposed frameless IGS system with stereo vision obtains TRE of less than 3 mm. The proposed Fast-MICP registration algorithm reduces registration time by 90% without compromising accuracy.

  5. Minimally Invasive Spinal Surgery with Intraoperative Image-Guided Navigation

    Directory of Open Access Journals (Sweden)

    Terrence T. Kim

    2016-01-01

    Full Text Available We present our perioperative minimally invasive spine surgery technique using intraoperative computed tomography image-guided navigation for the treatment of various lumbar spine pathologies. We present an illustrative case of a patient undergoing minimally invasive percutaneous posterior spinal fusion assisted by the O-arm system with navigation. We discuss the literature and the advantages of the technique over fluoroscopic imaging methods: lower occupational radiation exposure for operative room personnel, reduced need for postoperative imaging, and decreased revision rates. Most importantly, we demonstrate that use of intraoperative cone beam CT image-guided navigation has been reported to increase accuracy.

  6. Image guided surgery for petrous apex lesions

    International Nuclear Information System (INIS)

    Van Havenbergh, T.; De Ridder, D.; Verlooy, J.; Koekelkoren, E.; Van De Heyning, P.

    2003-01-01

    To evaluate whether computer-assisted frameless stereotactic navigation in the temporal bone provides sufficient clinical application accuracy and thus a useful tool in temporal bone surgery. Two patients with petrous apex cholesterol granuloma were operated on by an epidural middle fossa approach using a Stealth/MedtronicTM neuronavigation system. Based an literature data optimal skin fiducial placement and registration methods were used. Intra-operative accuracy was checked using three precise anatomical landmarks. Drilling of the petrotis apex bone was guided by neuronavigation. Postoperative Computed Tomography (CT) images were fused with the preoperative CT and planning. The application of image-guidance in temporal bone surgery causes no additional burden to the patient nor prolongs the operating time. The accuracy measured at the anatomical landmarks was under 2,0 mm. This is confirmed by evaluation of bone removal through image fusion of pre- and postoperative CT scan. The clinical application of a neuronavigation system during petrous apex surgery can be regarded as useful. Using all available data on registration methods it seems possible to obtain intra-operative application accuracies of < 2,0 mm. Additional cadaver work is being performed to support these data. (author)

  7. Development of customized positioning guides using computer-aided design and manufacturing technology for orthognathic surgery.

    Science.gov (United States)

    Lin, Hsiu-Hsia; Chang, Hsin-Wen; Lo, Lun-Jou

    2015-12-01

    The purpose of this study was to devise a method for producing customized positioning guides for translating virtual plans to actual orthognathic surgery, and evaluation of the feasibility and validity of the devised method. Patients requiring two-jaw orthognathic surgery were enrolled and consented before operation. Two types of positioning guides were designed and fabricated using computer-aided design and manufacturing technology: One of the guides was used for the LeFort I osteotomy, and the other guide was used for positioning the maxillomandibular complex. The guides were fixed to the medial side of maxilla. For validation, the simulation images and postoperative cone beam computed tomography images were superimposed using surface registration to quantify the difference between the images. The data were presented in root-mean-square difference (RMSD) values. Both sets of guides were experienced to provide ideal fit and maximal contact to the maxillary surface to facilitate their accurate management in clinical applications. The validation results indicated that RMSD values between the images ranged from 0.18 to 0.33 mm in the maxilla and from 0.99 to 1.56 mm in the mandible. The patients were followed up for 6 months or more, and all of them were satisfied with the results. The proposed customized positioning guides are practical and reliable for translation of virtual plans to actual surgery. Furthermore, these guides improved the efficiency and outcome of surgery. This approach is uncomplicated in design, cost-effective in fabrication, and particularly convenient to use.

  8. Preoperative magnetic resonance imaging protocol for endoscopic cranial base image-guided surgery.

    Science.gov (United States)

    Grindle, Christopher R; Curry, Joseph M; Kang, Melissa D; Evans, James J; Rosen, Marc R

    2011-01-01

    Despite the increasing utilization of image-guided surgery, no radiology protocols for obtaining magnetic resonance (MR) imaging of adequate quality are available in the current literature. At our institution, more than 300 endonasal cranial base procedures including pituitary, extended pituitary, and other anterior skullbase procedures have been performed in the past 3 years. To facilitate and optimize preoperative evaluation and assessment, there was a need to develop a magnetic resonance protocol. Retrospective Technical Assessment was performed. Through a collaborative effort between the otolaryngology, neurosurgery, and neuroradiology departments at our institution, a skull base MR image-guided (IGS) protocol was developed with several ends in mind. First, it was necessary to generate diagnostic images useful for the more frequently seen pathologies to improve work flow and limit the expense and inefficiency of case specific MR studies. Second, it was necessary to generate sequences useful for IGS, preferably using sequences that best highlight that lesion. Currently, at our institution, all MR images used for IGS are obtained using this protocol as part of preoperative planning. The protocol that has been developed allows for thin cut precontrast and postcontrast axial cuts that can be used to plan intraoperative image guidance. It also obtains a thin cut T2 axial series that can be compiled separately for intraoperative imaging, or may be fused with computed tomographic images for combined modality. The outlined protocol obtains image sequences effective for diagnostic and operative purposes for image-guided surgery using both T1 and T2 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Intracranial depth electrodes implantation in the era of image-guided surgery

    Directory of Open Access Journals (Sweden)

    Ricardo Silva Centeno

    2011-08-01

    Full Text Available The advent of modern image-guided surgery has revolutionized depth electrode implantation techniques. Stereoelectroencephalography (SEEG, introduced by Talairach in the 1950s, is an invasive method for three-dimensional analysis on the epileptogenic zone based on the technique of intracranial implantation of depth electrodes. The aim of this article is to discuss the principles of SEEG and their evolution from the Talairach era to the image-guided surgery of today, along with future prospects. Although the general principles of SEEG have remained intact over the years, the implantation of depth electrodes, i.e. the surgical technique that enables this method, has undergone tremendous evolution over the last three decades, due the advent of modern imaging techniques, computer systems and new stereotactic techniques. The use of robotic systems, the constant evolution of imaging and computing techniques and the use of depth electrodes together with microdialysis probes will open up enormous prospects for applying depth electrodes and SEEG both for investigative use and for therapeutic use. Brain stimulation of deep targets and the construction of "smart" electrodes may, in the near future, increase the need to use this method.

  10. Intracranial depth electrodes implantation in the era of image-guided surgery.

    Science.gov (United States)

    Centeno, Ricardo Silva; Yacubian, Elza Márcia Targas; Caboclo, Luis Otávio Sales Ferreira; Júnior, Henrique Carrete; Cavalheiro, Sérgio

    2011-08-01

    The advent of modern image-guided surgery has revolutionized depth electrode implantation techniques. Stereoelectroencephalography (SEEG), introduced by Talairach in the 1950s, is an invasive method for three-dimensional analysis on the epileptogenic zone based on the technique of intracranial implantation of depth electrodes. The aim of this article is to discuss the principles of SEEG and their evolution from the Talairach era to the image-guided surgery of today, along with future prospects. Although the general principles of SEEG have remained intact over the years, the implantation of depth electrodes, i.e. the surgical technique that enables this method, has undergone tremendous evolution over the last three decades, due the advent of modern imaging techniques, computer systems and new stereotactic techniques. The use of robotic systems, the constant evolution of imaging and computing techniques and the use of depth electrodes together with microdialysis probes will open up enormous prospects for applying depth electrodes and SEEG both for investigative use and for therapeutic use. Brain stimulation of deep targets and the construction of "smart" electrodes may, in the near future, increase the need to use this method.

  11. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery.

    Science.gov (United States)

    Watanabe, E; Watanabe, T; Manaka, S; Mayanagi, Y; Takakura, K

    1987-06-01

    A new device was invented as an adjunct for computed tomography (CT)-guided stereotaxic or open neurosurgery. It is composed of a multijoint three-dimensional digitizer (sensor arm) and a microcomputer, which indicates the place of the sensor arm tip on preoperative CT images. Computed tomography scan is performed preoperatively with three markers placed on the nasion and ears. At surgery, after fixing the patient's head and the sensor arm, sampling of the standard points was done to translate the position of the tip of the sensor arm onto the CT images displayed on a computer screen. In this way positional data from conventional preoperative CT scan can be directly transferred into the surgical field. This system has the unique feature of introducing CT-guided stereotaxis into conventional open neurosurgery.

  12. Computational surgery and dual training computing, robotics and imaging

    CERN Document Server

    Bass, Barbara; Berceli, Scott; Collet, Christophe; Cerveri, Pietro

    2014-01-01

    This critical volume focuses on the use of medical imaging, medical robotics, simulation, and information technology in surgery. It offers a road map for computational surgery success,  discusses the computer-assisted management of disease and surgery, and provides a rational for image processing and diagnostic. This book also presents some advances on image-driven intervention and robotics, as well as evaluates models and simulations for a broad spectrum of cancers as well as cardiovascular, neurological, and bone diseases. Training and performance analysis in surgery assisted by robotic systems is also covered. This book also: ·         Provides a comprehensive overview of the use of computational surgery and disease management ·         Discusses the design and use of medical robotic tools for orthopedic surgery, endoscopic surgery, and prostate surgery ·         Provides practical examples and case studies in the areas of image processing, virtual surgery, and simulation traini...

  13. Image-guided surgery and therapy: current status and future directions

    Science.gov (United States)

    Peters, Terence M.

    2001-05-01

    Image-guided surgery and therapy is assuming an increasingly important role, particularly considering the current emphasis on minimally-invasive surgical procedures. Volumetric CT and MR images have been used now for some time in conjunction with stereotactic frames, to guide many neurosurgical procedures. With the development of systems that permit surgical instruments to be tracked in space, image-guided surgery now includes the use of frame-less procedures, and the application of the technology has spread beyond neurosurgery to include orthopedic applications and therapy of various soft-tissue organs such as the breast, prostate and heart. Since tracking systems allow image- guided surgery to be undertaken without frames, a great deal of effort has been spent on image-to-image and image-to- patient registration techniques, and upon the means of combining real-time intra-operative images with images acquired pre-operatively. As image-guided surgery systems have become increasingly sophisticated, the greatest challenges to their successful adoption in the operating room of the future relate to the interface between the user and the system. To date, little effort has been expended to ensure that the human factors issues relating to the use of such equipment in the operating room have been adequately addressed. Such systems will only be employed routinely in the OR when they are designed to be intuitive, unobtrusive, and provide simple access to the source of the images.

  14. CARS 2008: Computer Assisted Radiology and Surgery. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-06-15

    The proceedings contain contributions to the following topics: digital imaging, computed tomography, magnetic resonance, cardiac and vascular imaging, computer assisted radiation therapy, image processing and display, minimal invasive spinal surgery, computer assisted treatment of the prostate, the interventional radiology suite of the future, interventional oncology, computer assisted neurosurgery, computer assisted head and neck and ENT surgery, cardiovascular surgery, computer assisted orthopedic surgery, image processing and visualization, surgical robotics, instrumentation and navigation, surgical modelling, simulation and education, endoscopy and related techniques, workflow and new concepts in surgery, research training group 1126: intelligent surgery, digital operating room, image distribution and integration strategies, regional PACS and telemedicine, PACS - beyond radiology and E-learning, workflow and standardization, breast CAD, thoracic CAD, abdominal CAD, brain CAD, orthodontics, dentofacial orthopedics and airways, imaging and treating temporomandibular joint conditions, maxillofacial cone beam CT, craniomaxillofacial image fusion and CBCT incidental findings, image guided craniomaxillofacial procedures, imaging as a biomarker for therapy response, computer aided diagnosis. The Poster sessions cover the topics computer aided surgery, Euro PACS meeting, computer assisted radiology, computer aided diagnosis and computer assisted radiology and surgery.

  15. CARS 2008: Computer Assisted Radiology and Surgery. Proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    The proceedings contain contributions to the following topics: digital imaging, computed tomography, magnetic resonance, cardiac and vascular imaging, computer assisted radiation therapy, image processing and display, minimal invasive spinal surgery, computer assisted treatment of the prostate, the interventional radiology suite of the future, interventional oncology, computer assisted neurosurgery, computer assisted head and neck and ENT surgery, cardiovascular surgery, computer assisted orthopedic surgery, image processing and visualization, surgical robotics, instrumentation and navigation, surgical modelling, simulation and education, endoscopy and related techniques, workflow and new concepts in surgery, research training group 1126: intelligent surgery, digital operating room, image distribution and integration strategies, regional PACS and telemedicine, PACS - beyond radiology and E-learning, workflow and standardization, breast CAD, thoracic CAD, abdominal CAD, brain CAD, orthodontics, dentofacial orthopedics and airways, imaging and treating temporomandibular joint conditions, maxillofacial cone beam CT, craniomaxillofacial image fusion and CBCT incidental findings, image guided craniomaxillofacial procedures, imaging as a biomarker for therapy response, computer aided diagnosis. The Poster sessions cover the topics computer aided surgery, Euro PACS meeting, computer assisted radiology, computer aided diagnosis and computer assisted radiology and surgery

  16. Digital Workflow for Computer-Guided Implant Surgery in Edentulous Patients: A Case Report.

    Science.gov (United States)

    Oh, Ji-Hyeon; An, Xueyin; Jeong, Seung-Mi; Choi, Byung-Ho

    2017-12-01

    The purpose of this article was to describe a fully digital workflow used to perform computer-guided flapless implant placement in an edentulous patient without the use of conventional impressions, models, or a radiographic guide. Digital data for the workflow were acquired using an intraoral scanner and cone-beam computed tomography (CBCT). The image fusion of the intraoral scan data and CBCT data was performed by matching resin markers placed in the patient's mouth. The definitive digital data were used to design a prosthetically driven implant position, surgical template, and computer-aided design and computer-aided manufacturing fabricated fixed dental prosthesis. The authors believe this is the first published case describing such a technique in computer-guided flapless implant surgery for edentulous patients. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Image-guided stereotactic surgery using ultrasonography and reconstructive three-dimensional CT-imaging system

    International Nuclear Information System (INIS)

    Kawamura, Hirotsune; Iseki, Hiroshi; Umezawa, Yoshihiro

    1991-01-01

    A new simulation and navigation system utilizing three-dimensional CT images has been developed for image-guided stereotactic surgery. Preoperative CT images are not always useful in predicting the intraoperative location of lesions, for cerebral lesions are easily displaced or distorted by gravity, brain retraction, and/or CSF aspiration during operative procedure. This new system, however, has the advantage that the intraoperative locations of intracranial lesions or the anatomical structures of the brain can be precisely confirmed during stereotactic surgery. Serial CT images were obtained from a patient whose head had been fixed to the ISEKI CT-guided stereotactic frame. The data of serial CT images were saved on a floppy disc and then transferred to the work station (IRIS) using the off line. In order to find the best approach angle for ultrasound-guided stereotactic surgery, three-dimenstional CT images were reconstructed using the work station. The site of the craniotomy or the angle of the trajectory of the ultrasound probe was measured preoperatively based on the three-dimensional CT images. Then, in the operating room, the patient's head was fixed to the ISEKI frame with the subframe at the same position as before according to the measurement of the CT images. In a case of cystic glioma, the predicable ultrasonograms from three-dimensional reconstructive CT images were ascertained to correspond well to the actual ultrasound images during ultrasound-guided stereotactic surgery. Therefore, the new simulation and navigation system can be judged to be a powerful operative supporting modality for correcting the locations of cerebral lesions; it allows one to perform stereotactic surgery more accurately and less invasively. (author)

  18. MO-DE-202-03: Image-Guided Surgery and Interventions in the Advanced Multimodality Image-Guided Operating (AMIGO) Suite

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, T. [Brigham & Women’s Hospital (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  19. MO-DE-202-03: Image-Guided Surgery and Interventions in the Advanced Multimodality Image-Guided Operating (AMIGO) Suite

    International Nuclear Information System (INIS)

    Kapur, T.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  20. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, K. [National Cancer Institute (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  1. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    International Nuclear Information System (INIS)

    Farahani, K.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  2. Computer assisted radiology and surgery. CARS 2010

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The conference proceedings include contributions to the following topics: (1) CARS Clinical Day: minimally invasive spiral surgery, interventional radiology; (2) CARS - computer assisted radiology and surgery: ophthalmology, stimulation methods, new approaches to diagnosis and therapy; (3) Computer assisted radiology 24th International congress and exhibition: computer tomography and magnetic resonance, digital angiographic imaging, digital radiography, ultrasound, computer assisted radiation therapy, medical workstations, image processing and display; (4) 14th Annual conference of the International Society for computer aided surgery; ENT-CMF head and neck surgery computer-assisted neurosurgery, cardiovascular surgery, image guided liver surgery, abdominal and laparoscopic surgery, computer-assisted orthopedic surgery, image processing and visualization, surgical robotics and instrumentation, surgical modeling, simulation and education; (5) 28th International EuroPACS meeting: image distribution and integration strategies, planning and evaluation, telemedicine and standards, workflow and data flow in radiology; (6) 11th CARS/SPIE/EuroPACS joint workshop on surgical PACS and the digital operating, management and assessment of OR systems and integration; (7) 12th International workshop on computer-aided diagnosis: special session on breast CAD, special session on thoracic CAD, special session on abdominal brain, lumbar spine CAD; (8) 16th computed Maxillofacial imaging congress: computed maxillofacial imaging in dental implantology, orthodontics and dentofacial orthopedics; approaches to 3D maxillofacial imaging; surgical navigation; (9) 2nd EuroNOTES/CARS workshop on NOTES: an interdisciplinary challenge; (10) 2nd EPMA/CARS workshop on personalized medicine and ICT.; (11)poster sessions.

  3. Computer assisted radiology and surgery. CARS 2010

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-06-15

    The conference proceedings include contributions to the following topics: (1) CARS Clinical Day: minimally invasive spiral surgery, interventional radiology; (2) CARS - computer assisted radiology and surgery: ophthalmology, stimulation methods, new approaches to diagnosis and therapy; (3) Computer assisted radiology 24th International congress and exhibition: computer tomography and magnetic resonance, digital angiographic imaging, digital radiography, ultrasound, computer assisted radiation therapy, medical workstations, image processing and display; (4) 14th Annual conference of the International Society for computer aided surgery; ENT-CMF head and neck surgery computer-assisted neurosurgery, cardiovascular surgery, image guided liver surgery, abdominal and laparoscopic surgery, computer-assisted orthopedic surgery, image processing and visualization, surgical robotics and instrumentation, surgical modeling, simulation and education; (5) 28th International EuroPACS meeting: image distribution and integration strategies, planning and evaluation, telemedicine and standards, workflow and data flow in radiology; (6) 11th CARS/SPIE/EuroPACS joint workshop on surgical PACS and the digital operating, management and assessment of OR systems and integration; (7) 12th International workshop on computer-aided diagnosis: special session on breast CAD, special session on thoracic CAD, special session on abdominal brain, lumbar spine CAD; (8) 16th computed Maxillofacial imaging congress: computed maxillofacial imaging in dental implantology, orthodontics and dentofacial orthopedics; approaches to 3D maxillofacial imaging; surgical navigation; (9) 2nd EuroNOTES/CARS workshop on NOTES: an interdisciplinary challenge; (10) 2nd EPMA/CARS workshop on personalized medicine and ICT.; (11)poster sessions.

  4. Quality Assurance of Multiport Image-Guided Minimally Invasive Surgery at the Lateral Skull Base

    Directory of Open Access Journals (Sweden)

    Maria Nau-Hermes

    2014-01-01

    Full Text Available For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG, which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes.

  5. Quality assurance of multiport image-guided minimally invasive surgery at the lateral skull base.

    Science.gov (United States)

    Nau-Hermes, Maria; Schmitt, Robert; Becker, Meike; El-Hakimi, Wissam; Hansen, Stefan; Klenzner, Thomas; Schipper, Jörg

    2014-01-01

    For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG), which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes.

  6. Nerve-Highlighting Fluorescent Contrast Agents for Image-Guided Surgery

    Directory of Open Access Journals (Sweden)

    Summer L. Gibbs-Strauss

    2011-03-01

    Full Text Available Nerve damage is the major morbidity of many surgeries, resulting in chronic pain, loss of function, or both. The sparing of nerves during surgical procedures is a vexing problem because surrounding tissue often obscures them. To date, systemically administered nerve-highlighting contrast agents that can be used for nerve-sparing image-guided surgery have not been reported. In the current study, physicochemical and optical properties of 4,4‘-[(2-methoxy-1,4-phenylenedi-(1E-2,1-ethenediyl]bis-benzenamine (BMB and a newly synthesized, red-shifted derivative 4-[(1E-2-[4-[(1E-2-[4-aminophenyl]ethenyl]-3-methoxyphenyl]ethenyl]-benzonitrile (GE3082 were characterized in vitro and in vivo. Both agents crossed the blood-nerve barrier and blood-brain barrier and rendered myelinated nerves fluorescent after a single systemic injection. Although both BMB and GE3082 also exhibited significant uptake in white adipose tissue, GE3082 underwent a hypsochromic shift in adipose tissue that provided a means to eliminate the unwanted signal using hyperspectral deconvolution. Dose and kinetic studies were performed in mice to determine the optimal dose and drug-imaging interval. The results were confirmed in rat and pig, with the latter used to demonstrate, for the first time, simultaneous fluorescence imaging of blood vessels and nerves during surgery using the FLARE™ (Fluorescence-Assisted Resection and Exploration imaging system. These results lay the foundation for the development of ideal nerve-highlighting fluorophores for image-guided surgery.

  7. [Guided and computer-assisted implant surgery and prosthetic: The continuous digital workflow].

    Science.gov (United States)

    Pascual, D; Vaysse, J

    2016-02-01

    New continuous digital workflow protocols of guided and computer-assisted implant surgery improve accuracy of implant positioning. The design of the future prosthesis is based on the available prosthetic space, gingival height and occlusal relationship with the opposing and adjacent teeth. The implant position and length depend on volume, density and bone quality, gingival height, tooth-implant and implant-implant distances, implant parallelism, axis and type of the future prosthesis. The crown modeled on the software will therefore serve as a guide to the future implant axis and not the reverse. The guide is made by 3D printing. The software determines surgical protocol with the drilling sequences. The unitary or plural prosthesis, modeled on the software and built before surgery, is loaded directly after implant placing, if needed. These protocols allow for a full continuity of the digital workflow. The software provides the surgeon and the dental technician a total freedom for the prosthetic-surgery guide design and the position of the implants. The prosthetic project, occlusal and aesthetic, taking the bony and surgical constraints into account, is optimized. The implant surgery is simplified and becomes less "stressful" for the patient and the surgeon. Guided and computer-assisted surgery with continuous digital workflow is becoming the technique of choice to improve the accuracy and quality of implant rehabilitation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Real-time Fluorescence Image-Guided Oncologic Surgery

    Science.gov (United States)

    Mondal, Suman B.; Gao, Shengkui; Zhu, Nan; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel

    2014-01-01

    Medical imaging plays a critical role in cancer diagnosis and planning. Many of these patients rely on surgical intervention for curative outcomes. This requires a careful identification of the primary and microscopic tumors, and the complete removal of cancer. Although there have been efforts to adapt traditional imaging modalities for intraoperative image guidance, they suffer from several constraints such as large hardware footprint, high operation cost, and disruption of the surgical workflow. Because of the ease of image acquisition, relatively low cost devices and intuitive operation, optical imaging methods have received tremendous interests for use in real-time image-guided surgery. To improve imaging depth under low interference by tissue autofluorescence, many of these applications utilize light in the near-infra red (NIR) wavelengths, which is invisible to human eyes. With the availability of a wide selection of tumor-avid contrast agents, advancements in imaging sensors, electronic and optical designs, surgeons are able to combine different attributes of NIR optical imaging techniques to improve treatment outcomes. The emergence of diverse commercial and experimental image guidance systems, which are in various stages of clinical translation, attests to the potential high impact of intraoperative optical imaging methods to improve speed of oncologic surgery with high accuracy and minimal margin positivity. PMID:25287689

  9. Markerless laser registration in image-guided oral and maxillofacial surgery.

    Science.gov (United States)

    Marmulla, Rüdiger; Lüth, Tim; Mühling, Joachim; Hassfeld, Stefan

    2004-07-01

    The use of registration markers in computer-assisted surgery is combined with high logistic costs and efforts. Markerless patient registration using laser scan surface registration techniques is a new challenging method. The present study was performed to evaluate the clinical accuracy in finding defined target points within the surgical site after markerless patient registration in image-guided oral and maxillofacial surgery. Twenty consecutive patients with different cranial diseases were scheduled for computer-assisted surgery. Data set alignment between the surgical site and the computed tomography (CT) data set was performed by markerless laser scan surface registration of the patient's face. Intraoral rigidly attached registration markers were used as target points, which had to be detected by an infrared pointer. The Surgical Segment Navigator SSN++ has been used for all procedures. SSN++ is an investigative product based on the SSN system that had previously been developed by the presenting authors with the support of Carl Zeiss (Oberkochen, Germany). SSN++ is connected to a Polaris infrared camera (Northern Digital, Waterloo, Ontario, Canada) and to a Minolta VI 900 3D digitizer (Tokyo, Japan) for high-resolution laser scanning. Minimal differences in shape between the laser scan surface and the surface generated from the CT data set could be detected. Nevertheless, high-resolution laser scan of the skin surface allows for a precise patient registration (mean deviation 1.1 mm, maximum deviation 1.8 mm). Radiation load, logistic costs, and efforts arising from the planning of computer-assisted surgery of the head can be reduced because native (markerless) CT data sets can be used for laser scan-based surface registration.

  10. Hard and soft nanoparticles for image-guided surgery in nanomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, Erica; Monaco, Ilaria; Comes Franchini, Mauro, E-mail: mauro.comesfranchini@unibo.it [University of Bologn, Department of Industrial Chemistry, “Toso Montanari” (Italy)

    2015-08-15

    The use of hard and/or soft nanoparticles for therapy, collectively called nanomedicine, has great potential in the battle against cancer. Major research efforts are underway in this area leading to development of new drug delivery approaches and imaging techniques. Despite this progress, the vast majority of patients who are affected by cancer today sadly still need surgical intervention, especially in the case of solid tumors. An important perspective for researchers is therefore to provide even more powerful tools to the surgeon for pre- and post-operative approaches. In this context, image-guided surgery, in combination with nanotechnology, opens a new strategy to win this battle. In this perspective, we will analyze and discuss the recent progress with nanoparticles of both metallic and biomaterial composition, and their use to develop powerful systems to be applied in image-guided surgery.

  11. Portable Intraoperative Computed Tomography Scan in Image-Guided Surgery for Brain High-grade Gliomas: Analysis of Technical Feasibility and Impact on Extent of Tumor Resection.

    Science.gov (United States)

    Barbagallo, Giuseppe M V; Palmucci, Stefano; Visocchi, Massimiliano; Paratore, Sabrina; Attinà, Giancarlo; Sortino, Giuseppe; Albanese, Vincenzo; Certo, Francesco

    2016-03-01

    Intraoperative magnetic resonance imaging is the gold standard among image-guided techniques for glioma surgery. Scant data are available on the role of intraoperative computed tomography (i-CT) in high-grade glioma (HGG) surgery. To verify the technical feasibility and usefulness of portable i-CT in image-guided surgical resection of HGGs. This is a retrospective series control analysis of prospectively collected data. Twenty-five patients (Group A) with HGGs underwent surgery using i-CT and 5-aminolevulinic acid (5-ALA) fluorescence. A second cohort of 25 patients (Group B) underwent 5-ALA fluorescence-guided surgery but without i-CT. We used a portable 8-slice CT scanner and, in both groups, neuronavigation. Extent of tumor resection (ETOR) and pre- and postoperative Karnofsky performance status (KPS) scores were measured; the impact of i-CT on overall survival (OS) and progression-free survival (PFS) was also analyzed. In 8 patients (32%) in Group A, i-CT revealed residual tumor, and in 4 of them it helped to also resect pathological tissue detached from the main tumor. EOTR in these 8 patients was 97.3% (96%-98.6%). In Group B, residual tumor was found in 6 patients, whose tumor's mean resection was 98% (93.5-99.7). The Student t test did not show statistically significant differences in EOTR in the 2 groups. The KPS score decreased from 67 to 69 after surgery in Group A and from 74 to 77 in Group B (P = .07 according to the Student t test). Groups A and B did not show statistically significant differences in OS and PFS (P = .61 and .46, respectively, by the log-rank test). No statistically significant differences in EOTR, KPS, PFS, and OS were observed in the 2 groups. However, i-CT helped to verify EOTR and to update the neuronavigator with real-time images, as well as to identify and resect pathological tissue in multifocal tumors. i-CT is a feasible and effective alternative to intraoperative magnetic resonance imaging. Portable i-CT can provide useful

  12. Designing a wearable navigation system for image-guided cancer resection surgery.

    Science.gov (United States)

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2014-11-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure.

  13. Computer-assisted orthognathic surgery: waferless maxillary positioning, versatility, and accuracy of an image-guided visualisation display.

    Science.gov (United States)

    Zinser, Max J; Mischkowski, Robert A; Dreiseidler, Timo; Thamm, Oliver C; Rothamel, Daniel; Zöller, Joachim E

    2013-12-01

    There may well be a shift towards 3-dimensional orthognathic surgery when virtual surgical planning can be applied clinically. We present a computer-assisted protocol that uses surgical navigation supplemented by an interactive image-guided visualisation display (IGVD) to transfer virtual maxillary planning precisely. The aim of this study was to analyse its accuracy and versatility in vivo. The protocol consists of maxillofacial imaging, diagnosis, planning of virtual treatment, and intraoperative surgical transfer using an IGV display. The advantage of the interactive IGV display is that the virtually planned maxilla and its real position can be completely superimposed during operation through a video graphics array (VGA) camera, thereby augmenting the surgeon's 3-dimensional perception. Sixteen adult class III patients were treated with by bimaxillary osteotomy. Seven hard tissue variables were chosen to compare (ΔT1-T0) the virtual maxillary planning (T0) with the postoperative result (T1) using 3-dimensional cephalometry. Clinically acceptable precision for the surgical planning transfer of the maxilla (orthognathic planning. Copyright © 2013 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Compact instrument for fluorescence image-guided surgery

    Science.gov (United States)

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  15. MO-DE-202-04: Multimodality Image-Guided Surgery and Intervention: For the Rest of Us

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, R. [Children’s National Health System (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  16. MO-DE-202-04: Multimodality Image-Guided Surgery and Intervention: For the Rest of Us

    International Nuclear Information System (INIS)

    Shekhar, R.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  17. [Basic concept in computer assisted surgery].

    Science.gov (United States)

    Merloz, Philippe; Wu, Hao

    2006-03-01

    To investigate application of medical digital imaging systems and computer technologies in orthopedics. The main computer-assisted surgery systems comprise the four following subcategories. (1) A collection and recording process for digital data on each patient, including preoperative images (CT scans, MRI, standard X-rays), intraoperative visualization (fluoroscopy, ultrasound), and intraoperative position and orientation of surgical instruments or bone sections (using 3D localises). Data merging based on the matching of preoperative imaging (CT scans, MRI, standard X-rays) and intraoperative visualization (anatomical landmarks, or bone surfaces digitized intraoperatively via 3D localiser; intraoperative ultrasound images processed for delineation of bone contours). (2) In cases where only intraoperative images are used for computer-assisted surgical navigation, the calibration of the intraoperative imaging system replaces the merged data system, which is then no longer necessary. (3) A system that provides aid in decision-making, so that the surgical approach is planned on basis of multimodal information: the interactive positioning of surgical instruments or bone sections transmitted via pre- or intraoperative images, display of elements to guide surgical navigation (direction, axis, orientation, length and diameter of a surgical instrument, impingement, etc. ). And (4) A system that monitors the surgical procedure, thereby ensuring that the optimal strategy defined at the preoperative stage is taken into account. It is possible that computer-assisted orthopedic surgery systems will enable surgeons to better assess the accuracy and reliability of the various operative techniques, an indispensable stage in the optimization of surgery.

  18. MO-DE-202-00: Image-Guided Interventions: Advances in Intraoperative Imaging, Guidance, and An Emerging Role for Medical Physics in Surgery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  19. Computer-based endoscopic image-processing technology for endourology and laparoscopic surgery

    International Nuclear Information System (INIS)

    Igarashi, Tatsuo; Suzuki, Hiroyoshi; Naya, Yukio

    2009-01-01

    Endourology and laparoscopic surgery are evolving in accordance with developments in instrumentation and progress in surgical technique. Recent advances in computer and image-processing technology have enabled novel images to be created from conventional endoscopic and laparoscopic video images. Such technology harbors the potential to advance endourology and laparoscopic surgery by adding new value and function to the endoscope. The panoramic and three-dimensional images created by computer processing are two outstanding features that can address the shortcomings of conventional endoscopy and laparoscopy, such as narrow field of view, lack of depth cue, and discontinuous information. The wide panoramic images show an anatomical map' of the abdominal cavity and hollow organs with high brightness and resolution, as the images are collected from video images taken in a close-up manner. To assist in laparoscopic surgery, especially in suturing, a three-dimensional movie can be obtained by enhancing movement parallax using a conventional monocular laparoscope. In tubular organs such as the prostatic urethra, reconstruction of three-dimensional structure can be achieved, implying the possibility of a liquid dynamic model for assessing local urethral resistance in urination. Computer-based processing of endoscopic images will establish new tools for endourology and laparoscopic surgery in the near future. (author)

  20. [Guided maxillofacial surgery: Simulation and surgery aided by stereolithographic guides and custom-made miniplates.

    Science.gov (United States)

    Philippe, B

    2013-08-05

    We present a new model of guided surgery, exclusively using computer assistance, from the preoperative planning of osteotomies to the actual surgery with the aid of stereolithographic cutting guides and osteosynthetic miniplates designed and made preoperatively, using custom-made titanium miniplates thanks to direct metal laser sintering. We describe the principles that guide the designing and industrial manufacturing of this new type of osteosynthesis miniplates. The surgical procedure is described step-by-step using several representative cases of dento-maxillofacial dysmorphosis. The encouraging short-term results demonstrate the wide range of application of this new technology for cranio-maxillofacial surgery, whatever the type of osteotomy performed, and for plastic reconstructive surgery. Copyright © 2013. Published by Elsevier Masson SAS.

  1. Medical image computing and computer-assisted intervention - MICCAI 2005. Proceedings; Pt. 1

    International Nuclear Information System (INIS)

    Duncan, J.S.; Gerig, G.

    2005-01-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  2. Medical image computing and computer science intervention. MICCAI 2005. Pt. 2. Proceedings

    International Nuclear Information System (INIS)

    Duncan, J.S.; Yale Univ., New Haven, CT; Gerig, G.

    2005-01-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  3. Medical image computing and computer-assisted intervention - MICCAI 2005. Proceedings; Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.S. [Yale Univ., New Haven, CT (United States). Dept. of Biomedical Engineering and Diagnostic Radiology; Gerig, G. (eds.) [North Carolina Univ., Chapel Hill (United States). Dept. of Computer Science

    2005-07-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  4. Medical image computing and computer science intervention. MICCAI 2005. Pt. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.S. [Yale Univ., New Haven, CT (United States). Dept. of Biomedical Engineering]|[Yale Univ., New Haven, CT (United States). Dept. of Diagnostic Radiology; Gerig, G. (eds.) [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Computer Science

    2005-07-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  5. Issues in image-guided therapy.

    OpenAIRE

    Haigron , Pascal; Luo , Limin ,; Coatrieux , Jean-Louis

    2009-01-01

    International audience; Medical robotics, computer- assisted surgery (CAS), image-guided therapy (IGT), and the like emerged more than 20 years ago, and many advances have been made since. Conferences and workshops have been organized; scientific contributions, position papers, and patents have been published; new academic societies have been launched; and companies were created all over the world to propose methods, devices, and systems in the area. Researchers in robotics, computer vision a...

  6. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery.

    Science.gov (United States)

    Webers, Valentijn S C; Bauer, Noel J C; Visser, Nienke; Berendschot, Tos T J M; van den Biggelaar, Frank J H M; Nuijts, Rudy M M A

    2017-06-01

    To compare the accuracy of toric intraocular lens (IOL) alignment using the Verion Image-Guided System versus a conventional manual ink-marking procedure. University Eye Clinic Maastricht, Maastricht, the Netherlands. Prospective randomized clinical trial. Eyes with regular corneal astigmatism of at least 1.25 diopters (D) that required cataract surgery and toric IOL implantation (Acrysof SN6AT3-T9) were randomly assigned to the image-guided group or the manual-marking group. The primary outcome was the alignment of the toric IOL based on preoperative images and images taken immediately after surgery. Secondary outcome measures were residual astigmatism, uncorrected distance visual acuity (UDVA), and complications. The study enrolled 36 eyes (24 patients). The mean toric IOL misalignment was significantly less in the image-guided group than in the manual group 1 hour (1.3 degrees ± 1.6 [SD] versus 2.8 ± 1.8 degrees; P = .02) and 3 months (1.7 ± 1.5 degrees versus 3.1 ± 2.1 degrees; P image-guided group and manual group, respectively (P > .05). The mean UDVA was 0.03 ± 0.10 logarithm of minimum angle of resolution (logMAR) and 0.04 ± 0.09 logMAR, respectively (both P > .05). No intraoperative complications occurred during any surgery. The IOL misalignment was significantly less with digital marking than with manual marking; this did not result in a better UDVA or lower residual refractive astigmatism. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection.

    Science.gov (United States)

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-10-28

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery.

  8. In vivo quantification of fluorescent molecular markers in real-time by ratio Imaging for diagnostic screening and image-guided surgery

    NARCIS (Netherlands)

    Bogaards, A.; Sterenborg, H. J. C. M.; Trachtenberg, J.; Wilson, B. C.; Lilge, L.

    2007-01-01

    Future applications of "molecular diagnostic screening" and "molecular image-guided surgery" will demand images of molecular markers with high resolution and high throughput (similar to >= 30 frames/second). MRI, SPECT, PET, optical fluorescence tomography, hyper-spectral fluorescence imaging, and

  9. Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery.

    Science.gov (United States)

    Carrasco-Zevallos, Oscar M; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Seider, Michael I; Izatt, Joseph A; Toth, Cynthia A

    2016-07-01

    Magnification of the surgical field using the operating microscope facilitated profound innovations in retinal surgery in the 1970s, such as pars plana vitrectomy. Although surgical instrumentation and illumination techniques are continually developing, the operating microscope for vitreoretinal procedures has remained essentially unchanged and currently limits the surgeon's depth perception and assessment of subtle microanatomy. Optical coherence tomography (OCT) has revolutionized clinical management of retinal pathology, and its introduction into the operating suite may have a similar impact on surgical visualization and treatment. In this article, we review the evolution of OCT for retinal surgery, from perioperative analysis to live volumetric (four-dimensional, 4D) image-guided surgery. We begin by briefly addressing the benefits and limitations of the operating microscope, the progression of OCT technology, and OCT applications in clinical/perioperative retinal imaging. Next, we review intraoperative OCT (iOCT) applications using handheld probes during surgical pauses, two-dimensional (2D) microscope-integrated OCT (MIOCT) of live surgery, and volumetric MIOCT of live surgery. The iOCT discussion focuses on technological advancements, applications during human retinal surgery, translational difficulties and limitations, and future directions.

  10. Computer-guided laser for neurosurgery.

    Science.gov (United States)

    Koivukangas, J; Louhisalmi, Y

    1990-01-01

    On the basis of over 40 neurosurgical laser operations, including CO2, Nd-YAG and simultaneous CO2/Nd-YAG laser procedures, a computer-guided system for spatial control of the laser beam has been developed. The pilot laser has several modes: it can direct the neurosurgeon along the central axis of the surgical microscope to stereotactically determined point-like targets or outline selected layers of underlying volume targets onto superficial surfaces such as scalp and cortex and onto the tissue at the appropriate depth. The active treatment laser can be guided by preoperative CT/MRI or intraoperative ultrasound image data for layer-by-layer resection of tumor. The laser system can be connected to the surgical field by rigid stereotactic means or by neuronavigator. In the present system, a special brain surgery adapter coordinates the imaging system and laser to the surgical field. Thus, the laser system can be used for image-guided surgical orientation, for demarcation of lesions and for actual layer-by-layer removal of tumor.

  11. INNOLAB- image guided surgery and therapy lab

    Directory of Open Access Journals (Sweden)

    Fritzsche Holger

    2017-09-01

    Full Text Available Incremental innovation, something better or cheaper or more effective, is the standard innovation process for medical product development. Disruptive innovation is often not recognized as disruptive, because it very often starts as a simple and easy alternative to existing products with much reduced features and bad performance. Innovation is the invention multiplied with a commercial use, or in other words something that eventually provides a value to a clinical user or patient. To create such innovation not a technology push (technology delivered from a technical need perspective but rather a pull (by learning and working with the clinical users is required. Medical technology students need to understand that only through proper observation, procedure know-how and subsequent analysis and evaluation, clinically relevant and affordable innovation can be generated and possibly subsequently used for entrepreneurial ventures. The dedicated laboratory for innovation, research and entrepreneurship- INNOLAB ego.-INKUBATOR IGT (Image Guided Therapies is financed by the state of Sachsen-Anhalt as part of the European ego.-INKUBATOR program with (EFRE funds at the university clinic operated by the technical chair for catheter technologies and image guided surgeries. It forms a network node between medicine, research and economics. It teaches students to lead innovation processes, technology transfer to the user and is designed to stimulate the start-up intentions.

  12. Seventh Medical Image Computing and Computer Assisted Intervention Conference (MICCAI 2012)

    CERN Document Server

    Miller, Karol; Nielsen, Poul; Computational Biomechanics for Medicine : Models, Algorithms and Implementation

    2013-01-01

    One of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. Computational Biomechanics for Medicine: Models, Algorithms and Implementation collects the papers from the Seventh Computational Biomechanics for Medicine Workshop held in Nice in conjunction with the Medical Image Computing and Computer Assisted Intervention conference. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.

  13. Image calibration and registration in cone-beam computed tomogram for measuring the accuracy of computer-aided implant surgery

    Science.gov (United States)

    Lam, Walter Y. H.; Ngan, Henry Y. T.; Wat, Peter Y. P.; Luk, Henry W. K.; Goto, Tazuko K.; Pow, Edmond H. N.

    2015-02-01

    Medical radiography is the use of radiation to "see through" a human body without breaching its integrity (surface). With computed tomography (CT)/cone beam computed tomography (CBCT), three-dimensional (3D) imaging can be produced. These imagings not only facilitate disease diagnosis but also enable computer-aided surgical planning/navigation. In dentistry, the common method for transfer of the virtual surgical planning to the patient (reality) is the use of surgical stent either with a preloaded planning (static) like a channel or a real time surgical navigation (dynamic) after registration with fiducial markers (RF). This paper describes using the corner of a cube as a radiopaque fiducial marker on an acrylic (plastic) stent, this RF allows robust calibration and registration of Cartesian (x, y, z)- coordinates for linking up the patient (reality) and the imaging (virtuality) and hence the surgical planning can be transferred in either static or dynamic way. The accuracy of computer-aided implant surgery was measured with reference to coordinates. In our preliminary model surgery, a dental implant was planned virtually and placed with preloaded surgical guide. The deviation of the placed implant apex from the planning was x=+0.56mm [more right], y=- 0.05mm [deeper], z=-0.26mm [more lingual]) which was within clinically 2mm safety range. For comparison with the virtual planning, the physically placed implant was CT/CBCT scanned and errors may be introduced. The difference of the actual implant apex to the virtual apex was x=0.00mm, y=+0.21mm [shallower], z=-1.35mm [more lingual] and this should be brought in mind when interpret the results.

  14. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    Science.gov (United States)

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-01-01

    Abstract. There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here. PMID:27533438

  15. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    Science.gov (United States)

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-08-01

    There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here.

  16. Computer Simulation Surgery for Mandibular Reconstruction Using a Fibular Osteotomy Guide

    Directory of Open Access Journals (Sweden)

    Woo Shik Jeong

    2014-09-01

    Full Text Available In the present study, a fibular osteotomy guide based on a computer simulation was applied to a patient who had undergone mandibular segmental ostectomy due to oncological complications. This patient was a 68-year-old woman who presented to our department with a biopsy-proven squamous cell carcinoma on her left gingival area. This lesion had destroyed the cortical bony structure, and the patient showed attenuation of her soft tissue along the inferior alveolar nerve, indicating perineural spread of the tumor. Prior to surgery, a three-dimensional computed tomography scan of the facial and fibular bones was performed. We then created a virtual computer simulation of the mandibular segmental defect through which we segmented the fibular to reconstruct the proper angulation in the original mandible. Approximately 2-cm segments were created on the basis of this simulation and applied to the virtually simulated mandibular segmental defect. Thus, we obtained a virtual model of the ideal mandibular reconstruction for this patient with a fibular free flap. We could then use this computer simulation for the subsequent surgery and minimize the bony gaps between the multiple fibular bony segments.

  17. Image-guided surgery.

    Science.gov (United States)

    Wagner, A; Ploder, O; Enislidis, G; Truppe, M; Ewers, R

    1996-04-01

    Interventional video tomography (IVT), a new imaging modality, achieves virtual visualization of anatomic structures in three dimensions for intraoperative stereotactic navigation. Partial immersion into a virtual data space, which is orthotopically coregistered to the surgical field, enhances, by means of a see-through head-mounted display (HMD), the surgeon's visual perception and technique by providing visual access to nonvisual data of anatomy, physiology, and function. The presented cases document the potential of augmented reality environments in maxillofacial surgery.

  18. Integration of intraoperative stereovision imaging for brain shift visualization during image-guided cranial procedures

    Science.gov (United States)

    Schaewe, Timothy J.; Fan, Xiaoyao; Ji, Songbai; Roberts, David W.; Paulsen, Keith D.; Simon, David A.

    2014-03-01

    Dartmouth and Medtronic Navigation have established an academic-industrial partnership to develop, validate, and evaluate a multi-modality neurosurgical image-guidance platform for brain tumor resection surgery that is capable of updating the spatial relationships between preoperative images and the current surgical field. A stereovision system has been developed and optimized for intraoperative use through integration with a surgical microscope and an image-guided surgery system. The microscope optics and stereovision CCD sensors are localized relative to the surgical field using optical tracking and can efficiently acquire stereo image pairs from which a localized 3D profile of the exposed surface is reconstructed. This paper reports the first demonstration of intraoperative acquisition, reconstruction and visualization of 3D stereovision surface data in the context of an industry-standard image-guided surgery system. The integrated system is capable of computing and presenting a stereovision-based update of the exposed cortical surface in less than one minute. Alternative methods for visualization of high-resolution, texture-mapped stereovision surface data are also investigated with the objective of determining the technical feasibility of direct incorporation of intraoperative stereo imaging into future iterations of Medtronic's navigation platform.

  19. Kidney deformation and intraprocedural registration: a study of elements of image-guided kidney surgery.

    Science.gov (United States)

    Altamar, Hernan O; Ong, Rowena E; Glisson, Courtenay L; Viprakasit, Davis P; Miga, Michael I; Herrell, Stanley Duke; Galloway, Robert L

    2011-03-01

    Central to any image-guided surgical procedure is the alignment of image and physical coordinate spaces, or registration. We explored the task of registration in the kidney through in vivo and ex vivo porcine animal models and a human study of minimally invasive kidney surgery. A set of (n = 6) ex vivo porcine kidney models was utilized to study the effect of perfusion and loss of turgor caused by incision. Computed tomography (CT) and laser range scanner localizations of the porcine kidneys were performed before and after renal vessel clamping and after capsular incision. The da Vinci robotic surgery system was used for kidney surface acquisition and registration during robot-assisted laparoscopic partial nephrectomy. The surgeon acquired the physical surface data points with a tracked robotic instrument. These data points were aligned to preoperative CT for surface-based registrations. In addition, two biomechanical elastic computer models (isotropic and anisotropic) were constructed to simulate deformations in one of the kidneys to assess predictive capabilities. The mean displacement at the surface fiducials (glass beads) in six porcine kidneys was 4.4 ± 2.1 mm (range 3.4-6.7 mm), with a maximum displacement range of 6.1 to 11.2 mm. Surface-based registrations using the da Vinci robotic instrument in robot-assisted laparoscopic partial nephrectomy yielded mean and standard deviation closest point distances of 1.4 and 1.1 mm. With respect to computer model predictive capability, the target registration error was on average 6.7 mm without using the model and 3.2 mm with using the model. The maximum target error reduced from 11.4 to 6.2 mm. The anisotropic biomechanical model yielded better performance but was not statistically better. An initial point-based alignment followed by an iterative closest point registration is a feasible method of registering preoperative image (CT) space to intraoperative physical (robot) space. Although rigid registration provides

  20. American Thyroid Association statement on preoperative imaging for thyroid cancer surgery.

    Science.gov (United States)

    Yeh, Michael W; Bauer, Andrew J; Bernet, Victor A; Ferris, Robert L; Loevner, Laurie A; Mandel, Susan J; Orloff, Lisa A; Randolph, Gregory W; Steward, David L

    2015-01-01

    The success of surgery for thyroid cancer hinges on thorough and accurate preoperative imaging, which enables complete clearance of the primary tumor and affected lymph node compartments. This working group was charged by the Surgical Affairs Committee of the American Thyroid Association to examine the available literature and to review the most appropriate imaging studies for the planning of initial and revision surgery for thyroid cancer. Ultrasound remains the most important imaging modality in the evaluation of thyroid cancer, and should be used routinely to assess both the primary tumor and all associated cervical lymph node basins preoperatively. Positive lymph nodes may be distinguished from normal nodes based upon size, shape, echogenicity, hypervascularity, loss of hilar architecture, and the presence of calcifications. Ultrasound-guided fine-needle aspiration of suspicious lymph nodes may be useful in guiding the extent of surgery. Cross-sectional imaging (computed tomography with contrast or magnetic resonance imaging) may be considered in select circumstances to better characterize tumor invasion and bulky, inferiorly located, or posteriorly located lymph nodes, or when ultrasound expertise is not available. The above recommendations are applicable to both initial and revision surgery. Functional imaging with positron emission tomography (PET) or PET-CT may be helpful in cases of recurrent cancer with positive tumor markers and negative anatomic imaging.

  1. New real-time MR image-guided surgical robotic system for minimally invasive precision surgery

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, M.; Yasunaga, T.; Konishi, K. [Kyushu University, Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Fukuoka (Japan); Tanoue, K.; Ieiri, S. [Kyushu University Hospital, Department of Advanced Medicine and Innovative Technology, Fukuoka (Japan); Kishi, K. [Hitachi Ltd, Mechanical Engineering Research Laboratory, Hitachinaka-Shi, Ibaraki (Japan); Nakamoto, H. [Hitachi Medical Corporation, Application Development Office, Kashiwa-Shi, Chiba (Japan); Ikeda, D. [Mizuho Ikakogyo Co. Ltd, Tokyo (Japan); Sakuma, I. [The University of Tokyo, Graduate School of Engineering, Bunkyo-Ku, Tokyo (Japan); Fujie, M. [Waseda University, Graduate School of Science and Engineering, Shinjuku-Ku, Tokyo (Japan); Dohi, T. [The University of Tokyo, Graduate School of Information Science and Technology, Bunkyo-Ku, Tokyo (Japan)

    2008-04-15

    To investigate the usefulness of a newly developed magnetic resonance (MR) image-guided surgical robotic system for minimally invasive laparoscopic surgery. The system consists of MR image guidance [interactive scan control (ISC) imaging, three-dimensional (3-D) navigation, and preoperative planning], an MR-compatible operating table, and an MR-compatible master-slave surgical manipulator that can enter the MR gantry. Using this system, we performed in vivo experiments with MR image-guided laparoscopic puncture on three pigs. We used a mimic tumor made of agarose gel and with a diameter of approximately 2 cm. All procedures were successfully performed. The operator only advanced the probe along the guidance device of the manipulator, which was adjusted on the basis of the preoperative plan, and punctured the target while maintaining the operative field using robotic forceps. The position of the probe was monitored continuously with 3-D navigation and 2-D ISC images, as well as the MR-compatible laparoscope. The ISC image was updated every 4 s; no artifact was detected. A newly developed MR image-guided surgical robotic system is feasible for an operator to perform safe and precise minimally invasive procedures. (orig.)

  2. New real-time MR image-guided surgical robotic system for minimally invasive precision surgery

    International Nuclear Information System (INIS)

    Hashizume, M.; Yasunaga, T.; Konishi, K.; Tanoue, K.; Ieiri, S.; Kishi, K.; Nakamoto, H.; Ikeda, D.; Sakuma, I.; Fujie, M.; Dohi, T.

    2008-01-01

    To investigate the usefulness of a newly developed magnetic resonance (MR) image-guided surgical robotic system for minimally invasive laparoscopic surgery. The system consists of MR image guidance [interactive scan control (ISC) imaging, three-dimensional (3-D) navigation, and preoperative planning], an MR-compatible operating table, and an MR-compatible master-slave surgical manipulator that can enter the MR gantry. Using this system, we performed in vivo experiments with MR image-guided laparoscopic puncture on three pigs. We used a mimic tumor made of agarose gel and with a diameter of approximately 2 cm. All procedures were successfully performed. The operator only advanced the probe along the guidance device of the manipulator, which was adjusted on the basis of the preoperative plan, and punctured the target while maintaining the operative field using robotic forceps. The position of the probe was monitored continuously with 3-D navigation and 2-D ISC images, as well as the MR-compatible laparoscope. The ISC image was updated every 4 s; no artifact was detected. A newly developed MR image-guided surgical robotic system is feasible for an operator to perform safe and precise minimally invasive procedures. (orig.)

  3. Robust surface registration using salient anatomical features for image-guided liver surgery: Algorithm and validation

    OpenAIRE

    Clements, Logan W.; Chapman, William C.; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2008-01-01

    A successful surface-based image-to-physical space registration in image-guided liver surgery (IGLS) is critical to provide reliable guidance information to surgeons and pertinent surface displacement data for use in deformation correction algorithms. The current protocol used to perform the image-to-physical space registration involves an initial pose estimation provided by a point based registration of anatomical landmarks identifiable in both the preoperative tomograms and the intraoperati...

  4. FPGA-based High-Performance Collision Detection: An Enabling Technique for Image-Guided Robotic Surgery

    Directory of Open Access Journals (Sweden)

    Zhaorui Zhang

    2016-08-01

    Full Text Available Collision detection, which refers to the computational problem of finding the relative placement or con-figuration of two or more objects, is an essential component of many applications in computer graphics and robotics. In image-guided robotic surgery, real-time collision detection is critical for preserving healthy anatomical structures during the surgical procedure. However, the computational complexity of the problem usually results in algorithms that operate at low speed. In this paper, we present a fast and accurate algorithm for collision detection between Oriented-Bounding-Boxes (OBBs that is suitable for real-time implementation. Our proposed Sweep and Prune algorithm can perform a preliminary filtering to reduce the number of objects that need to be tested by the classical Separating Axis Test algorithm, while the OBB pairs of interest are preserved. These OBB pairs are re-checked by the Separating Axis Test algorithm to obtain accurate overlapping status between them. To accelerate the execution, our Sweep and Prune algorithm is tailor-made for the proposed method. Meanwhile, a high performance scalable hardware architecture is proposed by analyzing the intrinsic parallelism of our algorithm, and is implemented on FPGA platform. Results show that our hardware design on the FPGA platform can achieve around 8X higher running speed than the software design on a CPU platform. As a result, the proposed algorithm can achieve a collision frame rate of 1 KHz, and fulfill the requirement for the medical surgery scenario of Robot Assisted Laparoscopy.

  5. Image-guided cancer surgery using near-infrared fluorescence

    Science.gov (United States)

    Vahrmeijer, Alexander L.; Hutteman, Merlijn; van der Vorst, Joost R.; van de Velde, C.J.H.; Frangioni, John V.

    2013-01-01

    Paradigm shifts in surgery arise when surgeons are empowered to perform surgery faster, better, and/or less expensively. Optical imaging that exploits invisible near-infrared fluorescent light has the potential to improve cancer surgery outcomes while minimizing anesthesia time and lowering healthcare costs. Because of this, the last few years have witnessed an explosion of proof-of-concept clinical trials in the field. In this review, we introduce the concept of near-infrared fluorescence imaging for cancer surgery, review the clinical trial literature to date, outline the key issues pertaining to imaging system and contrast agent optimization, discuss limitations and leverage, and provide a framework for making the technology available for the routine care of cancer patients in the near future. PMID:23881033

  6. Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery.

    Science.gov (United States)

    Flügge, Tabea Viktoria; Nelson, Katja; Schmelzeisen, Rainer; Metzger, Marc Christian

    2013-08-01

    To present an efficient workflow for the production of implant drilling guides using virtual planning tools. For this purpose, laser surface scanning, cone beam computed tomography, computer-aided design and manufacturing, and 3-dimensional (3D) printing were combined. Intraoral optical impressions (iTero, Align Technologies, Santa Clara, CA) and digital 3D radiographs (cone beam computed tomography) were performed at the first consultation of 1 exemplary patient. With image processing techniques, the intraoral surface data, acquired using an intraoral scanner, and radiologic 3D data were fused. The virtual implant planning process (using virtual library teeth) and the in-office production of the implant drilling guide was performed after only 1 clinical consultation of the patient. Implant surgery with a computer-aided design and manufacturing produced implant drilling guide was performed during the second consultation. The production of a scan prosthesis and multiple preoperative consultations of the patient were unnecessary. The presented procedure offers another step in facilitating the production of drilling guides in dental implantology. Four main advantages are realized with this procedure. First, no additional scan prosthesis is needed. Second, data acquisition can be performed during the first consultation. Third, the virtual planning is directly transferred to the drilling guide without a loss of accuracy. Finally, the treatment cost and time required are reduced with this facilitated production process. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Computer guided pre-operative planning and dental implant placement

    Directory of Open Access Journals (Sweden)

    Dušan Grošelj

    2007-05-01

    Full Text Available Background: Implants in dentistry are, besides fixed, removable and maxillofacial prosthodontics, one of the reliable possibility to make functional and aesthetic rehabilitation of the edentulism. Surgical and prosthodontic implant complications are often an inattentive consequence of wrong diagnosis, planning, and placement. In this article we present a technique using a highly advanced software program along with a rapid prototyping technology named stereolithography. A planning software for implant placement needs basically the high quality computed tomographic scan of one or both jaws for making accurate preoperative diagnostics and 3D preoperative plan. Later individual drill guide is designed and generated based on both the CT images and the preoperative planning. The patient specific drill guide transfers the virtual planning to the patient’s mouth at time of surgery.Conclusions: The advantages of computer guided implantology are the better prepared surgery with visualisation of critical anatomic structures, assessment of available bone and data about bone quality, increased confidence for the surgeon, deceased operative time, less frequent use of bone grafts, higher quality of collaboration between specialists and prosthetic lab and better communication with patients. Radiographic examination of the operation field for computer guided planning for implant placement is due to high costs justified as the most important information source on the areas to be implanted.

  8. Image guided surgery innovation with graduate students - a new lecture format

    Directory of Open Access Journals (Sweden)

    Friebe Michael

    2015-09-01

    Full Text Available In Image Guided Surgeries (IGS, incremental innovation is normally not a technology push (technology delivered but rather a pull (by learning and working with the clinical users from understanding how these surgeries are performed. Engineers need to understand that only through proper observation, procedure know-how and subsequent analysis and evaluation, clinically relevant innovation can be generated. And, it is also essential to understand the associated health economics that could potentially come with new technological approaches. We created a new lecture format (6 ECTS for graduate students that combined the basics of image guided procedures with innovation tools (Design Thinking, Lean Engineering, Value Proposition Canvas, Innovation Games and actual visits of a surgical procedure. The students had to attend these procedures in small groups and had to identify and work on one or more innovation projects based on their observations and based on a prioritisation of medical need, pains and gains of the stakeholders, and ease of implementation. Almost 200 graduate students completed this training in the past 5 years with excellent results for the participating clinicians, and for the future engineers. This paper presents the lecture content, the setup, some statistics and results with the hope that other institutions will follow to offer similar programs that not only help the engineering students identify what clinically relevant innovation is (invention x clinical implementation, but that also pave the path for future interdisciplinary teams that will lead to incremental and disruptive innovation.

  9. Fluorescent imaging of cancerous tissues for targeted surgery

    Science.gov (United States)

    Bu, Lihong; Shen, Baozhong; Cheng, Zhen

    2014-01-01

    To maximize tumor excision and minimize collateral damage is the primary goal of cancer surgery. Emerging molecular imaging techniques have to “image-guided surgery” developing into “molecular imaging-guided surgery”, which is termed “targeted surgery” in this review. Consequently, the precision of surgery can be advanced from tissue-scale to molecule-scale, enabling “targeted surgery” to be a component of “targeted therapy”. Evidence from numerous experimental and clinical studies has demonstrated significant benefits of fluorescent imaging in targeted surgery with preoperative molecular diagnostic screening. Fluorescent imaging can help to improve intraoperative staging and enable more radical cytoreduction, detect obscure tumor lesions in special organs, highlight tumor margins, better map lymph node metastases, and identify important normal structures intraoperatively. Though limited tissue penetration of fluorescent imaging and tumor heterogeneity are two major hurdles for current targeted surgery, multimodality imaging and multiplex imaging may provide potential solutions to overcome these issues, respectively. Moreover, though many fluorescent imaging techniques and probes have been investigated, targeted surgery remains at a proof-of-principle stage. The impact of fluorescent imaging on cancer surgery will likely be realized through persistent interdisciplinary amalgamation of research in diverse fields. PMID:25064553

  10. Computer-aided design and computer-aided modeling (CAD/CAM) generated surgical splints, cutting guides and custom-made implants: Which indications in orthognathic surgery?

    Science.gov (United States)

    Scolozzi, P

    2015-12-01

    The purpose of the present report was to describe our indications, results and complications of computer-aided design and computer-aided modeling CAD/CAM surgical splints, cutting guides and custom-made implants in orthognathic surgery. We analyzed the clinical and radiological data of ten consecutive patients with dentofacial deformities treated using a CAD/CAM technique. Four patients had surgical splints and cutting guides for correction of maxillomandibular asymmetries, three had surgical cutting guides and customized internal distractors for correction of severe maxillary deficiencies and three had custom-made implants for additional chin contouring and/or mandibular defects following bimaxillary osteotomies and sliding genioplasty. We recorded age, gender, dentofacial deformity, surgical procedure and intra- and postoperative complications. All of the patients had stable cosmetic results with a high rate of patient satisfaction at the 1-year follow-up examination. No intra- and/or postoperative complications were encountered during any of the different steps of the procedure. This study demonstrated that the application of CAD/CAM patient-specific surgical splints, cutting guides and custom-made implants in orthognathic surgery allows for a successful outcome in the ten patients presented in this series. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Characterizing the Utility and Limitations of Repurposing an Open-Field Optical Imaging Device for Fluorescence-Guided Surgery in Head and Neck Cancer Patients.

    Science.gov (United States)

    Moore, Lindsay S; Rosenthal, Eben L; Chung, Thomas K; de Boer, Esther; Patel, Neel; Prince, Andrew C; Korb, Melissa L; Walsh, Erika M; Young, E Scott; Stevens, Todd M; Withrow, Kirk P; Morlandt, Anthony B; Richman, Joshua S; Carroll, William R; Zinn, Kurt R; Warram, Jason M

    2017-02-01

    The purpose of this study was to assess the potential of U.S. Food and Drug Administration-cleared devices designed for indocyanine green-based perfusion imaging to identify cancer-specific bioconjugates with overlapping excitation and emission wavelengths. Recent clinical trials have demonstrated potential for fluorescence-guided surgery, but the time and cost of the approval process may impede clinical translation. To expedite this translation, we explored the feasibility of repurposing existing optical imaging devices for fluorescence-guided surgery. Consenting patients (n = 15) scheduled for curative resection were enrolled in a clinical trial evaluating the safety and specificity of cetuximab-IRDye800 (NCT01987375). Open-field fluorescence imaging was performed preoperatively and during the surgical resection. Fluorescence intensity was quantified using integrated instrument software, and the tumor-to-background ratio characterized fluorescence contrast. In the preoperative clinic, the open-field device demonstrated potential to guide preoperative mapping of tumor borders, optimize the day of surgery, and identify occult lesions. Intraoperatively, the device demonstrated robust potential to guide surgical resections, as all peak tumor-to-background ratios were greater than 2 (range, 2.2-14.1). Postresection wound bed fluorescence was significantly less than preresection tumor fluorescence (P open-field imaging device was successfully repurposed to distinguish cancer from normal tissue in the preoperative clinic and throughout surgical resection. This study illuminated the potential for existing open-field optical imaging devices with overlapping excitation and emission spectra to be used for fluorescence-guided surgery. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  12. Image-guided urologic surgery: intraoperative optical imaging and tissue interrogation (Conference Presentation)

    Science.gov (United States)

    Liao, Joseph C.

    2017-02-01

    Emerging optical imaging technologies can be integrated in the operating room environment during minimally invasive and open urologic surgery, including oncologic surgery of the bladder, prostate, and kidney. These technologies include macroscopic fluorescence imaging that provides contrast enhancement between normal and diseased tissue and microscopic imaging that provides tissue characterization. Optical imaging technologies that have reached the clinical arena in urologic surgery are reviewed, including photodynamic diagnosis, near infrared fluorescence imaging, optical coherence tomography, and confocal laser endomicroscopy. Molecular imaging represents an exciting future arena in conjugating cancer-specific contrast agents to fluorophores to improve the specificity of disease detection. Ongoing efforts are underway to translate optimal targeting agents and imaging modalities, with the goal to improve cancer-specific and functional outcomes.

  13. A Google Glass navigation system for ultrasound and fluorescence dual-mode image-guided surgery

    Science.gov (United States)

    Zhang, Zeshu; Pei, Jing; Wang, Dong; Hu, Chuanzhen; Ye, Jian; Gan, Qi; Liu, Peng; Yue, Jian; Wang, Benzhong; Shao, Pengfei; Povoski, Stephen P.; Martin, Edward W.; Yilmaz, Alper; Tweedle, Michael F.; Xu, Ronald X.

    2016-03-01

    Surgical resection remains the primary curative intervention for cancer treatment. However, the occurrence of a residual tumor after resection is very common, leading to the recurrence of the disease and the need for re-resection. We develop a surgical Google Glass navigation system that combines near infrared fluorescent imaging and ultrasonography for intraoperative detection of sites of tumor and assessment of surgical resection boundaries, well as for guiding sentinel lymph node (SLN) mapping and biopsy. The system consists of a monochromatic CCD camera, a computer, a Google Glass wearable headset, an ultrasonic machine and an array of LED light sources. All the above components, except the Google Glass, are connected to a host computer by a USB or HDMI port. Wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A control program is written in C++ to call OpenCV functions for image calibration, processing and display. The technical feasibility of the system is tested in both tumor simulating phantoms and in a human subject. When the system is used for simulated phantom resection tasks, the tumor boundaries, invisible to the naked eye, can be clearly visualized with the surgical Google Glass navigation system. This system has also been used in an IRB approved protocol in a single patient during SLN mapping and biopsy in the First Affiliated Hospital of Anhui Medical University, demonstrating the ability to successfully localize and resect all apparent SLNs. In summary, our tumor simulating phantom and human subject studies have demonstrated the technical feasibility of successfully using the proposed goggle navigation system during cancer surgery.

  14. Image-guided navigation system for placing dental implants.

    Science.gov (United States)

    Casap, Nardy; Wexler, Alon; Lustmann, Joshua

    2004-10-01

    Navigation-guided surgery has recently been introduced into various surgical disciplines, including oral and maxillofacial surgery. Since the advent of dental implants, dental computed tomography (CT) scans have been used as a diagnostic tool for preoperative planning, but not as part of the surgical phase. This article explains the principles of computer-assisted surgery and describes the use of a computer-guided navigation system in dental implantology. The system uses preoperative dental CT scans for planning and as an integral part of the surgical procedure. This system allows continuous intraoperative coordination of the implantation phase with the preoperative plan, optimizing the accuracy of implant surgery. Deviations from the planned location of the implants are minimal. Several cases are discussed.

  15. Introduction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas.

    Science.gov (United States)

    Mert, Aygül; Kiesel, Barbara; Wöhrer, Adelheid; Martínez-Moreno, Mauricio; Minchev, Georgi; Furtner, Julia; Knosp, Engelbert; Wolfsberger, Stefan; Widhalm, Georg

    2015-01-01

    visualization. This new protocol was feasible and was estimated to be surgically relevant during navigation-guided surgery in all 11 patients. According to the authors' predefined surgical outcome parameters, they observed a complete resection in all resectable gliomas (n = 5) by using contour visualization with T2-weighted or FLAIR images. Additionally, tumor tissue derived from the metabolic hotspot showed the presence of malignant tissue in all WHO Grade III or IV gliomas (n = 5). Moreover, no permanent postoperative neurological deficits occurred in any of these patients, and fiber tracking and/or intraoperative monitoring were applied during surgery in the vast majority of cases (n = 10). Furthermore, the authors found a significant intraoperative topographical correlation of 3D brain surface and vessel models with gyral anatomy and superficial vessels. Finally, real-time navigation with multimodality imaging data using the advanced electromagnetic navigation system was found to be useful for precise guidance to surgical targets, such as the tumor margin or the metabolic hotspot. CONCLUSIONS In this study, the authors defined a specific protocol for multimodality imaging data in suspected LGGs, and they propose the application of this new protocol for advanced navigation-guided procedures optimally in conjunction with continuous electromagnetic instrument tracking to optimize glioma surgery.

  16. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    International Nuclear Information System (INIS)

    Siewerdsen, Jeffrey H.

    2011-01-01

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  17. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, Room 718, 720 Rutland Avenue, Baltimore, MD 21205 (United States)

    2011-08-21

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  18. Development and application of stent-based image guided navigation system for oral and maxillofacial surgery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woo Jin; Kim, Dae Seung [Interdisciplinary Program in Radiation Applied Life Science, Dental Research Institute and BK21, College of Medicine, Seoul National University, Seoul (Korea, Republic of); Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul; Heo, Min Suk; Huh, Kyung Hoe; Kim, Myung Jin; Lee, Jee Ho [Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2009-09-15

    The purpose of this study was to develop a stent-based image guided surgery system and to apply it to oral and maxillofacial surgeries for anatomically complex sites. We devised a patient-specific stent for patient-to-image registration and navigation. Three dimensional positions of the reference probe and the tool probe were tracked by an optical camera system and the relative position of the handpiece drill tip to the reference probe was monitored continuously on the monitor of a PC. Using 8 landmarks for measuring accuracy, the spatial discrepancy between CT image coordinate and physical coordinate was calculated for testing the normality. The accuracy over 8 anatomical landmarks showed an overall mean of 0.56 {+-} 0.16 mm. The developed system was applied to a surgery for a vertical alveolar bone augmentation in right mandibular posterior area and possible interior alveolar nerve injury case of an impacted third molar. The developed system provided continuous monitoring of invisible anatomical structures during operation and 3D information for operation sites. The clinical challenge showed sufficient accuracy and availability of anatomically complex operation sites. The developed system showed sufficient accuracy and availability in oral and maxillofacial surgeries for anatomically complex sites.

  19. In Vivo Tooth-Supported Implant Surgical Guides Fabricated With Desktop Stereolithographic Printers: Fully Guided Surgery Is More Accurate Than Partially Guided Surgery.

    Science.gov (United States)

    Bencharit, Sompop; Staffen, Adam; Yeung, Matthew; Whitley, Daniel; Laskin, Daniel M; Deeb, George R

    2018-02-21

    Desktop stereolithographic printers combined with intraoral scanning and implant planning software promise precise and cost-effective guided implant surgery. The purpose of the present study was to determine the overall range of accuracy of tooth-supported guided implant surgery using desktop printed stereolithographic guides. A cross-sectional study comparing fully and partially guided implant surgery was conducted. Preoperative cone beam computed tomography (CBCT) and intraoral scans were used to plan the implant sites. Surgical guides were then fabricated using a desktop stereolithographic 3-dimensional printer. Postoperative CBCT was used to evaluate the accuracy of placement. Deviations from the planned positions were used as the primary outcome variables. The planning software used, implant systems, and anterior/posterior positions were the secondary outcome variables. The differences between the planned and actual implant positions in the mesial, distal, buccal, and lingual dimensions and buccolingual angulations were determined, and the accuracy was compared statistically using the 1-tail F-test (P = .01), box plots, and 95% confidence intervals for the mean. Sixteen partially edentulous patients requiring placement of 31 implants were included in the present study. The implant deviations from the planned positions for mesial, distal, buccal, and lingual dimensions and buccolingual angulations with the fully guided protocol (n = 20) were 0.17 ± 0.78 mm, 0.44 ± 0.78 mm, 0.23 ± 1.08 mm, -0.22 ± 1.44 mm, and -0.32° ± 2.36°, respectively. The corresponding implant deviations for the partially guided protocol (n = 11) were 0.33 ± 1.38 mm, -0.03 ± 1.59 mm, 0.62 ± 1.15 mm, -0.27 ± 1.61 mm, and 0.59° ± 6.83°. The difference between the variances for fully and partially guided surgery for the distal and angulation dimensions was statistically significant (P = .006 and P guided implant surgery is more accurate than

  20. Augmented environments for the targeting of hepatic lesions during image-guided robotic liver surgery.

    Science.gov (United States)

    Buchs, Nicolas C; Volonte, Francesco; Pugin, François; Toso, Christian; Fusaglia, Matteo; Gavaghan, Kate; Majno, Pietro E; Peterhans, Matthias; Weber, Stefan; Morel, Philippe

    2013-10-01

    Stereotactic navigation technology can enhance guidance during surgery and enable the precise reproduction of planned surgical strategies. Currently, specific systems (such as the CAS-One system) are available for instrument guidance in open liver surgery. This study aims to evaluate the implementation of such a system for the targeting of hepatic tumors during robotic liver surgery. Optical tracking references were attached to one of the robotic instruments and to the robotic endoscopic camera. After instrument and video calibration and patient-to-image registration, a virtual model of the tracked instrument and the available three-dimensional images of the liver were displayed directly within the robotic console, superimposed onto the endoscopic video image. An additional superimposed targeting viewer allowed for the visualization of the target tumor, relative to the tip of the instrument, for an assessment of the distance between the tumor and the tool for the realization of safe resection margins. Two cirrhotic patients underwent robotic navigated atypical hepatic resections for hepatocellular carcinoma. The augmented endoscopic view allowed for the definition of an accurate resection margin around the tumor. The overlay of reconstructed three-dimensional models was also used during parenchymal transection for the identification of vascular and biliary structures. Operative times were 240 min in the first case and 300 min in the second. There were no intraoperative complications. The da Vinci Surgical System provided an excellent platform for image-guided liver surgery with a stable optic and instrumentation. Robotic image guidance might improve the surgeon's orientation during the operation and increase accuracy in tumor resection. Further developments of this technological combination are needed to deal with organ deformation during surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A Dual Reporter Iodinated Labeling Reagent for Cancer Positron Emission Tomography Imaging and Fluorescence-Guided Surgery

    Science.gov (United States)

    2018-01-01

    The combination of early diagnosis and complete surgical resection offers the greatest prospect of curative cancer treatment. An iodine-124/fluorescein-based dual-modality labeling reagent, 124I-Green, constitutes a generic tool for one-step installation of a positron emission tomography (PET) and a fluorescent reporter to any cancer-specific antibody. The resulting antibody conjugate would allow both cancer PET imaging and intraoperative fluorescence-guided surgery. 124I-Green was synthesized in excellent radiochemical yields of 92 ± 5% (n = 4) determined by HPLC with an improved one-pot three-component radioiodination reaction. The A5B7 carcinoembryonic antigen (CEA)-specific antibody was conjugated to 124I-Green. High tumor uptake of the dual-labeled A5B7 of 20.21 ± 2.70, 13.31 ± 0.73, and 10.64 ± 1.86%ID/g was observed in CEA-expressing SW1222 xenograft mouse model (n = 3) at 24, 48, and 72 h post intravenous injection, respectively. The xenografts were clearly visualized by both PET/CT and ex vivo fluorescence imaging. These encouraging results warrant the further translational development of 124I-Green for cancer PET imaging and fluorescence-guided surgery. PMID:29388770

  2. A novel graphical user interface for ultrasound-guided shoulder arthroscopic surgery

    Science.gov (United States)

    Tyryshkin, K.; Mousavi, P.; Beek, M.; Pichora, D.; Abolmaesumi, P.

    2007-03-01

    This paper presents a novel graphical user interface developed for a navigation system for ultrasound-guided computer-assisted shoulder arthroscopic surgery. The envisioned purpose of the interface is to assist the surgeon in determining the position and orientation of the arthroscopic camera and other surgical tools within the anatomy of the patient. The user interface features real time position tracking of the arthroscopic instruments with an optical tracking system, and visualization of their graphical representations relative to a three-dimensional shoulder surface model of the patient, created from computed tomography images. In addition, the developed graphical interface facilitates fast and user-friendly intra-operative calibration of the arthroscope and the arthroscopic burr, capture and segmentation of ultrasound images, and intra-operative registration. A pilot study simulating the computer-aided shoulder arthroscopic procedure on a shoulder phantom demonstrated the speed, efficiency and ease-of-use of the system.

  3. Development and application of stent-based image guided navigation system for oral and maxillofacial surgery

    International Nuclear Information System (INIS)

    Lee, Woo Jin; Kim, Dae Seung; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul; Heo, Min Suk; Huh, Kyung Hoe; Kim, Myung Jin; Lee, Jee Ho

    2009-01-01

    The purpose of this study was to develop a stent-based image guided surgery system and to apply it to oral and maxillofacial surgeries for anatomically complex sites. We devised a patient-specific stent for patient-to-image registration and navigation. Three dimensional positions of the reference probe and the tool probe were tracked by an optical camera system and the relative position of the handpiece drill tip to the reference probe was monitored continuously on the monitor of a PC. Using 8 landmarks for measuring accuracy, the spatial discrepancy between CT image coordinate and physical coordinate was calculated for testing the normality. The accuracy over 8 anatomical landmarks showed an overall mean of 0.56 ± 0.16 mm. The developed system was applied to a surgery for a vertical alveolar bone augmentation in right mandibular posterior area and possible interior alveolar nerve injury case of an impacted third molar. The developed system provided continuous monitoring of invisible anatomical structures during operation and 3D information for operation sites. The clinical challenge showed sufficient accuracy and availability of anatomically complex operation sites. The developed system showed sufficient accuracy and availability in oral and maxillofacial surgeries for anatomically complex sites.

  4. Substantial dose reduction in modern multi-slice spiral computed tomography (MSCT)-guided craniofacial and skull base surgery

    International Nuclear Information System (INIS)

    Widmann, G.; Fasser, M.; Jaschke, W.; Bale, R.; Schullian, P.; Zangerl, A.; Puelacher, W.; Kral, F.; Riechelmann, H.

    2012-01-01

    Purpose: Reduction of the radiation exposure involved in image-guided craniofacial and skull base surgery is an important goal. The purpose was to evaluate the influence of low-dose protocols in modern multi-slice spiral computed tomography (MSCT) on target registration errors (TREs). Materials and Methods: An anthropomorphic skull phantom with target markers at the craniofacial bone and the anterior skull base was scanned in Sensation Open (40-slice), LightSpeed VCT (64-slice) and Definition Flash (128-slice). Identical baseline protocols (BP) at 120 kV/100 mAs were compared to the following low-dose protocols (LD) in care dose/dose modulation: (LD-I) 100 kV/35ref. mAs, (LD-II) 80 kV/40 - 41ref. mAs, and (LD-III) 80 kV/15 - 17ref. mAs. CTDIvol and DLP were obtained. TREs using an optical navigation system were calculated for all scanners and protocols. Results were statistically analyzed in SPSS and compared for significant differences (p ≤ 0.05). Results: CTDIvol for the Sensation Open/LightSpeed VCT/Definition Flash showed: (BP) 22.24 /32.48 /14.32 mGy; (LD-I) 4.61 /3.52 /1,62 mGy; (LD-II) 3.15 /2.01 /0.87 mGy; and (LD-III) na/0.76 /0.76 mGy. Differences between the BfS (Bundesamt fuer Strahlenschutz) reference CTDIvol of 9 mGy and the lowest CTDIvol were approximately 3-fold for Sensation Open, and 12-fold for the LightSpeed VCT and Definition Flash. A total of 33 registrations and 297 TRE measurements were performed. In all MSCT scanners, the TREs did not significantly differ between the low-dose and the baseline protocols. Conclusion: Low-dose protocols in modern MSCT provided substantial dose reductions without significant influence on TRE and should be strongly considered in image-guided surgery. (orig.)

  5. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, J. [Johns Hopkins University (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  6. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    International Nuclear Information System (INIS)

    Siewerdsen, J.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  7. A cost effective and high fidelity fluoroscopy simulator using the Image-Guided Surgery Toolkit (IGSTK)

    Science.gov (United States)

    Gong, Ren Hui; Jenkins, Brad; Sze, Raymond W.; Yaniv, Ziv

    2014-03-01

    The skills required for obtaining informative x-ray fluoroscopy images are currently acquired while trainees provide clinical care. As a consequence, trainees and patients are exposed to higher doses of radiation. Use of simulation has the potential to reduce this radiation exposure by enabling trainees to improve their skills in a safe environment prior to treating patients. We describe a low cost, high fidelity, fluoroscopy simulation system. Our system enables operators to practice their skills using the clinical device and simulated x-rays of a virtual patient. The patient is represented using a set of temporal Computed Tomography (CT) images, corresponding to the underlying dynamic processes. Simulated x-ray images, digitally reconstructed radiographs (DRRs), are generated from the CTs using ray-casting with customizable machine specific imaging parameters. To establish the spatial relationship between the CT and the fluoroscopy device, the CT is virtually attached to a patient phantom and a web camera is used to track the phantom's pose. The camera is mounted on the fluoroscope's intensifier and the relationship between it and the x-ray source is obtained via calibration. To control image acquisition the operator moves the fluoroscope as in normal operation mode. Control of zoom, collimation and image save is done using a keypad mounted alongside the device's control panel. Implementation is based on the Image-Guided Surgery Toolkit (IGSTK), and the use of the graphics processing unit (GPU) for accelerated image generation. Our system was evaluated by 11 clinicians and was found to be sufficiently realistic for training purposes.

  8. Interactive navigation-guided ophthalmic plastic surgery: the utility of 3D CT-DCG-guided dacryolocalization in secondary acquired lacrimal duct obstructions

    Directory of Open Access Journals (Sweden)

    Ali MJ

    2016-12-01

    Full Text Available Mohammad Javed Ali,1 Swati Singh,1 Milind N Naik,1 Swathi Kaliki,2 Tarjani Vivek Dave1 1Govindram Seksaria Institute of Dacryology, 2The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad, Telangana, India Aim: The aim of this study was to report the preliminary experience with the techniques and utility of navigation-guided, 3D, computed tomography–dacryocystography (CT-DCG in the management of secondary acquired lacrimal drainage obstructions.Methods: Stereotactic surgeries using CT-DCG as the intraoperative image-guiding tool were performed in 3 patients. One patient had nasolacrimal duct obstruction (NLDO following a complete maxillectomy for a sinus malignancy, and the other 2 had NLDO following extensive maxillofacial trauma. All patients underwent a 3D CT-DCG. Image-guided dacryolocalization (IGDL was performed using the intraoperative image-guided StealthStation™ system in the electromagnetic mode. All patients underwent navigation-guided powered endoscopic dacryocystorhinostomy (DCR. The utility of intraoperative dacryocystographic guidance and the ability to localize the lacrimal drainage system in the altered endoscopic anatomical milieu were noted.Results: Intraoperative geometric localization of the lacrimal sac and the nasolacrimal duct could be easily achieved. Constant orientation of the lacrimal drainage system was possible while navigating in the vicinity of altered endoscopic perilacrimal anatomy. Useful clues with regard to modifications while performing a powered endoscopic DCR could be obtained. Surgeries could be performed with utmost safety and precision, thereby avoiding complications. Detailed preoperative 3D CT-DCG reconstructions with constant intraoperative dacryolocalization were found to be essential for successful outcomes.Conclusion: The 3D CT-DCG-guided navigation procedure is very useful while performing endoscopic DCRs in cases of secondary acquired and complex

  9. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green.

    Science.gov (United States)

    Namikawa, Tsutomu; Sato, Takayuki; Hanazaki, Kazuhiro

    2015-12-01

    Near-infrared (NIR) fluorescence imaging has better tissue penetration, allowing for the effective rejection of excitation light and detection deep inside organs. Indocyanine green (ICG) generates NIR fluorescence after illumination by an NIR ray, enabling real-time intraoperative visualization of superficial lymphatic channels and vessels transcutaneously. The HyperEye Medical System (HEMS) can simultaneously detect NIR rays under room light to provide color imaging, which enables visualization under bright light. Thus, NIR fluorescence imaging using ICG can provide for excellent diagnostic accuracy in detecting sentinel lymph nodes in cancer and microvascular circulation in various ischemic diseases, to assist us with intraoperative decision making. Including HEMS in this system could further improve the sentinel lymph node mapping and intraoperative identification of blood supply in reconstructive organs and ischemic diseases, making it more attractive than conventional imaging. Moreover, the development of new laparoscopic imaging systems equipped with NIR will allow fluorescence-guided surgery in a minimally invasive setting. Future directions, including the conjugation of NIR fluorophores to target specific cancer markers might be realistic technology with diagnostic and therapeutic benefits.

  10. Functional magnetic resonance imaging-controlled neuronavigator-guided brain surgery: a case report.

    Science.gov (United States)

    Morioka, J; Nishizaki, T; Tokumaru, T; Uesugi, S; Yamashita, K; Ito, H; Suzuki, M

    2001-05-01

    The effectiveness of functional magnetic resonance imaging (f-MRI)-controlled and navigator-guided brain surgery for a patient with a recurrent astrocytoma is demonstrated. Preoperative f-MRI was performed in order to identify the motor area and ensure that the tumour was in the left prefrontal area. A more aggressive operation was planned for the recurrent tumour. The f-MRI data were input to the MKM navigation system and during the operation the contours of the tumour and motor area were visualised b y the microscope of the navigation system. The tumour and surrounding gliotic brain tissue were removed completely. The diagnosis was a grade III astrocytoma. The combination of the navigation system and f-MRI was useful for preoperative design of the surgical strategy, and tumour orientation during the operation, enabling aggressive surgery to be performed without functional deficits ensuing. Copyright 2001 Harcourt Publishers Ltd.

  11. Image quality and localization accuracy in C-arm tomosynthesis-guided head and neck surgery

    International Nuclear Information System (INIS)

    Bachar, G.; Siewerdsen, J. H.; Daly, M. J.; Jaffray, D. A.; Irish, J. C.

    2007-01-01

    The image quality and localization accuracy for C-arm tomosynthesis and cone-beam computed tomography (CBCT) guidance of head and neck surgery were investigated. A continuum in image acquisition was explored, ranging from a single exposure (radiograph) to multiple projections acquired over a limited arc (tomosynthesis) to a full semicircular trajectory (CBCT). Experiments were performed using a prototype mobile C-arm modified to perform 3D image acquisition (a modified Siemens PowerMobil). The tradeoffs in image quality associated with the extent of the source-detector arc (θ tot ), the number of projection views, and the total imaging dose were evaluated in phantom and cadaver studies. Surgical localization performance was evaluated using three cadaver heads imaged as a function of θ tot . Six localization tasks were considered, ranging from high-contrast feature identification (e.g., tip of a K-wire pointer) to more challenging soft-tissue delineation (e.g., junction of the hard and soft palate). Five head and neck surgeons and one radiologist participated as observers. For each localization task, the 3D coordinates of landmarks pinpointed by each observer were analyzed as a function of θ tot . For all tomosynthesis angles, image quality was highest in the coronal plane, whereas sagittal and axial planes exhibited a substantial decrease in spatial resolution associated with out-of-plane blur and distortion. Tasks involving complex, lower-contrast features demonstrated steeper degradation with smaller tomosynthetic arc. Localization accuracy in the coronal plane was correspondingly high, maintained to tot ∼30 deg. , whereas sagittal and axial localization degraded rapidly below θ tot ∼60 deg. . Similarly, localization precision was better than ∼1 mm within the coronal plane, compared to ∼2-3 mm out-of-plane for tomosynthesis angles below θ tot ∼45 deg. . An overall 3D localization accuracy of ∼2.5 mm was achieved with θ tot ∼ 90 deg. for most

  12. Image navigation as a means to expand the boundaries of fluorescence-guided surgery.

    Science.gov (United States)

    Brouwer, Oscar R; Buckle, Tessa; Bunschoten, Anton; Kuil, Joeri; Vahrmeijer, Alexander L; Wendler, Thomas; Valdés-Olmos, Renato A; van der Poel, Henk G; van Leeuwen, Fijs W B

    2012-05-21

    Hybrid tracers that are both radioactive and fluorescent help extend the use of fluorescence-guided surgery to deeper structures. Such hybrid tracers facilitate preoperative surgical planning using (3D) scintigraphic images and enable synchronous intraoperative radio- and fluorescence guidance. Nevertheless, we previously found that improved orientation during laparoscopic surgery remains desirable. Here we illustrate how intraoperative navigation based on optical tracking of a fluorescence endoscope may help further improve the accuracy of hybrid surgical guidance. After feeding SPECT/CT images with an optical fiducial as a reference target to the navigation system, optical tracking could be used to position the tip of the fluorescence endoscope relative to the preoperative 3D imaging data. This hybrid navigation approach allowed us to accurately identify marker seeds in a phantom setup. The multispectral nature of the fluorescence endoscope enabled stepwise visualization of the two clinically approved fluorescent dyes, fluorescein and indocyanine green. In addition, the approach was used to navigate toward the prostate in a patient undergoing robot-assisted prostatectomy. Navigation of the tracked fluorescence endoscope toward the target identified on SPECT/CT resulted in real-time gradual visualization of the fluorescent signal in the prostate, thus providing an intraoperative confirmation of the navigation accuracy.

  13. A novel ultrasound-guided shoulder arthroscopic surgery

    Science.gov (United States)

    Tyryshkin, K.; Mousavi, P.; Beek, M.; Chen, T.; Pichora, D.; Abolmaesumi, P.

    2006-03-01

    This paper presents a novel ultrasound-guided computer system for arthroscopic surgery of the shoulder joint. Intraoperatively, the system tracks and displays the surgical instruments, such as arthroscope and arthroscopic burrs, relative to the anatomy of the patient. The purpose of this system is to improve the surgeon's perception of the three-dimensional space within the anatomy of the patient in which the instruments are manipulated and to provide guidance towards the targeted anatomy. Pre-operatively, computed tomography images of the patient are acquired to construct virtual threedimensional surface models of the shoulder bone structure. Intra-operatively, live ultrasound images of pre-selected regions of the shoulder are captured using an ultrasound probe whose three-dimensional position is tracked by an optical camera. These images are used to register the surface model to the anatomy of the patient in the operating room. An initial alignment is obtained by matching at least three points manually selected on the model to their corresponding points identified on the ultrasound images. The registration is then improved with an iterative closest point or a sequential least squares estimation technique. In the present study the registration results of these techniques are compared. After the registration, surgical instruments are displayed relative to the surface model of the patient on a graphical screen visible to the surgeon. Results of laboratory experiments on a shoulder phantom indicate acceptable registration results and sufficiently fast overall system performance to be applicable in the operating room.

  14. Comparison of the accuracy of cone beam computed tomography and medical computed tomography: implications for clinical diagnostics with guided surgery.

    Science.gov (United States)

    Abboud, Marcus; Calvo-Guirado, Jose Luis; Orentlicher, Gary; Wahl, Gerhard

    2013-01-01

    This study compared the accuracy of cone beam computed tomography (CBCT) and medical-grade CT in the context of evaluating the diagnostic value and accuracy of fiducial marker localization for reference marker-based guided surgery systems. Cadaver mandibles with attached radiopaque gutta-percha markers, as well as glass balls and composite cylinders of known dimensions, were measured manually with a highly accurate digital caliper. The objects were then scanned using a medical-grade CT scanner (Philips Brilliance 64) and five different CBCT scanners (Sirona Galileos, Morita 3D Accuitomo 80, Vatech PaX-Reve3D, 3M Imtech Iluma, and Planmeca ProMax 3D). The data were then imported into commercially available software, and measurements were made of the scanned markers and objects. CT and CBCT measurements were compared to each other and to the caliper measurements. The difference between the CBCT measurements and the caliper measurements was larger than the difference between the CT measurements and the caliper measurements. Measurements of the cadaver mandible and the geometric reference markers were highly accurate with CT. The average absolute errors of the human mandible measurements were 0.03 mm for CT and 0.23 mm for CBCT. The measurement errors of the geometric objects based on CT ranged between 0.00 and 0.12 mm, compared to an error range between 0.00 and 2.17 mm with the CBCT scanners. CT provided the most accurate images in this study, closely followed by one CBCT of the five tested. Although there were differences in the distance measurements of the hard tissue of the human mandible between CT and CBCT, these differences may not be of clinical significance for most diagnostic purposes. The fiducial marker localization error caused by some CBCT scanners may be a problem for guided surgery systems.

  15. Robotics in pediatric surgery: perspectives for imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Adrien J.; Klein, Michael D. [Stuart Frankel Foundation Computer-Assisted Robot-Enhanced Surgery Program, Children' s Research Center of Michigan, Detroit, MI 48201 (United States); Langenburg, Scott E. [Stuart Frankel Foundation Computer-Assisted Robot-Enhanced Surgery Program, Children' s Research Center of Michigan, Detroit, MI 48201 (United States); Department of Pediatric Surgery, Children' s Hospital of Michigan, 3901 Beaubien, Detroit, MI 48201 (United States)

    2004-06-01

    Robotic surgery will give surgeons the ability to perform essentially tremorless microsurgery in tiny spaces with delicate precision and may enable procedures never before possible on children, neonates, and fetuses. Collaboration with radiologists, engineers, and other scientists will permit refinement of image-guided technologies and allow the realization of truly remarkable concepts in minimally invasive surgery. While robotic surgery is now in clinical use in several surgical specialties (heart bypass, prostate removal, and various gastrointestinal procedures), the greatest promise of robotics lies in pediatric surgery. We will briefly review the history and background of robotic technology in surgery, discuss its present benefits and uses and those being explored, and speculate on the future, with attention to the current and potential involvement of imaging modalities and the role of image guidance. (orig.)

  16. Robotics in pediatric surgery: perspectives for imaging

    International Nuclear Information System (INIS)

    Kant, Adrien J.; Klein, Michael D.; Langenburg, Scott E.

    2004-01-01

    Robotic surgery will give surgeons the ability to perform essentially tremorless microsurgery in tiny spaces with delicate precision and may enable procedures never before possible on children, neonates, and fetuses. Collaboration with radiologists, engineers, and other scientists will permit refinement of image-guided technologies and allow the realization of truly remarkable concepts in minimally invasive surgery. While robotic surgery is now in clinical use in several surgical specialties (heart bypass, prostate removal, and various gastrointestinal procedures), the greatest promise of robotics lies in pediatric surgery. We will briefly review the history and background of robotic technology in surgery, discuss its present benefits and uses and those being explored, and speculate on the future, with attention to the current and potential involvement of imaging modalities and the role of image guidance. (orig.)

  17. Radiologists' leading position in image-guided therapy

    NARCIS (Netherlands)

    Helmberger, Thomas; Martí-Bonmatí, Luis; Pereira, Philippe; Gillams, Alice; Martínez, Jose; Lammer, Johannes; Malagari, Katarina; Gangi, Afshin; de Baere, Thierry; Adam, E. Jane; Rasch, Coen; Budach, Volker; Reekers, Jim A.

    2013-01-01

    Image-guided diagnostic and therapeutic procedures are related to, or performed under, some kind of imaging. Such imaging may be direct inspection (as in open surgery) or indirect inspection as in endoscopy or laparoscopy. Common to all these techniques is the transformation of optical and visible

  18. Comparative evaluation of toric intraocular lens alignment and visual quality with image-guided surgery and conventional three-step manual marking.

    Science.gov (United States)

    Titiyal, Jeewan S; Kaur, Manpreet; Jose, Cijin P; Falera, Ruchita; Kinkar, Ashutosh; Bageshwar, Lalit Ms

    2018-01-01

    To compare toric intraocular lens (IOL) alignment assisted by image-guided surgery or manual marking methods and its impact on visual quality. This prospective comparative study enrolled 80 eyes with cataract and astigmatism ≥1.5 D to undergo phacoemulsification with toric IOL alignment by manual marking method using bubble marker (group I, n=40) or Callisto eye and Z align (group II, n=40). Postoperatively, accuracy of alignment and visual quality was assessed with a ray tracing aberrometer. Primary outcome measure was deviation from the target axis of implantation. Secondary outcome measures were visual quality and acuity. Follow-up was performed on postoperative days (PODs) 1 and 30. Deviation from the target axis of implantation was significantly less in group II on PODs 1 and 30 (group I: 5.5°±3.3°, group II: 3.6°±2.6°; p =0.005). Postoperative refractive cylinder was -0.89±0.35 D in group I and -0.64±0.36 D in group II ( p =0.003). Visual acuity was comparable between both the groups. Visual quality measured in terms of Strehl ratio ( p image-guided surgery group. Significant negative correlation was observed between deviation from target axis and visual quality parameters (Strehl ratio and MTF) ( p Image-guided surgery allows precise alignment of toric IOL without need for reference marking. It is associated with superior visual quality which correlates with the precision of IOL alignment.

  19. An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization

    International Nuclear Information System (INIS)

    Grimson, W.E.L.; Lozano-Perez, T.; White, S.J.; Wells, W.M. III; Kikinis, R.

    1996-01-01

    There is a need for frameless guidance systems to help surgeons plan the exact location for incisions, to define the margins of tumors, and to precisely identify locations of neighboring critical structures. The authors have developed an automatic technique for registering clinical data, such as segmented magnetic resonance imaging (MRI) or computed tomography (CT) reconstructions, with any view of the patient on the operating table. They demonstrate on the specific example of neurosurgery. The method enables a visual mix of live video of the patient and the segmented three-dimensional (3-D) MRI or CT model. This supports enhanced reality techniques for planning and guiding neurosurgical procedures and allows them to interactively view extracranial or intracranial structures nonintrusively. Extensions of the method include image guided biopsies, focused therapeutic procedures, and clinical studies involving change detection over time sequences of images

  20. Computer-assisted navigational surgery enhances safety in dental implantology.

    Science.gov (United States)

    Ng, F C; Ho, K H; Wexler, A

    2005-06-01

    Dental implants are increasingly used to restore missing dentition. These titanium implants are surgically installed in the edentulous alveolar ridge and allowed to osteointegrate with the bone during the healing phase. After osseo-integration, the implant is loaded with a prosthesis to replace the missing tooth. Conventional implant treatment planning uses study models, wax-ups and panoramic x-rays to prefabricate surgical stent to guide the preparation of the implant site. The drilling into the alveolar ridge is invariably a "blind" procedure as the part of the drill in bone is not visible. Stereotactic systems were first introduced into neurosurgery in 1986. Since then, computer-assisted navigational technology has brought major advances to neuro-, midface and orthopaedic surgeries, and more recently, to implant placement. This paper illustrates the use of real-time computer-guided navigational technology in enhancing safety in implant surgical procedures. Real-time computer-guided navigational technology enhances accuracy and precision of the surgical procedure, minimises complications and facilitates surgery in challenging anatomical locations.

  1. Computed tomography-controlled stereotactic surgery

    International Nuclear Information System (INIS)

    Matsumoto, Keizo; Shichijo, Fumio; Gyoten, Tetsuya; Tomida, Keisuke; Miyake, Hajime

    1986-01-01

    A single use of coordinate system of computed tomography (CT) scanner is utilized for CT-controlled stereotactic surgery. Depth, direction and readjustment of target trajectory were defined by known values of cursor number in CT images and numbers of the sliding table indicator. We loaded calculation formulas into hand held computer to obtain immediate answers. Stereotactic apparatus consisted two main parts: the patient's head fixation and probe holder. Surgery was performed in cases of hypertensive intracerebral hemorrhage for evacuation of the hematomas successfully. Target accuracy was satisfactory. With further advance of this surgery, automatic stereotactic control with a special robot machine seeing possible. (author)

  2. Surgical neuro navigator guided by preoperative magnetic resonance images, based on a magnetic position sensor

    International Nuclear Information System (INIS)

    Perini, Ana Paula; Siqueira, Rogerio Bulha; Carneiro, Antonio Adilton Oliveira; Oliveira, Lucas Ferrari de; Machado, Helio Rubens

    2009-01-01

    Image guided neurosurgery enables the neurosurgeon to navigate inside the patient's brain using pre-operative images as a guide and a tracking system, during a surgery. Following a calibration procedure, three-dimensional position and orientation of surgical instruments may be transmitted to computer. The spatial information is used to access a region of interest, in the pre-operative images, displaying them to the neurosurgeon during the surgical procedure. However, when a craniotomy is involved and the lesion is removed, movements of brain tissue can be a significant source of error in these conventional navigation systems. The architecture implemented in this work intends the development of a system to surgical planning and orientation guided by ultrasound image. For surgical orientation, the software developed allows the extraction of slices from the volume of the magnetic resonance images (MRI) with orientation supplied by a magnetic position sensor (Polhemus R ). The slices extracted with this software are important because they show the cerebral area that the neurosurgeon is observing during the surgery, and besides they can be correlated with the intra-operative ultrasound images to detect and to correct the deformation of brain tissue during the surgery. Also, a tool for per-operative navigation was developed, providing three orthogonal planes through the image volume. In the methodology used for the software implementation, the Python tm programming language and the Visualization Toolkit (VTK) graphics library were used. The program to extract slices of the MRI volume allowed the application of transformations in the volume, using coordinates supplied by the position sensor. (author)

  3. Development of a new apparatus for MRI guided stereotactic surgery

    International Nuclear Information System (INIS)

    Iwata, Yukiya; Amano, Keiichi; Kawamura, Hirotsune; Tanikawa, Tatsuya; Kawabatake, Hiroko; Iseki, Hiroshi; Kobayashi, Naotoshi; Ono, Yuko

    1990-01-01

    Since Leksell et al. reported the application of NMR imaging to stereotactic surgery, MRI has been used for determination of the coordinates of target in the brain. The image of the MRI, however, is significantly distorted due to non-uniformity of the magnetic field. The authors have devised a new marker system (the imaginary inner marker system) and have also modified the Iseki CT guided stereotactic frame for utilizing MRI. In this system, the imaginary markers were set up inside the brain. The image of the grid phantom, obtained immediately before the operation, is superimposed on the image of a patient's brain. The nearest image of grid phantom is used for MRI localization as an imaginary inner marker. To prevent distortion and resolution degradation on MRI, the localizing system is composed of acrylic resin and titanium. The head ring can be fixed on both the MRI localizing system and the Iseki CT guided stereotactic frame which allows the transformation of target coordinates from the MRI localizing system to the CT guided frame. MRI guided stereotactic surgery, therefore, can be performed while monitoring with the CT scan. The system was tested using a phantom and taking T 1 -weighted images before clinical application. Coordinates of target points were determined accurately to a 2 mm cube. A 47-year-old, right-handed woman underwent a MRI guided biopsy of the right thalamic mass lesion that was more accurately detected by MRI than CT scan. The histological diagnosis was a malignant lymphoma. No complications have occurred. MRI stereotaxy, at the present time, is expected to be most useful in the biopsy of deep-seated brain lesions which are not easily detected by CT scan. In the near future, It will take the place of other imaging techniques during functional neurosurgery, with sufficient accuracy. (author)

  4. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.

    Science.gov (United States)

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2011-02-21

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

  5. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  6. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    International Nuclear Information System (INIS)

    Kim, Hyun Don; Park, Chang Seo; Yoo, Sun Kook; Lee, Kyoung Sang

    1998-01-01

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  7. Surgical Engineering in Cranio-Maxillofacial Surgery: A Literature Review

    Directory of Open Access Journals (Sweden)

    Raphael Olszewski

    2012-01-01

    Full Text Available A systematic review of the literature concerning surgical engineering in cranio-maxillofacial surgery was performed. APubMed search yielded 1721 papers published between 1999 and 2011. Based on the inclusion/exclusion criteria, 1428 articles were excluded after review of titles and abstracts. Atotal of 292 articles were finally selected covering the following topics: finite element analysis (n = 18, computer-assisted surgery (n = 111, rapid prototyping models (n = 41, preoperative training simulators (n = 4, surgical guides (n = 23, image-guided navigation (n = 58, augmented reality (n = 2, video tracking (n = 1, distraction osteogenesis (n = 19, robotics (n = 8, and minimal invasive surgery (n = 7. The results show that surgical engineering plays a pivotal role in the development and improvement of cranio-maxillofacial surgery. Some technologies, such as computer-assisted surgery, image-guided navigation, and three-dimensional rapid prototyping models, have reached maturity and allow for multiple clinical applications, while augmented reality, robotics, and endoscopy still need to be improved.

  8. Virtual Reality Aided Positioning of Mobile C-Arms for Image-Guided Surgery

    Directory of Open Access Journals (Sweden)

    Zhenzhou Shao

    2014-06-01

    Full Text Available For the image-guided surgery, the positioning of mobile C-arms is a key technique to take X-ray images in a desired pose for the confirmation of current surgical outcome. Unfortunately, surgeons and patient often suffer the radiation exposure due to the repeated imaging when the X-ray image is of poor quality or not captured at a good projection view. In this paper, a virtual reality (VR aided positioning method for the mobile C-arm is proposed by the alignment of 3D surface model of region of interest and preoperative anatomy, so that a reference pose of the mobile C-arm with respect to the inside anatomy can be figured out from outside view. It allows a one-time imaging from the outside view to greatly reduce the additional radiation exposure. To control the mobile C-arm to the desired pose, the mobile C-arm is modeled as a robotic arm with a movable base. Experiments were conducted to evaluate the accuracy of appearance model and precision of mobile C-arm positioning. The appearance model was reconstructed with the average error of 2.16 mm. One-time imaging of mobile C-arm was achieved, and new modeling of mobile C-arm with 8 DoFs enlarges the working space in the operating room.

  9. Contrast-guided image interpolation.

    Science.gov (United States)

    Wei, Zhe; Ma, Kai-Kuang

    2013-11-01

    In this paper a contrast-guided image interpolation method is proposed that incorporates contrast information into the image interpolation process. Given the image under interpolation, four binary contrast-guided decision maps (CDMs) are generated and used to guide the interpolation filtering through two sequential stages: 1) the 45(°) and 135(°) CDMs for interpolating the diagonal pixels and 2) the 0(°) and 90(°) CDMs for interpolating the row and column pixels. After applying edge detection to the input image, the generation of a CDM lies in evaluating those nearby non-edge pixels of each detected edge for re-classifying them possibly as edge pixels. This decision is realized by solving two generalized diffusion equations over the computed directional variation (DV) fields using a derived numerical approach to diffuse or spread the contrast boundaries or edges, respectively. The amount of diffusion or spreading is proportional to the amount of local contrast measured at each detected edge. The diffused DV fields are then thresholded for yielding the binary CDMs, respectively. Therefore, the decision bands with variable widths will be created on each CDM. The two CDMs generated in each stage will be exploited as the guidance maps to conduct the interpolation process: for each declared edge pixel on the CDM, a 1-D directional filtering will be applied to estimate its associated to-be-interpolated pixel along the direction as indicated by the respective CDM; otherwise, a 2-D directionless or isotropic filtering will be used instead to estimate the associated missing pixels for each declared non-edge pixel. Extensive simulation results have clearly shown that the proposed contrast-guided image interpolation is superior to other state-of-the-art edge-guided image interpolation methods. In addition, the computational complexity is relatively low when compared with existing methods; hence, it is fairly attractive for real-time image applications.

  10. Interactive navigation-guided ophthalmic plastic surgery: navigation enabling of telescopes and their use in endoscopic lacrimal surgeries

    Directory of Open Access Journals (Sweden)

    Ali MJ

    2016-11-01

    Full Text Available Mohammad Javed Ali,1 Swati Singh,1 Milind N Naik,1 Swathi Kaliki,2 Tarjani Vivek Dave1 1The Institute of Dacryology, 2The Operation Eyesight Universal Institute for Eye Cancer, L.V. Prasad Eye Institute, Hyderabad, India Purpose: The aims of this study were to report the preliminary experience of using telescopes, which were enabled for navigation guidance, and their utility in complex endoscopic lacrimal surgeries. Methods: Navigation enabling of the telescope was achieved by using the AxiEM™ malleable neuronavigation shunt stylet. Image-guided dacryolocalization was performed in five patients using the intraoperative image-guided StealthStation™ system in the electromagnetic mode. The “look ahead” protocol software was used to assist the surgeon in assessing the intraoperative geometric location of the endoscope and what lies ahead in real time. All patients underwent navigation-guided powered endoscopic dacryocystorhinostomy. The utility of uninterrupted navigation guidance throughout the surgery with the endoscope as the navigating tool was noted. Results: Intraoperative geometric localization of the lacrimal sac and the nasolacrimal duct could be easily deciphered. Constant orientation of the lacrimal drainage system and the peri-lacrimal anatomy was possible without the need for repeated point localizations throughout the surgery. The “look ahead” features could accurately alert the surgeon of anatomical structures that exists at 5, 10 and 15 mm in front of the endoscope. Good securing of the shunt stylet with the telescope was found to be essential for constant and accurate navigation. Conclusion: Navigation-enabled endoscopes provide the surgeon with the advantage of sustained stereotactic anatomical awareness at all times during the surgery. Keywords: telescope, endoscope, image guidance, navigation, lacrimal surgery, powered endoscopic DCR

  11. Microelectrode Recording-Guided Versus Intraoperative Magnetic Resonance Imaging-Guided Subthalamic Nucleus Deep Brain Stimulation Surgery for Parkinson Disease: A 1-Year Follow-Up Study.

    Science.gov (United States)

    Liu, Xuemeng; Zhang, Jibo; Fu, Kai; Gong, Rui; Chen, Jincao; Zhang, Jie

    2017-11-01

    Microelectrode recording (MER) and intraoperative magnetic resonance imaging (iMRI) have been used in deep brain stimulation surgery for Parkinson disease (PD), but comparative methodology is lacking. Therefore, we compared the 1-year follow-up outcomes of MER-guided and iMRI-guided subthalamic nucleus (STN) deep brain stimulation (DBS) surgery in PD patients. We conducted a review comparing PD patients who underwent MER-guided (n = 76, group A) and iMRI-guided STN DBS surgery (n = 61, group B) in our institution. Pre- and postoperative assessments included Unified Parkinson's Disease Rating Scale-III (UPDRS-III) score, Parkinson's Disease Questionnaire (PDQ-39), Mini-Mental State Examination (MMSE), levodopa equivalent daily doses (LEDDs), and magnetic resonance images. The mean magnitudes of electrode discrepancy were x = 1.1 ± 0.2 mm, y = 1.3 ± 0.3 mm, and z = 2.1 ± 0.5 mm in group A and x = 1.3 ± 0.4 mm, y = 1.2 ± 0.2 mm, and z = 2.5 ± 0.7 mm in group B. Significant differences were not found between 2 groups for x, y, or z (P = 0.34, P = 0.26, and P = 0.41, respectively). At 1 year, when levodopa was withdrawn for 12 hours, the UPDRS-III score improved by 66.3% ± 13.5% in group A and 64.8% ± 12.7% in group B (P = 0.24); the PDQ-39 summary index score improved by 49.7% ± 14.3% in group A and 44.1% ± 12.7% in group B (P = 0.16); the MMSE score improved by 4.2% ± 2.1% in group A and 11.1% ± 3.2% in group B (P = 0.43); and LEDDs decreased by 48.7% ± 10.1% in group A and 56.9% ± 12.0% in group B (P = 0.32). MER and iMRI both are effective ways to ensure adequate electrode placement in DBS surgery, but there is no superiority between both techniques, at least in terms of 1-year follow-up outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. MR image reconstruction via guided filter.

    Science.gov (United States)

    Huang, Heyan; Yang, Hang; Wang, Kang

    2018-04-01

    Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

  13. CARS 2009. Computer assisted radiology and surgery. Proceedings

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The CARS 2009 proceedings include contributions and poster sessions concerning different conferences and workshops: computer assisted radiology, 23rd international congress and exhibition, CARS clinical day, 13th annual conference of the international society for computer aided surgery, 10th CARS/SPIE/EuroPACS joint workshop on surgical PACS and the digital operating, 11th international workshop on computer-aided diagnosis, 15th computed maxillofacial imaging congress, CARS - computer assisted radiology and surgery, 1st EPMA/CARS workshop on personalized medicine and ICT, JICARS - Japanese institutes of CARS, 1st EuroNotes/CTAC/CARS workshop on NOTES: an interdisciplinary challenge, 13th annual conference for computer aided surgery, 27th international EuroPACS meeting.

  14. Computer assisted surgery in preoperative planning of acetabular fracture surgery: state of the art.

    Science.gov (United States)

    Boudissa, Mehdi; Courvoisier, Aurélien; Chabanas, Matthieu; Tonetti, Jérôme

    2018-01-01

    The development of imaging modalities and computer technology provides a new approach in acetabular surgery. Areas covered: This review describes the role of computer-assisted surgery (CAS) in understanding of the fracture patterns, in the virtual preoperative planning of the surgery and in the use of custom-made plates in acetabular fractures with or without 3D printing technologies. A Pubmed internet research of the English literature of the last 20 years was carried out about studies concerning computer-assisted surgery in acetabular fractures. The several steps for CAS in acetabular fracture surgery are presented and commented by the main author regarding to his personal experience. Expert commentary: Computer-assisted surgery in acetabular fractures is still initial experiences with promising results. Patient-specific biomechanical models considering soft tissues should be developed to allow a more realistic planning.

  15. Development of the robot system to assist CT-guided brain surgery

    International Nuclear Information System (INIS)

    Koyama, H.; Funakubo, H.; Komeda, T.; Uchida, T.; Takakura, K.

    1999-01-01

    The robot technology was introduced into the stereotactic neurosurgery for application to biopsy, blind surgery, and functional neurosurgery. The authors have developed a newly designed the robot system to assist CT-guided brain surgery, designed to allow a biopsy needle to reach the targget such as a cerebral tumor within a brain automatically on the basis of the X,Y, and Z coordinates obtained by CT scanner. In this paper we describe construction of the robot, the control of the robot by CT image, robot simulation, and investigated a phantom experiment using CT image. (author)

  16. Reliability-guided digital image correlation for image deformation measurement

    International Nuclear Information System (INIS)

    Pan Bing

    2009-01-01

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness

  17. Technical procedures for template-guided surgery for mandibular reconstruction based on digital design and manufacturing.

    Science.gov (United States)

    Liu, Yun-feng; Xu, Liang-wei; Zhu, Hui-yong; Liu, Sean Shih-Yao

    2014-05-23

    The occurrence of mandibular defects caused by tumors has been continuously increasing in China in recent years. Conversely, results of the repair of mandibular defects affect the recovery of oral function and patient appearance, and the requirements for accuracy and high surgical quality must be more stringent. Digital techniques--including model reconstruction based on medical images, computer-aided design, and additive manufacturing--have been widely used in modern medicine to improve the accuracy and quality of diagnosis and surgery. However, some special software platforms and services from international companies are not always available for most of researchers and surgeons because they are expensive and time-consuming. Here, a new technical solution for guided surgery for the repair of mandibular defects is proposed, based on general popular tools in medical image processing, 3D (3 dimension) model reconstruction, digital design, and fabrication via 3D printing. First, CT (computerized tomography) images are processed to reconstruct the 3D model of the mandible and fibular bone. The defect area is then replaced by healthy contralateral bone to create the repair model. With the repair model as reference, the graft shape and cutline are designed on fibular bone, as is the guide for cutting and shaping. The physical model, fabricated via 3D printing, including surgical guide, the original model, and the repair model, can be used to preform a titanium locking plate, as well as to design and verify the surgical plan and guide. In clinics, surgeons can operate with the help of the surgical guide and preformed plate to realize the predesigned surgical plan. With sufficient communication between engineers and surgeons, an optimal surgical plan can be designed via some common software platforms but needs to be translated to the clinic. Based on customized models and tools, including three surgical guides, preformed titanium plate for fixation, and physical models of

  18. Efficacy of navigation in skull base surgery using composite computer graphics of magnetic resonance and computed tomography images

    International Nuclear Information System (INIS)

    Hayashi, Nakamasa; Kurimoto, Masanori; Hirashima, Yutaka; Ikeda, Hiroaki; Shibata, Takashi; Tomita, Takahiro; Endo, Shunro

    2001-01-01

    The efficacy of a neurosurgical navigation system using three-dimensional composite computer graphics (CGs) of magnetic resonance (MR) and computed tomography (CT) images was evaluated in skull base surgery. Three-point transformation was used for integration of MR and CT images. MR and CT image data were obtained with three skin markers placed on the patient's scalp. Volume-rendering manipulations of the data produced three-dimensional CGs of the scalp, brain, and lesions from the MR images, and the scalp and skull from the CT. Composite CGs of the scalp, skull, brain, and lesion were created by registering the three markers on the three-dimensional rendered scalp images obtained from MR imaging and CT in the system. This system was used for 14 patients with skull base lesions. Three-point transformation using three-dimensional CGs was easily performed for multimodal registration. Simulation of surgical procedures on composite CGs aided in comprehension of the skull base anatomy and selection of the optimal approaches. Intraoperative navigation aided in determination of actual spatial position in the skull base and the optimal trajectory to the tumor during surgical procedures. (author)

  19. Image guided percutaneous splenic interventions

    International Nuclear Information System (INIS)

    Kang, Mandeep; Kalra, Naveen; Gulati, Madhu; Lal, Anupam; Kochhar, Rohit; Rajwanshi, Arvind

    2007-01-01

    Aim: The objective of this study is to evaluate the efficacy and safety of image-guided percutaneous splenic interventions as diagnostic or therapeutic procedures. Materials and methods: We performed a retrospective review of our interventional records from July 2001 to June 2006. Ninety-five image-guided percutaneous splenic interventions were performed after informed consent in 89 patients: 64 men and 25 women who ranged in age from 5 months to 71 years (mean, 38.4 years) under ultrasound (n = 93) or CT (n = 2) guidance. The procedures performed were fine needle aspiration biopsy of focal splenic lesions (n = 78) and aspiration (n = 10) or percutaneous catheter drainage of a splenic abscess (n = 7). Results: Splenic fine needle aspiration biopsy was successful in 62 (83.78%) of 74 patients with benign lesions diagnosed in 43 (58.1%) and malignancy in 19 (25.67%) patients. The most common pathologies included tuberculosis (26 patients, 35.13%) and lymphoma (14 patients, 18.91%). Therapeutic aspiration or pigtail catheter drainage was successful in all (100%) patients. There were no major complications. Conclusions: Image-guided splenic fine needle aspiration biopsy is a safe and accurate technique that can provide a definitive diagnosis in most patients with focal lesions in the spleen. This study also suggests that image-guided percutaneous aspiration or catheter drainage of splenic abscesses is a safe and effective alternative to surgery

  20. Feasibility and effectiveness of image-guided percutaneous biopsy of the urinary bladder.

    Science.gov (United States)

    Butros, Selim Reha; McCarthy, Colin James; Karaosmanoğlu, Ali Devrim; Shenoy-Bhangle, Anuradha S; Arellano, Ronald S

    2015-08-01

    To evaluate the indications, technique, results, and complications of image-guided percutaneous biopsy of the urinary bladder. This retrospective study included 15 patients (10 male, 5 female) who underwent image-guided percutaneous biopsy of the urinary bladder between January 1999 and December 2013. The medical records, imaging studies, procedural details, and long-term follow-up of each patient were reviewed in detail to assess the feasibility of percutaneous bladder biopsy. Ten patients had focal bladder masses and 5 patients had asymmetric or diffuse bladder wall thickening. Eleven patients had either negative or unsatisfactory cystoscopies prior to the biopsy. Percutaneous biopsies were performed under computed tomography guidance in 12 patients and ultrasound in 3 patients. All procedures were technically successful and there were no procedural complications. Malignancy was confirmed in 8 patients, among whom 6 had transitional cell carcinoma, 1 cervical cancer, and 1 prostate cancer metastasis. Seven patients had a benign diagnosis, including 3 that were later confirmed by pathology following surgery and 2 patients with a false-negative result. The overall sensitivity was 80% and accuracy was 87%. Image-guided percutaneous biopsy of the urinary bladder is a safe and technically feasible procedure with a high sensitivity and accuracy rate. Although image-guided bladder biopsy is an uncommon procedure, it should be considered in selected cases when more traditional methods of tissue sampling are either not possible or fail to identify abnormalities detected by cross-sectional imaging.

  1. A hand-held imaging probe for radio-guided surgery: physical performance and preliminary clinical experience

    International Nuclear Information System (INIS)

    Pitre, S.; Menard, L.; Charon, Y.; Solal, M.; Garbay, J.R.

    2003-01-01

    Improvements in the specificity of radiopharmaceutical compounds have been paralleled by an upsurge of interest in developing small detectors to assist surgeons in localizing tumour tissue during surgery. This study reports the main technical features and physical characteristics of a new hand-held gamma camera dedicated to accurate and real-time intra-operative imaging. First clinical experience is also reported. The POCI (Per-operative Compact Imager) camera consists of a head module composed of a high-resolution interchangeable lead collimator and a CsI(Na) crystal plate optically coupled to an intensified position-sensitive diode. The current prototype has a 40-mm diameter field of view, an outer diameter of 9.5 cm, a length of 9 cm and a weight of 1.2 kg. Overall detector imaging characteristics were evaluated by technetium-99m phantom measurements. Three patients with breast cancer previously scheduled to undergo sentinel lymph node detection were selected for the preliminary clinical experience. Preoperative images of the lymphatic basin obtained using the POCI camera were compared with conventional transcutaneous explorations using a non-imaging gamma probe. The full-width at half-maximum (FWHM) spatial resolution was investigated in both air and scattering medium; when the phantom was placed in contact with the collimator, the POCI camera exhibited a 3.2 mm FWHM. The corresponding sensitivity was 290 cps/MBq. The preliminary clinical results showed that POCI was able to predict the number and location of all SLNs. In one case, two deep radioactive nodes missed by the gamma probe were detected on the intra-operative images. This very initial experience demonstrates that the physical performance of the POCI camera is adequate for radio-guided surgery. These results are sufficiently encouraging to prompt further evaluation studies designed to determine the specific and optimal clinical role of intra-operative imaging devices

  2. Use of a gesture user interface as a touchless image navigation system in dental surgery: Case series report

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Guillermo M.; Elizondo, Maria L. [CORE Dental Clinic, Resistencia (Argentina)

    2014-06-15

    The purposes of this study were to develop a workstation computer that allowed intraoperative touchless control of diagnostic and surgical images by a surgeon, and to report the preliminary experience with the use of the system in a series of cases in which dental surgery was performed. A custom workstation with a new motion sensing input device (Leap Motion) was set up in order to use a natural user interface (NUI) to manipulate the imaging software by hand gestures. The system allowed intraoperative touchless control of the surgical images. For the first time in the literature, an NUI system was used for a pilot study during 11 dental surgery procedures including tooth extractions, dental implant placements, and guided bone regeneration. No complications were reported. The system performed very well and was very useful. The proposed system fulfilled the objective of providing touchless access and control of the system of images and a three-dimensional surgical plan, thus allowing the maintenance of sterile conditions. The interaction between surgical staff, under sterile conditions, and computer equipment has been a key issue. The solution with an NUI with touchless control of the images seems to be closer to an ideal. The cost of the sensor system is quite low; this could facilitate its incorporation into the practice of routine dental surgery. This technology has enormous potential in dental surgery and other healthcare specialties.

  3. Use of a gesture user interface as a touchless image navigation system in dental surgery: Case series report

    International Nuclear Information System (INIS)

    Rosa, Guillermo M.; Elizondo, Maria L.

    2014-01-01

    The purposes of this study were to develop a workstation computer that allowed intraoperative touchless control of diagnostic and surgical images by a surgeon, and to report the preliminary experience with the use of the system in a series of cases in which dental surgery was performed. A custom workstation with a new motion sensing input device (Leap Motion) was set up in order to use a natural user interface (NUI) to manipulate the imaging software by hand gestures. The system allowed intraoperative touchless control of the surgical images. For the first time in the literature, an NUI system was used for a pilot study during 11 dental surgery procedures including tooth extractions, dental implant placements, and guided bone regeneration. No complications were reported. The system performed very well and was very useful. The proposed system fulfilled the objective of providing touchless access and control of the system of images and a three-dimensional surgical plan, thus allowing the maintenance of sterile conditions. The interaction between surgical staff, under sterile conditions, and computer equipment has been a key issue. The solution with an NUI with touchless control of the images seems to be closer to an ideal. The cost of the sensor system is quite low; this could facilitate its incorporation into the practice of routine dental surgery. This technology has enormous potential in dental surgery and other healthcare specialties.

  4. Feasibility of Computed Tomography-Guided Methods for Spatial Normalization of Dopamine Transporter Positron Emission Tomography Image.

    Science.gov (United States)

    Kim, Jin Su; Cho, Hanna; Choi, Jae Yong; Lee, Seung Ha; Ryu, Young Hoon; Lyoo, Chul Hyoung; Lee, Myung Sik

    2015-01-01

    Spatial normalization is a prerequisite step for analyzing positron emission tomography (PET) images both by using volume-of-interest (VOI) template and voxel-based analysis. Magnetic resonance (MR) or ligand-specific PET templates are currently used for spatial normalization of PET images. We used computed tomography (CT) images acquired with PET/CT scanner for the spatial normalization for [18F]-N-3-fluoropropyl-2-betacarboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP-CIT) PET images and compared target-to-cerebellar standardized uptake value ratio (SUVR) values with those obtained from MR- or PET-guided spatial normalization method in healthy controls and patients with Parkinson's disease (PD). We included 71 healthy controls and 56 patients with PD who underwent [18F]-FP-CIT PET scans with a PET/CT scanner and T1-weighted MR scans. Spatial normalization of MR images was done with a conventional spatial normalization tool (cvMR) and with DARTEL toolbox (dtMR) in statistical parametric mapping software. The CT images were modified in two ways, skull-stripping (ssCT) and intensity transformation (itCT). We normalized PET images with cvMR-, dtMR-, ssCT-, itCT-, and PET-guided methods by using specific templates for each modality and measured striatal SUVR with a VOI template. The SUVR values measured with FreeSurfer-generated VOIs (FSVOI) overlaid on original PET images were also used as a gold standard for comparison. The SUVR values derived from all four structure-guided spatial normalization methods were highly correlated with those measured with FSVOI (P normalization methods provided reliable striatal SUVR values comparable to those obtained with MR-guided methods. CT-guided methods can be useful for analyzing dopamine transporter PET images when MR images are unavailable.

  5. Ultrasonic image analysis and image-guided interventions.

    Science.gov (United States)

    Noble, J Alison; Navab, Nassir; Becher, H

    2011-08-06

    The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.

  6. Head and neck: normal variations and benign findings in FDG positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Højgaard, Liselotte; Berthelsen, Anne Kiil; Loft, Annika

    2014-04-01

    Positron emission tomography (PET)/computed tomography with FDG of the head and neck region is mainly used for the diagnosis of head and neck cancer, for staging, treatment evaluation, relapse, and planning of surgery and radio therapy. This article is a practical guide of imaging techniques, including a detailed protocol for FDG PET in head and neck imaging, physiologic findings, and pitfalls in selected case stories. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Successful treatment of tumor-induced osteomalacia with CT-guided percutaneous ethanol and cryoablation.

    Science.gov (United States)

    Tutton, Sean; Olson, Erik; King, David; Shaker, Joseph L

    2012-10-01

    Tumor-induced osteomalacia is a rare condition usually caused by benign mesenchymal tumors. When the tumor can be found, patients are usually managed by wide excision of the tumor. We report a 51-yr-old male with clinical and biochemical evidence of tumor-induced osteomalacia caused by a mesenchymal tumor in the right iliac bone. He declined surgery and appears to have been successfully managed by computed tomography-guided percutaneous ethanol ablation and percutaneous cryoablation. Our patient appears to have had an excellent clinical and biochemical response to computed tomography-guided percutaneous ethanol ablation and percutaneous cryoablation. We found one prior case of image-guided ablation using radiofrequency ablation for tumor-induced osteomalacia. Although the standard treatment for tumor-induced osteomalacia is wide excision of the tumor, image-guided ablation may be an option in patients who cannot have appropriate surgery or who decline surgery.

  8. Non-invasive vascular imaging in perforator flap surgery

    International Nuclear Information System (INIS)

    Saba, Luca; Piga, Mario; Atzeni, Matteo; Ribuffo, Diego; Rozen, Warren Matthew; Alonso-Burgos, Alberto; Bura, Raffaella

    2013-01-01

    Preoperative imaging using a range of imaging modalities has become increasingly popular for preoperative planning in plastic surgery, in particular in perforator flap surgery. Modalities in this role include ultrasound (US), magnetic resonance angiography (MRA), and computed tomographic angiography (CTA). The evidence for the use of these techniques has been reported in only a handful of studies. In this paper we conducted a non-systematic review of the literature to establish the role for each of these modalities. The role of state-of-the-art vascular imaging as an application in perforator flap surgery is thus offered

  9. Markerless registration for image guided surgery. Preoperative image, intraoperative video image, and patient

    International Nuclear Information System (INIS)

    Kihara, Tomohiko; Tanaka, Yuko

    1998-01-01

    Real-time and volumetric acquisition of X-ray CT, MR, and SPECT is the latest trend of the medical imaging devices. A clinical challenge is to use these multi-modality volumetric information complementary on patient in the entire diagnostic and surgical processes. The intraoperative image and patient integration intents to establish a common reference frame by image in diagnostic and surgical processes. This provides a quantitative measure during surgery, for which we have been relied mostly on doctors' skills and experiences. The intraoperative image and patient integration involves various technologies, however, we think one of the most important elements is the development of markerless registration, which should be efficient and applicable to the preoperative multi-modality data sets, intraoperative image, and patient. We developed a registration system which integrates preoperative multi-modality images, intraoperative video image, and patient. It consists of a real-time registration of video camera for intraoperative use, a markerless surface sampling matching of patient and image, our previous works of markerless multi-modality image registration of X-ray CT, MR, and SPECT, and an image synthesis on video image. We think these techniques can be used in many applications which involve video camera like devices such as video camera, microscope, and image Intensifier. (author)

  10. Diffuse optical tomography for breast cancer imaging guided by computed tomography: A feasibility study.

    Science.gov (United States)

    Baikejiang, Reheman; Zhang, Wei; Li, Changqing

    2017-01-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as hemoglobin, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer imaging. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at the wavelength of 650 nm and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements and width of measurement patch, have been investigated. Our results indicate that an air-cooling EMCCD camera is good enough for the transmission mode DOT imaging. We have also found that measurements at six angular projections are sufficient for DOT to reconstruct the optical targets with 2 and 4 times absorption contrast when the CT guidance is applied. Finally, we have described our future research plan on integration of a multispectral DOT imaging system into a breast CT scanner.

  11. Trilogy Image-Guided Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Huntzinger, Calvin; Friedman, William; Bova, Frank; Fox, Timothy; Bouchet, Lionel; Boeh, Lester M.B.A.

    2007-01-01

    Full integration of advanced imaging, noninvasive immobilization, positioning, and motion-management methods into radiosurgery have resulted in fundamental changes in therapeutic strategies and approaches that are leading us to the treatment room of the future. With the introduction of image-guided radiosurgery (IGRS) systems, such as Trilogy TM , physicians have for the first time a practical means of routinely identifying and treating very small lesions throughout the body. Using new imaging processes such as positron emission tomography/computed tomography (PET/CT) scans, clinics may be able to detect these lesions and then eradicate them with image-guided stereotactic radiosurgery treatments. Thus, there is promise that cancer could be turned into a chronic disease, managed through a series of checkups, and Trilogy treatments when metastatic lesions reappear

  12. Design and implementation of a PC-based image-guided surgical system.

    Science.gov (United States)

    Stefansic, James D; Bass, W Andrew; Hartmann, Steven L; Beasley, Ryan A; Sinha, Tuhin K; Cash, David M; Herline, Alan J; Galloway, Robert L

    2002-11-01

    In interactive, image-guided surgery, current physical space position in the operating room is displayed on various sets of medical images used for surgical navigation. We have developed a PC-based surgical guidance system (ORION) which synchronously displays surgical position on up to four image sets and updates them in real time. There are three essential components which must be developed for this system: (1) accurately tracked instruments; (2) accurate registration techniques to map physical space to image space; and (3) methods to display and update the image sets on a computer monitor. For each of these components, we have developed a set of dynamic link libraries in MS Visual C++ 6.0 supporting various hardware tools and software techniques. Surgical instruments are tracked in physical space using an active optical tracking system. Several of the different registration algorithms were developed with a library of robust math kernel functions, and the accuracy of all registration techniques was thoroughly investigated. Our display was developed using the Win32 API for windows management and tomographic visualization, a frame grabber for live video capture, and OpenGL for visualization of surface renderings. We have begun to use this current implementation of our system for several surgical procedures, including open and minimally invasive liver surgery.

  13. Handheld single photon emission computed tomography (handheld SPECT) navigated video-assisted thoracoscopic surgery of computer tomography-guided radioactively marked pulmonary lesions.

    Science.gov (United States)

    Müller, Joachim; Putora, Paul Martin; Schneider, Tino; Zeisel, Christoph; Brutsche, Martin; Baty, Florent; Markus, Alexander; Kick, Jochen

    2016-09-01

    Radioactive marking can be a valuable extension to minimally invasive surgery. The technique has been clinically applied in procedures involving sentinel lymph nodes, parathyroidectomy as well as interventions in thoracic surgery. Improvements in equipment and techniques allow one to improve the limits. Pulmonary nodules are frequently surgically removed for diagnostic or therapeutic reasons; here video-assisted thoracoscopic surgery (VATS) is the preferred technique. VATS might be impossible with nodules that are small or located deep in the lung. In this study, we examined the clinical application and safety of employing the newly developed handheld single photon emission tomography (handheld SPECT) device in combination with CT-guided radioactive marking of pulmonary nodules. In this pilot study, 10 subjects requiring surgical resection of a pulmonary nodule were included. The technique involved CT-guided marking of the target nodule with a 20-G needle, with subsequent injection of 25-30 MBq (effective: 7-14 MBq) Tc-99m MAA (Macro Albumin Aggregate). Quality control was made with conventional SPECT-CT to confirm the correct localization and exclude possible complications related to the puncture procedure. VATS was subsequently carried out using the handheld SPECT to localize the radioactivity intraoperatively and therefore the target nodule. A 3D virtual image was superimposed on the intraoperative visual image for surgical guidance. In 9 of the 10 subjects, the radioactive application was successfully placed directly in or in the immediate vicinity of the target nodule. The average size of the involved nodules was 9 mm (range 4-15). All successfully marked nodules were subsequently completely excised (R0) using VATS. The procedure was well tolerated. An asymptomatic clinically insignificant pneumothorax occurred in 5 subjects. Two subjects were found to have non-significant discrete haemorrhage in the infiltration canal of the needle. In a single subject, the

  14. Use of a gesture user interface as a touchless image navigation system in dental surgery: Case series report

    Science.gov (United States)

    Elizondo, María L.

    2014-01-01

    Purpose The purposes of this study were to develop a workstation computer that allowed intraoperative touchless control of diagnostic and surgical images by a surgeon, and to report the preliminary experience with the use of the system in a series of cases in which dental surgery was performed. Materials and Methods A custom workstation with a new motion sensing input device (Leap Motion) was set up in order to use a natural user interface (NUI) to manipulate the imaging software by hand gestures. The system allowed intraoperative touchless control of the surgical images. Results For the first time in the literature, an NUI system was used for a pilot study during 11 dental surgery procedures including tooth extractions, dental implant placements, and guided bone regeneration. No complications were reported. The system performed very well and was very useful. Conclusion The proposed system fulfilled the objective of providing touchless access and control of the system of images and a three-dimensional surgical plan, thus allowing the maintenance of sterile conditions. The interaction between surgical staff, under sterile conditions, and computer equipment has been a key issue. The solution with an NUI with touchless control of the images seems to be closer to an ideal. The cost of the sensor system is quite low; this could facilitate its incorporation into the practice of routine dental surgery. This technology has enormous potential in dental surgery and other healthcare specialties. PMID:24944966

  15. A CT-ultrasound-coregistered augmented reality enhanced image-guided surgery system and its preliminary study on brain-shift estimation

    International Nuclear Information System (INIS)

    Huang, C H; Hsieh, C H; Lee, J D; Huang, W C; Lee, S T; Wu, C T; Sun, Y N; Wu, Y T

    2012-01-01

    With the combined view on the physical space and the medical imaging data, augmented reality (AR) visualization can provide perceptive advantages during image-guided surgery (IGS). However, the imaging data are usually captured before surgery and might be different from the up-to-date one due to natural shift of soft tissues. This study presents an AR-enhanced IGS system which is capable to correct the movement of soft tissues from the pre-operative CT images by using intra-operative ultrasound images. First, with reconstructing 2-D free-hand ultrasound images to 3-D volume data, the system applies a Mutual-Information based registration algorithm to estimate the deformation between pre-operative and intra-operative ultrasound images. The estimated deformation transform describes the movement of soft tissues and is then applied to the pre-operative CT images which provide high-resolution anatomical information. As a result, the system thus displays the fusion of the corrected CT images or the real-time 2-D ultrasound images with the patient in the physical space through a head mounted display device, providing an immersive augmented-reality environment. For the performance validation of the proposed system, a brain phantom was utilized to simulate brain-shift scenario. Experimental results reveal that when the shift of an artificial tumor is from 5mm ∼ 12mm, the correction rates can be improved from 32% ∼ 45% to 87% ∼ 95% by using the proposed system.

  16. Legal issues of computer imaging in plastic surgery: a primer.

    Science.gov (United States)

    Chávez, A E; Dagum, P; Koch, R J; Newman, J P

    1997-11-01

    Although plastic surgeons are increasingly incorporating computer imaging techniques into their practices, many fear the possibility of legally binding themselves to achieve surgical results identical to those reflected in computer images. Computer imaging allows surgeons to manipulate digital photographs of patients to project possible surgical outcomes. Some of the many benefits imaging techniques pose include improving doctor-patient communication, facilitating the education and training of residents, and reducing administrative and storage costs. Despite the many advantages computer imaging systems offer, however, surgeons understandably worry that imaging systems expose them to immense legal liability. The possible exploitation of computer imaging by novice surgeons as a marketing tool, coupled with the lack of consensus regarding the treatment of computer images, adds to the concern of surgeons. A careful analysis of the law, however, reveals that surgeons who use computer imaging carefully and conservatively, and adopt a few simple precautions, substantially reduce their vulnerability to legal claims. In particular, surgeons face possible claims of implied contract, failure to instruct, and malpractice from their use or failure to use computer imaging. Nevertheless, legal and practical obstacles frustrate each of those causes of actions. Moreover, surgeons who incorporate a few simple safeguards into their practice may further reduce their legal susceptibility.

  17. Image-guided interventions and computer-integrated therapy: Quo vadis?

    Science.gov (United States)

    Peters, Terry M; Linte, Cristian A

    2016-10-01

    Significant efforts have been dedicated to minimizing invasiveness associated with surgical interventions, most of which have been possible thanks to the developments in medical imaging, surgical navigation, visualization and display technologies. Image-guided interventions have promised to dramatically change the way therapies are delivered to many organs. However, in spite of the development of many sophisticated technologies over the past two decades, other than some isolated examples of successful implementations, minimally invasive therapy is far from enjoying the wide acceptance once envisioned. This paper provides a large-scale overview of the state-of-the-art developments, identifies several barriers thought to have hampered the wider adoption of image-guided navigation, and suggests areas of research that may potentially advance the field. Copyright © 2016. Published by Elsevier B.V.

  18. Treatment of malignant brain tumor. Today and tomorrow. Image-guided neurosurgery for brain tumor. A current perspective

    International Nuclear Information System (INIS)

    Kajita, Yasukazu; Fujii, Masazumi; Yoshida, Jun; Maesawa, Satoshi

    2008-01-01

    Although usefulness of the image-guided neurosurgery is well documented, there are scarce facilities having the actually operating system in Japan. Since 2006, authors' Nagoya University Hospital has had an operating room named ''Brain THEATER'', where an open MRI system APERTO (Hitachi-Medical Co.) and a navigation system Vector Vision (BrainLAB) are connected to conduct the complete image-guided neurosurgery for brain tumor by using the intraoperative MRI for continuously updating the residual tumor tissue to be dissected out. The room is pre- and intra-operatively supported by Departments of image analysis and of radiation technology in the University, and as well, is connected by net-working with another image-guided surgical room ''Brain Suite'' (Siemens 1.5 T MRI system: BrainLAB) in the neighboring facility, Nagoya Central Hospital. This paper describes the circumstances of the introduction of these systems in the Hospital, details of the image-guided surgery in the operation rooms with illustration of actual photos of the rooms and of pre-, intra- and post-operative images, outcomes of image-guided neurosurgery for brain tumor reported hitherto, image-guided neurosurgery for brain tumor's future perspectives involving robotic surgery and operation on the virtual 3D image including the net-worked one. Efforts should be made to further spread the system for performing the more non-invasive and precise surgery, and for conducting the diagnosis united with treatment. (R.T.)

  19. Multi-modal brain imaging software for guiding invasive treatment of epilepsy

    NARCIS (Netherlands)

    Ossenblok, P.P.W.; Marien, S.; Meesters, S.P.L.; Florack, L.M.J.; Hofman, P.; Schijns, O.E.M.G.; Colon, A.

    2017-01-01

    Purpose: The surgical treatment of patients with complex epilepsies is changing more and more from open, invasive surgery towards minimally invasive, image guided treatment. Multi-modal brain imaging procedures are developed to delineate preoperatively the region of the brain which is responsible

  20. Image-guided radiation therapy: physician's perspectives

    International Nuclear Information System (INIS)

    Gupta, T.; Anand Narayan, C.

    2012-01-01

    The evolution of radiotherapy has been ontogenetically linked to medical imaging. Over the years, major technological innovations have resulted in substantial improvements in radiotherapy planning, delivery, and verification. The increasing use of computed tomography imaging for target volume delineation coupled with availability of computer-controlled treatment planning and delivery systems have progressively led to conformation of radiation dose to the target tissues while sparing surrounding normal tissues. Recent advances in imaging technology coupled with improved treatment delivery allow near-simultaneous soft-tissue localization of tumor and repositioning of patient. The integration of various imaging modalities within the treatment room for guiding radiation delivery has vastly improved the management of geometric uncertainties in contemporary radiotherapy practice ushering in the paradigm of image-guided radiation therapy (IGRT). Image-guidance should be considered a necessary and natural corollary to high-precision radiotherapy that was long overdue. Image-guided radiation therapy not only provides accurate information on patient and tumor position on a quantitative scale, it also gives an opportunity to verify consistency of planned and actual treatment geometry including adaptation to daily variations resulting in improved dose delivery. The two main concerns with IGRT are resource-intensive nature of delivery and increasing dose from additional imaging. However, increasing the precision and accuracy of radiation delivery through IGRT is likely to reduce toxicity with potential for dose escalation and improved tumor control resulting in favourable therapeutic index. The radiation oncology community needs to leverage this technology to generate high-quality evidence to support widespread adoption of IGRT in contemporary radiotherapy practice. (author)

  1. Standard guide for computed radiography

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide provides general tutorial information regarding the fundamental and physical principles of computed radiography (CR), definitions and terminology required to understand the basic CR process. An introduction to some of the limitations that are typically encountered during the establishment of techniques and basic image processing methods are also provided. This guide does not provide specific techniques or acceptance criteria for specific end-user inspection applications. Information presented within this guide may be useful in conjunction with those standards of 1.2. 1.2 CR techniques for general inspection applications may be found in Practice E2033. Technical qualification attributes for CR systems may be found in Practice E2445. Criteria for classification of CR system technical performance levels may be found in Practice E2446. Reference Images Standards E2422, E2660, and E2669 contain digital reference acceptance illustrations. 1.3 The values stated in SI units are to be regarded as the st...

  2. Full-mouth rehabilitation with immediate loading of implants inserted with computer-guided flap-less surgery: a 3-year multicenter clinical evaluation with oral health impact profile.

    Science.gov (United States)

    Marra, Roberto; Acocella, Alessandro; Rispoli, Alessandra; Sacco, Roberto; Ganz, Scott D; Blasi, Andrea

    2013-10-01

    The purpose of this report is to present the clinical outcomes and patients' satisfaction of full-mouth rehabilitation using computer-aided flapless implant placement and immediate loading of a prefabricated prosthesis. The study included 30 consecutive fully edentulous patients who received 312 implants. Mandible and maxilla were treated in the same surgical session with computer-guided flapless approach using the NobelGuide protocol. Prefabricated screw-retained fixed prostheses were inserted at the end of surgery. Clinical and radiographic evaluations were assessed at 6, 12, and 36 months. At baseline and 6 months after surgery, patients answered Oral Health Impact Profile in Edentulous Adults questionnaire to assess satisfaction. The implant survival rate was 97.9%, whereas the average marginal bone loss was 1.9 ± 1.3 mm after 3 years. At 6 months, patients showed significantly greater satisfaction with their fixed rehabilitation when compared with conventional dentures. The results of this study confirm that rehabilitation with a prefabricated fixed prosthesis supported by implants placed with NobelGuide protocol is a viable and predictable treatment and increases patients' satisfaction and improves oral health-related quality of life.

  3. The using of megavoltage computed tomography in image-guided brachytherapy for cervical cancer: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Tharavichitkul, Ekkasit; Janla-or, Suwapim; Wanwilairat, Somsak; Chakrabandhu, Somvilai; Klunklin, Pitchayaponne; Onchan, Wimrak; Supawongwattana, Bongkot; Chitapanarux, Imjai [Division of Therapeutic Radiology and Oncology, Dept. of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai (Thailand); Galalae, Razvan M. [Faculty of Medicine, Christian-Albrecht University (Campus Kiel), Kiel (Germany)

    2015-06-15

    We present a case of cervical cancer treated by concurrent chemoradiation. In radiation therapy part, the combination of the whole pelvic helical tomotherapy plus image-guided brachytherapy with megavoltage computed tomography of helical tomotherapy was performed. We propose this therapeutic approach could be considered in a curative setting in some problematic situation as our institution.

  4. Pediatric spine imaging post scoliosis surgery

    International Nuclear Information System (INIS)

    Alsharief, Alaa N.; El-Hawary, Ron; Schmit, Pierre

    2018-01-01

    Many orthopedic articles describe advances in surgical techniques and implants used in pediatric scoliosis surgery. However, even though postoperative spine imaging constitutes a large portion of outpatient musculoskeletal pediatric radiology, few, if any, radiology articles discuss this topic. There has been interval advancement over the last decades of the orthopedic procedures used in the treatment of spinal scoliosis in adolescents with idiopathic scoliosis. The goal of treatment in these patients is to stop the progression of the curve by blocking the spinal growth and correcting the deformity as much as possible. To that end, the authors in this paper discuss postoperative imaging findings of Harrington rods, Luque rods, Luque-Galveston implants and segmental spinal fusion systems. Regarding early onset scoliosis, the guiding principles used for adolescent idiopathic scoliosis do not apply to a growing spine because they would impede lung development. As a result, other devices have been developed to correct the curve and to allow spinal growth. These include spine-based growing rods, vertically expandable prosthetic titanium rods (requiring repetitive surgeries) and magnetically controlled growing rods (with a magnetic locking/unlocking system). Other more recent systems are Shilla and thoracoscopic anterior vertebral body tethering, which allow guided growth of the spine without repetitive interventions. In this paper, we review the radiologic appearances of different orthopedic implants and techniques used to treat adolescent idiopathic scoliosis and early onset scoliosis. Moreover, we present the imaging findings of the most frequent postoperative complications. (orig.)

  5. Pediatric spine imaging post scoliosis surgery

    Energy Technology Data Exchange (ETDEWEB)

    Alsharief, Alaa N. [IWK Children' s Health Center, Dalhousie University, Diagnostic Imaging Department, Halifax, NS (Canada); The Hospital for Sick Children, University of Toronto, Department of Diagnostic Imaging, Toronto (Canada); King Saud University, Department of Medical Imaging, King Abdul-Aziz Medical City, King Khaled National Guard Hospital-Western Region, Jeddah (Saudi Arabia); El-Hawary, Ron [Dalhousie University, Orthopedic Surgery Department, IWK Children' s Health Center, Halifax, NS (Canada); Schmit, Pierre [IWK Children' s Health Center, Dalhousie University, Diagnostic Imaging Department, Halifax, NS (Canada)

    2018-01-15

    Many orthopedic articles describe advances in surgical techniques and implants used in pediatric scoliosis surgery. However, even though postoperative spine imaging constitutes a large portion of outpatient musculoskeletal pediatric radiology, few, if any, radiology articles discuss this topic. There has been interval advancement over the last decades of the orthopedic procedures used in the treatment of spinal scoliosis in adolescents with idiopathic scoliosis. The goal of treatment in these patients is to stop the progression of the curve by blocking the spinal growth and correcting the deformity as much as possible. To that end, the authors in this paper discuss postoperative imaging findings of Harrington rods, Luque rods, Luque-Galveston implants and segmental spinal fusion systems. Regarding early onset scoliosis, the guiding principles used for adolescent idiopathic scoliosis do not apply to a growing spine because they would impede lung development. As a result, other devices have been developed to correct the curve and to allow spinal growth. These include spine-based growing rods, vertically expandable prosthetic titanium rods (requiring repetitive surgeries) and magnetically controlled growing rods (with a magnetic locking/unlocking system). Other more recent systems are Shilla and thoracoscopic anterior vertebral body tethering, which allow guided growth of the spine without repetitive interventions. In this paper, we review the radiologic appearances of different orthopedic implants and techniques used to treat adolescent idiopathic scoliosis and early onset scoliosis. Moreover, we present the imaging findings of the most frequent postoperative complications. (orig.)

  6. Intraoperative magnetic resonance imaging-assisted transsphenoidal pituitary surgery in patients with acromegaly.

    Science.gov (United States)

    Bellut, David; Hlavica, Martin; Schmid, Christoph; Bernays, René L

    2010-10-01

    Acromegaly is a rare disease, usually caused by a growth hormone (GH)-producing pituitary adenoma. If untreated, severe cardiovascular, metabolic, cosmetic, and orthopedic disturbances will result. Surgery is generally recommended as the first-line treatment. Transsphenoidal surgical techniques were recently extended by the introduction of intraoperative MR (iMR) imaging. In the present study, the contribution of ultra-low-field (0.15-T) iMR imaging to tumor resection, complication avoidance, and endocrinological and neurological outcome was analyzed. A series of 39 consecutive transsphenoidal iMR imaging-guided (using the PoleStar N20 device) surgical procedures performed between September 2005 and August 2009 for GH-producing pituitary adenomas was retrospectively analyzed. In addition to the patients' clinical data, the following criteria were evaluated independently: duration of surgery; length of hospital stay; endocrinological parameters; results of neurological examinations; and pre-, post-, and intraoperative MR imaging results. Thirty-seven patients with acromegaly underwent 39 transsphenoidal surgeries for pituitary adenomas. During a median follow-up period of 30 months (range 9-56 months), the remission rate was 73.5% in 34 patients with primary surgery and 20% in 5 cases with previous surgery; overall the remission rate was 66.7%. There were no serious postoperative complications. Detection of tumor remnant on iMR imaging led to a 5.1% increase in remission rate. In this largest study to date of GH-producing pituitary adenomas in which iMR imaging-guided transsphenoidal surgery was analyzed, the results suggest that this method is a highly effective and safe treatment modality, even compared with previously published surgical series in which high-field iMR imaging was used. Limitations of iMR imaging are the detection of small residual tumor in the cavernous sinus and persisting disease that could not be observed, even on diagnostic high-field follow

  7. Image-guided procedures in brain biopsy.

    Science.gov (United States)

    Fujita, K; Yanaka, K; Meguro, K; Narushima, K; Iguchi, M; Nakai, Y; Nose, T

    1999-07-01

    Image-guided procedures, such as computed tomography (CT)-guided stereotactic and ultrasound-guided methods, can assist neurosurgeons in localizing the relevant pathology. The characteristics of image-guided procedures are important for their appropriate use, especially in brain biopsy. This study reviewed the results of various image-guided brain biopsies to ascertain the advantages and disadvantages. Brain biopsies assisted by CT-guided stereotactic, ultrasound-guided, Neuronavigator-guided, and the combination of ultrasound and Neuronavigator-guided procedures were carried out in seven, eight, one, and three patients, respectively. Four patients underwent open biopsy without a guiding system. Twenty of 23 patients had a satisfactory diagnosis after the initial biopsy. Three patients failed to have a definitive diagnosis after the initial procedure, one due to insufficient volume sampling after CT-guided procedure, and two due to localization failure by ultrasound because the lesions were nonechogenic. All patients who underwent biopsy using the combination of ultrasound and Neuronavigator-guided methods had a satisfactory result. The CT-guided procedure provided an efficient method of approaching any intracranial target and was appropriate for the diagnosis of hypodense lesions, but tissue sampling was sometimes not sufficient to achieve a satisfactory diagnosis. The ultrasound-guided procedure was suitable for the investigation of hyperdense lesions, but was difficult to localize nonechogenic lesions. The combination of ultrasound and Neuronavigator methods improved the diagnostic accuracy even in nonechogenic lesions such as malignant lymphoma. Therefore, it is essential to choose the most appropriate guiding method for brain biopsy according to the radiological nature of the lesions.

  8. Endovascular image-guided interventions (EIGIs)

    International Nuclear Information System (INIS)

    Rudin, Stephen; Bednarek, Daniel R.; Hoffmann, Kenneth R.

    2008-01-01

    Minimally invasive interventions are rapidly replacing invasive surgical procedures for the most prevalent human disease conditions. X-ray image-guided interventions carried out using the insertion and navigation of catheters through the vasculature are increasing in number and sophistication. In this article, we offer our vision for the future of this dynamic field of endovascular image-guided interventions in the form of predictions about (1) improvements in high-resolution detectors for more accurate guidance, (2) the implementation of high-resolution region of interest computed tomography for evaluation and planning, (3) the implementation of dose tracking systems to control patient radiation risk, (4) the development of increasingly sophisticated interventional devices, (5) the use of quantitative treatment planning with patient-specific computer fluid dynamic simulations, and (6) the new expanding role of the medical physicist. We discuss how we envision our predictions will come to fruition and result in the universal goal of improved patient care.

  9. Probe-guided surgery: metastases of a papillary thyroid carcinoma. Surgical Excision

    International Nuclear Information System (INIS)

    Kowadlo, A.R.; Zund, S.; Perez Irigoyen, C.

    2008-01-01

    A male patient with papillary thyroid cancer -follicular variety- is chosen to be presented. After thyroidectomy, lymphadenectomy and therapeutic dose of radioiodine treatments, cancer relapse was observed. After thyrotrophin suppressive therapy with l-thyroxine, a high serum thyroglobulin concentration was observed. The Ultrasonography (US) and Magnetic Resonance (MR) images showed visible node structures in the neck. This node structures were probably going to concentrate I-131 as seen in the fi rst whole body scan after therapeutic dose. Therefore a radio-guided surgery was planned as the best choice. (Institute Gustave Roussy protocol). A therapeutic dose of radioiodine (I-131) was given and up to the 4th day a whole body scan was performed. In the 5th day a gamma- probe-guided surgery was performed as well, and localized metastatic foci in the pretracheal region and under right recurrent laryngeal nerve. No other foci were identified ed with the probe at surgery. Forty eight hours after surgery a new whole-body scan was made again. The procedure was successful. The metastatic lesions were completely dissected. The last whole body scan showed that radioiodine concentration had disappeared at all. Forty fi ve days and three months after surgery under levothyroxine treatment, the serum thyroglobulin level concentration decrease to very low values. (authors) [es

  10. Modular multiple sensors information management for computer-integrated surgery.

    Science.gov (United States)

    Vaccarella, Alberto; Enquobahrie, Andinet; Ferrigno, Giancarlo; Momi, Elena De

    2012-09-01

    In the past 20 years, technological advancements have modified the concept of modern operating rooms (ORs) with the introduction of computer-integrated surgery (CIS) systems, which promise to enhance the outcomes, safety and standardization of surgical procedures. With CIS, different types of sensor (mainly position-sensing devices, force sensors and intra-operative imaging devices) are widely used. Recently, the need for a combined use of different sensors raised issues related to synchronization and spatial consistency of data from different sources of information. In this study, we propose a centralized, multi-sensor management software architecture for a distributed CIS system, which addresses sensor information consistency in both space and time. The software was developed as a data server module in a client-server architecture, using two open-source software libraries: Image-Guided Surgery Toolkit (IGSTK) and OpenCV. The ROBOCAST project (FP7 ICT 215190), which aims at integrating robotic and navigation devices and technologies in order to improve the outcome of the surgical intervention, was used as the benchmark. An experimental protocol was designed in order to prove the feasibility of a centralized module for data acquisition and to test the application latency when dealing with optical and electromagnetic tracking systems and ultrasound (US) imaging devices. Our results show that a centralized approach is suitable for minimizing synchronization errors; latency in the client-server communication was estimated to be 2 ms (median value) for tracking systems and 40 ms (median value) for US images. The proposed centralized approach proved to be adequate for neurosurgery requirements. Latency introduced by the proposed architecture does not affect tracking system performance in terms of frame rate and limits US images frame rate at 25 fps, which is acceptable for providing visual feedback to the surgeon in the OR. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Is LASIK for Me? A Patient's Guide to Refractive Surgery

    Science.gov (United States)

    Is LASIK for Me? A Patient’s Guide to Refractive Surgery October 2008 Is LASIK for Me? A Patient’s Guide to Refractive Surgery Table of Contents LASIK: A COMPREHENSIVE GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 What Is ...

  12. Spinal imaging and image analysis

    CERN Document Server

    Yao, Jianhua

    2015-01-01

    This book is instrumental to building a bridge between scientists and clinicians in the field of spine imaging by introducing state-of-the-art computational methods in the context of clinical applications.  Spine imaging via computed tomography, magnetic resonance imaging, and other radiologic imaging modalities, is essential for noninvasively visualizing and assessing spinal pathology. Computational methods support and enhance the physician’s ability to utilize these imaging techniques for diagnosis, non-invasive treatment, and intervention in clinical practice. Chapters cover a broad range of topics encompassing radiological imaging modalities, clinical imaging applications for common spine diseases, image processing, computer-aided diagnosis, quantitative analysis, data reconstruction and visualization, statistical modeling, image-guided spine intervention, and robotic surgery. This volume serves a broad audience as  contributions were written by both clinicians and researchers, which reflects the inte...

  13. Real-time continuous image-guided surgery: Preclinical investigation in glossectomy.

    Science.gov (United States)

    Tabanfar, Reza; Qiu, Jimmy; Chan, Harley; Aflatouni, Niousha; Weersink, Robert; Hasan, Wael; Irish, Jonathan C

    2017-10-01

    To develop, validate, and study the efficacy of an intraoperative real-time continuous image-guided surgery (RTC-IGS) system for glossectomy. Prospective study. We created a RTC-IGS system and surgical simulator for glossectomy, enabling definition of a surgical target preoperatively, real-time cautery tracking, and display of a surgical plan intraoperatively. System performance was evaluated by a group of otolaryngology residents, fellows, medical students, and staff under a reproducible setting by using realistic tongue phantoms. Evaluators were grouped into a senior and a junior group based on surgical experience, and guided and unguided tumor resections were performed. National Aeronautics and Space Administration Task Load Index (NASA-TLX) scores and a Likert scale were used to measure workloads and impressions of the system, respectively. Efficacy was studied by comparing surgical accuracy, time, collateral damage, and workload between RTC-IGS and non-navigated resections. The senior group performed more accurately (80.9% ± 3.7% vs. 75.2% ± 5.5%, P = .28), required less time (5.0 ± 1.3 minutes vs. 7.3 ± 1.2 minutes, P = .17), and experienced lower workload (43 ± 2.0 vs. 64.4 ± 1.3 NASA-TLX score, P = .08), suggesting a trend of construct validity. Impressions were favorable, with participants reporting the system is a valuable practice tool (4.0/5 ± 0.3) and increases confidence (3.9/5 ± 0.4). Use of RTC-IGS improved both groups' accuracy, with the junior group improving from 64.4% ± 5.4% to 75.2% ± 5.5% (P = .01) and the senior group improving from 76.1% ± 4.5% to 80.9% ± 3.7% (P = .16). We created an RTC-IGS system and surgical simulator and demonstrated a trend of construct validity. Our navigated simulator allows junior trainees to practice glossectomies outside the operating room. In all evaluators, navigation assistance resulted in increased surgical accuracy. NA Laryngoscope, 127:E347-E353, 2017. © 2017 The American Laryngological

  14. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    International Nuclear Information System (INIS)

    Reaungamornrat, S; Liu, W P; Otake, Y; Uneri, A; Siewerdsen, J H; Taylor, R H; Wang, A S; Nithiananthan, S; Schafer, S; Tryggestad, E; Richmon, J; Sorger, J M

    2013-01-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  15. Operation and force analysis of the guide wire in a minimally invasive vascular interventional surgery robot system

    Science.gov (United States)

    Yang, Xue; Wang, Hongbo; Sun, Li; Yu, Hongnian

    2015-03-01

    To develop a robot system for minimally invasive surgery is significant, however the existing minimally invasive surgery robots are not applicable in practical operations, due to their limited functioning and weaker perception. A novel wire feeder is proposed for minimally invasive vascular interventional surgery. It is used for assisting surgeons in delivering a guide wire, balloon and stenting into a specific lesion location. By contrasting those existing wire feeders, the motion methods for delivering and rotating the guide wire in blood vessel are described, and their mechanical realization is presented. A new resistant force detecting method is given in details. The change of the resistance force can help the operator feel the block or embolism existing in front of the guide wire. The driving torque for rotating the guide wire is developed at different positions. Using the CT reconstruction image and extracted vessel paths, the path equation of the blood vessel is obtained. Combining the shapes of the guide wire outside the blood vessel, the whole bending equation of the guide wire is obtained. That is a risk criterion in the delivering process. This process can make operations safer and man-machine interaction more reliable. A novel surgery robot for feeding guide wire is designed, and a risk criterion for the system is given.

  16. Application of image guidance in pituitary surgery

    Science.gov (United States)

    de Lara, Danielle; Filho, Leo F. S. Ditzel; Prevedello, Daniel M.; Otto, Bradley A.; Carrau, Ricardo L.

    2012-01-01

    Background: Surgical treatment of pituitary pathologies has evolved along the years, adding safety and decreasing morbidity related to the procedure. Advances in the field of radiology, coupled with stereotactic technology and computer modeling, have culminated in the contemporary and widespread use of image guidance systems, as we know them today. Image guidance navigation has become a frequently used technology that provides continuous three-dimensional information for the accurate performance of neurosurgical procedures. We present a discussion about the application of image guidance in pituitary surgeries. Methods: Major indications for image guidance neuronavigation application in pituitary surgery are presented and demonstrated with illustrative cases. Limitations of this technology are also presented. Results: Patients presenting a history of previous transsphenoidal surgeries, anatomical variances of the sphenoid sinus, tumors with a close relation to the internal carotid arteries, and extrasellar tumors are the most important indications for image guidance in pituitary surgeries. The high cost of the equipment, increased time of surgery due to setup time, and registration and the need of specific training for the operating room personnel could be pointed as limitations of this technology. Conclusion: Intraoperative image guidance systems provide real-time images, increasing surgical accuracy and enabling safe, minimally invasive interventions. However, the use of intraoperative navigation is not a replacement for surgical experience and a systematic knowledge of regional anatomy. It must be recognized as a tool by which the neurosurgeon can reduce the risk associated with surgical approach and treatment of pituitary pathologies. PMID:22826819

  17. Retractor-induced brain shift compensation in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2013-03-01

    In image-guided neurosurgery, intraoperative brain shift significantly degrades the accuracy of neuronavigation that is solely based on preoperative magnetic resonance images (pMR). To compensate for brain deformation and to maintain the accuracy in image guidance achieved at the start of surgery, biomechanical models have been developed to simulate brain deformation and to produce model-updated MR images (uMR) to compensate for brain shift. To-date, most studies have focused on shift compensation at early stages of surgery (i.e., updated images are only produced after craniotomy and durotomy). Simulating surgical events at later stages such as retraction and tissue resection are, perhaps, clinically more relevant because of the typically much larger magnitudes of brain deformation. However, these surgical events are substantially more complex in nature, thereby posing significant challenges in model-based brain shift compensation strategies. In this study, we present results from an initial investigation to simulate retractor-induced brain deformation through a biomechanical finite element (FE) model where whole-brain deformation assimilated from intraoperative data was used produce uMR for improved accuracy in image guidance. Specifically, intensity-encoded 3D surface profiles at the exposed cortical area were reconstructed from intraoperative stereovision (iSV) images before and after tissue retraction. Retractor-induced surface displacements were then derived by coregistering the surfaces and served as sparse displacement data to drive the FE model. With one patient case, we show that our technique is able to produce uMR that agrees well with the reconstructed iSV surface after retraction. The computational cost to simulate retractor-induced brain deformation was approximately 10 min. In addition, our approach introduces minimal interruption to the surgical workflow, suggesting the potential for its clinical application.

  18. An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery.

    Science.gov (United States)

    Chen, Qian; Liang, Chao; Wang, Xin; He, Jingkang; Li, Yonggang; Liu, Zhuang

    2014-11-01

    A large variety of cancers are associated with a high incidence of lymph node metastasis, which leads to a high risk of cancer death. Herein, we demonstrate that multimodal imaging guided photothermal therapy can inhibit tumor metastasis after surgery by burning the sentinel lymph nodes (SLNs) with metastatic tumor cells. A near-infrared dye, IR825, is absorbed onto human serum albumin (HSA), which is covalently linked with diethylenetriamine pentaacetic acid (DTPA) molecules to chelate gadolinium. The formed HSA-Gd-IR825 nanocomplex exhibits strong fluorescence together with high near-infrared (NIR) absorbance, and in the mean time could serve as a T1 contrast agent in magnetic resonance (MR) imaging. In vivo bi-modal fluorescence and MR imaging uncovers that HSA-Gd-IR825 after being injected into the primary tumor would quickly migrate into tumor-associated SLNs through lymphatic circulation. Utilizing the strong NIR absorbance of HSA-Gd-IR825, SLNs with metastatic cancer cells can be effectively ablated under exposure to a NIR laser. Such treatment when combined with surgery to remove the primary tumor offers remarkable therapeutic outcomes in greatly inhibiting further metastatic spread of cancer cells and prolonging animal survival. Our work presents an albumin-based theranostic nano-probe with functions of multimodal imaging and photothermal therapy, together with a 'photothermal ablation assisted surgery' strategy, promising for future clinical cancer treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Towards ubiquitous access of computer-assisted surgery systems.

    Science.gov (United States)

    Liu, Hui; Lufei, Hanping; Shi, Weishong; Chaudhary, Vipin

    2006-01-01

    Traditional stand-alone computer-assisted surgery (CAS) systems impede the ubiquitous and simultaneous access by multiple users. With advances in computing and networking technologies, ubiquitous access to CAS systems becomes possible and promising. Based on our preliminary work, CASMIL, a stand-alone CAS server developed at Wayne State University, we propose a novel mobile CAS system, UbiCAS, which allows surgeons to retrieve, review and interpret multimodal medical images, and to perform some critical neurosurgical procedures on heterogeneous devices from anywhere at anytime. Furthermore, various optimization techniques, including caching, prefetching, pseudo-streaming-model, and compression, are used to guarantee the QoS of the UbiCAS system. UbiCAS enables doctors at remote locations to actively participate remote surgeries, share patient information in real time before, during, and after the surgery.

  20. A new method of surgical navigation for orthognathic surgery: optical tracking guided free-hand repositioning of the maxillomandibular complex.

    Science.gov (United States)

    Li, Biao; Zhang, Lei; Sun, Hao; Shen, Steve G F; Wang, Xudong

    2014-03-01

    In bimaxillary orthognathic surgery, the positioning of the maxilla and the mandible is typically accomplished via 2-splint technique, which may be the sources of several types of inaccuracy. To overcome the limitations of the 2-splint technique, we developed a new navigation method, which guided the surgeon to free-hand reposition the maxillomandibular complex as a whole intraoperatively, without the intermediate splint. In this preliminary study, the feasibility was demonstrated. Five patients with dental maxillofacial deformities were enrolled. Before the surgery, 3-dimensional planning was conducted and imported into a navigation system. During the operation, a tracker was connected to the osteotomized maxillomandibular complex via a splint. The navigation system tracked the movement of the complex and displayed it on the screen in real time to guide the surgeon to reposition the complex. The postoperative result was compared with the plan by analyzing the measured distances between the maxillary landmarks and reference planes, as determined from computed tomography data. The mean absolute errors of the maxillary position were clinically acceptable (<1.0 mm). Preoperative preparation time was reduced to 100 minutes on average. All patients were satisfied with the aesthetic results. This navigation method without intraoperative image registration provided a feasible means of transferring virtual planning to the real orthognathic surgery. The real-time position of the maxillomandibular complex was displayed on a monitor to visually guide the surgeon to reposition the complex. In this method, the traditional model surgery and the intermediate splint were discarded, and the preoperative preparation was simplified.

  1. Prosthesis-guided implant restoration of an auricular defect using computed tomography and 3-dimensional photographic imaging technologies: a clinical report.

    Science.gov (United States)

    Wang, Shuming; Leng, Xu; Zheng, Yaqi; Zhang, Dapeng; Wu, Guofeng

    2015-02-01

    The concept of prosthesis-guided implantation has been widely accepted for intraoral implant placement, although clinicians do not fully appreciate its use for facial defect restoration. In this clinical report, multiple digital technologies were used to restore a facial defect with prosthesis-guided implantation. A simulation surgery was performed to remove the residual auricular tissue and to ensure the correct position of the mirrored contralateral ear model. The combined application of computed tomography and 3-dimensional photography preserved the position of the mirrored model and facilitated the definitive implant-retained auricular prosthesis. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  3. Computer-assisted oral and maxillofacial surgery

    International Nuclear Information System (INIS)

    Hassfeld, S.; Brief, J.; Muehling, J.; Krempien, R.; Mende, U.; Raczkowsky, J.; Muenchenberg, J.; Woern, H.; Giess, H.; Meinzer, H.P.

    2000-01-01

    Background: Methods from the area of virtual reality are used in oral and maxillofacial surgery for the planning and three-dimensional individual simulation of surgeries. Simulation: In order to simulate complex surgeries with the aid of a computer, the diagnostic image data and especially various imaging modalities (CT, MRT, US) must be arranged in relation to each other, thus enabling rapid switching between the various modalities as well as the viewing of mixed images. Segmenting techniques for the reconstruction of three-dimensional representations of soft-tissue and osseous areas are required. We must develop ergonomic and intuitively useable interaction methods for the surgeon, thus allowing for precise and fast entry of the planned surgical intervention in the planning and simulation phase. Surgery: During the surgical phase, instrument navigation tools offer the surgeon interactive support through operation guidance and control of potential dangers. This feature is already available today. Future intraoperative assistance will take the form of such passive tools for the support of intraoperative orientation as well as so-called tracking systems (semi-active systems) which accompany and support the surgeons' work. The final form are robots which execute specific steps completely autonomously. Discussion: The techniques of virtual reality keep gaining in importance for medical applications. Many applications are still being developed or are still in the form of a prototype. However, it is already clear that developments in this area will have a considerable effect on the surgeon's routine work. (orig.) [de

  4. An investigation of the potential of rapid prototyping technology for image‐guided surgery

    Science.gov (United States)

    Rajon, Didier A.; Bova, Frank J.; Bhasin, R. Rick; Friedman, William A.

    2006-01-01

    Image‐guided surgery can be broken down into two broad categories: frame‐based guidance and frameless guidance. In order to reduce both the invasive nature of stereotactic guidance and the cost in equipment and time, we have developed a new guidance technique based on rapid prototyping (RP) technology. This new system first builds a computer model of the patient anatomy and then fabricates a physical reference frame that provides a precise and unique fit to the patient anatomy. This frame incorporates a means of guiding the surgeon along a preplanned surgical trajectory. This process involves (1) obtaining a high‐resolution CT or MR scan, (2) building a computer model of the region of interest, (3) developing a surgical plan and physical guide, (4) designing a frame with a unique fit to the patient's anatomy with a physical linkage to the surgical guide, and (5) fabricating the frame using an RP unit. Software was developed to support these processes. To test the accuracy of this process, we first scanned and reproduced a plastic phantom fabricated to validate the system's ability to build an accurate virtual model. A target on the phantom was then identified, a surgical approach planned, a surgical guide designed, and the accuracy and precision of guiding a probe to that target were determined. Steps 1 through 5 were also evaluated using a head phantom. The results show that the RP technology can replicate an object from CT scans with submillimeter resolution. The fabricated reference frames, when positioned on the surface of the phantom and used to guide a surgical probe, can position the probe tip with an accuracy of 1.7 mm at the probe tip. These results demonstrate that the RP technology can be used for the fabrication of customized positioning frames for use in image‐guided surgery. PACS number: 87.57.Gg PMID:17533357

  5. Computer aided surgery. Current status and future directions

    International Nuclear Information System (INIS)

    Sato, Yoshinobu

    2006-01-01

    This review describes topics in the title in the order of 3D model reconstruction and therapeutic planning based on images before surgery; registration of the actual images in virtual physical space of the patient who is under surgical operation, to the preoperative ones with use of 3D-position sensor, ultrasonics, endoscopy and X-diaphanoscopy; and their accuracy analysis. Images before surgery usually obtained with CT and MR are reconstructed in 3D for the purpose of therapeutic planning by segmentation of the target organ/site, surrounding organs, bones and blood vessels. Navigation system at the surgery functions to make the images obtained before and during operation to be integrated for their registration and displaying. Usually, the optical marker and camera both equipped in the endoscope, and position sensor (tracker) are used for integration in the operation coordinate system. For this, the actual pictures at liver operation are given. For accuracy analysis there is a theory of target registration error, which has been established on FDA demands. In future, development of technology concerned in this field like that of robot, bio-dynamics, biomaterials, sensor and high performance computing together with 4D document of surgery for feed-back to technology are desirable for the systematic growing of this surgical technology. (T.I.)

  6. The use of intraoperative computed tomography navigation in pituitary surgery promises a better intraoperative orientation in special cases

    Directory of Open Access Journals (Sweden)

    Stefan Linsler

    2016-01-01

    Full Text Available Objective: The safety of endoscopic skull base surgery can be enhanced by accurate navigation in preoperative computed tomography (CT and magnetic resonance imaging (MRI. Here, we report our initial experience of real-time intraoperative CT-guided navigation surgery for pituitary tumors in childhood. Materials and Methods: We report the case of a 15-year-old girl with a huge growth hormone-secreting pituitary adenoma with supra- and perisellar extension. Furthermore, the skull base was infiltrated. In this case, we performed an endonasal transsphenoidal approach for debulking the adenoma and for chiasma decompression. We used an MRI neuronavigation (Medtronic Stealth Air System which was registered via intraoperative CT scan (Siemens CT Somatom. Preexisting MRI studies (navigation protocol were fused with the intraoperative CT scans to enable three-dimensional navigation based on MR and CT imaging data. Intraoperatively, we did a further CT scan for resection control. Results: The intraoperative accuracy of the neuronavigation was excellent. There was an adjustment of <1 mm. The navigation was very helpful for orientation on the destroyed skull base in the sphenoid sinus. After opening the sellar region and tumor debulking, we did a CT scan for resection control because the extent of resection was not credible evaluable in this huge infiltrating adenoma. Thereby, we were able to demonstrate a sufficient decompression of the chiasma and complete resection of the medial part of the adenoma in the intraoperative CT images. Conclusions: The use of intraoperative CT/MRI-guided neuronavigation for transsphenoidal surgery is a time-effective, safe, and technically beneficial technique for special cases.

  7. [Laparoscopic and general surgery guided by open interventional magnetic resonance].

    Science.gov (United States)

    Lauro, A; Gould, S W T; Cirocchi, R; Giustozzi, G; Darzi, A

    2004-10-01

    Interventional magnetic resonance (IMR) machines have produced unique opportunity for image-guided surgery. The open configuration design and fast pulse sequence allow virtual real time intraoperative scanning to monitor the progress of a procedure, with new images produced every 1.5 sec. This may give greater appreciation of anatomy, especially deep to the 2-dimensional laparoscopic image, and hence increase safety, reduce procedure magnitude and increase confidence in tumour resection surgery. The aim of this paper was to investigate the feasibility of performing IMR-image-guided general surgery, especially in neoplastic and laparoscopic field, reporting a single center -- St. Mary's Hospital (London, UK) -- experience. Procedures were carried out in a Signa 0.5 T General Elettric SP10 Interventional MR (General Electric Medical Systems, Milwaukee, WI, USA) with magnet-compatible instruments (titanium alloy instruments, plastic retractors and ultrasonic driven scalpel) and under general anesthesia. There were performed 10 excision biopsies of palpable benign breast tumors (on female patients), 3 excisions of skin sarcoma (dermatofibrosarcoma protuberans), 1 right hemicolectomy and 2 laparoscopic cholecystectomies. The breast lesions were localized with pre- and postcontrast (intravenous gadolinium DPTA) sagittal and axial fast multiplanar spoiled gradient recalled conventional Signa sequences; preoperative real time fast gradient recalled sequences were also obtained using the flashpoint tracking device. During right hemicolectomy intraoperative single shot fast spin echo (SSFSE) and fast spoiled gradient recalled (FSPGR) imaging of right colon were performed after installation of 150 cc of water or 1% gadolinium solution, respectively, through a Foley catheter; imaging was also obtained in an attempt to identify mesenteric lymph nodes intraoperatively. Concerning laparoscopic procedures, magnetic devices (insufflator, light source) were positioned outside scan

  8. EpCAM as multi-tumour target for near-infrared fluorescence guided surgery

    International Nuclear Information System (INIS)

    Driel, P. B. A. A. van; Boonstra, M. C.; Prevoo, H. A. J. M.; Giessen, M. van de; Snoeks, T. J. A.; Tummers, Q. R. J. G.; Keereweer, S.; Cordfunke, R. A.; Fish, A.; Eendenburg, J. D. H. van; Lelieveldt, B. P. F.; Dijkstra, J.; Velde, C. J. H. van de; Kuppen, P. J. K.; Vahrmeijer, A. L.; Löwik, C. W. G. M.; Sier, C. F. M.

    2016-01-01

    Evaluation of resection margins during cancer surgery can be challenging, often resulting in incomplete tumour removal. Fluorescence-guided surgery (FGS) aims to aid the surgeon to visualize tumours and resection margins during surgery. FGS relies on a clinically applicable imaging system in combination with a specific tumour-targeting contrast agent. In this study EpCAM (epithelial cell adhesion molecule) is evaluated as target for FGS in combination with the novel Artemis imaging system. The NIR fluorophore IRDye800CW was conjugated to the well-established EpCAM specific monoclonal antibody 323/A3 and an isotype IgG1 as control. The anti-EpCAM/800CW conjugate was stable in serum and showed preserved binding capacity as evaluated on EpCAM positive and negative cell lines, using flow cytometry and cell-based plate assays. Four clinically relevant orthotopic tumour models, i.e. colorectal cancer, breast cancer, head and neck cancer, and peritonitis carcinomatosa, were used to evaluate the performance of the anti-EpCAM agent with the clinically validated Artemis imaging system. The Pearl Impulse small animal imaging system was used as reference. The specificity of the NIRF signal was confirmed using bioluminescence imaging and green-fluorescent protein. All tumour types could clearly be delineated and resected 72 h after injection of the imaging agent. Using NIRF imaging millimetre sized tumour nodules were detected that were invisible for the naked eye. Fluorescence microscopy demonstrated the distribution and tumour specificity of the anti-EpCAM agent. This study shows the potential of an EpCAM specific NIR-fluorescent agent in combination with a clinically validated intraoperative imaging system to visualize various tumours during surgery

  9. Randomized trial for superiority of high field strength intra-operative magnetic resonance imaging guided resection in pituitary surgery.

    Science.gov (United States)

    Tandon, Vivek; Raheja, Amol; Suri, Ashish; Chandra, P Sarat; Kale, Shashank S; Kumar, Rajinder; Garg, Ajay; Kalaivani, Mani; Pandey, Ravindra M; Sharma, Bhawani S

    2017-03-01

    Till date there are no randomized trials to suggest the superiority of intra-operative magnetic resonance imaging (IOMRI) guided trans-sphenoidal pituitary resection over two dimensional fluoroscopic (2D-F) guided resections. We conducted this trial to establish the superiority of IOMRI in pituitary surgery. Primary objective was to compare extent of tumor resection between the two study arms. It was a prospective, randomized, outcome assessor and statistician blinded, two arm (A: IOMRI, n=25 and B: 2D-F, n=25), parallel group clinical trial. 4 patients from IOMRI group cross-over to 2D-F group and were consequently analyzed in latter group, based on modified intent to treat method. A total of 50 patients were enrolled till completion of trial (n=25 in each study arm). Demographic profile and baseline parameters were comparable among the two arms (p>0.05) except for higher number of endoscopic procedures and experienced neurosurgeons (>10years) in arm B (p=0.02, 0.002 respectively). Extent of resection was similar in both study arms (A, 94.9% vs B, 93.6%; p=0.78), despite adjusting for experience of operating surgeon and use of microscope/endoscope for surgical resection. We observed that use of IOMRI helped optimize the extent of resection in 5/20 patients (25%) for pituitary tumor resection in-group A. Present study failed to observe superiorty of IOMRI over conventional 2D-F guided resection in pituitary macroadenoma surgery. By use of this technology, younger surgeons could validate their results intra-operatively and hence could increase EOR without causing any increase in complications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Application of digital diagnostic impression, virtual planning, and computer-guided implant surgery for a CAD/CAM-fabricated, implant-supported fixed dental prosthesis: a clinical report.

    Science.gov (United States)

    Stapleton, Brandon M; Lin, Wei-Shao; Ntounis, Athanasios; Harris, Bryan T; Morton, Dean

    2014-09-01

    This clinical report demonstrated the use of an implant-supported fixed dental prosthesis fabricated with a contemporary digital approach. The digital diagnostic data acquisition was completed with a digital diagnostic impression with an intraoral scanner and cone-beam computed tomography with a prefabricated universal radiographic template to design a virtual prosthetically driven implant surgical plan. A surgical template fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) was used to perform computer-guided implant surgery. The definitive digital data were then used to design the definitive CAD/CAM-fabricated fixed dental prosthesis. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. [Surgery guided by customized devices: reconstruction with a free fibula flap].

    Science.gov (United States)

    Schouman, T; Bertolus, C; Chaine, C; Ceccaldi, J; Goudot, P

    2014-02-01

    The reconstruction of jaws with a free fibula flap can be anticipated virtually. The simulation can be transferred to the operating theater using customized devices obtained from computer-assisted design and manufacturing in a complete digital workflow. Several alternatives are available, from cutting guides to customized titanium osteosynthesis plates, to obtain the best accuracy and reproducibility of reconstruction. Moreover, these new processes allow integrating prosthetic planning concomitantly with reconstruction. We present the virtual three-dimensional planning method for jaw reconstruction with a free fibula flap and the various alternatives of surgery guided by customized devices provided by this planning. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Successful Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery for Recurrent Uterine Fibroid Previously Treated with Uterine Artery Embolization

    Directory of Open Access Journals (Sweden)

    Sang-Wook Yoon

    2010-01-01

    Full Text Available A 45-year-old premenopausal woman was referred to our clinic due to recurring symptoms of uterine fibroids, nine years after a uterine artery embolization (UAE. At the time of screening, the patient presented with bilateral impairment and narrowing of the uterine arteries, which increased the risk of arterial perforation during repeated UAE procedures. The patient was subsequently referred for magnetic resonance imaging-guided focused ultrasound surgery (MRgFUS treatment. Following the treatment, the patient experienced a significant improvement in symptoms (symptom severity score was reduced from 47 to 12 by 1 year post-treatment. MR images at 3 months showed a 49% decrease in fibroid volume. There were no adverse events during the treatment or the follow-up period. This case suggests that MRgFUS can be an effective treatment option for patients with recurrent fibroids following previous UAE treatment.

  13. 16th International Conference on Medical Image Computing and Computer Assisted Intervention

    CERN Document Server

    Klinder, Tobias; Li, Shuo

    2014-01-01

    This book contains the full papers presented at the MICCAI 2013 workshop Computational Methods and Clinical Applications for Spine Imaging. The workshop brought together researchers representing several fields, such as Biomechanics, Engineering, Medicine, Mathematics, Physics and Statistic. The works included in this book present and discuss new trends in those fields, using several methods and techniques in order to address more efficiently different and timely applications involving signal and image acquisition, image processing and analysis, image segmentation, image registration and fusion, computer simulation, image based modelling, simulation and surgical planning, image guided robot assisted surgical and image based diagnosis.

  14. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    International Nuclear Information System (INIS)

    Kim, Joshua; Zhang, Tiezhi; Lu, Weiguo

    2014-01-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source–dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10–15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source–dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented. (paper)

  15. The role of 3-D imaging and computer-based postprocessing for surgery of the liver and pancreas

    International Nuclear Information System (INIS)

    Grenacher, L.; Kauffmann, G.W.; Richter, G.M.; Thorn, M.; Vetter, M.; Hassenpflug, P.; Meinzer, H.P.; Knaebel, H.P.; Kraus, T.; Buechler, M.W.

    2005-01-01

    Cross-sectional imaging based on navigation and virtual reality planning tools are well-established in the surgical routine in orthopedic surgery and neurosurgery. In various procedures, they have achieved a significant clinical relevance and efficacy and have enhanced the discipline's resection capabilities. In abdominal surgery, however, these tools have gained little attraction so far. Even with the advantage of fast and high resolution cross-sectional liver and pancreas imaging, it remains unclear whether 3D planning and interactive planning tools might increase precision and safety of liver and pancreas surgery. The inability to simply transfer the methodology from orthopedic or neurosurgery is mainly a result of intraoperative organ movements and shifting and corresponding technical difficulties in the on-line applicability of presurgical cross sectional imaging data. For the interactive planning of liver surgery, three systems partly exist in daily routine: HepaVision2 (MeVis GmbH, Bremen), LiverLive (Navidez Ltd. Slovenia) and OrgaNicer (German Cancer Research Center, Heidelberg). All these systems have realized a half- or full-automatic liver-segmentation procedure to visualize liver segments, vessel trees, resected volumes or critical residual organ volumes, either for preoperative planning or intraoperative visualization. Acquisition of data is mainly based on computed tomography. Three-dimensional navigation for intraoperative surgical guidance with ultrasound is part of the clinical testing. There are only few reports about the transfer of the visualization of the pancreas, probably caused by the difficulties with the segmentation routine due to inflammation or organ-exceeding tumor growth. With this paper, we like to evaluate and demonstrate the present status of software planning tools and pathways for future pre- and intraoperative resection planning in liver and pancreas surgery. (orig.)

  16. Gamma Imaging-Guided Minimally Invasive Breast Biopsy: Initial Clinical Experience.

    Science.gov (United States)

    Brem, Rachel F; Mehta, Anita K; Rapelyea, Jocelyn A; Akin, Esma A; Bazoberry, Adriana M; Velasco, Christel D

    2018-03-01

    The purpose of this study was to evaluate our initial experience with gamma imaging-guided vacuum-assisted breast biopsy in women with abnormal findings. A retrospective review of patients undergoing breast-specific gamma imaging (BSGI), also known as molecular breast imaging (MBI), between April 2011 and October 2015 found 117 nonpalpable mammographically and sonographically occult lesions for which gamma imaging-guided biopsies were recommended. Biopsy was performed with a 9-gauge vacuum-assisted device with subsequent placement of a titanium biopsy site marker. Medical records and pathologic findings were evaluated. Of the 117 biopsies recommended, 104 were successful and 13 were canceled. Of the 104 performed biopsies, 32 (30.8%) had abnormal pathologic findings. Of those 32 biopsies, nine (28.1%) found invasive cancers, six (18.8%) found ductal carcinoma in situ (DCIS), and 17 (53.1%) found high-risk lesions. Of the 17 high-risk lesions, there were three (17.6%) lobular carcinomas in situ, five (29.4%) atypical ductal hyperplasias, two (11.8%) atypical lobular hyperplasias, one (5.9%) flat epithelial atypia, and six (35.3%) papillomas. Two cases of atypical ductal hyperplasia were upgraded to DCIS at surgery. The overall cancer detection rate for gamma imaging-guided biopsy was 16.3%. In this study, gamma imaging-guided biopsy had a positive predictive value of total successful biopsies of 16.3% for cancer and 30.8% for cancer and high-risk lesions. Gamma imaging-guided biopsy is a viable approach to sampling BSGI-MBI-detected lesions without sonographic or mammographic correlate. Our results compare favorably to those reported for MRI-guided biopsy.

  17. Automated tru-cut imaging-guided core needle biopsy of canine ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate the diagnostic value of imaging-guided core needle biopsy for canine orbital mass diagnosis. A second excisional biopsy obtained during surgery or necropsy was used as the reference standard. A prospective feasibility study was conducted in 23 canine orbital masses at a single ...

  18. Intraoperative high-field magnetic resonance imaging, multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas.

    Science.gov (United States)

    Li, Fang-Ye; Chen, Xiao-Lei; Xu, Bai-Nan

    2016-09-01

    To determine the beneficial effects of intraoperative high-field magnetic resonance imaging (MRI), multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas. Twelve patients with 13 supratentorial cavernomas were prospectively enrolled and operated while using a 1.5 T intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. All cavernomas were deeply located in subcortical areas or involved critical areas. Intraoperative high-field MRIs were obtained for the intraoperative "visualization" of surrounding eloquent structures, "brain shift" corrections, and navigational plan updates. All cavernomas were successfully resected with guidance from intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. In 5 cases with supratentorial cavernomas, intraoperative "brain shift" severely deterred locating of the lesions; however, intraoperative MRI facilitated precise locating of these lesions. During long-term (>3 months) follow-up, some or all presenting signs and symptoms improved or resolved in 4 cases, but were unchanged in 7 patients. Intraoperative high-field MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring are helpful in surgeries for the treatment of small deeply seated subcortical cavernomas.

  19. PET Probe-Guided Surgery in Patients with Breast Cancer: Proposal for a Methodological Approach

    Science.gov (United States)

    ORSARIA, PAOLO; CHIARAVALLOTI, AGOSTINO; FIORENTINI, ALESSANDRO; PISTOLESE, CHIARA; VANNI, GIANLUCA; VITTORIA GRANAI, ALESSANDRA; VARVARAS, DIMITRIOS; DANIELI, ROBERTA; SCHILLACI, ORAZIO; PETRELLA, GIUSEPPE; CLAUDIO BUONOMO, ORESTE

    2017-01-01

    Background: Although it is valuable for detecting distant metastases, identifying recurrence, and evaluating responses to chemotherapy, the role of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography (18F-FDG PET/CT) in assessing locoregional nodal status for initial staging of breast cancer has not yet been well-defined in clinical practice. In the current report, we describe a new PET probe-based clinical approach, with evaluation of the technical performance of a handheld high-energy gamma probe for intraoperative localization of breast carcinomas, and evaluation of lymph node metastases during radio-guided oncological surgery. Patients and Methods: Three patients underwent a PET/CT scan immediately prior to surgery following the standard clinical protocol. Intraoperatively, tumors were localized and resected with the assistance of a hand-held gamma probe. PET-guided assessment of the presence or absence of regional nodal spread of malignancy was compared with the reference standard of histopathological examination. Results: In all three cases, perioperative 18F-FDG PET/CT imaging and intraoperative gamma probe detection verified complete resection of the hypermetabolic lesions and demonstrated no additional suspicious occult disease. Conclusion: This innovative approach demonstrates great promise for providing real-time access to metabolic and morphological tumor information that may lead to an optimal disease-tailored approach. In carefully selected indications, a PET probe can be a useful adjunct in surgical practice, but further trials with a larger number of patients need to be performed to verify these findings. PMID:28064227

  20. Incorporation of a laser range scanner into image-guided liver surgery: Surface acquisition, registration, and tracking

    International Nuclear Information System (INIS)

    Cash, David M.; Sinha, Tuhin K.; Chapman, William C.; Terawaki, Hiromi; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2003-01-01

    As image guided surgical procedures become increasingly diverse, there will be more scenarios where point-based fiducials cannot be accurately localized for registration and rigid body assumptions no longer hold. As a result, procedures will rely more frequently on anatomical surfaces for the basis of image alignment and will require intraoperative geometric data to measure and compensate for tissue deformation in the organ. In this paper we outline methods for which a laser range scanner may be used to accomplish these tasks intraoperatively. A laser range scanner based on the optical principle of triangulation acquires a dense set of three-dimensional point data in a very rapid, noncontact fashion. Phantom studies were performed to test the ability to link range scan data with traditional modes of image-guided surgery data through localization, registration, and tracking in physical space. The experiments demonstrate that the scanner is capable of localizing point-based fiducials to within 0.2 mm and capable of achieving point and surface based registrations with target registration error of less than 2.0 mm. Tracking points in physical space with the range scanning system yields an error of 1.4±0.8 mm. Surface deformation studies were performed with the range scanner in order to determine if this device was capable of acquiring enough information for compensation algorithms. In the surface deformation studies, the range scanner was able to detect changes in surface shape due to deformation comparable to those detected by tomographic image studies. Use of the range scanner has been approved for clinical trials, and an initial intraoperative range scan experiment is presented. In all of these studies, the primary source of error in range scan data is deterministically related to the position and orientation of the surface within the scanner's field of view. However, this systematic error can be corrected, allowing the range scanner to provide a rapid, robust

  1. A New Navigation System of Renal Puncture for Endoscopic Combined Intrarenal Surgery: Real-time Virtual Sonography-guided Renal Access.

    Science.gov (United States)

    Hamamoto, Shuzo; Unno, Rei; Taguchi, Kazumi; Ando, Ryosuke; Hamakawa, Takashi; Naiki, Taku; Okada, Shinsuke; Inoue, Takaaki; Okada, Atsushi; Kohri, Kenjiro; Yasui, Takahiro

    2017-11-01

    To evaluate the clinical utility of a new navigation technique for percutaneous renal puncture using real-time virtual sonography (RVS) during endoscopic combined intrarenal surgery. Thirty consecutive patients who underwent endoscopic combined intrarenal surgery for renal calculi, between April 2014 and July 2015, were divided into the RVS-guided puncture (RVS; n = 15) group and the ultrasonography-guided puncture (US; n = 15) group. In the RVS group, renal puncture was repeated until precise piercing of a papilla was achieved under direct endoscopic vision, using the RVS system to synchronize the real-time US image with the preoperative computed tomography image. In the US group, renal puncture was performed under US guidance only. In both groups, 2 urologists worked simultaneously to fragment the renal calculi after inserting the miniature percutaneous tract. The mean sizes of the renal calculi in the RVS and the US group were 33.5 and 30.5 mm, respectively. A lower mean number of puncture attempts until renal access through the calyx was needed for the RVS compared with the US group (1.6 vs 3.4 times, respectively; P = .001). The RVS group had a lower mean postoperative hemoglobin decrease (0.93 vs 1.39 g/dL, respectively; P = .04), but with no between-group differences with regard to operative time, tubeless rate, and stone-free rate. None of the patients in the RVS group experienced postoperative complications of a Clavien score ≥2, with 3 patients experiencing such complications in the US group. RVS-guided renal puncture was effective, with a lower incidence of bleeding-related complications compared with US-guided puncture. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Optimizing MR imaging-guided navigation for focused ultrasound interventions in the brain

    Science.gov (United States)

    Werner, B.; Martin, E.; Bauer, R.; O'Gorman, R.

    2017-03-01

    MR imaging during transcranial MR imaging-guided Focused Ultrasound surgery (tcMRIgFUS) is challenging due to the complex ultrasound transducer setup and the water bolus used for acoustic coupling. Achievable image quality in the tcMRIgFUS setup using the standard body coil is significantly inferior to current neuroradiologic standards. As a consequence, MR image guidance for precise navigation in functional neurosurgical interventions using tcMRIgFUS is basically limited to the acquisition of MR coordinates of salient landmarks such as the anterior and posterior commissure for aligning a stereotactic atlas. Here, we show how improved MR image quality provided by a custom built MR coil and optimized MR imaging sequences can support imaging-guided navigation for functional tcMRIgFUS neurosurgery by visualizing anatomical landmarks that can be integrated into the navigation process to accommodate for patient specific anatomy.

  3. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    International Nuclear Information System (INIS)

    Morrow, Natalya V.; Lawton, Colleen A.; Qi, X. Sharon; Li, X. Allen

    2012-01-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  4. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Natalya V.; Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Qi, X. Sharon [Department of Radiation Oncology, University of Colorado Denver, Denver, Colorado (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2012-04-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  5. Neuronavigator-guided glioma surgery.

    Science.gov (United States)

    Du, Guhong; Zhou, Liangfu; Mao, Ying

    2003-10-01

    To evaluate the effectiveness of neuronavigator-guided surgery for the resection of gliomas. A total of 80 patients with gliomas underwent surgical treatment under the StealthStation neuronavigator to estimate the extent of the tumors. In 27 cases, the measurements of brain shifts at the dura, cortical surface and lesion margin were recorded during the operations. A technique termed "micro-catheter fence post" was used in superficial gliomas to compensate for brain shift. Mean fiducial error and predicted accuracy in the 80 cases were 2.03 mm +/- 0.89 mm and 2.43 mm +/- 0.99 mm, respectively. The shifts at the dura, cortical surface and lesion margin were 3.44 mm +/- 2.39 mm, 7.58 mm +/- 3.75 mm, and 6.55 mm +/- 3.19 mm, respectively. Although neuronavigation revealed residual tumors, operations were discontinued in 5 cases of deep-seated gliomas. In the other 75 cases, total tumor removals were achieved in 62 (82.7%), and subtotal removals were achieved in 13 (17.3%). Post-operation, neurological symptoms were improved or unchanged in 68 cases (85.0%), and worsened in 12 (15.0%). No deaths occurred during the operations and post-operations. Intraoperative brain shifts mainly contribute to the fail of spatial accuracy during neuronavigator-guided glioma surgery. The "micro-catheter fence post" technique used for glioma surgery is shown to be useful for compensating for intraoperative brain shifts. This technique, thus, contributes to an increase in total tumor removal and a decrease in surgical complications.

  6. Radiologists' leading position in image-guided therapy.

    Science.gov (United States)

    Helmberger, Thomas; Martí-Bonmatí, Luis; Pereira, Philippe; Gillams, Alice; Martínez, Jose; Lammer, Johannes; Malagari, Katarina; Gangi, Afshin; de Baere, Thierry; Adam, E Jane; Rasch, Coen; Budach, Volker; Reekers, Jim A

    2013-02-01

    Image-guided diagnostic and therapeutic procedures are related to, or performed under, some kind of imaging. Such imaging may be direct inspection (as in open surgery) or indirect inspection as in endoscopy or laparoscopy. Common to all these techniques is the transformation of optical and visible information to a monitor or the eye of the operator. Image-guided therapy (IGT) differs by using processed imaging data acquired before, during and after a wide range of different imaging techniques. This means that the planning, performing and monitoring, as well as the control of the therapeutic procedure, are based and dependent on the "virtual reality" provided by imaging investigations. Since most of such imaging involves radiology in the broadest sense, there is a need to characterise IGT in more detail. In this paper, the technical, medico-legal and medico-political issues will be discussed. The focus will be put on state-of-the-art imaging, technical developments, methodological and legal requisites concerning radiation protection and licensing, speciality-specific limitations and crossing specialty borders, definition of technical and quality standards, and finally to the issue of awareness of IGT within the medical and public community. The specialty-specific knowledge should confer radiologists with a significant role in the overall responsibility for the imaging-related processes in various non-radiological specialties. These processes may encompass purchase, servicing, quality management, radiation protection and documentation, also taking responsibility for the definition and compliance with the legal requirements regarding all radiological imaging performed by non-radiologists.

  7. Localization and registration accuracy in image guided neurosurgery: a clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, Reuben R.; Joskowicz, Leo [Hebrew University of Jerusalem, School of Engineering and Computer Science, Jerusalem (Israel); Spektor, Sergey; Shoshan, Yigal [Hadassah University Hospital, Department of Neurosurgery, School of Medicine, Jerusalem (Israel)

    2009-01-15

    To measure and compare the clinical localization and registration errors in image-guided neurosurgery, with the purpose of revising current assumptions. Twelve patients who underwent brain surgeries with a navigation system were randomly selected. A neurosurgeon localized and correlated the landmarks on preoperative MRI images and on the intraoperative physical anatomy with a tracked pointer. In the laboratory, we generated 612 scenarios in which one landmark pair was defined as the target and the remaining ones were used to compute the registration transformation. Four errors were measured: (1) fiducial localization error (FLE); (2) target registration error (TRE); (3) fiducial registration error (FRE); (4) Fitzpatrick's target registration error estimation (F-TRE). We compared the different errors and computed their correlation. The image and physical FLE ranges were 0.5-2.0 and 1.6-3.0 mm, respectively. The measured TRE, FRE and F-TRE were 4.1{+-}1.6, 3.9{+-}1.2, and 3.7{+-}2.2 mm, respectively. Low correlations of 0.19 and 0.37 were observed between the FRE and TRE and between the F-TRE and the TRE, respectively. The differences of the FRE and F-TRE from the TRE were 1.3{+-}1.0 mm (max=5.5 mm) and 1.3{+-}1.2 mm (max=7.3 mm), respectively. Contrary to common belief, the FLE presents significant variations. Moreover, both the FRE and the F-TRE are poor indicators of the TRE in image-to-patient registration. (orig.)

  8. Custom-Machined Miniplates and Bone-Supported Guides for Orthognathic Surgery: A New Surgical Procedure.

    Science.gov (United States)

    Brunso, Joan; Franco, Maria; Constantinescu, Thomas; Barbier, Luis; Santamaría, Joseba Andoni; Alvarez, Julio

    2016-05-01

    Several surgical strategies exist to improve accuracy in orthognathic surgery, but ideal planning and treatment have yet to be described. The purpose of this study was to present and assess the accuracy of a virtual orthognathic positioning system (OPS), based on the use of bone-supported guides for placement of custom, highly rigid, machined titanium miniplates produced using computer-aided design and computer-aided manufacturing technology. An institutional review board-approved prospective observational study was designed to evaluate our early experience with the OPS. The inclusion criteria were as follows: adult patients who were classified as skeletal Class II or III patients and as candidates for orthognathic surgery or who were candidates for maxillomandibular advancement as a treatment for obstructive sleep apnea. Reverse planning with computed tomography and modeling software was performed. Our OPS was designed to avoid the use of intermaxillary fixation and occlusal splints. The minimum follow-up period was 1 year. Six patients were enrolled in the study. The custom OPS miniplates fit perfectly with the anterior buttress of the maxilla and the mandible body surface intraoperatively. To evaluate accuracy, the postoperative 3-dimensional reconstructed computed tomography image and the presurgical plan were compared. In the maxillary fragments that underwent less than 6 mm of advancement, the OPS enabled an SD of 0.14 mm (92% within 1 mm) at the upper maxilla and 0.34 mm (86% within 1 mm) at the mandible. In the case of great advancements of more than 10 mm, the SD was 1.33 mm (66% within 1 mm) at the upper maxilla and 0.67 mm (73% within 1 mm) at the mandibular level. Our novel OPS was safe and well tolerated, providing positional control with considerable surgical accuracy. The OPS simplified surgery by being independent of support from the opposite maxilla and obviating the need for classic intermaxillary occlusal splints. Copyright © 2016

  9. A Filtering Approach for Image-Guided Surgery With a Highly Articulated Surgical Snake Robot.

    Science.gov (United States)

    Tully, Stephen; Choset, Howie

    2016-02-01

    The objective of this paper is to introduce a probabilistic filtering approach to estimate the pose and internal shape of a highly flexible surgical snake robot during minimally invasive surgery. Our approach renders a depiction of the robot that is registered to preoperatively reconstructed organ models to produce a 3-D visualization that can be used for surgical feedback. Our filtering method estimates the robot shape using an extended Kalman filter that fuses magnetic tracker data with kinematic models that define the motion of the robot. Using Lie derivative analysis, we show that this estimation problem is observable, and thus, the shape and configuration of the robot can be successfully recovered with a sufficient number of magnetic tracker measurements. We validate this study with benchtop and in-vivo image-guidance experiments in which the surgical robot was driven along the epicardial surface of a porcine heart. This paper introduces a filtering approach for shape estimation that can be used for image guidance during minimally invasive surgery. The methods being introduced in this paper enable informative image guidance for highly articulated surgical robots, which benefits the advancement of robotic surgery.

  10. The benefits of paired-agent imaging in molecular-guided surgery: an update on methods and applications (Conference Presentation)

    Science.gov (United States)

    Tichauer, Kenneth M.

    2016-03-01

    One of the major complications with conventional imaging-agent-based molecular imaging, particularly for cancer imaging, is variability in agent delivery and nonspecific retention in biological tissue. Such factors can account to "swamp" the signal arising from specifically bound imaging agent, which is presumably indicative of the concentration of targeted biomolecule. In the 1950s, Pressman et al. proposed a method of accounting for these delivery and retention effects by normalizing targeted antibody retention to the retention of a co-administered "untargeted"/control imaging agent [1]. Our group resurrected the approach within the last 5 years, finding ways to utilize this so-called "paired-agent" imaging approach to directly quantify biomolecule concentration in tissue (in vitro, ex vivo, and in vivo) [2]. These novel paired-agent imaging approaches capable of quantifying biomolecule concentration provide enormous potential for being adapted to and optimizing molecular-guided surgery, which has a principle goal of identifying distinct biological tissues (tumor, nerves, etc…) based on their distinct molecular environment. This presentation will cover the principles and nuances of paired-agent imaging, as well as the current status of the field and future applications. [1] D. Pressman, E. D. Day, and M. Blau, "The use of paired labeling in the determination of tumor-localizing antibodies," Cancer Res, 17(9), 845-50 (1957). [2] K. M. Tichauer, Y. Wang, B. W. Pogue et al., "Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging," Phys Med Biol, 60(14), R239-69 (2015).

  11. Ultrasound/Magnetic Resonance Image Fusion Guided Lumbosacral Plexus Block – A Clinical Study

    DEFF Research Database (Denmark)

    Strid, JM; Pedersen, Erik Morre; Søballe, Kjeld

    2014-01-01

    in a double-blinded randomized controlled trial with crossover design. MR datasets will be acquired and uploaded in an advanced US system (Epiq7, Phillips, Amsterdam, Netherlands). All volunteers will receive SSPS blocks with lidocaine added gadolinium contrast guided by US/MR image fusion and by US one week......Background and aims Ultrasound (US) guided lumbosacral plexus block (Supra Sacral Parallel Shift [SSPS]) offers an alternative to general anaesthesia and perioperative analgesia for hip surgery.1 The complex anatomy of the lumbosacral region hampers the accuracy of the block, but it may be improved...... by guidance of US and magnetic resonance (MR) image fusion and real-time 3D electronic needle tip tracking.2 We aim to estimate the effect and the distribution of lidocaine after SSPS guided by US/MR image fusion compared to SSPS guided by ultrasound. Methods Twenty-four healthy volunteers will be included...

  12. Is pre-operative imaging essential prior to ureteric stone surgery?

    Science.gov (United States)

    Youssef, F R; Wilkinson, B A; Hastie, K J; Hall, J

    2012-09-01

    The aim of this study was to identify patients not requiring ureteric stone surgery based on pre-operative imaging (within 24 hours) prior to embarking on semirigid ureteroscopy (R-URS) for urolithiasis. The imaging of all consecutive patients on whom R-URS for urolithiasis was performed over a 12-month period was reviewed. All patients had undergone a plain x-ray of the kidney, ureters and bladder (KUB), abdominal non-contrast computed tomography (NCCT-KUB) or both on the day of surgery. A total of 96 patients were identified for the study. Stone sizes ranged from 3 mm to 20 mm. Thirteen patients (14%) were cancelled as no stone(s) were identified on pre-operative imaging. Of the patients cancelled, 8 (62%) required NCCT-KUB to confirm spontaneous stone passage. One in seven patients were stone free on the day of surgery. This negates the need for unnecessary anaesthetic and instrumentation of the urinary tract, with the associated morbidity. Up-to-date imaging prior to embarking on elective ureteric stone surgery is highly recommended.

  13. Current perspectives in the use of molecular imaging to target surgical treatments for genitourinary cancers.

    Science.gov (United States)

    Greco, Francesco; Cadeddu, Jeffrey A; Gill, Inderbir S; Kaouk, Jihad H; Remzi, Mesut; Thompson, R Houston; van Leeuwen, Fijs W B; van der Poel, Henk G; Fornara, Paolo; Rassweiler, Jens

    2014-05-01

    Molecular imaging (MI) entails the visualisation, characterisation, and measurement of biologic processes at the molecular and cellular levels in humans and other living systems. Translating this technology to interventions in real-time enables interventional MI/image-guided surgery, for example, by providing better detection of tumours and their dimensions. To summarise and critically analyse the available evidence on image-guided surgery for genitourinary (GU) oncologic diseases. A comprehensive literature review was performed using PubMed and the Thomson Reuters Web of Science. In the free-text protocol, the following terms were applied: molecular imaging, genitourinary oncologic surgery, surgical navigation, image-guided surgery, and augmented reality. Review articles, editorials, commentaries, and letters to the editor were included if deemed to contain relevant information. We selected 79 articles according to the search strategy based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis criteria and the IDEAL method. MI techniques included optical imaging and fluorescent techniques, the augmented reality (AR) navigation system, magnetic resonance imaging spectroscopy, positron emission tomography, and single-photon emission computed tomography. Experimental studies on the AR navigation system were restricted to the detection and therapy of adrenal and renal malignancies and in the relatively infrequent cases of prostate cancer, whereas fluorescence techniques and optical imaging presented a wide application of intraoperative GU oncologic surgery. In most cases, image-guided surgery was shown to improve the surgical resectability of tumours. Based on the evidence to date, image-guided surgery has promise in the near future for multiple GU malignancies. Further optimisation of targeted imaging agents, along with the integration of imaging modalities, is necessary to further enhance intraoperative GU oncologic surgery. Copyright © 2013

  14. Integration of image guidance and rapid prototyping technology in craniofacial surgery.

    Science.gov (United States)

    Bullock, P; Dunaway, D; McGurk, L; Richards, R

    2013-08-01

    This technical note demonstrates the benefits of preoperative planning, involving the use of rapid prototype models and rehearsal of the surgical procedure, using image-guided navigational surgery. Optimum reconstruction of large defects can be achieved with this technique. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Image-guided therapy and minimally invasive surgery in children: a merging future

    International Nuclear Information System (INIS)

    Shlomovitz, Eran; Amaral, Joao G.; Chait, Peter G.

    2006-01-01

    Minimally invasive image-guided therapy for children, also known as pediatric interventional radiology (PIR), is a new and exciting field of medicine. Two key elements that helped the rapid evolution and dissemination of this specialty were the creation of devices appropriate for the pediatric population and the development of more cost-effective and minimally invasive techniques. Despite its clear advantages to children, many questions are raised regarding who should be performing these procedures. Unfortunately, this is a gray zone with no clear answer. Surgeons fear that interventional radiologists will take over additional aspects of the surgical/procedural spectrum. Interventional radiologists, on the other hand, struggle to avoid becoming highly specialized technicians rather than physicians who are responsible for complete care of their patients. In this article, we briefly discuss some of the current aspects of minimally invasive image-guided therapy in children and innovations that are expected to be incorporated into clinical practice in the near future. Then, we approach the current interspecialty battles over the control of this field and suggest some solutions to these issues. Finally, we propose the development of a generation of physicians with both surgical and imaging skills. (orig.)

  16. Parotid lymphomas - clinical and computed tomogrphic imaging ...

    African Journals Online (AJOL)

    Parotid lymphomas - clinical and computed tomogrphic imaging features. ... South African Journal of Surgery ... Lymphoma has a clinical presentation similar ... CT scanning is a useful adjunctive investigation to determine the site and extent of ...

  17. Diagnostic yield of preoperative computed tomography imaging and the importance of a clinical decision for lung cancer surgery

    International Nuclear Information System (INIS)

    Sato, Shuichi; Koike, Teruaki; Yamato, Yasushi

    2010-01-01

    This study aimed to evaluate the diagnostic yield of preoperative computed tomography (CT) imaging and the validity of surgical intervention based on the clinical decision to perform surgery for lung cancer or suspected lung cancer. We retrospectively evaluated 1755 patients who had undergone pulmonary resection for lung cancer or suspected lung cancer. CT scans were performed on all patients. Surgical intervention to diagnose and treat was based on a medical staff conference evaluation for the suspected lung cancer patients who were pathologically undiagnosed. We evaluated the relation between resected specimens and preoperative CT imaging in detail. A total of 1289 patients were diagnosed with lung cancer by preoperative pathology examination; another 466 were not pathologically diagnosed preoperatively. Among the 1289 patients preoperatively diagnosed with lung cancer, the diagnoses were confirmed postoperatively in 1282. Among the 466 patients preoperatively undiagnosed, 435 were definitively diagnosed with lung cancer, and there were 383 p-stage I disease patients. There were 38 noncancerous patients who underwent surgery with a diagnosis of confirmed or suspected lung cancer. Among the 1755 patients who underwent surgery, 1717 were pathologically confirmed with lung cancer, and the diagnostic yield of preoperative CT imaging was 97.8%. Among the 466 patients who were preoperatively undiagnosed, 435 were compatible with the predicted findings of lung cancer. Diagnostic yields of preoperative CT imaging based on clinical evaluation are sufficiently reliable. Diagnostic surgical intervention was acceptable when the clinical probability of malignancy was high and the malignancy was pathologically undiagnosed. (author)

  18. Sixth Computational Biomechanics for Medicine Workshop

    CERN Document Server

    Nielsen, Poul MF; Miller, Karol; Computational Biomechanics for Medicine : Deformation and Flow

    2012-01-01

    One of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. Computational Biomechanics for Medicine: Deformation and Flow collects the papers from the Sixth Computational Biomechanics for Medicine Workshop held in Toronto in conjunction with the Medical Image Computing and Computer Assisted Intervention conference. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.

  19. Creating vascular models by postprocessing computed tomography angiography images: a guide for anatomical education.

    Science.gov (United States)

    Govsa, Figen; Ozer, Mehmet Asim; Sirinturk, Suzan; Eraslan, Cenk; Alagoz, Ahmet Kemal

    2017-08-01

    A new application of teaching anatomy includes the use of computed tomography angiography (CTA) images to create clinically relevant three-dimensional (3D) printed models. The purpose of this article is to review recent innovations on the process and the application of 3D printed models as a tool for using under and post-graduate medical education. Images of aortic arch pattern received by CTA were converted into 3D images using the Google SketchUp free software and were saved in stereolithography format. Using a 3D printer (Makerbot), a model mode polylactic acid material was printed. A two-vessel left aortic arch was identified consisting of the brachiocephalic trunk and left subclavian artery. The life-like 3D models were rotated 360° in all axes in hand. The early adopters in education and clinical practices have embraced the medical imaging-guided 3D printed anatomical models for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between the anatomical structures. Printed vascular models are used to assist in preoperative planning, develop intraoperative guidance tools, and to teach patients surgical trainees in surgical practice.

  20. Computer-assisted surgery for screw insertion into the distal sesamoid bone in horses: an in vitro study.

    Science.gov (United States)

    Gygax, Diego; Lischer, Christoph; Auer, Joerg A

    2006-10-01

    To compare the precision of computer-assisted surgery with a conventional technique (CV) using a special guiding device for screw insertion into the distal sesamoid bone in horses. In vitro experimental study. Cadaveric forelimb specimens. Insertion of a 3.5 mm cortex screw in lag fashion along the longitudinal axis of intact (non-fractured) distal sesamoid bones was evaluated in 2 groups (8 limbs each): CV and computer-assisted surgery (CAS). For CV, the screw was inserted using a special guiding device and fluoroscopy, whereas for CAS, the screw was inserted using computer-assisted navigation. The accuracy of screw placement was verified by radiography, computed tomography, and specimen dissection. Surgical precision was better in CAS compared with CV. CAS improves the accuracy of lateromedial screw insertion, in lag fashion, into the distal sesamoid bone. The CAS technique should be considered for improved accuracy of screw insertion in fractures of the distal sesamoid bone.

  1. Image-guided pleural biopsy: diagnostic yield and complications

    International Nuclear Information System (INIS)

    Benamore, R.E.; Scott, K.; Richards, C.J.; Entwisle, J.J.

    2006-01-01

    Background: Pleural biopsy and cytology are standard procedures for the investigation of pleural disease. Recent medical literature has suggested that image-guided pleural biopsy shows improved sensitivity for the diagnosis of pleural malignancy, when compared with the more commonly performed reverse bevel needle biopsy such as Abrams' needle. In our centre there has been an increasing trend towards performing image-guided pleural biopsies, and to our knowledge there is no large published series documenting the complication rate and diagnostic yield. Methods: The radiology and pathology databases were searched for all image-guided [computed tomography (CT) and ultrasound (US)] pleural biopsies from January 2001 to December 2004. All imaging and histology were reviewed, and final diagnostic information about patients was obtained from the respiratory multidisciplinary team database and patient notes. A record was made of complications following biopsy, presence of pleura in the biopsy, and adequacy of tissue for histological diagnosis. Results: A total of 82 patients underwent 85 image-guided pleural biopsies over a 4-year period. 80 cases were performed under CT and five under US guidance. The rate of new pneumothorax detected by chest radiography was 4.7%. No patient required a chest drain or blood transfusion to treat complications. In 10 (12%) cases, there was inadequate tissue to reach a confident histological diagnosis and in eight (9%) of these, no pleura was present. Assuming all suspicious and inadequate biopsies are treated as benign, which is the worst case scenario, image-guided pleural biopsy has a sensitivity and specificity of 76% and 100%, respectively, for the diagnosis of malignant disease. Conclusions: Image-guided pleural biopsy is a safe procedure with few associated complications and has a higher sensitivity than previously published series for reverse cutting needle biopsy in the diagnosis of malignant pleural disease

  2. Image-guided pleural biopsy: diagnostic yield and complications

    Energy Technology Data Exchange (ETDEWEB)

    Benamore, R.E. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom)]. E-mail: rachelbenamore@doctors.org.uk; Scott, K. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom); Richards, C.J. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom); Entwisle, J.J. [Department of Radiology and Department of Histopathology, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester (United Kingdom)

    2006-08-15

    Background: Pleural biopsy and cytology are standard procedures for the investigation of pleural disease. Recent medical literature has suggested that image-guided pleural biopsy shows improved sensitivity for the diagnosis of pleural malignancy, when compared with the more commonly performed reverse bevel needle biopsy such as Abrams' needle. In our centre there has been an increasing trend towards performing image-guided pleural biopsies, and to our knowledge there is no large published series documenting the complication rate and diagnostic yield. Methods: The radiology and pathology databases were searched for all image-guided [computed tomography (CT) and ultrasound (US)] pleural biopsies from January 2001 to December 2004. All imaging and histology were reviewed, and final diagnostic information about patients was obtained from the respiratory multidisciplinary team database and patient notes. A record was made of complications following biopsy, presence of pleura in the biopsy, and adequacy of tissue for histological diagnosis. Results: A total of 82 patients underwent 85 image-guided pleural biopsies over a 4-year period. 80 cases were performed under CT and five under US guidance. The rate of new pneumothorax detected by chest radiography was 4.7%. No patient required a chest drain or blood transfusion to treat complications. In 10 (12%) cases, there was inadequate tissue to reach a confident histological diagnosis and in eight (9%) of these, no pleura was present. Assuming all suspicious and inadequate biopsies are treated as benign, which is the worst case scenario, image-guided pleural biopsy has a sensitivity and specificity of 76% and 100%, respectively, for the diagnosis of malignant disease. Conclusions: Image-guided pleural biopsy is a safe procedure with few associated complications and has a higher sensitivity than previously published series for reverse cutting needle biopsy in the diagnosis of malignant pleural disease.

  3. Improved resection and prolonged overall survival with PD-1-IRDye800CW fluorescence probe-guided surgery and PD-1 adjuvant immunotherapy in 4T1 mouse model

    Directory of Open Access Journals (Sweden)

    Du Y

    2017-11-01

    Full Text Available Yang Du,1,2,* Ting Sun,3,* Xiaolong Liang,4,* Yuan Li,3 Zhengyu Jin,3 Huadan Xue,3 Yihong Wan,5 Jie Tian1,2 1CAS Key Laboratory of Molecular Imaging, 2The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, 3Department of Radiology, Peking Union Medical College Hospital, 4Department of Ultrasound, Peking University Third Hospital, Beijing, China; 5Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA *These authors contributed equally to this work Abstract: An intraoperative technique to accurately identify microscopic tumor residuals could decrease the risk of positive surgical margins. Several lines of evidence support the expression and immunotherapeutic effect of PD-1 in breast cancer. Here, we sought to develop a fluorescence-labeled PD-1 probe for in vivo breast tumor imaging and image-guided surgery. The efficacy of PD-1 monoclonal antibody (PD-1 mAb as adjuvant immunotherapy after surgery was also assessed. PD-1-IRDye800CW was developed and examined for its application in tumor imaging and image-guided tumor resection in an immunocompetent 4T1 mouse tumor model. Fluorescence molecular imaging was performed to monitor probe biodistribution and intraoperative imaging. Bioluminescence imaging was performed to monitor tumor growth and evaluate postsurgical tumor residuals, recurrences, and metastases. The PD-1-IRDye800CW exhibited a specific signal at the tumor region compared with the IgG control. Furthermore, PD-1-IRDye800CW-guided surgery combined with PD-1 adjuvant immunotherapy inhibited tumor regrowth and microtumor metastases and thus improved survival rate. Our study demonstrates the feasibility of using PD-1-IRDye800CW for breast tumor imaging and image-guided tumor resection. Moreover, PD-1 mAb adjuvant immunotherapy reduces cancer recurrences and metastases emanating from tumor residuals. Keywords: PD-1, programmed cell

  4. Surgical neuro navigator guided by preoperative magnetic resonance images, based on a magnetic position sensor;Neuronavegador cirurgico guiado por imagens de ressonancia magnetica pre-operatoria, baseado num transdutor de posicao magnetico

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana Paula; Siqueira, Rogerio Bulha; Carneiro, Antonio Adilton Oliveira, E-mail: adilton@ffclrp.usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica; Oliveira, Lucas Ferrari de [Universidade Federal de Pelotas (UFPel), RS (Brazil). Dept. de Informatica; Machado, Helio Rubens [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Neurocirurgia

    2009-08-15

    Image guided neurosurgery enables the neurosurgeon to navigate inside the patient's brain using pre-operative images as a guide and a tracking system, during a surgery. Following a calibration procedure, three-dimensional position and orientation of surgical instruments may be transmitted to computer. The spatial information is used to access a region of interest, in the pre-operative images, displaying them to the neurosurgeon during the surgical procedure. However, when a craniotomy is involved and the lesion is removed, movements of brain tissue can be a significant source of error in these conventional navigation systems. The architecture implemented in this work intends the development of a system to surgical planning and orientation guided by ultrasound image. For surgical orientation, the software developed allows the extraction of slices from the volume of the magnetic resonance images (MRI) with orientation supplied by a magnetic position sensor (Polhemus{sup R}). The slices extracted with this software are important because they show the cerebral area that the neurosurgeon is observing during the surgery, and besides they can be correlated with the intra-operative ultrasound images to detect and to correct the deformation of brain tissue during the surgery. Also, a tool for per-operative navigation was developed, providing three orthogonal planes through the image volume. In the methodology used for the software implementation, the Python{sup tm} programming language and the Visualization Toolkit (VTK) graphics library were used. The program to extract slices of the MRI volume allowed the application of transformations in the volume, using coordinates supplied by the position sensor. (author)

  5. A novel magnetic resonance imaging-compatible motor control method for image-guided robotic surgery

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Liao, Hongen; Kobayashi, Etsuko; Sakuma, Ichiro

    2006-01-01

    For robotic surgery assistance systems that use magnetic resonance imaging (MRI) for guidance, the problem of electromagnetic interference is common. Image quality is particularly degraded if motors are running during scanning. We propose a novel MRI-compatible method considering the pulse sequence of imaging. Motors are driven for a short time when the MRI system stops signal acquisition (i.e., awaiting relaxation of the proton), so the image does not contain noise from the actuators. The MRI system and motor are synchronized using a radio frequency pulse signal (8.5 MHz) as the trigger, which is acquired via a special antenna mounted near the scanner. This method can be widely applied because it only receives part of the scanning signal and neither hardware nor software of the MRI system needs to be changed. As a feasibility evaluation test, we compared the images and signal-to-noise ratios between the cases with and without this method, under the condition that a piezoelectric motor was driven during scanning as a noise source, which was generally used as a MRI-compatible actuator. The results showed no deterioration in image quality and the benefit of the new method even though the choice of available scanning sequences is limited. (author)

  6. Computer-assisted versus non-computer-assisted preoperative planning of corrective osteotomy for extra-articular distal radius malunions: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Stockmans Filip

    2010-12-01

    Full Text Available Abstract Background Malunion is the most common complication of distal radius fracture. It has previously been demonstrated that there is a correlation between the quality of anatomical correction and overall wrist function. However, surgical correction can be difficult because of the often complex anatomy associated with this condition. Computer assisted surgical planning, combined with patient-specific surgical guides, has the potential to improve pre-operative understanding of patient anatomy as well as intra-operative accuracy. For patients with malunion of the distal radius fracture, this technology could significantly improve clinical outcomes that largely depend on the quality of restoration of normal anatomy. Therefore, the objective of this study is to compare patient outcomes after corrective osteotomy for distal radius malunion with and without preoperative computer-assisted planning and peri-operative patient-specific surgical guides. Methods/Design This study is a multi-center randomized controlled trial of conventional planning versus computer-assisted planning for surgical correction of distal radius malunion. Adult patients with extra-articular malunion of the distal radius will be invited to enroll in our study. After providing informed consent, subjects will be randomized to two groups: one group will receive corrective surgery with conventional preoperative planning, while the other will receive corrective surgery with computer-assisted pre-operative planning and peri-operative patient specific surgical guides. In the computer-assisted planning group, a CT scan of the affected forearm as well as the normal, contralateral forearm will be obtained. The images will be used to construct a 3D anatomical model of the defect and patient-specific surgical guides will be manufactured. Outcome will be measured by DASH and PRWE scores, grip strength, radiographic measurements, and patient satisfaction at 3, 6, and 12 months

  7. A clinical pilot study of a modular video-CT augmentation system for image-guided skull base surgery

    Science.gov (United States)

    Liu, Wen P.; Mirota, Daniel J.; Uneri, Ali; Otake, Yoshito; Hager, Gregory; Reh, Douglas D.; Ishii, Masaru; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2012-02-01

    Augmentation of endoscopic video with preoperative or intraoperative image data [e.g., planning data and/or anatomical segmentations defined in computed tomography (CT) and magnetic resonance (MR)], can improve navigation, spatial orientation, confidence, and tissue resection in skull base surgery, especially with respect to critical neurovascular structures that may be difficult to visualize in the video scene. This paper presents the engineering and evaluation of a video augmentation system for endoscopic skull base surgery translated to use in a clinical study. Extension of previous research yielded a practical system with a modular design that can be applied to other endoscopic surgeries, including orthopedic, abdominal, and thoracic procedures. A clinical pilot study is underway to assess feasibility and benefit to surgical performance by overlaying CT or MR planning data in realtime, high-definition endoscopic video. Preoperative planning included segmentation of the carotid arteries, optic nerves, and surgical target volume (e.g., tumor). An automated camera calibration process was developed that demonstrates mean re-projection accuracy (0.7+/-0.3) pixels and mean target registration error of (2.3+/-1.5) mm. An IRB-approved clinical study involving fifteen patients undergoing skull base tumor surgery is underway in which each surgery includes the experimental video-CT system deployed in parallel to the standard-of-care (unaugmented) video display. Questionnaires distributed to one neurosurgeon and two otolaryngologists are used to assess primary outcome measures regarding the benefit to surgical confidence in localizing critical structures and targets by means of video overlay during surgical approach, resection, and reconstruction.

  8. 3D printing in orthognathic surgery − A literature review

    Directory of Open Access Journals (Sweden)

    Hsiu-Hsia Lin

    2018-07-01

    Full Text Available With the recent advances in three-dimensional (3D imaging, computer-assisted surgical planning and simulation are now regularly used for analysis of craniofacial structures and improved prediction of surgical outcomes in orthognathic surgery. A variety of patient-specific surgical guides and devices have been designed and manufactured using 3D printing technology, which rapidly gained widespread popularity to improve the outcomes. The article presents an overview of 3D printing technology for state-of-the-art application in orthognathic surgery and discusses the impacts on treatment feasibility and patient outcome. The current available literature regarding the use of 3D printing methods in orthognathic surgery including 3D computer-aided design/computer-aided manufacturing, rapid prototyping, additive manufacturing, 3D printing, 3D printed models, surgical occlusal splints, custom-made guides, templates and fixation plates is reviewed. A Medline, PubMed, ProQuest and ScienceDirect search was performed to find relevant articles over the past 10 years. A total of 318 articles were found, out of which 69 were publications addressing the topic of this study. An additional 9 hand-searched articles were added. From the review, we can conclude that the use of 3D printing methods in orthognathic surgery provide the benefit of optimal functional and aesthetic results, patient satisfaction, and precise translation of the treatment plan. Keywords: Orthognathic surgery, 3D printing, Computer-aided design, Computer-aided manufacturing, Rapid prototyping, Additive manufacturing

  9. Development of image-guided operation system having integrated information of the patient for procedure of endoscopic surgery of digestive tracts

    International Nuclear Information System (INIS)

    Hattori, Asaki; Suzuki, Naoki; Tanoue, Kazuo; Ieiri, Satoshi; Konishi, Kozo; Tomikawa, Morimasa; Kenmotsu, Hajime; Hashizume, Makoto

    2010-01-01

    This study reports the development of patient's integrated information-displaying system at image-guided, robotic peroral endoscopic operation of digestive tracts as well as the actual operative field for the operator not to look aside. The peroral endoscope has, at its top, a magnetic position sensor and 2 robotic manipulative forceps at right and left side to navigate the surgery through following 3 windows of superimposing display: the inner peritoneal 3D structure of the real operative field reconstructed from preoperative CT and MR images by volume rendering, presentation of the robot top tip in the structure above and in the preoperative CT or MR image as an ordinary navigation. Furthermore, the robot has a function to measure softness of its grabbing tissue which is displayed in the corresponding right and left superimposing windows, and signs like the real-time blood pressure and heart rate are also given in another window. All of the patient's integrated information-displaying can be handled at will during the operation. Improvement of user interface and of navigation display is further to be conducted. (T.T.)

  10. Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.

    Science.gov (United States)

    Handels, H; Ehrhardt, J

    2009-01-01

    Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or

  11. Comparison of corneal power obtained from VERION image-guided surgery system and four other devices

    Directory of Open Access Journals (Sweden)

    Lin HY

    2017-07-01

    Full Text Available Hung-Yuan Lin,1,* Hsin-Yang Chen,1,2,* Han Bor Fam,3 Ya-Jung Chuang,1 Ronald Yeoh,4 Pi-Jung Lin5 1Universal Eye Center, Zhongli Branch, Zhongli County, TaoYuan City, Taiwan, Republic of China; 2Ophthalmology Department, Ningbo First Hospital, Ningbo, Zhejiang Province, People’s Republic of China; 3Ophthalmology Department, Tan Tock Seng Hospital, Jalan Tan Tock Seng, 4Ophthalmology Department, Eye and Retina Surgeons, Camden Medical Centre, Singapore; 5Universal Eye Center, Xinnan Branch, Taipei City, Taiwan, Republic of China *These authors contributed equally to this work Purpose: To assess the corneal keratometric values obtained using the VERION image-guided surgery system and other devices.Methods: This study evaluated the right eyes of 115 cataract patients before intraocular lens (IOL implantation through consecutive tests using 5 devices: VERION Reference Unit , Placido-based corneal topography (OPD-Scan III, monochromatic light-emitting diodes (LenStar LS900 and AL-Scan, and rotary prism technology (auto kerato-refractometer KR-8800. Analyzed parameters were corneal steep and flat keratometric values (Ks and Kf and corneal astigmatism and axis. These parameters were evaluated using the one-sample two-tailed t-test and the 95% limits of agreement (95% LOAs between the devices.Results: The mean corneal cylinder value measurements were -0.97±0.63 D, -0.88± 0.60 D, -0.90±0.69 D, -0.90±0.67 D, and -0.83±0.60 D with VERION, LenStar, AL-Scan (2.4 mm, OPD III, and KR-8800, respectively. Only KR-8800 showed a significant difference from VERION in the corneal cylinder value (P<0.05. The mean differences in the Kf and Ks of VERION compared to those of OPD III were 0.18±0.45 D and 0.17±0.38 D (P<0.05, respectively. The 95% LOAs of Bland–Altman analysis for the corneal astigmatism axis of the VERION with LenStar, AL-Scan (2.4 mm, OPD III, and KR-8800 were -26.25° to 58.71°, -20.61° to 47.44°, -25.03° to 58.98°, and -27.85

  12. 3D object reconstruction in image-guided interventions using multi-view X-ray

    NARCIS (Netherlands)

    Papalazarou, C.

    2012-01-01

    In the last two decades, minimally-invasive interventions have replaced traditional surgery in many clinical scenarios. In these interventions, the doctor manipulates small devices inside the patient through a small incision, while guided by live imaging. In many cases, this guidance is provided by

  13. Localization and registration accuracy in image guided neurosurgery: a clinical study

    International Nuclear Information System (INIS)

    Shamir, Reuben R.; Joskowicz, Leo; Spektor, Sergey; Shoshan, Yigal

    2009-01-01

    To measure and compare the clinical localization and registration errors in image-guided neurosurgery, with the purpose of revising current assumptions. Twelve patients who underwent brain surgeries with a navigation system were randomly selected. A neurosurgeon localized and correlated the landmarks on preoperative MRI images and on the intraoperative physical anatomy with a tracked pointer. In the laboratory, we generated 612 scenarios in which one landmark pair was defined as the target and the remaining ones were used to compute the registration transformation. Four errors were measured: (1) fiducial localization error (FLE); (2) target registration error (TRE); (3) fiducial registration error (FRE); (4) Fitzpatrick's target registration error estimation (F-TRE). We compared the different errors and computed their correlation. The image and physical FLE ranges were 0.5-2.0 and 1.6-3.0 mm, respectively. The measured TRE, FRE and F-TRE were 4.1±1.6, 3.9±1.2, and 3.7±2.2 mm, respectively. Low correlations of 0.19 and 0.37 were observed between the FRE and TRE and between the F-TRE and the TRE, respectively. The differences of the FRE and F-TRE from the TRE were 1.3±1.0 mm (max=5.5 mm) and 1.3±1.2 mm (max=7.3 mm), respectively. Contrary to common belief, the FLE presents significant variations. Moreover, both the FRE and the F-TRE are poor indicators of the TRE in image-to-patient registration. (orig.)

  14. Systematic measurements of whole-body imaging dose distributions in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Hälg, Roger A.; Besserer, Jürgen; Schneider, Uwe

    2012-01-01

    Purpose: The full benefit of the increased precision of contemporary treatment techniques can only be exploited if the accuracy of the patient positioning is guaranteed. Therefore, more and more imaging modalities are used in the process of the patient setup in clinical routine of radiation therapy. The improved accuracy in patient positioning, however, results in additional dose contributions to the integral patient dose. To quantify this, absorbed dose measurements from typical imaging procedures involved in an image-guided radiation therapy treatment were measured in an anthropomorphic phantom for a complete course of treatment. The experimental setup, including the measurement positions in the phantom, was exactly the same as in a preceding study of radiotherapy stray dose measurements. This allows a direct combination of imaging dose distributions with the therapy dose distribution. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from imaging devices used with treatment machines from the manufacturers Accuray, Elekta, Siemens, and Varian and from computed tomography scanners from GE Healthcare were determined and the resulting effective dose was calculated. The list of investigated imaging techniques consisted of cone beam computed tomography (kilo- and megavoltage), megavoltage fan beam computed tomography, kilo- and megavoltage planar imaging, planning computed tomography with and without gating methods and planar scout views. Results: A conventional 3D planning CT resulted in an effective dose additional to the treatment stray dose of less than 1 mSv outside of the treated volume, whereas a 4D planning CT resulted in a 10 times larger dose. For a daily setup of the patient with two planar kilovoltage images or with a fan beam CT at the TomoTherapy unit, an additional effective dose outside of the treated volume of less than 0.4 mSv and 1

  15. [Impact of digital technology on clinical practices: perspectives from surgery].

    Science.gov (United States)

    Zhang, Y; Liu, X J

    2016-04-09

    Digital medical technologies or computer aided medical procedures, refer to imaging, 3D reconstruction, virtual design, 3D printing, navigation guided surgery and robotic assisted surgery techniques. These techniques are integrated into conventional surgical procedures to create new clinical protocols that are known as "digital surgical techniques". Conventional health care is characterized by subjective experiences, while digital medical technologies bring quantifiable information, transferable data, repeatable methods and predictable outcomes into clinical practices. Being integrated into clinical practice, digital techniques facilitate surgical care by improving outcomes and reducing risks. Digital techniques are becoming increasingly popular in trauma surgery, orthopedics, neurosurgery, plastic and reconstructive surgery, imaging and anatomic sciences. Robotic assisted surgery is also evolving and being applied in general surgery, cardiovascular surgery and orthopedic surgery. Rapid development of digital medical technologies is changing healthcare and clinical practices. It is therefore important for all clinicians to purposefully adapt to these technologies and improve their clinical outcomes.

  16. Reliability of computer designed surgical guides in six implant rehabilitations with two years follow-up.

    Science.gov (United States)

    Giordano, Mauro; Ausiello, Pietro; Martorelli, Massimo; Sorrentino, Roberto

    2012-09-01

    To evaluate the reliability and accuracy of computer-designed surgical guides in osseointegrated oral implant rehabilitation. Six implant rehabilitations, with a total of 17 implants, were completed with computer-designed surgical guides, performed with the master model developed by muco-compressive and muco-static impressions. In the first case, the surgical guide had exclusively mucosal support, in the second case exclusively dental support. For all six cases computer-aided surgical planning was performed by virtual analyses with 3D models obtained by dental scan DICOM data. The accuracy and stability of implant osseointegration over two years post surgery was then evaluated with clinical and radiographic examinations. Radiographic examination, performed with digital acquisitions (RVG - Radio Video graph) and parallel techniques, allowed two-dimensional feedback with a margin of linear error of 10%. Implant osseointegration was recorded for all the examined rehabilitations. During the clinical and radiographic post-surgical assessments, over the following two years, the peri-implant bone level was found to be stable and without appearance of any complications. The margin of error recorded between pre-operative positions assigned by virtual analysis and the post-surgical digital radiographic observations was as low as 0.2mm. Computer-guided implant surgery can be very effective in oral rehabilitations, providing an opportunity for the surgeon: (a) to avoid the necessity of muco-periosteal detachments and then (b) to perform minimally invasive interventions, whenever appropriate, with a flapless approach. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Automated landmark-guided deformable image registration.

    Science.gov (United States)

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-07

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency.

  18. Automated landmark-guided deformable image registration

    International Nuclear Information System (INIS)

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-01

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency. (paper)

  19. Volume-of-change cone-beam CT for image-guided surgery

    International Nuclear Information System (INIS)

    Lee, Junghoon; Stayman, J Webster; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A Jay; Siewerdsen, Jeffrey H; Prince, Jerry L

    2012-01-01

    C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D–2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRRs) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector. The VOCs were reconstructed from a varying number of images (10–66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15–20 images were used, allowing dose reduction by the factor of 10–20. (paper)

  20. Ultrasound-controlled neuronavigator-guided brain surgery.

    Science.gov (United States)

    Koivukangas, J; Louhisalmi, Y; Alakuijala, J; Oikarinen, J

    1993-07-01

    The development of a unique neurosurgical navigator is described and a preliminary series of seven cases of intracerebral lesions approached with the assistance of this neuronavigation system under ultrasound control is presented. The clinical series included five low-grade astrocytomas, one chronic intracerebral hematoma, and one porencephalic cyst. Management procedures included biopsy in all cases, drainage of the hematoma, and endoscopy and fenestration for the cyst. The features of the neuronavigation system are interactive reconstructions of preoperative computerized tomography and magnetic resonance imaging data, corresponding intraoperative ultrasound images, versatility of the interchangeable end-effector instruments, graphic presentation of instruments on the reconstructed images, and voice control of the system. The principle of a common axis in the reconstructed images served to align the navigational pointer, biopsy guide, endoscope guide, ultrasound transducer, and surgical microscope to the brain anatomy. Intraoperative ultrasound imaging helped to verify the accuracy of the neuronavigator and check the results of the procedures. The arm of the neuronavigation system served as a holder for instruments, such as the biopsy guide, endoscope guide, and ultrasound transducer, in addition to functioning as a navigational pointer. Also, the surgical microscope was aligned with the neuronavigator for inspection and biopsy of the hematoma capsule to rule out tumor etiology. Voice control freed the neurosurgeon from manual exercises during start-up and calibration of the system.

  1. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer

    Science.gov (United States)

    Hata, Nobuhiko; Song, Sang-Eun; Olubiyi, Olutayo; Arimitsu, Yasumichi; Fujimoto, Kosuke; Kato, Takahisa; Tuncali, Kemal; Tani, Soichiro; Tokuda, Junichi

    2016-01-01

    Purpose: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient’s whole body motion. Methods: Keeping the device’s minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient’s body, even in the presence of the patient’s frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors’ validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. Results: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth

  2. Application of cone beam computed tomography in facial imaging science

    Institute of Scientific and Technical Information of China (English)

    Zacharias Fourie; Janalt Damstra; Yijin Ren

    2012-01-01

    The use of three-dimensional (3D) methods for facial imaging has increased significantly over the past years.Traditional 2D imaging has gradually being replaced by 3D images in different disciplines,particularly in the fields of orthodontics,maxillofacial surgery,plastic and reconstructive surgery,neurosurgery and forensic sciences.In most cases,3D facial imaging overcomes the limitations of traditional 2D methods and provides the clinician with more accurate information regarding the soft-tissues and the underlying skeleton.The aim of this study was to review the types of imaging methods used for facial imaging.It is important to realize the difference between the types of 3D imaging methods as application and indications thereof may differ.Since 3D cone beam computed tomography (CBCT) imaging will play an increasingly importanl role in orthodontics and orthognathic surgery,special emphasis should be placed on discussing CBCT applications in facial evaluations.

  3. New applications of radio guided surgery in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Bitencourt, Almir Galvao Vieira; Pinto, Paula Nicole Vieira; Martins, Eduardo Bruno Lobato; Chojniak, Rubens [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Dept. of Image], e-mail: almirgvb@yahoo.com.br; Lima, Eduardo Nobrega Pereira [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Nuclear Medicine

    2009-07-01

    Objective: To report oncological cases (excluding those related to breast cancer) for which radioguided surgery has been used in combination with the Radioguided Occult Lesion Localization technique. Introduction: Radioguided surgery enables a surgeon to identify lesions or tissues that have been preoperatively marked with radioactive substances. The Radioguided Occult Lesion Localization technique has been widely used to identify the sentinel lymph node and occult lesions in patients with breast cancer. However, few studies have reported the use of this technique for non-breast cancer pathologies. Methodology: In all cases, injection of Technetium-99m sulfur colloid was performed, directly inside or near by the suspicious lesion, guided by ultrasound or computed tomography, up to 36 hours prior to the surgical procedure. Intraoperative lesion detection was carried out using a gamma-probe. Results: We report five oncology cases in which preoperative markings of the lesions were carried out using the Radioguided Occult Lesion Localization technique. The patients presented with the following: recurrence of renal cell carcinoma, cervical recurrence of papillary carcinoma of the thyroid, recurrence of retroperitoneal sarcoma, lesions of the popliteal fossa, and recurrence of rhabdomyosarcoma of a thigh. In each case, the lesions that were marked preoperatively were ultimately successfully excised. Conclusions: Radioguided surgery has proven to be a safe and effective alternative for the management of oncology patients. The Radioguided Occult Lesion Localization technique can be useful in selected cases where suspect lesions may be difficult to identify intraoperatively, due to their dimensions or anatomical location. The procedure allows for more conservative excisions and reduces the surgery-related morbidity. (author)

  4. Treatment of Brodie's Syndrome using parasymphyseal distraction through virtual surgical planning and RP assisted customized surgical osteotomy guide-A mock surgery report

    Science.gov (United States)

    Dahake, Sandeep; Kuthe, Abhaykumar; Mawale, Mahesh

    2017-10-01

    This paper aims to describe virtual surgical planning (VSP), computer aided design (CAD) and rapid prototyping (RP) systems for the preoperative planning of accurate treatment of the Brodie's Syndrome. 3D models of the patient's maxilla and mandible were separately generated based on computed tomography (CT) image data and fabricated using RP. During the customized surgical osteotmy guide (CSOG) design process, the correct position was identified and the geometry of the CSOG was generated based on affected mandible of the patient and fabricated by a RP technique. Surgical approach such as preoperative planning and simulation of surgical procedures was performed using advanced software. The VSP and RP assisted CSOG was used to avoid the damage of the adjacent teeth and neighboring healthy tissues. Finally the mock surgery was performed on the biomodel (i.e. diseased RP model) of mandible with reference to the normal maxilla using osteotomy bur with the help of CSOG. Using this CSOG the exact osteotomy of the mandible and the accurate placement of the distractor were obtained. It ultimately improved the accuracy of the surgery in context of the osteotomy and distraction. The time required in cutting the mandible and placement of the distractor was found comparatively less than the regular free hand surgery.

  5. Fluorescence guided lymph node biopsy in large animals using direct image projection device

    Science.gov (United States)

    Ringhausen, Elizabeth; Wang, Tylon; Pitts, Jonathan; Akers, Walter J.

    2016-03-01

    The use of fluorescence imaging for aiding oncologic surgery is a fast growing field in biomedical imaging, revolutionizing open and minimally invasive surgery practices. We have designed, constructed, and tested a system for fluorescence image acquisition and direct display on the surgical field for fluorescence guided surgery. The system uses a near-infrared sensitive CMOS camera for image acquisition, a near-infra LED light source for excitation, and DLP digital projector for projection of fluorescence image data onto the operating field in real time. Instrument control was implemented in Matlab for image capture, processing of acquired data and alignment of image parameters with the projected pattern. Accuracy of alignment was evaluated statistically to demonstrate sensitivity to small objects and alignment throughout the imaging field. After verification of accurate alignment, feasibility for clinical application was demonstrated in large animal models of sentinel lymph node biopsy. Indocyanine green was injected subcutaneously in Yorkshire pigs at various locations to model sentinel lymph node biopsy in gynecologic cancers, head and neck cancer, and melanoma. Fluorescence was detected by the camera system during operations and projected onto the imaging field, accurately identifying tissues containing the fluorescent tracer at up to 15 frames per second. Fluorescence information was projected as binary green regions after thresholding and denoising raw intensity data. Promising results with this initial clinical scale prototype provided encouraging results for the feasibility of optical projection of acquired luminescence during open oncologic surgeries.

  6. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation

    International Nuclear Information System (INIS)

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Wong, John; Iordachita, Iulian; Siewerdsen, Jeffrey

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (‘tubular’ geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (‘pancake’ geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry

  7. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    Science.gov (United States)

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-07

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.

  8. Guided Surgery in de implantologie: een overzicht

    NARCIS (Netherlands)

    Tahmaseb, A.; Wismeijer, D.; Derksen, W.D.C.

    2015-01-01

    Het gebruik van Guided Surgery (computergeleide chirurgie) staat binnen de orale implantologie al jaren in de belangstelling van tandartsen en onderzoekers. Met betrekking tot de nauwkeurigheid van deze systemen lopen de klinische en wetenschappelijke resultaten uiteen. Ook zijn in de literatuur

  9. Students’ needs of Computer Science: learning about image processing

    Directory of Open Access Journals (Sweden)

    Juana Marlen Tellez Reinoso

    2009-12-01

    Full Text Available To learn the treatment to image, specifically in the application Photoshop Marinates is one of the objectives in the specialty of Degree in Education, Computer Sciencie, guided to guarantee the preparation of the students as future professional, being able to reach in each citizen of our country an Integral General Culture. With that purpose a computer application is suggested, of tutorial type, entitled “Learning Treatment to Image".

  10. Usefulness of automated biopsy guns in image-guided biopsy

    International Nuclear Information System (INIS)

    Lee, Jung Hyung; Rhee, Chang Soo; Lee, Sung Moon; Kim, Hong; Woo, Sung Ku; Suh, Soo Jhi

    1994-01-01

    To evaluate the usefulness of automated biopsy guns in image-guided biopsy of lung, liver, pancreas and other organs. Using automated biopsy devices, 160 biopsies of variable anatomic sites were performed: Biopsies were performed under ultrasonographic(US) guidance in 95 and computed tomographic (CT) guidance in 65. We retrospectively analyzed histologic results and complications. Specimens were adequate for histopathologic diagnosis in 143 of the 160 patients(89.4%)-Diagnostic tissue was obtained in 130 (81.3%), suggestive tissue obtained in 13(8.1%), and non-diagnostic tissue was obtained in 14(8.7%). Inadequate tissue was obtained in only 3(1.9%). There was no statistically significant difference between US-guided and CT-guided percutaneous biopsy. There was no occurrence of significant complication. We have experienced mild complications in only 5 patients-2 hematuria and 2 hematochezia in transrectal prostatic biopsy, and 1 minimal pneumothorax in CT-guided percutaneous lung biopsy. All of them were resolved spontaneously. The image-guided biopsy using the automated biopsy gun was a simple, safe and accurate method of obtaining adequate specimen for the histopathologic diagnosis

  11. Usefulness of automated biopsy guns in image-guided biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Hyung; Rhee, Chang Soo; Lee, Sung Moon; Kim, Hong; Woo, Sung Ku; Suh, Soo Jhi [School of Medicine, Keimyung University, Daegu (Korea, Republic of)

    1994-12-15

    To evaluate the usefulness of automated biopsy guns in image-guided biopsy of lung, liver, pancreas and other organs. Using automated biopsy devices, 160 biopsies of variable anatomic sites were performed: Biopsies were performed under ultrasonographic(US) guidance in 95 and computed tomographic (CT) guidance in 65. We retrospectively analyzed histologic results and complications. Specimens were adequate for histopathologic diagnosis in 143 of the 160 patients(89.4%)-Diagnostic tissue was obtained in 130 (81.3%), suggestive tissue obtained in 13(8.1%), and non-diagnostic tissue was obtained in 14(8.7%). Inadequate tissue was obtained in only 3(1.9%). There was no statistically significant difference between US-guided and CT-guided percutaneous biopsy. There was no occurrence of significant complication. We have experienced mild complications in only 5 patients-2 hematuria and 2 hematochezia in transrectal prostatic biopsy, and 1 minimal pneumothorax in CT-guided percutaneous lung biopsy. All of them were resolved spontaneously. The image-guided biopsy using the automated biopsy gun was a simple, safe and accurate method of obtaining adequate specimen for the histopathologic diagnosis.

  12. Accuracy of computer-guided implantation in a human cadaver model.

    Science.gov (United States)

    Yatzkair, Gustavo; Cheng, Alice; Brodie, Stan; Raviv, Eli; Boyan, Barbara D; Schwartz, Zvi

    2015-10-01

    To examine the accuracy of computer-guided implantation using a human cadaver model with reduced experimental variability. Twenty-eight (28) dental implants representing 12 clinical cases were placed in four cadaver heads using a static guided implantation template. All planning and surgeries were performed by one clinician. All radiographs and measurements were performed by two examiners. The distance of the implants from buccal and lingual bone and mesial implant or tooth was analyzed at the apical and coronal levels, and measurements were compared to the planned values. No significant differences were seen between planned and implanted measurements. Average deviation of an implant from its planning radiograph was 0.8 mm, which is within the range of variability expected from CT analysis. Guided implantation can be used safely with a margin of error of 1 mm. © 2014 The Authors. Clinical Oral Implants Research Published by John Wiley & Sons Ltd.

  13. Computer simulation of orthognathic surgery with video imaging

    Science.gov (United States)

    Sader, Robert; Zeilhofer, Hans-Florian U.; Horch, Hans-Henning

    1994-04-01

    Patients with extreme jaw imbalance must often undergo operative corrections. The goal of therapy is to harmonize the stomatognathic system and an aesthetical correction of the face profile. A new procedure will be presented which supports the maxillo-facial surgeon in planning the operation and which also presents the patient the result of the treatment by video images. Once an x-ray has been digitized it is possible to produce individualized cephalometric analyses. Using a ceph on screen, all current orthognathic operations can be simulated, whereby the bony segments are moved according to given parameters, and a new soft tissue profile can be calculated. The profile of the patient is fed into the computer by way of a video system and correlated to the ceph. Using the simulated operation the computer calculates a new video image of the patient which presents the expected postoperative appearance. In studies of patients treated between 1987-91, 76 out of 121 patients were able to be evaluated. The deviation in profile change varied between .0 and 1.6mm. A side effect of the practical applications was an increase in patient compliance.

  14. Ultrasound-guided image fusion with computed tomography and magnetic resonance imaging. Clinical utility for imaging and interventional diagnostics of hepatic lesions

    International Nuclear Information System (INIS)

    Clevert, D.A.; Helck, A.; Paprottka, P.M.; Trumm, C.; Reiser, M.F.; Zengel, P.

    2012-01-01

    Abdominal ultrasound is often the first-line imaging modality for assessing focal liver lesions. Due to various new ultrasound techniques, such as image fusion, global positioning system (GPS) tracking and needle tracking guided biopsy, abdominal ultrasound now has great potential regarding detection, characterization and treatment of focal liver lesions. Furthermore, these new techniques will help to improve the clinical management of patients before and during interventional procedures. This article presents the principle and clinical impact of recently developed techniques in the field of ultrasound, e.g. image fusion, GPS tracking and needle tracking guided biopsy and discusses the results based on a feasibility study on 20 patients with focal hepatic lesions. (orig.) [de

  15. COMPUTERS IN SURGERY

    African Journals Online (AJOL)

    BODE

    Key words: Computers, surgery, applications. Introduction ... With improved memory, speed and processing power in an ever more compact ... with picture and voice embedment to wit. With the ... recall the tedium of anatomy, physiology and.

  16. 3D printing in orthognathic surgery - A literature review.

    Science.gov (United States)

    Lin, Hsiu-Hsia; Lonic, Daniel; Lo, Lun-Jou

    2018-07-01

    With the recent advances in three-dimensional (3D) imaging, computer-assisted surgical planning and simulation are now regularly used for analysis of craniofacial structures and improved prediction of surgical outcomes in orthognathic surgery. A variety of patient-specific surgical guides and devices have been designed and manufactured using 3D printing technology, which rapidly gained widespread popularity to improve the outcomes. The article presents an overview of 3D printing technology for state-of-the-art application in orthognathic surgery and discusses the impacts on treatment feasibility and patient outcome. The current available literature regarding the use of 3D printing methods in orthognathic surgery including 3D computer-aided design/computer-aided manufacturing, rapid prototyping, additive manufacturing, 3D printing, 3D printed models, surgical occlusal splints, custom-made guides, templates and fixation plates is reviewed. A Medline, PubMed, ProQuest and ScienceDirect search was performed to find relevant articles over the past 10 years. A total of 318 articles were found, out of which 69 were publications addressing the topic of this study. An additional 9 hand-searched articles were added. From the review, we can conclude that the use of 3D printing methods in orthognathic surgery provide the benefit of optimal functional and aesthetic results, patient satisfaction, and precise translation of the treatment plan. Copyright © 2018. Published by Elsevier B.V.

  17. [Modern technologies in cranio-maxillofacial surgery].

    Science.gov (United States)

    Lübbers, Heinz-Theo; Matthews, Felix; Kruse, Astrid L

    2014-02-26

    Modern technologies are influencing medicine everyday. The oral and maxillofacial surgery meet the worlds from medicine and dentistry. So technologies from both fields are utilized. This article provides an overview about technologies in clinical use, which are typical for the specialty. Their principles and indications are described as well as benefits and limitations. Based on Cone Beam Computed Tomography image fusion and mirroring techniques are explained as well as patient specific models and implants, template guided and free surgical navigation with and without intraoperative three-dimensional imaging. An overall assessment reveals further need of research regarding indications and patient benefit.

  18. Just-in-time tomography (JiTT): a new concept for image-guided radiation therapy

    International Nuclear Information System (INIS)

    Pang, G; Rowlands, J A

    2005-01-01

    Soft-tissue target motion is one of the main concerns in high-precision radiation therapy. Cone beam computed tomography (CBCT) has been developed recently to image soft-tissue targets in the treatment room and guide the radiation therapy treatment. However, due to its relatively long image acquisition time the CBCT approach cannot provide images of the target at the instant of the treatment and thus it is not adequate for imaging targets with intrafraction motion. In this note, a new approach for image-guided radiation therapy-just-in-time tomography (JiTT)-is proposed. Differing from CBCT, JiTT takes much less time to generate the needed tomographical, beam's-eye-view images of the treatment target at the right moment to guide the radiation therapy treatment. (note)

  19. Value of MR contrast media in image-guided body interventions.

    Science.gov (United States)

    Saeed, Maythem; Wilson, Mark

    2012-01-28

    In the past few years, there have been multiple advances in magnetic resonance (MR) instrumentation, in vivo devices, real-time imaging sequences and interventional procedures with new therapies. More recently, interventionists have started to use minimally invasive image-guided procedures and local therapies, which reduce the pain from conventional surgery and increase drug effectiveness, respectively. Local therapy also reduces the systemic dose and eliminates the toxic side effects of some drugs to other organs. The success of MR-guided procedures depends on visualization of the targets in 3D and precise deployment of ablation catheters, local therapies and devices. MR contrast media provide a wealth of tissue contrast and allows 3D and 4D image acquisitions. After the development of fast imaging sequences, the clinical applications of MR contrast media have been substantially expanded to include pre- during- and post-interventions. Prior to intervention, MR contrast media have the potential to localize and delineate pathologic tissues of vital organs, such as the brain, heart, breast, kidney, prostate, liver and uterus. They also offer other options such as labeling therapeutic agents or cells. During intervention, these agents have the capability to map blood vessels and enhance the contrast between the endovascular guidewire/catheters/devices, blood and tissues as well as direct therapies to the target. Furthermore, labeling therapeutic agents or cells aids in visualizing their delivery sites and tracking their tissue distribution. After intervention, MR contrast media have been used for assessing the efficacy of ablation and therapies. It should be noted that most image-guided procedures are under preclinical research and development. It can be concluded that MR contrast media have great value in preclinical and some clinical interventional procedures. Future applications of MR contrast media in image-guided procedures depend on their safety, tolerability

  20. Recent advances in computational methods and clinical applications for spine imaging

    CERN Document Server

    Glocker, Ben; Klinder, Tobias; Li, Shuo

    2015-01-01

    This book contains the full papers presented at the MICCAI 2014 workshop on Computational Methods and Clinical Applications for Spine Imaging. The workshop brought together scientists and clinicians in the field of computational spine imaging. The chapters included in this book present and discuss the new advances and challenges in these fields, using several methods and techniques in order to address more efficiently different and timely applications involving signal and image acquisition, image processing and analysis, image segmentation, image registration and fusion, computer simulation, image based modeling, simulation and surgical planning, image guided robot assisted surgical and image based diagnosis. The book also includes papers and reports from the first challenge on vertebra segmentation held at the workshop.

  1. Image Guided Radiation Therapy Using Synthetic Computed Tomography Images in Brain Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Ryan G. [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan (United States); Kim, Joshua P.; Zheng, Weili [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan (United States); Glide-Hurst, Carri, E-mail: churst2@hfhs.org [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan (United States)

    2016-07-15

    Purpose: The development of synthetic computed tomography (CT) (synCT) derived from magnetic resonance (MR) images supports MR-only treatment planning. We evaluated the accuracy of synCT and synCT-generated digitally reconstructed radiographs (DRRs) relative to CT and determined their performance for image guided radiation therapy (IGRT). Methods and Materials: Magnetic resonance simulation (MR-SIM) and CT simulation (CT-SIM) images were acquired of an anthropomorphic skull phantom and 12 patient brain cancer cases. SynCTs were generated using fluid attenuation inversion recovery, ultrashort echo time, and Dixon data sets through a voxel-based weighted summation of 5 tissue classifications. The DRRs were generated from the phantom synCT, and geometric fidelity was assessed relative to CT-generated DRRs through bounding box and landmark analysis. An offline retrospective analysis was conducted to register cone beam CTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system. Planar MV and KV images (n=37) were rigidly registered to synCT and CT DRRs using an in-house script. Planar and volumetric registration reproducibility was assessed and margin differences were characterized by the van Herk formalism. Results: Bounding box and landmark analysis of phantom synCT DRRs were within 1 mm of CT DRRs. Absolute planar registration shift differences ranged from 0.0 to 0.7 mm for phantom DRRs on all treatment platforms and from 0.0 to 0.4 mm for volumetric registrations. For patient planar registrations, the mean shift differences were 0.4 ± 0.5 mm (range, −0.6 to 1.6 mm), 0.0 ± 0.5 mm (range, −0.9 to 1.2 mm), and 0.1 ± 0.3 mm (range, −0.7 to 0.6 mm) for the superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) axes, respectively. The mean shift differences in volumetric registrations were 0.6 ± 0.4 mm (range, −0.2 to 1.6 mm), 0.2 ± 0.4 mm (range, −0.3 to 1.2 mm), and 0.2 ± 0

  2. Image Guided Radiation Therapy Using Synthetic Computed Tomography Images in Brain Cancer

    International Nuclear Information System (INIS)

    Price, Ryan G.; Kim, Joshua P.; Zheng, Weili; Chetty, Indrin J.; Glide-Hurst, Carri

    2016-01-01

    Purpose: The development of synthetic computed tomography (CT) (synCT) derived from magnetic resonance (MR) images supports MR-only treatment planning. We evaluated the accuracy of synCT and synCT-generated digitally reconstructed radiographs (DRRs) relative to CT and determined their performance for image guided radiation therapy (IGRT). Methods and Materials: Magnetic resonance simulation (MR-SIM) and CT simulation (CT-SIM) images were acquired of an anthropomorphic skull phantom and 12 patient brain cancer cases. SynCTs were generated using fluid attenuation inversion recovery, ultrashort echo time, and Dixon data sets through a voxel-based weighted summation of 5 tissue classifications. The DRRs were generated from the phantom synCT, and geometric fidelity was assessed relative to CT-generated DRRs through bounding box and landmark analysis. An offline retrospective analysis was conducted to register cone beam CTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system. Planar MV and KV images (n=37) were rigidly registered to synCT and CT DRRs using an in-house script. Planar and volumetric registration reproducibility was assessed and margin differences were characterized by the van Herk formalism. Results: Bounding box and landmark analysis of phantom synCT DRRs were within 1 mm of CT DRRs. Absolute planar registration shift differences ranged from 0.0 to 0.7 mm for phantom DRRs on all treatment platforms and from 0.0 to 0.4 mm for volumetric registrations. For patient planar registrations, the mean shift differences were 0.4 ± 0.5 mm (range, −0.6 to 1.6 mm), 0.0 ± 0.5 mm (range, −0.9 to 1.2 mm), and 0.1 ± 0.3 mm (range, −0.7 to 0.6 mm) for the superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) axes, respectively. The mean shift differences in volumetric registrations were 0.6 ± 0.4 mm (range, −0.2 to 1.6 mm), 0.2 ± 0.4 mm (range, −0.3 to 1.2 mm), and 0.2 ± 0

  3. Using surface markers for MRI guided breast conserving surgery: a feasibility survey

    Science.gov (United States)

    Ebrahimi, Mehran; Siegler, Peter; Modhafar, Amen; Holloway, Claire M. B.; Plewes, Donald B.; Martel, Anne L.

    2014-04-01

    Breast MRI is frequently performed prior to breast conserving surgery in order to assess the location and extent of the lesion. Ideally, the surgeon should also be able to use the image information during surgery to guide the excision and this requires that the MR image is co-registered to conform to the patient’s position on the operating table. Recent progress in MR imaging techniques has made it possible to obtain high quality images of the patient in the supine position which significantly reduces the complexity of the registration task. Surface markers placed on the breast during imaging can be located during surgery using an external tracking device and this information can be used to co-register the images to the patient. There remains the problem that in most clinical MR scanners the arm of the patient has to be placed parallel to the body whereas the arm is placed perpendicular to the patient during surgery. The aim of this study is to determine the accuracy of co-registration based on a surface marker approach and, in particular, to determine what effect the difference in a patient’s arm position makes on the accuracy of tumour localization. Obtaining a second MRI of the patient where the patient’s arm is perpendicular to body axes (operating room position) is not possible. Instead we obtain a secondary MRI scan where the patient’s arm is above the patient’s head to validate the registration. Five patients with enhancing lesions ranging from 1.5 to 80 cm3 in size were imaged using contrast enhanced MRI with their arms in two positions. A thin-plate spline registration scheme was used to match these two configurations. The registration algorithm uses the surface markers only and does not employ the image intensities. Tumour outlines were segmented and centre of mass (COM) displacement and Dice measures of lesion overlap were calculated. The relationship between the number of markers used and the COM-displacement was also studied. The lesion COM

  4. Using surface markers for MRI guided breast conserving surgery: a feasibility survey

    International Nuclear Information System (INIS)

    Ebrahimi, Mehran; Siegler, Peter; Modhafar, Amen; Martel, Anne L; Holloway, Claire M B; Plewes, Donald B

    2014-01-01

    Breast MRI is frequently performed prior to breast conserving surgery in order to assess the location and extent of the lesion. Ideally, the surgeon should also be able to use the image information during surgery to guide the excision and this requires that the MR image is co-registered to conform to the patient’s position on the operating table. Recent progress in MR imaging techniques has made it possible to obtain high quality images of the patient in the supine position which significantly reduces the complexity of the registration task. Surface markers placed on the breast during imaging can be located during surgery using an external tracking device and this information can be used to co-register the images to the patient. There remains the problem that in most clinical MR scanners the arm of the patient has to be placed parallel to the body whereas the arm is placed perpendicular to the patient during surgery. The aim of this study is to determine the accuracy of co-registration based on a surface marker approach and, in particular, to determine what effect the difference in a patient’s arm position makes on the accuracy of tumour localization. Obtaining a second MRI of the patient where the patient’s arm is perpendicular to body axes (operating room position) is not possible. Instead we obtain a secondary MRI scan where the patient’s arm is above the patient’s head to validate the registration. Five patients with enhancing lesions ranging from 1.5 to 80 cm 3 in size were imaged using contrast enhanced MRI with their arms in two positions. A thin-plate spline registration scheme was used to match these two configurations. The registration algorithm uses the surface markers only and does not employ the image intensities. Tumour outlines were segmented and centre of mass (COM) displacement and Dice measures of lesion overlap were calculated. The relationship between the number of markers used and the COM-displacement was also studied. The lesion

  5. A feasibility study of NIR fluorescent image-guided surgery in head and neck cancer based on the assessment of optimum surgical time as revealed through dynamic imaging

    Directory of Open Access Journals (Sweden)

    Yokoyama J

    2013-04-01

    Full Text Available Junkichi Yokoyama,* Mitsuhisa Fujimaki,* Shinichi Ohba, Takashi Anzai, Ryota Yoshii, Shin Ito, Masataka Kojima, Katsuhisa IkedaDepartment of Otolaryngology-Head and Neck Surgery, Juntendo University School of Medicine, Tokyo, Japan *These authors contributed equally to this study Background: In order to minimize surgical stress and preserve organs, endoscopic or robotic surgery is often performed when conducting head and neck surgery. However, it is impossible to physically touch tumors or to observe diffusely invaded deep organs through the procedure of endoscopic or robotic surgery. In order to visualize and safely resect tumors even in these cases, we propose using an indocyanine green (ICG fluorescence method for navigation surgery in head and neck cancer. Objective: To determine the optimum surgical time for tumor resection after the administration of ICG based on the investigation of dynamic ICG fluorescence imaging. Methods: Nine patients underwent dynamic ICG fluorescence imaging for 360 minutes, assessing tumor visibility at 10, 30, 60, 120, 180, and 360 minutes. All cases were scored according to near-infrared (NIR fluorescence imaging visibility scored from 0 to 5. Results: Dynamic NIR fluorescence imaging under the HyperEye Medical System indicated that the greatest contrast in fluorescent images between tumor and normal tissue could be observed from 30 minutes to 1 hour after the administration of ICG. The optimum surgical time was determined to be between 30 minutes to 2 hours after ICG injection. These findings are particularly useful for detection and safe resection of tumors invading the parapharyngeal space. Conclusion: ICG fluorescence imaging is effective for the detection of head and neck cancer. Preliminary findings suggest that the optimum timing for surgery is from 30 minutes to 2 hours after the ICG injection. Keywords: indocyanine green (ICG, navigation surgery, robotic surgery, endoscopic surgery, minimally invasive

  6. Improving CT-guided transthoracic biopsy of mediastinal lesions by diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcos Duarte; TyngI, Chiang Cheng; Bitencourt, Almir Galvao Vieira; Gross, Jefferson Luiz; Zurstrassen, Charles Edouard, E-mail: marcosduarte500@gmail.com [AC Camargo Cancer Center, Sao Paulo, SP (Brazil); Hochhegger, Bruno [Universidade Federal de Ciencias da Saude de Porto Alegre (UFCSPA), RS (Brazil). Dept. de Radiologia; Benveniste, Marcelo Felipe Kuperman; Odisio, Bruno Calazans [University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Marchiori, Edson [Universidade Federal do Rio de Janeiro (UFRJ), Petropolis, RJ (Brazil)

    2014-11-15

    Objectives: to evaluate the preliminary results obtained using diffusion-weighted magnetic resonance imaging and the apparent diffusion coefficient for planning computed tomography-guided biopsies of selected mediastinal lesions. Methods: eight patients with mediastinal lesions suspicious for malignancy were referred for computed tomography-guided biopsy. Diffusion-weighted magnetic resonance imaging and apparent diffusion coefficient measurement were performed to assist in biopsy planning with diffusion/computed tomography fused images. We selected mediastinal lesions that could provide discordant diagnoses depending on the biopsy site, including large heterogeneous masses, lesions associated with lung atelectasis or consolidation, lesions involving large mediastinal vessels and lesions for which the results of biopsy using other methods and histopathological examination were divergent from the clinical and radiological suspicion. Results: in all cases, the biopsy needle was successfully directed to areas of higher signal intensity on diffusion weighted sequences and the lowest apparent diffusion coefficient within the lesion (mean, 0.8 [range, 0.6–1.1]610{sup -3} mm{sup 2}/s), suggesting high cellularity. All biopsies provided adequate material for specific histopathological diagnoses of four lymphomas, two sarcomas and two thymoma s. Conclusion: functional imaging tools, such as diffusion-weighted imaging and the apparent diffusion coefficient, are promising for implementation in noninvasive and imaging-guided procedures. However, additional studies are needed to confirm that mediastinal biopsy can be improved with these techniques. (author)

  7. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery

    NARCIS (Netherlands)

    Webers, V.S.C.; Bauer, N.J.C.; Visser, N.; Berendschot, T.T.J.M.; van den Biggelaar, F.J.H.M.; Nuijts, R.M.M.A.

    2017-01-01

    Purpose To compare the accuracy of toric intraocular lens (IOL) alignment using the Verion Image-Guided System versus a conventional manual ink-marking procedure. Setting University Eye Clinic Maastricht, Maastricht, the Netherlands. Design Prospective randomized clinical trial. Methods Eyes with

  8. Image guided prostate cancer treatments

    Energy Technology Data Exchange (ETDEWEB)

    Bard, Robert L. [Bard Cancer Center, Biofoundation for Angiogenesis Research and Development, New York, NY (United States); Fuetterer, Jurgen J. [Radboud Univ. Nijmegen, Medical Centre (Netherlands). Dept. of Radiology; Sperling, Dan (ed.) [Sperling Prostate Center, Alpha 3TMRI, New York, NY (United States)

    2014-07-01

    Systematic overview of the application of ultrasound and MRI in the diagnosis and treatment of diseases of the lower urinary tract. Detailed information on image-guided therapies, including focused ultrasound, photodynamic therapy, and microwave and laser ablation. Numerous high-quality illustrations based on high-end equipment. Represents the state of the art in Non Invasive Imaging and Minimally Invasive Ablation Treatment (MIAT). Image-Guided Prostate Cancer Treatments is a comprehensive reference and practical guide on the technology and application of ultrasound and MRI in the male pelvis, with special attention to the prostate. The book is organized into three main sections, the first of which is devoted to general aspects of imaging and image-guided treatments. The second section provides a systematic overview of the application of ultrasound and MRI to the diagnosis and treatment of diseases of the lower urinary tract. Performance of the ultrasound and MRI studies is explained, and the normal and abnormal pathological anatomy is reviewed. Correlation with the ultrasound in the same plane is provided to assist in understanding the MRI sequences. Biopsy and interventional procedures, ultrasound-MRI fusion techniques, and image-guided therapies, including focused ultrasound, photodynamic therapy, microwave and laser ablation, are all fully covered. The third section focuses on securing treatment effectiveness and the use of follow-up imaging to ensure therapeutic success and detect tumor recurrence at an early stage, which is vital given that prompt focal treatment of recurrence is very successful. Here, particular attention is paid to the role of Doppler ultrasound and DCE-MRI technologies. This book, containing a wealth of high-quality illustrations based on high-end equipment, will acquaint beginners with the basics of prostate ultrasound and MRI, while more advanced practitioners will learn new skills, means of avoiding pitfalls, and ways of effectively

  9. Medical image computing and computer-assisted intervention - MICCAI 2006. Pt. 1. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R. [Technical Univ. of Denmark, Lyngby (Denmark). Informatics and Mathematical Modelling; Nielsen, M. [IT Univ. of Copenhagen (Denmark); Sporring, J. (eds.) [Copenhagen Univ. (Denmark). Dept. of Computer Science

    2006-07-01

    The two-volume set LNCS 4190 and LNCS 4191 constitute the refereed proceedings of the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2006, held in Copenhagen, Denmark in October 2006. The program committee carefully selected 39 revised full papers and 193 revised poster papers from 578 submissions for presentation in two volumes, based on a rigorous peer reviews. The first volume includes 114 contributions related to bone shape analysis, robotics and tracking, segmentation, analysis of diffusion tensor MRI, shape analysis and morphometry, simulation and interaction, robotics and intervention, cardio-vascular applications, image analysis in oncology, brain atlases and segmentation, cardiac motion analysis, clinical applications, and registration. The second volume collects 118 papers related to segmentation, validation and quantitative image analysis, brain image processing, motion in image formation, image guided clinical applications, registration, as well as brain analysis and registration. (orig.)

  10. Medical image computing and computer-assisted intervention - MICCAI 2006. Pt. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R. [Technical Univ. of Denmark, Lyngby (Denmark). Informatics and Mathematical Modelling; Nielsen, M. [IT Univ. of Copenhagen (Denmark); Sporring, J. (eds.) [Copenhagen Univ. (Denmark). Dept. of Computer Science

    2006-07-01

    The two-volume set LNCS 4190 and LNCS 4191 constitute the refereed proceedings of the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2006, held in Copenhagen, Denmark in October 2006. The program committee carefully selected 39 revised full papers and 193 revised poster papers from 578 submissions for presentation in two volumes, based on a rigorous peer reviews. The first volume includes 114 contributions related to bone shape analysis, robotics and tracking, segmentation, analysis of diffusion tensor MRI, shape analysis and morphometry, simulation and interaction, robotics and intervention, cardio-vascular applications, image analysis in oncology, brain atlases and segmentation, cardiac motion analysis, clinical applications, and registration. The second volume collects 118 papers related to segmentation, validation and quantitative image analysis, brain image processing, motion in image formation, image guided clinical applications, registration, as well as brain analysis and registration. (orig.)

  11. Medical image computing and computer-assisted intervention - MICCAI 2006. Pt. 2. Proceedings

    International Nuclear Information System (INIS)

    Larsen, R.; Sporring, J.

    2006-01-01

    The two-volume set LNCS 4190 and LNCS 4191 constitute the refereed proceedings of the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2006, held in Copenhagen, Denmark in October 2006. The program committee carefully selected 39 revised full papers and 193 revised poster papers from 578 submissions for presentation in two volumes, based on a rigorous peer reviews. The first volume includes 114 contributions related to bone shape analysis, robotics and tracking, segmentation, analysis of diffusion tensor MRI, shape analysis and morphometry, simulation and interaction, robotics and intervention, cardio-vascular applications, image analysis in oncology, brain atlases and segmentation, cardiac motion analysis, clinical applications, and registration. The second volume collects 118 papers related to segmentation, validation and quantitative image analysis, brain image processing, motion in image formation, image guided clinical applications, registration, as well as brain analysis and registration. (orig.)

  12. Medical image computing and computer-assisted intervention - MICCAI 2006. Pt. 1. Proceedings

    International Nuclear Information System (INIS)

    Larsen, R.; Sporring, J.

    2006-01-01

    The two-volume set LNCS 4190 and LNCS 4191 constitute the refereed proceedings of the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2006, held in Copenhagen, Denmark in October 2006. The program committee carefully selected 39 revised full papers and 193 revised poster papers from 578 submissions for presentation in two volumes, based on a rigorous peer reviews. The first volume includes 114 contributions related to bone shape analysis, robotics and tracking, segmentation, analysis of diffusion tensor MRI, shape analysis and morphometry, simulation and interaction, robotics and intervention, cardio-vascular applications, image analysis in oncology, brain atlases and segmentation, cardiac motion analysis, clinical applications, and registration. The second volume collects 118 papers related to segmentation, validation and quantitative image analysis, brain image processing, motion in image formation, image guided clinical applications, registration, as well as brain analysis and registration. (orig.)

  13. Image Visual Realism: From Human Perception to Machine Computation.

    Science.gov (United States)

    Fan, Shaojing; Ng, Tian-Tsong; Koenig, Bryan L; Herberg, Jonathan S; Jiang, Ming; Shen, Zhiqi; Zhao, Qi

    2017-08-30

    Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and CNN-learned features to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.

  14. Interactive virtual simulation using a 3D computer graphics model for microvascular decompression surgery.

    Science.gov (United States)

    Oishi, Makoto; Fukuda, Masafumi; Hiraishi, Tetsuya; Yajima, Naoki; Sato, Yosuke; Fujii, Yukihiko

    2012-09-01

    The purpose of this paper is to report on the authors' advanced presurgical interactive virtual simulation technique using a 3D computer graphics model for microvascular decompression (MVD) surgery. The authors performed interactive virtual simulation prior to surgery in 26 patients with trigeminal neuralgia or hemifacial spasm. The 3D computer graphics models for interactive virtual simulation were composed of the brainstem, cerebellum, cranial nerves, vessels, and skull individually created by the image analysis, including segmentation, surface rendering, and data fusion for data collected by 3-T MRI and 64-row multidetector CT systems. Interactive virtual simulation was performed by employing novel computer-aided design software with manipulation of a haptic device to imitate the surgical procedures of bone drilling and retraction of the cerebellum. The findings were compared with intraoperative findings. In all patients, interactive virtual simulation provided detailed and realistic surgical perspectives, of sufficient quality, representing the lateral suboccipital route. The causes of trigeminal neuralgia or hemifacial spasm determined by observing 3D computer graphics models were concordant with those identified intraoperatively in 25 (96%) of 26 patients, which was a significantly higher rate than the 73% concordance rate (concordance in 19 of 26 patients) obtained by review of 2D images only (p computer graphics model provided a realistic environment for performing virtual simulations prior to MVD surgery and enabled us to ascertain complex microsurgical anatomy.

  15. Guided SAR image despeckling with probabilistic non local weights

    Science.gov (United States)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  16. Just-in-time tomography (JiTT): a new concept for image-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pang, G; Rowlands, J A [Toronto-Sunnybrook Regional Cancer Centre, 2075 Bayview Avenue, Toronto M4N 3M5 (Canada); Imaging Research, Sunnybrook and Women' s College Health Sciences Centre, Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto (Canada)

    2005-11-07

    Soft-tissue target motion is one of the main concerns in high-precision radiation therapy. Cone beam computed tomography (CBCT) has been developed recently to image soft-tissue targets in the treatment room and guide the radiation therapy treatment. However, due to its relatively long image acquisition time the CBCT approach cannot provide images of the target at the instant of the treatment and thus it is not adequate for imaging targets with intrafraction motion. In this note, a new approach for image-guided radiation therapy-just-in-time tomography (JiTT)-is proposed. Differing from CBCT, JiTT takes much less time to generate the needed tomographical, beam's-eye-view images of the treatment target at the right moment to guide the radiation therapy treatment. (note)

  17. Computational Modeling in Liver Surgery

    Directory of Open Access Journals (Sweden)

    Bruno Christ

    2017-11-01

    Full Text Available The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery.

  18. Image-guided macular laser therapy: design considerations and progress toward implementation

    Science.gov (United States)

    Berger, Jeffrey W.; Shin, David S.

    1999-06-01

    Laser therapy is currently the only treatment of proven benefit for exudative age related macular degeneration and diabetic retinopathy. To guide treatment for macular diseases, investigations were initiated to permit overlay of previously-stored angiographic images and image sequences superimposed onto the real-time biomicroscopic fundus image. Prior to treatment, a set of partially overlapping fundus images is acquired and montaged in order to provide a map for subsequent tracking operations. A binocular slit-lamp biomicroscope interfaced to a CCD camera, framegrabber board, and PC permits acquisition and rendering of retinal images. Computer-vision algorithms facilitate robust tracking, registration, and near-video-rate image overlay of previously-stored retinal photographic and angiographic images onto the real-time fundus image. Laser treatment is guided in this augmented reality environment where the borders of the treatment target--for example, the boundaries of a choroidal neovascularization complex--are easily identified through overlay of angiographic information superimposed on, and registered with, the real-time fundus image. During periods of misregistration as judged by the amplitude of the tracking similarity metric, laser function is disabled, affording additional safety. Image-guided macular laser therapy should facilitate accurate targeting of treatable lesions and less unintentional retinal injury when compared with standard techniques.

  19. Image analysis and modeling in medical image computing. Recent developments and advances.

    Science.gov (United States)

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body

  20. Color image guided depth image super resolution using fusion filter

    Science.gov (United States)

    He, Jin; Liang, Bin; He, Ying; Yang, Jun

    2018-04-01

    Depth cameras are currently playing an important role in many areas. However, most of them can only obtain lowresolution (LR) depth images. Color cameras can easily provide high-resolution (HR) color images. Using color image as a guide image is an efficient way to get a HR depth image. In this paper, we propose a depth image super resolution (SR) algorithm, which uses a HR color image as a guide image and a LR depth image as input. We use the fusion filter of guided filter and edge based joint bilateral filter to get HR depth image. Our experimental results on Middlebury 2005 datasets show that our method can provide better quality in HR depth images both numerically and visually.

  1. Image-Guided Cancer Nanomedicine

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Kim

    2018-01-01

    Full Text Available Multifunctional nanoparticles with superior imaging properties and therapeutic effects have been extensively developed for the nanomedicine. However, tumor-intrinsic barriers and tumor heterogeneity have resulted in low in vivo therapeutic efficacy. The poor in vivo targeting efficiency in passive and active targeting of nano-therapeutics along with the toxicity of nanoparticles has been a major problem in nanomedicine. Recently, image-guided nanomedicine, which can deliver nanoparticles locally using non-invasive imaging and interventional oncology techniques, has been paid attention as a new opportunity of nanomedicine. This short review will discuss the existing challenges in nanomedicine and describe the prospects for future image-guided nanomedicine.

  2. Image to physical space registration of supine breast MRI for image guided breast surgery

    Science.gov (United States)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  3. Imaging, virtual planning, design, and production of patient-specific implants and clinical validation in craniomaxillofacial surgery.

    Science.gov (United States)

    Dérand, Per; Rännar, Lars-Erik; Hirsch, Jan-M

    2012-09-01

    The purpose of this article was to describe the workflow from imaging, via virtual design, to manufacturing of patient-specific titanium reconstruction plates, cutting guide and mesh, and its utility in connection with surgical treatment of acquired bone defects in the mandible using additive manufacturing by electron beam melting (EBM). Based on computed tomography scans, polygon skulls were created. Following that virtual treatment plans entailing free microvascular transfer of fibula flaps using patient-specific reconstruction plates, mesh, and cutting guides were designed. The design was based on the specification of a Compact UniLOCK 2.4 Large (Synthes(®), Switzerland). The obtained polygon plates were bent virtually round the reconstructed mandibles. Next, the resections of the mandibles were planned virtually. A cutting guide was outlined to facilitate resection, as well as plates and titanium mesh for insertion of bone or bone substitutes. Polygon plates and meshes were converted to stereolithography format and used in the software Magics for preparation of input files for the successive step, additive manufacturing. EBM was used to manufacture the customized implants in a biocompatible titanium grade, Ti6Al4V ELI. The implants and the cutting guide were cleaned and sterilized, then transferred to the operating theater, and applied during surgery. Commercially available software programs are sufficient in order to virtually plan for production of patient-specific implants. Furthermore, EBM-produced implants are fully usable under clinical conditions in reconstruction of acquired defects in the mandible. A good compliance between the treatment plan and the fit was demonstrated during operation. Within the constraints of this article, the authors describe a workflow for production of patient-specific implants, using EBM manufacturing. Titanium cutting guides, reconstruction plates for fixation of microvascular transfer of osteomyocutaneous bone grafts, and

  4. The Use of Cone Beam Computed Tomography for Image Guided Gamma Knife Stereotactic Radiosurgery: Initial Clinical Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Winnie; Cho, Young-Bin [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Ansell, Steve [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Laperriere, Normand; Ménard, Cynthia; Millar, Barbara-Ann [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Zadeh, Gelareh [Division of Neurosurgery, University of Toronto University Health Network, Toronto Western Hospital, Toronto, Ontario (Canada); Macfeeters-Hamilton Centre for Neuro-oncology, Ontario Cancer Institute, Toronto, Ontario (Canada); Kongkham, Paul; Bernstein, Mark [Division of Neurosurgery, University of Toronto University Health Network, Toronto Western Hospital, Toronto, Ontario (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chung, Caroline, E-mail: caroline.chung.md@gmail.com [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2016-09-01

    Purpose: The present study used cone beam computed tomography (CBCT) to measure the inter- and intrafraction uncertainties for intracranial stereotactic radiosurgery (SRS) using the Leksell Gamma Knife (GK). Methods and Materials: Using a novel CBCT system adapted to the GK radiosurgery treatment unit, CBCT images were acquired immediately before and after treatment for each treatment session within the context of a research ethics board–approved prospective clinical trial. Patients were immobilized in the Leksell coordinate frame (LCF) for both volumetric CBCT imaging and GK-SRS delivery. The relative displacement of the patient's skull to the stereotactic reference (interfraction motion) was measured for each CBCT scan. Differences between the pre- and post-treatment CBCT scans were used to determine the intrafraction motion. Results: We analyzed 20 pre- and 17 post-treatment CBCT scans in 20 LCF patients treated with SRS. The mean translational pretreatment setup error ± standard deviation in the left-right, anteroposterior, and craniocaudal directions was −0.19 ± 0.32, 0.06 ± 0.27, and −0.23 ± 0.2 mm, with a maximum of −0.74, −0.53, and −0.68 mm, respectively. After an average time between the pre- and post-treatment CBCT scans of 82 minutes (range 27-170), the mean intrafraction error ± standard deviation for the LCF was −0.03 ± 0.05, −0.03 ± 0.18, and −0.03 ± 0.12 mm in the left-right, anteroposterior, and craniocaudual direction, respectively. Conclusions: Using CBCT on a prototype image guided GK Perfexion unit, we were able to measure the inter- and intrafraction positional changes for GK-SRS using the invasive frame. In the era of image guided radiation therapy, the use of CBCT image guidance for both frame- and non–frame-based immobilization systems could serve as a useful quality assurance tool. Our preliminary measurements can guide the application of achievable thresholds for inter- and intrafraction

  5. The Use of Cone Beam Computed Tomography for Image Guided Gamma Knife Stereotactic Radiosurgery: Initial Clinical Evaluation

    International Nuclear Information System (INIS)

    Li, Winnie; Cho, Young-Bin; Ansell, Steve; Laperriere, Normand; Ménard, Cynthia; Millar, Barbara-Ann; Zadeh, Gelareh; Kongkham, Paul; Bernstein, Mark; Jaffray, David A.; Chung, Caroline

    2016-01-01

    Purpose: The present study used cone beam computed tomography (CBCT) to measure the inter- and intrafraction uncertainties for intracranial stereotactic radiosurgery (SRS) using the Leksell Gamma Knife (GK). Methods and Materials: Using a novel CBCT system adapted to the GK radiosurgery treatment unit, CBCT images were acquired immediately before and after treatment for each treatment session within the context of a research ethics board–approved prospective clinical trial. Patients were immobilized in the Leksell coordinate frame (LCF) for both volumetric CBCT imaging and GK-SRS delivery. The relative displacement of the patient's skull to the stereotactic reference (interfraction motion) was measured for each CBCT scan. Differences between the pre- and post-treatment CBCT scans were used to determine the intrafraction motion. Results: We analyzed 20 pre- and 17 post-treatment CBCT scans in 20 LCF patients treated with SRS. The mean translational pretreatment setup error ± standard deviation in the left-right, anteroposterior, and craniocaudal directions was −0.19 ± 0.32, 0.06 ± 0.27, and −0.23 ± 0.2 mm, with a maximum of −0.74, −0.53, and −0.68 mm, respectively. After an average time between the pre- and post-treatment CBCT scans of 82 minutes (range 27-170), the mean intrafraction error ± standard deviation for the LCF was −0.03 ± 0.05, −0.03 ± 0.18, and −0.03 ± 0.12 mm in the left-right, anteroposterior, and craniocaudual direction, respectively. Conclusions: Using CBCT on a prototype image guided GK Perfexion unit, we were able to measure the inter- and intrafraction positional changes for GK-SRS using the invasive frame. In the era of image guided radiation therapy, the use of CBCT image guidance for both frame- and non–frame-based immobilization systems could serve as a useful quality assurance tool. Our preliminary measurements can guide the application of achievable thresholds for inter- and intrafraction

  6. Radiation resistivity of pure-silica core image guide

    International Nuclear Information System (INIS)

    Hayami, H.; Ishitani, T.; Kishihara, O.; Suzuki, K.

    1988-01-01

    Radiation resistivity of pure-silica core image guides were investigated in terms of incremental spectral loss and quality of pictures transmitted through the image guides. Radiation-induced spectral losses were measured so as to clarify the dependences of radiation resistivity on such parameters as core materials (OH and Cl contents), picture element dimensions, (core packing density and cladding thickness), number of picture elements and drawing conditions. As the results, an image guide with OH-and Cl-free pure-silica core, 30-45% in core packing density, and 1.8 ∼ 2.2 μm in cladding thickness showed the lowest loss. The parameters to design this image guide were almost the same as those to obtain a image guide with good picture quality. Radiation resistivity of the image guide was not dependent on drawing conditions and number of picture elements, indicating that the image guide has large allowable in production conditions and that reliable quality is constantly obtained in production. Radiation resistivity under high total doses was evaluated using the image guide with the lowest radiation-induced loss. Maximum usable lengths of the image guide for practical use under specific high total doses and maximum allowable total doses for the image guide in specific lengths were extrapolated. Picture quality in terms of radiation-induced degradation in color fidelity in the pictures transmitted through image guides was quantitatively evaluated in the chromaticity diagram based on the CIE standard colorimetric system and in the color specification charts according to three attributes of colors. The image guide with the least spectral incremental loss gives the least radiation-induced degradation in color fidelity in the pictures as well. (author)

  7. Image Post-Processing and Analysis. Chapter 17

    Energy Technology Data Exchange (ETDEWEB)

    Yushkevich, P. A. [University of Pennsylvania, Philadelphia (United States)

    2014-09-15

    For decades, scientists have used computers to enhance and analyse medical images. At first, they developed simple computer algorithms to enhance the appearance of interesting features in images, helping humans read and interpret them better. Later, they created more advanced algorithms, where the computer would not only enhance images but also participate in facilitating understanding of their content. Segmentation algorithms were developed to detect and extract specific anatomical objects in images, such as malignant lesions in mammograms. Registration algorithms were developed to align images of different modalities and to find corresponding anatomical locations in images from different subjects. These algorithms have made computer aided detection and diagnosis, computer guided surgery and other highly complex medical technologies possible. Nowadays, the field of image processing and analysis is a complex branch of science that lies at the intersection of applied mathematics, computer science, physics, statistics and biomedical sciences. This chapter will give a general overview of the most common problems in this field and the algorithms that address them.

  8. Fluorescence-guided surgery and intervention - An AAPM emerging technology blue paper.

    Science.gov (United States)

    Pogue, Brian W; Zhu, Timothy C; Ntziachristos, Vasilis; Paulsen, Keith D; Wilson, Brian C; Pfefer, Joshua; Nordstrom, Robert J; Litorja, Maritoni; Wabnitz, Heidrun; Chen, Yu; Gioux, Sylvain; Tromberg, Bruce J; Yodh, Arjun G

    2018-04-10

    Fluorescence-guided surgery (FGS) and other interventions are rapidly evolving as a class of technologically driven interventional approaches in which many surgical specialties visualize fluorescent molecular tracers or biomarkers through associated cameras or oculars to guide clinical decisions on pathological lesion detection and excision/ablation. The technology has been commercialized for some specific applications, but also presents technical challenges unique to optical imaging that could confound the utility of some interventional procedures where real-time decisions must be made. Accordingly, the AAPM has initiated the publication of this Blue Paper of The Emerging Technology Working Group (TETAWG) and the creation of a Task Group from the Therapy Physics Committee within the Treatment Delivery Subcommittee. In describing the relevant issues, this document outlines the key parameters, stakeholders, impacts, and outcomes of clinical FGS technology and its applications. The presentation is not intended to be conclusive, but rather to inform the field of medical physics and stimulate the discussions needed in the field with respect to a seemingly low-risk imaging technology that has high potential for significant therapeutic impact. This AAPM Task Group is working toward consensus around guidelines and standards for advancing the field safely and effectively. © 2018 American Association of Physicists in Medicine.

  9. A computer assisted toolholder to guide surgery in stereotactic space.

    Science.gov (United States)

    Giorgi, C; Pluchino, F; Luzzara, M; Ongania, E; Casolino, D S

    1994-01-01

    A computer assisted toolholder, integrated with an anatomical graphic 3-D rendering programme, is presented. Stereotactic neuroanatomical images are acquired, and the same reference system is employed to represent the position of the toolholder on the monitor. The surgeon can check the orientation of different approach trajectories, moving the toolholder in a situation of virtual reality. Angular values expressed by high precision encoders on the five joints of the toolholder modify "on line" the representation of the configuration of the toolholder within the three dimensional representation of the patient's anatomy.

  10. Imaging evaluation of post pancreatic surgery

    International Nuclear Information System (INIS)

    Scialpi, Michele; Scaglione, Mariano; Volterrani, Luca; Lupattelli, Luciano; Ragozzino, Alfonso; Romano, Stefania; Rotondo, Antonio

    2005-01-01

    The role of several imaging techniques in patients submitted to pancreatic surgery with special emphasis to single-slice helical computed tomography (CT) and multidetector-row CT (MDCT) was reviewed. Several surgical options may be performed such as Whipple procedure, distal pancreatectomy, central pancreatectomy, and total pancreatectomy. Ultrasound examination may be used to detect peritoneal fluid in the early post-operative period as well as lesion recurrence in long-term follow-up. Radiological gastrointestinal studies has a major role in evaluation of intestinal functionality. In spite of the advent of other imaging modalities, CT is the most effective after pancreatic surgery. On post-operative CT, the most common findings were small fluid peritoneal or pancreatic collections, stranding of the mesenteric fat with perivascular cuffing, reactive adenopathy and pneumobilia. In addition, CT may demonstrate early (leakage of anastomosis, pancreatico-jejunal fistula, haemorrage, acute pancreatitis of the remnant pancreas, peritonitis), and late (chronic fistula, abscess, aneurysms, anastomotic bilio-digestive stenosis, perianastomotic ulcers, biloma, and intra-abdominal bleeding) surgical complications. In the follow-up evaluation, CT may show tumor recurrence, liver and lymph nodes metastasis. Magnetic resonance may be used as alternative imaging modality to CT, when renal insufficiency or contrast sensitivity prevents the use of iodinated i.v. contrast material or when the biliary tree study is primarily requested. The knowledge of the type of surgical procedures, the proper identification of the anastomoses as well as the normal post-operative imaging appearances are essential for an accurate detection of the complications and recurrent disease

  11. Imaging evaluation of post pancreatic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Scialpi, Michele [Department of Radiology, ' Santissima Annunziata' Hospital, Via Bruno 1, I-74100 Taranto (Italy)]. E-mail: michelescialpi@libero.it; Scaglione, Mariano [Department of Radiology, ' A. Cardarelli' Hospital, I-80131 Naples (Italy); Volterrani, Luca [Institute of Radiology, University of Siena, I-53100 Siena (Italy); Lupattelli, Luciano [Institute of Radiology, University of Perugia, I-06122 Perugia (Italy); Ragozzino, Alfonso [Department of Radiology, ' A. Cardarelli' Hospital, I-80131 Naples (Italy); Romano, Stefania [Department of Radiology, ' A. Cardarelli' Hospital, I-80131 Naples (Italy); Rotondo, Antonio [Section of Radiology, Department ' Magrassi-Lanzara' , Second University, I-80138 Naples (Italy)

    2005-03-01

    The role of several imaging techniques in patients submitted to pancreatic surgery with special emphasis to single-slice helical computed tomography (CT) and multidetector-row CT (MDCT) was reviewed. Several surgical options may be performed such as Whipple procedure, distal pancreatectomy, central pancreatectomy, and total pancreatectomy. Ultrasound examination may be used to detect peritoneal fluid in the early post-operative period as well as lesion recurrence in long-term follow-up. Radiological gastrointestinal studies has a major role in evaluation of intestinal functionality. In spite of the advent of other imaging modalities, CT is the most effective after pancreatic surgery. On post-operative CT, the most common findings were small fluid peritoneal or pancreatic collections, stranding of the mesenteric fat with perivascular cuffing, reactive adenopathy and pneumobilia. In addition, CT may demonstrate early (leakage of anastomosis, pancreatico-jejunal fistula, haemorrage, acute pancreatitis of the remnant pancreas, peritonitis), and late (chronic fistula, abscess, aneurysms, anastomotic bilio-digestive stenosis, perianastomotic ulcers, biloma, and intra-abdominal bleeding) surgical complications. In the follow-up evaluation, CT may show tumor recurrence, liver and lymph nodes metastasis. Magnetic resonance may be used as alternative imaging modality to CT, when renal insufficiency or contrast sensitivity prevents the use of iodinated i.v. contrast material or when the biliary tree study is primarily requested. The knowledge of the type of surgical procedures, the proper identification of the anastomoses as well as the normal post-operative imaging appearances are essential for an accurate detection of the complications and recurrent disease.

  12. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery.

    Science.gov (United States)

    Tonutti, Michele; Gras, Gauthier; Yang, Guang-Zhong

    2017-07-01

    Accurate reconstruction and visualisation of soft tissue deformation in real time is crucial in image-guided surgery, particularly in augmented reality (AR) applications. Current deformation models are characterised by a trade-off between accuracy and computational speed. We propose an approach to derive a patient-specific deformation model for brain pathologies by combining the results of pre-computed finite element method (FEM) simulations with machine learning algorithms. The models can be computed instantaneously and offer an accuracy comparable to FEM models. A brain tumour is used as the subject of the deformation model. Load-driven FEM simulations are performed on a tetrahedral brain mesh afflicted by a tumour. Forces of varying magnitudes, positions, and inclination angles are applied onto the brain's surface. Two machine learning algorithms-artificial neural networks (ANNs) and support vector regression (SVR)-are employed to derive a model that can predict the resulting deformation for each node in the tumour's mesh. The tumour deformation can be predicted in real time given relevant information about the geometry of the anatomy and the load, all of which can be measured instantly during a surgical operation. The models can predict the position of the nodes with errors below 0.3mm, beyond the general threshold of surgical accuracy and suitable for high fidelity AR systems. The SVR models perform better than the ANN's, with positional errors for SVR models reaching under 0.2mm. The results represent an improvement over existing deformation models for real time applications, providing smaller errors and high patient-specificity. The proposed approach addresses the current needs of image-guided surgical systems and has the potential to be employed to model the deformation of any type of soft tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Femtosecond laser cataract surgery: technology and clinical practice.

    Science.gov (United States)

    Roberts, Timothy V; Lawless, Michael; Chan, Colin Ck; Jacobs, Mark; Ng, David; Bali, Shveta J; Hodge, Chris; Sutton, Gerard

    2013-03-01

    The recent introduction of femtosecond lasers to cataract surgery has generated much interest among ophthalmologists around the world. Laser cataract surgery integrates high-resolution anterior segment imaging systems with a femtosecond laser, allowing key steps of the procedure, including the primary and side-port corneal incisions, the anterior capsulotomy and fragmentation of the lens nucleus, to be performed with computer-guided laser precision. There is emerging evidence of reduced phacoemulsification time, better wound architecture and a more stable refractive result with femtosecond cataract surgery, as well as reports documenting an initial learning curve. This article will review the current state of technology and discuss our clinical experience. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  14. Accurate pre-surgical determination for self-drilling miniscrew implant placement using surgical guides and cone-beam computed tomography.

    Science.gov (United States)

    Miyazawa, Ken; Kawaguchi, Misuzu; Tabuchi, Masako; Goto, Shigemi

    2010-12-01

    Miniscrew implants have proven to be effective in providing absolute orthodontic anchorage. However, as self-drilling miniscrew implants have become more popular, a problem has emerged, i.e. root contact, which can lead to perforation and other root injuries. To avoid possible root damage, a surgical guide was fabricated and cone-beam computed tomography (CBCT) was used to incorporate guide tubes drilled in accordance with the planned direction of the implants. Eighteen patients (5 males and 13 females; mean age 23.8 years; minimum 10.7, maximum 45.5) were included in the study. Forty-four self-drilling miniscrew implants (diameter 1.6, and length 8 mm) were placed in interradicular bone using a surgical guide procedure, the majority in the maxillary molar area. To determine the success rates, statistical analysis was undertaken using Fisher's exact probability test. CBCT images of post-surgical self-drilling miniscrew implant placement showed no root contact (0/44). However, based on CBCT evaluation, it was necessary to change the location or angle of 52.3 per cent (23/44) of the guide tubes prior to surgery in order to obtain optimal placement. If orthodontic force could be applied to the screw until completion of orthodontic treatment, screw anchorage was recorded as successful. The total success rate of all miniscrews was 90.9 per cent (40/44). Orthodontic self-drilling miniscrew implants must be inserted carefully, particularly in the case of blind placement, since even guide tubes made on casts frequently require repositioning to avoid the roots of the teeth. The use of surgical guides, fabricated using CBCT images, appears to be a promising technique for placement of orthodontic self-drilling miniscrew implants adjacent to the dental roots and maxillary sinuses.

  15. Utility of 3D Reconstruction of 2D Liver Computed Tomography/Magnetic Resonance Images as a Surgical Planning Tool for Residents in Liver Resection Surgery.

    Science.gov (United States)

    Yeo, Caitlin T; MacDonald, Andrew; Ungi, Tamas; Lasso, Andras; Jalink, Diederick; Zevin, Boris; Fichtinger, Gabor; Nanji, Sulaiman

    A fundamental aspect of surgical planning in liver resections is the identification of key vessel tributaries to preserve healthy liver tissue while fully resecting the tumor(s). Current surgical planning relies primarily on the surgeon's ability to mentally reconstruct 2D computed tomography/magnetic resonance (CT/MR) images into 3D and plan resection margins. This creates significant cognitive load, especially for trainees, as it relies on image interpretation, anatomical and surgical knowledge, experience, and spatial sense. The purpose of this study is to determine if 3D reconstruction of preoperative CT/MR images will assist resident-level trainees in making appropriate operative plans for liver resection surgery. Ten preoperative patient CT/MR images were selected. Images were case-matched, 5 to 2D planning and 5 to 3D planning. Images from the 3D group were segmented to create interactive digital models that the resident can manipulate to view the tumor(s) in relation to landmark hepatic structures. Residents were asked to evaluate the images and devise a surgical resection plan for each image. The resident alternated between 2D and 3D planning, in a randomly generated order. The primary outcome was the accuracy of resident's plan compared to expert opinion. Time to devise each surgical plan was the secondary outcome. Residents completed a prestudy and poststudy questionnaire regarding their experience with liver surgery and the 3D planning software. Senior level surgical residents from the Queen's University General Surgery residency program were recruited to participate. A total of 14 residents participated in the study. The median correct response rate was 2 of 5 (40%; range: 0-4) for the 2D group, and 3 of 5 (60%; range: 1-5) for the 3D group (p surgery planning increases accuracy of resident surgical planning and decreases amount of time required. 3D reconstruction would be a useful model for improving trainee understanding of liver anatomy and surgical

  16. Image-Guided Radiotherapy for Liver Cancer Using Respiratory-Correlated Computed Tomography and Cone-Beam Computed Tomography

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Sweeney, Reinhart A.; Wilbert, Juergen; Krieger, Thomas; Richter, Anne; Baier, Kurt; Mueller, Gerd; Sauer, Otto; Flentje, Michael

    2008-01-01

    Purpose: To evaluate a novel four-dimensional (4D) image-guided radiotherapy (IGRT) technique in stereotactic body RT for liver tumors. Methods and Materials: For 11 patients with 13 intrahepatic tumors, a respiratory-correlated 4D computed tomography (CT) scan was acquired at treatment planning. The target was defined using CT series reconstructed at end-inhalation and end-exhalation. The liver was delineated on these two CT series and served as a reference for image guidance. A cone-beam CT scan was acquired after patient positioning; the blurred diaphragm dome was interpreted as a probability density function showing the motion range of the liver. Manual contour matching of the liver structures from the planning 4D CT scan with the cone-beam CT scan was performed. Inter- and intrafractional uncertainties of target position and motion range were evaluated, and interobserver variability of the 4D-IGRT technique was tested. Results: The workflow of 4D-IGRT was successfully practiced in all patients. The absolute error in the liver position and error in relation to the bony anatomy was 8 ± 4 mm and 5 ± 2 mm (three-dimensional vector), respectively. Margins of 4-6 mm were calculated for compensation of the intrafractional drifts of the liver. The motion range of the diaphragm dome was reproducible within 5 mm for 11 of 13 lesions, and the interobserver variability of the 4D-IGRT technique was small (standard deviation, 1.5 mm). In 4 patients, the position of the intrahepatic lesion was directly verified using a mobile in-room CT scanner after application of intravenous contrast. Conclusion: The results of our study have shown that 4D image guidance using liver contour matching between respiratory-correlated CT and cone-beam CT scans increased the accuracy compared with stereotactic positioning and compared with IGRT without consideration of breathing motion

  17. CT and MR imaging after middle ear surgery

    International Nuclear Information System (INIS)

    Koesling, Sabrina; Bootz, F.

    2001-01-01

    This article describes the current value of imaging in patients after stapes surgery and surgery after chronic otitis media including cholesteatoma. Possibilities and limits of computed tomography (CT) and MRI are described and most important investigation parameters are mentioned. After otosclerosis surgery, CT is the method of first choice in detection of reasons for vertigo and/or recurrent hearing loss in the later postoperative phase. CT may show the position and condition of prosthesis, scarring around the prosthesis and otospongiotic foci. Sometimes, it gives indirect hints for perilymphatic fistulas and incus necrosis. MRI is able to document inner ear complications. CT has a high negative predictive value in cases with a free cavity after mastoidectomy. Localized opacities or total occlusion are difficult to distinguish by CT alone. MRI provides important additional information in the differentiation of cholesterol granuloma, cholesteatoma, effusion, granulation and scar tissue

  18. CT and MR imaging after middle ear surgery

    Energy Technology Data Exchange (ETDEWEB)

    Koesling, Sabrina E-mail: sabrina.koesling@medizin.uni-halle.de; Bootz, F

    2001-11-01

    This article describes the current value of imaging in patients after stapes surgery and surgery after chronic otitis media including cholesteatoma. Possibilities and limits of computed tomography (CT) and MRI are described and most important investigation parameters are mentioned. After otosclerosis surgery, CT is the method of first choice in detection of reasons for vertigo and/or recurrent hearing loss in the later postoperative phase. CT may show the position and condition of prosthesis, scarring around the prosthesis and otospongiotic foci. Sometimes, it gives indirect hints for perilymphatic fistulas and incus necrosis. MRI is able to document inner ear complications. CT has a high negative predictive value in cases with a free cavity after mastoidectomy. Localized opacities or total occlusion are difficult to distinguish by CT alone. MRI provides important additional information in the differentiation of cholesterol granuloma, cholesteatoma, effusion, granulation and scar tissue.

  19. Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery for the Treatment of Symptomatic Uterine Fibroids.

    Science.gov (United States)

    Geraci, Laura; Napoli, Alessandro; Catalano, Carlo; Midiri, Massimo; Gagliardo, Cesare

    2017-01-01

    Uterine fibroids, the most common benign tumor in women of childbearing age, may cause symptoms including pelvic pain, menorrhagia, dysmenorrhea, pressure, urinary symptoms, and infertility. Various approaches are available to treat symptomatic uterine fibroids. Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS) represents a recently introduced noninvasive safe and effective technique that can be performed without general anesthesia, in an outpatient setting. We review the principles of MRgFUS, describing patient selection criteria for the treatments performed at our center and we present a series of five selected patients with symptomatic uterine fibroids treated with this not yet widely known technique, showing its efficacy in symptom improvement and fibroid volume reduction.

  20. First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using 68Ga-IRDye800CW-BBN.

    Science.gov (United States)

    Li, Deling; Zhang, Jingjing; Chi, Chongwei; Xiao, Xiong; Wang, Junmei; Lang, Lixin; Ali, Iqbal; Niu, Gang; Zhang, Liwei; Tian, Jie; Ji, Nan; Zhu, Zhaohui; Chen, Xiaoyuan

    2018-01-01

    Purpose : Despite the use of fluorescence-guided surgery (FGS), maximum safe resection of glioblastoma multiforme (GBM) remains a major challenge. It has restricted surgeons between preoperative diagnosis and intraoperative treatment. Currently, an integrated approach combining preoperative assessment with intraoperative guidance would be a significant step in this direction. Experimental design : We developed a novel 68 Ga-IRDye800CW-BBN PET/near-infrared fluorescence (NIRF) dual-modality imaging probe targeting gastrin-releasing peptide receptor (GRPR) in GBM. The preclinical in vivo tumor imaging and FGS were first evaluated using an orthotopic U87MG glioma xenograft model. Subsequently, the first-in-human prospective cohort study (NCT 02910804) of GBM patients were conducted with preoperative PET assessment and intraoperative FGS. Results : The orthotopic tumors in mice could be precisely resected using the near-infrared intraoperative system. Translational cohort research in 14 GBM patients demonstrated an excellent correlation between preoperative positive PET uptake and intraoperative NIRF signal. The tumor fluorescence signals were significantly higher than those from adjacent brain tissue in vivo and ex vivo (p dual-modality imaging technique is feasible for integrated pre- and intraoperative targeted imaging via the same molecular receptor and improved intraoperative GBM visualization and maximum safe resection.

  1. Intraoperative Imaging Modalities and Compensation for Brain Shift in Tumor Resection Surgery

    Directory of Open Access Journals (Sweden)

    Siming Bayer

    2017-01-01

    Full Text Available Intraoperative brain shift during neurosurgical procedures is a well-known phenomenon caused by gravity, tissue manipulation, tumor size, loss of cerebrospinal fluid (CSF, and use of medication. For the use of image-guided systems, this phenomenon greatly affects the accuracy of the guidance. During the last several decades, researchers have investigated how to overcome this problem. The purpose of this paper is to present a review of publications concerning different aspects of intraoperative brain shift especially in a tumor resection surgery such as intraoperative imaging systems, quantification, measurement, modeling, and registration techniques. Clinical experience of using intraoperative imaging modalities, details about registration, and modeling methods in connection with brain shift in tumor resection surgery are the focuses of this review. In total, 126 papers regarding this topic are analyzed in a comprehensive summary and are categorized according to fourteen criteria. The result of the categorization is presented in an interactive web tool. The consequences from the categorization and trends in the future are discussed at the end of this work.

  2. Surgical positioning of orthodontic mini-implants with guides fabricated on models replicated with cone-beam computed tomography.

    Science.gov (United States)

    Kim, Seong-Hun; Choi, Yong-Suk; Hwang, Eui-Hwan; Chung, Kyu-Rhim; Kook, Yoon-Ah; Nelson, Gerald

    2007-04-01

    This article illustrates a new surgical guide system that uses cone-beam computed tomography (CBCT) images to replicate dental models; surgical guides for the proper positioning of orthodontic mini-implants were fabricated on the replicas, and the guides were used for precise placement. The indications, efficacy, and possible complications of this method are discussed. Patients who were planning to have orthodontic mini-implant treatment were recruited for this study. A CBCT system (PSR 9000N, Asahi Roentgen, Kyoto, Japan) was used to acquire virtual slices of the posterior maxilla that were 0.1 to 0.15 mm thick. Color 3-dimensional rapid prototyping was used to differentiate teeth, alveolus, and maxillary sinus wall. A surgical guide for the mini-implant was fabricated on the replica model. Proper positioning for mini-implants on the posterior maxilla was determined by viewing the CBCT images. The surgical guide was placed on the clinical site, and it allowed precise pilot drilling and accurate placement of the mini-implant. CBCT imaging allows remarkably lower radiation doses and thinner acquisition slices compared with medical computed tomography. Virtually reproduced replica models enable precise planning for mini-implant positions in anatomically complex sites.

  3. Normal postperative computed tomography findings after avariety of pancreatic surgeries

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ji Won; Hwang, Ho Kyoung; Lee, Min Wook; Kim, Ki Whang; Kang, Chang Moo; Kim, Myeong Jin; Chung, Yong Eun [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    Pancreatic surgery remains the only curative treatment for pancreatic neoplasms, and plays an important role in the management of medically intractable diseases. Since the original Whipple operation in the 20th century, surgical techniques have advanced, resulting in decreased postoperative complications and better clinical outcomes. Normal postoperative imaging findings vary greatly depending on the surgical technique used. Radiologists are required to be familiar with the normal postoperative imaging findings, in order to distinguish from postoperative complications or tumor recurrence. In this study, we briefly review a variety of surgical techniques for the pancreas, and present the normal postoperative computed tomography findings.

  4. Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm.

    Science.gov (United States)

    Watanabe, E; Mayanagi, Y; Kosugi, Y; Manaka, S; Takakura, K

    1991-06-01

    A new computed tomographic-stereotactic device that translates the operating point onto preoperative computed tomographic (CT) images, the Neuronavigator, has been developed. We have applied this system to various neurosurgical procedures to examine its usefulness. The system consists of a 6-joint sensing arm and a 16-bit personal computer. It projects the location of the arm tip onto a corresponding CT slice with a cursor that guides the surgeon toward the intracranial target during open surgery. The system also projects the location of the tip onto angiograms, and when used in conjunction with echography or a transcranial Doppler (TCD) flow meter, the surgeon's ability to navigate is enhanced. Sixty-eight patients underwent operation with the Neuronavigator. The navigation system worked as the core of a multimodal three-dimensional data base that proved to be useful during surgery. The maximum detection error was 2.5 mm, which was considered sufficient for open microsurgery. It also proved useful in designing the position of a craniotomy, in targeting deep-seated mass lesions, and in tracing the tumor edge, which had been identified on a CT scan. When the angiogram was combined with the navigator, it became easy to identify key vessels within a small operating field. The system was also combined with a TCD flow meter. This combination makes it possible to translate the measuring point of the TCD directly into CT coordinates, improving the precision of location of the TCD probe. The Neuronavigator combines various diagnostic images into one database and effectively guides the surgeon during surgery.

  5. A Low-Cost, Passive Navigation Training System for Image-Guided Spinal Intervention.

    Science.gov (United States)

    Lorias-Espinoza, Daniel; Carranza, Vicente González; de León, Fernando Chico-Ponce; Escamirosa, Fernando Pérez; Martinez, Arturo Minor

    2016-11-01

    Navigation technology is used for training in various medical specialties, not least image-guided spinal interventions. Navigation practice is an important educational component that allows residents to understand how surgical instruments interact with complex anatomy and to learn basic surgical skills such as the tridimensional mental interpretation of bidimensional data. Inexpensive surgical simulators for spinal surgery, however, are lacking. We therefore designed a low-cost spinal surgery simulator (Spine MovDigSys 01) to allow 3-dimensional navigation via 2-dimensional images without altering or limiting the surgeon's natural movement. A training system was developed with an anatomical lumbar model and 2 webcams to passively digitize surgical instruments under MATLAB software control. A proof-of-concept recognition task (vertebral body cannulation) and a pilot test of the system with 12 neuro- and orthopedic surgeons were performed to obtain feedback on the system. Position, orientation, and kinematic variables were determined and the lateral, posteroanterior, and anteroposterior views obtained. The system was tested with a proof-of-concept experimental task. Operator metrics including time of execution (t), intracorporeal length (d), insertion angle (α), average speed (v¯), and acceleration (a) were obtained accurately. These metrics were converted into assessment metrics such as smoothness of operation and linearity of insertion. Results from initial testing are shown and the system advantages and disadvantages described. This low-cost spinal surgery training system digitized the position and orientation of the instruments and allowed image-guided navigation, the generation of metrics, and graphic recording of the instrumental route. Spine MovDigSys 01 is useful for development of basic, noninnate skills and allows the novice apprentice to quickly and economically move beyond the basics. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. 2D-3D radiograph to cone-beam computed tomography (CBCT) registration for C-arm image-guided robotic surgery.

    Science.gov (United States)

    Liu, Wen Pei; Otake, Yoshito; Azizian, Mahdi; Wagner, Oliver J; Sorger, Jonathan M; Armand, Mehran; Taylor, Russell H

    2015-08-01

    C-arm radiographs are commonly used for intraoperative image guidance in surgical interventions. Fluoroscopy is a cost-effective real-time modality, although image quality can vary greatly depending on the target anatomy. Cone-beam computed tomography (CBCT) scans are sometimes available, so 2D-3D registration is needed for intra-procedural guidance. C-arm radiographs were registered to CBCT scans and used for 3D localization of peritumor fiducials during a minimally invasive thoracic intervention with a da Vinci Si robot. Intensity-based 2D-3D registration of intraoperative radiographs to CBCT was performed. The feasible range of X-ray projections achievable by a C-arm positioned around a da Vinci Si surgical robot, configured for robotic wedge resection, was determined using phantom models. Experiments were conducted on synthetic phantoms and animals imaged with an OEC 9600 and a Siemens Artis zeego, representing the spectrum of different C-arm systems currently available for clinical use. The image guidance workflow was feasible using either an optically tracked OEC 9600 or a Siemens Artis zeego C-arm, resulting in an angular difference of Δθ:∼ 30°. The two C-arm systems provided TRE mean ≤ 2.5 mm and TRE mean ≤ 2.0 mm, respectively (i.e., comparable to standard clinical intraoperative navigation systems). C-arm 3D localization from dual 2D-3D registered radiographs was feasible and applicable for intraoperative image guidance during da Vinci robotic thoracic interventions using the proposed workflow. Tissue deformation and in vivo experiments are required before clinical evaluation of this system.

  7. A randomised, controlled, double-blind trial of ultrasound-guided phrenic nerve block to prevent shoulder pain after thoracic surgery.

    Science.gov (United States)

    Blichfeldt-Eckhardt, M R; Laursen, C B; Berg, H; Holm, J H; Hansen, L N; Ørding, H; Andersen, C; Licht, P B; Toft, P

    2016-12-01

    Moderate to severe ipsilateral shoulder pain is a common complaint following thoracic surgery. In this prospective, parallel-group study at Odense University Hospital, 76 patients (aged > 18 years) scheduled for lobectomy or pneumonectomy were randomised 1:1 using a computer-generated list to receive an ultrasound-guided supraclavicular phrenic nerve block with 10 ml ropivacaine or 10 ml saline (placebo) immediately following surgery. A nerve catheter was subsequently inserted and treatment continued for 3 days. The study drug was pharmaceutically pre-packed in sequentially numbered identical vials assuring that all participants, healthcare providers and data collectors were blinded. The primary outcome was the incidence of unilateral shoulder pain within the first 6 h after surgery. Pain was evaluated using a numeric rating scale. Nine of 38 patients in the ropivacaine group and 26 of 38 patients in the placebo group experienced shoulder pain during the first 6 h after surgery (absolute risk reduction 44% (95% CI 22-67%), relative risk reduction 65% (95% CI 41-80%); p = 0.00009). No major complications, including respiratory compromise or nerve injury, were observed. We conclude that ultrasound-guided supraclavicular phrenic nerve block is an effective technique for reducing the incidence of ipsilateral shoulder pain after thoracic surgery. © 2016 The Association of Anaesthetists of Great Britain and Ireland.

  8. Image-guided radiotherapy for effective radiotherapy delivery

    CERN Document Server

    Karlsson, Ulf Lennart

    2016-01-01

    Image-guided radiotherapy (IGRT) is a new radiotherapy technology that combines the rapid dose fall off associated with intensity-modulated radiotherapy (IMRT) and daily tumor imaging allowing for high precision tumor dose delivery and effective sparing of surrounding normal organs. The new radiation technology requires close collaboration between radiologists, nuclear medicine specialists, and radiation oncologists to avoid marginal miss. Modern diagnostic imaging such as positron emission tomography (PET) scans, positron emission tomography with Computed Tomograpgy (PET-CT), and magnetic resonance imaging (MRI) allows the radiation oncologist to target the positive tumor with high accuracy. As the tumor is well visualized during radiation treatment, the margins required to avoid geographic miss can be safely reduced , thus sparing the normal organs from excessive radiation. When the tumor is located close to critical radiosensitive structures such as the spinal cord, IGRT can deliver a high dose of radiatio...

  9. Computer-assisted Orthopaedic Surgery: Current State and Future Perspective

    Directory of Open Access Journals (Sweden)

    Guoyan eZheng

    2015-12-01

    Full Text Available Introduced about two decades ago, computer-assisted orthopaedic surgery (CAOS has emerged as a new and independent area, due to the importance of treatment of musculoskeletal diseases in orthopaedics and traumatology, increasing availability of different imaging modalities, and advances in analytics and navigation tools. The aim of this paper is to present the basic elements of CAOS devices and to review state-of-the-art examples of different imaging modalities used to create the virtual representations, of different position tracking devices for navigation systems, of different surgical robots, of different methods for registration and referencing, and of CAOS modules that have been realized for different surgical procedures. Future perspectives will also be outlined.

  10. [Accelerated partial breast irradiation with image-guided intensity-modulated radiotherapy following breast-conserving surgery - preliminary results of a phase II clinical study].

    Science.gov (United States)

    Mészáros, Norbert; Major, Tibor; Stelczer, Gábor; Zaka, Zoltán; Mózsa, Emõke; Fodor, János; Polgár, Csaba

    2015-06-01

    The purpose of the study was to implement accelerated partial breast irradiation (APBI) by means of image-guided intensity-modulated radiotherapy (IG-IMRT) following breast-conserving surgery (BCS) for low-risk early invasive breast cancer. Between July 2011 and March 2014, 60 patients with low-risk early invasive (St I-II) breast cancer who underwent BCS were enrolled in our phase II prospective study. Postoperative APBI was given by means of step and shoot IG-IMRT using 4 to 5 fields to a total dose of 36.9 Gy (9×4.1 Gy) using a twice-a-day fractionation. Before each fraction, series of CT images were taken from the region of the target volume using a kV CT on-rail mounted in the treatment room. An image fusion software was used for automatic image registration of the planning and verification CT images. Patient set-up errors were detected in three directions (LAT, LONG, VERT), and inaccuracies were adjusted by automatic movements of the treatment table. Breast cancer related events, acute and late toxicities, and cosmetic results were registered and analysed. At a median follow-up of 24 months (range 12-44) neither locoregional nor distant failure was observed. Grade 1 (G1), G2 erythema, G1 oedema, and G1 and G2 pain occurred in 21 (35%), 2 (3.3%), 23 (38.3%), 6 (10%) and 2 (3.3%) patients, respectively. No G3-4 acute side effects were detected. Among late radiation side effects G1 pigmentation, G1 fibrosis, and G1 fat necrosis occurred in 5 (8.3%), 7 (11.7%), and 2 (3.3%) patients, respectively. No ≥G2 late toxicity was detected. Excellent and good cosmetic outcome was detected in 45 (75%) and 15 (25%) patients. IG-IMRT is a reproducible and feasible technique for the delivery of APBI following conservative surgery for the treatment of low-risk, early-stage invasive breast carcinoma. Preliminary results are promising, early radiation side effects are minimal, and cosmetic results are excellent.

  11. Computed Tomography-Assisted Thoracoscopic Surgery: A Novel, Innovative Approach in Patients With Deep Intrapulmonary Lesions of Unknown Malignant Status.

    Science.gov (United States)

    Kostrzewa, Michael; Kara, Kerim; Rathmann, Nils; Tsagogiorgas, Charalambos; Henzler, Thomas; Schoenberg, Stefan O; Hohenberger, Peter; Diehl, Steffen J; Roessner, Eric D

    2017-06-01

    Minimally invasive resection of small, deep intrapulmonary lesions can be challenging due to the difficulty of localizing them during video-assisted thoracoscopic surgery (VATS). We report our preliminary results evaluating the feasibility of an image-guided, minimally invasive, 1-stop-shop approach for the resection of small, deep intrapulmonary lesions in a hybrid operating room (OR). Fifteen patients (5 men, 10 women; mean age, 63 years) with a total of 16 solitary, deep intrapulmonary nodules of unknown malignant status were identified for intraoperative wire marking. Patients were placed on the operating table for resection by VATS. A marking wire was placed within the lesion under 3D laser and fluoroscopic guidance using a cone beam computed tomography system. Then, wedge resection by VATS was performed in the same setting without repositioning the patient. Complete resection with adequate safety margins was confirmed for all lesions. Marking wire placement facilitated resection in 15 of 16 lesions. Eleven lesions proved to be malignant, either primary or secondary; 5 were benign. Mean lesion size was 7.7 mm; mean distance to the pleural surface was 15.1 mm (mean lesion depth-diameter ratio, 2.2). Mean procedural time for marking wire placement was 35 minutes; mean VATS duration was 36 minutes. Computed tomography-assisted thoracoscopic surgery is a new, safe, and effective procedure for minimally invasive resection of small, deeply localized intrapulmonary lesions. The benefits of computed tomography-assisted thoracoscopic surgery are 1. One-stop-shop procedure, 2. Lower risk for the patient (no patient relocation, no marking wire loss), and 3. No need to coordinate scheduling between the CT room and OR.

  12. Magnetic Resonance Imaging-Guided Focused Ultrasound Surgery for the Treatment of Symptomatic Uterine Fibroids

    Directory of Open Access Journals (Sweden)

    Laura Geraci

    2017-01-01

    Full Text Available Uterine fibroids, the most common benign tumor in women of childbearing age, may cause symptoms including pelvic pain, menorrhagia, dysmenorrhea, pressure, urinary symptoms, and infertility. Various approaches are available to treat symptomatic uterine fibroids. Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS represents a recently introduced noninvasive safe and effective technique that can be performed without general anesthesia, in an outpatient setting. We review the principles of MRgFUS, describing patient selection criteria for the treatments performed at our center and we present a series of five selected patients with symptomatic uterine fibroids treated with this not yet widely known technique, showing its efficacy in symptom improvement and fibroid volume reduction.

  13. Computer tomography urography assisted real-time ultrasound-guided percutaneous nephrolithotomy on renal calculus.

    Science.gov (United States)

    Fang, You-Qiang; Wu, Jie-Ying; Li, Teng-Cheng; Zheng, Hao-Feng; Liang, Guan-Can; Chen, Yan-Xiong; Hong, Xiao-Bin; Cai, Wei-Zhong; Zang, Zhi-Jun; Di, Jin-Ming

    2017-06-01

    This study aimed to assess the role of pre-designed route on computer tomography urography (CTU) in the ultrasound-guided percutaneous nephrolithotomy (PCNL) for renal calculus.From August 2013 to May 2016, a total of 100 patients diagnosed with complex renal calculus in our hospital were randomly divided into CTU group and control group (without CTU assistance). CTU was used to design a rational route for puncturing in CTU group. Ultrasound was used in both groups to establish a working trace in the operation areas. Patients' perioperative parameters and postoperative complications were recorded.All operations were successfully performed, without transferring to open surgery. Time of channel establishment in CTU group (6.5 ± 4.3 minutes) was shorter than the control group (10.0 ± 6.7 minutes) (P = .002). In addition, there was shorter operation time, lower rates of blood transfusion, secondary operation, and less establishing channels. The incidence of postoperative complications including residual stones, sepsis, severe hemorrhage, and perirenal hematoma was lower in CTU group than in control group.Pre-designing puncture route on CTU images would improve the puncturing accuracy, lessen establishing channels as well as improve the security in the ultrasound-guided PCNL for complex renal calculus, but at the cost of increased radiation exposure.

  14. Review methods for image segmentation from computed tomography images

    International Nuclear Information System (INIS)

    Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik; Mahmud, Rozi

    2014-01-01

    Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affect the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan

  15. uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer

    DEFF Research Database (Denmark)

    Christensen, Anders; Juhl, Karina; Persson, Morten

    2017-01-01

    . Histological analysis showed co-localization of the fluorescent signal, uPAR expression and tumor deposits. In addition, the feasibility of uPARguided robotic cancer surgery was demonstrated. Also, uPAR-PET imaging showed a clear and localized signal in the tongue tumors. Conclusions: This study demonstrated...

  16. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    Science.gov (United States)

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set

  17. Applications for a hybrid operating room in thoracic surgery: from multidisciplinary procedures to --image-guided video-assisted thoracoscopic surgery.

    Science.gov (United States)

    Terra, Ricardo Mingarini; Andrade, Juliano Ribeiro; Mariani, Alessandro Wasum; Garcia, Rodrigo Gobbo; Succi, Jose Ernesto; Soares, Andrey; Zimmer, Paulo Marcelo

    2016-01-01

    The concept of a hybrid operating room represents the union of a high-complexity surgical apparatus with state-of-the-art radiological tools (ultrasound, CT, fluoroscopy, or magnetic resonance imaging), in order to perform highly effective, minimally invasive procedures. Although the use of a hybrid operating room is well established in specialties such as neurosurgery and cardiovascular surgery, it has rarely been explored in thoracic surgery. Our objective was to discuss the possible applications of this technology in thoracic surgery, through the reporting of three cases. RESUMO O conceito de sala híbrida traduz a união de um aparato cirúrgico de alta complexidade com recursos radiológicos de última geração (ultrassom, TC, radioscopia e/ou ressonância magnética), visando a realização de procedimentos minimamente invasivos e altamente eficazes. Apesar de bem estabelecido em outras especialidades, como neurocirurgia e cirurgia cardiovascular, o uso da sala hibrida ainda é pouco explorado na cirurgia torácica. Nosso objetivo foi discutir as aplicações e as possibilidades abertas por essa tecnologia na cirurgia torácica através do relato de três casos.

  18. Radio-guided thoracoscopic surgery (RGTS) of small pulmonary nodules.

    Science.gov (United States)

    Ambrogi, Marcello Carlo; Melfi, Franca; Zirafa, Carmelina; Lucchi, Marco; De Liperi, Annalisa; Mariani, Giuliano; Fanucchi, Olivia; Mussi, Alfredo

    2012-04-01

    The demand for adequate tissue sampling to determine individual tumor behavior is increasing the number of lung nodule resections, even when the diagnosis is already recognized. Video-assisted thoracic surgery (VATS) is the procedure of choice for diagnosis and treatment of small pulmonary nodules. Difficulties in localizing smaller and deeper nodules have been approached with different techniques. Herein we report our 13-years' experience with radio-guided thoracoscopic resection. Patients with pulmonary nodules smaller than 1 cm and/or deeper than 1 cm, below the visceral pleura, underwent computed tomography (CT)-guided injection of a solution, composed of 0.2 ml (99)Tc-labeled human serum albumin microspheres and 0.1 ml nonionic contrast, into the nodule. During the VATS procedure, an 11-mm-diameter collimated probe connected to a gamma ray detector was introduced to scan the lung surface. The area of major radioactivity, which matched with the area of the nodule, was resected. From 1997 to 2009, 573 patients underwent thoracoscopic resection of small pulmonary nodules, 211 with the radio-guided technique. There were 159 men and 52 women, with an average age of 60.6 years (range = 12-83). The mean duration of the surgical procedure was 41 min (range = 20-100). The procedure was successful in 208/211 cases. Three patients (0.5%) required conversion to a minithoracotomy. The mean length of pleural drainage and hospital stay was 2.3 and 3.7 days, respectively. Histological examination showed 98 benign lesions and 113 malignant lesions (61 metastases and 52 primary lung cancers). This study confirms that radio-guided localization of small pulmonary nodules is a feasible, safe, and quick procedure, with a high rate of success. The spread of the sentinel lymph node technique has increased the availability of technology required for RGTS.

  19. Multi-Modal Imaging in a Mouse Model of Orthotopic Lung Cancer

    OpenAIRE

    Patel, Priya; Kato, Tatsuya; Ujiie, Hideki; Wada, Hironobu; Lee, Daiyoon; Hu, Hsin-pei; Hirohashi, Kentaro; Ahn, Jin Young; Zheng, Jinzi; Yasufuku, Kazuhiro

    2016-01-01

    Background Investigation of CF800, a novel PEGylated nano-liposomal imaging agent containing indocyanine green (ICG) and iohexol, for real-time near infrared (NIR) fluorescence and computed tomography (CT) image-guided surgery in an orthotopic lung cancer model in nude mice. Methods CF800 was intravenously administered into 13 mice bearing the H460 orthotopic human lung cancer. At 48 h post-injection (peak imaging agent accumulation time point), ex vivo NIR and CT imaging was performed. A cli...

  20. Ultrasound-guided versus computed tomography-scan guided biopsy of pleural-based lung lesions.

    Science.gov (United States)

    Khosla, Rahul; McLean, Anna W; Smith, Jessica A

    2016-01-01

    Computed tomography (CT) guided biopsies have long been the standard technique to obtain tissue from the thoracic cavity and is traditionally performed by interventional radiologists. Ultrasound (US) guided biopsy of pleural-based lesions, performed by pulmonologists is gaining popularity and has the advantage of multi-planar imaging, real-time technique, and the absence of radiation exposure to patients. In this study, we aim to determine the diagnostic accuracy, the time to diagnosis after the initial consult placement, and the complications rates between the two different modalities. A retrospective study of electronic medical records was done of patients who underwent CT-guided biopsies and US-guided biopsies for pleural-based lesions between 2005 and 2014 and the data collected were analyzed for comparing the two groups. A total of 158 patients underwent 162 procedures during the study period. 86 patients underwent 89 procedures in the US group, and 72 patients underwent 73 procedures in the CT group. The overall yield in the US group was 82/89 (92.1%) versus 67/73 (91.8%) in the CT group (P = 1.0). Average days to the procedure was 7.2 versus 17.5 (P = 0.00001) in the US and CT group, respectively. Complication rate was higher in CT group 17/73 (23.3%) versus 1/89 (1.1%) in the US group (P guided biopsy is similar to that of CT-guided biopsy, with a lower complication rate and a significantly reduced time to the procedure.

  1. Image Guided Virtual Autopsy: An Adjunct with Radiographic and Computed Tomography Modalities - An Important Tool in Forensic Identification

    Directory of Open Access Journals (Sweden)

    Shalu Rai

    2017-01-01

    Full Text Available The forensic examination of dead bodies is very helpful in order to identify the person, cause of death, gender, and solving the mysterious cases. It includes a number of techniques, out of which autopsy is the primary investigation that is performed in every medicolegal case. Because of mutilation technologies, traditional autopsy technique is most disturbing in terms of emotions and rituals of relatives. The use of radiology in forensic science comprises performance, interpretation, and reporting of radiographs that is helpful in detecting those changes that are not clinically visible. Forensic radiology plays an important role for identification of humans in mass disasters, criminal investigations, and evaluation of cause of death. The introduction of radiological modalities in autopsy techniques is a complementary tool for forensic identification and is known as virtual autopsy. The advance imaging techniques such as computed tomography (CT and magnetic resonance imaging (MRI is used in virtual autopsy in order to visualize and reconstruct the internal organs to know the site, type, and depth of injury. This review elaborates the role of maxillofacial imaging in image-guided virtual autopsy.

  2. First Responders Guide to Computer Forensics: Advanced Topics

    National Research Council Canada - National Science Library

    Nolan, Richard; Baker, Marie; Branson, Jake; Hammerstein, Josh; Rush, Kris; Waits, Cal; Schweinsberg, Elizabeth

    2005-01-01

    First Responders Guide to Computer Forensics: Advanced Topics expands on the technical material presented in SEI handbook CMU/SEI-2005-HB-001, First Responders Guide to Computer Forensics [Nolan 05...

  3. A novel dental implant guided surgery based on integration of surgical template and augmented reality.

    Science.gov (United States)

    Lin, Yen-Kun; Yau, Hong-Tzong; Wang, I-Chung; Zheng, Cheng; Chung, Kwok-Hung

    2015-06-01

    Stereoscopic visualization concept combined with head-mounted displays may increase the accuracy of computer-aided implant surgery. The aim of this study was to develop an augmented reality-based dental implant placement system and evaluate the accuracy of the virtually planned versus the actual prepared implant site created in vitro. Four fully edentulous mandibular and four partially edentulous maxillary duplicated casts were used. Six implants were planned in the mandibular and four in the maxillary casts. A total of 40 osteotomy sites were prepared in the casts using stereolithographic template integrated with augmented reality-based surgical simulation. During the surgery, the dentist could be guided accurately through a head-mounted display by superimposing the virtual auxiliary line and the drill stop. The deviation between planned and prepared positions of the implants was measured via postoperative computer tomography generated scan images. Mean and standard deviation of the discrepancy between planned and prepared sites at the entry point, apex, angle, depth, and lateral locations were 0.50 ± 0.33 mm, 0.96 ± 0.36 mm, 2.70 ± 1.55°, 0.33 ± 0.27 mm, and 0.86 ± 0.34 mm, respectively, for the fully edentulous mandible, and 0.46 ± 0.20 mm, 1.23 ± 0.42 mm, 3.33 ± 1.42°, 0.48 ± 0.37 mm, and 1.1 ± 0.39 mm, respectively, for the partially edentulous maxilla. There was a statistically significant difference in the apical deviation between maxilla and mandible in this surgical simulation (p augmented reality technology. © 2013 Wiley Periodicals, Inc.

  4. The Application of Three-Dimensional Surface Imaging System in Plastic and Reconstructive Surgery.

    Science.gov (United States)

    Li, Yanqi; Yang, Xin; Li, Dong

    2016-02-01

    Three-dimensional (3D) surface imaging system has gained popularity worldwide in clinical application. Unlike computed tomography and magnetic resonance imaging, it has the ability to capture 3D images with both shape and texture information. This feature has made it quite useful for plastic surgeons. This review article is mainly focusing on demonstrating the current status and analyzing the future of the application of 3D surface imaging systems in plastic and reconstructive surgery.Currently, 3D surface imaging system is mainly used in plastic and reconstructive surgery to help improve the reliability of surgical planning and assessing surgical outcome objectively. There have already been reports of its using on plastic and reconstructive surgery from head to toe. Studies on facial aging process, online applications development, and so on, have also been done through the use of 3D surface imaging system.Because different types of 3D surface imaging devices have their own advantages and disadvantages, a basic knowledge of their features is required and careful thought should be taken to choose the one that best fits a surgeon's demand.In the future, by integrating with other imaging tools and the 3D printing technology, 3D surface imaging system will play an important role in individualized surgical planning, implants production, meticulous surgical simulation, operative techniques training, and patient education.

  5. Minimally invasive registration for computer-assisted orthopedic surgery: combining tracked ultrasound and bone surface points via the P-IMLOP algorithm.

    Science.gov (United States)

    Billings, Seth; Kang, Hyun Jae; Cheng, Alexis; Boctor, Emad; Kazanzides, Peter; Taylor, Russell

    2015-06-01

    We present a registration method for computer-assisted total hip replacement (THR) surgery, which we demonstrate to improve the state of the art by both reducing the invasiveness of current methods and increasing registration accuracy. A critical element of computer-guided procedures is the determination of the spatial correspondence between the patient and a computational model of patient anatomy. The current method for establishing this correspondence in robot-assisted THR is to register points intraoperatively sampled by a tracked pointer from the exposed proximal femur and, via auxiliary incisions, from the distal femur. In this paper, we demonstrate a noninvasive technique for sampling points on the distal femur using tracked B-mode ultrasound imaging and present a new algorithm for registering these data called Projected Iterative Most-Likely Oriented Point (P-IMLOP). Points and normal orientations of the distal bone surface are segmented from ultrasound images and registered to the patient model along with points sampled from the exposed proximal femur via a tracked pointer. The proposed approach is evaluated using a bone- and tissue-mimicking leg phantom constructed to enable accurate assessment of experimental registration accuracy with respect to a CT-image-based model of the phantom. These experiments demonstrate that localization of the femur shaft is greatly improved by tracked ultrasound. The experiments further demonstrate that, for ultrasound-based data, the P-IMLOP algorithm significantly improves registration accuracy compared to the standard ICP algorithm. Registration via tracked ultrasound and the P-IMLOP algorithm has high potential to reduce the invasiveness and improve the registration accuracy of computer-assisted orthopedic procedures.

  6. Interpretation of medical images by model guided analysis

    International Nuclear Information System (INIS)

    Karssemeijer, N.

    1989-01-01

    Progress in the development of digital pictorial information systems stimulates a growing interest in the use of image analysis techniques in medicine. Especially when precise quantitative information is required the use of fast and reproducable computer analysis may be more appropriate than relying on visual judgement only. Such quantitative information can be valuable, for instance, in diagnostics or in irradiation therapy planning. As medical images are mostly recorded in a prescribed way, human anatomy guarantees a common image structure for each particular type of exam. In this thesis it is investigated how to make use of this a priori knowledge to guide image analysis. For that purpose models are developed which are suited to capture common image structure. The first part of this study is devoted to an analysis of nuclear medicine images of myocardial perfusion. In ch. 2 a model of these images is designed in order to represent characteristic image properties. It is shown that for these relatively simple images a compact symbolic description can be achieved, without significant loss of diagnostically importance of several image properties. Possibilities for automatic interpretation of more complex images is investigated in the following chapters. The central topic is segmentation of organs. Two methods are proposed and tested on a set of abdominal X-ray CT scans. Ch. 3 describes a serial approach based on a semantic network and the use of search areas. Relational constraints are used to guide the image processing and to classify detected image segments. In teh ch.'s 4 and 5 a more general parallel approach is utilized, based on a markov random field image model. A stochastic model used to represent prior knowledge about the spatial arrangement of organs is implemented as an external field. (author). 66 refs.; 27 figs.; 6 tabs

  7. Percutaneous image-guided needle biopsy in children - summary of our experience with 57 children

    International Nuclear Information System (INIS)

    Sklair-Levy, M.; Lebensart, P.D.; Applbaum, Y.H.; Bar-Ziv, J.; Libson, E.; Ramu, N.; Freeman, A.; Gozal, D.; Gross, E.; Sherman, Y.

    2001-01-01

    Background: Percutaneous image-guided needle biopsy in children has been slower to gain acceptance than in adults where it is regarded as the standard clinical practice in screening suspicious masses. Objectives: To report our experience with percutaneous image-guided needle biopsy in the pediatric population and assess its clinical use, efficacy and limitations. Material and methods: Sixty-nine percutaneous image-guided needle biopsies were performed in 57 children. The age of the children ranged from 4 days to 14 years (mean 5.6 years). We used 16- to-20-gauge cutting-edge needles. Sixty-two biopsies were core-needle biopsies and 7 fine-needle aspiration biopsies. Results: There were 50 malignant lesions, 10 benign lesions and 2 infectious lesions. In 55 (88.7 %) lesions the needle biopsy was diagnostic. In 7 (11.3 %) the biopsy was non-diagnostic and the diagnosis was made by surgery. Core-needle biopsy was diagnostic in 47 of 50 (94 %) of the malignant solid tumors. In 3 out of 5 children with lymphoma, an accurate diagnosis was obtained with needle aspiration. Seven children underwent a repeated core-needle biopsy, (5 for Wilms' tumor and 2 for neuroblastoma) that was diagnostic in all cases. All the biopsies were performed without complications. Conclusion: Percutaneous image-guided needle biopsy is a simple, minimally invasive, safe and accurate method for the evaluation of children with suspicious masses. These data suggest that image-guided needle biopsy is an excellent tool for diagnosing solid tumors in the pediatric population. Negative studies should be considered nondiagnostic and followed by excisional surgical biopsies when clinical suspicion of malignancy is high. (orig.)

  8. CT-guided thermoplastic assisted segmentectomy is an optimal breast conserving surgery for breast cancer with nipple discharge

    International Nuclear Information System (INIS)

    Makita, Masujiro; Gomi, Naoya; Tachikawa, Tomohiro

    2004-01-01

    Improvement of imaging by injecting contrast agents into the discharging duct and immobilizing the breast mound with a drape-type thermoplastic shell in breast conserving surgery was assessed by evaluating 96 cases of breast cancer patients with nipple discharge treated by partial mastectomy between April 1998 and August 2003. These patients were divided to three groups: Group A was treated by ordinary partial mastectomy or microdochectomy without new methods. Group B underwent contrast imaging without shell immobilization, and Group C received both shell immobilization and contrast imaging. The negative rates of surgical margins in Groups A, B and C were 19.0%, 17.2%, and 37.5%, respectively. The rates of negative ''lateral'' surgical margins in Groups A, B and C were 23.8%, 27.6%, and 50%, respectively. The rate of negative ''lateral'' surgical margins in Group C was significantly higher than that in Group A. Our findings suggest CT-guided thermoplastic assisted segmentectomy, adopting both ductography CT and immobilization by shell, is an optimal breast conserving surgery for breast cancer with nipple discharge. (author)

  9. Near-infrared image guidance in cancer surgery

    NARCIS (Netherlands)

    Schaafsma, B.E.

    2017-01-01

    Intraoperative imaging using near-infrared (NIR) fluorescence is a fast developing imaging modality as it provides real-time visual information during surgery (Chapter 1). The ability to detect lymph nodes and tumours that need to be resected can assist the surgeon to improve surgery by reducing

  10. Recent advances in imaging technologies in implant dentistry

    Directory of Open Access Journals (Sweden)

    Sharad Sahai

    2015-01-01

    Full Text Available Dental implants have become a part of routine treatment plans in oral rehabilitation. Diagnostic imaging is critical to presurgical treatment planning and the success of implants. Various imaging modalities may aid the placing of implants in an appropriate location with relative ease and also obtain a predictable outcome. Cross-sectional imaging techniques such as computed tomography (CT and, more recently, cone beam-computed tomography (CBCT are invaluable during preoperative planning for endosseous dental implantation procedures. An understanding of geometric and software parameters, and image formatting options to maximize image display is necessary to optimize diagnostic yield while maintaining minimal patient radiation dose. Multiplanar CT or CBCT images contain far more detailed information of the maxillofacial region than do panoramic or other bidimensional (2D images and necessitate a thorough knowledge of the tridimensional (3D anatomy of the region and considerations of variability in the range of the anatomically normal. This article provides: (1 an overview of the fundamental principles of operation of maxillofacial CT and CBCT; (2 an understanding of image processing and display protocols specific to pre-implant bone assessment; (3 the basics of qualitative and quantitative bone evaluation; and (4 an introduction to image-guided implant surgery using custom or computer-generated surgical guides.

  11. [Computer assisted orthognathic surgery: Condyle repositioning.

    Science.gov (United States)

    Bettega, G; Leitner, F

    2013-07-17

    Computer aided surgery has become a standard in many fields. It is rarely used in orthognathic surgery. Twenty years ago, we developed a navigation system adapted to this surgery, especially for mandibular condyle repositioning. The system has been improved along with technological progress. The authors of several clinical studies have validated this system. It is now routinely used in our department, because of its educational virtues among other assets. Copyright © 2013. Published by Elsevier Masson SAS.

  12. Optical coherence tomography image-guided smart laser knife for surgery.

    Science.gov (United States)

    Katta, Nitesh; McElroy, Austin B; Estrada, Arnold D; Milner, Thomas E

    2018-03-01

    Surgical oncology can benefit from specialized tools that enhance imaging and enable precise cutting and removal of tissue without damage to adjacent structures. The combination of high-resolution, fast optical coherence tomography (OCT) co-aligned with a nanosecond pulsed thulium (Tm) laser offers advantages over conventional surgical laser systems. Tm lasers provide superior beam quality, high volumetric tissue removal rates with minimal residual thermal footprint in tissue, enabling a reduction in unwanted damage to delicate adjacent sub-surface structures such as nerves or micro-vessels. We investigated such a combined Tm/OCT system with co-aligned imaging and cutting beams-a configuration we call a "smart laser knife." A blow-off model that considers absorption coefficients and beam delivery systems was utilized to predict Tm cut depth, tissue removal rate and spatial distribution of residual thermal injury. Experiments were performed to verify the volumetric removal rate predicted by the model as a function of average power. A bench-top, combined Tm/OCT system was constructed using a 15W 1940 nm nanosecond pulsed Tm fiber laser (500 μJ pulse energy, 100 ns pulse duration, 30 kHz repetition rate) for removing tissue and a swept source laser (1310 ± 70 nm, 100 kHz sweep rate) for OCT imaging. Tissue phantoms were used to demonstrate precise surgery with blood vessel avoidance. Depth imaging informed cutting/removal of targeted tissue structures by the Tm laser was performed. Laser cutting was accomplished around and above phantom blood vessels while avoiding damage to vessel walls. A tissue removal rate of 5.5 mm 3 /sec was achieved experimentally, in comparison to the model prediction of approximately 6 mm 3 /sec. We describe a system that combines OCT and laser tissue modification with a Tm laser. Simulation results of the tissue removal rate using a simple model, as a function of average power, are in good agreement with experimental

  13. A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography.

    Science.gov (United States)

    Majdani, Omid; Bartling, Soenke H; Leinung, Martin; Stöver, Timo; Lenarz, Minoo; Dullin, Christian; Lenarz, Thomas

    2008-02-01

    High-precision intraoperative navigation using high-resolution flat-panel volume computed tomography makes feasible the possibility of minimally invasive cochlear implant surgery, including cochleostomy. Conventional cochlear implant surgery is typically performed via mastoidectomy with facial recess to identify and avoid damage to vital anatomic landmarks. To accomplish this procedure via a minimally invasive approach--without performing mastoidectomy--in a precise fashion, image-guided technology is necessary. With such an approach, surgical time and expertise may be reduced, and hearing preservation may be improved. Flat-panel volume computed tomography was used to scan 4 human temporal bones. A drilling channel was planned preoperatively from the mastoid surface to the round window niche, providing a margin of safety to all functional important structures (e.g., facial nerve, chorda tympani, incus). Postoperatively, computed tomographic imaging and conventional surgical exploration of the drilled route to the cochlea were performed. All 4 specimens showed a cochleostomy located at the scala tympani anterior inferior to the round window. The chorda tympani was damaged in 1 specimen--this was preoperatively planned as a narrow facial recess was encountered. Using flat-panel volume computed tomography for image-guided surgical navigation, we were able to perform minimally invasive cochlear implant surgery defined as a narrow, single-channel mastoidotomy with cochleostomy. Although this finding is preliminary, it is technologically achievable.

  14. Impact of multi-detector row computed tomography on the tactics of cardiovascular surgery. From qualitative evaluation to quantitative assessment

    International Nuclear Information System (INIS)

    Imagawa, Hiroshi; Kawachi, Kanji; Takano, Shinji

    2005-01-01

    We assessed the role of multi-detector row computed tomography in cardiovascular surgery. The efficacy of multi-detector row computed tomography was assessed concerning the graft patency of coronary artery bypass, arterial atheromatous degeneration, small vessel imaging, and left ventricular volume measurement. Images were reconstructed using both the volume-rendering and the maximum-intensity-profile methods. Arterial atherosclerotic degeneration was assessed by aortic wall volume and aortic calcification volume. In the assessment of bypass graft patency, multidetector row computed tomography showed a 98% correct positive ratio with sensitivity and specificity of 98% and 100%, respectively. Atheromatous degeneration showed matching results in more than 70% of cases compared with intraoperative findings. More than 92% of arterial branches with diameters of 3 mm or greater were detected by preoperative multi-detector row computed tomography images, though only 6% of branches with diameters of 2 mm or less could be visualized. There was a positive linear correlation between left ventricular volumes determined by multi-detector row computed tomography and those calculated from cine angiography. Multi-detector row computed tomography clearly visualized coronary bypass grafts and aortic arterial branches, providing detailed vascular images. Atheromatous degeneration assessed by multi-detector row computed tomography was equivalent with intraoperative findings in more than 70% of cases. Left ventricular volumes measured by multi-detector row computed tomography correlated closely with those determined by cine-angiography. Multidetector row computed tomography is an efficient and promising modality in cardiovascular surgery. (author)

  15. Sensitivity of Computed Tomography‑guided Transthoracic Biopsies ...

    African Journals Online (AJOL)

    Introduction: The indications for open biopsies for intrathoracic lesions have become almost negligible. This development was made possible by less invasive maneuvers such as computed tomography‑guided (CT‑guided) biopsy, thoracoscopy or video‑assisted thoracoscopy, and bronchoscopy. CT‑guided percutaneous ...

  16. Use of computer-assisted design and manufacturing to localize dural venous sinuses during reconstructive surgery for craniosynostosis.

    Science.gov (United States)

    Iyer, Rajiv R; Wu, Adela; Macmillan, Alexandra; Musavi, Leila; Cho, Regina; Lopez, Joseph; Jallo, George I; Dorafshar, Amir H; Ahn, Edward S

    2018-01-01

    Cranial vault remodeling surgery for craniosynostosis carries the potential risk of dural venous sinus injury given the extensive bony exposure. Identification of the dural venous sinuses can be challenging in patients with craniosynostosis given the lack of accurate surface-localizing landmarks. Computer-aided design and manufacturing (CAD/CAM) has allowed surgeons to pre-operatively plan these complex procedures in an effort to increase reconstructive efficiency. An added benefit of this technology is the ability to intraoperatively map the dural venous sinuses based on pre-operative imaging. We utilized CAD/CAM technology to intraoperatively map the dural venous sinuses for patients undergoing reconstructive surgery for craniosynostosis in an effort to prevent sinus injury, increase operative efficiency, and enhance patient safety. Here, we describe our experience utilizing this intraoperative technology in pediatric patients with craniosynostosis. We retrospectively reviewed the charts of children undergoing reconstructive surgery for craniosynostosis using CAD/CAM surgical planning guides at our institution between 2012 and 2016. Data collected included the following: age, gender, type of craniosynostosis, estimated blood loss, sagittal sinus deviation from the sagittal suture, peri-operative outcomes, and hospital length of stay. Thirty-two patients underwent reconstructive cranial surgery for craniosynostosis, with a median age of 11 months (range, 7-160). Types of synostosis included metopic (6), unicoronal (6), sagittal (15), lambdoid (1), and multiple suture (4). Sagittal sinus deviation from the sagittal suture was maximal in unicoronal synostosis patients (10.2 ± 0.9 mm). All patients tolerated surgery well, and there were no occurrences of sagittal sinus, transverse sinus, or torcular injury. The use of CAD/CAM technology allows for accurate intraoperative dural venous sinus localization during reconstructive surgery for craniosynostosis and

  17. Incorporation of a laser range scanner into image-guided liver surgery: Surface acquisition, registration, and tracking

    OpenAIRE

    Cash, David M.; Sinha, Tuhin K.; Chapman, William C.; Terawaki, Hiromi; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2003-01-01

    As image guided surgical procedures become increasingly diverse, there will be more scenarios where point-based fiducials cannot be accurately localized for registration and rigid body assumptions no longer hold. As a result, procedures will rely more frequently on anatomical surfaces for the basis of image alignment and will require intraoperative geometric data to measure and compensate for tissue deformation in the organ. In this paper we outline methods for which a laser range scanner may...

  18. Application of advanced virtual reality and 3D computer assisted technologies in tele-3D-computer assisted surgery in rhinology.

    Science.gov (United States)

    Klapan, Ivica; Vranjes, Zeljko; Prgomet, Drago; Lukinović, Juraj

    2008-03-01

    The real-time requirement means that the simulation should be able to follow the actions of the user that may be moving in the virtual environment. The computer system should also store in its memory a three-dimensional (3D) model of the virtual environment. In that case a real-time virtual reality system will update the 3D graphic visualization as the user moves, so that up-to-date visualization is always shown on the computer screen. Upon completion of the tele-operation, the surgeon compares the preoperative and postoperative images and models of the operative field, and studies video records of the procedure itself Using intraoperative records, animated images of the real tele-procedure performed can be designed. Virtual surgery offers the possibility of preoperative planning in rhinology. The intraoperative use of computer in real time requires development of appropriate hardware and software to connect medical instrumentarium with the computer and to operate the computer by thus connected instrumentarium and sophisticated multimedia interfaces.

  19. Computer Assisted Surgery and Current Trends in Orthopaedics Research and Total Joint Replacements

    Science.gov (United States)

    Amirouche, Farid

    2008-06-01

    patients are living longer and total hip arthroplasty is performed in younger patients the risks of osteolysis associated with cumulative wear is increased. Computer-assisted surgery is based on sensing feedback; vision and imaging that help surgeons align the patient's joints during total knee or hip replacement with a degree of accuracy not possible with the naked eye. For the first time, the computer feedback is essential for ligament balancing and longevity of the implants. The computers navigation systems also help surgeons to use smaller incisions instead of the traditional larger openings. Small-incision surgery offers the potential for faster recovery, less bleeding and less pain for patients. The development of SESCAN imaging technique to create a patient based model of a 3D joint will be presented to show the effective solution of complex geometry of joints.

  20. Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery.

    Science.gov (United States)

    Prada, F; Del Bene, M; Mattei, L; Lodigiani, L; DeBeni, S; Kolev, V; Vetrano, I; Solbiati, L; Sakas, G; DiMeco, F

    2015-04-01

    Brain shift and tissue deformation during surgery for intracranial lesions are the main actual limitations of neuro-navigation (NN), which currently relies mainly on preoperative imaging. Ultrasound (US), being a real-time imaging modality, is becoming progressively more widespread during neurosurgical procedures, but most neurosurgeons, trained on axial computed tomography (CT) and magnetic resonance imaging (MRI) slices, lack specific US training and have difficulties recognizing anatomic structures with the same confidence as in preoperative imaging. Therefore real-time intraoperative fusion imaging (FI) between preoperative imaging and intraoperative ultrasound (ioUS) for virtual navigation (VN) is highly desirable. We describe our procedure for real-time navigation during surgery for different cerebral lesions. We performed fusion imaging with virtual navigation for patients undergoing surgery for brain lesion removal using an ultrasound-based real-time neuro-navigation system that fuses intraoperative cerebral ultrasound with preoperative MRI and simultaneously displays an MRI slice coplanar to an ioUS image. 58 patients underwent surgery at our institution for intracranial lesion removal with image guidance using a US system equipped with fusion imaging for neuro-navigation. In all cases the initial (external) registration error obtained by the corresponding anatomical landmark procedure was below 2 mm and the craniotomy was correctly placed. The transdural window gave satisfactory US image quality and the lesion was always detectable and measurable on both axes. Brain shift/deformation correction has been successfully employed in 42 cases to restore the co-registration during surgery. The accuracy of ioUS/MRI fusion/overlapping was confirmed intraoperatively under direct visualization of anatomic landmarks and the error was surgery and is less expensive and time-consuming than other intraoperative imaging techniques, offering high precision and

  1. Clinical Application of Different Surgical Navigation Systems in Complex Craniomaxillofacial Surgery: The Use of Multisurface 3-Dimensional Images and a 2-Plane Reference System.

    Science.gov (United States)

    Liu, Tom J; Ko, An-Ta; Tang, Yueh-Bih; Lai, Hong-Shiee; Chien, Hsiung-Fei; Hsieh, Thomas Mon-Hsian

    2016-04-01

    Intraoperative navigation is a tool that provides surgeons with real-time guidance based on patients' preoperative imaging studies. The application of intraoperative navigation to neurosurgery and otolaryngology has been well documented; however, only isolated reports have analyzed its potential in the field of craniomaxillofacial surgery. From November 2010 to July 2014, 15 patients were operated on for complex craniomaxillofacial surgery with assistance by 3 different navigation systems, which used either infrared or electromagnetic technologies. We imported fine-cut (0.625-mm) computed tomographic scan images of the patients to the navigation systems whose software processed them into multisurface 3-dimentional models used as guiding material for the surgical navigation. We also developed a simple "2-plane reference system" to ensure that the final results were symmetric to the normal half of the face. Appearance outcome was evaluated by questionnaire. Of these 15 cases, 3 cases were performed with infrared-based navigation, and the remaining 12 cases were accomplished by electromagnetic technology. Most of these cases resulted in satisfactory outcomes after tumor resection, posttraumatic reconstruction, and postablative reconstruction. Navigation systems offer highly valuable intraoperative assistance in complex craniomaxillofacial surgery. Not only can these systems pinpoint deep-seated lesions as neurosurgeons or otolaryngologists do, but they can also use a simple 2-plane reference system for accurate bone alignment. Moreover, advancements in multisurface 3-D models provide us more reliable intuitive image guidance. The application of electromagnetic technology, with its smaller reference obviation of the line-of-sight problem, makes the manipulation of craniomaxillofacial surgery more comfortable.

  2. Fractal analyses of osseous healing using Tuned Aperture Computed Tomography images

    International Nuclear Information System (INIS)

    Nair, M.K.; Nair, U.P.; Seyedain, A.; Webber, R.L.; Piesco, N.P.; Agarwal, S.; Mooney, M.P.; Groendahl, H.G.

    2001-01-01

    The aim of this study was to evaluate osseous healing in mandibular defects using fractal analyses on conventional radiographs and tuned aperture computed tomography (TACT; OrthoTACT, Instrumentarium Imaging, Helsinki, Finland) images. Eighty test sites on the inferior margins of rabbit mandibles were subject to lesion induction and treated with one of the following: no treatment (controls); osteoblasts only; polymer matrix only; or osteoblast-polymer matrix (OPM) combination. Images were acquired using conventional radiography and TACT, including unprocessed TACT (TACT-U) and iteratively restored TACT (TACT-IR). Healing was followed up over time and images acquired at 3, 6, 9, and 12 weeks post-surgery. Fractal dimension (FD) was computed within regions of interest in the defects using the TACT workbench. Results were analyzed for effects produced by imaging modality, treatment modality, time after surgery and lesion location. Histomorphometric data were available to assess ground truth. Significant differences (p<0.0001) were noted based on imaging modality with TACT-IR recording the highest mean fractal dimension (MFD), followed by TACT-U and conventional images, in that order. Sites treated with OPM recorded the highest MFDs among all treatment modalities (p<0.0001). The highest MFD based on time was recorded at 3 weeks and differed significantly with 12 weeks (p<0.035). Correlation of FD with results of histomorphometric data was high (r=0.79; p<0.001). The FD computed on TACT-IR showed the highest correlation with histomorphometric data, thus establishing the fact TACT is a more efficient and accurate imaging modality for quantification of osseous changes within healing bony defects. (orig.)

  3. Advancing molecular-guided surgery through probe development and testing in a moderate cost evaluation pipeline

    Science.gov (United States)

    Pogue, Brian W.; Paulsen, Keith D.; Hull, Sally M.; Samkoe, Kimberley S.; Gunn, Jason; Hoopes, Jack; Roberts, David W.; Strong, Theresa V.; Draney, Daniel; Feldwisch, Joachim

    2015-03-01

    Molecular guided oncology surgery has the potential to transform the way decisions about resection are done, and can be critically important in areas such as neurosurgery where the margins of tumor relative to critical normal tissues are not readily apparent from visual or palpable guidance. Yet there are major financial barriers to advancing agents into clinical trials with commercial backing. We observe that development of these agents in the standard biological therapeutic paradigm is not viable, due to the high up front financial investment needed and the limitations in the revenue models of contrast agents for imaging. The hypothesized solution to this problem is to develop small molecular biologicals tagged with an established fluorescent reporter, through the chemical agent approval pathway, targeting a phase 0 trials initially, such that the initial startup phase can be completely funded by a single NIH grant. In this way, fast trials can be completed to de-risk the development pipeline, and advance the idea of fluorescence-guided surgery (FGS) reporters into human testing. As with biological therapies the potential successes of each agent are still moderate, but this process will allow the field to advance in a more stable and productive manner, rather than relying upon isolated molecules developed at high cost and risk. The pathway proposed and tested here uses peptide synthesis of an epidermal growth factor receptor (EGFR)-binding Affibody molecules, uniquely conjugated to IRDye 800CW, developed and tested in academic and industrial laboratories with well-established records for GMP production, fill and finish, toxicity testing, and early phase clinical trials with image guidance.

  4. Radio-fluoro guided surgery in high grade gliomas

    International Nuclear Information System (INIS)

    Lopez Piloto, Orestes; Salva Camano, Silvia; Gonzalez Gonzalez, Justo; Cruz Hernandez, Tania Margarita; Martinez Suarez, Eduardo; Lopez Arbolay, Omar; Ardisana Santana, Ernesto

    2015-01-01

    The MIBI (99mTc MIBI, methoxyisobutylisonitrile, MIBI, or sestamibi): is a wide readiness to the rich flow of photons, which improves the detection of pathological uptake with gamma probe, these physical properties make of this radiotracer the election to radioguided surgery. The sodium fluorescein is a water-soluble organic coloring substance used in the exam of the sanguine glasses of the eye. We carried out the report of five cases diagnosed with brain tumor of high grade of malignancy, with the objective to demonstrated that use of Radio-Fluro-guided Surgery (RFGS) we can achieve gross total resections without bigger deficit, completing the inclusion and exclusion criteria. The technique of RFGS demonstrated utility in the gross total resection, diminishing the residual tumor, without increasing surgery complexity and surgical times. In our study doesn't evidence of adverse effects for the administration of the radiopharmaceuticals and fluorescein

  5. Introduction to Computing Course Guide.

    Science.gov (United States)

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    Developed to aid intermediate-level teachers and principals in initiating and developing computer literacy programs for their students, this document is a guide for the development of a one-semester course--Introduction to Computing--for the seventh and eighth grades. The course is designed to provide opportunities for students to develop computer…

  6. PACS for surgery and interventional radiology: features of a Therapy Imaging and Model Management System (TIMMS).

    Science.gov (United States)

    Lemke, Heinz U; Berliner, Leonard

    2011-05-01

    Appropriate use of information and communication technology (ICT) and mechatronic (MT) systems is viewed by many experts as a means to improve workflow and quality of care in the operating room (OR). This will require a suitable information technology (IT) infrastructure, as well as communication and interface standards, such as specialized extensions of DICOM, to allow data interchange between surgical system components in the OR. A design of such an infrastructure, sometimes referred to as surgical PACS, but better defined as a Therapy Imaging and Model Management System (TIMMS), will be introduced in this article. A TIMMS should support the essential functions that enable and advance image guided therapy, and in the future, a more comprehensive form of patient-model guided therapy. Within this concept, the "image-centric world view" of the classical PACS technology is complemented by an IT "model-centric world view". Such a view is founded in the special patient modelling needs of an increasing number of modern surgical interventions as compared to the imaging intensive working mode of diagnostic radiology, for which PACS was originally conceptualised and developed. The modelling aspects refer to both patient information and workflow modelling. Standards for creating and integrating information about patients, equipment, and procedures are vitally needed when planning for an efficient OR. The DICOM Working Group 24 (WG-24) has been established to develop DICOM objects and services related to image and model guided surgery. To determine these standards, it is important to define step-by-step surgical workflow practices and create interventional workflow models per procedures or per variable cases. As the boundaries between radiation therapy, surgery and interventional radiology are becoming less well-defined, precise patient models will become the greatest common denominator for all therapeutic disciplines. In addition to imaging, the focus of WG-24 is to serve

  7. PACS for surgery and interventional radiology: Features of a Therapy Imaging and Model Management System (TIMMS)

    International Nuclear Information System (INIS)

    Lemke, Heinz U.; Berliner, Leonard

    2011-01-01

    Appropriate use of information and communication technology (ICT) and mechatronic (MT) systems is viewed by many experts as a means to improve workflow and quality of care in the operating room (OR). This will require a suitable information technology (IT) infrastructure, as well as communication and interface standards, such as specialized extensions of DICOM, to allow data interchange between surgical system components in the OR. A design of such an infrastructure, sometimes referred to as surgical PACS, but better defined as a Therapy Imaging and Model Management System (TIMMS), will be introduced in this article. A TIMMS should support the essential functions that enable and advance image guided therapy, and in the future, a more comprehensive form of patient-model guided therapy. Within this concept, the 'image-centric world view' of the classical PACS technology is complemented by an IT 'model-centric world view'. Such a view is founded in the special patient modelling needs of an increasing number of modern surgical interventions as compared to the imaging intensive working mode of diagnostic radiology, for which PACS was originally conceptualised and developed. The modelling aspects refer to both patient information and workflow modelling. Standards for creating and integrating information about patients, equipment, and procedures are vitally needed when planning for an efficient OR. The DICOM Working Group 24 (WG-24) has been established to develop DICOM objects and services related to image and model guided surgery. To determine these standards, it is important to define step-by-step surgical workflow practices and create interventional workflow models per procedures or per variable cases. As the boundaries between radiation therapy, surgery and interventional radiology are becoming less well-defined, precise patient models will become the greatest common denominator for all therapeutic disciplines. In addition to imaging, the focus of WG-24 is to serve

  8. The use of image-guidance during transsphenoidal pituitary surgery in the United States

    Science.gov (United States)

    Chung, Thomas K.; Riley, Kristen O.

    2015-01-01

    Background: Intraoperative image guidance is a useful modality for transsphenoidal pituitary surgery. However, the outcomes associated with this technology have not been systematically evaluated. Objective: The purpose of the study was to quantify complication rates with and without the use of image guidance during transsphenoidal pituitary surgery using a nationwide database with broadly applicable results. Methods: A retrospective analysis of the Nationwide Inpatient Sample was performed from 2007 to 2011. Transsphenoidal pituitary resections for adenomas were identified by International Classification of Diseases-9th Revision, Clinical Modification code. The effect of image guidance on cerebrospinal fluid (CSF) leak complications and cost-benefit was analyzed. Results: A total of 48,848 transsphenoidal pituitary resections were identified, of which 77.5% were partial resections and 22.5% were complete. Pathologic indications included benign (89.3%), malignant primary (0.6%), and malignant secondary (0.4%). Complications included same-stay death (0.4%), CSF leak (8.8%), postoperative CSF rhinorrhea (1.9%), diabetes insipidus (12.4%), and meningitis (0.4%). Image guidance was employed in 7% (n = 3401) of all cases. When analyzed by modality, computed tomography (CT)-assisted procedures had lower CSF rhinorrhea rates (1.1%) compared with cases with no image guidance (1.9%), whereas magnetic resonance (MR)-assisted procedures had the highest rates (2.7%, χ2 p surgery had significantly shorter length of stay (2.9 days) versus no image guidance (3.7 days, p surgery is associated with a lower rate of CSF leak, shorter length of stay, and lower cost compared with patients without image guidance. Further studies that control for severity and extent of disease are warranted to confirm this finding. PMID:25975254

  9. MRT letter: Guided filtering of image focus volume for 3D shape recovery of microscopic objects.

    Science.gov (United States)

    Mahmood, Muhammad Tariq

    2014-12-01

    In this letter, a shape from focus (SFF) method is proposed that utilizes the guided image filtering to enhance the image focus volume efficiently. First, image focus volume is computed using a conventional focus measure. Then each layer of image focus volume is filtered using guided filtering. In this work, the all-in-focus image, which can be obtained from the initial focus volume, is used as guidance image. Finally, improved depth map is obtained from the filtered image focus volume by maximizing the focus measure along the optical axis. The proposed SFF method is efficient and provides better depth maps. The improved performance is highlighted by conducting several experiments using image sequences of simulated and real microscopic objects. The comparative analysis demonstrates the effectiveness of the proposed SFF method. © 2014 Wiley Periodicals, Inc.

  10. Neuronavigation in brain tumor surgery:clinical beta-phase of the Oulu Neuronavigator System

    OpenAIRE

    Schiffbauer, H. (Hagen)

    1999-01-01

    Abstract Interactive image-guided neurosurgery for the resection of brain tumors was developed within the last 10 years at different neurosurgical centers around the world to improve the safety of the surgery and the functional outcome of the patients. Since 1987, the Oulu Neuronavigator System, consisting mainly of a mechanical arm, visualization software, an ultrasound transducer and a computer, was developed at the Neurosurgical Research Unit, University of Oulu, Finland. It was the fir...

  11. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance.

    Directory of Open Access Journals (Sweden)

    Christopher A Mela

    Full Text Available We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b the first wearable system offering both large FOV and microscopic imaging simultaneously,

  12. A Cost-Effective, In-House, Positioning and Cutting Guide System for Orthognathic Surgery.

    Science.gov (United States)

    McAllister, Peter; Watson, Melanie; Burke, Ezra

    2018-03-01

    Technological advances in 3D printing can dramatically improve orthognathic surgical planning workflow. Custom positioning and cutting guides enable intraoperative reproduction of pre-planned osteotomy cuts and can result in greater surgical accuracy and patient safety. This short paper describes the use of freeware (some with open-source) combined with in-house 3D printing facilities to produce reliable, affordable osteotomy cutting guides. Open-source software (3D Slicer) is used to visualise and segment three-dimensional planning models from imported conventional computed tomography (CT) scans. Freeware (Autodesk Meshmixer ©) allows digital manipulation of maxillary and mandibular components to plan precise osteotomy cuts. Bespoke cutting guides allow exact intraoperative positioning. These are printed in polylactic acid (PLA) using a fused-filament fabrication 3D printer. Fixation of the osteotomised segments is achieved using plating templates and four pre-adapted plates with planned screw holes over the thickest bone. We print maxilla/ mandible models with desired movements incorporated to use as a plating template. A 3D printer capable of reproducing a complete skull can be procured for £1000, with material costs in the region of £10 per case. Our production of models and guides typically takes less than 24 hours of total print time. The entire production process is frequently less than three days. Externally sourced models and guides cost significantly more, frequently encountering costs totalling £1500-£2000 for models and guides for a bimaxillary osteotomy. Three-dimensional guided surgical planning utilising custom cutting guides enables the surgeon to determine optimal orientation of osteotomy cuts and better predict the skeletal maxilla/mandible relationship following surgery. The learning curve to develop proficiency using planning software and printer settings is offset by increased surgical predictability and reduced theatre time, making this

  13. Comparison of Different Computer–Aided Surgery Systems in Skull Base Surgery

    OpenAIRE

    Ecke, U.; Luebben, B.; Maurer, J.; Boor, S.; Mann, W. J.

    2003-01-01

    Computer–aided surgery (CAS) based on high–resolution imaging techniques represents an important adjunct to precise intraoperative orientation when anatomical landmarks are distorted or missing. Several commercial systems, mostly based on optical or electromagnetic navigation principles, are on the market. This study investigated the application of EasyGuide®, VectorVision®, and InstaTrak® CAS systems in ENT surgery under practical and laboratory conditions. System accuracy, time required, ha...

  14. Evaluation of Image-Guided Positioning for Frameless Intracranial Radiosurgery

    International Nuclear Information System (INIS)

    Lamba, Michael; Breneman, John C.; Warnick, Ronald E.

    2009-01-01

    Purpose: The standard for target alignment and immobilization in intracranial radiosurgery is frame-based alignment and rigid immobilization using a stereotactic head ring. Recent improvements in image-guidance systems have introduced the possibility of image-guided radiosurgery with nonrigid immobilization. We present data on the alignment accuracy and patient stability of a frameless image-guided system. Methods and Materials: Isocenter alignment errors were measured for in vitro studies in an anthropomorphic phantom for both frame-based stereotactic and frameless image-guided alignment. Subsequently, in vivo studies assessed differences between frame-based and image-guided alignment in patients who underwent frame-based intracranial radiosurgery. Finally, intratreatment target stability was determined by image-guided alignment performed before and after image-guided mask immobilized radiosurgery. Results: In vitro hidden target localization errors were comparable for the framed (0.7 ± 0.5 mm) and image-guided (0.6 ± 0.2 mm) techniques. The in vivo differences in alignment were 0.9 ± 0.5 mm (anteroposterior), -0.2 ± 0.4 mm (superoinferior), and 0.3 ± 0.5 mm (lateral). For in vivo stability tests, the mean distance differed between the pre- and post-treatment positions with mask-immobilized radiosurgery by 0.5 ± 0.3 mm. Conclusion: Frame-based and image-guided alignment accuracy in vitro was comparable for the system tested. In vivo tests showed a consistent trend in the difference of alignment in the anteroposterior direction, possibly due to torque to the ring and mounting system with frame-based localization. The mask system as used appeared adequate for patient immobilization.

  15. CT guided stereotaxy based on scout view imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wester, K; Kjartansson, O; Bakke, S J

    1987-05-01

    A simple and inexpensive method for CT guided sterotaxy is described. The method requires no extra equipment in the interface between the computer tomograph and the stereotaxic frame, and could therefore easily be adopted in most neurosurgical units. With this method, information from the transaxial CT sections is transferred manually via the scout view image to the operation theater skull X-rays, and thereby to the stereotaxic frame. The method has proved to be sufficiently accurate for all current non-functional stereotaxic procedures in our department during 30 months of testing.

  16. CT guided stereotaxy based on scout view imaging

    International Nuclear Information System (INIS)

    Wester, K.; Kjartansson, O.; Bakke, S.J.; Rikshospitalet, Oslo

    1987-01-01

    A simple and inexpensive method for CT guided sterotaxy is described. The method requires no extra equipment in the interface between the computer tomograph and the stereotaxic frame, and could therefore easily be adopted in most neurosurgical units. With this method, information from the transaxial CT sections is transferred manually via the scout view image to the operation theater skull X-rays, and thereby to the stereotaxic frame. The method has proved to be sufficiently accurate for all current non-functional stereotaxic procedures in our department during 30 months of testing. (orig.)

  17. Multimodal scanning laser ophthalmoscopy for image guided treatment of age-related macular degeneration

    Science.gov (United States)

    Hammer, Daniel X.; Ferguson, R. D.; Patel, Ankit H.; Iftimia, Nicusor V.; Mujat, Mircea; Husain, Deeba

    2009-02-01

    Subretinal neovascular membranes (SRNM) are a deleterious complication of laser eye injury and retinal diseases such as age-related macular degeneration (AMD), choroiditis, and myopic retinopathy. Photodynamic therapy (PDT) and anti-vascular endothelial growth factor (VEGF) drugs are approved treatment methods. PDT acts by selective dye accumulation, activation by laser light, and disruption and clotting of the new leaky vessels. However, PDT surgery is currently not image-guided, nor does it proceed in an efficient or automated manner. This may contribute to the high rate of re-treatment. We have developed a multimodal scanning laser ophthalmoscope (SLO) for automated diagnosis and image-guided treatment of SRNMs associated with AMD. The system combines line scanning laser ophthalmoscopy (LSLO), fluorescein angiography (FA), indocyanine green angiography (ICGA), PDT laser delivery, and retinal tracking in a compact, efficient platform. This paper describes the system hardware and software design, performance characterization, and automated patient imaging and treatment session procedures and algorithms. Also, we present initial imaging and tracking measurements on normal subjects and automated lesion demarcation and sizing analysis of previously acquired angiograms. Future pre-clinical testing includes line scanning angiography and PDT treatment of AMD subjects. The automated acquisition procedure, enhanced and expedited data post-processing, and innovative image visualization and interpretation tools provided by the multimodal retinal imager may eventually aid in the diagnosis, treatment, and prognosis of AMD and other retinal diseases.

  18. Secondary Maxillary and Orbital Floor Reconstruction With a Free Scapular Flap Using Cutting and Fixation Guides Created by Computer-Aided Design/Computer-Aided Manufacturing.

    Science.gov (United States)

    Morita, Daiki; Numajiri, Toshiaki; Tsujiko, Shoko; Nakamura, Hiroko; Yamochi, Ryo; Sowa, Yoshihiro; Yasuda, Makoto; Hirano, Shigeru

    2017-11-01

    Computer-aided design/computer-aided manufacturing (CAD/CAM) guides are now widely used in maxillofacial reconstruction. However, there are few reports of CAD/CAM guides being used for scapular flaps. The authors performed the secondary maxillary and orbital floor reconstruction using a free latissimus dorsi muscle, cutaneous tissue, and scapular flap designed using CAD/CAM techniques in a 72-year-old man who had undergone partial maxillectomy four years previously. The patient had diplopia, the vertical dystopia of eye position, and a large oral-nasal-cutaneous fistula. After the operation, the authors confirmed that the deviation between the postoperative and preoperative planning three-dimensional images was less than 2 mm. Because scapular guides require 3 cutting surfaces, the shape of the scapular guide is more complex than that of a conventional fibular guide. In orbital floor reconstruction, the use of a CAM technique such as that used to manufacture the authors' fixation guide is as necessary for accurate, safe, and easy reconstruction as is preoperative CAD planning. The production of a fixation guide as well as a cutting guide is particularly useful because it is difficult to determine the angle for reconstructing the orbital floor by freehand techniques. In this case, the orbital floor was reconstructed based on a mirror image of the healthy side to avoid overcompression of the orbital tissue. Although the patient's vertical dystopia of eye position was improved, diplopia was not improved because, for greater safety, the authors did not plan overcorrection of the orbital volume.

  19. Prior image constrained image reconstruction in emerging computed tomography applications

    Science.gov (United States)

    Brunner, Stephen T.

    Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation

  20. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy

    Science.gov (United States)

    Pablico-Lansigan, Michele H.; Situ, Shu F.; Samia, Anna Cristina S.

    2013-05-01

    Magnetic particle imaging (MPI) is an emerging biomedical imaging technology that allows the direct quantitative mapping of the spatial distribution of superparamagnetic iron oxide nanoparticles. MPI's increased sensitivity and short image acquisition times foster the creation of tomographic images with high temporal and spatial resolution. The contrast and sensitivity of MPI is envisioned to transcend those of other medical imaging modalities presently used, such as magnetic resonance imaging (MRI), X-ray scans, ultrasound, computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this review, we present an overview of the recent advances in the rapidly developing field of MPI. We begin with a basic introduction of the fundamentals of MPI, followed by some highlights over the past decade of the evolution of strategies and approaches used to improve this new imaging technique. We also examine the optimization of iron oxide nanoparticle tracers used for imaging, underscoring the importance of size homogeneity and surface engineering. Finally, we present some future research directions for MPI, emphasizing the novel and exciting opportunities that it offers as an important tool for real-time in vivo monitoring. All these opportunities and capabilities that MPI presents are now seen as potential breakthrough innovations in timely disease diagnosis, implant monitoring, and image-guided therapeutics.

  1. Images created in a model eye during simulated cataract surgery can be the basis for images perceived by patients during cataract surgery

    Science.gov (United States)

    Inoue, M; Uchida, A; Shinoda, K; Taira, Y; Noda, T; Ohnuma, K; Bissen-Miyajima, H; Hirakata, A

    2014-01-01

    Purpose To evaluate the images created in a model eye during simulated cataract surgery. Patients and methods This study was conducted as a laboratory investigation and interventional case series. An artificial opaque lens, a clear intraocular lens (IOL), or an irrigation/aspiration (I/A) tip was inserted into the ‘anterior chamber' of a model eye with the frosted posterior surface corresponding to the retina. Video images were recorded of the posterior surface of the model eye from the rear during simulated cataract surgery. The video clips were shown to 20 patients before cataract surgery, and the similarity of their visual perceptions to these images was evaluated postoperatively. Results The images of the moving lens fragments and I/A tip and the insertion of the IOL were seen from the rear. The image through the opaque lens and the IOL without moving objects was the light of the surgical microscope from the rear. However, when the microscope light was turned off after IOL insertion, the images of the microscope and operating room were observed by the room illumination from the rear. Seventy percent of the patients answered that the visual perceptions of moving lens fragments were similar to the video clips and 55% reported similarity with the IOL insertion. Eighty percent of the patients recommended that patients watch the video clip before their scheduled cataract surgery. Conclusions The patients' visual perceptions during cataract surgery can be reproduced in the model eye. Watching the video images preoperatively may help relax the patients during surgery. PMID:24788007

  2. Computer-assisted surgery: virtual- and augmented-reality displays for navigation during urological interventions.

    Science.gov (United States)

    van Oosterom, Matthias N; van der Poel, Henk G; Navab, Nassir; van de Velde, Cornelis J H; van Leeuwen, Fijs W B

    2018-03-01

    To provide an overview of the developments made for virtual- and augmented-reality navigation procedures in urological interventions/surgery. Navigation efforts have demonstrated potential in the field of urology by supporting guidance for various disorders. The navigation approaches differ between the individual indications, but seem interchangeable to a certain extent. An increasing number of pre- and intra-operative imaging modalities has been used to create detailed surgical roadmaps, namely: (cone-beam) computed tomography, MRI, ultrasound, and single-photon emission computed tomography. Registration of these surgical roadmaps with the real-life surgical view has occurred in different forms (e.g. electromagnetic, mechanical, vision, or near-infrared optical-based), whereby the combination of approaches was suggested to provide superior outcome. Soft-tissue deformations demand the use of confirmatory interventional (imaging) modalities. This has resulted in the introduction of new intraoperative modalities such as drop-in US, transurethral US, (drop-in) gamma probes and fluorescence cameras. These noninvasive modalities provide an alternative to invasive technologies that expose the patients to X-ray doses. Whereas some reports have indicated navigation setups provide equal or better results than conventional approaches, most trials have been performed in relatively small patient groups and clear follow-up data are missing. The reported computer-assisted surgery research concepts provide a glimpse in to the future application of navigation technologies in the field of urology.

  3. FDG-PET/CT in a patient with poor-risk non-seminoma testis with mature teratoma and secondary gliosarcoma: Multimodality imaging for guiding multimodality treatment

    Energy Technology Data Exchange (ETDEWEB)

    Quak, Elske; Kovacs, Iringo; Oyen, Wim J. G.; Van der Graaf, Winette T. A. [Radboud University Nijmegen Medical Centre, Nijmegen (Nauru)

    2015-09-15

    The value of F-18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in detecting viable tumours in patients with metastasised non-seminomatous testicular cancer and residual and new masses post chemotherapy remains to be determined. We describe the case of a 41-year-old patient with metastasised non-seminomatous testicular cancer, with both retroperitoneal and extra-retroperitoneal residual masses post chemotherapy, for whom FDG-PET/CT guided major treatment decisions. FDG-PET/CT correctly identified the locations of viable tumour, as was proved by histology, and successfully guided surgery. In conclusion, in selected cases surveillance of patients with non-seminomatous testicular cancer with FDG-PET/CT can guide major treatment decisions when considering surgery for metastatic disease.

  4. Priori mask guided image reconstruction (p-MGIR) for ultra-low dose cone-beam computed tomography

    Science.gov (United States)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Kahler, Darren L.; Liu, Chihray; Lu, Bo

    2015-11-01

    Recently, the compressed sensing (CS) based iterative reconstruction method has received attention because of its ability to reconstruct cone beam computed tomography (CBCT) images with good quality using sparsely sampled or noisy projections, thus enabling dose reduction. However, some challenges remain. In particular, there is always a tradeoff between image resolution and noise/streak artifact reduction based on the amount of regularization weighting that is applied uniformly across the CBCT volume. The purpose of this study is to develop a novel low-dose CBCT reconstruction algorithm framework called priori mask guided image reconstruction (p-MGIR) that allows reconstruction of high-quality low-dose CBCT images while preserving the image resolution. In p-MGIR, the unknown CBCT volume was mathematically modeled as a combination of two regions: (1) where anatomical structures are complex, and (2) where intensities are relatively uniform. The priori mask, which is the key concept of the p-MGIR algorithm, was defined as the matrix that distinguishes between the two separate CBCT regions where the resolution needs to be preserved and where streak or noise needs to be suppressed. We then alternately updated each part of image by solving two sub-minimization problems iteratively, where one minimization was focused on preserving the edge information of the first part while the other concentrated on the removal of noise/artifacts from the latter part. To evaluate the performance of the p-MGIR algorithm, a numerical head-and-neck phantom, a Catphan 600 physical phantom, and a clinical head-and-neck cancer case were used for analysis. The results were compared with the standard Feldkamp-Davis-Kress as well as conventional CS-based algorithms. Examination of the p-MGIR algorithm showed that high-quality low-dose CBCT images can be reconstructed without compromising the image resolution. For both phantom and the patient cases, the p-MGIR is able to achieve a clinically

  5. Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy

    NARCIS (Netherlands)

    Smitsmans, Monique H. P.; de Bois, Josien; Sonke, Jan-Jakob; Betgen, Anja; Zijp, Lambert J.; Jaffray, David A.; Lebesque, Joos V.; van Herk, Marcel

    2005-01-01

    PURPOSE: Previously, we developed an automatic three-dimensional gray-value registration (GR) method for fast prostate localization that could be used during online or offline image-guided radiotherapy. The method was tested on conventional computed tomography (CT) scans. In this study, the

  6. Image-guided biopsy in patients with suspected ovarian carcinoma: a safe and effective technique?

    International Nuclear Information System (INIS)

    Griffin, Nyree; Grant, Lee A.; Freeman, Susan J.; Berman, Laurence H.; Sala, Evis; Jimenez-Linan, Mercedes; Earl, Helena; Ahmed, Ahmed Ashour; Crawford, Robin; Brenton, James

    2009-01-01

    In patients with suspected advanced ovarian carcinoma, a precise histological diagnosis is required before commencing neo-adjuvant chemotherapy. This study aims to determine the diagnostic accuracy and complication rate of percutaneous biopsies performed under ultrasound or computed tomography guidance. Between 2002 to 2007, 60 consecutive image-guided percutaneous biopsies were performed in patients with suspected ovarian cancer. The following variables were recorded: tissue biopsied, imaging technique, experience of operator, biopsy needle gauge, number of passes, complications, and final histology. Forty-seven patients had omental biopsies, 12 pelvic mass biopsies, and 1 para-aortic lymph node biopsy. Thirty-five biopsies were performed under ultrasound, 25 under computed tomography guidance. Biopsy needle gauges ranged from 14-20 swg with two to five passes for each patient. There were no complications. Histology was obtained in 52 (87%) patients. Percutaneous image-guided biopsy of peritoneal disease or pelvic mass is safe with high diagnostic accuracy. The large-gauge biopsy needle is as safe as the small gauge needle, but has the added value of obtaining tissue samples for immunohistochemistry and genomic studies. (orig.)

  7. [Preoperative imaging/operation planning for liver surgery].

    Science.gov (United States)

    Schoening, W N; Denecke, T; Neumann, U P

    2015-12-01

    The currently established standard for planning liver surgery is multistage contrast media-enhanced multidetector computed tomography (CM-CT), which as a rule enables an appropriate resection planning, e.g. a precise identification and localization of primary and secondary liver tumors as well as the anatomical relation to extrahepatic and/or intrahepatic vascular and biliary structures. Furthermore, CM-CT enables the measurement of tumor volume, total liver volume and residual liver volume after resection. Under the condition of normal liver function a residual liver volume of 25 % is nowadays considered sufficient and safe. Recent studies in patients with liver metastases of colorectal cancer showed a clear staging advantage of contrast media-enhanced magnetic resonance imaging (CM-MRI) versus CM-CT. In addition, most recent data showed that the use of liver-specific MRI contrast media further increases the sensitivity and specificity of detection of liver metastases. This imaging technology seems to lead closer to the ideal "one stop shopping" diagnostic tool in preoperative planning of liver resection.

  8. Augmented reality fluoroscopy simulation of the guide-wire insertion in DHS surgery: A proof of concept study.

    Science.gov (United States)

    van Duren, B H; Sugand, K; Wescott, R; Carrington, R; Hart, A

    2018-05-01

    Hip fractures contribute to a significant clinical burden globally with over 1.6 million cases per annum and up to 30% mortality rate within the first year. Insertion of a dynamic hip screw (DHS) is a frequently performed procedure to treat extracapsular neck of femur fractures. Poorly performed DHS fixation of extracapsular neck of femur fractures can result in poor mobilisation, chronic pain, and increased cut-out rate requiring revision surgery. A realistic, affordable, and portable fluoroscopic simulation system can improve performance metrics in trainees, including the tip-apex distance (the only clinically validated outcome), and improve outcomes. We developed a digital fluoroscopic imaging simulator using orthogonal cameras to track coloured markers attached to the guide-wire which created a virtual overlay on fluoroscopic images of the hip. To test the accuracy with which the augmented reality system could track a guide-wire, a standard workshop femur was used to calibrate the system with a positional marker fixed to indicate the apex; this allowed for comparison between guide-wire tip-apex distance (TAD) calculated by the system to be compared to that physically measured. Tests were undertaken to determine: (1) how well the apex could be targeted; (2) the accuracy of the calculated TAD. (3) The number of iterations through the algorithm giving the optimal accuracy-time relationship. The calculated TAD was found to have an average root mean square error of 4.2 mm. The accuracy of the algorithm was shown to increase with the number of iterations up to 20 beyond which the error asymptotically converged to an error of 2 mm. This work demonstrates a novel augmented reality simulation of guide-wire insertion in DHS surgery. To our knowledge this has not been previously achieved. In contrast to virtual reality, augmented reality is able to simulate fluoroscopy while allowing the trainee to interact with real instrumentation and performing the procedure on

  9. The utility of high-resolution intraoperative MRI in endoscopic transsphenoidal surgery for pituitary macroadenomas: early experience in the Advanced Multimodality Image Guided Operating suite

    Science.gov (United States)

    Zaidi, Hasan A.; De Los Reyes, Kenneth; Barkhoudarian, Garni; Litvack, Zachary N.; Bi, Wenya Linda; Rincon-Torroella, Jordina; Mukundan, Srinivasan; Dunn, Ian F.; Laws, Edward R.

    2016-01-01

    Objective Endoscopic skull base surgery has become increasingly popular among the skull base surgery community, with improved illumination and angled visualization potentially improving tumor resection rates. Intraoperative MRI (iMRI) is used to detect residual disease during the course of the resection. This study is an investigation of the utility of 3-T iMRI in combination with transnasal endoscopy with regard to gross-total resection (GTR) of pituitary macroadenomas. Methods The authors retrospectively reviewed all endoscopic transsphenoidal operations performed in the Advanced Multimodality Image Guided Operating (AMIGO) suite from November 2011 to December 2014. Inclusion criteria were patients harboring presumed pituitary macroadenomas with optic nerve or chiasmal compression and visual loss, operated on by a single surgeon. Results Of the 27 patients who underwent transsphenoidal resection in the AMIGO suite, 20 patients met the inclusion criteria. The endoscope alone, without the use of iMRI, would have correctly predicted 13 (65%) of 20 cases. Gross-total resection was achieved in 12 patients (60%) prior to MRI. Intraoperative MRI helped convert 1 STR and 4 NTRs to GTRs, increasing the number of GTRs from 12 (60%) to 16 (80%). Conclusions Despite advances in visualization provided by the endoscope, the incidence of residual disease can potentially place the patient at risk for additional surgery. The authors found that iMRI can be useful in detecting unexpected residual tumor. The cost-effectiveness of this tool is yet to be determined. PMID:26926058

  10. Computer in surgery | Bode | Nigerian Journal of Surgical Research

    African Journals Online (AJOL)

    How has the advent of the computer impacted the field of surgery? Is it worth embracing for the older practitioners? What does the future portend for our ancient noble profession? This paper reviews current applications of computer technology in the field of surgery and the hopes it hold out to surgeons in developing ...

  11. Subjective evaluation of the accuracy of video imaging prediction following orthognathic surgery in Chinese patients

    NARCIS (Netherlands)

    Chew, Ming Tak; Koh, Chay Hui; Sandham, John; Wong, Hwee Bee

    Purpose: The aims of this retrospective study were to assess the subjective accuracy of predictions generated by a computer imaging software in Chinese patients who had undergone orthognathic surgery and to determine the influence of initial dysgnathia and complexity of the surgical procedure on

  12. Algorithm-enabled exploration of image-quality potential of cone-beam CT in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Han, Xiao; Sidky, Emil Y; Pan, Xiaochuan; Pearson, Erik; Pelizzari, Charles; Al-Hallaq, Hania; Bian, Junguo

    2015-01-01

    Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guided radiation therapy. While the FDK algorithm is currently used for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics. (paper)

  13. Successful Translation of Fluorescence Navigation During Oncologic Surgery: A Consensus Report.

    Science.gov (United States)

    Rosenthal, Eben L; Warram, Jason M; de Boer, Esther; Basilion, James P; Biel, Merrill A; Bogyo, Matthew; Bouvet, Michael; Brigman, Brian E; Colson, Yolonda L; DeMeester, Steven R; Gurtner, Geoffrey C; Ishizawa, Takeaki; Jacobs, Paula M; Keereweer, Stijn; Liao, Joseph C; Nguyen, Quyen T; Olson, James M; Paulsen, Keith D; Rieves, Dwaine; Sumer, Baran D; Tweedle, Michael F; Vahrmeijer, Alexander L; Weichert, Jamey P; Wilson, Brian C; Zenn, Michael R; Zinn, Kurt R; van Dam, Gooitzen M

    2016-01-01

    Navigation with fluorescence guidance has emerged in the last decade as a promising strategy to improve the efficacy of oncologic surgery. To achieve routine clinical use, the onus is on the surgical community to objectively assess the value of this technique. This assessment may facilitate both Food and Drug Administration approval of new optical imaging agents and reimbursement for the imaging procedures. It is critical to characterize fluorescence-guided procedural benefits over existing practices and to elucidate both the costs and the safety risks. This report is the result of a meeting of the International Society of Image Guided Surgery (www.isigs.org) on February 6, 2015, in Miami, Florida, and reflects a consensus of the participants' opinions. Our objective was to critically evaluate the imaging platform technology and optical imaging agents and to make recommendations for successful clinical trial development of this highly promising approach in oncologic surgery. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. Sensitivity of Computed Tomography‑guided Transthoracic Biopsies ...

    African Journals Online (AJOL)

    2018-03-05

    Mar 5, 2018 ... Introduction: The indications for open biopsies for intrathoracic lesions have become almost negligible. This development was made possible by less invasive maneuvers such as computed tomography‑guided (CT‑guided) biopsy, thoracoscopy or video‑assisted thoracoscopy, and bronchoscopy.

  15. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    Science.gov (United States)

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  16. Influence of low-intensity pulsed ultrasound on osteogenic tissue regeneration in a periodontal injury model: X-ray image alterations assessed by micro-computed tomography.

    Science.gov (United States)

    Wang, Yunji; Chai, Zhaowu; Zhang, Yuanyuan; Deng, Feng; Wang, Zhibiao; Song, Jinlin

    2014-08-01

    This study was conducted to evaluate, with micro-computed tomography, the influence of low-intensity pulsed ultrasound on wound-healing in periodontal tissues. Periodontal disease with Class II furcation involvement was surgically produced at the bilateral mandibular premolars in 8 adult male beagle dogs. Twenty-four teeth were randomly assigned among 4 groups (G): G1, periodontal flap surgery; G2, periodontal flap surgery+low-intensity pulsed ultrasound (LIPUS); G3, guided tissue regeneration (GTR) surgery; G4, GTR surgery plus LIPUS. The affected area in the experimental group was exposed to LIPUS. At 6 and 8weeks, the X-ray images of regenerated teeth were referred to micro-CT scanning for 3-D measurement. Bone volume (BV), bone surface (BS), and number of trabeculae (Tb) in G2 and G4 were higher than in G1 and G3 (pperiodontal flap surgery group. LIPUS irradiation increased the number, volume, and area of new alveolar bone trabeculae. LIPUS has the potential to promote the repair of periodontal tissue, and may work effectively if combined with GTR. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. En bloc excision of nonpalpable breast lesions using the advanced breast biopsy instrumentation system: an alternative to needle guided surgery?

    International Nuclear Information System (INIS)

    Lifrange, E.; Colin, C.; Dondelinger, R.F.; Fridman, V.

    2001-01-01

    This study was prospectively conducted to evaluate the clinical potential of the advanced breast biopsy instrumentation (ABBI) system as an alternative to needle localization and open surgery in the management of nonpalpable breast lesions (NPBL). One hundred and eighty-six consecutive patients were referred for management of NPBL. Thirty-six underwent an ABBI procedure, offered as a first step before possible surgery for lesions which would in any case have required complete excision. The 18 patients with a malignant ABBI biopsy underwent re-excision of the biopsy site and axillary dissection was carried out in cases of infiltrating carcinoma. The other 150 patients underwent image-guided needle biopsy. Following these procedures, 60/150 (40 %) patients underwent needle-guided surgery. Finally, 96/186 (51 %) patients required complete excision. A total of 43 benign lesions and 53 carcinomas were confirmed. Thirty-six out of 96 (38 %) excisions were obtained with the ABBI system; 17/43 (40 %) benign lesions and 11/53 (21 %) carcinomas were completely removed with the ABBI system. Out of 9 malignant specimens with a pathological size less than 10 mm, 5/9 (55 %) had tumor-free margins and in 8/9 (89 %) no residual disease was found at re-excision. The preliminary results of this study suggest that, in selected cases, en bloc excision using the ABBI procedure could be an alternative to conventional surgery. (orig.)

  18. Clinical experience of quantex coordinate software for CT guided stereotactic surgery

    International Nuclear Information System (INIS)

    Yabashi, Toshitake; Ichikawa, Hideo; Yasuda, Eisuke; Tsuruta, Hatsuo; Ishikawa, Yoshihisa; Kimura, Tokuji; Kanamori, Isao

    1991-01-01

    Recently, Quantex Coordinate Software was newly developed for CT-guided stereotactic surgery. We have the opportunity of using this software in 6 cases with intracerebral hematoma for evacuation and 2 cases with brain tumor for needle biopsy by using CT-guided stereotactic surgery. The followings are the features with a little clinical experience. One of the biggest features is that this software can simulate the best expected route of the puncture needle from burr hole to target point before inserting. Also compared with CT 9000 series Software, it has many new functions for more advanced hardware as well as advance standard software. Two cases of intracerebral hematoma for evacuation and 1 case of a brain tumor for a biopsy were carried out using this software mainly as a simulation. In all cases, this software proved to be very useful. (author)

  19. Radiation exposure to surgical staff during F-18-FDG-guided cancer surgery

    International Nuclear Information System (INIS)

    Andersen, P.A.; Hesse, B.; Chakera, A.H.; Schmidt, G.; Klausen, T.L.; Binderup, T.; Grossjohann, H.S.; Friis, E.; Hansen, C.P.; Kjaer, A.

    2008-01-01

    High-energy gamma probes have recently become commercially available, developed for 18 F-FDG probe-guided surgery. The radiation received by the staff in the operating room might limit the use of it, but has never been determined. We therefore wanted to measure the absorbed staff doses at operations where patients had received a preoperative injection of 18 F-FDG. Thirty-four patients with different cancers (breast cancer, melanoma, gastrointestinal cancers, respectively) were operated. At every operation the surgeon was monitored with a TLD tablet on his finger of the operating hand and a TLD tablet on the abdomen. The surgeon and anaesthesiologist were also monitored using electronic dosimeters placed in the trousers lining at 25 operations. The dose rate to the surgeon's abdominal wall varied between 7.5-13.2 μSv/h, depending on tumour location. The doses to the anaesthesiologists and the finger doses to the surgeon were much lower. About 350-400 MBq, i.e. ca. eight times higher activities than those used in the present study are supposed to be necessary for guiding surgery. It can be calculated from the body doses measured that a surgeon can perform between 150-260 h of surgery without exceeding permissible limits for professional workers. The radiation load to the operating staff will generally be so small that it does not present any limitation for FDG-guided surgery. However, it is recommended to monitor the surgical staff considering that the surgeon may be exposed to other radiation sources, and since the staff often includes women of child-bearing age. (orig.)

  20. Sinonasal imaging after Caldwell-Luc surgery: MDCT findings of an abandoned procedure in times of functional endoscopic sinus surgery

    International Nuclear Information System (INIS)

    Nemec, Stefan Franz; Peloschek, Philipp; Koelblinger, Claus; Mehrain, Sheida; Krestan, Christian Robert; Czerny, Christian

    2009-01-01

    Background and purpose: Today, functional endoscopic sinus surgery (FESS) is performed in most of the patients with sinonasal inflammatory disease. The postoperative imaging findings of FESS in multidetector computed tomography (MDCT) considerably differ from those of historic Caldwell-Luc (CL) maxillary sinus surgery which is an uncommon procedure today. Thus, the postoperative CL imaging findings may lead to diagnostic confusion and misinterpretation. Therefore, this study explicitly presents the MDCT findings of post-CL patients which have not been described previously. Methods: Twenty-eight patients with clinically suspected sinusitis and documented history of CL-procedure underwent 16 row MDCT (MDCT Mx8000 IDT Philips) with multiplanar reconstructions of the paranasal sinuses in the axial plane. The following parameters were used: 140 kV, 50 mAs; 16 mm x 0.75 mm detector collimation; 1 mm reconstructed slice thickness; 0.5 mm increment. The studies were reconstructed with a bone algorithm (W3000/L600; 1 mm slice thickness) in axial plane and coronal plane (3 mm slice thickness). The images were retrospectively evaluated for the presence of normal surgery-related and pathological findings. Results: Surgery-related imaging characteristics presented as follows: an anterior and a medial bony wall defect and sclerosis and sinus wall thickening were observed in all 28/28 cases (100%). Collaps of the sinus cavity was seen in 26/28 cases (92.9%). Furthermore, inflammatory disease of the operated sinus(es) was found in 23/28 cases (82.1%): 14/28 patients (50%) had inflammatory mucosal thickening of the operated sinus(es) as well as of other sinonasal cavities and 9/28 patients (32.1%) had inflammatory mucosal thickening limited to the operated sinus(es). A postoperative mucocele was depicted in 3/28 cases (10.7%). 2/28 patients (7.1%) showed neither maxillary nor other mucosal swelling. Conclusion: MDCT with multiplanar reconstructions is a precise method to evaluate

  1. Low-grade Glioma Surgery in Intraoperative Magnetic Resonance Imaging: Results of a Multicenter Retrospective Assessment of the German Study Group for Intraoperative Magnetic Resonance Imaging.

    Science.gov (United States)

    Coburger, Jan; Merkel, Andreas; Scherer, Moritz; Schwartz, Felix; Gessler, Florian; Roder, Constantin; Pala, Andrej; König, Ralph; Bullinger, Lars; Nagel, Gabriele; Jungk, Christine; Bisdas, Sotirios; Nabavi, Arya; Ganslandt, Oliver; Seifert, Volker; Tatagiba, Marcos; Senft, Christian; Mehdorn, Maximilian; Unterberg, Andreas W; Rössler, Karl; Wirtz, Christian Rainer

    2016-06-01

    The ideal treatment strategy for low-grade gliomas (LGGs) is a controversial topic. Additionally, only smaller single-center series dealing with the concept of intraoperative magnetic resonance imaging (iMRI) have been published. To investigate determinants for patient outcome and progression-free-survival (PFS) after iMRI-guided surgery for LGGs in a multicenter retrospective study initiated by the German Study Group for Intraoperative Magnetic Resonance Imaging. A retrospective consecutive assessment of patients treated for LGGs (World Health Organization grade II) with iMRI-guided resection at 6 neurosurgical centers was performed. Eloquent location, extent of resection, first-line adjuvant treatment, neurophysiological monitoring, awake brain surgery, intraoperative ultrasound, and field-strength of iMRI were analyzed, as well as progression-free survival (PFS), new permanent neurological deficits, and complications. Multivariate binary logistic and Cox regression models were calculated to evaluate determinants of PFS, gross total resection (GTR), and adjuvant treatment. A total of 288 patients met the inclusion criteria. On multivariate analysis, GTR significantly increased PFS (hazard ratio, 0.44; P surgery. Patients with accidentally left tumor remnants showed a similar prognosis compared with patients harboring only partially resectable tumors. Use of high-field iMRI was significantly associated with GTR. However, the field strength of iMRI did not affect PFS. EoR, extent of resectionFLAIR, fluid-attenuated inversion recoveryGTR, gross total resectionIDH1, isocitrate dehydrogenase 1iMRI, intraoperative magnetic resonance imagingLGG, low-grade gliomaMGMT, methylguanine-deoxyribonucleic acid methyltransferasenPND, new permanent neurological deficitOS, overall survivalPFS, progression-free survivalSTR, subtotal resectionWHO, World Health Organization.

  2. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    Directory of Open Access Journals (Sweden)

    Michael P Chae

    2015-06-01

    Full Text Available Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D reconstructions, are limited by their representation on 2D workstations. 3D printing has been embraced by early adopters to produce medical imaging-guided 3D printed biomodels that facilitate various aspects of clinical practice. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. With increasing accessibility, investigators are now able to convert standard imaging data into Computer Aided Design (CAD files using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography (SLA, multijet modeling (MJM, selective laser sintering (SLS, binder jet technique (BJT, and fused deposition modeling (FDM. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without out-sourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. In this review the existing uses of 3D printing in plastic surgery practice, spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative aesthetics, are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, patient and surgical trainee education, and the development of intraoperative guidance tools and patient-specific prosthetics in everyday surgical practice.

  3. Image-guided drug delivery: preclinical applications and clinical translation

    NARCIS (Netherlands)

    Ojha, Tarun; Rizzo, Larissa; Storm, Gerrit; Kiessling, Fabian; Lammers, Twan Gerardus Gertudis Maria

    2015-01-01

    Image-guided drug delivery refers to the combination of drug targeting and imaging. Preclinically, image-guided drug delivery can be used for several different purposes, including for monitoring biodistribution, target site accumulation, off-target localization, drug release and drug efficacy.

  4. Image-guided adaptive gating of lung cancer radiotherapy: a computer simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Aristophanous, Michalis; Rottmann, Joerg; Park, Sang-June; Berbeco, Ross I [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Nishioka, Seiko [Department of Radiology, NTT Hospital, Sapporo (Japan); Shirato, Hiroki, E-mail: maristophanous@lroc.harvard.ed [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan)

    2010-08-07

    The purpose of this study is to investigate the effect that image-guided adaptation of the gating window during treatment could have on the residual tumor motion, by simulating different gated radiotherapy techniques. There are three separate components of this simulation: (1) the 'Hokkaido Data', which are previously measured 3D data of lung tumor motion tracks and the corresponding 1D respiratory signals obtained during the entire ungated radiotherapy treatments of eight patients, (2) the respiratory gating protocol at our institution and the imaging performed under that protocol and (3) the actual simulation in which the Hokkaido Data are used to select tumor position information that could have been collected based on the imaging performed under our gating protocol. We simulated treatments with a fixed gating window and a gating window that is updated during treatment. The patient data were divided into different fractions, each with continuous acquisitions longer than 2 min. In accordance to the imaging performed under our gating protocol, we assume that we have tumor position information for the first 15 s of treatment, obtained from kV fluoroscopy, and for the rest of the fractions the tumor position is only available during the beam-on time from MV imaging. The gating window was set according to the information obtained from the first 15 s such that the residual motion was less than 3 mm. For the fixed gating window technique the gate remained the same for the entire treatment, while for the adaptive technique the range of the tumor motion during beam-on time was measured and used to adapt the gating window to keep the residual motion below 3 mm. The algorithm used to adapt the gating window is described. The residual tumor motion inside the gating window was reduced on average by 24% for the patients with regular breathing patterns and the difference was statistically significant (p-value = 0.01). The magnitude of the residual tumor motion

  5. Image-guided positioning and tracking.

    Science.gov (United States)

    Ruan, Dan; Kupelian, Patrick; Low, Daniel A

    2011-01-01

    Radiation therapy aims at maximizing tumor control while minimizing normal tissue complication. The introduction of stereotactic treatment explores the volume effect and achieves dose escalation to tumor target with small margins. The use of ablative irradiation dose and sharp dose gradients requires accurate tumor definition and alignment between patient and treatment geometry. Patient geometry variation during treatment may significantly compromise the conformality of delivered dose and must be managed properly. Setup error and interfraction/intrafraction motion are incorporated in the target definition process by expanding the clinical target volume to planning target volume, whereas the alignment between patient and treatment geometry is obtained with an adaptive control process, by taking immediate actions in response to closely monitored patient geometry. This article focuses on the monitoring and adaptive response aspect of the problem. The term "image" in "image guidance" will be used in a most general sense, to be inclusive of some important point-based monitoring systems that can be considered as degenerate cases of imaging. Image-guided motion adaptive control, as a comprehensive system, involves a hierarchy of decisions, each of which balances simplicity versus flexibility and accuracy versus robustness. Patient specifics and machine specifics at the treatment facility also need to be incorporated into the decision-making process. Identifying operation bottlenecks from a system perspective and making informed compromises are crucial in the proper selection of image-guidance modality, the motion management mechanism, and the respective operation modes. Not intended as an exhaustive exposition, this article focuses on discussing the major issues and development principles for image-guided motion management systems. We hope these information and methodologies will facilitate conscientious practitioners to adopt image-guided motion management systems

  6. Imaging of the shoulder after surgery

    International Nuclear Information System (INIS)

    McMenamin, Drew; Koulouris, George; Morrison, William B.

    2008-01-01

    Postoperative imaging of the shoulder is challenging. This article reviews the radiologic evaluation following surgery for subacromial impingment, rotator cuff lesions and glenohumeral instability, including the common surgical procedures, the expected postoperative findings and potential complications. A specific emphasis is made on magnetic resonance imaging

  7. Imaging of the shoulder after surgery

    Energy Technology Data Exchange (ETDEWEB)

    McMenamin, Drew [Department of Radiology, University of Washington, Box 354755, 4245 Roosevelt Way NE, Seattle, WA 98105 (United States)], E-mail: drewmcm@u.washington.edu; Koulouris, George [Gold Coast Medical Imaging, 123 Nerang Street, Southport, QLD 4215 (Australia); Morrison, William B. [Thomas Jefferson University Hospital, 132 South 10th Street, Suite 1079a, Philadelphia, PA 19107 (United States)

    2008-10-15

    Postoperative imaging of the shoulder is challenging. This article reviews the radiologic evaluation following surgery for subacromial impingment, rotator cuff lesions and glenohumeral instability, including the common surgical procedures, the expected postoperative findings and potential complications. A specific emphasis is made on magnetic resonance imaging.

  8. Navigation and Robotics in Spinal Surgery: Where Are We Now?

    Science.gov (United States)

    Overley, Samuel C; Cho, Samuel K; Mehta, Ankit I; Arnold, Paul M

    2017-03-01

    Spine surgery has experienced much technological innovation over the past several decades. The field has seen advancements in operative techniques, implants and biologics, and equipment such as computer-assisted navigation and surgical robotics. With the arrival of real-time image guidance and navigation capabilities along with the computing ability to process and reconstruct these data into an interactive three-dimensional spinal "map", so too have the applications of surgical robotic technology. While spinal robotics and navigation represent promising potential for improving modern spinal surgery, it remains paramount to demonstrate its superiority as compared to traditional techniques prior to assimilation of its use amongst surgeons.The applications for intraoperative navigation and image-guided robotics have expanded to surgical resection of spinal column and intradural tumors, revision procedures on arthrodesed spines, and deformity cases with distorted anatomy. Additionally, these platforms may mitigate much of the harmful radiation exposure in minimally invasive surgery to which the patient, surgeon, and ancillary operating room staff are subjected.Spine surgery relies upon meticulous fine motor skills to manipulate neural elements and a steady hand while doing so, often exploiting small working corridors utilizing exposures that minimize collateral damage. Additionally, the procedures may be long and arduous, predisposing the surgeon to both mental and physical fatigue. In light of these characteristics, spine surgery may actually be an ideal candidate for the integration of navigation and robotic-assisted procedures.With this paper, we aim to critically evaluate the current literature and explore the options available for intraoperative navigation and robotic-assisted spine surgery. Copyright © 2016 by the Congress of Neurological Surgeons.

  9. First Application of 7T Magnetic Resonance Imaging in Endoscopic Endonasal Surgery of Skull Base Tumors

    Science.gov (United States)

    Barrett, Thomas F; Dyvorne, Hadrien A; Padormo, Francesco; Pawha, Puneet S; Delman, Bradley N; Shrivastava, Raj K; Balchandani, Priti

    2018-01-01

    Background Successful endoscopic endonasal surgery for the resection of skull base tumors is reliant on preoperative imaging to delineate pathology from the surrounding anatomy. The increased signal-to-noise ratio afforded by 7T MRI can be used to increase spatial and contrast resolution, which may lend itself to improved imaging of skull base. In this study, we apply a 7T imaging protocol to patients with skull base tumors and compare the images to clinical standard of care. Methods Images were acquired at 7T on 11 patients with skull base lesions. Two neuroradiologists evaluated clinical 1.5T, 3T, and 7T scans for detection of intracavernous cranial nerves and ICA branches. Detection rates were compared. Images were utilized for surgical planning and uploaded to a neuronavigation platform and used to guide surgery. Results Image analysis yielded improved detection rates of cranial nerves and ICA branches at 7T. 7T images were successfully incorporated into preoperative planning and intraoperative neuronavigation. Conclusion Our study represents the first application of 7T MRI to the full neurosurgical workflow for endoscopic endonasal surgery. We detected higher rates of cranial nerves and ICA branches at 7T MRI compared to 3T and 1.5 T, and found that integration of 7T into surgical planning and guidance was feasible. These results suggest a potential for 7T MRI to reduce surgical complications. Future studies comparing standardized 7T, 3T, and 1.5 T MRI protocols in a larger number of patients are warranted to determine the relative benefit of 7T MRI for endonasal endoscopic surgical efficacy. PMID:28359922

  10. First Application of 7-T Magnetic Resonance Imaging in Endoscopic Endonasal Surgery of Skull Base Tumors.

    Science.gov (United States)

    Barrett, Thomas F; Dyvorne, Hadrien A; Padormo, Francesco; Pawha, Puneet S; Delman, Bradley N; Shrivastava, Raj K; Balchandani, Priti

    2017-07-01

    Successful endoscopic endonasal surgery for the resection of skull base tumors is reliant on preoperative imaging to delineate pathology from the surrounding anatomy. The increased signal-to-noise ratio afforded by 7-T MRI can be used to increase spatial and contrast resolution, which may lend itself to improved imaging of the skull base. In this study, we apply a 7-T imaging protocol to patients with skull base tumors and compare the images with clinical standard of care. Images were acquired at 7 T on 11 patients with skull base lesions. Two neuroradiologists evaluated clinical 1.5-, 3-, and 7-T scans for detection of intracavernous cranial nerves and internal carotid artery (ICA) branches. Detection rates were compared. Images were used for surgical planning and uploaded to a neuronavigation platform and used to guide surgery. Image analysis yielded improved detection rates of cranial nerves and ICA branches at 7 T. The 7-T images were successfully incorporated into preoperative planning and intraoperative neuronavigation. Our study represents the first application of 7-T MRI to the full neurosurgical workflow for endoscopic endonasal surgery. We detected higher rates of cranial nerves and ICA branches at 7-T MRI compared with 3- and 1.5-T MRI, and found that integration of 7 T into surgical planning and guidance was feasible. These results suggest a potential for 7-T MRI to reduce surgical complications. Future studies comparing standardized 7-, 3-, and 1.5-T MRI protocols in a larger number of patients are warranted to determine the relative benefit of 7-T MRI for endonasal endoscopic surgical efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Image-Guided Localization Accuracy of Stereoscopic Planar and Volumetric Imaging Methods for Stereotactic Radiation Surgery and Stereotactic Body Radiation Therapy: A Phantom Study

    International Nuclear Information System (INIS)

    Kim, Jinkoo; Jin, Jian-Yue; Walls, Nicole; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.; Ryu, Samuel

    2011-01-01

    Purpose: To evaluate the positioning accuracies of two image-guided localization systems, ExacTrac and On-Board Imager (OBI), in a stereotactic treatment unit. Methods and Materials: An anthropomorphic pelvis phantom with eight internal metal markers (BBs) was used. The center of one BB was set as plan isocenter. The phantom was set up on a treatment table with various initial setup errors. Then, the errors were corrected using each of the investigated systems. The residual errors were measured with respect to the radiation isocenter using orthogonal portal images with field size 3 x 3 cm 2 . The angular localization discrepancies of the two systems and the correction accuracy of the robotic couch were also studied. A pair of pre- and post-cone beam computed tomography (CBCT) images was acquired for each angular correction. Then, the correction errors were estimated by using the internal BBs through fiducial marker-based registrations. Results: The isocenter localization errors (μ ±σ) in the left/right, posterior/anterior, and superior/inferior directions were, respectively, -0.2 ± 0.2 mm, -0.8 ± 0.2 mm, and -0.8 ± 0.4 mm for ExacTrac, and 0.5 ± 0.7 mm, 0.6 ± 0.5 mm, and 0.0 ± 0.5 mm for OBI CBCT. The registration angular discrepancy was 0.1 ± 0.2 o between the two systems, and the maximum angle correction error of the robotic couch was 0.2 o about all axes. Conclusion: Both the ExacTrac and the OBI CBCT systems showed approximately 1 mm isocenter localization accuracies. The angular discrepancy of two systems was minimal, and the robotic couch angle correction was accurate. These positioning uncertainties should be taken as a lower bound because the results were based on a rigid dosimetry phantom.

  12. Computed-tomography-guided anatomic standardization for quantitative assessment of dopamine transporter SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Kota [National Center of Neurology and Psychiatry, Department of Radiology, Tokyo (Japan); National Center of Neurology and Psychiatry, Integrative Brain Imaging Center, Tokyo (Japan); Imabayashi, Etsuko; Matsuda, Hiroshi [National Center of Neurology and Psychiatry, Integrative Brain Imaging Center, Tokyo (Japan); Sumida, Kaoru; Sone, Daichi; Kimura, Yukio; Sato, Noriko [National Center of Neurology and Psychiatry, Department of Radiology, Tokyo (Japan); Mukai, Youhei; Murata, Miho [National Center of Neurology and Psychiatry, Department of Neurology, Tokyo (Japan)

    2017-03-15

    For the quantitative assessment of dopamine transporter (DAT) using [{sup 123}I]FP-CIT single-photon emission computed tomography (SPECT) (DaTscan), anatomic standardization is preferable for achieving objective and user-independent quantification of striatal binding using a volume-of-interest (VOI) template. However, low accumulation of DAT in Parkinson's disease (PD) would lead to a deformation error when using a DaTscan-specific template without any structural information. To avoid this deformation error, we applied computed tomography (CT) data obtained using SPECT/CT equipment to anatomic standardization. We retrospectively analyzed DaTscan images of 130 patients with parkinsonian syndromes (PS), including 80 PD and 50 non-PD patients. First we segmented gray matter from CT images using statistical parametric mapping 12 (SPM12). These gray-matter images were then anatomically standardized using the diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL) algorithm. Next, DaTscan images were warped with the same parameters used in the CT anatomic standardization. The target striatal VOIs for decreased DAT in PD were generated from the SPM12 group comparison of 20 DaTscan images from each group. We applied these VOIs to DaTscan images of the remaining patients in both groups and calculated the specific binding ratios (SBRs) using nonspecific counts in a reference area. In terms of the differential diagnosis of PD and non-PD groups using SBR, we compared the present method with two other methods, DaTQUANT and DaTView, which have already been released as software programs for the quantitative assessment of DaTscan images. The SPM12 group comparison showed a significant DAT decrease in PD patients in the bilateral whole striatum. Of the three methods assessed, the present CT-guided method showed the greatest power for discriminating PD and non-PD groups, as it completely separated the two groups. CT-guided anatomic standardization using

  13. Acute mediastinitis: multidetector computed tomography findings following cardiac surgery

    International Nuclear Information System (INIS)

    Macedo, Clarissa Aguiar de; Baena, Marcos Eduardo da Silva; Uezumi, Kiyomi Kato; Castro, Claudio Campi de; Lucarelli, Claudio Luiz; Cerri, Giovanni Guido

    2008-01-01

    Postoperative mediastinitis is defined as an infection of the organs and tissues in the mediastinal space, with an incidence ranging between 0.4% and 5% of cases. This disease severity varies from infection of superficial tissues in the chest wall to fulminant mediastinitis with sternal involvement. Diagnostic criterion for postoperative detection of acute mediastinitis at computed tomography is the presence of fluid collections and gas in the mediastinal space, which might or might not be associated with peristernal abnormalities such as edema of soft tissues, separation of sternal segments with marginal bone resorption, sclerosis and osteomyelitis. Other associated findings include lymphadenomegaly, pulmonary consolidation and pleural/ pericardial effusion. Some of these findings, such as mediastinal gas and small fluid collections can be typically found in the absence of infection, early in the period following thoracic surgery where the effectiveness of computed tomography is limited. After approximately two weeks, computed tomography achieves almost 100% sensitivity and specificity. Patients with clinical suspicion of mediastinitis should be submitted to computed tomography for investigating the presence of fluid collections to identify the extent and nature of the disease. Multidetector computed tomography allows 3D images reconstruction, contributing particularly to the evaluation of the sternum. (author)

  14. Acute mediastinitis: multidetector computed tomography findings following cardiac surgery

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Clarissa Aguiar de [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina. Instituto do Coracao (InCor)]. E-mail: clarissaaguiarm@yahoo.com.br; Baena, Marcos Eduardo da Silva [Instituto do Coracao (InCor), Sao Paulo, SP (Brazil). Unit of Ultrasonography; Uezumi, Kiyomi Kato [Instituto do Coracao (InCor), Sao Paulo, SP (Brazil). Unit of Computed Tomography; Castro, Claudio Campi de [Instituto do Coracao (InCor), Sao Paulo, SP (Brazil). Unit of Magnetic Resonance Imaging; Lucarelli, Claudio Luiz [Instituto do Coracao (InCor), Sao Paulo, SP (Brazil). Center of Diagnosis; Cerri, Giovanni Guido [Universidade de Sao Paulo (USP), SP (Brazil). School of Medicine. Dept. of Radiology

    2008-07-15

    Postoperative mediastinitis is defined as an infection of the organs and tissues in the mediastinal space, with an incidence ranging between 0.4% and 5% of cases. This disease severity varies from infection of superficial tissues in the chest wall to fulminant mediastinitis with sternal involvement. Diagnostic criterion for postoperative detection of acute mediastinitis at computed tomography is the presence of fluid collections and gas in the mediastinal space, which might or might not be associated with peristernal abnormalities such as edema of soft tissues, separation of sternal segments with marginal bone resorption, sclerosis and osteomyelitis. Other associated findings include lymphadenomegaly, pulmonary consolidation and pleural/ pericardial effusion. Some of these findings, such as mediastinal gas and small fluid collections can be typically found in the absence of infection, early in the period following thoracic surgery where the effectiveness of computed tomography is limited. After approximately two weeks, computed tomography achieves almost 100% sensitivity and specificity. Patients with clinical suspicion of mediastinitis should be submitted to computed tomography for investigating the presence of fluid collections to identify the extent and nature of the disease. Multidetector computed tomography allows 3D images reconstruction, contributing particularly to the evaluation of the sternum. (author)

  15. Feature extraction & image processing for computer vision

    CERN Document Server

    Nixon, Mark

    2012-01-01

    This book is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in Matlab. Algorithms are presented and fully explained to enable complete understanding of the methods and techniques demonstrated. As one reviewer noted, ""The main strength of the proposed book is the exemplar code of the algorithms."" Fully updated with the latest developments in feature extraction, including expanded tutorials and new techniques, this new edition contains extensive new material on Haar wavelets, Viola-Jones, bilateral filt

  16. MR imaging-guided percutaneous cryotherapy for lung tumors: initial experience.

    Science.gov (United States)

    Liu, Shangang; Ren, Ruimei; Liu, Ming; Lv, Yubo; Li, Bin; Li, Chengli

    2014-09-01

    To evaluate prospectively the initial clinical experience of magnetic resonance (MR) imaging-guided percutaneous cryotherapy of lung tumors. MR imaging-guided percutaneous cryotherapy was performed in 21 patients with biopsy-proven lung tumors (12 men, 9 women; age range, 39-79 y). Follow-up consisted of contrast-enhanced chest computed tomography (CT) scan performed at 3-month intervals to assess tumor control; CT scanning was carried out for 12 months or until death. Cryotherapy procedures were successfully completed in all 21 patients. Pneumothorax occurred in 7 (33.3%) of 21 patients. Chest tube placement was required in one (4.8%) case. Hemoptysis was exhibited by 11 (52.4%) patients, and pleural effusion occurred in 6 (28.6%) patients. Other complications were observed in 14 (66.7%) patients. The mean follow-up period was 10.5 months (range, 9-12 mo) in patients who died. At month 12 of follow-up, 7 (33.3%) patients had a complete response to therapy, and 10 (47.6%) patients showed a partial response. In addition, two patients had stable disease, and two patients developed progressive disease; one patient developed a tumor in the liver, and the other developed a tumor in the brain. The 1-year local control rate was 81%, and 1-year survival rate was 90.5%. MR imaging-guided percutaneous cryotherapy appears feasible, effective, and minimally invasive for lung tumors. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  17. Image-guided microneurosurgical management of small cerebral arteriovenous malformations: the value of navigated computed tomographic angiography

    International Nuclear Information System (INIS)

    Coenen, V.A.; Reinges, M.H.T.; Gilsbach, J.M.; Rohde, V.; Dammert, S.; Mull, M.

    2005-01-01

    In small arteriovenous malformations (AVM) with large hematomas, surgery remains the main therapeutic option. However, intraoperative identification of the AVM, feeders, and draining veins could be difficult in the environment of substantial intracerebral blood. In those selected cases, we use navigated computed tomographic angiography (CTA) for the microneurosurgical management. It is our objective to report our initial experiences. Prior to operation a conventional CTA with superficial skin fiducials placed on a patient's head was acquired for diagnostic and neuronavigation purposes. Image data were transferred to a neuronavigation device with integrated volume rendering capacities which allows a three-dimensional reconstruction of the vascular tree and the AVM to be created. In all patients the AVM was removed successfully after having been localized with CTA-based neuronavigation. Navigated CTA is helpful for the operative management of small AVMs with large hematomas. The technique allows feeding arteries to be distinguished from draining veins thereby allowing the nidus of the AVM to be identified despite the presence of substantial intracerebral blood. CTA can be easily implemented into commercial neuronavigation systems. (orig.)

  18. Location of pulmonary modules prior to video thoracoscopic surgery by CT-guided hook wire placement: Preliminary study

    International Nuclear Information System (INIS)

    Ferreiras, J.; Salmeron, I.; Bustos Garcia de Castro, A.; Hernando, F.; Gomez, A.; Torres, A.

    1996-01-01

    Despite the efficacy of computerized tomography (CT) or radiologically-guided percutaneous biopsy and that offluoroscopically-guided trans bronchial biopsy in characterizing pulmonary nodules, it is not always possible to determine the etiology using these techniques, making it necessary to resort to thoracotomy. Recent developments in endoscopicsurgery equipment and the availability of advance video imaging technology have extended the indications for both diagnostic and therapeutic thoracoscopy. Thus, a number of procedures that previously could only be performed bymeans of thoracotomy, such as resection of peripheral pulmonary nodules, can nowbe carried out by means of video thoracoscopic (VT) surgery. Palpation orvisual location of pulmonary nodules by thoracoscopy is essential but is not always possible when the nodules measure less than 20 mm or when their location is not subpleural. In such cases, a procedure for their prior location is useful. In eight patients with pulmonary nodules who were to undergo subsequent VT surgery, the attempt was made to locate the nodules by CT-guided placementof a hook wire, similar to that employed in breast, and methylene blue injection. The hook wire was correctly introduced without significant complications in all eight cases. The eight nodules were successfully resected during the thoracoscopic procedure, in which the hook wire and methylene blue staining were of great assistance. In certain cases, the location of pulmonary nodules by means of CT-guidehook wire placement and methylene blue injection allows the video thoracoscopic resection of lesions of difficult access. (Author)

  19. High-resolution mini gamma camera for diagnosis and radio-guided surgery in diabetic foot infection

    International Nuclear Information System (INIS)

    Scopinaro, F.; Capriotti, G.; Di Santo, G.; Capotondi, C.; Micarelli, A.; Massari, R.; Trotta, C.; Soluri, A.

    2006-01-01

    The diagnosis of diabetic foot osteomyelitis is often difficult. 99m Tc-WBC (White Blood Cell) scintigraphy plays a key role in the diagnosis of bone infections. Spatial resolution of Anger camera is not always able to differentiate soft tissue from bone infection. Aim of present study is to verify if HRD (High-Resolution Detector) is able to improve diagnosis and to help surgery. Patients were studied by HRD showing 25.7x25.7 mm 2 FOV, 2 mm spatial resolution and 18% energy resolution. The patients were underwent to surgery and, when necessary, bone biopsy, both guided by HRD. Four patients were positive at Anger camera without specific signs of osteomyelitis. HRS (High-Resolution Scintigraphy) showed hot spots in the same patients. In two of them the hot spot was bar-shaped and it was localized in correspondence of the small phalanx. The presence of bone infection was confirmed at surgery, which was successfully guided by HRS. 99m Tc-WBC HRS was able to diagnose pedal infection and to guide the surgery of diabetic foot, opening a new way in the treatment of infected diabetic foot

  20. High-resolution mini gamma camera for diagnosis and radio-guided surgery in diabetic foot infection

    Energy Technology Data Exchange (ETDEWEB)

    Scopinaro, F. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Capriotti, G. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Di Santo, G. [Department of Radiological Sciences, University ' La Sapienza' Rome (Italy); Capotondi, C. [Unit of Radiology, S. Andrea Hospital, Rome (Italy); Micarelli, A. [Nuclear Medicine, Sulmona Hospital, Sulmona (AQ) (Italy); Massari, R. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy); Trotta, C. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy); Soluri, A. [Institute of Biomedical Engineering, ISIB-CNR, Rome-Li-tech srl, Lauzacco Pavia di Udine (UD) (Italy)]. E-mail: soluri@isib.cnr.it

    2006-12-20

    The diagnosis of diabetic foot osteomyelitis is often difficult. {sup 99m}Tc-WBC (White Blood Cell) scintigraphy plays a key role in the diagnosis of bone infections. Spatial resolution of Anger camera is not always able to differentiate soft tissue from bone infection. Aim of present study is to verify if HRD (High-Resolution Detector) is able to improve diagnosis and to help surgery. Patients were studied by HRD showing 25.7x25.7 mm{sup 2} FOV, 2 mm spatial resolution and 18% energy resolution. The patients were underwent to surgery and, when necessary, bone biopsy, both guided by HRD. Four patients were positive at Anger camera without specific signs of osteomyelitis. HRS (High-Resolution Scintigraphy) showed hot spots in the same patients. In two of them the hot spot was bar-shaped and it was localized in correspondence of the small phalanx. The presence of bone infection was confirmed at surgery, which was successfully guided by HRS. {sup 99m}Tc-WBC HRS was able to diagnose pedal infection and to guide the surgery of diabetic foot, opening a new way in the treatment of infected diabetic foot.

  1. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing.

    Science.gov (United States)

    Oh, Ji-Hyeon

    2018-12-01

    With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

  2. Early orthognathic surgery with three-dimensional image simulation during presurgical orthodontics in adults.

    Science.gov (United States)

    Kang, Sang-Hoon; Kim, Moon-Key; Park, Sun-Yeon; Lee, Ji-Yeon; Park, Wonse; Lee, Sang-Hwy

    2011-03-01

    To correct dentofacial deformities, three-dimensional skeletal analysis and computerized orthognathic surgery simulation are used to facilitate accurate diagnoses and surgical plans. Computed tomography imaging of dental occlusion can inform three-dimensional facial analyses and orthognathic surgical simulations. Furthermore, three-dimensional laser scans of a cast model of the predetermined postoperative dental occlusion can be used to increase the accuracy of the preoperative surgical simulation. In this study, we prepared cast models of planned postoperative dental occlusions from 12 patients diagnosed with skeletal class III malocclusions with mandibular prognathism and facial asymmetry that had planned to undergo bimaxillary orthognathic surgery during preoperative orthodontic treatment. The data from three-dimensional laser scans of the cast models were used in three-dimensional surgical simulations. Early orthognathic surgeries were performed based on three-dimensional image simulations using the cast images in several presurgical orthodontic states in which teeth alignment, leveling, and space closure were incomplete. After postoperative orthodontic treatments, intraoral examinations revealed that no patient had a posterior open bite or space. The two-dimensional and three-dimensional skeletal analyses showed that no mandibular deviations occurred between the immediate and final postoperative states of orthodontic treatment. These results showed that early orthognathic surgery with three-dimensional computerized simulations based on cast models of predetermined postoperative dental occlusions could provide early correction of facial deformities and improved efficacy of preoperative orthodontic treatment. This approach can reduce the decompensation treatment period of the presurgical orthodontics and contribute to efficient postoperative orthodontic treatments.

  3. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Fowler, Kathryn J.; Narra, Vamsi [Department of Diagnostic Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Garcia-Ramirez, Jose L.; Schwarz, Julie K. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Grigsby, Perry W., E-mail: pgrigsby@wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Gynecologic Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri (United States)

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  4. Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures.

    Science.gov (United States)

    Dagnino, Giulio; Georgilas, Ioannis; Morad, Samir; Gibbons, Peter; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2017-11-01

    Complex joint fractures often require an open surgical procedure, which is associated with extensive soft tissue damages and longer hospitalization and rehabilitation time. Percutaneous techniques can potentially mitigate these risks but their application to joint fractures is limited by the current sub-optimal 2D intra-operative imaging (fluoroscopy) and by the high forces involved in the fragment manipulation (due to the presence of soft tissue, e.g., muscles) which might result in fracture malreduction. Integration of robotic assistance and 3D image guidance can potentially overcome these issues. The authors propose an image-guided surgical robotic system for the percutaneous treatment of knee joint fractures, i.e., the robot-assisted fracture surgery (RAFS) system. It allows simultaneous manipulation of two bone fragments, safer robot-bone fixation system, and a traction performing robotic manipulator. This system has led to a novel clinical workflow and has been tested both in laboratory and in clinically relevant cadaveric trials. The RAFS system was tested on 9 cadaver specimens and was able to reduce 7 out of 9 distal femur fractures (T- and Y-shape 33-C1) with acceptable accuracy (≈1 mm, ≈5°), demonstrating its applicability to fix knee joint fractures. This study paved the way to develop novel technologies for percutaneous treatment of complex fractures including hip, ankle, and shoulder, thus representing a step toward minimally-invasive fracture surgeries.

  5. Navigation in diagnosis and therapy

    International Nuclear Information System (INIS)

    Vannier, Michael W.; Haller, John W.

    1999-01-01

    Image-guided navigation for surgery and other therapeutic interventions has grown in importance in recent years. During image-guided navigation a target is detected, localized and characterized for diagnosis and therapy. Thus, images are used to select, plan, guide and evaluate therapy, thereby reducing invasiveness and improving outcomes. A shift from traditional open surgery to less-invasive image-guided surgery will continue to impact the surgical marketplace. Increases in the speed and capacity of computers and computer networks have enabled image-guided interventions. Key elements in image navigation systems are pre-operative 3D imaging (or real-time image acquisition), a graphical display and interactive input devices, such as surgical instruments with light emitting diodes (LEDs). CT and MRI, 3D imaging devices, are commonplace today and 3D images are useful in complex interventions such as radiation oncology and surgery. For example, integrated surgical imaging workstations can be used for frameless stereotaxy during neurosurgical interventions. In addition, imaging systems are being expanded to include decision aids in diagnosis and treatment. Electronic atlases, such as Voxel Man or others derived from the Visible Human Project, combine a set of image data with non-image knowledge such as anatomic labels. Robot assistants and magnetic guidance technology are being developed for minimally invasive surgery and other therapeutic interventions. Major progress is expected at the interface between the disciplines of radiology and surgery where imaging, intervention and informatics converge

  6. Multi-slice computed tomography-assisted endoscopic transsphenoidal surgery for pituitary macroadenoma: a comparison with conventional microscopic transsphenoidal surgery.

    Science.gov (United States)

    Tosaka, Masahiko; Nagaki, Tomohito; Honda, Fumiaki; Takahashi, Katsumasa; Yoshimoto, Yuhei

    2015-11-01

    Intraoperative computed tomography (iCT) is a reliable method for the detection of residual tumour, but previous single-slice low-resolution computed tomography (CT) without coronal or sagittal reconstructions was not of adequate quality for clinical use. The present study evaluated the results of multi-slice iCT-assisted endoscopic transsphenoidal surgery for pituitary macroadenoma. This retrospective study included 30 consecutive patients with newly diagnosed or recurrent pituitary macroadenoma with supradiaphragmatic extension who underwent endoscopic transsphenoidal surgery using iCT (eTSS+iCT group), and control 30 consecutive patients who underwent conventional endoscope-assisted transsphenoidal surgery (cTSS group). The tumour volume was calculated by multiplying the tumour area by the slice thickness. Visual acuity and visual field were estimated by the visual impairment score (VIS). The resection extent, (preoperative tumour volume - postoperative residual tumour volume)/preoperative tumour volume, was 98.9% (median) in the eTSS+iCT group and 91.7% in the cTSS group, and had significant difference between the groups (P = 0.04). Greater than 95 and >90% removal rates were significantly higher in the eTSS+iCT group than in the cTSS group (P = 0.02 and P = 0.001, respectively). However, improvement in VIS showed no significant difference between the groups. The rate of complications also showed no significant difference. Multi-slice iCT-assisted endoscopic transsphenoidal surgery may improve the resection extent of pituitary macroadenoma. Multi-slice iCT may have advantages over intraoperative magnetic resonance imaging in less expensive, short acquisition time, and that special protection against magnetic fields is not needed.

  7. C-arm Cone Beam Computed Tomographic Needle Path Overlay for Fluoroscopic-Guided Placement of Translumbar Central Venous Catheters

    International Nuclear Information System (INIS)

    Tam, Alda; Mohamed, Ashraf; Pfister, Marcus; Rohm, Esther; Wallace, Michael J.

    2009-01-01

    C-arm cone beam computed tomography is an advanced 3D imaging technology that is currently available on state-of-the-art flat-panel-based angiography systems. The overlay of cross-sectional imaging information can now be integrated with real-time fluoroscopy. This overlay technology was used to guide the placement of three percutaneous translumbar inferior vena cava catheters.

  8. Objective-guided image annotation.

    Science.gov (United States)

    Mao, Qi; Tsang, Ivor Wai-Hung; Gao, Shenghua

    2013-04-01

    Automatic image annotation, which is usually formulated as a multi-label classification problem, is one of the major tools used to enhance the semantic understanding of web images. Many multimedia applications (e.g., tag-based image retrieval) can greatly benefit from image annotation. However, the insufficient performance of image annotation methods prevents these applications from being practical. On the other hand, specific measures are usually designed to evaluate how well one annotation method performs for a specific objective or application, but most image annotation methods do not consider optimization of these measures, so that they are inevitably trapped into suboptimal performance of these objective-specific measures. To address this issue, we first summarize a variety of objective-guided performance measures under a unified representation. Our analysis reveals that macro-averaging measures are very sensitive to infrequent keywords, and hamming measure is easily affected by skewed distributions. We then propose a unified multi-label learning framework, which directly optimizes a variety of objective-specific measures of multi-label learning tasks. Specifically, we first present a multilayer hierarchical structure of learning hypotheses for multi-label problems based on which a variety of loss functions with respect to objective-guided measures are defined. And then, we formulate these loss functions as relaxed surrogate functions and optimize them by structural SVMs. According to the analysis of various measures and the high time complexity of optimizing micro-averaging measures, in this paper, we focus on example-based measures that are tailor-made for image annotation tasks but are seldom explored in the literature. Experiments show consistency with the formal analysis on two widely used multi-label datasets, and demonstrate the superior performance of our proposed method over state-of-the-art baseline methods in terms of example-based measures on four

  9. Targeting Accuracy of Image-Guided Radiosurgery for Intracranial Lesions: A Comparison Across Multiple Linear Accelerator Platforms.

    Science.gov (United States)

    Huang, Yimei; Zhao, Bo; Chetty, Indrin J; Brown, Stephen; Gordon, James; Wen, Ning

    2016-04-01

    To evaluate the overall positioning accuracy of image-guided intracranial radiosurgery across multiple linear accelerator platforms. A computed tomography scan with a slice thickness of 1.0 mm was acquired of an anthropomorphic head phantom in a BrainLAB U-frame mask. The phantom was embedded with three 5-mm diameter tungsten ball bearings, simulating a central, a left, and an anterior cranial lesion. The ball bearings were positioned to radiation isocenter under ExacTrac X-ray or cone-beam computed tomography image guidance on 3 Linacs: (1) ExacTrac X-ray localization on a Novalis Tx; (2) cone-beam computed tomography localization on the Novalis Tx; (3) cone-beam computed tomography localization on a TrueBeam; and (4) cone-beam computed tomography localization on an Edge. Each ball bearing was positioned 5 times to the radiation isocenter with different initial setup error following the 4 image guidance procedures on the 3 Linacs, and the mean (µ) and one standard deviation (σ) of the residual error were compared. Averaged overall 3 ball bearing locations, the vector length of the residual setup error in mm (µ ± σ) was 0.6 ± 0.2, 1.0 ± 0.5, 0.2 ± 0.1, and 0.3 ± 0.1 on ExacTrac X-ray localization on a Novalis Tx, cone-beam computed tomography localization on the Novalis Tx, cone-beam computed tomography localization on a TrueBeam, and cone-beam computed tomography localization on an Edge, with their range in mm being 0.4 to 1.1, 0.4 to 1.9, 0.1 to 0.5, and 0.2 to 0.6, respectively. The congruence between imaging and radiation isocenters in mm was 0.6 ± 0.1, 0.7 ± 0.1, 0.3 ± 0.1, and 0.2 ± 0.1, for the 4 systems, respectively. Targeting accuracy comparable to frame-based stereotactic radiosurgery can be achieved with image-guided intracranial stereotactic radiosurgery treatment. © The Author(s) 2015.

  10. Organ Surface Deformation Measurement and Analysis in Open Hepatic Surgery: Method and Preliminary Results From 12 Clinical Cases

    OpenAIRE

    Clements, Logan W.; Dumpuri, Prashanth; Chapman, William C.; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2011-01-01

    The incidence of soft tissue deformation has been well documented in neurosurgical procedures and is known to compromise the spatial accuracy of image-guided surgery systems. Within the context of image-guided liver surgery (IGLS), no detailed method to study and analyze the observed organ shape change between preoperative imaging and the intraoperative presentation has been developed. Contrary to the studies of deformation in neurosurgical procedures, the majority of deformation in IGLS is i...

  11. Diagnostic management of patients with SAPHO syndrome: use of MR imaging to guide bone biopsy at CT for microbiological and histological work-up

    International Nuclear Information System (INIS)

    Kirchhoff, Timm; Rosenthal, Herbert; Prokop, Mathias; Chavan, Ajay; Galanski, Michael; Merkesdal, Sonja; Wagner, Annette; Zeidler, Henning; Mai, Uwe; Hammer, Michael

    2003-01-01

    Propionibacterium acnes (P. acnes) is suspected to be involved in the pathophysiology of SAPHO syndrome, since it has been isolated repeatedly through open surgical bone biopsy. This study demonstrates the role of MRI in identifying inflamed bone areas in patients with SAPHO syndrome and the role of CT-guided bone biopsies in obtaining samples from these areas for microbiological and histopathological investigations, thus obviating open surgery. Fourteen consecutive patients with SAPHO syndrome were investigated by MRI to identify acute inflammatory changes in hyperostotic periarticular bone. The CT-guided biopsies for microbiological investigations were taken from the areas identified. Patients positive for P. acnes were started on long-term antibiotic therapy according to antibiotic susceptibility. On MRI the inflammatory changes appeared as hyperintense areas on fat-saturated T2 fast-spin-echo (FSE) images and showed signal increase on fat-saturated T1 SE images after Gd-DTPA. With MR localization CT-guided bone biopsies yielded P. acnes in 8 patients. No bacteria could be isolated from the remaining 6 patients. Acute inflammatory bone changes in SAPHO syndrome are well localized by MRI. With MR localization, CT-guided bone biopsies offer a minimally invasive alternative to open surgery in the detection of. P. acnes leading to the institution of a specific antibiotic therapy. (orig.)

  12. Development of automatic navigation measuring system using template-matching software in image guided neurosurgery

    International Nuclear Information System (INIS)

    Watanabe, Yohei; Hayashi, Yuichiro; Fujii, Masazumi; Wakabayashi, Toshihiko; Kimura, Miyuki; Tsuzaka, Masatoshi; Sugiura, Akihiro

    2010-01-01

    An image-guided neurosurgery and neuronavigation system based on magnetic resonance imaging has been used as an indispensable tool for resection of brain tumors. Therefore, accuracy of the neuronavigation system, provided by periodic quality assurance (QA), is essential for image-guided neurosurgery. Two types of accuracy index, fiducial registration error (FRE) and target registration error (TRE), have been used to evaluate navigation accuracy. FRE shows navigation accuracy on points that have been registered. On the other hand, TRE shows navigation accuracy on points such as tumor, skin, and fiducial markers. This study shows that TRE is more reliable than FRE. However, calculation of TRE is a time-consuming, subjective task. Software for QA was developed to compute TRE. This software calculates TRE automatically by an image processing technique, such as automatic template matching. TRE was calculated by the software and compared with the results obtained by manual calculation. Using the software made it possible to achieve a reliable QA system. (author)

  13. Combine TV-L1 model with guided image filtering for wide and faint ring artifacts correction of in-line x-ray phase contrast computed tomography.

    Science.gov (United States)

    Ji, Dongjiang; Qu, Gangrong; Hu, Chunhong; Zhao, Yuqing; Chen, Xiaodong

    2018-01-01

    In practice, mis-calibrated detector pixels give rise to wide and faint ring artifacts in the reconstruction image of the In-line phase-contrast computed tomography (IL-PC-CT). Ring artifacts correction is essential in IL-PC-CT. In this study, a novel method of wide and faint ring artifacts correction was presented based on combining TV-L1 model with guided image filtering (GIF) in the reconstruction image domain. The new correction method includes two main steps namely, the GIF step and the TV-L1 step. To validate the performance of this method, simulation data and real experimental synchrotron data are provided. The results demonstrate that TV-L1 model with GIF step can effectively correct the wide and faint ring artifacts for IL-PC-CT.

  14. Computer methods in physics 250 problems with guided solutions

    CERN Document Server

    Landau, Rubin H

    2018-01-01

    Our future scientists and professionals must be conversant in computational techniques. In order to facilitate integration of computer methods into existing physics courses, this textbook offers a large number of worked examples and problems with fully guided solutions in Python as well as other languages (Mathematica, Java, C, Fortran, and Maple). It’s also intended as a self-study guide for learning how to use computer methods in physics. The authors include an introductory chapter on numerical tools and indication of computational and physics difficulty level for each problem.

  15. Intraoperative computed tomography with an integrated navigation system in stabilization surgery for complex craniovertebral junction malformation.

    Science.gov (United States)

    Yu, Xinguang; Li, Lianfeng; Wang, Peng; Yin, Yiheng; Bu, Bo; Zhou, Dingbiao

    2014-07-01

    This study was designed to report our preliminary experience with stabilization procedures for complex craniovertebral junction malformation (CVJM) using intraoperative computed tomography (iCT) with an integrated neuronavigation system (NNS). To evaluate the workflow, feasibility and clinical outcome of stabilization procedures using iCT image-guided navigation for complex CVJM. The stabilization procedures in CVJM are complex because of the area's intricate geometry and bony structures, its critical relationship to neurovascular structures and the intricate biomechanical issues involved. A sliding gantry 40-slice computed tomography scanner was installed in a preexisting operating room. The images were transferred directly from the scanner to the NNS using an automated registration system. On the basis of the analysis of intraoperative computed tomographic images, 23 cases (11 males, 12 females) with complicated CVJM underwent navigated stabilization procedures to allow more control over screw placement. The age of these patients were 19-52 years (mean: 33.5 y). We performed C1-C2 transarticular screw fixation in 6 patients to produce atlantoaxial arthrodesis with better reliability. Because of a high-riding transverse foramen on at least 1 side of the C2 vertebra and an anomalous vertebral artery position, 7 patients underwent C1 lateral mass and C2 pedicle screw fixation. Ten additional patients were treated with individualized occipitocervical fixation surgery from the hypoplasia of C1 or constraints due to C2 bone structure. In total, 108 screws were inserted into 23 patients using navigational assistance. The screws comprised 20 C1 lateral mass screws, 26 C2, 14 C3, or 4 C4 pedicle screws, 32 occipital screws, and 12 C1-C2 transarticular screws. There were no vascular or neural complications except for pedicle perforations that were detected in 2 (1.9%) patients and were corrected intraoperatively without any persistent nerves or vessel damage. The overall

  16. Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures

    Science.gov (United States)

    Shin, Kwangsoo; Choi, Jin Woo; Ko, Giho; Baik, Seungmin; Kim, Dokyoon; Park, Ok Kyu; Lee, Kyoungbun; Cho, Hye Rim; Han, Sang Ihn; Lee, Soo Hong; Lee, Dong Jun; Lee, Nohyun; Kim, Hyo-Cheol; Hyeon, Taeghwan

    2017-07-01

    Tissue adhesives have emerged as an alternative to sutures and staples for wound closure and reconnection of injured tissues after surgery or trauma. Owing to their convenience and effectiveness, these adhesives have received growing attention particularly in minimally invasive procedures. For safe and accurate applications, tissue adhesives should be detectable via clinical imaging modalities and be highly biocompatible for intracorporeal procedures. However, few adhesives meet all these requirements. Herein, we show that biocompatible tantalum oxide/silica core/shell nanoparticles (TSNs) exhibit not only high contrast effects for real-time imaging but also strong adhesive properties. Furthermore, the biocompatible TSNs cause much less cellular toxicity and less inflammation than a clinically used, imageable tissue adhesive (that is, a mixture of cyanoacrylate and Lipiodol). Because of their multifunctional imaging and adhesive property, the TSNs are successfully applied as a hemostatic adhesive for minimally invasive procedures and as an immobilized marker for image-guided procedures.

  17. Phantom evaluation of a commercially available three modality image guided radiation therapy system

    International Nuclear Information System (INIS)

    Ploquin, Nicolas; Rangel, Alejandra; Dunscombe, Peter

    2008-01-01

    The authors describe a detailed evaluation of the capabilities of imaging and image registration systems available with Varian linear accelerators for image guided radiation therapy (IGRT). Specifically, they present modulation transfer function curves for megavoltage planar, kilovoltage (kV) planar, and cone beam computed tomography imaging systems and compare these with conventional computed tomography. While kV planar imaging displayed the highest spatial resolution, all IGRT imaging techniques were assessed as adequate for their intended purpose. They have also characterized the image registration software available for use in conjunction with these imaging systems through a comprehensive phantom study involving translations in three orthogonal directions. All combinations of imaging systems and image registration software were found to be accurate, although the planar kV imaging system with automatic registration was generally superior, with both accuracy and precision of the order of 1 mm, under the conditions tested. Based on their phantom study, the attainable accuracy for rigid body translations using any of the features available with Varian equipment will more likely be limited by the resolution of the couch readouts than by inherent limitations in the imaging systems and image registration software. Overall, the accuracy and precision of currently available IGRT technology exceed published experience with the accuracy and precision of contouring for planning.

  18. Fluorescence-guided surgery of human colon cancer increases complete resection resulting in cures in an orthotopic nude mouse model.

    Science.gov (United States)

    Metildi, Cristina A; Kaushal, Sharmeela; Snyder, Cynthia S; Hoffman, Robert M; Bouvet, Michael

    2013-01-01

    We inquired if fluorescence-guided surgery (FGS) could improve surgical outcomes in fluorescent orthotopic nude mouse models of human colon cancer. We established fluorescent orthotopic mouse models of human colon cancer expressing a fluorescent protein. Tumors were resected under bright light surgery (BLS) or FGS. Pre- and post-operative images with the OV-100 Small Animal Imaging System (Olympus Corp, Tokyo Japan) were obtained to assess the extent of surgical resection. All mice with primary tumor that had undergone FGS had complete resection compared with 58% of mice in the BLS group (P = 0.001). FGS resulted in decreased recurrence compared with BLS (33% versus 62%, P = 0.049) and lengthened disease-free median survival from 9 to >36 wk. The median overall survival increased from 16 wk in the BLS group to 31 weeks in the FGS group. FGS resulted in a cure in 67% of mice (alive without evidence of tumor at >6 mo after surgery) compared with only 37% of mice that underwent BLS (P = 0.049). Surgical outcomes in orthotopic nude mouse models of human colon cancer were significantly improved with FGS. The present study can be translated to the clinic by various effective methods of fluorescently labeling tumors. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. A study to evaluate the efficacy of image-guided core biopsy in the diagnosis and management of lymphoma-Results in 103 biopsies

    International Nuclear Information System (INIS)

    Vandervelde, C.; Kamani, T.; Varghese, A.; Ramesar, K.; Grace, R.; Howlett, D.C.

    2008-01-01

    The reason for this study was to evaluate the ability of image-guided core biopsy to replace surgical excision by providing sufficient diagnostic and treatment information. All consecutive image-guided core biopsies in patients with a final diagnosis of lymphoma over a 6-year period at our institution were collected retrospectively. Case notes and pathology reports were reviewed and the diagnostic techniques used were recorded. Pathology reports were graded according to their diagnostic completeness and their ability to provide treatment information. Out of a total of 328 instances of lymphoma, 103 image-guided core biopsies were performed in 96 patients. In 78% of these, the diagnostic information obtained from the biopsy provided a fully graded and subtyped diagnosis of lymphoma with sufficient information to initiate therapy. In the head and neck 67% of core biopsies were fully diagnostic for treatment purposes compared to 91% in the thorax, abdomen and pelvis. Image-guided core biopsy has a number of cost and safety advantages over surgical excision biopsy and in suitable cases it can obviate the need for surgery in cases of suspected lymphoma. This is especially relevant for elderly patients and those with poor performance status

  20. A study to evaluate the efficacy of image-guided core biopsy in the diagnosis and management of lymphoma-Results in 103 biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Vandervelde, C. [Department of Radiology, Eastbourne District General Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD (United Kingdom)], E-mail: clivevandervelde@gmail.com; Kamani, T. [Department of ENT Surgery, Eastbourne District General Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD (United Kingdom)], E-mail: tkamany@yahoo.com; Varghese, A. [Department of Radiology, Eastbourne District General Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD (United Kingdom)], E-mail: vargheseajay@hotmail.com; Ramesar, K. [Department of Histopathology, Eastbourne District General Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD (United Kingdom)], E-mail: keith.ramesar@esht.nhs.uk; Grace, R. [Department of Haematology, Eastbourne District General Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD (United Kingdom)], E-mail: richard.grace@esht.nhs.uk; Howlett, D.C. [Department of Radiology, Eastbourne District General Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD (United Kingdom)], E-mail: david.howlett@esht.nhs.uk

    2008-04-15

    The reason for this study was to evaluate the ability of image-guided core biopsy to replace surgical excision by providing sufficient diagnostic and treatment information. All consecutive image-guided core biopsies in patients with a final diagnosis of lymphoma over a 6-year period at our institution were collected retrospectively. Case notes and pathology reports were reviewed and the diagnostic techniques used were recorded. Pathology reports were graded according to their diagnostic completeness and their ability to provide treatment information. Out of a total of 328 instances of lymphoma, 103 image-guided core biopsies were performed in 96 patients. In 78% of these, the diagnostic information obtained from the biopsy provided a fully graded and subtyped diagnosis of lymphoma with sufficient information to initiate therapy. In the head and neck 67% of core biopsies were fully diagnostic for treatment purposes compared to 91% in the thorax, abdomen and pelvis. Image-guided core biopsy has a number of cost and safety advantages over surgical excision biopsy and in suitable cases it can obviate the need for surgery in cases of suspected lymphoma. This is especially relevant for elderly patients and those with poor performance status.

  1. Cone-Beam Computed Tomography-Guided Percutaneous Radiologic Gastrostomy

    International Nuclear Information System (INIS)

    Moehlenbruch, Markus; Nelles, Michael; Thomas, Daniel; Willinek, Winfried; Gerstner, Andreas; Schild, Hans H.; Wilhelm, Kai

    2010-01-01

    The purpose of this study was to investigate the feasibility of a flat-detector C-arm-guided radiographic technique (cone-beam computed tomography [CBCT]) for percutaneous radiologic gastrostomy (PRG) insertion. Eighteen patients (13 men and 5 women; mean age 62 years) in whom percutaneous endoscopic gastrostomy (PEG) had failed underwent CBCT-guided PRG insertion. PEG failure or unsuitability was caused by upper gastrointestinal tract obstruction in all cases. Indications for gastrostomy were esophageal and head and neck malignancies, respectively. Before the PRG procedure, initial C-arm CBCT scans were acquired. Three- and 2-dimensional soft-tissue reconstructions of the epigastrium region were generated on a dedicated workstation. Subsequently, gastropexy was performed with T-fasteners after CBCT-guided puncture of the stomach bubble, followed by insertion of an 14F balloon-retained catheter through a peel-away introducer. Puncture of the stomach bubble and PRG insertion was technically successful in all patients without alteration of the epigastric region. There was no malpositioning of the tube or other major periprocedural complications. In 2 patients, minor complications occurred during the first 30 days of follow-up (PRG malfunction: n = 1; slight infection: n = 1). Late complications, which were mainly tube disturbances, were observed in 2 patients. The mean follow-up time was 212 days. CBCT-guided PRG is a safe, well-tolerated, and successful method of gastrostomy insertion in patients in whom endoscopic gastrostomy is not feasible. CBCT provides detailed imaging of the soft tissue and surrounding structures of the epigastric region in one diagnostic tour and thus significantly improves the planning of PRG procedures.

  2. Guided Modern Endodontic Surgery: A Novel Approach for Guided Osteotomy and Root Resection.

    Science.gov (United States)

    Strbac, Georg D; Schnappauf, Albrecht; Giannis, Katharina; Moritz, Andreas; Ulm, Christian

    2017-03-01

    Continuous improvements in techniques, instruments, and materials have established modern endodontic microsurgery as a state-of-the-art treatment method. The purpose of this approach was to introduce a new surgical endodontic technique by using a three-dimensional printed template for guided osteotomy and root resection. A 38-year-old patient was diagnosed with periapical lesions of teeth #3 and #4 and extruded gutta-percha material. Three-dimensional radiographic and optical scan files were imported into surgical planning software designed for guided implant surgery. Within the adapted software program the periapical lesions and the extruded gutta-percha were visualized and marked. With the aid of virtually positioned surgical pins and piezoelectric instruments, the osteotomy size, the apical resection level, and the bevel angle were defined before treatment. Three-dimensional surgical templates for each tooth were designed within the software program for a guided treatment approach. This approach comprised the treatment of periapical lesions of teeth #3 and #4 with root-end fillings and the detection and complete removal of the extruded gutta-percha material without perforation of sinus membrane. There were no postoperative complications, and clinical and radiologic assessments verified complete healing of the teeth. The guided microsurgical endodontic treatment presented appears to be a viable technique that allows for predefined osteotomies and root resections. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Fluoroscopy-Guided Percutaneous Lung Biopsy: A Valuable Alternative to Computed Tomography

    International Nuclear Information System (INIS)

    Kurban, L.A.; Gomersall, L.; Weir, J.; Wade, P.

    2008-01-01

    Background: Computed tomography (CT) fluoroscopy nowadays is the most preferred method of guidance to perform percutaneous lung biopsy of pulmonary masses. Conventional fluoroscopy is an increasingly forgotten technique that still can be used to perform lung biopsies, with many advantages. Purpose: To compare the accuracy, safety, and effective dose (ED) of conventional fluoroscopy-guided needle lung biopsy (FNLB) with CT-guided needle lung biopsy procedures (CTNLB) reported in the literature. Material and Methods: 100 consecutive patients who underwent FNLB were reviewed retrospectively. Using the final histological diagnoses and the clinical and radiological course of the disease as references, the accuracy and sensitivity of FNLB were calculated. The complication rates of FNLB were assessed. Using computer software (XDOSE), the ED was calculated. The accuracy, complication rates, and the ED of FNLB were compared with CTNLB reported in the literature. Results: The overall accuracy rate and sensitivity of FNLB were both 87%, which are comparable to the range of accuracies reported in the literature for CTNLB (74-97%). The complication rates of FNLB were also comparable to the complication rates reported for CTNLB. The commonest complication was pneumothorax, at a rate of 25%. The ED of FNLB was small, significantly lower than reported in the literature for CT-guided procedures. The mean ED of FNLB was 0.029 mSv, which is approximately equivalent to one chest X-ray. Conclusion: Conventional fluoroscopy is an accurate, safe, and low-dose alternative modality to CT to obtain an image-guided histological diagnosis of pulmonary lesions

  4. Patient positioning with X-ray detector self-calibration for image guided therapy

    International Nuclear Information System (INIS)

    Selby, B.P.; Sakas, G.; Stilla, U.; Groch, W.-D.

    2011-01-01

    Full text: Automatic alignment estimation from projection images has a range of applications, but misaligned cameras induce inaccuracies. Calibration methods for optical cameras requiring calibration bodies or detectable features have been a matter of research for years. Not so for image guided therapy, although exact patient pose recovery is crucial. To image patient anatomy, X-ray instead of optical equipment is used. Feature detection is often infeasible. Furthermore, a method not requiring a calibration body, usable during treatment, would be desirable to improve accuracy of the patient alignment. We present a novel approach not relying on image features but combining intensity based calibration with 3D pose recovery. A stereoscopic X-ray camera model is proposed, and effects of erroneous parameters on the patient alignment are evaluated. The relevant camera parameters are automatically computed by comparison of X-ray to CT images and are incorporated in the patient alignment computation. The methods were tested with ground truth data of an anatomic phantom with artificially produced misalignments and available real-patient images from a particle therapy machine. We show that our approach can compensate patient alignment errors through mis-calibration of a camera from more than 5 mm to below 0.2 mm. Usage of images with artificial noise shows that the method is robust against image degradation of 2-5%. X-ray camera sel calibration improves accuracy when cameras are misaligned. We could show that rigid body alignment was computed more accurately and that self-calibration is possible, even if detection of corresponding image features is not. (author)

  5. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing.

    Science.gov (United States)

    Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-06-01

    To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-assisted surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, which enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulation and planning. Furthermore, we developed a novel hollow 3D-printed liver model whose surface is covered with frames. This model is useful for safe liver resection, has better visibility, and the production cost is reduced to one-third of a previous model. Preoperative simulation and navigation with CAS in liver resection are expected to help planning and conducting a surgery and surgical education. Thus, a novel CAS system will contribute to not only the performance of reliable hepatectomy but also to surgical education.

  6. Localized irradiation of mouse legs using an image-guided robotic linear accelerator.

    Science.gov (United States)

    Kufeld, Markus; Escobar, Helena; Marg, Andreas; Pasemann, Diana; Budach, Volker; Spuler, Simone

    2017-04-01

    To investigate the potential of human satellite cells in muscle regeneration small animal models are useful to evaluate muscle regeneration. To suppress the inherent regeneration ability of the tibialis muscle of mice before transplantation of human muscle fibers, a localized irradiation of the mouse leg should be conducted. We analyzed the feasibility of an image-guided robotic irradiation procedure, a routine treatment method in radiation oncology, for the focal irradiation of mouse legs. After conducting a planning computed tomography (CT) scan of one mouse in its customized mold a three-dimensional dose plan was calculated using a dedicated planning workstation. 18 Gy have been applied to the right anterior tibial muscle of 4 healthy and 12 mice with immune defect in general anesthesia using an image-guided robotic linear accelerator (LINAC). The mice were fixed in a customized acrylic mold with attached fiducial markers for image guided tracking. All 16 mice could be irradiated as prevised without signs of acute radiation toxicity or anesthesiological side effects. The animals survived until scarification after 8, 21 and 49 days as planned. The procedure was straight forward and the irradiation process took 5 minutes to apply the dose of 18 Gy. Localized irradiation of mice legs using a robotic LINAC could be conducted as planned. It is a feasible procedure without recognizable side effects. Image guidance offers precise dose delivery and preserves adjacent body parts and tissues.

  7. Reconstruction of a Severely Atrophied Alveolar Ridge by Computer-Aided Gingival Simulation and 3D-Printed Surgical Guide: A Case Report.

    Science.gov (United States)

    Song, In-Seok; Lee, Mi-Ran; Ryu, Jae-Jun; Lee, Ui-Lyong

    Dental implants positioned in severely atrophied anterior maxillae require esthetic or functional compromises. This case report describes the rehabilitation of a severely atrophied alveolar ridge with a three-dimensional (3D) computer-aided design/computer-aided manufacture (CAD/CAM) surgical guide. A 50-year-old woman had a severely atrophied anterior maxilla with unfavorably positioned dental implants. Functional and esthetic prosthodontic restoration was difficult to achieve. An anterior segmental osteotomy was planned to reposition the dental implants. A 3D surgical guide was designed for precise relocation of the segment. The surgical guide firmly grasped the impression copings of the dental implants, minimizing surgical errors. Three-dimensional gingival simulation was used preoperatively to estimate the appropriate position of the gingiva. Rigid fixation to the surrounding bone allowed immobilization of the implant-bone segment. Satisfactory esthetic and functional outcomes were attained 6 months after surgery. Finally, a severely atrophied alveolar ridge with unfavorably positioned dental implants was recovered with minimal esthetic and functional deterioration using gingival simulation and a 3D CAD/CAM surgical guide.

  8. Needle-tissue interactive mechanism and steering control in image-guided robot-assisted minimally invasive surgery: a review.

    Science.gov (United States)

    Li, Pan; Yang, Zhiyong; Jiang, Shan

    2018-06-01

    Image-guided robot-assisted minimally invasive surgery is an important medicine procedure used for biopsy or local target therapy. In order to reach the target region not accessible using traditional techniques, long and thin flexible needles are inserted into the soft tissue which has large deformation and nonlinear characteristics. However, the detection results and therapeutic effect are directly influenced by the targeting accuracy of needle steering. For this reason, the needle-tissue interactive mechanism, path planning, and steering control are investigated in this review by searching literatures in the last 10 years, which results in a comprehensive overview of the existing techniques with the main accomplishments, limitations, and recommendations. Through comprehensive analyses, surgical simulation for insertion into multi-layer inhomogeneous tissue is verified as a primary and propositional aspect to be explored, which accurately predicts the nonlinear needle deflection and tissue deformation. Investigation of the path planning of flexible needles is recommended to an anatomical or a deformable environment which has characteristics of the tissue deformation. Nonholonomic modeling combined with duty-cycled spinning for needle steering, which tracks the tip position in real time and compensates for the deviation error, is recommended as a future research focus in the steering control in anatomical and deformable environments. Graphical abstract a Insertion force when the needle is inserted into soft tissue. b Needle deflection model when the needle is inserted into soft tissue [68]. c Path planning in anatomical environments [92]. d Duty-cycled spinning incorporated in nonholonomic needle steering [64].

  9. Guide to Computational Geometry Processing

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Gravesen, Jens; Anton, François

    be processed before it is useful. This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction...... to the theoretical and mathematical underpinnings of each technique, enabling the reader to not only implement a given method, but also to understand the ideas behind it, its limitations and its advantages. Topics and features: Presents an overview of the underlying mathematical theory, covering vector spaces......, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations Reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces Examines techniques for computing curvature from polygonal meshes Describes...

  10. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    International Nuclear Information System (INIS)

    Park, Justin C; Li, Jonathan G; Liu, Chihray; Lu, Bo; Zhang, Hao; Chen, Yunmei; Fan, Qiyong

    2015-01-01

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the

  11. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.

    Science.gov (United States)

    Park, Justin C; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G; Liu, Chihray; Lu, Bo

    2015-12-07

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm 'the common mask guided image reconstruction' (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and 'well' solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the algorithm

  12. Processing computed tomography images by using personal computer

    International Nuclear Information System (INIS)

    Seto, Kazuhiko; Fujishiro, Kazuo; Seki, Hirofumi; Yamamoto, Tetsuo.

    1994-01-01

    Processing of CT images was attempted by using a popular personal computer. The program for image-processing was made with C compiler. The original images, acquired with CT scanner (TCT-60A, Toshiba), were transferred to the computer by 8-inch flexible diskette. Many fundamental image-processing, such as displaying image to the monitor, calculating CT value and drawing the profile curve. The result showed that a popular personal computer had ability to process CT images. It seemed that 8-inch flexible diskette was still useful medium of transferring image data. (author)

  13. Deep architecture neural network-based real-time image processing for image-guided radiotherapy.

    Science.gov (United States)

    Mori, Shinichiro

    2017-08-01

    To develop real-time image processing for image-guided radiotherapy, we evaluated several neural network models for use with different imaging modalities, including X-ray fluoroscopic image denoising. Setup images of prostate cancer patients were acquired with two oblique X-ray fluoroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a convolutional neural network (rCNN). We changed the convolutional kernel size and number of convolutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE) method of image processing. Network models were trained to keep the quality of the output image close to that of the ground-truth image from the input image without image processing. For image denoising evaluation, noisy input images were used for the training. More than 6 convolutional layers with convolutional kernels >5×5 improved image quality. However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers to both networks, rCAEs with >3 convolutions each and rCNNs with >12 convolutions with a pair of pooling and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable image quality. Use of our suggested network achieved real-time image processing for contrast enhancement and image denoising by the use of a conventional modern personal computer. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. A quantitative image quality comparison of four different image guided radiotherapy devices

    International Nuclear Information System (INIS)

    Stuetzel, Julia; Oelfke, Uwe; Nill, Simeon

    2008-01-01

    Purpose: A study to quantitatively compare the image quality of four different image guided radiotherapy (IGRT) devices based on phantom measurements with respect to the additional dose delivered to the patient. Methods: Images of three different head-sized phantoms (diameter 16-18 cm) were acquired with the following four IGRT-CT solutions: (i) the Siemens Primatom single slice fan beam computed tomography (CT) scanner with an acceleration voltage of 130 kV, (ii) a Tomotherapy HI-ART II unit using a fan beam scanner with an energy of 3.5 MeV and (iii) the Siemens Artiste prototype, providing the possibility to perform kV (121 kV) and MV (6 MV) cone beam (CB) CTs. For each device three scan protocols (named low, normal, high) were selected to yield the same weighted computed tomography dose index (CTDI w ). Based on the individual inserts of the different phantoms the image quality achieved with each device at a certain dose level was characterized in terms of homogeneity, spatial resolution, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and electron density-to-CT-number conversion. Results: Based on the current findings for head-sized phantoms all devices show an electron density-to-CT-number conversion almost independent of the imaging parameters and hence can be suited for treatment planning purposes. The evaluation of the image quality, however, points out clear differences due to the different energies and geometries. The Primatom standard CT scanner shows throughout the best performance, especially for soft tissue contrast and spatial resolution with low imaging doses. Reasonable soft tissue contrast can be obtained with slightly higher doses compared to the CT scanner with the kVCB and the Tomotherapy unit. In order to get similar results with the MVCB system a much higher dose needs to be applied to the patient. Conclusion: Considering the entire investigations, especially in terms of contrast and spatial resolution, a rough tendency for

  15. Different styles of image-guided radiotherapy

    NARCIS (Netherlands)

    van Herk, Marcel

    2007-01-01

    To account for geometric uncertainties during radiotherapy, safety margins are applied. In many cases, these margins overlap organs at risk, thereby limiting dose escalation. The aim of image-guided radiotherapy is to improve the accuracy by imaging tumors and critical structures on the machine just

  16. Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy.

    Science.gov (United States)

    Gillies, Derek J; Gardi, Lori; De Silva, Tharindu; Zhao, Shuang-Ren; Fenster, Aaron

    2017-09-01

    During image-guided prostate biopsy, needles are targeted at tissues that are suspicious of cancer to obtain specimen for histological examination. Unfortunately, patient motion causes targeting errors when using an MR-transrectal ultrasound (TRUS) fusion approach to augment the conventional biopsy procedure. This study aims to develop an automatic motion correction algorithm approaching the frame rate of an ultrasound system to be used in fusion-based prostate biopsy systems. Two modes of operation have been investigated for the clinical implementation of the algorithm: motion compensation using a single user initiated correction performed prior to biopsy, and real-time continuous motion compensation performed automatically as a background process. Retrospective 2D and 3D TRUS patient images acquired prior to biopsy gun firing were registered using an intensity-based algorithm utilizing normalized cross-correlation and Powell's method for optimization. 2D and 3D images were downsampled and cropped to estimate the optimal amount of image information that would perform registrations quickly and accurately. The optimal search order during optimization was also analyzed to avoid local optima in the search space. Error in the algorithm was computed using target registration errors (TREs) from manually identified homologous fiducials in a clinical patient dataset. The algorithm was evaluated for real-time performance using the two different modes of clinical implementations by way of user initiated and continuous motion compensation methods on a tissue mimicking prostate phantom. After implementation in a TRUS-guided system with an image downsampling factor of 4, the proposed approach resulted in a mean ± std TRE and computation time of 1.6 ± 0.6 mm and 57 ± 20 ms respectively. The user initiated mode performed registrations with in-plane, out-of-plane, and roll motions computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 ms, respectively, and corresponding

  17. Medical imaging technology reviews and computational applications

    CERN Document Server

    Dewi, Dyah

    2015-01-01

    This book presents the latest research findings and reviews in the field of medical imaging technology, covering ultrasound diagnostics approaches for detecting osteoarthritis, breast carcinoma and cardiovascular conditions, image guided biopsy and segmentation techniques for detecting lung cancer, image fusion, and simulating fluid flows for cardiovascular applications. It offers a useful guide for students, lecturers and professional researchers in the fields of biomedical engineering and image processing.

  18. Young adult women's experiences of body image after bariatric surgery

    DEFF Research Database (Denmark)

    Jensen, Janet F; Hoegh-Petersen, Mette; Larsen, Tine B

    2014-01-01

    AIM: To understand the lived experience of body image in young women after obesity surgery. BACKGROUND: Quantitative studies have documented that health-related quality of life and body image are improved after bariatric surgery, probably due to significant weight loss. Female obesity surgery...... candidates are likely to be motivated by dissatisfaction regarding physical appearance. However, little is known about the experience of the individual woman, leaving little understanding of the association between bariatric surgery and changes in health-related quality of life and body image. DESIGN...... analysed by systematic text condensation influenced by Giorgi's phenomenological method and supplemented by elements from narrative analysis. FINDINGS: The analysis revealed three concepts: solution to an unbearable problem, learning new boundaries and hopes of normalization. These revelatory concepts were...

  19. Multiscale infrared and visible image fusion using gradient domain guided image filtering

    Science.gov (United States)

    Zhu, Jin; Jin, Weiqi; Li, Li; Han, Zhenghao; Wang, Xia

    2018-03-01

    For better surveillance with infrared and visible imaging, a novel hybrid multiscale decomposition fusion method using gradient domain guided image filtering (HMSD-GDGF) is proposed in this study. In this method, hybrid multiscale decomposition with guided image filtering and gradient domain guided image filtering of source images are first applied before the weight maps of each scale are obtained using a saliency detection technology and filtering means with three different fusion rules at different scales. The three types of fusion rules are for small-scale detail level, large-scale detail level, and base level. Finally, the target becomes more salient and can be more easily detected in the fusion result, with the detail information of the scene being fully displayed. After analyzing the experimental comparisons with state-of-the-art fusion methods, the HMSD-GDGF method has obvious advantages in fidelity of salient information (including structural similarity, brightness, and contrast), preservation of edge features, and human visual perception. Therefore, visual effects can be improved by using the proposed HMSD-GDGF method.

  20. [Factor XIII-guided treatment algorithm reduces blood transfusion in burn surgery].

    Science.gov (United States)

    Carneiro, João Miguel Gonçalves Valadares de Morais; Alves, Joana; Conde, Patrícia; Xambre, Fátima; Almeida, Emanuel; Marques, Céline; Luís, Mariana; Godinho, Ana Maria Mano Garção; Fernandez-Llimos, Fernando

    Major burn surgery causes large hemorrhage and coagulation dysfunction. Treatment algorithms guided by ROTEM ® and factor VIIa reduce the need for blood products, but there is no evidence regarding factor XIII. Factor XIII deficiency changes clot stability and decreases wound healing. This study evaluates the efficacy and safety of factor XIII correction and its repercussion on transfusion requirements in burn surgery. Randomized retrospective study with 40 patients undergoing surgery at the Burn Unit, allocated into Group A those with factor XIII assessment (n = 20), and Group B, those without assessment (n = 20). Erythrocyte transfusion was guided by a hemoglobin trigger of 10g.dL -1 and the other blood products by routine coagulation and ROTEM ® tests. Analysis of blood product consumption included units of erythrocytes, fresh frozen plasma, platelets, and fibrinogen. The coagulation biomarker analysis compared the pre- and post-operative values. Group A (with factor XIII study) and Group B had identical total body surface area burned. All patients in Group A had a preoperative factor XIII deficiency, whose correction significantly reduced units of erythrocyte concentrate transfusion (1.95 vs. 4.05, p = 0.001). Pre- and post-operative coagulation biomarkers were similar between groups, revealing that routine coagulation tests did not identify factor XIII deficiency. There were no recorded thromboembolic events. Correction of factor XIII deficiency in burn surgery proved to be safe and effective for reducing perioperative transfusion of erythrocyte units. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  1. ROS-IGTL-Bridge: an open network interface for image-guided therapy using the ROS environment.

    Science.gov (United States)

    Frank, Tobias; Krieger, Axel; Leonard, Simon; Patel, Niravkumar A; Tokuda, Junichi

    2017-08-01

    With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing. A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms. Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer. The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.

  2. Design of an interventional magnetic resonance imaging coil for cerebral surgery

    Science.gov (United States)

    Xu, Yue; Wang, Wen-Tao; Wang, Wei-Min

    2012-11-01

    In clinical magnetic resonance imaging (MRI), the design of the radiofrequency (RF) coil is very important. For certain applications, the appropriate coil can produce an improved image quality. However, it is difficult to achieve a uniform B1 field and a high signal-to-noise ratio (SNR) simultaneously. In this article, we design an interventional transmitter-and-receiver RF coil for cerebral surgery. This coil adopts a disassembly structure that can be assembled and disassembled repeatedly on the cerebral surgery gantry to reduce the amount of interference from the MRI during surgery. The simulation results and the imaging experiments demonstrate that this coil can produce a uniform RF field, a high SNR, and a large imaging range to meet the requirements of the cerebral surgery.

  3. Endoscopy-guided vitreoretinal surgery following penetrating corneal injury: a case report

    Directory of Open Access Journals (Sweden)

    Motoko Kawashima

    2010-08-01

    Full Text Available Motoko Kawashima1, Shinichi Kawashima2, Murat Dogru1,3, Makoto Inoue4, Jun Shimazaki1,51Department of Ophthalmology, Tokyo Dental College, Chiba, Japan; 2Department of Ophthalmology, International University of Health and Welfare, Tokyo, Japan; 3Department of Ocular Surface and Visual Optics, Keio University School of Medicine, Tokyo, Japan; 4Kyorin Eye Center, Tokyo, Japan; 5Department of Ophthalmology, Keio University School of Medicine, Tokyo, JapanIntroduction: Severe ocular trauma requires emergency surgery, and a fresh corneal graft may not always be available. We describe a case of perforating eye injury with corneal ­opacity, suspected endophthalmitis, and an intraocular foreign body. The patient was successfully treated with a two-step procedure comprising endoscopy-guided vitrectomy followed by corneal transplantation. This surgical technique offers a good option to vitrectomy with simultaneous keratoplasty in emergency cases where no graft is immediately available and there is the ­possibility of infection due to the presence of a foreign body.Case presentation: A 55-year-old Japanese woman was referred to our hospital with a ­perforating corneal and lens injury sustained with a muddy ferrous rod. Primary corneal sutures and lensectomy were performed immediately. Vitreoretinal surgery was required due to ­suspected endophthalmitis, vitreous hemorrhage, retinal detachment, dialysis and necrosis of the peripheral retina. Instead of conventional vitrectomy, endoscopy-guided vitreous surgery was performed with the Solid Fiber Catheter AS-611 (FiberTech, Tokyo, Japan due to the presence of corneal opacity and the unavailability of a donor cornea. The retina was successfully attached with the aid of a silicon oil tamponade. Following removal of the silicon oil at 3 months after surgery, penetrating keratoplasty and intraocular lens implantation with ciliary sulcus suture fixation were performed. At 6 months after penetrating

  4. Flexible radioluminescence imaging for FDG-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    King, Martin T., E-mail: mking@lroc.harvard.edu; Jenkins, Cesare H.; Cheng, Kai; Le, Quynh-Thu; Pratx, Guillem; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Sun, Conroy [College of Pharmacy, Oregon State University, Corvallis, Oregon 97331 (United States); Carpenter, Colin M. [Siris Medical, Mountain View, California 94043 (United States); Ma, Xiaowei [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China); Sunwoo, John B. [Department of Otolaryngology, Stanford University, Stanford, California 94305 (United States); Cheng, Zhen [Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2016-10-15

    Purpose: Flexible radioluminescence imaging (Flex-RLI) is an optical method for imaging {sup 18}F-fluorodeoxyglucose (FDG)-avid tumors. The authors hypothesize that a gadolinium oxysulfide: terbium (GOS:Tb) flexible scintillator, which loosely conforms to the body contour, can enhance tumor signal-to-background ratio (SBR) compared with RLI, which utilizes a flat scintillator. The purpose of this paper is to characterize flex-RLI with respect to alternative modalities including RLI, beta-RLI (RLI with gamma rejection), and Cerenkov luminescence imaging (CLI). Methods: The photon sensitivity, spatial resolution, and signal linearity of flex-RLI were characterized with in vitro phantoms. In vivo experiments utilizing 13 nude mice inoculated with the head and neck (UMSCC1-Luc) cell line were then conducted in accordance with the institutional Administrative Panel on Laboratory Animal Care. After intravenous injection of {sup 18}F-FDG, the tumor SBR values for flex-RLI were compared to those for RLI, beta-RLI, and CLI using the Wilcoxon signed rank test. Results: With respect to photon sensitivity, RLI, beta-RLI, and flex-RLI produced 1216.2, 407.0, and 98.6 times more radiance per second than CLI. Respective full-width half maximum values across a 0.5 mm capillary tube were 6.9, 6.4, 2.2, and 1.5 mm, respectively. Flex-RLI demonstrated a near perfect correlation with {sup 18}F activity (r = 0.99). Signal uniformity for flex-RLI improved after more aggressive homogenization of the GOS powder with the silicone elastomer during formulation. In vivo, the SBR value for flex-RLI (median 1.29; interquartile range 1.18–1.36) was statistically greater than that for RLI (1.08; 1.02–1.14; p < 0.01) by 26%. However, there was no statistically significant difference in SBR values between flex-RLI and beta-RLI (p = 0.92). Furthermore, there was no statistically significant difference in SBR values between flex-RLI and CLI (p = 0.11) in a more limited dataset. Conclusions: Flex

  5. Sinus Surgery

    Science.gov (United States)

    ... sinus computed tomography (CT) scan (without contrast), nasal physiology (rhinomanometry and nasal cytology), smell testing, and selected ... altered anatomical landmarks, or where a patient’s sinus anatomy is very unusual, making typical surgery difficult. Image ...

  6. MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors.

    Directory of Open Access Journals (Sweden)

    Tsuicheng D Chiu

    Full Text Available Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT imaging alone. In this study, we characterized a research magnetic resonance (MR scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This

  7. MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors.

    Science.gov (United States)

    Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James; Jiang, Steve B; Mason, Ralph P; Stojadinovic, Strahinja

    2018-01-01

    Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT) imaging alone. In this study, we characterized a research magnetic resonance (MR) scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV) was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This novel protocol

  8. Quality assurance for image-guided radiotherapy

    International Nuclear Information System (INIS)

    Marinello, Ginette

    2008-01-01

    The topics discussed include, among others, the following: Quality assurance program; Image guided radiotherapy; Commissioning and quality assurance; Check of agreement between visual and displayed scales; quality controls: electronic portal imaging device (EPID), MV-kV and kV-kV, cone-beam CT (CBCT), patient doses. (P.A.)

  9. Navigation and Image Injection for Control of Bone Removal and Osteotomy Planes in Spine Surgery.

    Science.gov (United States)

    Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven Rainer; Archavlis, Elefterios; Giese, Alf

    2017-04-01

    In contrast to cranial interventions, neuronavigation in spinal surgery is used in few applications, not tapping into its full technological potential. We have developed a method to preoperatively create virtual resection planes and volumes for spinal osteotomies and export 3-D operation plans to a navigation system controlling intraoperative visualization using a surgical microscope's head-up display. The method was developed using a Sawbone ® model of the lumbar spine, demonstrating feasibility with high precision. Computer tomographic and magnetic resonance image data were imported into Amira ® , a 3-D visualization software. Resection planes were positioned, and resection volumes representing intraoperative bone removal were defined. Fused to the original Digital Imaging and Communications in Medicine data, the osteotomy planes were exported to the cranial version of a Brainlab ® navigation system. A navigated surgical microscope with video connection to the navigation system allowed intraoperative image injection to visualize the preplanned resection planes. The workflow was applied to a patient presenting with a congenital hemivertebra of the thoracolumbar spine. Dorsal instrumentation with pedicle screws and rods was followed by resection of the deformed vertebra guided by the in-view image injection of the preplanned resection planes into the optical path of a surgical microscope. Postoperatively, the patient showed no neurological deficits, and the spine was found to be restored in near physiological posture. The intraoperative visualization of resection planes in a microscope's head-up display was found to assist the surgeon during the resection of a complex-shaped bone wedge and may help to further increase accuracy and patient safety. Copyright © 2017 by the Congress of Neurological Surgeons

  10. Split-mouth comparison of the accuracy of computer-generated and conventional surgical guides.

    Science.gov (United States)

    Farley, Nathaniel E; Kennedy, Kelly; McGlumphy, Edwin A; Clelland, Nancy L

    2013-01-01

    Recent clinical studies have shown that implant placement is highly predictable with computer-generated surgical guides; however, the reliability of these guides has not been compared to that of conventional guides clinically. This study aimed to compare the accuracy of reproducing planned implant positions with computer-generated and conventional surgical guides using a split-mouth design. Ten patients received two implants each in symmetric locations. All implants were planned virtually using a software program and information from cone beam computed tomographic scans taken with scan appliances in place. Patients were randomly selected for computer-aided design/computer-assisted manufacture (CAD/CAM)-guided implant placement on their right or left side. Conventional guides were used on the contralateral side. Patients underwent operative cone beam computed tomography postoperatively. Planned and actual implant positions were compared using three-dimensional analyses capable of measuring volume overlap as well as differences in angles and coronal and apical positions. Results were compared using a mixed-model repeated-measures analysis of variance and were further analyzed using a Bartlett test for unequal variance (α = .05). Implants placed with CAD/CAM guides were closer to the planned positions in all eight categories examined. However, statistically significant differences were shown only for coronal horizontal distances. It was also shown that CAD/CAM guides had less variability than conventional guides, which was statistically significant for apical distance. Implants placed using CAD/CAM surgical guides provided greater accuracy in a lateral direction than conventional guides. In addition, CAD/CAM guides were more consistent in their deviation from the planned locations than conventional guides.

  11. Accuracy of computer-assisted orthognathic surgery.

    Science.gov (United States)

    De Riu, Giacomo; Virdis, Paola Ilaria; Meloni, Silvio Mario; Lumbau, Aurea; Vaira, Luigi Angelo

    2018-02-01

    The purpose of this study was to retrospectively evaluate the difference between the planned and the actual movements of the jaws, using three-dimensional (3D) software for PC-assisted orthognathic surgery, to establish the accuracy of the procedure. A retrospective study was performed with 49 patients who had undergone PC-guided bimaxillary surgery. The accuracy of the protocol was determined by comparing planned movements of the jaws with the actual surgical movements, analysing frontal and lateral cephalometries. The overall results were deemed accurate, and differences among 12 of the 15 parameters were considered nonsignificant. Significant differences were reported for SNA (p = 0.008), SNB (p = 0.006), and anterior facial height (p = 0.033). The latter was significantly different in patients who had undergone genioplasty when compared with patients who had not. Virtual surgical planning presented a good degree of accuracy for most of the parameters assessed, with an average error of 1.98 mm for linear measures and 1.19° for angular measures. In general, a tendency towards under-projection in jaws was detected, probably due to imperfect condylar seating. A slight overcorrection of SNA and SNB during virtual planning (approximately 2°) could be beneficial. Further progress is required in the development of 3D simulation of the soft tissue, which currently does not allow an accurate management of the facial height and the chin position. Virtual planning cannot replace the need for constant intraoperative monitoring of the jaws' movements and real-time comparisons between planned and actual outcomes. It is therefore appropriate to leave some margin for correction of inaccuracies in the virtual planning. In this sense, it may be appropriate to use only the intermediate splint, and then use the planned occlusion and clinical measurements to guide repositioning of the second jaw and chin, respectively. Copyright © 2017 European Association for Cranio

  12. Body image and quality of life in patients with and without body contouring surgery following bariatric surgery: a comparison of pre- and post-surgery groups

    Science.gov (United States)

    de Zwaan, Martina; Georgiadou, Ekaterini; Stroh, Christine E.; Teufel, Martin; Köhler, Hinrich; Tengler, Maxi; Müller, Astrid

    2014-01-01

    Background: Massive weight loss (MWL) following bariatric surgery frequently results in an excess of overstretched skin causing physical discomfort and negatively affecting quality of life, self-esteem, body image, and physical functioning. Methods: In this cross-sectional study 3 groups were compared: (1) patients prior to bariatric surgery (n = 79), (2) patients after bariatric surgery who had not undergone body contouring surgery (BCS) (n = 252), and (3) patients after bariatric surgery who underwent subsequent BCS (n = 62). All participants completed self-report questionnaires assessing body image (Multidimensional Body-Self Relations Questionnaire, MBSRQ), quality of life (IWQOL-Lite), symptoms of depression (PHQ-9), and anxiety (GAD-7). Results: Overall, 62 patients (19.2%) reported having undergone a total of 90 BCS procedures. The most common were abdominoplasties (88.7%), thigh lifts (24.2%), and breast lifts (16.1%). Post-bariatric surgery patients differed significantly in most variables from pre-bariatric surgery patients. Although there were fewer differences between patients with and without BCS, patients after BCS reported better appearance evaluation (AE), body area satisfaction (BAS), and physical functioning, even after controlling for excess weight loss and time since surgery. No differences were found for symptoms of depression and anxiety, and most other quality of life and body image domains. Discussion: Our results support the results of longitudinal studies demonstrating significant improvements in different aspects of body image, quality of life, and general psychopathology after bariatric surgery. Also, we found better AE and physical functioning in patients after BCS following bariatric surgery compared to patients with MWL after bariatric surgery who did not undergo BCS. Overall, there appears to be an effect of BCS on certain aspects of body image and quality of life but not on psychological aspects on the whole. PMID:25477839

  13. Body image and quality of life in patients with and without body contouring surgery following bariatric surgery: a comparison of pre- and post-surgery groups

    Directory of Open Access Journals (Sweden)

    Martina eDe Zwaan

    2014-11-01

    Full Text Available Background: Massive weight loss (MWL following bariatric surgery frequently results in an excess of overstretched skin causing physical discomfort and negatively affecting quality of life, self-esteem, body image and physical functioning.Methods: In this cross-sectional study 3 groups were compared: 1 patients prior to bariatric surgery (n=79, 2 patients after bariatric surgery who had not undergone BCS (n=252, and 3 patients after bariatric surgery who underwent subsequent body contouring surgery (BCS (n=62. All participants completed self-report questionnaires assessing body image (MBSRQ, quality of life (IWQOL-Lite, symptoms of depression (PHQ-9 and anxiety (GAD-7.Results: Overall, 62 patients (19.2% reported having undergone a total of 90 BCS procedures. The most common were abdominoplasties (88.7%, thigh lifts (24.2%, and breast lifts (16.1%. Post-bariatric surgery patients differed significantly in most variables from pre-bariatric surgery patients; however, there were fewer differences between patients with and without BCS. Patients after BCS reported better appearance evaluation, body area satisfaction, and physical functioning, even after controlling for excess weight loss and time since surgery. No differences were found for symptoms of depression and anxiety, and most other quality of life and body image domains. Discussion: Our results support the results of longitudinal studies demonstrating significant improvements in different aspects of body image, quality of life, and general psychopathology after bariatric surgery. Also, we found better appearance evaluation and physical functioning in patients after BCS following bariatric surgery compared to patients with MWL after bariatric surgery who did not undergo BCS. Overall, there appears to be an effect of BCS on certain aspects of body image and quality of life but not on psychological aspects on the whole.

  14. Neuronavigation-guided intubated wake-up craniotomy for a patient with a brain astrocytoma

    Directory of Open Access Journals (Sweden)

    Wen-Kuei Fang

    2013-08-01

    Full Text Available Computer-assisted neuronavigation (an image-guided technique that facilitates brain tumor surgery reduces the risk of neurological morbidity. Postoperative neurological dysfunction is also minimized by performing intraoperative neurological testing during awake craniotomy with proper surgical resection of a brain tumor. However, when the patient's airway is not secured, an awake craniotomy can be hazardous if emergent intubation is necessary. The present report describes a young man with a brain tumor who underwent neuronavigation-guided wake-up craniotomy and surgical resection of an astrocytoma. The patient was intubated throughout the course of the procedure, during which modified intraoperative neurological tests were performed for cortical mapping. The patient recovered well after the operation and without any neurological deficits.

  15. MR image-guided portal verification for brain treatment field

    International Nuclear Information System (INIS)

    Yin Fangfang; Gao Qinghuai; Xie Huchen; Nelson, Diana F.; Yu Yan; Kwok, W. Edmund; Totterman, Saara; Schell, Michael C.; Rubin, Philip

    1998-01-01

    Purpose: To investigate a method for the generation of digitally reconstructed radiographs directly from MR images (DRR-MRI) to guide a computerized portal verification procedure. Methods and Materials: Several major steps were developed to perform an MR image-guided portal verification procedure. Initially, a wavelet-based multiresolution adaptive thresholding method was used to segment the skin slice-by-slice in MR brain axial images. Some selected anatomical structures, such as target volume and critical organs, were then manually identified and were reassigned to relatively higher intensities. Interslice information was interpolated with a directional method to achieve comparable display resolution in three dimensions. Next, a ray-tracing method was used to generate a DRR-MRI image at the planned treatment position, and the ray tracing was simply performed on summation of voxels along the ray. The skin and its relative positions were also projected to the DRR-MRI and were used to guide the search of similar features in the portal image. A Canny edge detector was used to enhance the brain contour in both portal and simulation images. The skin in the brain portal image was then extracted using a knowledge-based searching technique. Finally, a Chamfer matching technique was used to correlate features between DRR-MRI and portal image. Results: The MR image-guided portal verification method was evaluated using a brain phantom case and a clinical patient case. Both DRR-CT and DRR-MRI were generated using CT and MR phantom images with the same beam orientation and then compared. The matching result indicated that the maximum deviation of internal structures was less than 1 mm. The segmented results for brain MR slice images indicated that a wavelet-based image segmentation technique provided a reasonable estimation for the brain skin. For the clinical patient case with a given portal field, the MR image-guided verification method provided an excellent match between

  16. Diffuse reflectance imaging: a tool for guided biopsy

    Science.gov (United States)

    Jayanthi, Jayaraj L.; Subhash, Narayanan; Manju, Stephen; Nisha, Unni G.; Beena, Valappil T.

    2012-01-01

    Accurate diagnosis of premalignant or malignant oral lesions depends on the quality of the biopsy, adequate clinical information and correct interpretation of the biopsy results. The major clinical challenge is to precisely locate the biopsy site in a clinically suspicious lesion. Dips due to oxygenated hemoglobin absorption have been noticed at 545 and 575 nm in the diffusely reflected white light spectra of oral mucosa and the intensity ratio R545/R575 has been found suited for early detection of oral pre-cancers. A multi-spectral diffuse reflectance (DR) imaging system has been developed consisting of an electron multiplying charge coupled device (EMCCD) camera and a liquid crystal tunable filter for guiding the clinician to an optimal biopsy site. Towards this DR images were recorded from 27 patients with potentially malignant lesions on their tongue (dorsal, lateral and ventral sides) and from 44 healthy controls at 545 and 575 nm with the DR imaging system. False colored ratio image R545/R575 of the lesion provides a visual discerning capability that helps in locating the most malignant site for biopsy. Histopathological report of guided biopsy showed that out of the 27 patients 16 were cancers, 9 pre-cancers and 2 lichen planus. In this clinical trial DR imaging has correctly guided 25 biopsy sites, yielding a sensitivity of 93% and a specificity of 98%, thereby establishing the potential of DR imaging as a tool for guided biopsy.

  17. Automatic detection of solar features in HSOS full-disk solar images using guided filter

    Science.gov (United States)

    Yuan, Fei; Lin, Jiaben; Guo, Jingjing; Wang, Gang; Tong, Liyue; Zhang, Xinwei; Wang, Bingxiang

    2018-02-01

    A procedure is introduced for the automatic detection of solar features using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. Guided filter is adopted to enhance the edges of solar features and restrain the solar limb darkening, which is first introduced into the astronomical target detection. Then specific features are detected by Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedures, our procedure has some advantages such as real time and reliability as well as no need of local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result shows that the number of features detected by our procedure is well consistent with the manual one.

  18. In-room CT techniques for image-guided radiation therapy

    International Nuclear Information System (INIS)

    Ma, C.-M. Charlie; Paskalev, Kamen M.S.

    2006-01-01

    Accurate patient setup and target localization are essential to advanced radiation therapy treatment. Significant improvement has been made recently with the development of image-guided radiation therapy, in which image guidance facilitates short treatment course and high dose per fraction radiotherapy, aiming at improving tumor control and quality of life. Many imaging modalities are being investigated, including x-ray computed tomography (CT), ultrasound imaging, positron emission tomography, magnetic resonant imaging, magnetic resonant spectroscopic imaging, and kV/MV imaging with flat panel detectors. These developments provide unique imaging techniques and methods for patient setup and target localization. Some of them are different; some are complementary. This paper reviews the currently available kV x-ray CT systems used in the radiation treatment room, with a focus on the CT-on-rails systems, which are diagnostic CT scanners moving on rails installed in the treatment room. We will describe the system hardware including configurations, specifications, operation principles, and functionality. We will review software development for image fusion, structure recognition, deformation correction, target localization, and alignment. Issues related to the clinical implementation of in-room CT techniques in routine procedures are discussed, including acceptance testing and quality assurance. Clinical applications of the in-room CT systems for patient setup, target localization, and adaptive therapy are also reviewed for advanced radiotherapy treatments

  19. Quantifying attention shifts in augmented reality image-guided neurosurgery.

    Science.gov (United States)

    Léger, Étienne; Drouin, Simon; Collins, D Louis; Popa, Tiberiu; Kersten-Oertel, Marta

    2017-10-01

    Image-guided surgery (IGS) has allowed for more minimally invasive procedures, leading to better patient outcomes, reduced risk of infection, less pain, shorter hospital stays and faster recoveries. One drawback that has emerged with IGS is that the surgeon must shift their attention from the patient to the monitor for guidance. Yet both cognitive and motor tasks are negatively affected with attention shifts. Augmented reality (AR), which merges the realworld surgical scene with preoperative virtual patient images and plans, has been proposed as a solution to this drawback. In this work, we studied the impact of two different types of AR IGS set-ups (mobile AR and desktop AR) and traditional navigation on attention shifts for the specific task of craniotomy planning. We found a significant difference in terms of the time taken to perform the task and attention shifts between traditional navigation, but no significant difference between the different AR set-ups. With mobile AR, however, users felt that the system was easier to use and that their performance was better. These results suggest that regardless of where the AR visualisation is shown to the surgeon, AR may reduce attention shifts, leading to more streamlined and focused procedures.

  20. [Shall all lobular intraepithelial neoplasia diagnosed on image-guided biopsy require a surgical management?].

    Science.gov (United States)

    Fischer-Hunsinger, Maeva; Guinebretière, Jean-Marc; Lasry, Serge; Langer, Adriana; Berment, Hélène; Nekka, Ibtissem; Nodiot, Philippe; Cherel, Pascal

    2016-05-01

    Lobular intraepithelial neoplasia (LIN) diagnosed on image-guided biopsy may be associated with an undiagnosed cancer. This is called under-diagnosis. The consequence is that management of these lesions is often surgical. But many surgeries finally are unnecessary. The aim of our study was to define criteria to avoid unnecessary surgery. This is a single-center, retrospective after a database collected prospectively study. Fourteen thousand biopsies were analyzed, including 456 diagnosed NLI. Under-diagnosis rates were analyzed according to many criteria. The average duration of following was 45 months. For atypical lobular hyperplasia (ALH), we obtained 7.6% under-diagnosis and combining several criteria, we got a low risk of cancer (2%). For LCIS, this rate was 23% and any low-risk group could be identified. ALH with calcifications≤20 mm, without any atypical lesion associated, histologically focal and whose removal is representative may be safely observed. For other LIN, surgery remains indicated. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  1. UBM-guided chamber angle surgery for glaucoma management: an experimental study.

    Science.gov (United States)

    Dietlein, T S; Engels, B F; Jacobi, P C; Krieglstein, G K

    2003-04-01

    The aim of this experimental study was to investigate the potential of ultrasound bimicroscopy (UBM)-guided chamber angle surgery as an alternative or supplement to gonioscopy and intraocular microendoscopy for intraoperative control. In 15 porcine cadaver eyes, mechanical goniopuncture or punctual Er:YAG laser trabecular ablation was performed without operating microscope or gonioscopy, but with real-life ultrasound biomicroscopy monitoring with a 50 MHz transducer. Intraoperative localization of the microsurgical instruments and tissue-instrument contact were qualitatively evaluated. The instruments could be clearly visualized within the chamber angle and disturbing artefacts were only minimal when using mechanically fixed instruments in slow motion. Topographic localization, tissue contact, and penetration depth of the instruments entering the scleral were well illustrated as far as the technical resolution limits of UBM would allow. UBM can be used intraoperatively to monitor the correct manoeuvring of microsurgical instruments in selected ab interno procedures. Some adaptations and further modifications of the technique presented here will be necessary before UBM-guided surgery can be considered for clinical use in humans.

  2. Analgesic efficacy of ultrasound guided versus landmark-based bilateral superficial cervical plexus block for thyroid surgery

    Directory of Open Access Journals (Sweden)

    Rasha M. Hassan

    2017-10-01

    Full Text Available Background: The use of bilateral superficial cervical plexus block (BSCPB to provide analgesia for thyroid operations remains debatable. This study was done to assess the analgesic efficacy and safety of ultrasound (US guided or landmark-based BSCPB, performed under general anesthesia, compared to systemic narcotics in thyroid surgery. Patients and methods: A total of 69 patients ASA I and II scheduled for thyroid surgery were randomly assigned into three groups (23 patients each: Group (US received US guided BSCPB. Group (LM received landmark-based BSCPB. In both groups, the block was performed under general anesthesia and before surgery using 0.5% bupivacaine 12 ml on each side. Group (C who didn’t receive any block. We measured intra-operative hemodynamics and fentanyl requirements. We also measured postoperative analgesia within 24 h of surgery as regard: pethidine consumption, visual analogue scale (VAS pain scores and time to first rescue analgesic demand. Postoperative nausea and vomiting (PONV and other adverse events were noted as well. Results: There was a significant reduction in systolic blood pressure (SBP and heart rate (HR in groups US and LM compared with group C. Intra-operative fentanyl requirements were significantly increased in group C compared to groups US and LM. Time to first analgesic request was significantly longer in groups US and LM than in group C. Postoperative pethidine consumption and VAS scores, measured during the first postoperative day, were significantly higher in group C than groups US and LM. No significant difference was noted between the three groups regarding PONV. No other adverse events were recorded. No significant differences were noted between groups US and LM. Conclusion: BSCPB (US guided or landmark-based, performed under general anesthesia, effectively decreased peri-operative analgesic requirements in thyroid operations. However, there was no significant difference in analgesic efficacy or

  3. Magnetic resonance imaging findings after rectus femoris transfer surgery

    International Nuclear Information System (INIS)

    Gold, Garry E.; Asakawa, Deanna S.; Blemker, Silvia S.; Delp, Scott L.

    2004-01-01

    We describe the magnetic resonance (MR) imaging appearance of the knee flexor and extensor tendons after bilateral rectus femoris transfer and hamstring lengthening surgery in five patients (10 limbs) with cerebral palsy. Three-dimensional models of the path of the transferred tendon were constructed in all cases. MR images of the transferred and lengthened tendons were examined and compared with images from ten non-surgical subjects. The models showed that the path of the transferred rectus femoris tendon had a marked angular deviation near the transfer site in all cases. MR imaging demonstrated irregular areas of low signal intensity near the transferred rectus femoris and around the hamstrings in all subjects. Eight of the ten post-surgical limbs showed evidence of fluid near or around the transferred or lengthened tendons. This was not observed in the non-surgical subjects. Thus, MR imaging of patients with cerebral palsy after rectus femoris transfer and hamstring-lengthening surgery shows evidence of signal intensity and contour changes, even several years after surgery. (orig.)

  4. Improved Image-Guided Laparoscopic Prostatectomy

    Science.gov (United States)

    2013-07-01

    capture specific hepatic struc- tures in 2 views: The portal vein confluence, hepatic vein confluence, inferior vena cava, and gallbladder . Still images and...assisted surgery with vessel extraction and registration: A feasibility study”, IPCAI 2011, LNCS Vol. 6689, 122-132 (2011). [9] Ophir, J., Cespedes

  5. Emerging Applications of Bedside 3D Printing in Plastic Surgery.

    Science.gov (United States)

    Chae, Michael P; Rozen, Warren M; McMenamin, Paul G; Findlay, Michael W; Spychal, Robert T; Hunter-Smith, David J

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  6. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    Science.gov (United States)

    Chae, Michael P.; Rozen, Warren M.; McMenamin, Paul G.; Findlay, Michael W.; Spychal, Robert T.; Hunter-Smith, David J.

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  7. Radio-guided surgery in differentiated thyroid cancer: report of four cases

    International Nuclear Information System (INIS)

    Kallel, F.; Hamza, F.; Charfeddine, S.; Guermazi, F.; Ghorbel, A.

    2009-01-01

    Radio-guided surgery is a technique using the ability of a tumour tissue to uptake a radiopharmaceutical, in order, to facilitate its location with an intraoperative gamma probe. This technique was first used in the detection of recurrent thyroid cancer. We present our experience in this indication in four cases which were followed in our department. (authors)

  8. Use of percutaneous image-guided coaxial core-needle biopsy for diagnosis of intraabdominal lymphoma

    International Nuclear Information System (INIS)

    Shimizu, Ikuo; Okazaki, Yoichi; Takeda, Wataru; Kirihara, Takehiko; Sato, Keijiro; Fujikawa, Yuko; Ueki, Toshimitsu; Hiroshima, Yuki; Sumi, Masahiko; Ueno, Mayumi; Ichikawa, Naoaki; Kobayashi, Hikaru

    2014-01-01

    Although pathological diagnosis is essential for managing malignant lymphoma, intraabdominal lesions are generally difficult to approach due to the invasiveness of abdominal surgery. Here, we report the use of percutaneous image-guided coaxial core-needle biopsy (CNB) to obtain intraabdominal specimens for diagnosing intraabdominal lymphomas, which typically requires histopathological and immunohistochemical evaluation. We retrospectively reviewed consecutive cases involving computed tomography (CT)- or ultrasonography (US)-guided CNB to obtain pathological specimens for intraabdominal lesions from 1999 to 2011. Liver, spleen, kidney, and inguinal node biopsies were excluded. We compared CNBs with laparotomic biopsies. A total of 66 CNBs were performed for 59 patients (32 males, 27 females; median age, 63.5), including second or third repeat procedures. Overall diagnostic rate was 88.5%. None of the patients required additional surgical biopsies. Notably, the median interval between recognition of an intraabdominal mass and biopsy was only 1 day. Forty-five procedures were performed for hematological malignancies. Adequate specimens were obtained for histopathological diagnosis in 86% of cases. Flow cytometry detected lymphoma cells in 79.5% of cases. Twelve patients (nine males, three females; median age, 60) were eligible for surgical biopsy. While every postoperative course was satisfactory, median duration from lesion recognition to therapy initiation for lymphoma cases was significantly shorter for CNB than for surgical biopsy (14 vs. 35 days). While one-fourth of the patients were not eligible for the procedures, CNB is safe and highly effective for diagnosis of intraabdominal lymphomas. This method significantly improves sampling and potentially helps attain immunohistological distinction, allowing for more timely therapy initiation

  9. Neurologic Outcomes After Low-Volume, Ultrasound-Guided Interscalene Block and Ambulatory Shoulder Surgery.

    Science.gov (United States)

    Rajpal, Gaurav; Winger, Daniel G; Cortazzo, Megan; Kentor, Michael L; Orebaugh, Steven L

    2016-01-01

    Postoperative neurologic symptoms after interscalene block and shoulder surgery have been reported to be relatively frequent. Reports of such symptoms after ultrasound-guided block have been variable. We evaluated 300 patients for neurologic symptoms after low-volume, ultrasound-guided interscalene block and arthroscopic shoulder surgery. Patients underwent ultrasound-guided interscalene block with 16 to 20 mL of 0.5% bupivacaine or a mix of 0.2% bupivacaine/1.2% mepivacaine solution, followed by propofol/ketamine sedation for ambulatory arthroscopic shoulder surgery. Patients were called at 10 days for evaluation of neurologic symptoms, and those with persistent symptoms were called again at 30 days, at which point neurologic evaluation was initiated. Details of patient demographics and block characteristics were collected to assess any association with persistent neurologic symptoms. Six of 300 patients reported symptoms at 10 days (2%), with one of these patients having persistent symptoms at 30 days (0.3%). This was significantly lower than rates of neurologic symptoms reported in preultrasound investigations with focused neurologic follow-up and similar to other studies performed in the ultrasound era. There was a modest correlation between the number of needle redirections during the block procedure and the presence of postoperative neurologic symptoms. Ultrasound guidance of interscalene block with 16- to 20-mL volumes of local anesthetic solution results in a lower frequency of postoperative neurologic symptoms at 10 and 30 days as compared with investigations in the preultrasound period.

  10. Precision IORT - Image guided intraoperative radiation therapy (igIORT) using online treatment planning including tissue heterogeneity correction.

    Science.gov (United States)

    Schneider, Frank; Bludau, Frederic; Clausen, Sven; Fleckenstein, Jens; Obertacke, Udo; Wenz, Frederik

    2017-05-01

    To the present date, IORT has been eye and hand guided without treatment planning and tissue heterogeneity correction. This limits the precision of the application and the precise documentation of the location and the deposited dose in the tissue. Here we present a set-up where we use image guidance by intraoperative cone beam computed tomography (CBCT) for precise online Monte Carlo treatment planning including tissue heterogeneity correction. An IORT was performed during balloon kyphoplasty using a dedicated Needle Applicator. An intraoperative CBCT was registered with a pre-op CT. Treatment planning was performed in Radiance using a hybrid Monte Carlo algorithm simulating dose in homogeneous (MCwater) and heterogeneous medium (MChet). Dose distributions on CBCT and pre-op CT were compared with each other. Spinal cord and the metastasis doses were evaluated. The MCwater calculations showed a spherical dose distribution as expected. The minimum target dose for the MChet simulations on pre-op CT was increased by 40% while the maximum spinal cord dose was decreased by 35%. Due to the artefacts on the CBCT the comparison between MChet simulations on CBCT and pre-op CT showed differences up to 50% in dose. igIORT and online treatment planning improves the accuracy of IORT. However, the current set-up is limited by CT artefacts. Fusing an intraoperative CBCT with a pre-op CT allows the combination of an accurate dose calculation with the knowledge of the correct source/applicator position. This method can be also used for pre-operative treatment planning followed by image guided surgery. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Accuracy of CT-guided joint aspiration in patients with suspected infection status post-total hip arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Tomas, Xavier; Garcia-Diez, Ana Isabel; Pomes, Jaime [Universidad de Barcelona, Department of Radiology, Hospital Clinic, Barcelona (Spain); Bori, Guillem; Garcia, Sebastian; Gallart, Xavier; Martinez, Juan Carlos; Riba, Josep [Universidad de Barcelona, Department of Orthopaedics, Hospital Clinic, Barcelona (Spain); Soriano, Alex; Mensa, Josep [Universidad de Barcelona, Department of Infectious Diseases, Hospital Clinic, Barcelona (Spain); Rios, Jose [Statistical Unit de Suport a la Estadistica I Metodologia IDIBAPS, Barcelona (Spain); Almela, Manel [Universidad de Barcelona, Department of Microbiology, Hospital Clinic, Barcelona (Spain)

    2011-01-15

    To determine the accuracy of guided computed tomography aspiration in the detection of septic hip prosthesis before surgery. Sixty-three patients (35 women and 28 men; age range, 29-86 years; mean age, 71 years) with clinically suspected septic hip prosthesis were prospectively studied with independent review board (IRB) approval. Volume and microbiological cultures of aspirated fluid and several computed tomography imaging findings such as periprosthetic fluid collections, prosthetic acetabular malposition, and heterotopic ossification were analyzed. All patients underwent revision surgery and infection was finally diagnosed in 33 patients. Statistical comparative analysis was performed comparing computed tomography aspiration and surgical findings (95% CI; level of significance at P = 0.05 two-sided) with 70% sensitivity, 100% specificity, 84% accuracy, 100% positive predictive value, and 75% negative predictive value. Using Fisher's exact test, the presence of periprosthetic fluid collections (P = 0.001), prosthetic acetabular malposition (P = 0.025) and aspirated fluid volume (P = 0.009) were significantly higher in infected than in non-infected prostheses, whereas heterotopic ossification was not (P = 0.429). Computed tomography aspiration is accurate to preoperatively diagnose septic hip prosthesis on the basis of volume and bacterial cultures of aspirated joint fluid. Furthermore, imaging findings such as periprosthetic fluid collections and prosthetic acetabular malposition strongly suggest infected prosthesis. (orig.)

  12. Accuracy of CT-guided joint aspiration in patients with suspected infection status post-total hip arthroplasty

    International Nuclear Information System (INIS)

    Tomas, Xavier; Garcia-Diez, Ana Isabel; Pomes, Jaime; Bori, Guillem; Garcia, Sebastian; Gallart, Xavier; Martinez, Juan Carlos; Riba, Josep; Soriano, Alex; Mensa, Josep; Rios, Jose; Almela, Manel

    2011-01-01

    To determine the accuracy of guided computed tomography aspiration in the detection of septic hip prosthesis before surgery. Sixty-three patients (35 women and 28 men; age range, 29-86 years; mean age, 71 years) with clinically suspected septic hip prosthesis were prospectively studied with independent review board (IRB) approval. Volume and microbiological cultures of aspirated fluid and several computed tomography imaging findings such as periprosthetic fluid collections, prosthetic acetabular malposition, and heterotopic ossification were analyzed. All patients underwent revision surgery and infection was finally diagnosed in 33 patients. Statistical comparative analysis was performed comparing computed tomography aspiration and surgical findings (95% CI; level of significance at P = 0.05 two-sided) with 70% sensitivity, 100% specificity, 84% accuracy, 100% positive predictive value, and 75% negative predictive value. Using Fisher's exact test, the presence of periprosthetic fluid collections (P = 0.001), prosthetic acetabular malposition (P = 0.025) and aspirated fluid volume (P = 0.009) were significantly higher in infected than in non-infected prostheses, whereas heterotopic ossification was not (P = 0.429). Computed tomography aspiration is accurate to preoperatively diagnose septic hip prosthesis on the basis of volume and bacterial cultures of aspirated joint fluid. Furthermore, imaging findings such as periprosthetic fluid collections and prosthetic acetabular malposition strongly suggest infected prosthesis. (orig.)

  13. [Image guided and robotic treatment--the advance of cybernetics in clinical medicine].

    Science.gov (United States)

    Fosse, E; Elle, O J; Samset, E; Johansen, M; Røtnes, J S; Tønnessen, T I; Edwin, B

    2000-01-10

    The introduction of advanced technology in hospitals has changed the treatment practice towards more image guided and minimal invasive procedures. Modern computer and communication technology opens up for robot aided and pre-programmed intervention. Several robotic systems are in clinical use today both in microsurgery and in major cardiac and orthopedic operations. As this trend develops, professions which are new in this context such as physicists, mathematicians and cybernetic engineers will be increasingly important in the treatment of patients.

  14. Optical coherence tomography in guided surgery of GI cancer

    Science.gov (United States)

    Zagaynova, Elena V.; Abelevich, Alexander I.; Zagaynov, Vladimir E.; Gladkova, Natalia D.; Denisenko, Arkady N.; Feldchtein, Felix I.; Snopova, Ludmila B.; Kutis, Irina S.

    2005-04-01

    Optical Coherence Tomography (OCT) is a new high spatial resolution, real-time optical imaging modality, known from prior pilot studies for its high sensitivity to invasive cancer. We reported our results in an OCT feasibility study for accurate determination of the proximal border for esophageal carcinoma and the distal border for rectal carcinoma. The OCT study enrolled 19 patients with rectal adenocarcinoma and 24 patients with distal esophageal carcinoma (14 squamous cell carcinomas, 10 adenocarcinomas). During pre-surgery planning endoscopy we performed in vivo OCT imaging of the tumor border at four dial clock axes (12, 3, 6 and 9 o"clock). The OCT border then was marked by an electrocoagulator, or by a methylene blue tattoo. A cold biopsy (from the esophagus) was performed at visual and OCT borders and compared with visual and OCT readings. 27 post-surgery excised specimens were analyzed. OCT borders matched the histopathology in 94% cases in the rectum and 83.3% in the esophagus. In the cases of a mismatch between the OCT and histology borders, a deep tumor invasion occurred in the muscle layer (esophagus, rectum). Because of its high sensitivity to mucosal cancer, OCT can be used for pre-surgery planning and surgery guidance of the proximal border for esophageal carcinoma and the distal border for rectal carcinoma. However, deep invasion in the rectum or esophageal wall has to be controlled by alternative diagnostic modalities.

  15. Study guide to accompany computers data and processing

    CERN Document Server

    Deitel, Harvey M

    1985-01-01

    Study Guide to Accompany Computer and Data Processing provides information pertinent to the fundamental aspects of computers and computer technology. This book presents the key benefits of using computers.Organized into five parts encompassing 19 chapters, this book begins with an overview of the evolution of modern computing systems from the earliest mechanical calculating devices to microchips. This text then introduces computer hardware and describes the processor. Other chapters describe how microprocessors are made and describe the physical operation of computers. This book discusses as w

  16. Transsphenoidal Approach in Endoscopic Endonasal Surgery for Skull Base Lesions: What Radiologists and Surgeons Need to Know.

    Science.gov (United States)

    García-Garrigós, Elena; Arenas-Jiménez, Juan José; Monjas-Cánovas, Irene; Abarca-Olivas, Javier; Cortés-Vela, Jesús Julián; De La Hoz-Rosa, Javier; Guirau-Rubio, Maria Dolores

    2015-01-01

    In the last 2 decades, endoscopic endonasal transsphenoidal surgery has become the most popular choice of neurosurgeons and otolaryngologists to treat lesions of the skull base, with minimal invasiveness, lower incidence of complications, and lower morbidity and mortality rates compared with traditional approaches. The transsphenoidal route is the surgical approach of choice for most sellar tumors because of the relationship of the sphenoid bone to the nasal cavity below and the pituitary gland above. More recently, extended approaches have expanded the indications for transsphenoidal surgery by using different corridors leading to specific target areas, from the crista galli to the spinomedullary junction. Computer-assisted surgery is an evolving technology that allows real-time anatomic navigation during endoscopic surgery by linking preoperative triplanar radiologic images and intraoperative endoscopic views, thus helping the surgeon avoid damage to vital structures. Preoperative computed tomography is the preferred modality to show bone landmarks and vascular structures. Radiologists play an important role in surgical planning by reporting extension of sphenoid pneumatization, recesses and septations of the sinus, and other relevant anatomic variants. Radiologists should understand the relationships of the sphenoid bone and skull base structures, anatomic variants, and image-guided neuronavigation techniques to prevent surgical complications and allow effective treatment of skull base lesions with the endoscopic endonasal transsphenoidal approach. ©RSNA, 2015.

  17. Double Guided Surgery in All-on-4® Concept: When Ostectomy Is Needed

    Directory of Open Access Journals (Sweden)

    Gabriele Tonellini

    2018-01-01

    Full Text Available Background. The rehabilitation of edentulous jaws with guided and flapless surgery applied to the All-on-4 concepts is a predictable treatment with a high implant and prosthetic survival rates, but there are several contraindications for this technique like when bone reduction is needed due to a high smile line in the maxilla or when there is an irregular or thin bone crest. Purpose. To report a technique with double guided surgery for bone reduction and implant placement with the All-on-4 concept. Materials and Methods. 7 patients were included in the study. Guided implant planning was performed using CBCT, and the virtual templates were created with three dedicated software. Custom surgical templates were made for the ostectomy and for implants positioning. Results. 28 implants were placed using a double bone-supported surgical guide. The mean angular errors between the preoperative-planned implant and the postoperative-placed implant were 2.155° ± 2.03°; the mean distance errors between the planned and the placed implants were 0.763 mm ± 0.55 mm on the shoulder implant and 0.570 mm ± 0.40 mm on the apex implant. Conclusions. The results of our study indicate that this treatment is predictable with an excellent survival rate allowing excellent results even when bone reduction is mandatory.

  18. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    Science.gov (United States)

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.

    2013-01-01

    This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809

  19. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    I. Cruz-Aceves

    2013-01-01

    Full Text Available This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation.

  20. Empyema and Effusion: Outcome of Image-Guided Small-Bore Catheter Drainage

    International Nuclear Information System (INIS)

    Keeling, A. N.; Leong, S.; Logan, P. M.; Lee, M. J.

    2008-01-01

    Empyema and complicated pleural effusion represent common medical problems. Current treatment options are multiple. The purpose of this study was to access the outcome of image-guided, small-bore catheter drainage of empyema and effusion. We evaluated 93 small-bore catheters in 82 patients with pleural effusion (n = 30) or empyema (n = 52), over a 2-year period. Image guidance was with ultrasound (US; n = 56) and CT (n = 37). All patients were followed clinically, with catheter dwell times, catheter outcome, pleural fluid outcome, reinsertion rates, and need for urokinase or surgery recorded. Ninety-three small-bore chest drains (mean=10.2 Fr; range, 8.2-12.2 Fr) were inserted, with an average dwell time of 7.81 days for empyemas and 7.14 days for effusions (p > 0.05). Elective removal rates (73% empyema vs 86% effusions) and dislodgement rates (12% empyema vs 13% effusions) were similar for both groups. Eight percent of catheters became blocked and 17% necessitated reinsertion in empyemas, with no catheters blocked or requiring reinsertion in effusions (p < 0.05). Thirty-two patients (51%) required urokinase in the empyema group, versus 2 patients (6%) in the effusion group (p < 0.05). All treatment failures, requiring surgery, occurred in the empyema group (19%; n = 12; p < 0.05). In conclusion, noninfected pleural collections are adequately treated with small-bore catheters, however, empyemas have a failure rate of 19%. The threshold for using urokinase and larger-bore catheters should be low in empyema

  1. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  2. [Computer-assisted navigation in orthognathic surgery. Application to Le Fort I osteotomy.

    Science.gov (United States)

    Benassarou, M; Benassarou, A; Meyer, C

    2013-08-05

    Computer-assisted navigation is a tool that allows the surgeon to reach intraoperatively a previously defined target. This technique can be applied to the positioning of bone fragments in orthognathic surgery. It is not used routinely yet because there are no specifically dedicated systems available on the market for this kind of surgery. The goal of our study was to describe the various systems that could be used in orthognathic surgery and to report our experience of computer-assisted surgery in the positioning of the maxilla during maxillomandibular osteotomies. Copyright © 2013. Published by Elsevier Masson SAS.

  3. A Single-Institution Experience in Percutaneous Image-Guided Biopsy of Malignant Pleural Mesothelioma

    International Nuclear Information System (INIS)

    Welch, B. T.; Eiken, P. W.; Atwell, T. D.; Peikert, T.; Yi, E. S.; Nichols, F.; Schmit, G. D.

    2017-01-01

    PurposeMesothelioma has been considered a difficult pathologic diagnosis to achieve via image-guided core needle biopsy. The purpose of this study was to assess the diagnostic sensitivity of percutaneous image-guided biopsy for diagnosis of pleural mesothelioma.Materials and MethodsRetrospective review was performed to identify patients with a confirmed diagnosis of pleural mesothelioma and who underwent image-guided needle biopsy between January 1, 2002, and January 1, 2016. Thirty-two patients with pleural mesothelioma were identified and included for analysis in 33 image-guided biopsy procedures. Patient, procedural, and pathologic characteristics were recorded. Complications were characterized via standardized nomenclature [Common Terminology for Clinically Adverse Events (CTCAE)].ResultsPercutaneous image-guided biopsy was associated with an overall sensitivity of 81%. No CTCAE clinically significant complications were observed. No image-guided procedures were complicated by pneumothorax or necessitated chest tube placement. No patients had tumor seeding of the biopsy tract.ConclusionPercutaneous image-guided biopsy can achieve high sensitivity for pathologic diagnosis of pleural mesothelioma with a low procedural complication rate, potentially obviating need for surgical biopsy.

  4. A Single-Institution Experience in Percutaneous Image-Guided Biopsy of Malignant Pleural Mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Welch, B. T., E-mail: Welch.brian@mayo.edu; Eiken, P. W.; Atwell, T. D. [Mayo Clinic, Department of Radiology (United States); Peikert, T. [Mayo Clinic, Department of Pulmonary and Critical Care Medicine (United States); Yi, E. S. [Mayo Clinic, Department of Pathology (United States); Nichols, F. [Mayo Clinic, Department of Thoracic Surgery (United States); Schmit, G. D. [Mayo Clinic, Department of Radiology (United States)

    2017-06-15

    PurposeMesothelioma has been considered a difficult pathologic diagnosis to achieve via image-guided core needle biopsy. The purpose of this study was to assess the diagnostic sensitivity of percutaneous image-guided biopsy for diagnosis of pleural mesothelioma.Materials and MethodsRetrospective review was performed to identify patients with a confirmed diagnosis of pleural mesothelioma and who underwent image-guided needle biopsy between January 1, 2002, and January 1, 2016. Thirty-two patients with pleural mesothelioma were identified and included for analysis in 33 image-guided biopsy procedures. Patient, procedural, and pathologic characteristics were recorded. Complications were characterized via standardized nomenclature [Common Terminology for Clinically Adverse Events (CTCAE)].ResultsPercutaneous image-guided biopsy was associated with an overall sensitivity of 81%. No CTCAE clinically significant complications were observed. No image-guided procedures were complicated by pneumothorax or necessitated chest tube placement. No patients had tumor seeding of the biopsy tract.ConclusionPercutaneous image-guided biopsy can achieve high sensitivity for pathologic diagnosis of pleural mesothelioma with a low procedural complication rate, potentially obviating need for surgical biopsy.

  5. SU-E-J-243: Possibility of Exposure Dose Reduction of Cone-Beam Computed Tomography in An Image Guided Patient Positioning System by Using Various Noise Suppression Filters

    International Nuclear Information System (INIS)

    Kamezawa, H; Arimura, H; Ohki, M; Shirieda, K; Kameda, N

    2014-01-01

    Purpose: To investigate the possibility of exposure dose reduction of the cone-beam computed tomography (CBCT) in an image guided patient positioning system by using 6 noise suppression filters. Methods: First, a reference dose (RD) and low-dose (LD)-CBCT (X-ray volume imaging system, Elekta Co.) images were acquired with a reference dose of 86.2 mGy (weighted CT dose index: CTDIw) and various low doses of 1.4 to 43.1 mGy, respectively. Second, an automated rigid registration for three axes was performed for estimating setup errors between a planning CT image and the LD-CBCT images, which were processed by 6 noise suppression filters, i.e., averaging filter (AF), median filter (MF), Gaussian filter (GF), bilateral filter (BF), edge preserving smoothing filter (EPF) and adaptive partial median filter (AMF). Third, residual errors representing the patient positioning accuracy were calculated as an Euclidean distance between the setup error vectors estimated using the LD-CBCT image and RD-CBCT image. Finally, the relationships between the residual error and CTDIw were obtained for 6 noise suppression filters, and then the CTDIw for LD-CBCT images processed by the noise suppression filters were measured at the same residual error, which was obtained with the RD-CBCT. This approach was applied to an anthropomorphic pelvic phantom and two cancer patients. Results: For the phantom, the exposure dose could be reduced from 61% (GF) to 78% (AMF) by applying the noise suppression filters to the CBCT images. The exposure dose in a prostate cancer case could be reduced from 8% (AF) to 61% (AMF), and the exposure dose in a lung cancer case could be reduced from 9% (AF) to 37% (AMF). Conclusion: Using noise suppression filters, particularly an adaptive partial median filter, could be feasible to decrease the additional exposure dose to patients in image guided patient positioning systems

  6. SU-E-J-243: Possibility of Exposure Dose Reduction of Cone-Beam Computed Tomography in An Image Guided Patient Positioning System by Using Various Noise Suppression Filters

    Energy Technology Data Exchange (ETDEWEB)

    Kamezawa, H [Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka (Japan); Fujimoto General Hospital, Miyakonojo, Miyazaki (Japan); Arimura, H; Ohki, M [Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka (Japan); Shirieda, K; Kameda, N [Fujimoto General Hospital, Miyakonojo, Miyazaki (Japan)

    2014-06-01

    Purpose: To investigate the possibility of exposure dose reduction of the cone-beam computed tomography (CBCT) in an image guided patient positioning system by using 6 noise suppression filters. Methods: First, a reference dose (RD) and low-dose (LD)-CBCT (X-ray volume imaging system, Elekta Co.) images were acquired with a reference dose of 86.2 mGy (weighted CT dose index: CTDIw) and various low doses of 1.4 to 43.1 mGy, respectively. Second, an automated rigid registration for three axes was performed for estimating setup errors between a planning CT image and the LD-CBCT images, which were processed by 6 noise suppression filters, i.e., averaging filter (AF), median filter (MF), Gaussian filter (GF), bilateral filter (BF), edge preserving smoothing filter (EPF) and adaptive partial median filter (AMF). Third, residual errors representing the patient positioning accuracy were calculated as an Euclidean distance between the setup error vectors estimated using the LD-CBCT image and RD-CBCT image. Finally, the relationships between the residual error and CTDIw were obtained for 6 noise suppression filters, and then the CTDIw for LD-CBCT images processed by the noise suppression filters were measured at the same residual error, which was obtained with the RD-CBCT. This approach was applied to an anthropomorphic pelvic phantom and two cancer patients. Results: For the phantom, the exposure dose could be reduced from 61% (GF) to 78% (AMF) by applying the noise suppression filters to the CBCT images. The exposure dose in a prostate cancer case could be reduced from 8% (AF) to 61% (AMF), and the exposure dose in a lung cancer case could be reduced from 9% (AF) to 37% (AMF). Conclusion: Using noise suppression filters, particularly an adaptive partial median filter, could be feasible to decrease the additional exposure dose to patients in image guided patient positioning systems.

  7. Image guided versus palpation guided core needle biopsy of palpable breast masses: a prospective study

    Directory of Open Access Journals (Sweden)

    Smriti Hari

    2016-01-01

    Interpretation & conclusions: Our results showed that in palpable breast masses, image guided biopsy was superior to palpation guided biopsy in terms of sensitivity, false negative rate and repeat biopsy rates.

  8. Computed tomography-guided bupivacaine and corticosteroid injection for the treatment of symptomatic calcification in the great toe tendon

    Directory of Open Access Journals (Sweden)

    Karatoprak O

    2014-04-01

    Full Text Available Omer Karatoprak,1 Sinan Karaca,2 Mehmet Nuri Erdem,3 Ozgur Karaman,2 Azmi Hamzaoglu41Department of Orthopedic Surgery, Kadikoy Florence Nightingale Hospital, Istanbul, Turkey; 2Department of Orthopedic Surgery, Fatih Sultan Mehmet Training and Research Hospital Atasehir, Istanbul, Turkey; 3Department of Orthopedics and Traumatology, Kolan International Hospital Sisli, Istanbul, Turkey; 4Department of Orthopedic Surgery, Istanbul Florence Nightingale Hospital, Istanbul TurkeyBackground: Calcification in the great toe tendon is a rare disorder that is characterized by the deposition of calcium on degenerative collagen fibrils.Case presentations: In this report, we present two cases of calcific tendonitis: one in the adductor hallucis and the other in the flexor hallucis longus tendon. We preferred computed tomography-guided steroid injection in our cases because of pain unresponsive to conservative treatment. Patients were free of symptoms at the follow-up visit, 4 weeks after injection.Conclusion: Calcification of the hallux tendons is a rare disorder. Treatment of tendonitis consists of nonsteroidal anti-inflammatory drugs. Local anesthetic and steroid injection may be considered in cases unresponsive to conservative treatment. Because of the anatomic location of tendons, injection could be difficult. Computed tomography guidance may improve the success rate of injections.Keywords: bupivacaine, calcification, great toe tendons, corticosteroid injection

  9. Target coverage in image-guided stereotactic body radiotherapy of liver tumors.

    Science.gov (United States)

    Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M

    2007-05-01

    To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (design, patient stability in the SBF should be verified with portal imaging.

  10. SU-E-J-10: Imaging Dose and Cancer Risk in Image-Guided Radiotherapy of Cancers

    International Nuclear Information System (INIS)

    Zhou, L; Bai, S; Zhang, Y; Deng, J

    2015-01-01

    Purpose: To systematically evaluate imaging doses and cancer risks to organs-at-risk as a Result of cumulative doses from various radiological imaging procedures in image-guided radiotherapy (IGRT) in a large cohort of cancer patients. Methods: With IRB approval, imaging procedures (computed tomography, kilo-voltage portal imaging, megavoltage portal imaging and kilo-voltage cone-beam computed tomography) of 4832 cancer patients treated during 4.5 years were collected with their gender, age and circumference. Correlations between patient’s circumference and Monte Carlo simulated-organ dose were applied to estimate organ doses while the cancer risks were reported as 1+ERR using BEIR VII models. Results: 80 cGy or more doses were deposited to brain, lungs and RBM in 273 patients (maximum 136, 278 and 267 cGy, respectively), due largely to repetitive imaging procedures and non-personalized imaging settings. Regardless of gender, relative cancer risk estimates for brain, lungs, and RBM were 3.4 (n = 55), 2.6 (n = 49), 1.8 (n = 25) for age group of 0–19; 1.2 (n = 87), 1.4 (n = 98), 1.3 (n = 51) for age group of 20–39; 1.0 (n = 457), 1.1 (n = 880), 1.8 (n=360) for age group of 40–59; 1.0 (n = 646), 1.1 (n = 1400), 2.3 (n = 716) for age group of 60–79 and 1.0 (n = 108),1.1 (n = 305),1.6 (n = 147) for age group of 80–99. Conclusion: The cumulative imaging doses and associated cancer risks from multi-imaging procedures were patient-specific and site-dependent, with up to 2.7 Gy imaging dose deposited to critical structures in some pediatric patients. The associated cancer risks in brain and lungs for children of age 0 to 19 were 2–3 times larger than those for adults. This study indicated a pressing need for personalized imaging protocol to maximize its clinical benefits while reducing associated cancer risks. Sichuan University Scholarship

  11. [Clinical analysis of 12 cases of orthognathic surgery with digital computer-assisted technique].

    Science.gov (United States)

    Tan, Xin-ying; Hu, Min; Liu, Chang-kui; Liu, Hua-wei; Liu, San-xia; Tao, Ye

    2014-06-01

    This study was to investigate the effect of the digital computer-assisted technique in orthognathic surgery. Twelve patients from January 2008 to December 2011 with jaw malformation were treated in our department. With the help of CT and three-dimensional reconstruction technique, 12 patients underwent surgical treatment and the results were evaluated after surgery. Digital computer-assisted technique could clearly show the status of the jaw deformity and assist virtual surgery. After surgery all patients were satisfied with the results. Digital orthognathic surgery can improve the predictability of the surgical procedure, and to facilitate patients' communication, shorten operative time, and reduce patients' pain.

  12. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning

    Science.gov (United States)

    Arabi, Hossein; Koutsouvelis, Nikolaos; Rouzaud, Michel; Miralbell, Raymond; Zaidi, Habib

    2016-09-01

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial task, a pseudo-computed tomography (CT) image must be predicted from MRI alone. In this work, we propose a two-step (segmentation and fusion) atlas-based algorithm focusing on bone tissue identification to create a pseudo-CT image from conventional MRI sequences and evaluate its performance against the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas voting. The obtained bone map is then used to assess the quality of deformed atlases to perform voxel-wise weighted atlas fusion. To evaluate the performance of the method, a leave-one-out cross-validation (LOOCV) scheme was devised to find optimal parameters for the model. Geometric evaluation of the produced pseudo-CT images and quantitative analysis of the accuracy of PET AC were performed. Moreover, a dosimetric evaluation of volumetric modulated arc therapy photon treatment plans calculated using the different pseudo-CT images was carried out and compared to those produced using CT images serving as references. The pseudo-CT images produced using the proposed method exhibit bone identification accuracy of 0.89 based on the Dice similarity metric compared to 0.75 achieved by the other atlas-based method. The superior bone extraction resulted in a mean standard uptake value bias of  -1.5  ±  5.0% (mean  ±  SD) in bony structures compared to  -19.9  ±  11.8% and  -8.1  ±  8.2% achieved by MRI segmentation-based (water

  13. Imaging in congenital pulmonary vein anomalies: the role of computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Kevin Todd; McQuiston, Andrew Douglas [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Hlavacek, Anthony Marcus; Pietris, Nicholas Peter [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology Department of Pediatrics, Charleston, SC (United States); Meinel, Felix Gabriel [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Ludwig-Maximilians-University Hospital, Institute for Clinical Radiology, Munich (Germany); De Cecco, Carlo Nicola [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' - Polo Pontino, Department of Radiological Sciences Oncology and Pathology, Latina (Italy); Schoepf, Uwe Joseph [Medical University of South Carolina, Division of Cardiology Department of Medicine, Charleston, SC (United States); Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology Department of Pediatrics, Charleston, SC (United States)

    2014-09-15

    Pulmonary venous anomalies comprise a wide spectrum of anatomical variations and their clinical presentations may vary from the relatively benign single partial anomalous pulmonary venous connection (PAPVC) to the critical obstructed total anomalous pulmonary venous connection (TAPVC). We briefly review the common anomalies encountered, while highlighting the utility that computed tomographic angiography (CTA) provides for this spectrum of extracardiac vascular malformations and connections. CTA has established itself as an invaluable imaging modality in these patients. A detailed knowledge of the CTA imaging findings in pulmonary venous anomalies is crucial to guide clinical decision-making in these patients. (orig.)

  14. Nosocomial rapidly growing mycobacterial infections following laparoscopic surgery: CT imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Volpato, Richard [Cassiano Antonio de Moraes University Hospital, Department of Diagnostic Radiology, Vitoria, ES (Brazil); Campi de Castro, Claudio [University of Sao Paulo Medical School, Department of Radiology, Cerqueira Cesar, Sao Paulo (Brazil); Hadad, David Jamil [Cassiano Antonio de Moraes University Hospital, Nucleo de Doencas Infecciosas, Department of Internal Medicine, Vitoria, ES (Brazil); Silva Souza Ribeiro, Flavya da [Laboratorio de Patologia PAT, Department of Diagnostic Radiology, Unit 1473, Vitoria, ES (Brazil); Filho, Ezequiel Leal [UNIMED Diagnostico, Department of Diagnostic Radiology, Unit 1473, Vitoria, ES (Brazil); Marcal, Leonardo P. [The University of Texas M D Anderson Cancer Center, Department of Diagnostic Radiology, Unit 1473, Houston, TX (United States)

    2015-09-15

    To identify the distribution and frequency of computed tomography (CT) findings in patients with nosocomial rapidly growing mycobacterial (RGM) infection after laparoscopic surgery. A descriptive retrospective study in patients with RGM infection after laparoscopic surgery who underwent CT imaging prior to initiation of therapy. The images were analyzed by two radiologists in consensus, who evaluated the skin/subcutaneous tissues, the abdominal wall, and intraperitoneal region separately. The patterns of involvement were tabulated as: densification, collections, nodules (≥1.0 cm), small nodules (<1.0 cm), pseudocavitated nodules, and small pseudocavitated nodules. Twenty-six patients met the established criteria. The subcutaneous findings were: densification (88.5 %), small nodules (61.5 %), small pseudocavitated nodules (23.1 %), nodules (38.5 %), pseudocavitated nodules (15.4 %), and collections (26.9 %). The findings in the abdominal wall were: densification (61.5 %), pseudocavitated nodules (3.8 %), and collections (15.4 %). The intraperitoneal findings were: densification (46.1 %), small nodules (42.3 %), nodules (15.4 %), and collections (11.5 %). Subcutaneous CT findings in descending order of frequency were: densification, small nodules, nodules, small pseudocavitated nodules, pseudocavitated nodules, and collections. The musculo-fascial plane CT findings were: densification, collections, and pseudocavitated nodules. The intraperitoneal CT findings were: densification, small nodules, nodules, and collections. (orig.)

  15. Nosocomial rapidly growing mycobacterial infections following laparoscopic surgery: CT imaging findings

    International Nuclear Information System (INIS)

    Volpato, Richard; Campi de Castro, Claudio; Hadad, David Jamil; Silva Souza Ribeiro, Flavya da; Filho, Ezequiel Leal; Marcal, Leonardo P.

    2015-01-01

    To identify the distribution and frequency of computed tomography (CT) findings in patients with nosocomial rapidly growing mycobacterial (RGM) infection after laparoscopic surgery. A descriptive retrospective study in patients with RGM infection after laparoscopic surgery who underwent CT imaging prior to initiation of therapy. The images were analyzed by two radiologists in consensus, who evaluated the skin/subcutaneous tissues, the abdominal wall, and intraperitoneal region separately. The patterns of involvement were tabulated as: densification, collections, nodules (≥1.0 cm), small nodules (<1.0 cm), pseudocavitated nodules, and small pseudocavitated nodules. Twenty-six patients met the established criteria. The subcutaneous findings were: densification (88.5 %), small nodules (61.5 %), small pseudocavitated nodules (23.1 %), nodules (38.5 %), pseudocavitated nodules (15.4 %), and collections (26.9 %). The findings in the abdominal wall were: densification (61.5 %), pseudocavitated nodules (3.8 %), and collections (15.4 %). The intraperitoneal findings were: densification (46.1 %), small nodules (42.3 %), nodules (15.4 %), and collections (11.5 %). Subcutaneous CT findings in descending order of frequency were: densification, small nodules, nodules, small pseudocavitated nodules, pseudocavitated nodules, and collections. The musculo-fascial plane CT findings were: densification, collections, and pseudocavitated nodules. The intraperitoneal CT findings were: densification, small nodules, nodules, and collections. (orig.)

  16. 76 FR 71980 - SEDASYS Computer-Assisted Personalized Sedation System; Ethicon Endo-Surgery, Incorporated's...

    Science.gov (United States)

    2011-11-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-P-0176] SEDASYS Computer-Assisted Personalized Sedation System; Ethicon Endo-Surgery, Incorporated's Petition for... SEDASYS computer-assisted personalized sedation system (SEDASYS) submitted by Ethicon Endo-Surgery Inc...

  17. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Wong, S.T.C. [Univ. of California, San Francisco, CA (United States)

    1997-02-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.

  18. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    International Nuclear Information System (INIS)

    Wong, S.T.C.

    1997-01-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a open-quotes true 3D screenclose quotes. To confine the scope, this presentation will not discuss such approaches

  19. Evaluating imaging-pathology concordance and discordance after ultrasound-guided breast biopsy

    Science.gov (United States)

    2018-01-01

    Ultrasound (US)-guided breast biopsy has become the main method for diagnosing breast pathology, and it has a high diagnostic accuracy, approaching that of open surgical biopsy. However, methods for confirming adequate lesion retrieval after US-guided biopsy are relatively limited and false-negative results are unavoidable. Determining imaging-pathology concordance after US-guided biopsy is essential for validating the biopsy result and providing appropriate management. In this review article, we briefly present the results of US-guided breast biopsy; describe general aspects to consider when establishing imaging-pathology concordance; and review the various categories of imaging-pathology correlations and corresponding management strategies. PMID:29169231

  20. Comparison between skin-mounted fiducials and bone-implanted fiducials for image-guided neurosurgery

    Science.gov (United States)

    Rost, Jennifer; Harris, Steven S.; Stefansic, James D.; Sillay, Karl; Galloway, Robert L., Jr.

    2004-05-01

    Point-based registration for image-guided neurosurgery has become the industry standard. While the use of intrinsic points is appealing because of its retrospective nature, affixing extrinsic objects to the head prior to scanning has been demonstrated to provide much more accurate registrations. Points of reference between image space and physical space are called fiducials. The extrinsic objects which generate those points are fiducial markers. The markers can be broken down into two classifications: skin-mounted and bone-implanted. Each has distinct advantages and disadvantages. Skin-mounted fiducials require simply sticking them on the patient in locations suggested by the manufacturer, however, they can move with tractions placed on the skin, fall off and perhaps the most dangerous problem, they can be replaced by the patient. Bone implanted markers being rigidly affixed to the skull do not present such problems. However, a minor surgical intervention (analogous to dental work) must be performed to implant the markers prior to surgery. Therefore marker type and use has become a decision point for image-guided surgery. We have performed a series of experiments in an attempt to better quantify aspects of the two types of markers so that better informed decisions can be made. We have created a phantom composed of a full-size plastic skull [Wards Scientific Supply] with a 500 ml bag of saline placed in the brain cavity. The skull was then sealed. A skin mimicking material, DragonSkinTM [SmoothOn Company] was painted onto the surface and allowed to dry. Skin mounted fiducials [Medtronic-SNT] and bone-implanted markers [Z-Kat]were placed on the phantom. In addition, three additional bone-implanted markers were placed (two on the base of the skull and one in the eye socket for use as targets). The markers were imaged in CT and 4 MRI sequences (T1-weighted, T2 weighted, SPGR, and a functional series.) The markers were also located in physical space using an Optotrak

  1. [Understanding depressive symptoms after bariatric surgery: the role of weight, eating and body image].

    Science.gov (United States)

    Sousa, Paula; Bastos, Ana Pinto; Venâncio, Carla; Vaz, Ana Rita; Brandão, Isabel; Costa, José Maia; Machado, Paulo; Conceição, Eva

    2014-01-01

    Depressive symptoms have been reported as prevalent after bariatric surgery. This study aims to analyze the role of weight, eating behaviors and body image in depressive symptomatology in bariatric surgery patients assessed post-operatively. This is a cross-sectional study including 52 bariatric surgery patients assessed post-operatively with a follow-up time ranging from 22 to 132 months. Psychological assessment included a clinical interview (Eating Disorder Examination) to assess eating disorders psychopathology, and three self-report measures: Outcome Questionnaire 45--general distress; Beck Depression Inventory--depressive symptoms; and Body Shape Questionnaire--body image. Our data show that depressive symptoms after surgery are associated with loss of control over eating, increased concerns with body image, and body mass index regain. Multiple linear regressions was tested including these variables and showed that body mass index regain after surgery, loss of control over eating and concerns with body image significantly explained 50% of the variance of post-operative depressive symptoms, being the concern with body image the most significant variable: greater dissatisfaction with body image was associated with more depressive symptoms. The results of this study showed that a subgroup of patients presents a significant weight gain after bariatric surgery, which is associated with episodes of loss of control over eating, concerns with body image and depressive symptoms. These results stress the relevance of body image concerns after surgery and the importance of clinically addressing these issues to optimize psychological functioning after bariatric surgery.

  2. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy.

    Science.gov (United States)

    Ahmad, Moiz; Balter, Peter; Pan, Tinsu

    2011-10-01

    Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4-6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3-8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm

  3. 3-Tesla functional magnetic resonance imaging-guided tumor resection

    Energy Technology Data Exchange (ETDEWEB)

    Hall, W.A. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Depts. of Neurosurgery; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Radiation Oncology; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Radiology; University of Minnesota Medical Center (MMC), Minneapolis, MN (United States); Truwit, C.L. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Radiology; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Pediatrics; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Neurology; Hennepin Country Medical Center, Minneapolis, MN (United States). Dept. of Radiology

    2006-12-15

    Objective: We sought to determine the safety and efficacy of using 3-tesla (T) functional magnetic resonance imaging (fMRI) to guide brain tumor resection. Material and methods: From February 2004 to March 2006, fMRI was performed on 13 patients before surgical resection. Functional imaging was used to identify eloquent cortices for motor (8), speech (3), and motor and speech (2) activation using two different 3-T magnetic resonance (MR) scanners. Surgical resection was accomplished using a 1.5-T intraoperative MR system. Appropriate MR scan sequences were performed intraoperatively to determine and maximize the extent of the surgical resection. Results: Tumors included six oligodendrogliomas, three meningiomas, two astrocytomas and two glioblastomas multiforme. The fMRI data was accurate in all cases. After surgery, two patients had hemiparesis, two had worsening of their speech, and one had worsening of speech and motor function. Neurological function returned to normal in all patients within 1 month. Complete resections were possible in 10 patients (77%). Two patients had incomplete resections because of the proximity of their tumors to functional areas. Biopsy was performed in another patient with an astrocytoma in the motor strip. Conclusion: 3-T fMRI was accurate for locating neurologic function before tumor resection near eloquent cortex. (orig.)

  4. 3-Tesla functional magnetic resonance imaging-guided tumor resection

    International Nuclear Information System (INIS)

    Hall, W.A.; Truwit, C.L.; Univ. of Minnesota Medical School, Minneapolis, MN; Univ. of Minnesota Medical School, Minneapolis, MN; Hennepin Country Medical Center, Minneapolis, MN

    2006-01-01

    Objective: We sought to determine the safety and efficacy of using 3-tesla (T) functional magnetic resonance imaging (fMRI) to guide brain tumor resection. Material and methods: From February 2004 to March 2006, fMRI was performed on 13 patients before surgical resection. Functional imaging was used to identify eloquent cortices for motor (8), speech (3), and motor and speech (2) activation using two different 3-T magnetic resonance (MR) scanners. Surgical resection was accomplished using a 1.5-T intraoperative MR system. Appropriate MR scan sequences were performed intraoperatively to determine and maximize the extent of the surgical resection. Results: Tumors included six oligodendrogliomas, three meningiomas, two astrocytomas and two glioblastomas multiforme. The fMRI data was accurate in all cases. After surgery, two patients had hemiparesis, two had worsening of their speech, and one had worsening of speech and motor function. Neurological function returned to normal in all patients within 1 month. Complete resections were possible in 10 patients (77%). Two patients had incomplete resections because of the proximity of their tumors to functional areas. Biopsy was performed in another patient with an astrocytoma in the motor strip. Conclusion: 3-T fMRI was accurate for locating neurologic function before tumor resection near eloquent cortex. (orig.)

  5. The combined use of computer-guided, minimally invasive, flapless corticotomy and clear aligners as a novel approach to moderate crowding: A case report.

    Science.gov (United States)

    Cassetta, Michele; Altieri, Federica; Pandolfi, Stefano; Giansanti, Matteo

    2017-03-01

    The aim of this case report was to describe an innovative orthodontic treatment method that combined surgical and orthodontic techniques. The novel method was used to achieve a positive result in a case of moderate crowding by employing a computer-guided piezocision procedure followed by the use of clear aligners. A 23-year-old woman had a malocclusion with moderate crowding. Her periodontal indices, oral health-related quality of life (OHRQoL), and treatment time were evaluated. The treatment included interproximal corticotomy cuts extending through the entire thickness of the cortical layer, without a full-thickness flap reflection. This was achieved with a three-dimensionally printed surgical guide using computer-aided design and computer-aided manufacturing. Orthodontic force was applied to the teeth immediately after surgery by using clear appliances for better control of tooth movement. The total treatment time was 8 months. The periodontal indices improved after crowding correction, but the oral health impact profile showed a slight deterioration of OHRQoL during the 3 days following surgery. At the 2-year retention follow-up, the stability of treatment was excellent. The reduction in surgical time and patient discomfort, increased periodontal safety and patient acceptability, and accurate control of orthodontic movement without the risk of losing anchorage may encourage the use of this combined technique in appropriate cases.

  6. Guided color consistency optimization for image mosaicking

    Science.gov (United States)

    Xie, Renping; Xia, Menghan; Yao, Jian; Li, Li

    2018-01-01

    This paper studies the problem of color consistency correction for sequential images with diverse color characteristics. Existing algorithms try to adjust all images to minimize color differences among images under a unified energy framework, however, the results are prone to presenting a consistent but unnatural appearance when the color difference between images is large and diverse. In our approach, this problem is addressed effectively by providing a guided initial solution for the global consistency optimization, which avoids converging to a meaningless integrated solution. First of all, to obtain the reliable intensity correspondences in overlapping regions between image pairs, we creatively propose the histogram extreme point matching algorithm which is robust to image geometrical misalignment to some extents. In the absence of the extra reference information, the guided initial solution is learned from the major tone of the original images by searching some image subset as the reference, whose color characteristics will be transferred to the others via the paths of graph analysis. Thus, the final results via global adjustment will take on a consistent color similar to the appearance of the reference image subset. Several groups of convincing experiments on both the synthetic dataset and the challenging real ones sufficiently demonstrate that the proposed approach can achieve as good or even better results compared with the state-of-the-art approaches.

  7. [Digital imaging and robotics in endoscopic surgery].

    Science.gov (United States)

    Go, P M

    1998-05-23

    The introduction of endoscopical surgery has among other things influenced technical developments in surgery. Owing to digitalisation, major progress will be made in imaging and in the sophisticated technology sometimes called robotics. Digital storage makes the results of imaging diagnostics (e.g. the results of radiological examination) suitable for transmission via video conference systems for telediagnostic purposes. The availability of digital video technique renders possible the processing, storage and retrieval of moving images as well. During endoscopical operations use may be made of a robot arm which replaces the camera man. The arm does not grow tired and provides a stable image. The surgeon himself can operate or address the arm and it can remember fixed image positions to which it can return if ordered to do so. The next step is to carry out surgical manipulations via a robot arm. This may make operations more patient-friendly. A robot arm can also have remote control: telerobotics. At the Internet site of this journal a number of supplements to this article can be found, for instance three-dimensional (3D) illustrations (which is the purpose of the 3D spectacles enclosed with this issue) and a quiz (http:@appendix.niwi. knaw.nl).

  8. Iterative reconstruction for x-ray computed tomography using prior-image induced nonlocal regularization.

    Science.gov (United States)

    Zhang, Hua; Huang, Jing; Ma, Jianhua; Bian, Zhaoying; Feng, Qianjin; Lu, Hongbing; Liang, Zhengrong; Chen, Wufan

    2014-09-01

    Repeated X-ray computed tomography (CT) scans are often required in several specific applications such as perfusion imaging, image-guided biopsy needle, image-guided intervention, and radiotherapy with noticeable benefits. However, the associated cumulative radiation dose significantly increases as comparison with that used in the conventional CT scan, which has raised major concerns in patients. In this study, to realize radiation dose reduction by reducing the X-ray tube current and exposure time (mAs) in repeated CT scans, we propose a prior-image induced nonlocal (PINL) regularization for statistical iterative reconstruction via the penalized weighted least-squares (PWLS) criteria, which we refer to as "PWLS-PINL". Specifically, the PINL regularization utilizes the redundant information in the prior image and the weighted least-squares term considers a data-dependent variance estimation, aiming to improve current low-dose image quality. Subsequently, a modified iterative successive overrelaxation algorithm is adopted to optimize the associative objective function. Experimental results on both phantom and patient data show that the present PWLS-PINL method can achieve promising gains over the other existing methods in terms of the noise reduction, low-contrast object detection, and edge detail preservation.

  9. [Augmented reality for image guided therapy (ARIGT) of kidney tumor during nephron sparing surgery (NSS): animal model and clinical approach].

    Science.gov (United States)

    Drewniak, Tomasz; Rzepecki, Maciej; Juszczak, Kajetan; Kwiatek, Wojciech; Bielecki, Jakub; Zieliński, Krzysztof; Ruta, Andrzej; Czekierda, Łukasz; Moczulskis, Zbigniew

    2011-01-01

    The main problem in nephron sparing surgery (NSS) is to preserve renal tumors oncological purity during the removal of the tumor with a margin of macroscopically unchanged kidney tissue while keeping the largest possible amount of normal parenchyma of the operated kidney. The development of imaging techniques, in particular IGT (Image Guided Therapy) allows precise imaging of the surgical field and, therefore, is essential in improving the effectiveness of NSS (increase of nephron sparing with the optimal radicality). The aim of this study was to develop a method of the three-dimensional (3D) imaging of the kidney tumor and its lodge in the operated kidney using 3D laser scanner during NSS procedure. Additionally, the animal model of visualization was developed. The porcine kidney model was used to test the set built up with HD cameras and linear laser scanner connected to a laptop with graphic software (David Laser Scanner, Germany) showing the surface of the kidney and the lodge after removal the chunk of renal parenchyma. Additionally, the visualization and reconstruction was performed on animal porcine model. Moreover, 5 patients (3 women, 2 men) aged from 37 to 68 years (mean 56), diagnosed with kidney tumors in CT scans with a diameter of 3.7-6.9 cm (mean 4.9) were operated in our Department this year, scanning the surface during the treatment with the kidney tumor and kidney tumor after it is removed with a margin of renal tissue. In one case, the lodge of removed tumor was scanned. Dimensions in 3D reconstruction images of laser scans in the study of animal model and the images obtained intraoperatively were compared with the dimensions evaluated during preoperative CT scans, intraoperative measurements. Three-dimensional imaging laser scanner operating field loge resected tumor and the tumor on the kidney of animal models and during NSS treatments for patients with kidney tumors is possible in real time with an accuracy of -2 mm do +9 mm (+/- 3 mm). The

  10. Implant Restoration of Edentulous Jaws with 3D Software Planning, Guided Surgery, Immediate Loading, and CAD-CAM Full Arch Frameworks

    Directory of Open Access Journals (Sweden)

    Silvio Mario Meloni

    2013-01-01

    Full Text Available Purpose. The aim of this study was to analyze the clinical and radiographic outcomes of 23 edentulous jaws treated with 3D software planning, guided surgery, and immediate loading and restored with CAD-CAM full arch frameworks. Materials and Methods. This work was designed as a prospective case series clinical study. Twenty patients have been consecutively rehabilitated with an immediately loaded implant supported fixed full prosthesis. A total of 120 fixtures supporting 23 bridges were placed. 117 out of 120 implants were immediately loaded. Outcome measures were implants survival, radiographic marginal bone levels and remodeling, soft tissue parameters, and complications. Results. 114 of 117 implants reached a 30 months follow-up, and no patients dropped out from the study. The cumulative survival rate was 97.7%; after 30 months, mean marginal bone level was  mm, mean marginal bone remodeling value was , mean PPD value was  mm, and mean BOP value was 4% ± 2.8%. Only minor prosthetic complications were recorded. Conclusion. Within the limitations of this study, it can be concluded that computer-guided surgery and immediate loading seem to represent a viable option for the immediate rehabilitations of completely edentulous jaws with fixed implant supported restorations. This trial is registered with Clinicaltrials.gov NCT01866696.

  11. Image acquisition in laparoscopic and endoscopic surgery

    Science.gov (United States)

    Gill, Brijesh S.; Georgeson, Keith E.; Hardin, William D., Jr.

    1995-04-01

    Laparoscopic and endoscopic surgery rely uniquely on high quality display of acquired images, but a multitude of problems plague the researcher who attempts to reproduce such images for educational purposes. Some of these are intrinsic limitations of current laparoscopic/endoscopic visualization systems, while others are artifacts solely of the process used to acquire and reproduce such images. Whatever the genesis of these problems, a glance at current literature will reveal the extent to which endoscopy suffers from an inability to reproduce what the surgeon sees during a procedure. The major intrinsic limitation to the acquisition of high-quality still images from laparoscopic procedures lies in the inability to couple directly a camera to the laparoscope. While many systems have this capability, this is useful mostly for otolaryngologists, who do not maintain a sterile field around their scopes. For procedures in which a sterile field must be maintained, one trial method has been to use a beam splitter to send light both to the still camera and the digital video camera. This is no solution, however, since this results in low quality still images as well as a degradation of the image that the surgeon must use to operate, something no surgeon tolerates lightly. Researchers thus must currently rely on other methods for producing images from a laparoscopic procedure. Most manufacturers provide an optional slide or print maker that provides a hardcopy output from the processed composite video signal. The results achieved from such devices are marginal, to say the least. This leaves only one avenue for possible image production, the videotape record of an endoscopic or laparoscopic operation. Video frame grabbing is at least a problem to which industry has applied considerable time and effort to solving. Our own experience with computerized enhancement of videotape frames has been very promising. Computer enhancement allows the researcher to correct several of the

  12. An integrated multimodality image-guided robot system for small-animal imaging research

    International Nuclear Information System (INIS)

    Hsu, Wen-Lin; Hsin Wu, Tung; Hsu, Shih-Ming; Chen, Chia-Lin; Lee, Jason J.S.; Huang, Yung-Hui

    2011-01-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO 2 probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153±0.042 mm of desired placement; the phantom simulation errors were within 0.693±0.128 mm. In small-animal studies, the pO 2 probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  13. [Diagnossis and treatment of complicated anterior teeth esthetic defects by combination of whole-process digital esthetic rehabilitation with periodontic surgery].

    Science.gov (United States)

    Li, Z; Liu, Y S; Ye, H Q; Liu, Y S; Hu, W J; Zhou, Y S

    2017-02-18

    To explore a new method of whole-process digital esthetic prosthodontic rehabilitation combined with periodontic surgery for complicated anterior teeth esthetic defects accompanied by soft tissue morphology, to provide an alternative choice for solving this problem under the guidance of three-dimensional (3D) printing digital dental model and surgical guide, thus completing periodontic surgery and digital esthetic rehabilitation of anterior teeth. In this study, 12 patients with complicated esthetic problems accompanied by soft tissue morphology in their anterior teeth were included. The dentition and facial images were obtained by intra-oral scanning and three-dimensional (3D) facial scanning and then calibrated. Two esthetic designs and prosthodontic outcome predictions were created by computer aided design /computer aided manufacturing (CAD/CAM) software combined with digital photography, including consideration of white esthetics and comprehensive consideration of pink-white esthetics. The predictive design of prostheses and the facial appearances of the two designs were evaluated by the patients. If the patients chose the design of comprehensive consideration of pink-white esthetics, they would choose whether they would receive periodontic surgery before esthetic rehabilitation. The dentition design cast of those who chose periodontic surgery would be 3D printed for the guide of periodontic surgery accordingly. In light of the two digital designs based on intra-oral scanning, facing scanning and digital photography, the satisfaction rate of the patients was significantly higher for the comprehensive consideration of pink-white esthetic design (Pesthetic rehabilitation. The 3D printed digital dental model and surgical guide provided significant instructions for periodontic surgery, and achieved success transfer from digital design to clinical application. The prostheses were fabricated by CAD/CAM, thus realizing the whole-process digital esthetic rehabilitation

  14. Comparative study between ultrasound guided TAP block and paravertebral block in upper abdominal surgeries

    Directory of Open Access Journals (Sweden)

    Ruqaya M Elsayed Goda

    2017-01-01

    Conclusion: We concluded that ultrasound guided transverses abdominis plane block and thoracic paravertebral block were safe and effective anesthetic technique for upper abdominal surgery with longer and potent postoperative analgesia in thoracic paravertebral block than transverses abdominis block.

  15. Percutaneous imaging-guided treatment of hydatid liver cysts: Do long-term results make it a first choice?

    International Nuclear Information System (INIS)

    Kabaalioglu, Adnan; Ceken, Kagan; Alimoglu, Emel; Apaydin, Ali

    2006-01-01

    Aim: To evaluate the long-term results of percutaneous imaging-guided treatment of hydatid liver cysts. Materials and methods: Sixty patients with 77 hydatid liver cysts underwent percutaneous treatment with ultrasonography (US) or computed tomography (CT) guidance. Absolute alcohol and hypertonic saline were used for sclerosing the cysts after aspiration. Prophylactic albendazole treatment was given before and after the procedures. Follow-up US and CT were obtained periodically, and changes in cyst morphology were recorded. Minimum follow-up period for the patients included in this study was 12 months. Serological correlation was also available for a group of patients. The outcome of the procedures were categorized into five groups based on morphological changes observed by imaging. Results: Procedures were regarded as successful in 80% and unsuccessful in 20% of patients. Failures most often occurred with type III cysts; less than half (39%) of the total type III cysts had a successful outcome. On the other hand, all type I cysts ended up with cure. Anaphylaxis, pneumotorax and severe pain interrupting the procedures were also among the reasons of failure. Conclusion: Percutaneous aspiration, injection and reaspiration (PAIR) of types I and II hydatid liver cysts is effective and safe in the long-term. Surgery should no longer be regarded as the first choice treatment in all hydatid liver cysts but should be reserved for type III and certain active type IV cysts

  16. Percutaneous imaging-guided treatment of hydatid liver cysts: Do long-term results make it a first choice?

    Energy Technology Data Exchange (ETDEWEB)

    Kabaalioglu, Adnan [Department of Radiology, Akdeniz University Hospital, Antalya (Turkey)]. E-mail: adnank@akdeniz.edu.tr; Ceken, Kagan [Department of Radiology, Akdeniz University Hospital, Antalya (Turkey); Alimoglu, Emel [Department of Radiology, Akdeniz University Hospital, Antalya (Turkey); Apaydin, Ali [Department of Radiology, Akdeniz University Hospital, Antalya (Turkey)

    2006-07-15

    Aim: To evaluate the long-term results of percutaneous imaging-guided treatment of hydatid liver cysts. Materials and methods: Sixty patients with 77 hydatid liver cysts underwent percutaneous treatment with ultrasonography (US) or computed tomography (CT) guidance. Absolute alcohol and hypertonic saline were used for sclerosing the cysts after aspiration. Prophylactic albendazole treatment was given before and after the procedures. Follow-up US and CT were obtained periodically, and changes in cyst morphology were recorded. Minimum follow-up period for the patients included in this study was 12 months. Serological correlation was also available for a group of patients. The outcome of the procedures were categorized into five groups based on morphological changes observed by imaging. Results: Procedures were regarded as successful in 80% and unsuccessful in 20% of patients. Failures most often occurred with type III cysts; less than half (39%) of the total type III cysts had a successful outcome. On the other hand, all type I cysts ended up with cure. Anaphylaxis, pneumotorax and severe pain interrupting the procedures were also among the reasons of failure. Conclusion: Percutaneous aspiration, injection and reaspiration (PAIR) of types I and II hydatid liver cysts is effective and safe in the long-term. Surgery should no longer be regarded as the first choice treatment in all hydatid liver cysts but should be reserved for type III and certain active type IV cysts.

  17. Indocyanine green videoangiography (ICGV)-guided surgery of parasagittal meningiomas occluding the superior sagittal sinus (SSS).

    Science.gov (United States)

    d'Avella, Elena; Volpin, Francesco; Manara, Renzo; Scienza, Renato; Della Puppa, Alessandro

    2013-03-01

    Maximal safe resection is the goal of correct surgical treatment of parasagittal meningiomas, and it is intimately related to the venous anatomy both near and directly involved by the tumor. Indocyanine green videoangiography (ICGV) has already been advocated as an intra-operative resourceful technique in brain tumor surgery for the identification of vessels. The aim of this study was to investigate the role of ICGV in surgery of parasagittal meningiomas occluding the superior sagittal sinus (SSS). In this study, we prospectively analyzed clinical, radiological and intra-operative findings of patients affected by parasagittal meningioma occluding the SSS, who underwent ICGV assisted-surgery. Radiological diagnosis of complete SSS occlusion was pre-operatively established in all cases. ICGV was performed before dural opening, before and during tumor resection, at the end of the procedure. Five patients were included in our study. In all cases, ICGV guided dural opening, tumor resection, and venous management. The venous collateral pathway was easily identified and preserved in all cases. Radical resection was achieved in four cases. Surgery was uneventful in all cases. Despite the small number of patients, our study shows that ICG videoangiography could play a crucial role in guiding surgery of parasagittal meningioma occluding the SSS. Further studies are needed to define the role of this technique on functional and oncological outcome of these patients.

  18. Breast lesions with imaging-histologic discordance during US-guided 14G automated core biopsy: can the directional vacuum-assisted removal replace the surgical excision? Initial findings

    International Nuclear Information System (INIS)

    Kim, Min Jung; Kim, Eun-Kyung; Lee, Ji Young; Youk, Ji Hyun; Oh, Ki Keun; Park, Byeong-Woo; Kim, Seung-Il; Kim, Haeryoung

    2007-01-01

    The purpose of this study was to determine the frequency of carcinoma at percutaneous directional vacuum-assisted removal (DVAR) in women with imaging-histologic discordance during ultrasound (US)-guided automated core needle biopsy, and to determine the role of DVAR in breast lesions with imaging-histologic discordance. A US-guided 14-gauge automated core needle biopsy was performed on 837 consecutive lesions. Imaging-histologic discordance was prospectively considered in 33 of 634 benign biopsies. DVAR was recommended in those lesions. Among the 33 lesions, 26 lesions that underwent subsequent DVAR or surgical excision made up our study population. Medical records, imaging studies, and histologic findings were reviewed. Among the 26 lesions, 18 lesions underwent subsequent US-guided DVAR, with 8-gauge probes for 15 of the lesions, and 11-gauge for three of the lesions. Two lesions were diagnosed as having carcinoma (2/18, 11.1% of upgrade rate; 3.1-32.8% CI). The remaining eight lesions underwent subsequent surgical excision, and carcinoma was diagnosed in one case (12.5% of upgrade rate; 2.2-47.1% CI). A US-guided DVAR of the breast mass with imaging-histologic discordance during US-guided 14-gauge automated core needle biopsy is a valuable alternative to surgery as a means of obtaining a definitive histological diagnosis. (orig.)

  19. Oral and maxillofacial surgery with computer-assisted navigation system.

    Science.gov (United States)

    Kawachi, Homare; Kawachi, Yasuyuki; Ikeda, Chihaya; Takagi, Ryo; Katakura, Akira; Shibahara, Takahiko

    2010-01-01

    Intraoperative computer-assisted navigation has gained acceptance in maxillofacial surgery with applications in an increasing number of indications. We adapted a commercially available wireless passive marker system which allows calibration and tracking of virtually every instrument in maxillofacial surgery. Virtual computer-generated anatomical structures are displayed intraoperatively in a semi-immersive head-up display. Continuous observation of the operating field facilitated by computer assistance enables surgical navigation in accordance with the physician's preoperative plans. This case report documents the potential for augmented visualization concepts in surgical resection of tumors in the oral and maxillofacial region. We report a case of T3N2bM0 carcinoma of the maxillary gingival which was surgically resected with the assistance of the Stryker Navigation Cart System. This system was found to be useful in assisting preoperative planning and intraoperative monitoring.

  20. A review of computer-aided oral and maxillofacial surgery: planning, simulation and navigation.

    Science.gov (United States)

    Chen, Xiaojun; Xu, Lu; Sun, Yi; Politis, Constantinus

    2016-11-01

    Currently, oral and maxillofacial surgery (OMFS) still poses a significant challenge for surgeons due to the anatomic complexity and limited field of view of the oral cavity. With the great development of computer technologies, he computer-aided surgery has been widely used for minimizing the risks and improving the precision of surgery. Areas covered: The major goal of this paper is to provide a comprehensive reference source of current and future development of computer-aided OMFS including surgical planning, simulation and navigation for relevant researchers. Expert commentary: Compared with the traditional OMFS, computer-aided OMFS overcomes the disadvantage that the treatment on the region of anatomically complex maxillofacial depends almost exclusively on the experience of the surgeon.