WorldWideScience

Sample records for computer experiment method

  1. The Experiment Method for Manufacturing Grid Development on Single Computer

    Institute of Scientific and Technical Information of China (English)

    XIAO Youan; ZHOU Zude

    2006-01-01

    In this paper, an experiment method for the Manufacturing Grid application system development in the single personal computer environment is proposed. The characteristic of the proposed method is constructing a full prototype Manufacturing Grid application system which is hosted on a single personal computer with the virtual machine technology. Firstly, it builds all the Manufacturing Grid physical resource nodes on an abstraction layer of a single personal computer with the virtual machine technology. Secondly, all the virtual Manufacturing Grid resource nodes will be connected with virtual network and the application software will be deployed on each Manufacturing Grid nodes. Then, we can obtain a prototype Manufacturing Grid application system which is working in the single personal computer, and can carry on the experiment on this foundation. Compared with the known experiment methods for the Manufacturing Grid application system development, the proposed method has the advantages of the known methods, such as cost inexpensively, operation simple, and can get the confidence experiment result easily. The Manufacturing Grid application system constructed with the proposed method has the high scalability, stability and reliability. It is can be migrated to the real application environment rapidly.

  2. Experiences using DAKOTA stochastic expansion methods in computational simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, Jeremy Alan; Ruthruff, Joseph R.

    2012-01-01

    Uncertainty quantification (UQ) methods bring rigorous statistical connections to the analysis of computational and experiment data, and provide a basis for probabilistically assessing margins associated with safety and reliability. The DAKOTA toolkit developed at Sandia National Laboratories implements a number of UQ methods, which are being increasingly adopted by modeling and simulation teams to facilitate these analyses. This report disseminates results as to the performance of DAKOTA's stochastic expansion methods for UQ on a representative application. Our results provide a number of insights that may be of interest to future users of these methods, including the behavior of the methods in estimating responses at varying probability levels, and the expansion levels for the methodologies that may be needed to achieve convergence.

  3. Computational Experience with Globally Convergent Descent Methods for Large Sparse Systems of Nonlinear Equations

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    1998-01-01

    Roč. 8, č. 3-4 (1998), s. 201-223 ISSN 1055-6788 R&D Projects: GA ČR GA201/96/0918 Keywords : nonlinear equations * Armijo-type descent methods * Newton-like methods * truncated methods * global convergence * nonsymmetric linear systems * conjugate gradient -type methods * residual smoothing * computational experiments Subject RIV: BB - Applied Statistics, Operational Research

  4. Design of Computer Experiments

    DEFF Research Database (Denmark)

    Dehlendorff, Christian

    The main topic of this thesis is design and analysis of computer and simulation experiments and is dealt with in six papers and a summary report. Simulation and computer models have in recent years received increasingly more attention due to their increasing complexity and usability. Software...... packages make the development of rather complicated computer models using predefined building blocks possible. This implies that the range of phenomenas that are analyzed by means of a computer model has expanded significantly. As the complexity grows so does the need for efficient experimental designs...... and analysis methods, since the complex computer models often are expensive to use in terms of computer time. The choice of performance parameter is an important part of the analysis of computer and simulation models and Paper A introduces a new statistic for waiting times in health care units. The statistic...

  5. Experiments in computing: a survey.

    Science.gov (United States)

    Tedre, Matti; Moisseinen, Nella

    2014-01-01

    Experiments play a central role in science. The role of experiments in computing is, however, unclear. Questions about the relevance of experiments in computing attracted little attention until the 1980s. As the discipline then saw a push towards experimental computer science, a variety of technically, theoretically, and empirically oriented views on experiments emerged. As a consequence of those debates, today's computing fields use experiments and experiment terminology in a variety of ways. This paper analyzes experimentation debates in computing. It presents five ways in which debaters have conceptualized experiments in computing: feasibility experiment, trial experiment, field experiment, comparison experiment, and controlled experiment. This paper has three aims: to clarify experiment terminology in computing; to contribute to disciplinary self-understanding of computing; and, due to computing's centrality in other fields, to promote understanding of experiments in modern science in general.

  6. Computational Methods in Plasma Physics

    CERN Document Server

    Jardin, Stephen

    2010-01-01

    Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency,

  7. Empirical evaluation methods in computer vision

    CERN Document Server

    Christensen, Henrik I

    2002-01-01

    This book provides comprehensive coverage of methods for the empirical evaluation of computer vision techniques. The practical use of computer vision requires empirical evaluation to ensure that the overall system has a guaranteed performance. The book contains articles that cover the design of experiments for evaluation, range image segmentation, the evaluation of face recognition and diffusion methods, image matching using correlation methods, and the performance of medical image processing algorithms. Sample Chapter(s). Foreword (228 KB). Chapter 1: Introduction (505 KB). Contents: Automate

  8. Computing for an SSC experiment

    International Nuclear Information System (INIS)

    Gaines, I.

    1993-01-01

    The hardware and software problems for SSC experiments are similar to those faced by present day experiments but larger in scale. In particular, the Solenoidal Detector Collaboration (SDC) anticipates the need for close to 10**6 MIPS of off-line computing and will produce several Petabytes (10**15 bytes) of data per year. Software contributions will be made from large numbers of highly geographically dispersed physicists. Hardware and software architectures to meet these needs have been designed. Providing the requisites amount of computing power and providing tools to allow cooperative software development using extensions of existing techniques look achievable. The major challenges will be to provide efficient methods of accessing and manipulating the enormous quantities of data that will be produced at the SSC, and to enforce the use of software engineering tools that will ensure the open-quotes correctnessclose quotes of experiment critical software

  9. Predictive modeling of liquid-sodium thermal–hydraulics experiments and computations

    International Nuclear Information System (INIS)

    Arslan, Erkan; Cacuci, Dan G.

    2014-01-01

    Highlights: • We applied the predictive modeling method of Cacuci and Ionescu-Bujor (2010). • We assimilated data from sodium flow experiments. • We used computational fluid dynamics simulations of sodium experiments. • The predictive modeling method greatly reduced uncertainties in predicted results. - Abstract: This work applies the predictive modeling procedure formulated by Cacuci and Ionescu-Bujor (2010) to assimilate data from liquid-sodium thermal–hydraulics experiments in order to reduce systematically the uncertainties in the predictions of computational fluid dynamics (CFD) simulations. The predicted CFD-results for the best-estimate model parameters and results describing sodium-flow velocities and temperature distributions are shown to be significantly more precise than the original computations and experiments, in that the predicted uncertainties for the best-estimate results and model parameters are significantly smaller than both the originally computed and the experimental uncertainties

  10. Methods of physical experiment and installation automation on the base of computers

    International Nuclear Information System (INIS)

    Stupin, Yu.V.

    1983-01-01

    Peculiarities of using computers for physical experiment and installation automation are considered. Systems for data acquisition and processing on the base of microprocessors, micro- and mini-computers, CAMAC equipment and real time operational systems as well as systems intended for automation of physical experiments on accelerators and installations of laser thermonuclear fusion and installations for plasma investigation are dpscribed. The problems of multimachine complex and multi-user system, arrangement, development of automated systems for collective use, arrangement of intermachine data exchange and control of experimental data base are discussed. Data on software systems used for complex experimental data processing are presented. It is concluded that application of new computers in combination with new possibilities provided for users by universal operational systems essentially exceeds efficiency of a scientist work

  11. Computational and mathematical methods in brain atlasing.

    Science.gov (United States)

    Nowinski, Wieslaw L

    2017-12-01

    Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.

  12. Computer-simulated experiments and computer games: a method of design analysis

    Directory of Open Access Journals (Sweden)

    Jerome J. Leary

    1995-12-01

    Full Text Available Through the new modularization of the undergraduate science degree at the University of Brighton, larger numbers of students are choosing to take some science modules which include an amount of laboratory practical work. Indeed, within energy studies, the fuels and combustion module, for which the computer simulations were written, has seen a fourfold increase in student numbers from twelve to around fifty. Fitting out additional laboratories with new equipment to accommodate this increase presented problems: the laboratory space did not exist; fitting out the laboratories with new equipment would involve a relatively large capital spend per student for equipment that would be used infrequently; and, because some of the experiments use inflammable liquids and gases, additional staff would be needed for laboratory supervision.

  13. Computational methods for data evaluation and assimilation

    CERN Document Server

    Cacuci, Dan Gabriel

    2013-01-01

    Data evaluation and data combination require the use of a wide range of probability theory concepts and tools, from deductive statistics mainly concerning frequencies and sample tallies to inductive inference for assimilating non-frequency data and a priori knowledge. Computational Methods for Data Evaluation and Assimilation presents interdisciplinary methods for integrating experimental and computational information. This self-contained book shows how the methods can be applied in many scientific and engineering areas. After presenting the fundamentals underlying the evaluation of experiment

  14. The software developing method for multichannel computer-aided system for physical experiments control, realized by resources of national instruments LabVIEW instrumental package

    International Nuclear Information System (INIS)

    Gorskaya, E.A.; Samojlov, V.N.

    1999-01-01

    This work is describing the method of developing the computer-aided control system in integrated environment of LabVIEW. Using the object-oriented design of complex systems, the hypothetical model for methods of developing the software for computer-aided system for physical experiments control was constructed. Within the framework of that model architecture solutions and implementations of suggested method were described. (author)

  15. COMPUTER CONTROL OF BEHAVIORAL EXPERIMENTS.

    Science.gov (United States)

    SIEGEL, LOUIS

    THE LINC COMPUTER PROVIDES A PARTICULAR SCHEDULE OF REINFORCEMENT FOR BEHAVIORAL EXPERIMENTS BY EXECUTING A SEQUENCE OF COMPUTER OPERATIONS IN CONJUNCTION WITH A SPECIALLY DESIGNED INTERFACE. THE INTERFACE IS THE MEANS OF COMMUNICATION BETWEEN THE EXPERIMENTAL CHAMBER AND THE COMPUTER. THE PROGRAM AND INTERFACE OF AN EXPERIMENT INVOLVING A PIGEON…

  16. Comparison of computer-assisted instruction (CAI) versus traditional textbook methods for training in abdominal examination (Japanese experience).

    Science.gov (United States)

    Qayumi, A K; Kurihara, Y; Imai, M; Pachev, G; Seo, H; Hoshino, Y; Cheifetz, R; Matsuura, K; Momoi, M; Saleem, M; Lara-Guerra, H; Miki, Y; Kariya, Y

    2004-10-01

    This study aimed to compare the effects of computer-assisted, text-based and computer-and-text learning conditions on the performances of 3 groups of medical students in the pre-clinical years of their programme, taking into account their academic achievement to date. A fourth group of students served as a control (no-study) group. Participants were recruited from the pre-clinical years of the training programmes in 2 medical schools in Japan, Jichi Medical School near Tokyo and Kochi Medical School near Osaka. Participants were randomly assigned to 4 learning conditions and tested before and after the study on their knowledge of and skill in performing an abdominal examination, in a multiple-choice test and an objective structured clinical examination (OSCE), respectively. Information about performance in the programme was collected from school records and students were classified as average, good or excellent. Student and faculty evaluations of their experience in the study were explored by means of a short evaluation survey. Compared to the control group, all 3 study groups exhibited significant gains in performance on knowledge and performance measures. For the knowledge measure, the gains of the computer-assisted and computer-assisted plus text-based learning groups were significantly greater than the gains of the text-based learning group. The performances of the 3 groups did not differ on the OSCE measure. Analyses of gains by performance level revealed that high achieving students' learning was independent of study method. Lower achieving students performed better after using computer-based learning methods. The results suggest that computer-assisted learning methods will be of greater help to students who do not find the traditional methods effective. Explorations of the factors behind this are a matter for future research.

  17. Ontological and Epistemological Issues Regarding Climate Models and Computer Experiments

    Science.gov (United States)

    Vezer, M. A.

    2010-12-01

    Recent philosophical discussions (Parker 2009; Frigg and Reiss 2009; Winsberg, 2009; Morgon 2002, 2003, 2005; Gula 2002) about the ontology of computer simulation experiments and the epistemology of inferences drawn from them are of particular relevance to climate science as computer modeling and analysis are instrumental in understanding climatic systems. How do computer simulation experiments compare with traditional experiments? Is there an ontological difference between these two methods of inquiry? Are there epistemological considerations that result in one type of inference being more reliable than the other? What are the implications of these questions with respect to climate studies that rely on computer simulation analysis? In this paper, I examine these philosophical questions within the context of climate science, instantiating concerns in the philosophical literature with examples found in analysis of global climate change. I concentrate on Wendy Parker’s (2009) account of computer simulation studies, which offers a treatment of these and other questions relevant to investigations of climate change involving such modelling. Two theses at the center of Parker’s account will be the focus of this paper. The first is that computer simulation experiments ought to be regarded as straightforward material experiments; which is to say, there is no significant ontological difference between computer and traditional experimentation. Parker’s second thesis is that some of the emphasis on the epistemological importance of materiality has been misplaced. I examine both of these claims. First, I inquire as to whether viewing computer and traditional experiments as ontologically similar in the way she does implies that there is no proper distinction between abstract experiments (such as ‘thought experiments’ as well as computer experiments) and traditional ‘concrete’ ones. Second, I examine the notion of materiality (i.e., the material commonality between

  18. Computer Based Road Accident Reconstruction Experiences

    Directory of Open Access Journals (Sweden)

    Milan Batista

    2005-03-01

    Full Text Available Since road accident analyses and reconstructions are increasinglybased on specific computer software for simulationof vehicle d1iving dynamics and collision dynamics, and forsimulation of a set of trial runs from which the model that bestdescribes a real event can be selected, the paper presents anoverview of some computer software and methods available toaccident reconstruction experts. Besides being time-saving,when properly used such computer software can provide moreauthentic and more trustworthy accident reconstruction, thereforepractical experiences while using computer software toolsfor road accident reconstruction obtained in the TransportSafety Laboratory at the Faculty for Maritime Studies andTransport of the University of Ljubljana are presented and discussed.This paper addresses also software technology for extractingmaximum information from the accident photo-documentationto support accident reconstruction based on the simulationsoftware, as well as the field work of reconstruction expertsor police on the road accident scene defined by this technology.

  19. ATLAS distributed computing: experience and evolution

    International Nuclear Information System (INIS)

    Nairz, A

    2014-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb −1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centres around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics programme including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2015 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, energies and event complexities. An essential requirement will be the efficient utilisation of current and future processor technologies as well as a broad range of computing platforms, including supercomputing and cloud resources. We will report on experience gained thus far and our progress in preparing ATLAS computing for the future

  20. An experiment for determining the Euler load by direct computation

    Science.gov (United States)

    Thurston, Gaylen A.; Stein, Peter A.

    1986-01-01

    A direct algorithm is presented for computing the Euler load of a column from experimental data. The method is based on exact inextensional theory for imperfect columns, which predicts two distinct deflected shapes at loads near the Euler load. The bending stiffness of the column appears in the expression for the Euler load along with the column length, therefore the experimental data allows a direct computation of bending stiffness. Experiments on graphite-epoxy columns of rectangular cross-section are reported in the paper. The bending stiffness of each composite column computed from experiment is compared with predictions from laminated plate theory.

  1. Methods and experimental techniques in computer engineering

    CERN Document Server

    Schiaffonati, Viola

    2014-01-01

    Computing and science reveal a synergic relationship. On the one hand, it is widely evident that computing plays an important role in the scientific endeavor. On the other hand, the role of scientific method in computing is getting increasingly important, especially in providing ways to experimentally evaluate the properties of complex computing systems. This book critically presents these issues from a unitary conceptual and methodological perspective by addressing specific case studies at the intersection between computing and science. The book originates from, and collects the experience of, a course for PhD students in Information Engineering held at the Politecnico di Milano. Following the structure of the course, the book features contributions from some researchers who are working at the intersection between computing and science.

  2. Computing and data handling recent experiences at Fermilab and SLAC

    International Nuclear Information System (INIS)

    Cooper, P.S.

    1990-01-01

    Computing has become evermore central to the doing of high energy physics. There are now major second and third generation experiments for which the largest single cost is computing. At the same time the availability of ''cheap'' computing has made possible experiments which were previously considered infeasible. The result of this trend has been an explosion of computing and computing needs. I will review here the magnitude of the problem, as seen at Fermilab and SLAC, and the present methods for dealing with it. I will then undertake the dangerous assignment of projecting the needs and solutions forthcoming in the next few years at both laboratories. I will concentrate on the ''offline'' problem; the process of turning terabytes of data tapes into pages of physics journals. 5 refs., 4 figs., 4 tabs

  3. Spacelab experiment computer study. Volume 1: Executive summary (presentation)

    Science.gov (United States)

    Lewis, J. L.; Hodges, B. C.; Christy, J. O.

    1976-01-01

    A quantitative cost for various Spacelab flight hardware configurations is provided along with varied software development options. A cost analysis of Spacelab computer hardware and software is presented. The cost study is discussed based on utilization of a central experiment computer with optional auxillary equipment. Groundrules and assumptions used in deriving the costing methods for all options in the Spacelab experiment study are presented. The groundrules and assumptions, are analysed and the options along with their cost considerations, are discussed. It is concluded that Spacelab program cost for software development and maintenance is independent of experimental hardware and software options, that distributed standard computer concept simplifies software integration without a significant increase in cost, and that decisions on flight computer hardware configurations should not be made until payload selection for a given mission and a detailed analysis of the mission requirements are completed.

  4. ATLAS Distributed Computing: Experience and Evolution

    CERN Document Server

    Nairz, A; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb-1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centers around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics program including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2014 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...

  5. ATLAS distributed computing: experience and evolution

    CERN Document Server

    Nairz, A; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25/fb of data. The total volume of beam and simulated data products exceeds 100~PB distributed across more than 150 computing centres around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics programme including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2015 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...

  6. Improved look-up table method of computer-generated holograms.

    Science.gov (United States)

    Wei, Hui; Gong, Guanghong; Li, Ni

    2016-11-10

    Heavy computation load and vast memory requirements are major bottlenecks of computer-generated holograms (CGHs), which are promising and challenging in three-dimensional displays. To solve these problems, an improved look-up table (LUT) method suitable for arbitrarily sampled object points is proposed and implemented on a graphics processing unit (GPU) whose reconstructed object quality is consistent with that of the coherent ray-trace (CRT) method. The concept of distance factor is defined, and the distance factors are pre-computed off-line and stored in a look-up table. The results show that while reconstruction quality close to that of the CRT method is obtained, the on-line computation time is dramatically reduced compared with the LUT method on the GPU and the memory usage is lower than that of the novel-LUT considerably. Optical experiments are carried out to validate the effectiveness of the proposed method.

  7. Fast computation of the characteristics method on vector computers

    International Nuclear Information System (INIS)

    Kugo, Teruhiko

    2001-11-01

    Fast computation of the characteristics method to solve the neutron transport equation in a heterogeneous geometry has been studied. Two vector computation algorithms; an odd-even sweep (OES) method and an independent sequential sweep (ISS) method have been developed and their efficiency to a typical fuel assembly calculation has been investigated. For both methods, a vector computation is 15 times faster than a scalar computation. From a viewpoint of comparison between the OES and ISS methods, the followings are found: 1) there is a small difference in a computation speed, 2) the ISS method shows a faster convergence and 3) the ISS method saves about 80% of computer memory size compared with the OES method. It is, therefore, concluded that the ISS method is superior to the OES method as a vectorization method. In the vector computation, a table-look-up method to reduce computation time of an exponential function saves only 20% of a whole computation time. Both the coarse mesh rebalance method and the Aitken acceleration method are effective as acceleration methods for the characteristics method, a combination of them saves 70-80% of outer iterations compared with a free iteration. (author)

  8. Essential numerical computer methods

    CERN Document Server

    Johnson, Michael L

    2010-01-01

    The use of computers and computational methods has become ubiquitous in biological and biomedical research. During the last 2 decades most basic algorithms have not changed, but what has is the huge increase in computer speed and ease of use, along with the corresponding orders of magnitude decrease in cost. A general perception exists that the only applications of computers and computer methods in biological and biomedical research are either basic statistical analysis or the searching of DNA sequence data bases. While these are important applications they only scratch the surface of the current and potential applications of computers and computer methods in biomedical research. The various chapters within this volume include a wide variety of applications that extend far beyond this limited perception. As part of the Reliable Lab Solutions series, Essential Numerical Computer Methods brings together chapters from volumes 210, 240, 321, 383, 384, 454, and 467 of Methods in Enzymology. These chapters provide ...

  9. Analysis methods of neutrons induced resonances in the transmission experiments by time-of-flight and automation of these methods on IBM 7094 II computer

    International Nuclear Information System (INIS)

    Corge, C.

    1967-01-01

    The neutron induced resonances analysis aims to determine the neutrons characteristics, leading to the excitation energies, de-excitation probabilities by gamma radiation emission, by neutron emission or by fission, their spin, their parity... This document describes the methods developed, or adapted, the calculation schemes and the algorithms implemented to realize such analysis on a computer, from data obtained during time-of-flight experiments on the linear accelerator of Saclay. (A.L.B.)

  10. Domain decomposition methods and parallel computing

    International Nuclear Information System (INIS)

    Meurant, G.

    1991-01-01

    In this paper, we show how to efficiently solve large linear systems on parallel computers. These linear systems arise from discretization of scientific computing problems described by systems of partial differential equations. We show how to get a discrete finite dimensional system from the continuous problem and the chosen conjugate gradient iterative algorithm is briefly described. Then, the different kinds of parallel architectures are reviewed and their advantages and deficiencies are emphasized. We sketch the problems found in programming the conjugate gradient method on parallel computers. For this algorithm to be efficient on parallel machines, domain decomposition techniques are introduced. We give results of numerical experiments showing that these techniques allow a good rate of convergence for the conjugate gradient algorithm as well as computational speeds in excess of a billion of floating point operations per second. (author). 5 refs., 11 figs., 2 tabs., 1 inset

  11. Evolutionary Computation Methods and their applications in Statistics

    Directory of Open Access Journals (Sweden)

    Francesco Battaglia

    2013-05-01

    Full Text Available A brief discussion of the genesis of evolutionary computation methods, their relationship to artificial intelligence, and the contribution of genetics and Darwin’s theory of natural evolution is provided. Then, the main evolutionary computation methods are illustrated: evolution strategies, genetic algorithms, estimation of distribution algorithms, differential evolution, and a brief description of some evolutionary behavior methods such as ant colony and particle swarm optimization. We also discuss the role of the genetic algorithm for multivariate probability distribution random generation, rather than as a function optimizer. Finally, some relevant applications of genetic algorithm to statistical problems are reviewed: selection of variables in regression, time series model building, outlier identification, cluster analysis, design of experiments.

  12. Computer based workstation for development of software for high energy physics experiments

    International Nuclear Information System (INIS)

    Ivanchenko, I.M.; Sedykh, Yu.V.

    1987-01-01

    Methodical principles and results of a successful attempt to create on the base of IBM-PC/AT personal computer of effective means for development of programs for high energy physics experiments are analysed. The obtained results permit to combine the best properties and a positive materialized experience accumulated on the existing time sharing collective systems with a high quality of data representation, reliability and convenience of personal computer applications

  13. Computational methods for stellerator configurations

    International Nuclear Information System (INIS)

    Betancourt, O.

    1992-01-01

    This project had two main objectives. The first one was to continue to develop computational methods for the study of three dimensional magnetic confinement configurations. The second one was to collaborate and interact with researchers in the field who can use these techniques to study and design fusion experiments. The first objective has been achieved with the development of the spectral code BETAS and the formulation of a new variational approach for the study of magnetic island formation in a self consistent fashion. The code can compute the correct island width corresponding to the saturated island, a result shown by comparing the computed island with the results of unstable tearing modes in Tokamaks and with experimental results in the IMS Stellarator. In addition to studying three dimensional nonlinear effects in Tokamaks configurations, these self consistent computed island equilibria will be used to study transport effects due to magnetic island formation and to nonlinearly bifurcated equilibria. The second objective was achieved through direct collaboration with Steve Hirshman at Oak Ridge, D. Anderson and R. Talmage at Wisconsin as well as through participation in the Sherwood and APS meetings

  14. Assessment of medical communication skills by computer: assessment method and student experiences

    NARCIS (Netherlands)

    Hulsman, R. L.; Mollema, E. D.; Hoos, A. M.; de Haes, J. C. J. M.; Donnison-Speijer, J. D.

    2004-01-01

    BACKGROUND A computer-assisted assessment (CAA) program for communication skills designated ACT was developed using the objective structured video examination (OSVE) format. This method features assessment of cognitive scripts underlying communication behaviour, a broad range of communication

  15. A method of non-contact reading code based on computer vision

    Science.gov (United States)

    Zhang, Chunsen; Zong, Xiaoyu; Guo, Bingxuan

    2018-03-01

    With the purpose of guarantee the computer information exchange security between internal and external network (trusted network and un-trusted network), A non-contact Reading code method based on machine vision has been proposed. Which is different from the existing network physical isolation method. By using the computer monitors, camera and other equipment. Deal with the information which will be on exchanged, Include image coding ,Generate the standard image , Display and get the actual image , Calculate homography matrix, Image distort correction and decoding in calibration, To achieve the computer information security, Non-contact, One-way transmission between the internal and external network , The effectiveness of the proposed method is verified by experiments on real computer text data, The speed of data transfer can be achieved 24kb/s. The experiment shows that this algorithm has the characteristics of high security, fast velocity and less loss of information. Which can meet the daily needs of the confidentiality department to update the data effectively and reliably, Solved the difficulty of computer information exchange between Secret network and non-secret network, With distinctive originality, practicability, and practical research value.

  16. Computational methods for fracture analysis of heavy-section steel technology (HSST) pressure vessel experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1983-01-01

    This paper summarizes the capabilities and applications of the general-purpose and special-purpose computer programs that have been developed for use in fracture mechanics analyses of HSST pressure vessel experiments. Emphasis is placed on the OCA/USA code, which is designed for analysis of pressurized-thermal-shock (PTS) conditions, and on the ORMGEN/ADINA/ORVIRT system which is used for more general analysis. Fundamental features of these programs are discussed, along with applications to pressure vessel experiments

  17. Locative media and data-driven computing experiments

    Directory of Open Access Journals (Sweden)

    Sung-Yueh Perng

    2016-06-01

    Full Text Available Over the past two decades urban social life has undergone a rapid and pervasive geocoding, becoming mediated, augmented and anticipated by location-sensitive technologies and services that generate and utilise big, personal, locative data. The production of these data has prompted the development of exploratory data-driven computing experiments that seek to find ways to extract value and insight from them. These projects often start from the data, rather than from a question or theory, and try to imagine and identify their potential utility. In this paper, we explore the desires and mechanics of data-driven computing experiments. We demonstrate how both locative media data and computing experiments are ‘staged’ to create new values and computing techniques, which in turn are used to try and derive possible futures that are ridden with unintended consequences. We argue that using computing experiments to imagine potential urban futures produces effects that often have little to do with creating new urban practices. Instead, these experiments promote Big Data science and the prospect that data produced for one purpose can be recast for another and act as alternative mechanisms of envisioning urban futures.

  18. MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments

    Directory of Open Access Journals (Sweden)

    Charcosset Alain

    2007-02-01

    Full Text Available Abstract Background Integration of multiple results from Quantitative Trait Loci (QTL studies is a key point to understand the genetic determinism of complex traits. Up to now many efforts have been made by public database developers to facilitate the storage, compilation and visualization of multiple QTL mapping experiment results. However, studying the congruency between these results still remains a complex task. Presently, the few computational and statistical frameworks to do so are mainly based on empirical methods (e.g. consensus genetic maps are generally built by iterative projection. Results In this article, we present a new computational and statistical package, called MetaQTL, for carrying out whole-genome meta-analysis of QTL mapping experiments. Contrary to existing methods, MetaQTL offers a complete statistical process to establish a consensus model for both the marker and the QTL positions on the whole genome. First, MetaQTL implements a new statistical approach to merge multiple distinct genetic maps into a single consensus map which is optimal in terms of weighted least squares and can be used to investigate recombination rate heterogeneity between studies. Secondly, assuming that QTL can be projected on the consensus map, MetaQTL offers a new clustering approach based on a Gaussian mixture model to decide how many QTL underly the distribution of the observed QTL. Conclusion We demonstrate using simulations that the usual model choice criteria from mixture model literature perform relatively well in this context. As expected, simulations also show that this new clustering algorithm leads to a reduction in the length of the confidence interval of QTL location provided that across studies there are enough observed QTL for each underlying true QTL location. The usefulness of our approach is illustrated on published QTL detection results of flowering time in maize. Finally, MetaQTL is freely available at http://bioinformatics.org/mqtl.

  19. Depth-Averaged Non-Hydrostatic Hydrodynamic Model Using a New Multithreading Parallel Computing Method

    Directory of Open Access Journals (Sweden)

    Ling Kang

    2017-03-01

    Full Text Available Compared to the hydrostatic hydrodynamic model, the non-hydrostatic hydrodynamic model can accurately simulate flows that feature vertical accelerations. The model’s low computational efficiency severely restricts its wider application. This paper proposes a non-hydrostatic hydrodynamic model based on a multithreading parallel computing method. The horizontal momentum equation is obtained by integrating the Navier–Stokes equations from the bottom to the free surface. The vertical momentum equation is approximated by the Keller-box scheme. A two-step method is used to solve the model equations. A parallel strategy based on block decomposition computation is utilized. The original computational domain is subdivided into two subdomains that are physically connected via a virtual boundary technique. Two sub-threads are created and tasked with the computation of the two subdomains. The producer–consumer model and the thread lock technique are used to achieve synchronous communication between sub-threads. The validity of the model was verified by solitary wave propagation experiments over a flat bottom and slope, followed by two sinusoidal wave propagation experiments over submerged breakwater. The parallel computing method proposed here was found to effectively enhance computational efficiency and save 20%–40% computation time compared to serial computing. The parallel acceleration rate and acceleration efficiency are approximately 1.45% and 72%, respectively. The parallel computing method makes a contribution to the popularization of non-hydrostatic models.

  20. Computational methods for fracture analysis of heavy-section steel technology (HSST) pressure vessel experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1985-01-01

    This paper summarizes the capabilities and applications of the general-purpose and special-purpose computer programs that have been developed at ORNL for use in fracture mechanics analyses of HSST pressure vessel experiments. Emphasis is placed on the OCA/USA code, which is designed for analysis of pressurized-thermal-shock (PTS) conditions, and on the ORMGEN/ADINA/ORVIRT system which is used for more general analysis. Fundamental features of these programs are discussed, along wih applications to pressure vessel experiments. (orig./HP)

  1. Short-term electric load forecasting using computational intelligence methods

    OpenAIRE

    Jurado, Sergio; Peralta, J.; Nebot, Àngela; Mugica, Francisco; Cortez, Paulo

    2013-01-01

    Accurate time series forecasting is a key issue to support individual and organizational decision making. In this paper, we introduce several methods for short-term electric load forecasting. All the presented methods stem from computational intelligence techniques: Random Forest, Nonlinear Autoregressive Neural Networks, Evolutionary Support Vector Machines and Fuzzy Inductive Reasoning. The performance of the suggested methods is experimentally justified with several experiments carried out...

  2. Pharmacology Experiments on the Computer.

    Science.gov (United States)

    Keller, Daniel

    1990-01-01

    A computer program that replaces a set of pharmacology and physiology laboratory experiments on live animals or isolated organs is described and illustrated. Five experiments are simulated: dose-effect relationships on smooth muscle, blood pressure and catecholamines, neuromuscular signal transmission, acetylcholine and the circulation, and…

  3. Computer loss experience and predictions

    Science.gov (United States)

    Parker, Donn B.

    1996-03-01

    The types of losses organizations must anticipate have become more difficult to predict because of the eclectic nature of computers and the data communications and the decrease in news media reporting of computer-related losses as they become commonplace. Total business crime is conjectured to be decreasing in frequency and increasing in loss per case as a result of increasing computer use. Computer crimes are probably increasing, however, as their share of the decreasing business crime rate grows. Ultimately all business crime will involve computers in some way, and we could see a decline of both together. The important information security measures in high-loss business crime generally concern controls over authorized people engaged in unauthorized activities. Such controls include authentication of users, analysis of detailed audit records, unannounced audits, segregation of development and production systems and duties, shielding the viewing of screens, and security awareness and motivation controls in high-value transaction areas. Computer crimes that involve highly publicized intriguing computer misuse methods, such as privacy violations, radio frequency emanations eavesdropping, and computer viruses, have been reported in waves that periodically have saturated the news media during the past 20 years. We must be able to anticipate such highly publicized crimes and reduce the impact and embarrassment they cause. On the basis of our most recent experience, I propose nine new types of computer crime to be aware of: computer larceny (theft and burglary of small computers), automated hacking (use of computer programs to intrude), electronic data interchange fraud (business transaction fraud), Trojan bomb extortion and sabotage (code security inserted into others' systems that can be triggered to cause damage), LANarchy (unknown equipment in use), desktop forgery (computerized forgery and counterfeiting of documents), information anarchy (indiscriminate use of

  4. Sharing experience and knowledge with wearable computers

    OpenAIRE

    Nilsson, Marcus; Drugge, Mikael; Parnes, Peter

    2004-01-01

    Wearable computer have mostly been looked on when used in isolation. But the wearable computer with Internet connection is a good tool for communication and for sharing knowledge and experience with other people. The unobtrusiveness of this type of equipment makes it easy to communicate at most type of locations and contexts. The wearable computer makes it easy to be a mediator of other people knowledge and becoming a knowledgeable user. This paper describes the experience gained from testing...

  5. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  6. Explorations in computing an introduction to computer science

    CERN Document Server

    Conery, John S

    2010-01-01

    Introduction Computation The Limits of Computation Algorithms A Laboratory for Computational ExperimentsThe Ruby WorkbenchIntroducing Ruby and the RubyLabs environment for computational experimentsInteractive Ruby Numbers Variables Methods RubyLabs The Sieve of EratosthenesAn algorithm for finding prime numbersThe Sieve Algorithm The mod Operator Containers Iterators Boolean Values and the delete if Method Exploring the Algorithm The sieve Method A Better Sieve Experiments with the Sieve A Journey of a Thousand MilesIteration as a strategy for solving computational problemsSearching and Sortin

  7. Research and Teaching: Computational Methods in General Chemistry--Perceptions of Programming, Prior Experience, and Student Outcomes

    Science.gov (United States)

    Wheeler, Lindsay B.; Chiu, Jennie L.; Grisham, Charles M.

    2016-01-01

    This article explores how integrating computational tools into a general chemistry laboratory course can influence student perceptions of programming and investigates relationships among student perceptions, prior experience, and student outcomes.

  8. Computational methods for protein identification from mass spectrometry data.

    Directory of Open Access Journals (Sweden)

    Leo McHugh

    2008-02-01

    Full Text Available Protein identification using mass spectrometry is an indispensable computational tool in the life sciences. A dramatic increase in the use of proteomic strategies to understand the biology of living systems generates an ongoing need for more effective, efficient, and accurate computational methods for protein identification. A wide range of computational methods, each with various implementations, are available to complement different proteomic approaches. A solid knowledge of the range of algorithms available and, more critically, the accuracy and effectiveness of these techniques is essential to ensure as many of the proteins as possible, within any particular experiment, are correctly identified. Here, we undertake a systematic review of the currently available methods and algorithms for interpreting, managing, and analyzing biological data associated with protein identification. We summarize the advances in computational solutions as they have responded to corresponding advances in mass spectrometry hardware. The evolution of scoring algorithms and metrics for automated protein identification are also discussed with a focus on the relative performance of different techniques. We also consider the relative advantages and limitations of different techniques in particular biological contexts. Finally, we present our perspective on future developments in the area of computational protein identification by considering the most recent literature on new and promising approaches to the problem as well as identifying areas yet to be explored and the potential application of methods from other areas of computational biology.

  9. Volunteer computing experience with ATLAS@Home

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00068610; The ATLAS collaboration; Bianchi, Riccardo-Maria; Cameron, David; Filipčič, Andrej; Lançon, Eric; Wu, Wenjing

    2016-01-01

    ATLAS@Home is a volunteer computing project which allows the public to contribute to computing for the ATLAS experiment through their home or office computers. The project has grown continuously since its creation in mid-2014 and now counts almost 100,000 volunteers. The combined volunteers’ resources make up a sizeable fraction of overall resources for ATLAS simulation. This paper takes stock of the experience gained so far and describes the next steps in the evolution of the project. These improvements include running natively on Linux to ease the deployment on for example university clusters, using multiple cores inside one task to reduce the memory requirements and running different types of workload such as event generation. In addition to technical details the success of ATLAS@Home as an outreach tool is evaluated.

  10. Volunteer Computing Experience with ATLAS@Home

    CERN Document Server

    Cameron, David; The ATLAS collaboration; Bourdarios, Claire; Lan\\c con, Eric

    2016-01-01

    ATLAS@Home is a volunteer computing project which allows the public to contribute to computing for the ATLAS experiment through their home or office computers. The project has grown continuously since its creation in mid-2014 and now counts almost 100,000 volunteers. The combined volunteers' resources make up a sizable fraction of overall resources for ATLAS simulation. This paper takes stock of the experience gained so far and describes the next steps in the evolution of the project. These improvements include running natively on Linux to ease the deployment on for example university clusters, using multiple cores inside one job to reduce the memory requirements and running different types of workload such as event generation. In addition to technical details the success of ATLAS@Home as an outreach tool is evaluated.

  11. Volunteer Computing Experience with ATLAS@Home

    Science.gov (United States)

    Adam-Bourdarios, C.; Bianchi, R.; Cameron, D.; Filipčič, A.; Isacchini, G.; Lançon, E.; Wu, W.; ATLAS Collaboration

    2017-10-01

    ATLAS@Home is a volunteer computing project which allows the public to contribute to computing for the ATLAS experiment through their home or office computers. The project has grown continuously since its creation in mid-2014 and now counts almost 100,000 volunteers. The combined volunteers’ resources make up a sizeable fraction of overall resources for ATLAS simulation. This paper takes stock of the experience gained so far and describes the next steps in the evolution of the project. These improvements include running natively on Linux to ease the deployment on for example university clusters, using multiple cores inside one task to reduce the memory requirements and running different types of workload such as event generation. In addition to technical details the success of ATLAS@Home as an outreach tool is evaluated.

  12. Computing challenges of the CMS experiment

    International Nuclear Information System (INIS)

    Krammer, N.; Liko, D.

    2017-01-01

    The success of the LHC experiments is due to the magnificent performance of the detector systems and the excellent operating computing systems. The CMS offline software and computing system is successfully fulfilling the LHC Run 2 requirements. For the increased data rate of future LHC operation, together with high pileup interactions, improvements of the usage of the current computing facilities and new technologies became necessary. Especially for the challenge of the future HL-LHC a more flexible and sophisticated computing model is needed. In this presentation, I will discuss the current computing system used in the LHC Run 2 and future computing facilities for the HL-LHC runs using flexible computing technologies like commercial and academic computing clouds. The cloud resources are highly virtualized and can be deployed for a variety of computing tasks providing the capacities for the increasing needs of large scale scientific computing.

  13. A result-driven minimum blocking method for PageRank parallel computing

    Science.gov (United States)

    Tao, Wan; Liu, Tao; Yu, Wei; Huang, Gan

    2017-01-01

    Matrix blocking is a common method for improving computational efficiency of PageRank, but the blocking rules are hard to be determined, and the following calculation is complicated. In tackling these problems, we propose a minimum blocking method driven by result needs to accomplish a parallel implementation of PageRank algorithm. The minimum blocking just stores the element which is necessary for the result matrix. In return, the following calculation becomes simple and the consumption of the I/O transmission is cut down. We do experiments on several matrixes of different data size and different sparsity degree. The results show that the proposed method has better computational efficiency than traditional blocking methods.

  14. Fluid history computation methods for reactor safeguards problems using MNODE computer program

    International Nuclear Information System (INIS)

    Huang, Y.S.; Savery, C.W.

    1976-10-01

    A method for predicting the pressure-temperature histories of air, water liquid, and vapor flowing in a zoned containment as a result of high energy pipe rupture is described. The computer code, MNODE, has been developed for 12 connected control volumes and 24 inertia flow paths. Predictions by the code are compared with the results of an analytical gas dynamic problem, semiscale blowdown experiments, full scale MARVIKEN test results, Battelle-Frankfurt model PWR containment test data. The MNODE solutions to NRC/AEC subcompartment benchmark problems are also compared with results predicted by other computer codes such as RELAP-3, FLASH-2, CONTEMPT-PS. The analytical consideration is consistent with Section 6.2.1.2 of the Standard Format (Rev. 2) issued by U.S. Nuclear Regulatory Commission in September 1975

  15. An Adaptive Reordered Method for Computing PageRank

    Directory of Open Access Journals (Sweden)

    Yi-Ming Bu

    2013-01-01

    Full Text Available We propose an adaptive reordered method to deal with the PageRank problem. It has been shown that one can reorder the hyperlink matrix of PageRank problem to calculate a reduced system and get the full PageRank vector through forward substitutions. This method can provide a speedup for calculating the PageRank vector. We observe that in the existing reordered method, the cost of the recursively reordering procedure could offset the computational reduction brought by minimizing the dimension of linear system. With this observation, we introduce an adaptive reordered method to accelerate the total calculation, in which we terminate the reordering procedure appropriately instead of reordering to the end. Numerical experiments show the effectiveness of this adaptive reordered method.

  16. A fast point-cloud computing method based on spatial symmetry of Fresnel field

    Science.gov (United States)

    Wang, Xiangxiang; Zhang, Kai; Shen, Chuan; Zhu, Wenliang; Wei, Sui

    2017-10-01

    Aiming at the great challenge for Computer Generated Hologram (CGH) duo to the production of high spatial-bandwidth product (SBP) is required in the real-time holographic video display systems. The paper is based on point-cloud method and it takes advantage of the propagating reversibility of Fresnel diffraction in the propagating direction and the fringe pattern of a point source, known as Gabor zone plate has spatial symmetry, so it can be used as a basis for fast calculation of diffraction field in CGH. A fast Fresnel CGH method based on the novel look-up table (N-LUT) method is proposed, the principle fringe patterns (PFPs) at the virtual plane is pre-calculated by the acceleration algorithm and be stored. Secondly, the Fresnel diffraction fringe pattern at dummy plane can be obtained. Finally, the Fresnel propagation from dummy plan to hologram plane. The simulation experiments and optical experiments based on Liquid Crystal On Silicon (LCOS) is setup to demonstrate the validity of the proposed method under the premise of ensuring the quality of 3D reconstruction the method proposed in the paper can be applied to shorten the computational time and improve computational efficiency.

  17. Numerical experiment on finite element method for matching data

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Kumakura, Toshimasa; Yoshimura, Koichi.

    1993-03-01

    Numerical experiments are presented on the finite element method by Pletzer-Dewar for matching data of an ordinary differential equation with regular singular points by using model equation. Matching data play an important role in nonideal MHD stability analysis of a magnetically confined plasma. In the Pletzer-Dewar method, the Frobenius series for the 'big solution', the fundamental solution which is not square-integrable at the regular singular point, is prescribed. The experiments include studies of the convergence rate of the matching data obtained by the finite element method and of the effect on the results of computation by truncating the Frobenius series at finite terms. It is shown from the present study that the finite element method is an effective method for obtaining the matching data with high accuracy. (author)

  18. Numerical methods in matrix computations

    CERN Document Server

    Björck, Åke

    2015-01-01

    Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work. Åke Björck is a professor emeritus at the Department of Mathematics, Linköping University. He is a Fellow of the Society of Industrial and Applied Mathematics.

  19. Intravenous catheter training system: computer-based education versus traditional learning methods.

    Science.gov (United States)

    Engum, Scott A; Jeffries, Pamela; Fisher, Lisa

    2003-07-01

    Virtual reality simulators allow trainees to practice techniques without consequences, reduce potential risk associated with training, minimize animal use, and help to develop standards and optimize procedures. Current intravenous (IV) catheter placement training methods utilize plastic arms, however, the lack of variability can diminish the educational stimulus for the student. This study compares the effectiveness of an interactive, multimedia, virtual reality computer IV catheter simulator with a traditional laboratory experience of teaching IV venipuncture skills to both nursing and medical students. A randomized, pretest-posttest experimental design was employed. A total of 163 participants, 70 baccalaureate nursing students and 93 third-year medical students beginning their fundamental skills training were recruited. The students ranged in age from 20 to 55 years (mean 25). Fifty-eight percent were female and 68% percent perceived themselves as having average computer skills (25% declaring excellence). The methods of IV catheter education compared included a traditional method of instruction involving a scripted self-study module which involved a 10-minute videotape, instructor demonstration, and hands-on-experience using plastic mannequin arms. The second method involved an interactive multimedia, commercially made computer catheter simulator program utilizing virtual reality (CathSim). The pretest scores were similar between the computer and the traditional laboratory group. There was a significant improvement in cognitive gains, student satisfaction, and documentation of the procedure with the traditional laboratory group compared with the computer catheter simulator group. Both groups were similar in their ability to demonstrate the skill correctly. CONCLUSIONS; This evaluation and assessment was an initial effort to assess new teaching methodologies related to intravenous catheter placement and their effects on student learning outcomes and behaviors

  20. Increasing the computational efficient of digital cross correlation by a vectorization method

    Science.gov (United States)

    Chang, Ching-Yuan; Ma, Chien-Ching

    2017-08-01

    This study presents a vectorization method for use in MATLAB programming aimed at increasing the computational efficiency of digital cross correlation in sound and images, resulting in a speedup of 6.387 and 36.044 times compared with performance values obtained from looped expression. This work bridges the gap between matrix operations and loop iteration, preserving flexibility and efficiency in program testing. This paper uses numerical simulation to verify the speedup of the proposed vectorization method as well as experiments to measure the quantitative transient displacement response subjected to dynamic impact loading. The experiment involved the use of a high speed camera as well as a fiber optic system to measure the transient displacement in a cantilever beam under impact from a steel ball. Experimental measurement data obtained from the two methods are in excellent agreement in both the time and frequency domain, with discrepancies of only 0.68%. Numerical and experiment results demonstrate the efficacy of the proposed vectorization method with regard to computational speed in signal processing and high precision in the correlation algorithm. We also present the source code with which to build MATLAB-executable functions on Windows as well as Linux platforms, and provide a series of examples to demonstrate the application of the proposed vectorization method.

  1. New method of processing heat treatment experiments with numerical simulation support

    Science.gov (United States)

    Kik, T.; Moravec, J.; Novakova, I.

    2017-08-01

    In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.

  2. The adaptation method in the Monte Carlo simulation for computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Gun; Yoon, Chang Yeon; Lee, Won Ho [Dept. of Bio-convergence Engineering, Korea University, Seoul (Korea, Republic of); Cho, Seung Ryong [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sung Ho [Dept. of Neurosurgery, Ulsan University Hospital, Ulsan (Korea, Republic of)

    2015-06-15

    The patient dose incurred from diagnostic procedures during advanced radiotherapy has become an important issue. Many researchers in medical physics are using computational simulations to calculate complex parameters in experiments. However, extended computation times make it difficult for personal computers to run the conventional Monte Carlo method to simulate radiological images with high-flux photons such as images produced by computed tomography (CT). To minimize the computation time without degrading imaging quality, we applied a deterministic adaptation to the Monte Carlo calculation and verified its effectiveness by simulating CT image reconstruction for an image evaluation phantom (Catphan; Phantom Laboratory, New York NY, USA) and a human-like voxel phantom (KTMAN-2) (Los Alamos National Laboratory, Los Alamos, NM, USA). For the deterministic adaptation, the relationship between iteration numbers and the simulations was estimated and the option to simulate scattered radiation was evaluated. The processing times of simulations using the adaptive method were at least 500 times faster than those using a conventional statistical process. In addition, compared with the conventional statistical method, the adaptive method provided images that were more similar to the experimental images, which proved that the adaptive method was highly effective for a simulation that requires a large number of iterations-assuming no radiation scattering in the vicinity of detectors minimized artifacts in the reconstructed image.

  3. Experiment Dashboard for Monitoring of the LHC Distributed Computing Systems

    International Nuclear Information System (INIS)

    Andreeva, J; Campos, M Devesas; Cros, J Tarragon; Gaidioz, B; Karavakis, E; Kokoszkiewicz, L; Lanciotti, E; Maier, G; Ollivier, W; Nowotka, M; Rocha, R; Sadykov, T; Saiz, P; Sargsyan, L; Sidorova, I; Tuckett, D

    2011-01-01

    LHC experiments are currently taking collisions data. A distributed computing model chosen by the four main LHC experiments allows physicists to benefit from resources spread all over the world. The distributed model and the scale of LHC computing activities increase the level of complexity of middleware, and also the chances of possible failures or inefficiencies in involved components. In order to ensure the required performance and functionality of the LHC computing system, monitoring the status of the distributed sites and services as well as monitoring LHC computing activities are among the key factors. Over the last years, the Experiment Dashboard team has been working on a number of applications that facilitate the monitoring of different activities: including following up jobs, transfers, and also site and service availabilities. This presentation describes Experiment Dashboard applications used by the LHC experiments and experience gained during the first months of data taking.

  4. First Experiences with LHC Grid Computing and Distributed Analysis

    CERN Document Server

    Fisk, Ian

    2010-01-01

    In this presentation the experiences of the LHC experiments using grid computing were presented with a focus on experience with distributed analysis. After many years of development, preparation, exercises, and validation the LHC (Large Hadron Collider) experiments are in operations. The computing infrastructure has been heavily utilized in the first 6 months of data collection. The general experience of exploiting the grid infrastructure for organized processing and preparation is described, as well as the successes employing the infrastructure for distributed analysis. At the end the expected evolution and future plans are outlined.

  5. Computer modeling of active experiments in space plasmas

    International Nuclear Information System (INIS)

    Bollens, R.J.

    1993-01-01

    The understanding of space plasmas is expanding rapidly. This is, in large part, due to the ambitious efforts of scientists from around the world who are performing large scale active experiments in the space plasma surrounding the earth. One such effort was designated the Active Magnetospheric Particle Tracer Explorers (AMPTE) and consisted of a series of plasma releases that were completed during 1984 and 1985. What makes the AMPTE experiments particularly interesting was the occurrence of a dramatic anomaly that was completely unpredicted. During the AMPTE experiment, three satellites traced the solar-wind flow into the earth's magnetosphere. One satellite, built by West Germany, released a series of barium and lithium canisters that were detonated and subsequently photo-ionized via solar radiation, thereby creating an artificial comet. Another satellite, built by Great Britain and in the vicinity during detonation, carried, as did the first satellite, a comprehensive set of magnetic field, particle and wave instruments. Upon detonation, what was observed by the satellites, as well as by aircraft and ground-based observers, was quite unexpected. The initial deflection of the ion clouds was not in the ambient solar wind's flow direction (rvec V) but rather in the direction transverse to the solar wind and the background magnetic field (rvec V x rvec B). This result was not predicted by any existing theories or simulation models; it is the main subject discussed in this dissertation. A large three dimensional computer simulation was produced to demonstrate that this transverse motion can be explained in terms of a rocket effect. Due to the extreme computer resources utilized in producing this work, the computer methods used to complete the calculation and the visualization techniques used to view the results are also discussed

  6. Computational methods in drug discovery

    Directory of Open Access Journals (Sweden)

    Sumudu P. Leelananda

    2016-12-01

    Full Text Available The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein–ligand docking, pharmacophore modeling and QSAR techniques are reviewed.

  7. Depth compensating calculation method of computer-generated holograms using symmetry and similarity of zone plates

    Science.gov (United States)

    Wei, Hui; Gong, Guanghong; Li, Ni

    2017-10-01

    Computer-generated hologram (CGH) is a promising 3D display technology while it is challenged by heavy computation load and vast memory requirement. To solve these problems, a depth compensating CGH calculation method based on symmetry and similarity of zone plates is proposed and implemented on graphics processing unit (GPU). An improved LUT method is put forward to compute the distances between object points and hologram pixels in the XY direction. The concept of depth compensating factor is defined and used for calculating the holograms of points with different depth positions instead of layer-based methods. The proposed method is suitable for arbitrary sampling objects with lower memory usage and higher computational efficiency compared to other CGH methods. The effectiveness of the proposed method is validated by numerical and optical experiments.

  8. Computing Nash equilibria through computational intelligence methods

    Science.gov (United States)

    Pavlidis, N. G.; Parsopoulos, K. E.; Vrahatis, M. N.

    2005-03-01

    Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.

  9. The Computer Game as a Somatic Experience

    DEFF Research Database (Denmark)

    Nielsen, Henrik Smed

    2010-01-01

    This article describes the experience of playing computer games. With a media archaeological outset the relation between human and machine is emphasised as the key to understand the experience. This relation is further explored by drawing on a phenomenological philosophy of technology which...

  10. Using Computer Games for Instruction: The Student Experience

    Science.gov (United States)

    Grimley, Michael; Green, Richard; Nilsen, Trond; Thompson, David; Tomes, Russell

    2011-01-01

    Computer games are fun, exciting and motivational when used as leisure pursuits. But do they have similar attributes when utilized for educational purposes? This article investigates whether learning by computer game can improve student experiences compared with a more formal lecture approach and whether computer games have potential for improving…

  11. Mental Rotation Ability and Computer Game Experience

    Science.gov (United States)

    Gecu, Zeynep; Cagiltay, Kursat

    2015-01-01

    Computer games, which are currently very popular among students, can affect different cognitive abilities. The purpose of the present study is to examine undergraduate students' experiences and preferences in playing computer games as well as their mental rotation abilities. A total of 163 undergraduate students participated. The results showed a…

  12. Methods of computer experiment in gamma-radiation technologies using new radiation sources

    CERN Document Server

    Bratchenko, M I; Rozhkov, V V

    2001-01-01

    Presented id the methodology of computer modeling application for physical substantiation of new irradiation technologies and irradiators design work flow. Modeling tasks for irradiation technologies are structured along with computerized methods of their solution and appropriate types of software. Comparative analysis of available packages for Monte-Carlo modeling of electromagnetic processes in media is done concerning their application to irradiation technologies problems. The results of codes approbation and preliminary data on gamma-radiation absorbed dose distributions for nuclides of conventional sources and prospective Europium-based gamma-sources are presented.

  13. Reconstruction method for fluorescent X-ray computed tomography by least-squares method using singular value decomposition

    Science.gov (United States)

    Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    1997-02-01

    We describe a new attenuation correction method for fluorescent X-ray computed tomography (FXCT) applied to image nonradioactive contrast materials in vivo. The principle of the FXCT imaging is that of computed tomography of the first generation. Using monochromatized synchrotron radiation from the BLNE-5A bending-magnet beam line of Tristan Accumulation Ring in KEK, Japan, we studied phantoms with the FXCT method, and we succeeded in delineating a 4-mm-diameter channel filled with a 500 /spl mu/g I/ml iodine solution in a 20-mm-diameter acrylic cylindrical phantom. However, to detect smaller iodine concentrations, attenuation correction is needed. We present a correction method based on the equation representing the measurement process. The discretized equation system is solved by the least-squares method using the singular value decomposition. The attenuation correction method is applied to the projections by the Monte Carlo simulation and the experiment to confirm its effectiveness.

  14. A virtual component method in numerical computation of cascades for isotope separation

    International Nuclear Information System (INIS)

    Zeng Shi; Cheng Lu

    2014-01-01

    The analysis, optimization, design and operation of cascades for isotope separation involve computations of cascades. In analytical analysis of cascades, using virtual components is a very useful analysis method. For complicated cases of cascades, numerical analysis has to be employed. However, bound up to the conventional idea that the concentration of a virtual component should be vanishingly small, virtual component is not yet applied to numerical computations. Here a method of introducing the method of using virtual components to numerical computations is elucidated, and its application to a few types of cascades is explained and tested by means of numerical experiments. The results show that the concentration of a virtual component is not restrained at all by the 'vanishingly small' idea. For the same requirements on cascades, the cascades obtained do not depend on the concentrations of virtual components. (authors)

  15. Computer-Aided Experiment Planning toward Causal Discovery in Neuroscience.

    Science.gov (United States)

    Matiasz, Nicholas J; Wood, Justin; Wang, Wei; Silva, Alcino J; Hsu, William

    2017-01-01

    Computers help neuroscientists to analyze experimental results by automating the application of statistics; however, computer-aided experiment planning is far less common, due to a lack of similar quantitative formalisms for systematically assessing evidence and uncertainty. While ontologies and other Semantic Web resources help neuroscientists to assimilate required domain knowledge, experiment planning requires not only ontological but also epistemological (e.g., methodological) information regarding how knowledge was obtained. Here, we outline how epistemological principles and graphical representations of causality can be used to formalize experiment planning toward causal discovery. We outline two complementary approaches to experiment planning: one that quantifies evidence per the principles of convergence and consistency, and another that quantifies uncertainty using logical representations of constraints on causal structure. These approaches operationalize experiment planning as the search for an experiment that either maximizes evidence or minimizes uncertainty. Despite work in laboratory automation, humans must still plan experiments and will likely continue to do so for some time. There is thus a great need for experiment-planning frameworks that are not only amenable to machine computation but also useful as aids in human reasoning.

  16. Numerical Methods for Stochastic Computations A Spectral Method Approach

    CERN Document Server

    Xiu, Dongbin

    2010-01-01

    The first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC meth

  17. Robust flow stability: Theory, computations and experiments in near wall turbulence

    Science.gov (United States)

    Bobba, Kumar Manoj

    Helmholtz established the field of hydrodynamic stability with his pioneering work in 1868. From then on, hydrodynamic stability became an important tool in understanding various fundamental fluid flow phenomena in engineering (mechanical, aeronautics, chemical, materials, civil, etc.) and science (astrophysics, geophysics, biophysics, etc.), and turbulence in particular. However, there are many discrepancies between classical hydrodynamic stability theory and experiments. In this thesis, the limitations of traditional hydrodynamic stability theory are shown and a framework for robust flow stability theory is formulated. A host of new techniques like gramians, singular values, operator norms, etc. are introduced to understand the role of various kinds of uncertainty. An interesting feature of this framework is the close interplay between theory and computations. It is shown that a subset of Navier-Stokes equations are globally, non-nonlinearly stable for all Reynolds number. Yet, invoking this new theory, it is shown that these equations produce structures (vortices and streaks) as seen in the experiments. The experiments are done in zero pressure gradient transiting boundary layer on a flat plate in free surface tunnel. Digital particle image velocimetry, and MEMS based laser Doppler velocimeter and shear stress sensors have been used to make quantitative measurements of the flow. Various theoretical and computational predictions are in excellent agreement with the experimental data. A closely related topic of modeling, simulation and complexity reduction of large mechanics problems with multiple spatial and temporal scales is also studied. A nice method that rigorously quantifies the important scales and automatically gives models of the problem to various levels of accuracy is introduced. Computations done using spectral methods are presented.

  18. Computational experiment approach to advanced secondary mathematics curriculum

    CERN Document Server

    Abramovich, Sergei

    2014-01-01

    This book promotes the experimental mathematics approach in the context of secondary mathematics curriculum by exploring mathematical models depending on parameters that were typically considered advanced in the pre-digital education era. This approach, by drawing on the power of computers to perform numerical computations and graphical constructions, stimulates formal learning of mathematics through making sense of a computational experiment. It allows one (in the spirit of Freudenthal) to bridge serious mathematical content and contemporary teaching practice. In other words, the notion of teaching experiment can be extended to include a true mathematical experiment. When used appropriately, the approach creates conditions for collateral learning (in the spirit of Dewey) to occur including the development of skills important for engineering applications of mathematics. In the context of a mathematics teacher education program, this book addresses a call for the preparation of teachers capable of utilizing mo...

  19. Non-linear heat transfer computer code by finite element method

    International Nuclear Information System (INIS)

    Nagato, Kotaro; Takikawa, Noboru

    1977-01-01

    The computer code THETA-2D for the calculation of temperature distribution by the two-dimensional finite element method was made for the analysis of heat transfer in a high temperature structure. Numerical experiment was performed for the numerical integration of the differential equation of heat conduction. The Runge-Kutta method of the numerical experiment produced an unstable solution. A stable solution was obtained by the β method with the β value of 0.35. In high temperature structures, the radiative heat transfer can not be neglected. To introduce a term of the radiative heat transfer, a functional neglecting the radiative heat transfer was derived at first. Then, the radiative term was added after the discretion by variation method. Five model calculations were carried out by the computer code. Calculation of steady heat conduction was performed. When estimated initial temperature is 1,000 degree C, reasonable heat blance was obtained. In case of steady-unsteady temperature calculation, the time integral by THETA-2D turned out to be under-estimation for enthalpy change. With a one-dimensional model, the temperature distribution in a structure, in which heat conductivity is dependent on temperature, was calculated. Calculation with a model which has a void inside was performed. Finally, model calculation for a complex system was carried out. (Kato, T.)

  20. Slepian modeling as a computational method in random vibration analysis of hysteretic structures

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob

    1999-01-01

    white noise. The computation time for obtaining estimates of relevant statistics on a given accuracy level is decreased by factors of one ormore orders of size as compared to the computation time needed for direct elasto-plastic displacementresponse simulations by vectorial Markov sequence techniques....... Moreover the Slepian method gives valuablephysical insight about the details of the plastic displacement development by time.The paper gives a general self-contained mathematical description of the Slepian method based plasticdisplacement analysis of Gaussian white noise excited EPOs. Experiences...

  1. Method of Computer-aided Instruction in Situation Control Systems

    Directory of Open Access Journals (Sweden)

    Anatoliy O. Kargin

    2013-01-01

    Full Text Available The article considers the problem of computer-aided instruction in context-chain motivated situation control system of the complex technical system behavior. The conceptual and formal models of situation control with practical instruction are considered. Acquisition of new behavior knowledge is presented as structural changes in system memory in the form of situational agent set. Model and method of computer-aided instruction represent formalization, based on the nondistinct theories by physiologists and cognitive psychologists.The formal instruction model describes situation and reaction formation and dependence on different parameters, effecting education, such as the reinforcement value, time between the stimulus, action and the reinforcement. The change of the contextual link between situational elements when using is formalized.The examples and results of computer instruction experiments of the robot device “LEGO MINDSTORMS NXT”, equipped with ultrasonic distance, touch, light sensors.

  2. Analysis methods of neutrons induced resonances in the transmission experiments by time-of-flight and automation of these methods on IBM 7094 II computer; Methode d'analyse des resonances induites par les neutrons dans les experiences de transmission par temps-de-vol et automatisation de ces methodes sur ordinateur IBM-7094 II

    Energy Technology Data Exchange (ETDEWEB)

    Corge, C

    1967-07-01

    The neutron induced resonances analysis aims to determine the neutrons characteristics, leading to the excitation energies, de-excitation probabilities by gamma radiation emission, by neutron emission or by fission, their spin, their parity... This document describes the methods developed, or adapted, the calculation schemes and the algorithms implemented to realize such analysis on a computer, from data obtained during time-of-flight experiments on the linear accelerator of Saclay. (A.L.B.)

  3. Analysis methods of neutrons induced resonances in the transmission experiments by time-of-flight and automation of these methods on IBM 7094 II computer; Methode d'analyse des resonances induites par les neutrons dans les experiences de transmission par temps-de-vol et automatisation de ces methodes sur ordinateur IBM-7094 II

    Energy Technology Data Exchange (ETDEWEB)

    Corge, C

    1967-07-01

    The neutron induced resonances analysis aims to determine the neutrons characteristics, leading to the excitation energies, de-excitation probabilities by gamma radiation emission, by neutron emission or by fission, their spin, their parity... This document describes the methods developed, or adapted, the calculation schemes and the algorithms implemented to realize such analysis on a computer, from data obtained during time-of-flight experiments on the linear accelerator of Saclay. (A.L.B.)

  4. Industrial applications of formal methods to model, design and analyze computer systems

    CERN Document Server

    Craigen, Dan

    1995-01-01

    Formal methods are mathematically-based techniques, often supported by reasoning tools, that can offer a rigorous and effective way to model, design and analyze computer systems. The purpose of this study is to evaluate international industrial experience in using formal methods. The cases selected are representative of industrial-grade projects and span a variety of application domains. The study had three main objectives: · To better inform deliberations within industry and government on standards and regulations; · To provide an authoritative record on the practical experience of formal m

  5. Laboratory Sequence in Computational Methods for Introductory Chemistry

    Science.gov (United States)

    Cody, Jason A.; Wiser, Dawn C.

    2003-07-01

    A four-exercise laboratory sequence for introductory chemistry integrating hands-on, student-centered experience with computer modeling has been designed and implemented. The progression builds from exploration of molecular shapes to intermolecular forces and the impact of those forces on chemical separations made with gas chromatography and distillation. The sequence ends with an exploration of molecular orbitals. The students use the computers as a tool; they build the molecules, submit the calculations, and interpret the results. Because of the construction of the sequence and its placement spanning the semester break, good laboratory notebook practices are reinforced and the continuity of course content and methods between semesters is emphasized. The inclusion of these techniques in the first year of chemistry has had a positive impact on student perceptions and student learning.

  6. Computational methods for fluid dynamics

    CERN Document Server

    Ferziger, Joel H

    2002-01-01

    In its 3rd revised and extended edition the book offers an overview of the techniques used to solve problems in fluid mechanics on computers and describes in detail those most often used in practice. Included are advanced methods in computational fluid dynamics, like direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, structured, block-structured and unstructured boundary-fitted grids, free surface flows. The 3rd edition contains a new section dealing with grid quality and an extended description of discretization methods. The book shows common roots and basic principles for many different methods. The book also contains a great deal of practical advice for code developers and users, it is designed to be equally useful to beginners and experts. The issues of numerical accuracy, estimation and reduction of numerical errors are dealt with in detail, with many examples. A full-feature user-friendly demo-version of a commercial CFD software has been added, which ca...

  7. Remote Viewing and Computer Communications--An Experiment.

    Science.gov (United States)

    Vallee, Jacques

    1988-01-01

    A series of remote viewing experiments were run with 12 participants who communicated through a computer conferencing network. The correct target sample was identified in 8 out of 33 cases. This represented more than double the pure chance expectation. Appendices present protocol, instructions, and results of the experiments. (Author/YP)

  8. Methods for computing color anaglyphs

    Science.gov (United States)

    McAllister, David F.; Zhou, Ya; Sullivan, Sophia

    2010-02-01

    A new computation technique is presented for calculating pixel colors in anaglyph images. The method depends upon knowing the RGB spectral distributions of the display device and the transmission functions of the filters in the viewing glasses. It requires the solution of a nonlinear least-squares program for each pixel in a stereo pair and is based on minimizing color distances in the CIEL*a*b* uniform color space. The method is compared with several techniques for computing anaglyphs including approximation in CIE space using the Euclidean and Uniform metrics, the Photoshop method and its variants, and a method proposed by Peter Wimmer. We also discuss the methods of desaturation and gamma correction for reducing retinal rivalry.

  9. Cross-cultural human-computer interaction and user experience design a semiotic perspective

    CERN Document Server

    Brejcha, Jan

    2015-01-01

    This book describes patterns of language and culture in human-computer interaction (HCI). Through numerous examples, it shows why these patterns matter and how to exploit them to design a better user experience (UX) with computer systems. It provides scientific information on the theoretical and practical areas of the interaction and communication design for research experts and industry practitioners and covers the latest research in semiotics and cultural studies, bringing a set of tools and methods to benefit the process of designing with the cultural background in mind.

  10. USING RESEARCH METHODS IN HUMAN COMPUTER INTERACTION TO DESIGN TECHNOLOGY FOR RESILIENCE

    OpenAIRE

    Lopes, Arminda Guerra

    2016-01-01

    ABSTRACT Research in human computer interaction (HCI) covers both technological and human behavioural concerns. As a consequence, the contributions made in HCI research tend to be aware to either engineering or the social sciences. In HCI the purpose of practical research contributions is to reveal unknown insights about human behaviour and its relationship to technology. Practical research methods normally used in HCI include formal experiments, field experiments, field studies, interviews, ...

  11. Computer-aided head film analysis: the University of California San Francisco method.

    Science.gov (United States)

    Baumrind, S; Miller, D M

    1980-07-01

    Computer technology is already assuming an important role in the management of orthodontic practices. The next 10 years are likely to see expansion in computer usage into the areas of diagnosis, treatment planning, and treatment-record keeping. In the areas of diagnosis and treatment planning, one of the first problems to be attacked will be the automation of head film analysis. The problems of constructing computer-aided systems for this purpose are considered herein in the light of the authors' 10 years of experience in developing a similar system for research purposes. The need for building in methods for automatic detection and correction of gross errors is discussed and the authors' method for doing so is presented. The construction of a rudimentary machine-readable data base for research and clinical purposes is described.

  12. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  13. Numerical computer methods part D

    CERN Document Server

    Johnson, Michael L

    2004-01-01

    The aim of this volume is to brief researchers of the importance of data analysis in enzymology, and of the modern methods that have developed concomitantly with computer hardware. It is also to validate researchers' computer programs with real and synthetic data to ascertain that the results produced are what they expected. Selected Contents: Prediction of protein structure; modeling and studying proteins with molecular dynamics; statistical error in isothermal titration calorimetry; analysis of circular dichroism data; model comparison methods.

  14. Advanced computational electromagnetic methods and applications

    CERN Document Server

    Li, Wenxing; Elsherbeni, Atef; Rahmat-Samii, Yahya

    2015-01-01

    This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.

  15. A Computational Experiment on Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the…

  16. Reliability of Lyapunov characteristic exponents computed by the two-particle method

    Science.gov (United States)

    Mei, Lijie; Huang, Li

    2018-03-01

    For highly complex problems, such as the post-Newtonian formulation of compact binaries, the two-particle method may be a better, or even the only, choice to compute the Lyapunov characteristic exponent (LCE). This method avoids the complex calculations of variational equations compared with the variational method. However, the two-particle method sometimes provides spurious estimates to LCEs. In this paper, we first analyze the equivalence in the definition of LCE between the variational and two-particle methods for Hamiltonian systems. Then, we develop a criterion to determine the reliability of LCEs computed by the two-particle method by considering the magnitude of the initial tangent (or separation) vector ξ0 (or δ0), renormalization time interval τ, machine precision ε, and global truncation error ɛT. The reliable Lyapunov characteristic indicators estimated by the two-particle method form a V-shaped region, which is restricted by d0, ε, and ɛT. Finally, the numerical experiments with the Hénon-Heiles system, the spinning compact binaries, and the post-Newtonian circular restricted three-body problem strongly support the theoretical results.

  17. Class of reconstructed discontinuous Galerkin methods in computational fluid dynamics

    International Nuclear Information System (INIS)

    Luo, Hong; Xia, Yidong; Nourgaliev, Robert

    2011-01-01

    A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness. (author)

  18. RC Circuits: Some Computer-Interfaced Experiments.

    Science.gov (United States)

    Jolly, Pratibha; Verma, Mallika

    1994-01-01

    Describes a simple computer-interface experiment for recording the response of an RC network to an arbitrary input excitation. The setup is used to pose a variety of open-ended investigations in network modeling by varying the initial conditions, input signal waveform, and the circuit topology. (DDR)

  19. Computational efficiency for the surface renewal method

    Science.gov (United States)

    Kelley, Jason; Higgins, Chad

    2018-04-01

    Measuring surface fluxes using the surface renewal (SR) method requires programmatic algorithms for tabulation, algebraic calculation, and data quality control. A number of different methods have been published describing automated calibration of SR parameters. Because the SR method utilizes high-frequency (10 Hz+) measurements, some steps in the flux calculation are computationally expensive, especially when automating SR to perform many iterations of these calculations. Several new algorithms were written that perform the required calculations more efficiently and rapidly, and that tested for sensitivity to length of flux averaging period, ability to measure over a large range of lag timescales, and overall computational efficiency. These algorithms utilize signal processing techniques and algebraic simplifications that demonstrate simple modifications that dramatically improve computational efficiency. The results here complement efforts by other authors to standardize a robust and accurate computational SR method. Increased speed of computation time grants flexibility to implementing the SR method, opening new avenues for SR to be used in research, for applied monitoring, and in novel field deployments.

  20. Performing quantum computing experiments in the cloud

    Science.gov (United States)

    Devitt, Simon J.

    2016-09-01

    Quantum computing technology has reached a second renaissance in the past five years. Increased interest from both the private and public sector combined with extraordinary theoretical and experimental progress has solidified this technology as a major advancement in the 21st century. As anticipated my many, some of the first realizations of quantum computing technology has occured over the cloud, with users logging onto dedicated hardware over the classical internet. Recently, IBM has released the Quantum Experience, which allows users to access a five-qubit quantum processor. In this paper we take advantage of this online availability of actual quantum hardware and present four quantum information experiments. We utilize the IBM chip to realize protocols in quantum error correction, quantum arithmetic, quantum graph theory, and fault-tolerant quantum computation by accessing the device remotely through the cloud. While the results are subject to significant noise, the correct results are returned from the chip. This demonstrates the power of experimental groups opening up their technology to a wider audience and will hopefully allow for the next stage of development in quantum information technology.

  1. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  2. Computational techniques of the simplex method

    CERN Document Server

    Maros, István

    2003-01-01

    Computational Techniques of the Simplex Method is a systematic treatment focused on the computational issues of the simplex method. It provides a comprehensive coverage of the most important and successful algorithmic and implementation techniques of the simplex method. It is a unique source of essential, never discussed details of algorithmic elements and their implementation. On the basis of the book the reader will be able to create a highly advanced implementation of the simplex method which, in turn, can be used directly or as a building block in other solution algorithms.

  3. Tactile Radar: experimenting a computer game with visually disabled.

    Science.gov (United States)

    Kastrup, Virgínia; Cassinelli, Alvaro; Quérette, Paulo; Bergstrom, Niklas; Sampaio, Eliana

    2017-09-18

    Visually disabled people increasingly use computers in everyday life, thanks to novel assistive technologies better tailored to their cognitive functioning. Like sighted people, many are interested in computer games - videogames and audio-games. Tactile-games are beginning to emerge. The Tactile Radar is a device through which a visually disabled person is able to detect distal obstacles. In this study, it is connected to a computer running a tactile-game. The game consists in finding and collecting randomly arranged coins in a virtual room. The study was conducted with nine congenital blind people including both sexes, aged 20-64 years old. Complementary methods of first and third person were used: the debriefing interview and the quasi-experimental design. The results indicate that the Tactile Radar is suitable for the creation of computer games specifically tailored for visually disabled people. Furthermore, the device seems capable of eliciting a powerful immersive experience. Methodologically speaking, this research contributes to the consolidation and development of first and third person complementary methods, particularly useful in disabled people research field, including the evaluation by users of the Tactile Radar effectiveness in a virtual reality context. Implications for rehabilitation Despite the growing interest in virtual games for visually disabled people, they still find barriers to access such games. Through the development of assistive technologies such as the Tactile Radar, applied in virtual games, we can create new opportunities for leisure, socialization and education for visually disabled people. The results of our study indicate that the Tactile Radar is adapted to the creation of video games for visually disabled people, providing a playful interaction with the players.

  4. Computational methods for reversed-field equilibrium

    International Nuclear Information System (INIS)

    Boyd, J.K.; Auerbach, S.P.; Willmann, P.A.; Berk, H.L.; McNamara, B.

    1980-01-01

    Investigating the temporal evolution of reversed-field equilibrium caused by transport processes requires the solution of the Grad-Shafranov equation and computation of field-line-averaged quantities. The technique for field-line averaging and the computation of the Grad-Shafranov equation are presented. Application of Green's function to specify the Grad-Shafranov equation boundary condition is discussed. Hill's vortex formulas used to verify certain computations are detailed. Use of computer software to implement computational methods is described

  5. Advanced scientific computational methods and their applications to nuclear technologies. (4) Overview of scientific computational methods, introduction of continuum simulation methods and their applications (4)

    International Nuclear Information System (INIS)

    Sekimura, Naoto; Okita, Taira

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the fourth issue showing the overview of scientific computational methods with the introduction of continuum simulation methods and their applications. Simulation methods on physical radiation effects on materials are reviewed based on the process such as binary collision approximation, molecular dynamics, kinematic Monte Carlo method, reaction rate method and dislocation dynamics. (T. Tanaka)

  6. Estimation of subcriticality with the computed values analysis using MCNP of experiment on coupled cores

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Yamamoto, Toshihiro; Arakawa, Takuya; Naito, Yoshitaka

    1998-01-01

    Experiments on coupled cores performed at TCA were analysed using continuous energy Monte Carlo calculation code MCNP 4A. Errors of neutron multiplication factors are evaluated using Indirect Bias Estimation Method proposed by authors. Calculation for simulation of pulsed neutron method was performed for 17 X 17 + 5G + 17 x 17 core system and its of exponential experiment method was also performed for 16 x 9 + 3G + 16 x 9 and 16 x 9 + 5G + 16 x 9 core systems. Errors of neutron multiplication factors are estimated to be (-1.5) - (-0.6)% evaluated by Indirect Bias Estimation Method. Its errors evaluated by conventional pulsed neutron method and exponential experiment method are estimated to be 7%, but it is below 1% for estimation of subcriticality with the computed values by applying Indirect Bias Estimation Method. Feasibility of subcriticality management is higher by application of the method to full scale fuel strage facility. (author)

  7. Zonal methods and computational fluid dynamics

    International Nuclear Information System (INIS)

    Atta, E.H.

    1985-01-01

    Recent advances in developing numerical algorithms for solving fluid flow problems, and the continuing improvement in the speed and storage of large scale computers have made it feasible to compute the flow field about complex and realistic configurations. Current solution methods involve the use of a hierarchy of mathematical models ranging from the linearized potential equation to the Navier Stokes equations. Because of the increasing complexity of both the geometries and flowfields encountered in practical fluid flow simulation, there is a growing emphasis in computational fluid dynamics on the use of zonal methods. A zonal method is one that subdivides the total flow region into interconnected smaller regions or zones. The flow solutions in these zones are then patched together to establish the global flow field solution. Zonal methods are primarily used either to limit the complexity of the governing flow equations to a localized region or to alleviate the grid generation problems about geometrically complex and multicomponent configurations. This paper surveys the application of zonal methods for solving the flow field about two and three-dimensional configurations. Various factors affecting their accuracy and ease of implementation are also discussed. From the presented review it is concluded that zonal methods promise to be very effective for computing complex flowfields and configurations. Currently there are increasing efforts to improve their efficiency, versatility, and accuracy

  8. Computational methods for fracture mechanics analysis of pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1984-01-01

    Extensive computational analyses are required to determine material parameters and optimum pressure-temperature transients compatible with proposed pressurized-thermal-shock (PTS) test scenarios and with the capabilities of the PTS test facility at the Oak Ridge National Laboratory (ORNL). Computational economy has led to the application of techniques suitable for parametric studies involving the analysis of a large number of transients. These techniques, which include analysis capability for two- and three-dimensional (2-D and 3-D) superposition, inelastic ligament stability, and upper-shelf arrest, have been incorporated into the OCA/USA computer program. Features of the OCA/USA program are discussed, including applications to the PTS test configuration

  9. Computational methods for fracture mechanics analysis of pressurized-thermal-shock experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryan, R.H.; Bryson, J.W.; Merkle, J.G.

    1984-01-01

    Extensive computational analyses are required to determine material parameters and optimum pressure-temperature transients compatible with proposed pressurized-thermal-shock (PTS) test scenarios and with the capabilities of the PTS test facility at the Oak Ridge National Laboratory (ORNL). Computational economy has led to the application of techniques suitable for parametric studies involving the analysis of a large number of transients. These techniques, which include analysis capability for two- and three-dimensional (2-D and 3-D) superposition, inelastic ligament stability, and upper-shelf arrest, have been incorporated into the OCA/ USA computer program. Features of the OCA/USA program are discussed, including applications to the PTS test configuration. (author)

  10. Computational methods in power system analysis

    CERN Document Server

    Idema, Reijer

    2014-01-01

    This book treats state-of-the-art computational methods for power flow studies and contingency analysis. In the first part the authors present the relevant computational methods and mathematical concepts. In the second part, power flow and contingency analysis are treated. Furthermore, traditional methods to solve such problems are compared to modern solvers, developed using the knowledge of the first part of the book. Finally, these solvers are analyzed both theoretically and experimentally, clearly showing the benefits of the modern approach.

  11. Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory

    Science.gov (United States)

    Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.

    2015-01-01

    An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.

  12. One Head Start Classroom's Experience: Computers and Young Children's Development.

    Science.gov (United States)

    Fischer, Melissa Anne; Gillespie, Catherine Wilson

    2003-01-01

    Contends that early childhood educators need to understand how exposure to computers and constructive computer programs affects the development of children. Specifically examines: (1) research on children's technology experiences; (2) determining best practices; and (3) addressing educators' concerns about computers replacing other developmentally…

  13. POBE: A Computer Program for Optimal Design of Multi-Subject Blocked fMRI Experiments

    Directory of Open Access Journals (Sweden)

    Bärbel Maus

    2014-01-01

    Full Text Available For functional magnetic resonance imaging (fMRI studies, researchers can use multi-subject blocked designs to identify active brain regions for a certain stimulus type of interest. Before performing such an experiment, careful planning is necessary to obtain efficient stimulus effect estimators within the available financial resources. The optimal number of subjects and the optimal scanning time for a multi-subject blocked design with fixed experimental costs can be determined using optimal design methods. In this paper, the user-friendly computer program POBE 1.2 (program for optimal design of blocked experiments, version 1.2 is presented. POBE provides a graphical user interface for fMRI researchers to easily and efficiently design their experiments. The computer program POBE calculates the optimal number of subjects and the optimal scanning time for user specified experimental factors and model parameters so that the statistical efficiency is maximised for a given study budget. POBE can also be used to determine the minimum budget for a given power. Furthermore, a maximin design can be determined as efficient design for a possible range of values for the unknown model parameters. In this paper, the computer program is described and illustrated with typical experimental factors for a blocked fMRI experiment.

  14. Using a computer simulation for teaching communication skills: A blinded multisite mixed methods randomized controlled trial

    Science.gov (United States)

    Kron, Frederick W.; Fetters, Michael D.; Scerbo, Mark W.; White, Casey B.; Lypson, Monica L.; Padilla, Miguel A.; Gliva-McConvey, Gayle A.; Belfore, Lee A.; West, Temple; Wallace, Amelia M.; Guetterman, Timothy C.; Schleicher, Lauren S.; Kennedy, Rebecca A.; Mangrulkar, Rajesh S.; Cleary, James F.; Marsella, Stacy C.; Becker, Daniel M.

    2016-01-01

    Objectives To assess advanced communication skills among second-year medical students exposed either to a computer simulation (MPathic-VR) featuring virtual humans, or to a multimedia computer-based learning module, and to understand each group’s experiences and learning preferences. Methods A single-blinded, mixed methods, randomized, multisite trial compared MPathic-VR (N=210) to computer-based learning (N=211). Primary outcomes: communication scores during repeat interactions with MPathic-VR’s intercultural and interprofessional communication scenarios and scores on a subsequent advanced communication skills objective structured clinical examination (OSCE). Multivariate analysis of variance was used to compare outcomes. Secondary outcomes: student attitude surveys and qualitative assessments of their experiences with MPathic-VR or computer-based learning. Results MPathic-VR-trained students improved their intercultural and interprofessional communication performance between their first and second interactions with each scenario. They also achieved significantly higher composite scores on the OSCE than computer-based learning-trained students. Attitudes and experiences were more positive among students trained with MPathic-VR, who valued its providing immediate feedback, teaching nonverbal communication skills, and preparing them for emotion-charged patient encounters. Conclusions MPathic-VR was effective in training advanced communication skills and in enabling knowledge transfer into a more realistic clinical situation. Practice Implications MPathic-VR’s virtual human simulation offers an effective and engaging means of advanced communication training. PMID:27939846

  15. Distributed computing grid experiences in CMS

    CERN Document Server

    Andreeva, Julia; Barrass, T; Bonacorsi, D; Bunn, Julian; Capiluppi, P; Corvo, M; Darmenov, N; De Filippis, N; Donno, F; Donvito, G; Eulisse, G; Fanfani, A; Fanzago, F; Filine, A; Grandi, C; Hernández, J M; Innocente, V; Jan, A; Lacaprara, S; Legrand, I; Metson, S; Newbold, D; Newman, H; Pierro, A; Silvestris, L; Steenberg, C; Stockinger, H; Taylor, Lucas; Thomas, M; Tuura, L; Van Lingen, F; Wildish, Tony

    2005-01-01

    The CMS experiment is currently developing a computing system capable of serving, processing and archiving the large number of events that will be generated when the CMS detector starts taking data. During 2004 CMS undertook a large scale data challenge to demonstrate the ability of the CMS computing system to cope with a sustained data- taking rate equivalent to 25% of startup rate. Its goals were: to run CMS event reconstruction at CERN for a sustained period at 25 Hz input rate; to distribute the data to several regional centers; and enable data access at those centers for analysis. Grid middleware was utilized to help complete all aspects of the challenge. To continue to provide scalable access from anywhere in the world to the data, CMS is developing a layer of software that uses Grid tools to gain access to data and resources, and that aims to provide physicists with a user friendly interface for submitting their analysis jobs. This paper describes the data challenge experience with Grid infrastructure ...

  16. Automatization of physical experiments on-line with the MINSK-32 computer

    International Nuclear Information System (INIS)

    Fefilov, B.V.; Mikhushkin, A.V.; Morozov, V.M.; Sukhov, A.M.; Chelnokov, L.P.

    1978-01-01

    The system for data acquisition and processing of complex multi-dimensional experiments is described. The system includes the autonomous modules in the CAMAC standard, the NAIRI-4 small computer and the MINSK-32 base computer. The NAIRI-4 computer effects preliminary storage, data processing and experiment control. Its software includes the microprogram software of the NAIRI-4 computer, the software of the NAIRI-2 computer, the software of the PDP-11 computer, the technological software on the Es computers. A crate controller and a display driver are connected to the main channel for the operation of the NAIRI-4 computer on line with experimental devices. An input-output channel commutator, which transforms the MINSK-32 computer levels to the TTL levels and vice versa, was developed to enlarge the possibilities of the connection of the measurement modules to the MINSK-32 computer. The graphic display on the basis of the HP-1300A monitor with a light pencil is used for highly effective spectrum processing

  17. USING COMPUTER-BASED TESTING AS ALTERNATIVE ASSESSMENT METHOD OF STUDENT LEARNING IN DISTANCE EDUCATION

    Directory of Open Access Journals (Sweden)

    Amalia SAPRIATI

    2010-04-01

    Full Text Available This paper addresses the use of computer-based testing in distance education, based on the experience of Universitas Terbuka (UT, Indonesia. Computer-based testing has been developed at UT for reasons of meeting the specific needs of distance students as the following: Ø students’ inability to sit for the scheduled test, Ø conflicting test schedules, and Ø students’ flexibility to take examination to improve their grades. In 2004, UT initiated a pilot project in the development of system and program for computer-based testing method. Then in 2005 and 2006 tryouts in the use of computer-based testing methods were conducted in 7 Regional Offices that were considered as having sufficient supporting recourses. The results of the tryouts revealed that students were enthusiastic in taking computer-based tests and they expected that the test method would be provided by UT as alternative to the traditional paper and pencil test method. UT then implemented computer-based testing method in 6 and 12 Regional Offices in 2007 and 2008 respectively. The computer-based testing was administered in the city of the designated Regional Office and was supervised by the Regional Office staff. The development of the computer-based testing was initiated with conducting tests using computers in networked configuration. The system has been continually improved, and it currently uses devices linked to the internet or the World Wide Web. The construction of the test involves the generation and selection of the test items from the item bank collection of the UT Examination Center. Thus the combination of the selected items compromises the test specification. Currently UT has offered 250 courses involving the use of computer-based testing. Students expect that more courses are offered with computer-based testing in Regional Offices within easy access by students.

  18. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company

    Science.gov (United States)

    Lores, M. E.

    1978-01-01

    Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.

  19. Computational methods in earthquake engineering

    CERN Document Server

    Plevris, Vagelis; Lagaros, Nikos

    2017-01-01

    This is the third book in a series on Computational Methods in Earthquake Engineering. The purpose of this volume is to bring together the scientific communities of Computational Mechanics and Structural Dynamics, offering a wide coverage of timely issues on contemporary Earthquake Engineering. This volume will facilitate the exchange of ideas in topics of mutual interest and can serve as a platform for establishing links between research groups with complementary activities. The computational aspects are emphasized in order to address difficult engineering problems of great social and economic importance. .

  20. Method of mobile robot indoor navigation by artificial landmarks with use of computer vision

    Science.gov (United States)

    Glibin, E. S.; Shevtsov, A. A.; Enik, O. A.

    2018-05-01

    The article describes an algorithm of the mobile robot indoor navigation based on the use of visual odometry. The results of the experiment identifying calculation errors in the distance traveled on a slip are presented. It is shown that the use of computer vision allows one to correct erroneous coordinates of the robot with the help of artificial landmarks. The control system utilizing the proposed method has been realized on the basis of Arduino Mego 2560 controller and a single-board computer Raspberry Pi 3. The results of the experiment on the mobile robot navigation with the use of this control system are presented.

  1. FATAL, General Experiment Fitting Program by Nonlinear Regression Method

    International Nuclear Information System (INIS)

    Salmon, L.; Budd, T.; Marshall, M.

    1982-01-01

    1 - Description of problem or function: A generalized fitting program with a free-format keyword interface to the user. It permits experimental data to be fitted by non-linear regression methods to any function describable by the user. The user requires the minimum of computer experience but needs to provide a subroutine to define his function. Some statistical output is included as well as 'best' estimates of the function's parameters. 2 - Method of solution: The regression method used is based on a minimization technique devised by Powell (Harwell Subroutine Library VA05A, 1972) which does not require the use of analytical derivatives. The method employs a quasi-Newton procedure balanced with a steepest descent correction. Experience shows this to be efficient for a very wide range of application. 3 - Restrictions on the complexity of the problem: The current version of the program permits functions to be defined with up to 20 parameters. The function may be fitted to a maximum of 400 points, preferably with estimated values of weight given

  2. Computing discharge using the index velocity method

    Science.gov (United States)

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

  3. Framework for emotional mobile computation for creating entertainment experience

    Science.gov (United States)

    Lugmayr, Artur R.

    2007-02-01

    Ambient media are media, which are manifesting in the natural environment of the consumer. The perceivable borders between the media and the context, where the media is used are getting more and more blurred. The consumer is moving through a digital space of services throughout his daily life. As we are developing towards an experience society, the central point in the development of services is the creation of a consumer experience. This paper reviews possibilities and potentials of the creation of entertainment experiences with mobile phone platforms. It reviews sensor network capable of acquiring consumer behavior data, interactivity strategies, psychological models for emotional computation on mobile phones, and lays the foundations of a nomadic experience society. The paper rounds up with a presentation of several different possible service scenarios in the field of entertainment and leisure computation on mobiles. The goal of this paper is to present a framework and evaluation of possibilities of applying sensor technology on mobile platforms to create an increasing consumer entertainment experience.

  4. Expertik: Experience with Artificial Intelligence and Mobile Computing

    Directory of Open Access Journals (Sweden)

    José Edward Beltrán Lozano

    2013-06-01

    Full Text Available This article presents the experience in the development of services based in Artificial Intelligence, Service Oriented Architecture, mobile computing. It aims to combine technology offered by mobile computing provides techniques and artificial intelligence through a service provide diagnostic solutions to problems in industrial maintenance. It aims to combine technology offered by mobile computing and the techniques artificial intelligence through a service to provide diagnostic solutions to problems in industrial maintenance. For service creation are identified the elements of an expert system, the knowledge base, the inference engine and knowledge acquisition interfaces and their consultation. The applications were developed in ASP.NET under architecture three layers. The data layer was developed conjunction in SQL Server with data management classes; business layer in VB.NET and the presentation layer in ASP.NET with XHTML. Web interfaces for knowledge acquisition and query developed in Web and Mobile Web. The inference engine was conducted in web service developed for the fuzzy logic model to resolve requests from applications consulting knowledge (initially an exact rule-based logic within this experience to resolve requests from applications consulting knowledge. This experience seeks to strengthen a technology-based company to offer services based on AI for service companies Colombia.

  5. A Comparison of Sequential and GPU Implementations of Iterative Methods to Compute Reachability Probabilities

    Directory of Open Access Journals (Sweden)

    Elise Cormie-Bowins

    2012-10-01

    Full Text Available We consider the problem of computing reachability probabilities: given a Markov chain, an initial state of the Markov chain, and a set of goal states of the Markov chain, what is the probability of reaching any of the goal states from the initial state? This problem can be reduced to solving a linear equation Ax = b for x, where A is a matrix and b is a vector. We consider two iterative methods to solve the linear equation: the Jacobi method and the biconjugate gradient stabilized (BiCGStab method. For both methods, a sequential and a parallel version have been implemented. The parallel versions have been implemented on the compute unified device architecture (CUDA so that they can be run on a NVIDIA graphics processing unit (GPU. From our experiments we conclude that as the size of the matrix increases, the CUDA implementations outperform the sequential implementations. Furthermore, the BiCGStab method performs better than the Jacobi method for dense matrices, whereas the Jacobi method does better for sparse ones. Since the reachability probabilities problem plays a key role in probabilistic model checking, we also compared the implementations for matrices obtained from a probabilistic model checker. Our experiments support the conjecture by Bosnacki et al. that the Jacobi method is superior to Krylov subspace methods, a class to which the BiCGStab method belongs, for probabilistic model checking.

  6. Fibonacci’s Computation Methods vs Modern Algorithms

    Directory of Open Access Journals (Sweden)

    Ernesto Burattini

    2013-12-01

    Full Text Available In this paper we discuss some computational procedures given by Leonardo Pisano Fibonacci in his famous Liber Abaci book, and we propose their translation into a modern language for computers (C ++. Among the other we describe the method of “cross” multiplication, we evaluate its computational complexity in algorithmic terms and we show the output of a C ++ code that describes the development of the method applied to the product of two integers. In a similar way we show the operations performed on fractions introduced by Fibonacci. Thanks to the possibility to reproduce on a computer, the Fibonacci’s different computational procedures, it was possible to identify some calculation errors present in the different versions of the original text.

  7. Incorporating lab experience into computer security courses

    NARCIS (Netherlands)

    Ben Othmane, L.; Bhuse, V.; Lilien, L.T.

    2013-01-01

    We describe our experience with teaching computer security labs at two different universities. We report on the hardware and software lab setups, summarize lab assignments, present the challenges encountered, and discuss the lessons learned. We agree with and emphasize the viewpoint that security

  8. Homomorphic encryption experiments on IBM's cloud quantum computing platform

    Science.gov (United States)

    Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su

    2017-02-01

    Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.

  9. New or improved computational methods and advanced reactor design

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Takeda, Toshikazu; Ushio, Tadashi

    1997-01-01

    Nuclear computational method has been studied continuously up to date, as a fundamental technology supporting the nuclear development. At present, research on computational method according to new theory and the calculating method thought to be difficult to practise are also continued actively to find new development due to splendid improvement of features of computer. In Japan, many light water type reactors are now in operations, new computational methods are induced for nuclear design, and a lot of efforts are concentrated for intending to more improvement of economics and safety. In this paper, some new research results on the nuclear computational methods and their application to nuclear design of the reactor were described for introducing recent trend of the nuclear design of the reactor. 1) Advancement of the computational method, 2) Reactor core design and management of the light water reactor, and 3) Nuclear design of the fast reactor. (G.K.)

  10. Amorphous nanoparticles — Experiments and computer simulations

    International Nuclear Information System (INIS)

    Hoang, Vo Van; Ganguli, Dibyendu

    2012-01-01

    The data obtained by both experiments and computer simulations concerning the amorphous nanoparticles for decades including methods of synthesis, characterization, structural properties, atomic mechanism of a glass formation in nanoparticles, crystallization of the amorphous nanoparticles, physico-chemical properties (i.e. catalytic, optical, thermodynamic, magnetic, bioactivity and other properties) and various applications in science and technology have been reviewed. Amorphous nanoparticles coated with different surfactants are also reviewed as an extension in this direction. Much attention is paid to the pressure-induced polyamorphism of the amorphous nanoparticles or amorphization of the nanocrystalline counterparts. We also introduce here nanocomposites and nanofluids containing amorphous nanoparticles. Overall, amorphous nanoparticles exhibit a disordered structure different from that of corresponding bulks or from that of the nanocrystalline counterparts. Therefore, amorphous nanoparticles can have unique physico-chemical properties differed from those of the crystalline counterparts leading to their potential applications in science and technology.

  11. Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding

    Science.gov (United States)

    Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam

    2018-03-01

    We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.

  12. Reproducible computational biology experiments with SED-ML--the Simulation Experiment Description Markup Language.

    Science.gov (United States)

    Waltemath, Dagmar; Adams, Richard; Bergmann, Frank T; Hucka, Michael; Kolpakov, Fedor; Miller, Andrew K; Moraru, Ion I; Nickerson, David; Sahle, Sven; Snoep, Jacky L; Le Novère, Nicolas

    2011-12-15

    The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research

  13. Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language

    Science.gov (United States)

    2011-01-01

    Background The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. Results In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. Conclusions With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from

  14. vFitness: a web-based computing tool for improving estimation of in vitro HIV-1 fitness experiments

    Directory of Open Access Journals (Sweden)

    Demeter Lisa

    2010-05-01

    Full Text Available Abstract Background The replication rate (or fitness between viral variants has been investigated in vivo and in vitro for human immunodeficiency virus (HIV. HIV fitness plays an important role in the development and persistence of drug resistance. The accurate estimation of viral fitness relies on complicated computations based on statistical methods. This calls for tools that are easy to access and intuitive to use for various experiments of viral fitness. Results Based on a mathematical model and several statistical methods (least-squares approach and measurement error models, a Web-based computing tool has been developed for improving estimation of virus fitness in growth competition assays of human immunodeficiency virus type 1 (HIV-1. Conclusions Unlike the two-point calculation used in previous studies, the estimation here uses linear regression methods with all observed data in the competition experiment to more accurately estimate relative viral fitness parameters. The dilution factor is introduced for making the computational tool more flexible to accommodate various experimental conditions. This Web-based tool is implemented in C# language with Microsoft ASP.NET, and is publicly available on the Web at http://bis.urmc.rochester.edu/vFitness/.

  15. Computer-assisted comparison of analysis and test results in transportation experiments

    International Nuclear Information System (INIS)

    Knight, R.D.; Ammerman, D.J.; Koski, J.A.

    1998-01-01

    As a part of its ongoing research efforts, Sandia National Laboratories' Transportation Surety Center investigates the integrity of various containment methods for hazardous materials transport, subject to anomalous structural and thermal events such as free-fall impacts, collisions, and fires in both open and confined areas. Since it is not possible to conduct field experiments for every set of possible conditions under which an actual transportation accident might occur, accurate modeling methods must be developed which will yield reliable simulations of the effects of accident events under various scenarios. This requires computer software which is capable of assimilating and processing data from experiments performed as benchmarks, as well as data obtained from numerical models that simulate the experiment. Software tools which can present all of these results in a meaningful and useful way to the analyst are a critical aspect of this process. The purpose of this work is to provide software resources on a long term basis, and to ensure that the data visualization capabilities of the Center keep pace with advancing technology. This will provide leverage for its modeling and analysis abilities in a rapidly evolving hardware/software environment

  16. Evaluation Methods for Assessing Users’ Psychological Experiences of Web-Based Psychosocial Interventions: A Systematic Review

    Science.gov (United States)

    Howson, Moira; Ritchie, Linda; Carter, Philip D; Parry, David Tudor; Koziol-McLain, Jane

    2016-01-01

    Background The use of Web-based interventions to deliver mental health and behavior change programs is increasingly popular. They are cost-effective, accessible, and generally effective. Often these interventions concern psychologically sensitive and challenging issues, such as depression or anxiety. The process by which a person receives and experiences therapy is important to understanding therapeutic process and outcomes. While the experience of the patient or client in traditional face-to-face therapy has been evaluated in a number of ways, there appeared to be a gap in the evaluation of patient experiences of therapeutic interventions delivered online. Evaluation of Web-based artifacts has focused either on evaluation of experience from a computer Web-design perspective through usability testing or on evaluation of treatment effectiveness. Neither of these methods focuses on the psychological experience of the person while engaged in the therapeutic process. Objective This study aimed to investigate what methods, if any, have been used to evaluate the in situ psychological experience of users of Web-based self-help psychosocial interventions. Methods A systematic literature review was undertaken of interdisciplinary databases with a focus on health and computer sciences. Studies that met a predetermined search protocol were included. Results Among 21 studies identified that examined psychological experience of the user, only 1 study collected user experience in situ. The most common method of understanding users’ experience was through semistructured interviews conducted posttreatment or questionnaires administrated at the end of an intervention session. The questionnaires were usually based on standardized tools used to assess user experience with traditional face-to-face treatment. Conclusions There is a lack of methods specified in the literature to evaluate the interface between Web-based mental health or behavior change artifacts and users. Main

  17. Mass Spectrometry Coupled Experiments and Protein Structure Modeling Methods

    Directory of Open Access Journals (Sweden)

    Lee Sael

    2013-10-01

    Full Text Available With the accumulation of next generation sequencing data, there is increasing interest in the study of intra-species difference in molecular biology, especially in relation to disease analysis. Furthermore, the dynamics of the protein is being identified as a critical factor in its function. Although accuracy of protein structure prediction methods is high, provided there are structural templates, most methods are still insensitive to amino-acid differences at critical points that may change the overall structure. Also, predicted structures are inherently static and do not provide information about structural change over time. It is challenging to address the sensitivity and the dynamics by computational structure predictions alone. However, with the fast development of diverse mass spectrometry coupled experiments, low-resolution but fast and sensitive structural information can be obtained. This information can then be integrated into the structure prediction process to further improve the sensitivity and address the dynamics of the protein structures. For this purpose, this article focuses on reviewing two aspects: the types of mass spectrometry coupled experiments and structural data that are obtainable through those experiments; and the structure prediction methods that can utilize these data as constraints. Also, short review of current efforts in integrating experimental data in the structural modeling is provided.

  18. A New Soft Computing Method for K-Harmonic Means Clustering.

    Science.gov (United States)

    Yeh, Wei-Chang; Jiang, Yunzhi; Chen, Yee-Fen; Chen, Zhe

    2016-01-01

    The K-harmonic means clustering algorithm (KHM) is a new clustering method used to group data such that the sum of the harmonic averages of the distances between each entity and all cluster centroids is minimized. Because it is less sensitive to initialization than K-means (KM), many researchers have recently been attracted to studying KHM. In this study, the proposed iSSO-KHM is based on an improved simplified swarm optimization (iSSO) and integrates a variable neighborhood search (VNS) for KHM clustering. As evidence of the utility of the proposed iSSO-KHM, we present extensive computational results on eight benchmark problems. From the computational results, the comparison appears to support the superiority of the proposed iSSO-KHM over previously developed algorithms for all experiments in the literature.

  19. Advanced scientific computational methods and their applications of nuclear technologies. (1) Overview of scientific computational methods, introduction of continuum simulation methods and their applications (1)

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Okuda, Hiroshi

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the first issue showing their overview and introduction of continuum simulation methods. Finite element method as their applications is also reviewed. (T. Tanaka)

  20. Interdisciplinary Team-Teaching Experience for a Computer and Nuclear Energy Course for Electrical and Computer Engineering Students

    Science.gov (United States)

    Kim, Charles; Jackson, Deborah; Keiller, Peter

    2016-01-01

    A new, interdisciplinary, team-taught course has been designed to educate students in Electrical and Computer Engineering (ECE) so that they can respond to global and urgent issues concerning computer control systems in nuclear power plants. This paper discusses our experience and assessment of the interdisciplinary computer and nuclear energy…

  1. Water demand forecasting: review of soft computing methods.

    Science.gov (United States)

    Ghalehkhondabi, Iman; Ardjmand, Ehsan; Young, William A; Weckman, Gary R

    2017-07-01

    Demand forecasting plays a vital role in resource management for governments and private companies. Considering the scarcity of water and its inherent constraints, demand management and forecasting in this domain are critically important. Several soft computing techniques have been developed over the last few decades for water demand forecasting. This study focuses on soft computing methods of water consumption forecasting published between 2005 and 2015. These methods include artificial neural networks (ANNs), fuzzy and neuro-fuzzy models, support vector machines, metaheuristics, and system dynamics. Furthermore, it was discussed that while in short-term forecasting, ANNs have been superior in many cases, but it is still very difficult to pick a single method as the overall best. According to the literature, various methods and their hybrids are applied to water demand forecasting. However, it seems soft computing has a lot more to contribute to water demand forecasting. These contribution areas include, but are not limited, to various ANN architectures, unsupervised methods, deep learning, various metaheuristics, and ensemble methods. Moreover, it is found that soft computing methods are mainly used for short-term demand forecasting.

  2. Computing activities for the P-bar ANDA experiment at FAIR

    International Nuclear Information System (INIS)

    Messchendorp, Johan

    2010-01-01

    The P-bar ANDA experiment at the future facility FAIR will provide valuable data for our present understanding of the strong interaction. In preparation for the experiments, large-scale simulations for design and feasibility studies are performed exploiting a new software framework, P-bar ANDAROOT, which is based on FairROOT and the Virtual Monte Carlo interface, and which runs on a large-scale computing GRID environment exploiting the AliEn 2 middleware. In this paper, an overview is given of the P-bar ANDA experiment with the emphasis on the various developments which are pursuit to provide a user and developer friendly computing environment for the P-bar ANDA collaboration.

  3. Computer simulation of Wheeler's delayed-choice experiment with photons

    NARCIS (Netherlands)

    Zhao, S.; Yuan, S.; De Raedt, H.; Michielsen, K.

    We present a computer simulation model of Wheeler's delayed-choice experiment that is a one-to-one copy of an experiment reported recently (Jacques V. et al., Science, 315 (2007) 966). The model is solely based on experimental facts, satisfies Einstein's criterion of local causality and does not

  4. Computing for ongoing experiments on high energy physics in LPP, JINR

    International Nuclear Information System (INIS)

    Belosludtsev, D.A.; Zhil'tsov, V.E.; Zinchenko, A.I.; Kekelidze, V.D.; Madigozhin, D.T.; Potrebenikov, Yu.K.; Khabarov, S.V.; Shkarovskij, S.N.; Shchinov, B.G.

    2004-01-01

    The computer infrastructure made at the Laboratory of Particle Physics, JINR, purposed for active participation of JINR experts in ongoing experiments on particle and nuclear physics is presented. The principles of design and construction of the personal computer farm have been given and the used computer and informational services for effective application of distributed computer resources have been described

  5. TRANSFORMING RURAL SECONDARY SCHOOLS IN ZIMBABWE THROUGH TECHNOLOGY: LIVED EXPERIENCES OF STUDENT COMPUTER USERS

    Directory of Open Access Journals (Sweden)

    Gomba Clifford

    2016-04-01

    Full Text Available A technological divide exists in Zimbabwe between urban and rural schools that puts rural based students at a disadvantage. In Zimbabwe, the government, through the president donated computers to most rural schools in a bid to bridge the digital divide between rural and urban schools. The purpose of this phenomenological study was to understand the experiences of Advanced Level students using computers at two rural boarding Catholic High Schools in Zimbabwe. The study was guided by two research questions: (1 How do Advanced level students in the rural areas use computers at their school? and (2 What is the experience of using computers for Advanced Level students in the rural areas of Zimbabwe? By performing this study, it was possible to understand from the students’ experiences whether computer usage was for educational learning or not. The results of the phenomenological study showed that students’ experiences can be broadly classified into five themes, namely worthwhile (interesting experience, accessibility issues, teachers’ monopoly, research and social use, and Internet availability. The participants proposed teachers use computers, but not monopolize computer usage. The solution to the computer shortage may be solved by having donors and government help in the acquisitioning of more computers.

  6. Electromagnetic computation methods for lightning surge protection studies

    CERN Document Server

    Baba, Yoshihiro

    2016-01-01

    This book is the first to consolidate current research and to examine the theories of electromagnetic computation methods in relation to lightning surge protection. The authors introduce and compare existing electromagnetic computation methods such as the method of moments (MOM), the partial element equivalent circuit (PEEC), the finite element method (FEM), the transmission-line modeling (TLM) method, and the finite-difference time-domain (FDTD) method. The application of FDTD method to lightning protection studies is a topic that has matured through many practical applications in the past decade, and the authors explain the derivation of Maxwell's equations required by the FDTD, and modeling of various electrical components needed in computing lightning electromagnetic fields and surges with the FDTD method. The book describes the application of FDTD method to current and emerging problems of lightning surge protection of continuously more complex installations, particularly in critical infrastructures of e...

  7. Computer navigation experience in hip resurfacing improves femoral component alignment using a conventional jig

    Directory of Open Access Journals (Sweden)

    Zachary Morison

    2013-01-01

    Full Text Available Background:The use of computer navigation has been shown to improve the accuracy of femoral component placement compared to conventional instrumentation in hip resurfacing. Whether exposure to computer navigation improves accuracy when the procedure is subsequently performed with conventional instrumentation without navigation has not been explored. We examined whether femoral component alignment utilizing a conventional jig improves following experience with the use of imageless computer navigation for hip resurfacing. Materials and Methods:Between December 2004 and December 2008, 213 consecutive hip resurfacings were performed by a single surgeon. The first 17 (Cohort 1 and the last 9 (Cohort 2 hip resurfacings were performed using a conventional guidewire alignment jig. In 187 cases, the femoral component was implanted using the imageless computer navigation. Cohorts 1 and 2 were compared for femoral component alignment accuracy. Results:All components in Cohort 2 achieved the position determined by the preoperative plan. The mean deviation of the stem-shaft angle (SSA from the preoperatively planned target position was 2.2° in Cohort 2 and 5.6° in Cohort 1 ( P = 0.01. Four implants in Cohort 1 were positioned at least 10° varus compared to the target SSA position and another four were retroverted. Conclusions: Femoral component placement utilizing conventional instrumentation may be more accurate following experience using imageless computer navigation.

  8. Generalized Bell-inequality experiments and computation

    Energy Technology Data Exchange (ETDEWEB)

    Hoban, Matty J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD (United Kingdom); Wallman, Joel J. [School of Physics, The University of Sydney, Sydney, New South Wales 2006 (Australia); Browne, Dan E. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2011-12-15

    We consider general settings of Bell inequality experiments with many parties, where each party chooses from a finite number of measurement settings each with a finite number of outcomes. We investigate the constraints that Bell inequalities place upon the correlations possible in local hidden variable theories using a geometrical picture of correlations. We show that local hidden variable theories can be characterized in terms of limited computational expressiveness, which allows us to characterize families of Bell inequalities. The limited computational expressiveness for many settings (each with many outcomes) generalizes previous results about the many-party situation each with a choice of two possible measurements (each with two outcomes). Using this computational picture we present generalizations of the Popescu-Rohrlich nonlocal box for many parties and nonbinary inputs and outputs at each site. Finally, we comment on the effect of preprocessing on measurement data in our generalized setting and show that it becomes problematic outside of the binary setting, in that it allows local hidden variable theories to simulate maximally nonlocal correlations such as those of these generalized Popescu-Rohrlich nonlocal boxes.

  9. Generalized Bell-inequality experiments and computation

    International Nuclear Information System (INIS)

    Hoban, Matty J.; Wallman, Joel J.; Browne, Dan E.

    2011-01-01

    We consider general settings of Bell inequality experiments with many parties, where each party chooses from a finite number of measurement settings each with a finite number of outcomes. We investigate the constraints that Bell inequalities place upon the correlations possible in local hidden variable theories using a geometrical picture of correlations. We show that local hidden variable theories can be characterized in terms of limited computational expressiveness, which allows us to characterize families of Bell inequalities. The limited computational expressiveness for many settings (each with many outcomes) generalizes previous results about the many-party situation each with a choice of two possible measurements (each with two outcomes). Using this computational picture we present generalizations of the Popescu-Rohrlich nonlocal box for many parties and nonbinary inputs and outputs at each site. Finally, we comment on the effect of preprocessing on measurement data in our generalized setting and show that it becomes problematic outside of the binary setting, in that it allows local hidden variable theories to simulate maximally nonlocal correlations such as those of these generalized Popescu-Rohrlich nonlocal boxes.

  10. Application of heterogeneous method for the interpretation of exponential experiments

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.

    1977-01-01

    The present paper gives a brief review of a work which was executed mainly during 1967 and 1968 in the field of the application of heterogeneous methods for the interpretation of exponential experiments with ORGEL type lattices (lattices of natural uranium cluster elements with organic coolants moderated by heavy water). In the frame of this work a heterogeneous computer program, in (r,γ) geometry was written which is based on the NORDHEIM method using a uniform moderator, three energy groups and monopol and dipol sources. This code is especially adapted for regular square lattices in a cylindrical tank. Full use of lattice symmetry was made for reducing the numerical job of the theory. A further reduction was obtained by introducing a group averaged extrapolation distance at the external boundary. Channel parameters were evaluated by the PINOCCHIO code. Comparisons of calculated and measured thermal neutron flux showed good agreement. Equivalence of heterogeneous and homogeneous theory was found in cases of lattices comprising a minimum of 32, 24 and 16 fuel elements for respectively under-, well-, and over-moderated lattices. Heterogeneous calculations of high leakage lattices suffered the lack of good methods for the computation of axial and radial streaming parameters. Interpretation of buckling measurements in the subcritical facility EXPO requires already more accurate evaluation of the streaming effects than we made. The potential of heterogeneous theory in the field of exponential experiments is thought to be limited by the precision by which the streaming parameters can be calculated

  11. Grid computing for LHC and methods for W boson mass measurement at CMS

    International Nuclear Information System (INIS)

    Jung, Christopher

    2007-01-01

    Two methods for measuring the W boson mass with the CMS detector have been presented in this thesis. Both methods use similarities between W boson and Z boson decays. Their statistical and systematic precisions have been determined for W → μν; the statistics corresponds to one inverse femtobarn of data. A large number of events needed to be simulated for this analysis; it was not possible to use the full simulation software because of the enormous computing time which would have been needed. Instead, a fast simulation tool for the CMS detector was used. Still, the computing requirements for the fast simulation exceeded the capacity of the local compute cluster. Since the data taken and processed at the LHC will be extremely large, the LHC experiments rely on the emerging grid computing tools. The computing capabilities of the grid have been used for simulating all physics events needed for this thesis. To achieve this, the local compute cluster had to be integrated into the grid and the administration of the grid components had to be secured. As this was the first installation of its kind, several contributions to grid training events could be made: courses on grid installation, administration and grid-enabled applications were given. The two methods for the W mass measurement are the morphing method and the scaling method. The morphing method relies on an analytical transformation of Z boson events into W boson events and determines the W boson mass by comparing the transverse mass distributions; the scaling method relies on scaled observables from W boson and Z boson events, e.g. the transverse muon momentum as studied in this thesis. In both cases, a re-weighting technique applied to Monte Carlo generated events is used to take into account different selection cuts, detector acceptances, and differences in production and decay of W boson and Z boson events. (orig.)

  12. Grid computing for LHC and methods for W boson mass measurement at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Christopher

    2007-12-14

    Two methods for measuring the W boson mass with the CMS detector have been presented in this thesis. Both methods use similarities between W boson and Z boson decays. Their statistical and systematic precisions have been determined for W {yields} {mu}{nu}; the statistics corresponds to one inverse femtobarn of data. A large number of events needed to be simulated for this analysis; it was not possible to use the full simulation software because of the enormous computing time which would have been needed. Instead, a fast simulation tool for the CMS detector was used. Still, the computing requirements for the fast simulation exceeded the capacity of the local compute cluster. Since the data taken and processed at the LHC will be extremely large, the LHC experiments rely on the emerging grid computing tools. The computing capabilities of the grid have been used for simulating all physics events needed for this thesis. To achieve this, the local compute cluster had to be integrated into the grid and the administration of the grid components had to be secured. As this was the first installation of its kind, several contributions to grid training events could be made: courses on grid installation, administration and grid-enabled applications were given. The two methods for the W mass measurement are the morphing method and the scaling method. The morphing method relies on an analytical transformation of Z boson events into W boson events and determines the W boson mass by comparing the transverse mass distributions; the scaling method relies on scaled observables from W boson and Z boson events, e.g. the transverse muon momentum as studied in this thesis. In both cases, a re-weighting technique applied to Monte Carlo generated events is used to take into account different selection cuts, detector acceptances, and differences in production and decay of W boson and Z boson events. (orig.)

  13. COMPUTER-BASED SYSTEMS OF PHYSICAL EXPERIMENT IN INDEPENDENT WORK OF STUDENTS OF TECHNICAL UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Iryna Slipukhina

    2016-11-01

    Full Text Available Purpose: The self-study activity of students is an important form of educational process under the conditions of rapid changes of technologies. Ability and readiness of future engineers for independent education is one of their key competences. Investigation of modern methods of planning, organization and control of independent cognitive activity of students while studying physics as effective means of complex forming of their professional qualities is the object of the research. Methods: We analyse the curricula of some engineering specialities in leading technical universities, existent methods and forms of organization of students’ self-study, and own pedagogical experience. Results: Based on the theoretical analysis of existing methods of students’ self-study, it was found that a systematizing factor of appropriate educational technology is the problem focused cognitive tasks. They have to be implemented by application of the modern technological devices integrated with a computer-based experiment. We define the aim of individual or group laboratory works; the necessary theoretical and practical knowledge and skills of students are rationalized; timing and form of presentation of the results are clarified after individual and group consulting. The details of preparatory, searching-organizational, operational, and control stages in organization of students’ self-study with the use of computer oriented physical experiment are specified, these details differ depending on the didactic purpose, form of organization and students’ individuality. Discussion: The research theoretical aspect confirms the determining role of subject-subject cooperation in forming of competences of independent learning of the future engineers. Basic practical achievements of the research consist of improving methods of using of digital learning systems, creation of textbooks that promote consultative and guiding role for the educational process, working-out of

  14. Evaluation Methods for Assessing Users' Psychological Experiences of Web-Based Psychosocial Interventions: A Systematic Review.

    Science.gov (United States)

    Feather, Jacqueline Susan; Howson, Moira; Ritchie, Linda; Carter, Philip D; Parry, David Tudor; Koziol-McLain, Jane

    2016-06-30

    The use of Web-based interventions to deliver mental health and behavior change programs is increasingly popular. They are cost-effective, accessible, and generally effective. Often these interventions concern psychologically sensitive and challenging issues, such as depression or anxiety. The process by which a person receives and experiences therapy is important to understanding therapeutic process and outcomes. While the experience of the patient or client in traditional face-to-face therapy has been evaluated in a number of ways, there appeared to be a gap in the evaluation of patient experiences of therapeutic interventions delivered online. Evaluation of Web-based artifacts has focused either on evaluation of experience from a computer Web-design perspective through usability testing or on evaluation of treatment effectiveness. Neither of these methods focuses on the psychological experience of the person while engaged in the therapeutic process. This study aimed to investigate what methods, if any, have been used to evaluate the in situ psychological experience of users of Web-based self-help psychosocial interventions. A systematic literature review was undertaken of interdisciplinary databases with a focus on health and computer sciences. Studies that met a predetermined search protocol were included. Among 21 studies identified that examined psychological experience of the user, only 1 study collected user experience in situ. The most common method of understanding users' experience was through semistructured interviews conducted posttreatment or questionnaires administrated at the end of an intervention session. The questionnaires were usually based on standardized tools used to assess user experience with traditional face-to-face treatment. There is a lack of methods specified in the literature to evaluate the interface between Web-based mental health or behavior change artifacts and users. Main limitations in the research were the nascency of the topic

  15. Computer Anti-forensics Methods and their Impact on Computer Forensic Investigation

    OpenAIRE

    Pajek, Przemyslaw; Pimenidis, Elias

    2009-01-01

    Electronic crime is very difficult to investigate and prosecute, mainly\\ud due to the fact that investigators have to build their cases based on artefacts left\\ud on computer systems. Nowadays, computer criminals are aware of computer forensics\\ud methods and techniques and try to use countermeasure techniques to efficiently\\ud impede the investigation processes. In many cases investigation with\\ud such countermeasure techniques in place appears to be too expensive, or too\\ud time consuming t...

  16. Numerical analysis of resonances induced by s wave neutrons in transmission time-of-flight experiments with a computer IBM 7094 II; Methodes d'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol et automatisation de ces methodes sur ordinateur IBM 7094 II

    Energy Technology Data Exchange (ETDEWEB)

    Corge, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-01-01

    Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [French] L'automatisation, sur ordinateur IBM 7094/II, de l'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol a ete accomplie en la decomposant selon un schema articule en quatre phases: 1 - le traitement des donnees experimentales brutes pour obtenir les transmissions interfero-resonnantes, 2 - la determination des grandeurs d'analyse a partir des transmissions precedentes, 3 - l'analyse proprement dite des resonances dont les parametres sont obtenus par la resolution d'un systeme surabondant. Quatre methodes d'analyse sont groupees en un meme programme, 4 - la procedure de verification graphique. (auteur)

  17. Computational and instrumental methods in EPR

    CERN Document Server

    Bender, Christopher J

    2006-01-01

    Computational and Instrumental Methods in EPR Prof. Bender, Fordham University Prof. Lawrence J. Berliner, University of Denver Electron magnetic resonance has been greatly facilitated by the introduction of advances in instrumentation and better computational tools, such as the increasingly widespread use of the density matrix formalism. This volume is devoted to both instrumentation and computation aspects of EPR, while addressing applications such as spin relaxation time measurements, the measurement of hyperfine interaction parameters, and the recovery of Mn(II) spin Hamiltonian parameters via spectral simulation. Key features: Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T1) and Spin-Spin (T2) Relaxation Times Improvement in the Measurement of Spin-Lattice Relaxation Time in Electron Paramagnetic Resonance Quantitative Measurement of Magnetic Hyperfine Parameters and the Physical Organic Chemistry of Supramolecular Systems New Methods of Simulation of Mn(II) EPR Spectra: Single Cryst...

  18. Computational methods for high-energy source shielding

    International Nuclear Information System (INIS)

    Armstrong, T.W.; Cloth, P.; Filges, D.

    1983-01-01

    The computational methods for high-energy radiation transport related to shielding of the SNQ-spallation source are outlined. The basic approach is to couple radiation-transport computer codes which use Monte Carlo methods and discrete ordinates methods. A code system is suggested that incorporates state-of-the-art radiation-transport techniques. The stepwise verification of that system is briefly summarized. The complexity of the resulting code system suggests a more straightforward code specially tailored for thick shield calculations. A short guide line to future development of such a Monte Carlo code is given

  19. Computing for Lattice QCD: new developments from the APE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R [INFN, Sezione di Roma Tor Vergata, Roma (Italy); Biagioni, A; De Luca, S [INFN, Sezione di Roma, Roma (Italy)

    2008-06-15

    As the Lattice QCD develops improved techniques to shed light on new physics, it demands increasing computing power. The aim of the current APE (Array Processor Experiment) project is to provide the reference computing platform to the Lattice QCD community for the period 2009-2011. We present the project proposal for a peta flops range super-computing center with high performance and low maintenance costs, to be delivered starting from 2010.

  20. Computing for Lattice QCD: new developments from the APE experiment

    International Nuclear Information System (INIS)

    Ammendola, R.; Biagioni, A.; De Luca, S.

    2008-01-01

    As the Lattice QCD develops improved techniques to shed light on new physics, it demands increasing computing power. The aim of the current APE (Array Processor Experiment) project is to provide the reference computing platform to the Lattice QCD community for the period 2009-2011. We present the project proposal for a peta flops range super-computing center with high performance and low maintenance costs, to be delivered starting from 2010.

  1. Methods for teaching geometric modelling and computer graphics

    Energy Technology Data Exchange (ETDEWEB)

    Rotkov, S.I.; Faitel`son, Yu. Ts.

    1992-05-01

    This paper considers methods for teaching the methods and algorithms of geometric modelling and computer graphics to programmers, designers and users of CAD and computer-aided research systems. There is a bibliography that can be used to prepare lectures and practical classes. 37 refs., 1 tab.

  2. Computational Experiment Study on Selection Mechanism of Project Delivery Method Based on Complex Factors

    Directory of Open Access Journals (Sweden)

    Xiang Ding

    2014-01-01

    Full Text Available Project delivery planning is a key stage used by the project owner (or project investor for organizing design, construction, and other operations in a construction project. The main task in this stage is to select an appropriate project delivery method. In order to analyze different factors affecting the PDM selection, this paper establishes a multiagent model mainly to show how project complexity, governance strength, and market environment affect the project owner’s decision on PDM. Experiment results show that project owner usually choose Design-Build method when the project is very complex within a certain range. Besides, this paper points out that Design-Build method will be the prior choice when the potential contractors develop quickly. This paper provides the owners with methods and suggestions in terms of showing how the factors affect PDM selection, and it may improve the project performance.

  3. Computer Animation Based on Particle Methods

    Directory of Open Access Journals (Sweden)

    Rafal Wcislo

    1999-01-01

    Full Text Available The paper presents the main issues of a computer animation of a set of elastic macroscopic objects based on the particle method. The main assumption of the generated animations is to achieve very realistic movements in a scene observed on the computer display. The objects (solid bodies interact mechanically with each other, The movements and deformations of solids are calculated using the particle method. Phenomena connected with the behaviour of solids in the gravitational field, their defomtations caused by collisions and interactions with the optional liquid medium are simulated. The simulation ofthe liquid is performed using the cellular automata method. The paper presents both simulation schemes (particle method and cellular automata rules an the method of combining them in the single animation program. ln order to speed up the execution of the program the parallel version based on the network of workstation was developed. The paper describes the methods of the parallelization and it considers problems of load-balancing, collision detection, process synchronization and distributed control of the animation.

  4. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  5. Use of Tablet Computers to Promote Physical Therapy Students' Engagement in Knowledge Translation During Clinical Experiences

    Science.gov (United States)

    Loeb, Kathryn; Barbosa, Sabrina; Jiang, Fei; Lee, Karin T.

    2016-01-01

    Background and Purpose: Physical therapists strive to integrate research into daily practice. The tablet computer is a potentially transformational tool for accessing information within the clinical practice environment. The purpose of this study was to measure and describe patterns of tablet computer use among physical therapy students during clinical rotation experiences. Methods: Doctor of physical therapy students (n = 13 users) tracked their use of tablet computers (iPad), loaded with commercially available apps, during 16 clinical experiences (6-16 weeks in duration). Results: The tablets were used on 70% of 691 clinic days, averaging 1.3 uses per day. Information seeking represented 48% of uses; 33% of those were foreground searches for research articles and syntheses and 66% were for background medical information. Other common uses included patient education (19%), medical record documentation (13%), and professional communication (9%). The most frequently used app was Safari, the preloaded web browser (representing 281 [36.5%] incidents of use). Users accessed 56 total apps to support clinical practice. Discussion and Conclusions: Physical therapy students successfully integrated use of a tablet computer into their clinical experiences including regular activities of information seeking. Our findings suggest that the tablet computer represents a potentially transformational tool for promoting knowledge translation in the clinical practice environment. Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A127). PMID:26945431

  6. Status of the Grid Computing for the ALICE Experiment in the Czech Republic

    International Nuclear Information System (INIS)

    Adamova, D; Hampl, J; Chudoba, J; Kouba, T; Svec, J; Mendez, Lorenzo P; Saiz, P

    2010-01-01

    The Czech Republic (CR) has been participating in the LHC Computing Grid project (LCG) ever since 2003 and gradually, a middle-sized Tier-2 center has been built in Prague, delivering computing services for national HEP experiments groups including the ALICE project at the LHC. We present a brief overview of the computing activities and services being performed in the CR for the ALICE experiment.

  7. Computer aided method for colour calibration and analysis of digital rock photographs

    Directory of Open Access Journals (Sweden)

    Matic Potočnik

    2015-12-01

    Full Text Available The methods used in geology to determine colour and colour coverage are expensive, time consuming, and/ or subjective. Estimates of colour coverage can only be approximate since they are based on rough comparisonbased measuring etalons and subjective estimation, which is dependent upon the skill and experience of the person performing the estimation. We present a method which accelerates, simplifis, and objectifis these tasks using a computer application. It automatically calibrates the colours of a digital photo, and enables the user to read colour values and coverage, even after returning from fild work. Colour identifiation is based on the Munsell colour system. For the purposes of colour calibration we use the X-Rite ColorChecker Passport colour chart placed onto the photographed scene. Our computer application detects the ColorChecker colour chart, and fids a colour space transformation to calibrate the colour in the photo. The user can then use the application to read colours within selected points or regions of the photo. The results of the computerised colour calibration were compared to the reference values of the ColorChecker chart. The values slightly deviate from the exact values, but the deviation is around the limit of human capability for visual comparison. We have devised an experiment, which compares the precision of the computerised colour analysis and manual colour analysis performed on a variety of rock samples with the help of geology students using Munsell Rock-color Chart. The analysis showed that the precision of manual comparative identifiation on multicoloured samples is somewhat problematic, since the choice of representative colours and observation points for a certain part of a sample are subjective. The computer based method has the edge in verifibility and repeatability of the analysis since the application the original photo to be saved with colour calibration, and tagging of colouranalysed points and regions.

  8. Three-dimensional protein structure prediction: Methods and computational strategies.

    Science.gov (United States)

    Dorn, Márcio; E Silva, Mariel Barbachan; Buriol, Luciana S; Lamb, Luis C

    2014-10-12

    A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Reduction of the performance of a noise screen due to screen-induced wind-speed gradients: numerical computations and wind-tunnel experiments

    NARCIS (Netherlands)

    Salomons, E.M.

    1999-01-01

    Downwind sound propagation over a noise screen is investigated by numerical computations and scale model experiments in a wind tunnel. For the computations, the parabolic equation method is used, with a range-dependent sound-speed profile based on wind-speed profiles measured in the wind tunnel and

  10. Classical versus Computer Algebra Methods in Elementary Geometry

    Science.gov (United States)

    Pech, Pavel

    2005-01-01

    Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…

  11. Solution of the Schrodinger Equation for a Diatomic Oscillator Using Linear Algebra: An Undergraduate Computational Experiment

    Science.gov (United States)

    Gasyna, Zbigniew L.

    2008-01-01

    Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)

  12. Computer-generated ovaries to assist follicle counting experiments.

    Directory of Open Access Journals (Sweden)

    Angelos Skodras

    Full Text Available Precise estimation of the number of follicles in ovaries is of key importance in the field of reproductive biology, both from a developmental point of view, where follicle numbers are determined at specific time points, as well as from a therapeutic perspective, determining the adverse effects of environmental toxins and cancer chemotherapeutics on the reproductive system. The two main factors affecting follicle number estimates are the sampling method and the variation in follicle numbers within animals of the same strain, due to biological variability. This study aims at assessing the effect of these two factors, when estimating ovarian follicle numbers of neonatal mice. We developed computer algorithms, which generate models of neonatal mouse ovaries (simulated ovaries, with characteristics derived from experimental measurements already available in the published literature. The simulated ovaries are used to reproduce in-silico counting experiments based on unbiased stereological techniques; the proposed approach provides the necessary number of ovaries and sampling frequency to be used in the experiments given a specific biological variability and a desirable degree of accuracy. The simulated ovary is a novel, versatile tool which can be used in the planning phase of experiments to estimate the expected number of animals and workload, ensuring appropriate statistical power of the resulting measurements. Moreover, the idea of the simulated ovary can be applied to other organs made up of large numbers of individual functional units.

  13. Comparison of Five Computational Methods for Computing Q Factors in Photonic Crystal Membrane Cavities

    DEFF Research Database (Denmark)

    Novitsky, Andrey; de Lasson, Jakob Rosenkrantz; Frandsen, Lars Hagedorn

    2017-01-01

    Five state-of-the-art computational methods are benchmarked by computing quality factors and resonance wavelengths in photonic crystal membrane L5 and L9 line defect cavities. The convergence of the methods with respect to resolution, degrees of freedom and number of modes is investigated. Specia...

  14. The BaBar experiment's distributed computing model

    International Nuclear Information System (INIS)

    Boutigny, D.

    2001-01-01

    In order to face the expected increase in statistics between now and 2005, the BaBar experiment at SLAC is evolving its computing model toward a distributed multitier system. It is foreseen that data will be spread among Tier-A centers and deleted from the SLAC center. A uniform computing environment is being deployed in the centers, the network bandwidth is continuously increased and data distribution tools has been designed in order to reach a transfer rate of ∼100 TB of data per year. In parallel, smaller Tier-B and C sites receive subsets of data, presently in Kanga-ROOT format and later in Objectivity format. GRID tools will be used for remote job submission

  15. The BaBar Experiment's Distributed Computing Model

    International Nuclear Information System (INIS)

    Gowdy, Stephen J.

    2002-01-01

    In order to face the expected increase in statistics between now and 2005, the BaBar experiment at SLAC is evolving its computing model toward a distributed multi-tier system. It is foreseen that data will be spread among Tier-A centers and deleted from the SLAC center. A uniform computing environment is being deployed in the centers, the network bandwidth is continuously increased and data distribution tools has been designed in order to reach a transfer rate of ∼100 TB of data per year. In parallel, smaller Tier-B and C sites receive subsets of data, presently in Kanga-ROOT[1] format and later in Objectivity[2] format. GRID tools will be used for remote job submission

  16. Differential computation method used to calibrate the angle-centroid relationship in coaxial reverse Hartmann test

    Science.gov (United States)

    Li, Xinji; Hui, Mei; Zhao, Zhu; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin

    2018-05-01

    A differential computation method is presented to improve the precision of calibration for coaxial reverse Hartmann test (RHT). In the calibration, the accuracy of the distance measurement greatly influences the surface shape test, as demonstrated in the mathematical analyses. However, high-precision absolute distance measurement is difficult in the calibration. Thus, a differential computation method that only requires the relative distance was developed. In the proposed method, a liquid crystal display screen successively displayed two regular dot matrix patterns with different dot spacing. In a special case, images on the detector exhibited similar centroid distributions during the reflector translation. Thus, the critical value of the relative displacement distance and the centroid distributions of the dots on the detector were utilized to establish the relationship between the rays at certain angles and the detector coordinates. Experiments revealed the approximately linear behavior of the centroid variation with the relative displacement distance. With the differential computation method, we increased the precision of traditional calibration 10-5 rad root mean square. The precision of the RHT was increased by approximately 100 nm.

  17. Comparison of two methods to determine fan performance curves using computational fluid dynamics

    Science.gov (United States)

    Onma, Patinya; Chantrasmi, Tonkid

    2018-01-01

    This work investigates a systematic numerical approach that employs Computational Fluid Dynamics (CFD) to obtain performance curves of a backward-curved centrifugal fan. Generating the performance curves requires a number of three-dimensional simulations with varying system loads at a fixed rotational speed. Two methods were used and their results compared to experimental data. The first method incrementally changes the mass flow late through the inlet boundary condition while the second method utilizes a series of meshes representing the physical damper blade at various angles. The generated performance curves from both methods are compared with an experiment setup in accordance with the AMCA fan performance testing standard.

  18. CMS distributed computing workflow experience

    Science.gov (United States)

    Adelman-McCarthy, Jennifer; Gutsche, Oliver; Haas, Jeffrey D.; Prosper, Harrison B.; Dutta, Valentina; Gomez-Ceballos, Guillelmo; Hahn, Kristian; Klute, Markus; Mohapatra, Ajit; Spinoso, Vincenzo; Kcira, Dorian; Caudron, Julien; Liao, Junhui; Pin, Arnaud; Schul, Nicolas; De Lentdecker, Gilles; McCartin, Joseph; Vanelderen, Lukas; Janssen, Xavier; Tsyganov, Andrey; Barge, Derek; Lahiff, Andrew

    2011-12-01

    The vast majority of the CMS Computing capacity, which is organized in a tiered hierarchy, is located away from CERN. The 7 Tier-1 sites archive the LHC proton-proton collision data that is initially processed at CERN. These sites provide access to all recorded and simulated data for the Tier-2 sites, via wide-area network (WAN) transfers. All central data processing workflows are executed at the Tier-1 level, which contain re-reconstruction and skimming workflows of collision data as well as reprocessing of simulated data to adapt to changing detector conditions. This paper describes the operation of the CMS processing infrastructure at the Tier-1 level. The Tier-1 workflows are described in detail. The operational optimization of resource usage is described. In particular, the variation of different workflows during the data taking period of 2010, their efficiencies and latencies as well as their impact on the delivery of physics results is discussed and lessons are drawn from this experience. The simulation of proton-proton collisions for the CMS experiment is primarily carried out at the second tier of the CMS computing infrastructure. Half of the Tier-2 sites of CMS are reserved for central Monte Carlo (MC) production while the other half is available for user analysis. This paper summarizes the large throughput of the MC production operation during the data taking period of 2010 and discusses the latencies and efficiencies of the various types of MC production workflows. We present the operational procedures to optimize the usage of available resources and we the operational model of CMS for including opportunistic resources, such as the larger Tier-3 sites, into the central production operation.

  19. CMS distributed computing workflow experience

    International Nuclear Information System (INIS)

    Adelman-McCarthy, Jennifer; Gutsche, Oliver; Haas, Jeffrey D; Prosper, Harrison B; Dutta, Valentina; Gomez-Ceballos, Guillelmo; Hahn, Kristian; Klute, Markus; Mohapatra, Ajit; Spinoso, Vincenzo; Kcira, Dorian; Caudron, Julien; Liao Junhui; Pin, Arnaud; Schul, Nicolas; Lentdecker, Gilles De; McCartin, Joseph; Vanelderen, Lukas; Janssen, Xavier; Tsyganov, Andrey

    2011-01-01

    The vast majority of the CMS Computing capacity, which is organized in a tiered hierarchy, is located away from CERN. The 7 Tier-1 sites archive the LHC proton-proton collision data that is initially processed at CERN. These sites provide access to all recorded and simulated data for the Tier-2 sites, via wide-area network (WAN) transfers. All central data processing workflows are executed at the Tier-1 level, which contain re-reconstruction and skimming workflows of collision data as well as reprocessing of simulated data to adapt to changing detector conditions. This paper describes the operation of the CMS processing infrastructure at the Tier-1 level. The Tier-1 workflows are described in detail. The operational optimization of resource usage is described. In particular, the variation of different workflows during the data taking period of 2010, their efficiencies and latencies as well as their impact on the delivery of physics results is discussed and lessons are drawn from this experience. The simulation of proton-proton collisions for the CMS experiment is primarily carried out at the second tier of the CMS computing infrastructure. Half of the Tier-2 sites of CMS are reserved for central Monte Carlo (MC) production while the other half is available for user analysis. This paper summarizes the large throughput of the MC production operation during the data taking period of 2010 and discusses the latencies and efficiencies of the various types of MC production workflows. We present the operational procedures to optimize the usage of available resources and we the operational model of CMS for including opportunistic resources, such as the larger Tier-3 sites, into the central production operation.

  20. Methods in computed angiotomography of the brain

    International Nuclear Information System (INIS)

    Yamamoto, Yuji; Asari, Shoji; Sadamoto, Kazuhiko.

    1985-01-01

    Authors introduce the methods in computed angiotomography of the brain. Setting of the scan planes and levels and the minimum dose bolus (MinDB) injection of contrast medium are described in detail. These methods are easily and safely employed with the use of already propagated CT scanners. Computed angiotomography is expected for clinical applications in many institutions because of its diagnostic value in screening of cerebrovascular lesions and in demonstrating the relationship between pathological lesions and cerebral vessels. (author)

  1. Variational-moment method for computing magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Lao, L.L.

    1983-08-01

    A fast yet accurate method to compute magnetohydrodynamic equilibria is provided by the variational-moment method, which is similar to the classical Rayleigh-Ritz-Galerkin approximation. The equilibrium solution sought is decomposed into a spectral representation. The partial differential equations describing the equilibrium are then recast into their equivalent variational form and systematically reduced to an optimum finite set of coupled ordinary differential equations. An appropriate spectral decomposition can make the series representing the solution coverge rapidly and hence substantially reduces the amount of computational time involved. The moment method was developed first to compute fixed-boundary inverse equilibria in axisymmetric toroidal geometry, and was demonstrated to be both efficient and accurate. The method since has been generalized to calculate free-boundary axisymmetric equilibria, to include toroidal plasma rotation and pressure anisotropy, and to treat three-dimensional toroidal geometry. In all these formulations, the flux surfaces are assumed to be smooth and nested so that the solutions can be decomposed in Fourier series in inverse coordinates. These recent developments and the advantages and limitations of the moment method are reviewed. The use of alternate coordinates for decomposition is discussed

  2. 26 CFR 1.167(b)-0 - Methods of computing depreciation.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Methods of computing depreciation. 1.167(b)-0....167(b)-0 Methods of computing depreciation. (a) In general. Any reasonable and consistently applied method of computing depreciation may be used or continued in use under section 167. Regardless of the...

  3. Effects of Learning Style and Training Method on Computer Attitude and Performance in World Wide Web Page Design Training.

    Science.gov (United States)

    Chou, Huey-Wen; Wang, Yu-Fang

    1999-01-01

    Compares the effects of two training methods on computer attitude and performance in a World Wide Web page design program in a field experiment with high school students in Taiwan. Discusses individual differences, Kolb's Experiential Learning Theory and Learning Style Inventory, Computer Attitude Scale, and results of statistical analyses.…

  4. Method for the deconvolution of incompletely resolved CARS spectra in chemical dynamics experiments

    International Nuclear Information System (INIS)

    Anda, A.A.; Phillips, D.L.; Valentini, J.J.

    1986-01-01

    We describe a method for deconvoluting incompletely resolved CARS spectra to obtain quantum state population distributions. No particular form for the rotational and vibrational state distribution is assumed, the population of each quantum state is treated as an independent quantity. This method of analysis differs from previously developed approaches for the deconvolution of CARS spectra, all of which assume that the population distribution is Boltzmann, and thus are limited to the analysis of CARS spectra taken under conditions of thermal equilibrium. The method of analysis reported here has been developed to deconvolute CARS spectra of photofragments and chemical reaction products obtained in chemical dynamics experiments under nonequilibrium conditions. The deconvolution procedure has been incorporated into a computer code. The application of that code to the deconvolution of CARS spectra obtained for samples at thermal equilibrium and not at thermal equilibrium is reported. The method is accurate and computationally efficient

  5. Techniques involving extreme environment, nondestructive techniques, computer methods in metals research, and data analysis

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1976-01-01

    A number of different techniques which range over several different aspects of materials research are covered in this volume. They are concerned with property evaluation of 4 0 K and below, surface characterization, coating techniques, techniques for the fabrication of composite materials, computer methods, data evaluation and analysis, statistical design of experiments and non-destructive test techniques. Topics covered in this part include internal friction measurements; nondestructive testing techniques; statistical design of experiments and regression analysis in metallurgical research; and measurement of surfaces of engineering materials

  6. Numerical analysis of resonances induced by s wave neutrons in transmission time-of-flight experiments with a computer IBM 7094 II; Methodes d'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol et automatisation de ces methodes sur ordinateur IBM 7094 II

    Energy Technology Data Exchange (ETDEWEB)

    Corge, Ch. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-01-01

    Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [French] L'automatisation, sur ordinateur IBM 7094/II, de l'analyse des resonances induites par les neutrons s dans les experiences de transmission par temps de vol a ete accomplie en la decomposant selon un schema articule en quatre phases: 1 - le traitement des donnees experimentales brutes pour obtenir les transmissions interfero-resonnantes, 2 - la determination des grandeurs d'analyse a partir des transmissions precedentes, 3 - l'analyse proprement dite des resonances dont les parametres sont obtenus par la resolution d'un systeme surabondant. Quatre methodes d'analyse sont groupees en un meme programme, 4 - la procedure de verification graphique. (auteur)

  7. Advances in Grid Computing for the Fabric for Frontier Experiments Project at Fermilab

    Science.gov (United States)

    Herner, K.; Alba Hernandez, A. F.; Bhat, S.; Box, D.; Boyd, J.; Di Benedetto, V.; Ding, P.; Dykstra, D.; Fattoruso, M.; Garzoglio, G.; Kirby, M.; Kreymer, A.; Levshina, T.; Mazzacane, A.; Mengel, M.; Mhashilkar, P.; Podstavkov, V.; Retzke, K.; Sharma, N.; Teheran, J.

    2017-10-01

    The Fabric for Frontier Experiments (FIFE) project is a major initiative within the Fermilab Scientific Computing Division charged with leading the computing model for Fermilab experiments. Work within the FIFE project creates close collaboration between experimenters and computing professionals to serve high-energy physics experiments of differing size, scope, and physics area. The FIFE project has worked to develop common tools for job submission, certificate management, software and reference data distribution through CVMFS repositories, robust data transfer, job monitoring, and databases for project tracking. Since the projects inception the experiments under the FIFE umbrella have significantly matured, and present an increasingly complex list of requirements to service providers. To meet these requirements, the FIFE project has been involved in transitioning the Fermilab General Purpose Grid cluster to support a partitionable slot model, expanding the resources available to experiments via the Open Science Grid, assisting with commissioning dedicated high-throughput computing resources for individual experiments, supporting the efforts of the HEP Cloud projects to provision a variety of back end resources, including public clouds and high performance computers, and developing rapid onboarding procedures for new experiments and collaborations. The larger demands also require enhanced job monitoring tools, which the project has developed using such tools as ElasticSearch and Grafana. in helping experiments manage their large-scale production workflows. This group in turn requires a structured service to facilitate smooth management of experiment requests, which FIFE provides in the form of the Production Operations Management Service (POMS). POMS is designed to track and manage requests from the FIFE experiments to run particular workflows, and support troubleshooting and triage in case of problems. Recently a new certificate management infrastructure called

  8. Sequential designs for sensitivity analysis of functional inputs in computer experiments

    International Nuclear Information System (INIS)

    Fruth, J.; Roustant, O.; Kuhnt, S.

    2015-01-01

    Computer experiments are nowadays commonly used to analyze industrial processes aiming at achieving a wanted outcome. Sensitivity analysis plays an important role in exploring the actual impact of adjustable parameters on the response variable. In this work we focus on sensitivity analysis of a scalar-valued output of a time-consuming computer code depending on scalar and functional input parameters. We investigate a sequential methodology, based on piecewise constant functions and sequential bifurcation, which is both economical and fully interpretable. The new approach is applied to a sheet metal forming problem in three sequential steps, resulting in new insights into the behavior of the forming process over time. - Highlights: • Sensitivity analysis method for functional and scalar inputs is presented. • We focus on the discovery of most influential parts of the functional domain. • We investigate economical sequential methodology based on piecewise constant functions. • Normalized sensitivity indices are introduced and investigated theoretically. • Successful application to sheet metal forming on two functional inputs

  9. SmartShadow models and methods for pervasive computing

    CERN Document Server

    Wu, Zhaohui

    2013-01-01

    SmartShadow: Models and Methods for Pervasive Computing offers a new perspective on pervasive computing with SmartShadow, which is designed to model a user as a personality ""shadow"" and to model pervasive computing environments as user-centric dynamic virtual personal spaces. Just like human beings' shadows in the physical world, it follows people wherever they go, providing them with pervasive services. The model, methods, and software infrastructure for SmartShadow are presented and an application for smart cars is also introduced.  The book can serve as a valuable reference work for resea

  10. Using a computer simulation for teaching communication skills: A blinded multisite mixed methods randomized controlled trial.

    Science.gov (United States)

    Kron, Frederick W; Fetters, Michael D; Scerbo, Mark W; White, Casey B; Lypson, Monica L; Padilla, Miguel A; Gliva-McConvey, Gayle A; Belfore, Lee A; West, Temple; Wallace, Amelia M; Guetterman, Timothy C; Schleicher, Lauren S; Kennedy, Rebecca A; Mangrulkar, Rajesh S; Cleary, James F; Marsella, Stacy C; Becker, Daniel M

    2017-04-01

    To assess advanced communication skills among second-year medical students exposed either to a computer simulation (MPathic-VR) featuring virtual humans, or to a multimedia computer-based learning module, and to understand each group's experiences and learning preferences. A single-blinded, mixed methods, randomized, multisite trial compared MPathic-VR (N=210) to computer-based learning (N=211). Primary outcomes: communication scores during repeat interactions with MPathic-VR's intercultural and interprofessional communication scenarios and scores on a subsequent advanced communication skills objective structured clinical examination (OSCE). Multivariate analysis of variance was used to compare outcomes. student attitude surveys and qualitative assessments of their experiences with MPathic-VR or computer-based learning. MPathic-VR-trained students improved their intercultural and interprofessional communication performance between their first and second interactions with each scenario. They also achieved significantly higher composite scores on the OSCE than computer-based learning-trained students. Attitudes and experiences were more positive among students trained with MPathic-VR, who valued its providing immediate feedback, teaching nonverbal communication skills, and preparing them for emotion-charged patient encounters. MPathic-VR was effective in training advanced communication skills and in enabling knowledge transfer into a more realistic clinical situation. MPathic-VR's virtual human simulation offers an effective and engaging means of advanced communication training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. FPGA Compute Acceleration for High-Throughput Data Processing in High-Energy Physics Experiments

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The upgrades of the four large experiments of the LHC at CERN in the coming years will result in a huge increase of data bandwidth for each experiment which needs to be processed very efficiently. For example the LHCb experiment will upgrade its detector 2019/2020 to a 'triggerless' readout scheme, where all of the readout electronics and several sub-detector parts will be replaced. The new readout electronics will be able to readout the detector at 40MHz. This increases the data bandwidth from the detector down to the event filter farm to 40TBit/s, which must be processed to select the interesting proton-proton collisions for later storage. The architecture of such a computing farm, which can process this amount of data as efficiently as possible, is a challenging task and several compute accelerator technologies are being considered.    In the high performance computing sector more and more FPGA compute accelerators are being used to improve the compute performance and reduce the...

  12. Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments.

    NARCIS (Netherlands)

    Dewiyanti, Silvia; Brand-Gruwel, Saskia; Jochems, Wim; Broers, Nick

    2008-01-01

    Dewiyanti, S., Brand-Gruwel, S., Jochems, W., & Broers, N. (2007). Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments. Computers in Human Behavior, 23, 496-514.

  13. Computational methods for two-phase flow and particle transport

    CERN Document Server

    Lee, Wen Ho

    2013-01-01

    This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.

  14. Application verification research of cloud computing technology in the field of real time aerospace experiment

    Science.gov (United States)

    Wan, Junwei; Chen, Hongyan; Zhao, Jing

    2017-08-01

    According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.

  15. Computations in plasma physics

    International Nuclear Information System (INIS)

    Cohen, B.I.; Killeen, J.

    1984-01-01

    A review of computer application in plasma physics is presented. Computer contribution to the investigation of magnetic and inertial confinement of a plasma and charged particle beam propagation is described. Typical utilization of computer for simulation and control of laboratory and cosmic experiments with a plasma and for data accumulation in these experiments is considered. Basic computational methods applied in plasma physics are discussed. Future trends of computer utilization in plasma reseaches are considered in terms of an increasing role of microprocessors and high-speed data plotters and the necessity of more powerful computer application

  16. Computational methods for structural load and resistance modeling

    Science.gov (United States)

    Thacker, B. H.; Millwater, H. R.; Harren, S. V.

    1991-01-01

    An automated capability for computing structural reliability considering uncertainties in both load and resistance variables is presented. The computations are carried out using an automated Advanced Mean Value iteration algorithm (AMV +) with performance functions involving load and resistance variables obtained by both explicit and implicit methods. A complete description of the procedures used is given as well as several illustrative examples, verified by Monte Carlo Analysis. In particular, the computational methods described in the paper are shown to be quite accurate and efficient for a material nonlinear structure considering material damage as a function of several primitive random variables. The results show clearly the effectiveness of the algorithms for computing the reliability of large-scale structural systems with a maximum number of resolutions.

  17. Numerical evaluation of methods for computing tomographic projections

    International Nuclear Information System (INIS)

    Zhuang, W.; Gopal, S.S.; Hebert, T.J.

    1994-01-01

    Methods for computing forward/back projections of 2-D images can be viewed as numerical integration techniques. The accuracy of any ray-driven projection method can be improved by increasing the number of ray-paths that are traced per projection bin. The accuracy of pixel-driven projection methods can be increased by dividing each pixel into a number of smaller sub-pixels and projecting each sub-pixel. The authors compared four competing methods of computing forward/back projections: bilinear interpolation, ray-tracing, pixel-driven projection based upon sub-pixels, and pixel-driven projection based upon circular, rather than square, pixels. This latter method is equivalent to a fast, bi-nonlinear interpolation. These methods and the choice of the number of ray-paths per projection bin or the number of sub-pixels per pixel present a trade-off between computational speed and accuracy. To solve the problem of assessing backprojection accuracy, the analytical inverse Fourier transform of the ramp filtered forward projection of the Shepp and Logan head phantom is derived

  18. Computer methods in physics 250 problems with guided solutions

    CERN Document Server

    Landau, Rubin H

    2018-01-01

    Our future scientists and professionals must be conversant in computational techniques. In order to facilitate integration of computer methods into existing physics courses, this textbook offers a large number of worked examples and problems with fully guided solutions in Python as well as other languages (Mathematica, Java, C, Fortran, and Maple). It’s also intended as a self-study guide for learning how to use computer methods in physics. The authors include an introductory chapter on numerical tools and indication of computational and physics difficulty level for each problem.

  19. Proceedings of computational methods in materials science

    International Nuclear Information System (INIS)

    Mark, J.E. Glicksman, M.E.; Marsh, S.P.

    1992-01-01

    The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering

  20. A permutation-based multiple testing method for time-course microarray experiments

    Directory of Open Access Journals (Sweden)

    George Stephen L

    2009-10-01

    Full Text Available Abstract Background Time-course microarray experiments are widely used to study the temporal profiles of gene expression. Storey et al. (2005 developed a method for analyzing time-course microarray studies that can be applied to discovering genes whose expression trajectories change over time within a single biological group, or those that follow different time trajectories among multiple groups. They estimated the expression trajectories of each gene using natural cubic splines under the null (no time-course and alternative (time-course hypotheses, and used a goodness of fit test statistic to quantify the discrepancy. The null distribution of the statistic was approximated through a bootstrap method. Gene expression levels in microarray data are often complicatedly correlated. An accurate type I error control adjusting for multiple testing requires the joint null distribution of test statistics for a large number of genes. For this purpose, permutation methods have been widely used because of computational ease and their intuitive interpretation. Results In this paper, we propose a permutation-based multiple testing procedure based on the test statistic used by Storey et al. (2005. We also propose an efficient computation algorithm. Extensive simulations are conducted to investigate the performance of the permutation-based multiple testing procedure. The application of the proposed method is illustrated using the Caenorhabditis elegans dauer developmental data. Conclusion Our method is computationally efficient and applicable for identifying genes whose expression levels are time-dependent in a single biological group and for identifying the genes for which the time-profile depends on the group in a multi-group setting.

  1. Studies on defect evolution in steels: experiments and computer simulations

    International Nuclear Information System (INIS)

    Sundar, C.S.

    2011-01-01

    In this paper, we present the results of our on-going studies on steels that are being carried out with a view to develop radiation resistant steels. The focus is on the use of nano-dispersoids in alloys towards the suppression of void formation and eventual swelling under irradiation. Results on the nucleation and growth of TiC precipitates in Ti modified austenitic steels and investigations on nano Yttria particles in Fe - a model oxide dispersion ferritic steel will be presented. The experimental methods of ion beam irradiation and positron annihilation spectroscopy have been used to elucidate the role of minor alloying elements on swelling behaviour. Computer simulation of defect processes have been carried out using ab-initio methods, molecular dynamics and Monte Carlo simulations. Our perspectives on addressing the multi-scale phenomena of defect processes leading to radiation damage, through a judicious combination of experiments and simulations, would be presented. (author)

  2. Methodological Potential of Computer Experiment in Teaching Mathematics at University

    Science.gov (United States)

    Lin, Kequan; Sokolova, Anna Nikolaevna; Vlasova, Vera K.

    2017-01-01

    The study is relevant due to the opportunity of increasing efficiency of teaching mathematics at university through integration of students of computer experiment conducted with the use of IT in this process. The problem of there search is defined by a contradiction between great potential opportunities of mathematics experiment for motivating and…

  3. Computational methods in molecular imaging technologies

    CERN Document Server

    Gunjan, Vinit Kumar; Venkatesh, C; Amarnath, M

    2017-01-01

    This book highlights the experimental investigations that have been carried out on magnetic resonance imaging and computed tomography (MRI & CT) images using state-of-the-art Computational Image processing techniques, and tabulates the statistical values wherever necessary. In a very simple and straightforward way, it explains how image processing methods are used to improve the quality of medical images and facilitate analysis. It offers a valuable resource for researchers, engineers, medical doctors and bioinformatics experts alike.

  4. Computational and experimental methods for enclosed natural convection

    International Nuclear Information System (INIS)

    Larson, D.W.; Gartling, D.K.; Schimmel, W.P. Jr.

    1977-10-01

    Two computational procedures and one optical experimental procedure for studying enclosed natural convection are described. The finite-difference and finite-element numerical methods are developed and several sample problems are solved. Results obtained from the two computational approaches are compared. A temperature-visualization scheme using laser holographic interferometry is described, and results from this experimental procedure are compared with results from both numerical methods

  5. Combinatorial methods with computer applications

    CERN Document Server

    Gross, Jonathan L

    2007-01-01

    Combinatorial Methods with Computer Applications provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. Requiring only a foundation in discrete mathematics, it can serve as the textbook in a combinatorial methods course or in a combined graph theory and combinatorics course.After an introduction to combinatorics, the book explores six systematic approaches within a comprehensive framework: sequences, solving recurrences, evaluating summation exp

  6. Hybrid Monte Carlo methods in computational finance

    NARCIS (Netherlands)

    Leitao Rodriguez, A.

    2017-01-01

    Monte Carlo methods are highly appreciated and intensively employed in computational finance in the context of financial derivatives valuation or risk management. The method offers valuable advantages like flexibility, easy interpretation and straightforward implementation. Furthermore, the

  7. Blending Qualitative and Computational Linguistics Methods for Fidelity Assessment: Experience with the Familias Unidas Preventive Intervention.

    Science.gov (United States)

    Gallo, Carlos; Pantin, Hilda; Villamar, Juan; Prado, Guillermo; Tapia, Maria; Ogihara, Mitsunori; Cruden, Gracelyn; Brown, C Hendricks

    2015-09-01

    Careful fidelity monitoring and feedback are critical to implementing effective interventions. A wide range of procedures exist to assess fidelity; most are derived from observational assessments (Schoenwald and Garland, Psycholog Assess 25:146-156, 2013). However, these fidelity measures are resource intensive for research teams in efficacy/effectiveness trials, and are often unattainable or unmanageable for the host organization to rate when the program is implemented on a large scale. We present a first step towards automated processing of linguistic patterns in fidelity monitoring of a behavioral intervention using an innovative mixed methods approach to fidelity assessment that uses rule-based, computational linguistics to overcome major resource burdens. Data come from an effectiveness trial of the Familias Unidas intervention, an evidence-based, family-centered preventive intervention found to be efficacious in reducing conduct problems, substance use and HIV sexual risk behaviors among Hispanic youth. This computational approach focuses on "joining," which measures the quality of the working alliance of the facilitator with the family. Quantitative assessments of reliability are provided. Kappa scores between a human rater and a machine rater for the new method for measuring joining reached 0.83. Early findings suggest that this approach can reduce the high cost of fidelity measurement and the time delay between fidelity assessment and feedback to facilitators; it also has the potential for improving the quality of intervention fidelity ratings.

  8. Testing and Validation of Computational Methods for Mass Spectrometry.

    Science.gov (United States)

    Gatto, Laurent; Hansen, Kasper D; Hoopmann, Michael R; Hermjakob, Henning; Kohlbacher, Oliver; Beyer, Andreas

    2016-03-04

    High-throughput methods based on mass spectrometry (proteomics, metabolomics, lipidomics, etc.) produce a wealth of data that cannot be analyzed without computational methods. The impact of the choice of method on the overall result of a biological study is often underappreciated, but different methods can result in very different biological findings. It is thus essential to evaluate and compare the correctness and relative performance of computational methods. The volume of the data as well as the complexity of the algorithms render unbiased comparisons challenging. This paper discusses some problems and challenges in testing and validation of computational methods. We discuss the different types of data (simulated and experimental validation data) as well as different metrics to compare methods. We also introduce a new public repository for mass spectrometric reference data sets ( http://compms.org/RefData ) that contains a collection of publicly available data sets for performance evaluation for a wide range of different methods.

  9. Measures of agreement between computation and experiment:validation metrics.

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew Franklin; Oberkampf, William Louis

    2005-08-01

    With the increasing role of computational modeling in engineering design, performance estimation, and safety assessment, improved methods are needed for comparing computational results and experimental measurements. Traditional methods of graphically comparing computational and experimental results, though valuable, are essentially qualitative. Computable measures are needed that can quantitatively compare computational and experimental results over a range of input, or control, variables and sharpen assessment of computational accuracy. This type of measure has been recently referred to as a validation metric. We discuss various features that we believe should be incorporated in a validation metric and also features that should be excluded. We develop a new validation metric that is based on the statistical concept of confidence intervals. Using this fundamental concept, we construct two specific metrics: one that requires interpolation of experimental data and one that requires regression (curve fitting) of experimental data. We apply the metrics to three example problems: thermal decomposition of a polyurethane foam, a turbulent buoyant plume of helium, and compressibility effects on the growth rate of a turbulent free-shear layer. We discuss how the present metrics are easily interpretable for assessing computational model accuracy, as well as the impact of experimental measurement uncertainty on the accuracy assessment.

  10. Geometric computations with interval and new robust methods applications in computer graphics, GIS and computational geometry

    CERN Document Server

    Ratschek, H

    2003-01-01

    This undergraduate and postgraduate text will familiarise readers with interval arithmetic and related tools to gain reliable and validated results and logically correct decisions for a variety of geometric computations plus the means for alleviating the effects of the errors. It also considers computations on geometric point-sets, which are neither robust nor reliable in processing with standard methods. The authors provide two effective tools for obtaining correct results: (a) interval arithmetic, and (b) ESSA the new powerful algorithm which improves many geometric computations and makes th

  11. Non-invasive coronary angiography with multislice computed tomography. Technology, methods, preliminary experience and prospects.

    Science.gov (United States)

    Traversi, Egidio; Bertoli, Giuseppe; Barazzoni, Giancarlo; Baldi, Maurizia; Tramarin, Roberto

    2004-02-01

    The recent technical developments in multislice computed tomography (MSCT), with ECG retro-gated image reconstruction, have elicited great interest in the possibility of accurate non-invasive imaging of the coronary arteries. The latest generation of MSCT systems with 8-16 rows of detectors permits acquisition of the whole cardiac volume during a single 15-20 s breath-hold with a submillimetric definition of the images and an outstanding signal-to-noise ratio. Thus the race which, between MSCT, electron beam computed tomography and cardiac magnetic resonance imaging, can best provide routine and reliable imaging of the coronary arteries in clinical practice has recommenced. Currently available MSCT systems offer different options for both cardiac image acquisition and reconstruction, including multiplanar and curved multiplanar reconstruction, three-dimensional volume rendering, maximum intensity projection, and virtual angioscopy. In our preliminary experience including 176 patients suffering from known or suspected coronary artery disease, MSCT was feasible in 161 (91.5%) and showed a sensitivity of 80.4% and a specificity of 80.3%, with respect to standard coronary angiography, in detecting critical stenosis in coronary arteries and artery or venous bypass grafts. These results correspond to a positive predictive value of 58.6% and a negative predictive value of 92.2%. The true role that MSCT is likely to play in the future in non-invasive coronary imaging is still to be defined. Nevertheless, the huge amount of data obtainable by MSCT along with the rapid technological advances, shorter acquisition times and reconstruction algorithm developments will make the technique stronger, and possible applications are expected not only for non-invasive coronary angiography, but also for cardiac function and myocardial perfusion evaluation, as an all-in-one examination.

  12. Computer network that assists in the planning, execution and evaluation of in-reactor experiments

    International Nuclear Information System (INIS)

    Bauer, T.H.; Froehle, P.H.; August, C.; Baldwin, R.D.; Johanson, E.W.; Kraimer, M.R.; Simms, R.; Klickman, A.E.

    1985-01-01

    For over 20 years complex, in-reactor experiments have been performed at Argonne National Laboratory (ANL) to investigate the performance of nuclear reactor fuel and to support the development of large computer codes that address questions of reactor safety in full-scale plants. Not only are computer codes an important end-product of the research, but computer analysis is also involved intimately at most stages of experiment planning, data reduction, and evaluation. For instance, many experiments are of sufficiently long duration or, if they are of brief duration, occur in such a purposeful sequence that need for speedy availability of on-line data is paramount. This is made possible most efficiently by computer assisted displays and evaluation. A purposeful linking of main-frame, mini, and micro computers has been effected over the past eight years which greatly enhances the speed with which experimental data are reduced to useful forms and applied to the relevant technological issues. This greater efficiency in data management led also to improvements in the planning and execution of subsequent experiments. Raw data from experiments performed at INEL is stored directly on disk and tape with the aid of minicomputers. Either during or shortly after an experiment, data may be transferred, via a direct link, to the Illinois offices of ANL where the data base is stored on a minicomputer system. This Idaho-to-Illinois link has both enhanced experiment performance and allowed rapid dissemination of results

  13. Methods and computing challenges of the realistic simulation of physics events in the presence of pile-up in the ATLAS experiment

    CERN Document Server

    Chapman, J D; The ATLAS collaboration

    2014-01-01

    We are now in a regime where we observe substantial multiple proton-proton collisions within each filled LHC bunch-crossing and also multiple filled bunch-crossings within the sensitive time window of the ATLAS detector. This will increase with increased luminosity in the near future. Including these effects in Monte Carlo simulation poses significant computing challenges. We present a description of the standard approach used by the ATLAS experiment and details of how we manage the conflicting demands of keeping the background dataset size as small as possible while minimizing the effect of background event re-use. We also present details of the methods used to minimize the memory footprint of these digitization jobs, to keep them within the grid limit, despite combining the information from thousands of simulated events at once. We also describe an alternative approach, known as Overlay. Here, the actual detector conditions are sampled from raw data using a special zero-bias trigger, and the simulated physi...

  14. Computational methods for three-dimensional microscopy reconstruction

    CERN Document Server

    Frank, Joachim

    2014-01-01

    Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology.   Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.

  15. A novel resource management method of providing operating system as a service for mobile transparent computing.

    Science.gov (United States)

    Xiong, Yonghua; Huang, Suzhen; Wu, Min; Zhang, Yaoxue; She, Jinhua

    2014-01-01

    This paper presents a framework for mobile transparent computing. It extends the PC transparent computing to mobile terminals. Since resources contain different kinds of operating systems and user data that are stored in a remote server, how to manage the network resources is essential. In this paper, we apply the technologies of quick emulator (QEMU) virtualization and mobile agent for mobile transparent computing (MTC) to devise a method of managing shared resources and services management (SRSM). It has three layers: a user layer, a manage layer, and a resource layer. A mobile virtual terminal in the user layer and virtual resource management in the manage layer cooperate to maintain the SRSM function accurately according to the user's requirements. An example of SRSM is used to validate this method. Experiment results show that the strategy is effective and stable.

  16. A Novel Resource Management Method of Providing Operating System as a Service for Mobile Transparent Computing

    Directory of Open Access Journals (Sweden)

    Yonghua Xiong

    2014-01-01

    Full Text Available This paper presents a framework for mobile transparent computing. It extends the PC transparent computing to mobile terminals. Since resources contain different kinds of operating systems and user data that are stored in a remote server, how to manage the network resources is essential. In this paper, we apply the technologies of quick emulator (QEMU virtualization and mobile agent for mobile transparent computing (MTC to devise a method of managing shared resources and services management (SRSM. It has three layers: a user layer, a manage layer, and a resource layer. A mobile virtual terminal in the user layer and virtual resource management in the manage layer cooperate to maintain the SRSM function accurately according to the user’s requirements. An example of SRSM is used to validate this method. Experiment results show that the strategy is effective and stable.

  17. GRAPH-BASED POST INCIDENT INTERNAL AUDIT METHOD OF COMPUTER EQUIPMENT

    Directory of Open Access Journals (Sweden)

    I. S. Pantiukhin

    2016-05-01

    Full Text Available Graph-based post incident internal audit method of computer equipment is proposed. The essence of the proposed solution consists in the establishing of relationships among hard disk damps (image, RAM and network. This method is intended for description of information security incident properties during the internal post incident audit of computer equipment. Hard disk damps receiving and formation process takes place at the first step. It is followed by separation of these damps into the set of components. The set of components includes a large set of attributes that forms the basis for the formation of the graph. Separated data is recorded into the non-relational database management system (NoSQL that is adapted for graph storage, fast access and processing. Damps linking application method is applied at the final step. The presented method gives the possibility to human expert in information security or computer forensics for more precise, informative internal audit of computer equipment. The proposed method allows reducing the time spent on internal audit of computer equipment, increasing accuracy and informativeness of such audit. The method has a development potential and can be applied along with the other components in the tasks of users’ identification and computer forensics.

  18. Application of statistical method for FBR plant transient computation

    International Nuclear Information System (INIS)

    Kikuchi, Norihiro; Mochizuki, Hiroyasu

    2014-01-01

    Highlights: • A statistical method with a large trial number up to 10,000 is applied to the plant system analysis. • A turbine trip test conducted at the “Monju” reactor is selected as a plant transient. • A reduction method of trial numbers is discussed. • The result with reduced trial number can express the base regions of the computed distribution. -- Abstract: It is obvious that design tolerances, errors included in operation, and statistical errors in empirical correlations effect on the transient behavior. The purpose of the present study is to apply above mentioned statistical errors to a plant system computation in order to evaluate the statistical distribution contained in the transient evolution. A selected computation case is the turbine trip test conducted at 40% electric power of the prototype fast reactor “Monju”. All of the heat transport systems of “Monju” are modeled with the NETFLOW++ system code which has been validated using the plant transient tests of the experimental fast reactor Joyo, and “Monju”. The effects of parameters on upper plenum temperature are confirmed by sensitivity analyses, and dominant parameters are chosen. The statistical errors are applied to each computation deck by using a pseudorandom number and the Monte-Carlo method. The dSFMT (Double precision SIMD-oriented Fast Mersenne Twister) that is developed version of Mersenne Twister (MT), is adopted as the pseudorandom number generator. In the present study, uniform random numbers are generated by dSFMT, and these random numbers are transformed to the normal distribution by the Box–Muller method. Ten thousands of different computations are performed at once. In every computation case, the steady calculation is performed for 12,000 s, and transient calculation is performed for 4000 s. In the purpose of the present statistical computation, it is important that the base regions of distribution functions should be calculated precisely. A large number of

  19. Computational simulation in architectural and environmental acoustics methods and applications of wave-based computation

    CERN Document Server

    Sakamoto, Shinichi; Otsuru, Toru

    2014-01-01

    This book reviews a variety of methods for wave-based acoustic simulation and recent applications to architectural and environmental acoustic problems. Following an introduction providing an overview of computational simulation of sound environment, the book is in two parts: four chapters on methods and four chapters on applications. The first part explains the fundamentals and advanced techniques for three popular methods, namely, the finite-difference time-domain method, the finite element method, and the boundary element method, as well as alternative time-domain methods. The second part demonstrates various applications to room acoustics simulation, noise propagation simulation, acoustic property simulation for building components, and auralization. This book is a valuable reference that covers the state of the art in computational simulation for architectural and environmental acoustics.  

  20. The iso-response method: measuring neuronal stimulus integration with closed-loop experiments

    Science.gov (United States)

    Gollisch, Tim; Herz, Andreas V. M.

    2012-01-01

    Throughout the nervous system, neurons integrate high-dimensional input streams and transform them into an output of their own. This integration of incoming signals involves filtering processes and complex non-linear operations. The shapes of these filters and non-linearities determine the computational features of single neurons and their functional roles within larger networks. A detailed characterization of signal integration is thus a central ingredient to understanding information processing in neural circuits. Conventional methods for measuring single-neuron response properties, such as reverse correlation, however, are often limited by the implicit assumption that stimulus integration occurs in a linear fashion. Here, we review a conceptual and experimental alternative that is based on exploring the space of those sensory stimuli that result in the same neural output. As demonstrated by recent results in the auditory and visual system, such iso-response stimuli can be used to identify the non-linearities relevant for stimulus integration, disentangle consecutive neural processing steps, and determine their characteristics with unprecedented precision. Automated closed-loop experiments are crucial for this advance, allowing rapid search strategies for identifying iso-response stimuli during experiments. Prime targets for the method are feed-forward neural signaling chains in sensory systems, but the method has also been successfully applied to feedback systems. Depending on the specific question, “iso-response” may refer to a predefined firing rate, single-spike probability, first-spike latency, or other output measures. Examples from different studies show that substantial progress in understanding neural dynamics and coding can be achieved once rapid online data analysis and stimulus generation, adaptive sampling, and computational modeling are tightly integrated into experiments. PMID:23267315

  1. On-Line Digital Computer Applications in Gas Chromatography, An Undergraduate Analytical Experiment

    Science.gov (United States)

    Perone, S. P.; Eagleston, J. F.

    1971-01-01

    Presented are some descriptive background materials and the directions for an experiment which provides an introduction to on-line computer instrumentation. Assumes students are familiar with the Purdue Real-Time Basic (PRTB) laboratory computer system. (PR)

  2. BLUES function method in computational physics

    Science.gov (United States)

    Indekeu, Joseph O.; Müller-Nedebock, Kristian K.

    2018-04-01

    We introduce a computational method in physics that goes ‘beyond linear use of equation superposition’ (BLUES). A BLUES function is defined as a solution of a nonlinear differential equation (DE) with a delta source that is at the same time a Green’s function for a related linear DE. For an arbitrary source, the BLUES function can be used to construct an exact solution to the nonlinear DE with a different, but related source. Alternatively, the BLUES function can be used to construct an approximate piecewise analytical solution to the nonlinear DE with an arbitrary source. For this alternative use the related linear DE need not be known. The method is illustrated in a few examples using analytical calculations and numerical computations. Areas for further applications are suggested.

  3. Investigation of the computer experiences and attitudes of pre-service mathematics teachers: new evidence from Turkey.

    Science.gov (United States)

    Birgin, Osman; Catlioğlu, Hakan; Gürbüz, Ramazan; Aydin, Serhat

    2010-10-01

    This study aimed to investigate the experiences of pre-service mathematics (PSM) teachers with computers and their attitudes toward them. The Computer Attitude Scale, Computer Competency Survey, and Computer Use Information Form were administered to 180 Turkish PSM teachers. Results revealed that most PSM teachers used computers at home and at Internet cafes, and that their competency was generally intermediate and upper level. The study concludes that PSM teachers' attitudes about computers differ according to their years of study, computer ownership, level of computer competency, frequency of computer use, computer experience, and whether they had attended a computer-aided instruction course. However, computer attitudes were not affected by gender.

  4. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  5. Coupling between eddy currents and rigid body rotation: analysis, computation, and experiments

    International Nuclear Information System (INIS)

    Hua, T.Q.; Turner, L.R.

    1985-01-01

    Computation and experiment show that the coupling between eddy currents and the angular deflections resulting from those eddy currents can reduce electromagnetic effects such as forces, torques, and power dissipation to levels far less severe than would be predicted without regard for the coupling. This paper explores the coupling effects beyond the parameter range that has been explored experimentally, using analytical means and the eddy-current computer code EDDYNET. The paper also describes upcoming FELIX experiments with cantilevered beams

  6. Recent Advances in Computational Methods for Nuclear Magnetic Resonance Data Processing

    KAUST Repository

    Gao, Xin

    2013-01-11

    Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.

  7. Advances in Grid Computing for the FabrIc for Frontier Experiments Project at Fermialb

    Energy Technology Data Exchange (ETDEWEB)

    Herner, K. [Fermilab; Alba Hernandex, A. F. [Fermilab; Bhat, S. [Fermilab; Box, D. [Fermilab; Boyd, J. [Fermilab; Di Benedetto, V. [Fermilab; Ding, P. [Fermilab; Dykstra, D. [Fermilab; Fattoruso, M. [Fermilab; Garzoglio, G. [Fermilab; Kirby, M. [Fermilab; Kreymer, A. [Fermilab; Levshina, T. [Fermilab; Mazzacane, A. [Fermilab; Mengel, M. [Fermilab; Mhashilkar, P. [Fermilab; Podstavkov, V. [Fermilab; Retzke, K. [Fermilab; Sharma, N. [Fermilab; Teheran, J. [Fermilab

    2016-01-01

    The FabrIc for Frontier Experiments (FIFE) project is a major initiative within the Fermilab Scientic Computing Division charged with leading the computing model for Fermilab experiments. Work within the FIFE project creates close collaboration between experimenters and computing professionals to serve high-energy physics experiments of diering size, scope, and physics area. The FIFE project has worked to develop common tools for job submission, certicate management, software and reference data distribution through CVMFS repositories, robust data transfer, job monitoring, and databases for project tracking. Since the projects inception the experiments under the FIFE umbrella have signicantly matured, and present an increasingly complex list of requirements to service providers. To meet these requirements, the FIFE project has been involved in transitioning the Fermilab General Purpose Grid cluster to support a partitionable slot model, expanding the resources available to experiments via the Open Science Grid, assisting with commissioning dedicated high-throughput computing resources for individual experiments, supporting the eorts of the HEP Cloud projects to provision a variety of back end resources, including public clouds and high performance computers, and developing rapid onboarding procedures for new experiments and collaborations. The larger demands also require enhanced job monitoring tools, which the project has developed using such tools as ElasticSearch and Grafana. in helping experiments manage their large-scale production work ows. This group in turn requires a structured service to facilitate smooth management of experiment requests, which FIFE provides in the form of the Production Operations Management Service (POMS). POMS is designed to track and manage requests from the FIFE experiments to run particular work ows, and support troubleshooting and triage in case of problems. Recently a new certicate management infrastructure called Distributed

  8. Large scale statistics for computational verification of grain growth simulations with experiments

    International Nuclear Information System (INIS)

    Demirel, Melik C.; Kuprat, Andrew P.; George, Denise C.; Straub, G.K.; Misra, Amit; Alexander, Kathleen B.; Rollett, Anthony D.

    2002-01-01

    by curvature driven motion. This method utilizes gradientweighted moving finite elements (GWMFE) combined with algorithms for performing topological reconnections on the evolving mesh. We have previously showed a strong similarity between small-scale grain growth experiments and anisotropic three-dimensional simulations obtained from the EBSD measurements. Using the same technique, we obtained 5170-grain data from a thin Aluminum film with a columnar grain structure and compared the computational results with experiments.

  9. Electromagnetic field computation by network methods

    CERN Document Server

    Felsen, Leopold B; Russer, Peter

    2009-01-01

    This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.

  10. Computational botany methods for automated species identification

    CERN Document Server

    Remagnino, Paolo; Wilkin, Paul; Cope, James; Kirkup, Don

    2017-01-01

    This book discusses innovative methods for mining information from images of plants, especially leaves, and highlights the diagnostic features that can be implemented in fully automatic systems for identifying plant species. Adopting a multidisciplinary approach, it explores the problem of plant species identification, covering both the concepts of taxonomy and morphology. It then provides an overview of morphometrics, including the historical background and the main steps in the morphometric analysis of leaves together with a number of applications. The core of the book focuses on novel diagnostic methods for plant species identification developed from a computer scientist’s perspective. It then concludes with a chapter on the characterization of botanists' visions, which highlights important cognitive aspects that can be implemented in a computer system to more accurately replicate the human expert’s fixation process. The book not only represents an authoritative guide to advanced computational tools fo...

  11. Computation of saddle-type slow manifolds using iterative methods

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall

    2015-01-01

    with respect to , appropriate estimates are directly attainable using the method of this paper. The method is applied to several examples, including a model for a pair of neurons coupled by reciprocal inhibition with two slow and two fast variables, and the computation of homoclinic connections in the Fitz......This paper presents an alternative approach for the computation of trajectory segments on slow manifolds of saddle type. This approach is based on iterative methods rather than collocation-type methods. Compared to collocation methods, which require mesh refinements to ensure uniform convergence...

  12. The experience sampling method: Investigating students' affective experience

    Science.gov (United States)

    Nissen, Jayson M.; Stetzer, MacKenzie R.; Shemwell, Jonathan T.

    2013-01-01

    Improving non-cognitive outcomes such as attitudes, efficacy, and persistence in physics courses is an important goal of physics education. This investigation implemented an in-the-moment surveying technique called the Experience Sampling Method (ESM) [1] to measure students' affective experience in physics. Measurements included: self-efficacy, cognitive efficiency, activation, intrinsic motivation, and affect. Data are presented that show contrasts in students' experiences (e.g., in physics vs. non-physics courses).

  13. Development and application of a computer model for large-scale flame acceleration experiments

    International Nuclear Information System (INIS)

    Marx, K.D.

    1987-07-01

    A new computational model for large-scale premixed flames is developed and applied to the simulation of flame acceleration experiments. The primary objective is to circumvent the necessity for resolving turbulent flame fronts; this is imperative because of the relatively coarse computational grids which must be used in engineering calculations. The essence of the model is to artificially thicken the flame by increasing the appropriate diffusivities and decreasing the combustion rate, but to do this in such a way that the burn velocity varies with pressure, temperature, and turbulence intensity according to prespecified phenomenological characteristics. The model is particularly aimed at implementation in computer codes which simulate compressible flows. To this end, it is applied to the two-dimensional simulation of hydrogen-air flame acceleration experiments in which the flame speeds and gas flow velocities attain or exceed the speed of sound in the gas. It is shown that many of the features of the flame trajectories and pressure histories in the experiments are simulated quite well by the model. Using the comparison of experimental and computational results as a guide, some insight is developed into the processes which occur in such experiments. 34 refs., 25 figs., 4 tabs

  14. SAMGrid experiences with the Condor technology in Run II computing

    International Nuclear Information System (INIS)

    Baranovski, A.; Loebel-Carpenter, L.; Garzoglio, G.; Herber, R.; Illingworth, R.; Kennedy, R.; Kreymer, A.; Kumar, A.; Lueking, L.; Lyon, A.; Merritt, W.; Terekhov, I.; Trumbo, J.; Veseli, S.; White, S.; St. Denis, R.; Jain, S.; Nishandar, A.

    2004-01-01

    SAMGrid is a globally distributed system for data handling and job management, developed at Fermilab for the D0 and CDF experiments in Run II. The Condor system is being developed at the University of Wisconsin for management of distributed resources, computational and otherwise. We briefly review the SAMGrid architecture and its interaction with Condor, which was presented earlier. We then present our experiences using the system in production, which have two distinct aspects. At the global level, we deployed Condor-G, the Grid-extended Condor, for the resource brokering and global scheduling of our jobs. At the heart of the system is Condor's Matchmaking Service. As a more recent work at the computing element level, we have been benefiting from the large computing cluster at the University of Wisconsin campus. The architecture of the computing facility and the philosophy of Condor's resource management have prompted us to improve the application infrastructure for D0 and CDF, in aspects such as parting with the shared file system or reliance on resources being dedicated. As a result, we have increased productivity and made our applications more portable and Grid-ready. Our fruitful collaboration with the Condor team has been made possible by the Particle Physics Data Grid

  15. ATLAS experience with HEP software at the Argonne leadership computing facility

    International Nuclear Information System (INIS)

    Uram, Thomas D; LeCompte, Thomas J; Benjamin, D

    2014-01-01

    A number of HEP software packages used by the ATLAS experiment, including GEANT4, ROOT and ALPGEN, have been adapted to run on the IBM Blue Gene supercomputers at the Argonne Leadership Computing Facility. These computers use a non-x86 architecture and have a considerably less rich operating environment than in common use in HEP, but also represent a computing capacity an order of magnitude beyond what ATLAS is presently using via the LCG. The status and potential for making use of leadership-class computing, including the status of integration with the ATLAS production system, is discussed.

  16. ATLAS Experience with HEP Software at the Argonne Leadership Computing Facility

    CERN Document Server

    LeCompte, T; The ATLAS collaboration; Benjamin, D

    2014-01-01

    A number of HEP software packages used by the ATLAS experiment, including GEANT4, ROOT and ALPGEN, have been adapted to run on the IBM Blue Gene supercomputers at the Argonne Leadership Computing Facility. These computers use a non-x86 architecture and have a considerably less rich operating environment than in common use in HEP, but also represent a computing capacity an order of magnitude beyond what ATLAS is presently using via the LCG. The status and potential for making use of leadership-class computing, including the status of integration with the ATLAS production system, is discussed.

  17. Computational Methods for Modeling Aptamers and Designing Riboswitches

    Directory of Open Access Journals (Sweden)

    Sha Gong

    2017-11-01

    Full Text Available Riboswitches, which are located within certain noncoding RNA region perform functions as genetic “switches”, regulating when and where genes are expressed in response to certain ligands. Understanding the numerous functions of riboswitches requires computation models to predict structures and structural changes of the aptamer domains. Although aptamers often form a complex structure, computational approaches, such as RNAComposer and Rosetta, have already been applied to model the tertiary (three-dimensional (3D structure for several aptamers. As structural changes in aptamers must be achieved within the certain time window for effective regulation, kinetics is another key point for understanding aptamer function in riboswitch-mediated gene regulation. The coarse-grained self-organized polymer (SOP model using Langevin dynamics simulation has been successfully developed to investigate folding kinetics of aptamers, while their co-transcriptional folding kinetics can be modeled by the helix-based computational method and BarMap approach. Based on the known aptamers, the web server Riboswitch Calculator and other theoretical methods provide a new tool to design synthetic riboswitches. This review will represent an overview of these computational methods for modeling structure and kinetics of riboswitch aptamers and for designing riboswitches.

  18. A new computational method for the detection of horizontal gene transfer events.

    Science.gov (United States)

    Tsirigos, Aristotelis; Rigoutsos, Isidore

    2005-01-01

    In recent years, the increase in the amounts of available genomic data has made it easier to appreciate the extent by which organisms increase their genetic diversity through horizontally transferred genetic material. Such transfers have the potential to give rise to extremely dynamic genomes where a significant proportion of their coding DNA has been contributed by external sources. Because of the impact of these horizontal transfers on the ecological and pathogenic character of the recipient organisms, methods are continuously sought that are able to computationally determine which of the genes of a given genome are products of transfer events. In this paper, we introduce and discuss a novel computational method for identifying horizontal transfers that relies on a gene's nucleotide composition and obviates the need for knowledge of codon boundaries. In addition to being applicable to individual genes, the method can be easily extended to the case of clusters of horizontally transferred genes. With the help of an extensive and carefully designed set of experiments on 123 archaeal and bacterial genomes, we demonstrate that the new method exhibits significant improvement in sensitivity when compared to previously published approaches. In fact, it achieves an average relative improvement across genomes of between 11 and 41% compared to the Codon Adaptation Index method in distinguishing native from foreign genes. Our method's horizontal gene transfer predictions for 123 microbial genomes are available online at http://cbcsrv.watson.ibm.com/HGT/.

  19. Results from the First Two Flights of the Static Computer Memory Integrity Testing Experiment

    Science.gov (United States)

    Hancock, Thomas M., III

    1999-01-01

    This paper details the scientific objectives, experiment design, data collection method, and post flight analysis following the first two flights of the Static Computer Memory Integrity Testing (SCMIT) experiment. SCMIT is designed to detect soft-event upsets in passive magnetic memory. A soft-event upset is a change in the logic state of active or passive forms of magnetic memory, commonly referred to as a "Bitflip". In its mildest form a soft-event upset can cause software exceptions, unexpected events, start spacecraft safeing (ending data collection) or corrupted fault protection and error recovery capabilities. In it's most severe form loss of mission or spacecraft can occur. Analysis after the first flight (in 1991 during STS-40) identified possible soft-event upsets to 25% of the experiment detectors. Post flight analysis after the second flight (in 1997 on STS-87) failed to find any evidence of soft-event upsets. The SCMIT experiment is currently scheduled for a third flight in December 1999 on STS-101.

  20. Computer science handbook. Vol. 13.3. Environmental computer science. Computer science methods for environmental protection and environmental research

    International Nuclear Information System (INIS)

    Page, B.; Hilty, L.M.

    1994-01-01

    Environmental computer science is a new partial discipline of applied computer science, which makes use of methods and techniques of information processing in environmental protection. Thanks to the inter-disciplinary nature of environmental problems, computer science acts as a mediator between numerous disciplines and institutions in this sector. The handbook reflects the broad spectrum of state-of-the art environmental computer science. The following important subjects are dealt with: Environmental databases and information systems, environmental monitoring, modelling and simulation, visualization of environmental data and knowledge-based systems in the environmental sector. (orig.) [de

  1. A computational method for sharp interface advection

    DEFF Research Database (Denmark)

    Roenby, Johan; Bredmose, Henrik; Jasak, Hrvoje

    2016-01-01

    We devise a numerical method for passive advection of a surface, such as the interface between two incompressible fluids, across a computational mesh. The method is called isoAdvector, and is developed for general meshes consisting of arbitrary polyhedral cells. The algorithm is based on the volu...

  2. Method of generating a computer readable model

    DEFF Research Database (Denmark)

    2008-01-01

    A method of generating a computer readable model of a geometrical object constructed from a plurality of interconnectable construction elements, wherein each construction element has a number of connection elements for connecting the construction element with another construction element. The met......A method of generating a computer readable model of a geometrical object constructed from a plurality of interconnectable construction elements, wherein each construction element has a number of connection elements for connecting the construction element with another construction element....... The method comprises encoding a first and a second one of the construction elements as corresponding data structures, each representing the connection elements of the corresponding construction element, and each of the connection elements having associated with it a predetermined connection type. The method...... further comprises determining a first connection element of the first construction element and a second connection element of the second construction element located in a predetermined proximity of each other; and retrieving connectivity information of the corresponding connection types of the first...

  3. Hamiltonian lattice field theory: Computer calculations using variational methods

    International Nuclear Information System (INIS)

    Zako, R.L.

    1991-01-01

    I develop a variational method for systematic numerical computation of physical quantities -- bound state energies and scattering amplitudes -- in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. I present an algorithm for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. I also show how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato's generalizations of Temple's formula. The algorithm could be adapted to systems such as atoms and molecules. I show how to compute Green's functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green's functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. I discuss the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, I do not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. I apply the method to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. I describe a computer implementation of the method and present numerical results for simple quantum mechanical systems

  4. Hamiltonian lattice field theory: Computer calculations using variational methods

    International Nuclear Information System (INIS)

    Zako, R.L.

    1991-01-01

    A variational method is developed for systematic numerical computation of physical quantities-bound state energies and scattering amplitudes-in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. An algorithm is presented for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. It is shown how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato's generalizations of Temple's formula. The algorithm could be adapted to systems such as atoms and molecules. It is shown how to compute Green's functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green's functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. The author discusses the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, the author does not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. The method is applied to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. The author describes a computer implementation of the method and present numerical results for simple quantum mechanical systems

  5. Comparison of four computational methods for computing Q factors and resonance wavelengths in photonic crystal membrane cavities

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Frandsen, Lars Hagedorn; Burger, Sven

    2016-01-01

    We benchmark four state-of-the-art computational methods by computing quality factors and resonance wavelengths in photonic crystal membrane L5 and L9 line defect cavities.The convergence of the methods with respect to resolution, degrees of freedom and number ofmodes is investigated. Special att...... attention is paid to the influence of the size of the computational domain. Convergence is not obtained for some of the methods, indicating that some are moresuitable than others for analyzing line defect cavities....

  6. The Direct Lighting Computation in Global Illumination Methods

    Science.gov (United States)

    Wang, Changyaw Allen

    1994-01-01

    Creating realistic images is a computationally expensive process, but it is very important for applications such as interior design, product design, education, virtual reality, and movie special effects. To generate realistic images, state-of-art rendering techniques are employed to simulate global illumination, which accounts for the interreflection of light among objects. In this document, we formalize the global illumination problem into a eight -dimensional integral and discuss various methods that can accelerate the process of approximating this integral. We focus on the direct lighting computation, which accounts for the light reaching the viewer from the emitting sources after exactly one reflection, Monte Carlo sampling methods, and light source simplification. Results include a new sample generation method, a framework for the prediction of the total number of samples used in a solution, and a generalized Monte Carlo approach for computing the direct lighting from an environment which for the first time makes ray tracing feasible for highly complex environments.

  7. Model and Computing Experiment for Research and Aerosols Usage Management

    Directory of Open Access Journals (Sweden)

    Daler K. Sharipov

    2012-09-01

    Full Text Available The article deals with a math model for research and management of aerosols released into the atmosphere as well as numerical algorithm used as hardware and software systems for conducting computing experiment.

  8. Reduced order methods for modeling and computational reduction

    CERN Document Server

    Rozza, Gianluigi

    2014-01-01

    This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics.  Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This...

  9. Modeling Warm Dense Matter Experiments using the 3D ALE-AMR Code and the Move Toward Exascale Computing

    International Nuclear Information System (INIS)

    Koniges, A.; Eder, E.; Liu, W.; Barnard, J.; Friedman, A.; Logan, G.; Fisher, A.; Masers, N.; Bertozzi, A.

    2011-01-01

    The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM) regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR), has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion) of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. The ALE-AMR code does not have any export control restrictions and is currently running at the National Energy Research Scientific Computing Center (NERSC) at LBNL and has been shown to scale well to thousands of CPUs. New surface tension models that are being implemented and applied to WDM experiments. Some of the approaches use a diffuse interface surface tension model that is based on the advective Cahn-Hilliard equations, which allows for droplet breakup in divergent velocity fields without the need for imposed perturbations. Other methods require seeding or other methods for droplet breakup. We also briefly discuss the effects of the move to exascale computing and related

  10. The Extrapolation-Accelerated Multilevel Aggregation Method in PageRank Computation

    Directory of Open Access Journals (Sweden)

    Bing-Yuan Pu

    2013-01-01

    Full Text Available An accelerated multilevel aggregation method is presented for calculating the stationary probability vector of an irreducible stochastic matrix in PageRank computation, where the vector extrapolation method is its accelerator. We show how to periodically combine the extrapolation method together with the multilevel aggregation method on the finest level for speeding up the PageRank computation. Detailed numerical results are given to illustrate the behavior of this method, and comparisons with the typical methods are also made.

  11. Evolutionary Computing Methods for Spectral Retrieval

    Science.gov (United States)

    Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna

    2009-01-01

    A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.

  12. Monte Carlo methods of PageRank computation

    NARCIS (Netherlands)

    Litvak, Nelli

    2004-01-01

    We describe and analyze an on-line Monte Carlo method of PageRank computation. The PageRank is being estimated basing on results of a large number of short independent simulation runs initiated from each page that contains outgoing hyperlinks. The method does not require any storage of the hyperlink

  13. Computational methods for industrial radiation measurement applications

    International Nuclear Information System (INIS)

    Gardner, R.P.; Guo, P.; Ao, Q.

    1996-01-01

    Computational methods have been used with considerable success to complement radiation measurements in solving a wide range of industrial problems. The almost exponential growth of computer capability and applications in the last few years leads to a open-quotes black boxclose quotes mentality for radiation measurement applications. If a black box is defined as any radiation measurement device that is capable of measuring the parameters of interest when a wide range of operating and sample conditions may occur, then the development of computational methods for industrial radiation measurement applications should now be focused on the black box approach and the deduction of properties of interest from the response with acceptable accuracy and reasonable efficiency. Nowadays, increasingly better understanding of radiation physical processes, more accurate and complete fundamental physical data, and more advanced modeling and software/hardware techniques have made it possible to make giant strides in that direction with new ideas implemented with computer software. The Center for Engineering Applications of Radioisotopes (CEAR) at North Carolina State University has been working on a variety of projects in the area of radiation analyzers and gauges for accomplishing this for quite some time, and they are discussed here with emphasis on current accomplishments

  14. Experience of BESIII data production with local cluster and distributed computing model

    International Nuclear Information System (INIS)

    Deng, Z Y; Li, W D; Liu, H M; Sun, Y Z; Zhang, X M; Lin, L; Nicholson, C; Zhemchugov, A

    2012-01-01

    The BES III detector is a new spectrometer which works on the upgraded high-luminosity collider, BEPCII. The BES III experiment studies physics in the tau-charm energy region from 2 GeV to 4.6 GeV . From 2009 to 2011, BEPCII has produced 106M ψ(2S) events, 225M J/ψ events, 2.8 fb −1 ψ(3770) data, and 500 pb −1 data at 4.01 GeV. All the data samples were processed successfully and many important physics results have been achieved based on these samples. Doing data production correctly and efficiently with limited CPU and storage resources is a big challenge. This paper will describe the implementation of the experiment-specific data production for BESIII in detail, including data calibration with event-level parallel computing model, data reconstruction, inclusive Monte Carlo generation, random trigger background mixing and multi-stream data skimming. Now, with the data sample increasing rapidly, there is a growing demand to move from solely using a local cluster to a more distributed computing model. A distributed computing environment is being set up and expected to go into production use in 2012. The experience of BESIII data production, both with a local cluster and with a distributed computing model, is presented here.

  15. Computationally efficient methods for digital control

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Hespanha, J.P.; Silvestre, C.J.; Kataria, N.; Brewer, F.

    2008-01-01

    The problem of designing a digital controller is considered with the novelty of explicitly taking into account the computation cost of the controller implementation. A class of controller emulation methods inspired by numerical analysis is proposed. Through various examples it is shown that these

  16. Computational techniques for inelastic analysis and numerical experiments

    International Nuclear Information System (INIS)

    Yamada, Y.

    1977-01-01

    A number of formulations have been proposed for inelastic analysis, particularly for the thermal elastic-plastic creep analysis of nuclear reactor components. In the elastic-plastic regime, which principally concerns with the time independent behavior, the numerical techniques based on the finite element method have been well exploited and computations have become a routine work. With respect to the problems in which the time dependent behavior is significant, it is desirable to incorporate a procedure which is workable on the mechanical model formulation as well as the method of equation of state proposed so far. A computer program should also take into account the strain-dependent and/or time-dependent micro-structural changes which often occur during the operation of structural components at the increasingly high temperature for a long period of time. Special considerations are crucial if the analysis is to be extended to large strain regime where geometric nonlinearities predominate. The present paper introduces a rational updated formulation and a computer program under development by taking into account the various requisites stated above. (Auth.)

  17. Topographic evolution of sandbars: Flume experiment and computational modeling

    Science.gov (United States)

    Kinzel, Paul J.; Nelson, Jonathan M.; McDonald, Richard R.; Logan, Brandy L.

    2010-01-01

    Measurements of sandbar formation and evolution were carried out in a laboratory flume and the topographic characteristics of these barforms were compared to predictions from a computational flow and sediment transport model with bed evolution. The flume experiment produced sandbars with approximate mode 2, whereas numerical simulations produced a bed morphology better approximated as alternate bars, mode 1. In addition, bar formation occurred more rapidly in the laboratory channel than for the model channel. This paper focuses on a steady-flow laboratory experiment without upstream sediment supply. Future experiments will examine the effects of unsteady flow and sediment supply and the use of numerical models to simulate the response of barform topography to these influences.

  18. Service Outsourcing Character Oriented Privacy Conflict Detection Method in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Changbo Ke

    2014-01-01

    Full Text Available Cloud computing has provided services for users as a software paradigm. However, it is difficult to ensure privacy information security because of its opening, virtualization, and service outsourcing features. Therefore how to protect user privacy information has become a research focus. In this paper, firstly, we model service privacy policy and user privacy preference with description logic. Secondly, we use the pellet reasonor to verify the consistency and satisfiability, so as to detect the privacy conflict between services and user. Thirdly, we present the algorithm of detecting privacy conflict in the process of cloud service composition and prove the correctness and feasibility of this method by case study and experiment analysis. Our method can reduce the risk of user sensitive privacy information being illegally used and propagated by outsourcing services. In the meantime, the method avoids the exception in the process of service composition by the privacy conflict, and improves the trust degree of cloud service providers.

  19. Developing a multimodal biometric authentication system using soft computing methods.

    Science.gov (United States)

    Malcangi, Mario

    2015-01-01

    Robust personal authentication is becoming ever more important in computer-based applications. Among a variety of methods, biometric offers several advantages, mainly in embedded system applications. Hard and soft multi-biometric, combined with hard and soft computing methods, can be applied to improve the personal authentication process and to generalize the applicability. This chapter describes the embedded implementation of a multi-biometric (voiceprint and fingerprint) multimodal identification system based on hard computing methods (DSP) for feature extraction and matching, an artificial neural network (ANN) for soft feature pattern matching, and a fuzzy logic engine (FLE) for data fusion and decision.

  20. Computer methods for transient fluid-structure analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Belytschko, T.; Liu, W.K.

    1985-01-01

    Fluid-structure interaction problems in nuclear engineering are categorized according to the dominant physical phenomena and the appropriate computational methods. Linear fluid models that are considered include acoustic fluids, incompressible fluids undergoing small disturbances, and small amplitude sloshing. Methods available in general-purpose codes for these linear fluid problems are described. For nonlinear fluid problems, the major features of alternative computational treatments are reviewed; some special-purpose and multipurpose computer codes applicable to these problems are then described. For illustration, some examples of nuclear reactor problems that entail coupled fluid-structure analysis are described along with computational results

  1. Computational biology in the cloud: methods and new insights from computing at scale.

    Science.gov (United States)

    Kasson, Peter M

    2013-01-01

    The past few years have seen both explosions in the size of biological data sets and the proliferation of new, highly flexible on-demand computing capabilities. The sheer amount of information available from genomic and metagenomic sequencing, high-throughput proteomics, experimental and simulation datasets on molecular structure and dynamics affords an opportunity for greatly expanded insight, but it creates new challenges of scale for computation, storage, and interpretation of petascale data. Cloud computing resources have the potential to help solve these problems by offering a utility model of computing and storage: near-unlimited capacity, the ability to burst usage, and cheap and flexible payment models. Effective use of cloud computing on large biological datasets requires dealing with non-trivial problems of scale and robustness, since performance-limiting factors can change substantially when a dataset grows by a factor of 10,000 or more. New computing paradigms are thus often needed. The use of cloud platforms also creates new opportunities to share data, reduce duplication, and to provide easy reproducibility by making the datasets and computational methods easily available.

  2. Data analysis through interactive computer animation method (DATICAM)

    International Nuclear Information System (INIS)

    Curtis, J.N.; Schwieder, D.H.

    1983-01-01

    DATICAM is an interactive computer animation method designed to aid in the analysis of nuclear research data. DATICAM was developed at the Idaho National Engineering Laboratory (INEL) by EG and G Idaho, Inc. INEL analysts use DATICAM to produce computer codes that are better able to predict the behavior of nuclear power reactors. In addition to increased code accuracy, DATICAM has saved manpower and computer costs. DATICAM has been generalized to assist in the data analysis of virtually any data-producing dynamic process

  3. An Augmented Fast Marching Method for Computing Skeletons and Centerlines

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2002-01-01

    We present a simple and robust method for computing skeletons for arbitrary planar objects and centerlines for 3D objects. We augment the Fast Marching Method (FMM) widely used in level set applications by computing the paramterized boundary location every pixel came from during the boundary

  4. Numerical computer methods part E

    CERN Document Server

    Johnson, Michael L

    2004-01-01

    The contributions in this volume emphasize analysis of experimental data and analytical biochemistry, with examples taken from biochemistry. They serve to inform biomedical researchers of the modern data analysis methods that have developed concomitantly with computer hardware. Selected Contents: A practical approach to interpretation of SVD results; modeling of oscillations in endocrine networks with feedback; quantifying asynchronous breathing; sample entropy; wavelet modeling and processing of nasal airflow traces.

  5. Analysis of material flow in metal forming processes by using computer simulation and experiment with model material

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dong Won

    1993-01-01

    The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behaviour in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method. (Author)

  6. Methods for Factor Screening in Computer Simulation Experiments

    Science.gov (United States)

    1979-03-01

    of the dat-a In a-space, impacto the variable selection problem s ign if Lrast ly. S-arch-type variable selection methods include the all-po"sible...i.iv 41.1 ti * n wt- -iu’pt-v c C it st’vt’re mu It ico11 inear it v is pro-crtnt Lind. , ii;.qt4pai tlv * Iti’lt- c- j c. tic j icivnt, art, verv

  7. Computational Methods for Sensitivity and Uncertainty Analysis in Criticality Safety

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Childs, R.L.; Rearden, B.T.

    1999-01-01

    Interest in the sensitivity methods that were developed and widely used in the 1970s (the FORSS methodology at ORNL among others) has increased recently as a result of potential use in the area of criticality safety data validation procedures to define computational bias, uncertainties and area(s) of applicability. Functional forms of the resulting sensitivity coefficients can be used as formal parameters in the determination of applicability of benchmark experiments to their corresponding industrial application areas. In order for these techniques to be generally useful to the criticality safety practitioner, the procedures governing their use had to be updated and simplified. This paper will describe the resulting sensitivity analysis tools that have been generated for potential use by the criticality safety community

  8. Computational methods for molecular imaging

    CERN Document Server

    Shi, Kuangyu; Li, Shuo

    2015-01-01

    This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: • Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities • Molecular Imaging Enhancement • Data Analysis of Clinical & Pre-clinical Molecular Imaging • Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) • Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers fro...

  9. Optimal design methods for a digital human-computer interface based on human reliability in a nuclear power plant

    International Nuclear Information System (INIS)

    Jiang, Jianjun; Zhang, Li; Xie, Tian; Wu, Daqing; Li, Min; Wang, Yiqun; Peng, Yuyuan; Peng, Jie; Zhang, Mengjia; Li, Peiyao; Ma, Congmin; Wu, Xing

    2017-01-01

    Highlights: • A complete optimization process is established for digital human-computer interfaces of Npps. • A quick convergence search method is proposed. • The authors propose an affinity error probability mapping function to test human reliability. - Abstract: This is the second in a series of papers describing the optimal design method for a digital human-computer interface of nuclear power plant (Npp) from three different points based on human reliability. The purpose of this series is to explore different optimization methods from varying perspectives. This present paper mainly discusses the optimal design method for quantity of components of the same factor. In monitoring process, quantity of components has brought heavy burden to operators, thus, human errors are easily triggered. To solve the problem, the authors propose an optimization process, a quick convergence search method and an affinity error probability mapping function. Two balanceable parameter values of the affinity error probability function are obtained by experiments. The experimental results show that the affinity error probability mapping function about human-computer interface has very good sensitivity and stability, and that quick convergence search method for fuzzy segments divided by component quantity has better performance than general algorithm.

  10. A method of paralleling computer calculation for two-dimensional kinetic plasma model

    International Nuclear Information System (INIS)

    Brazhnik, V.A.; Demchenko, V.V.; Dem'yanov, V.G.; D'yakov, V.E.; Ol'shanskij, V.V.; Panchenko, V.I.

    1987-01-01

    A method for parallel computer calculation and OSIRIS program complex realizing it and designed for numerical plasma simulation by the macroparticle method are described. The calculation can be carried out either with one or simultaneously with two computers BESM-6, that is provided by some package of interacting programs functioning in every computer. Program interaction in every computer is based on event techniques realized in OS DISPAK. Parallel computer calculation with two BESM-6 computers allows to accelerate the computation 1.5 times

  11. Discrete linear canonical transform computation by adaptive method.

    Science.gov (United States)

    Zhang, Feng; Tao, Ran; Wang, Yue

    2013-07-29

    The linear canonical transform (LCT) describes the effect of quadratic phase systems on a wavefield and generalizes many optical transforms. In this paper, the computation method for the discrete LCT using the adaptive least-mean-square (LMS) algorithm is presented. The computation approaches of the block-based discrete LCT and the stream-based discrete LCT using the LMS algorithm are derived, and the implementation structures of these approaches by the adaptive filter system are considered. The proposed computation approaches have the inherent parallel structures which make them suitable for efficient VLSI implementations, and are robust to the propagation of possible errors in the computation process.

  12. Three numerical methods for the computation of the electrostatic energy

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Galeriu, D.

    1975-01-01

    The FORTRAN programs for computation of the electrostatic energy of a body with axial symmetry by Lawrence, Hill-Wheeler and Beringer methods are presented in detail. The accuracy, time of computation and the required memory of these methods are tested at various deformations for two simple parametrisations: two overlapping identical spheres and a spheroid. On this basis the field of application of each method is recomended

  13. Comparing Computer Game and Traditional Lecture Using Experience Ratings from High and Low Achieving Students

    Science.gov (United States)

    Grimley, Michael; Green, Richard; Nilsen, Trond; Thompson, David

    2012-01-01

    Computer games are purported to be effective instructional tools that enhance motivation and improve engagement. The aim of this study was to investigate how tertiary student experiences change when instruction was computer game based compared to lecture based, and whether experiences differed between high and low achieving students. Participants…

  14. File management for experiment control parameters within a distributed function computer network

    International Nuclear Information System (INIS)

    Stubblefield, F.W.

    1976-10-01

    An attempt to design and implement a computer system for control of and data collection from a set of laboratory experiments reveals that many of the experiments in the set require an extensive collection of parameters for their control. The operation of the experiments can be greatly simplified if a means can be found for storing these parameters between experiments and automatically accessing them as they are required. A subsystem for managing files of such experiment control parameters is discussed. 3 figures

  15. Framework for computer-aided systems design

    International Nuclear Information System (INIS)

    Esselman, W.H.

    1992-01-01

    Advanced computer technology, analytical methods, graphics capabilities, and expert systems contribute to significant changes in the design process. Continued progress is expected. Achieving the ultimate benefits of these computer-based design tools depends on successful research and development on a number of key issues. A fundamental understanding of the design process is a prerequisite to developing these computer-based tools. In this paper a hierarchical systems design approach is described, and methods by which computers can assist the designer are examined. A framework is presented for developing computer-based design tools for power plant design. These tools include expert experience bases, tutorials, aids in decision making, and tools to develop the requirements, constraints, and interactions among subsystems and components. Early consideration of the functional tasks is encouraged. Methods of acquiring an expert's experience base is a fundamental research problem. Computer-based guidance should be provided in a manner that supports the creativity, heuristic approaches, decision making, and meticulousness of a good designer

  16. A Simple Method for Dynamic Scheduling in a Heterogeneous Computing System

    OpenAIRE

    Žumer, Viljem; Brest, Janez

    2002-01-01

    A simple method for the dynamic scheduling on a heterogeneous computing system is proposed in this paper. It was implemented to minimize the parallel program execution time. The proposed method decomposes the program workload into computationally homogeneous subtasks, which may be of the different size, depending on the current load of each machine in a heterogeneous computing system.

  17. Computer-assisted training experiment used in the field of thermal energy production (EDF)

    International Nuclear Information System (INIS)

    Felgines, R.

    1982-01-01

    In 1981, the EDF carried out an experiment with computer-assisted training (EAO). This new approach, which continued until June 1982, involved about 700 employees all of whom operated nuclear power stations. The different stages of this experiment and the lessons which can be drawn from it are given the lessons were of a positive nature and make it possible to envisage complete coverage of all nuclear power stations by computer-assisted training within a very short space of time [fr

  18. Computer-Aided Modelling Methods and Tools

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    The development of models for a range of applications requires methods and tools. In many cases a reference model is required that allows the generation of application specific models that are fit for purpose. There are a range of computer aided modelling tools available that help to define the m...

  19. Numerical methods design, analysis, and computer implementation of algorithms

    CERN Document Server

    Greenbaum, Anne

    2012-01-01

    Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book a...

  20. Reference depth for geostrophic computation - A new method

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.; Sastry, J.S.

    Various methods are available for the determination of reference depth for geostrophic computation. A new method based on the vertical profiles of mean and variance of the differences of mean specific volume anomaly (delta x 10) for different layers...

  1. Permeability computation on a REV with an immersed finite element method

    International Nuclear Information System (INIS)

    Laure, P.; Puaux, G.; Silva, L.; Vincent, M.

    2011-01-01

    An efficient method to compute permeability of fibrous media is presented. An immersed domain approach is used to represent the porous material at its microscopic scale and the flow motion is computed with a stabilized mixed finite element method. Therefore the Stokes equation is solved on the whole domain (including solid part) using a penalty method. The accuracy is controlled by refining the mesh around the solid-fluid interface defined by a level set function. Using homogenisation techniques, the permeability of a representative elementary volume (REV) is computed. The computed permeabilities of regular fibre packings are compared to classical analytical relations found in the bibliography.

  2. Computer assisted treatments for image pattern data of laser plasma experiments

    International Nuclear Information System (INIS)

    Yaoita, Akira; Matsushima, Isao

    1987-01-01

    An image data processing system for laser-plasma experiments has been constructed. These image data are two dimensional images taken by X-ray, UV, infrared and visible light television cameras and also taken by streak cameras. They are digitized by frame memories. The digitized image data are stored in disk memories with the aid of a microcomputer. The data are processed by a host computer and stored in the files of the host computer and on magnetic tapes. In this paper, the over view of the image data processing system and some software for data handling in the host computer are reported. (author)

  3. Optimal design method for a digital human–computer interface based on human reliability in a nuclear power plant. Part 3: Optimization method for interface task layout

    International Nuclear Information System (INIS)

    Jiang, Jianjun; Wang, Yiqun; Zhang, Li; Xie, Tian; Li, Min; Peng, Yuyuan; Wu, Daqing; Li, Peiyao; Ma, Congmin; Shen, Mengxu; Wu, Xing; Weng, Mengyun; Wang, Shiwei; Xie, Cen

    2016-01-01

    Highlights: • The authors present an optimization algorithm for interface task layout. • The performing process of the proposed algorithm was depicted. • The performance evaluation method adopted neural network method. • The optimization layouts of an event interface tasks were obtained by experiments. - Abstract: This is the last in a series of papers describing the optimal design for a digital human–computer interface of a nuclear power plant (NPP) from three different points based on human reliability. The purpose of this series is to propose different optimization methods from varying perspectives to decrease human factor events that arise from the defects of a human–computer interface. The present paper mainly solves the optimization method as to how to effectively layout interface tasks into different screens. The purpose of this paper is to decrease human errors by reducing the distance that an operator moves among different screens in each operation. In order to resolve the problem, the authors propose an optimization process of interface task layout for digital human–computer interface of a NPP. As to how to automatically layout each interface task into one of screens in each operation, the paper presents a shortest moving path optimization algorithm with dynamic flag based on human reliability. To test the algorithm performance, the evaluation method uses neural network based on human reliability. The less the human error probabilities are, the better the interface task layouts among different screens are. Thus, by analyzing the performance of each interface task layout, the optimization result is obtained. Finally, the optimization layouts of spurious safety injection event interface tasks of the NPP are obtained by an experiment, the proposed methods has a good accuracy and stabilization.

  4. A strategy for improved computational efficiency of the method of anchored distributions

    Science.gov (United States)

    Over, Matthew William; Yang, Yarong; Chen, Xingyuan; Rubin, Yoram

    2013-06-01

    This paper proposes a strategy for improving the computational efficiency of model inversion using the method of anchored distributions (MAD) by "bundling" similar model parametrizations in the likelihood function. Inferring the likelihood function typically requires a large number of forward model (FM) simulations for each possible model parametrization; as a result, the process is quite expensive. To ease this prohibitive cost, we present an approximation for the likelihood function called bundling that relaxes the requirement for high quantities of FM simulations. This approximation redefines the conditional statement of the likelihood function as the probability of a set of similar model parametrizations "bundle" replicating field measurements, which we show is neither a model reduction nor a sampling approach to improving the computational efficiency of model inversion. To evaluate the effectiveness of these modifications, we compare the quality of predictions and computational cost of bundling relative to a baseline MAD inversion of 3-D flow and transport model parameters. Additionally, to aid understanding of the implementation we provide a tutorial for bundling in the form of a sample data set and script for the R statistical computing language. For our synthetic experiment, bundling achieved a 35% reduction in overall computational cost and had a limited negative impact on predicted probability distributions of the model parameters. Strategies for minimizing error in the bundling approximation, for enforcing similarity among the sets of model parametrizations, and for identifying convergence of the likelihood function are also presented.

  5. FOREIGN AND DOMESTIC EXPERIENCE OF INTEGRATING CLOUD COMPUTING INTO PEDAGOGICAL PROCESS OF HIGHER EDUCATIONAL ESTABLISHMENTS

    Directory of Open Access Journals (Sweden)

    Nataliia A. Khmil

    2016-01-01

    Full Text Available In the present article foreign and domestic experience of integrating cloud computing into pedagogical process of higher educational establishments (H.E.E. has been generalized. It has been stated that nowadays a lot of educational services are hosted in the cloud, e.g. infrastructure as a service (IaaS, platform as a service (PaaS and software as a service (SaaS. The peculiarities of implementing cloud technologies by H.E.E. in Ukraine and abroad have been singled out; the products developed by the leading IT companies for using cloud computing in higher education system, such as Microsoft for Education, Google Apps for Education and Amazon AWS Educate have been reviewed. The examples of concrete types, methods and forms of learning and research work based on cloud services have been provided.

  6. Computational methods assuring nuclear power plant structural integrity and safety: an overview of the recent activities at VTT

    International Nuclear Information System (INIS)

    Keinaenen, H.; Talja, H.; Rintamaa, R.

    1998-01-01

    Numerical, simplified engineering and standardised methods are applied in the safety analyses of primary circuit components and reactor pressure vessels. The integrity assessment procedures require input relating both to the steady state and transient loading actual material properties data and precise knowledge of the size and geometry of defects. Current procedures bold extensive information regarding these aspects. It is important to verify the accuracy of the different assessment methods especially in the case of complex structures and loading. The focus of this paper is on the recent results and development of computational fracture assessment methods at VTT Manufacturing Technology. The methods include effective engineering type tools for rapid structural integrity assessments and more sophisticated finite-element based methods. An integrated PC-based program system MASI for engineering fracture analysis is described. A summary of the verification of the methods in computational benchmark analyses and against the results of large scale experiments is presented. (orig.)

  7. A hybrid method for the computation of quasi-3D seismograms.

    Science.gov (United States)

    Masson, Yder; Romanowicz, Barbara

    2013-04-01

    The development of powerful computer clusters and efficient numerical computation methods, such as the Spectral Element Method (SEM) made possible the computation of seismic wave propagation in a heterogeneous 3D earth. However, the cost of theses computations is still problematic for global scale tomography that requires hundreds of such simulations. Part of the ongoing research effort is dedicated to the development of faster modeling methods based on the spectral element method. Capdeville et al. (2002) proposed to couple SEM simulations with normal modes calculation (C-SEM). Nissen-Meyer et al. (2007) used 2D SEM simulations to compute 3D seismograms in a 1D earth model. Thanks to these developments, and for the first time, Lekic et al. (2011) developed a 3D global model of the upper mantle using SEM simulations. At the local and continental scale, adjoint tomography that is using a lot of SEM simulation can be implemented on current computers (Tape, Liu et al. 2009). Due to their smaller size, these models offer higher resolution. They provide us with images of the crust and the upper part of the mantle. In an attempt to teleport such local adjoint tomographic inversions into the deep earth, we are developing a hybrid method where SEM computation are limited to a region of interest within the earth. That region can have an arbitrary shape and size. Outside this region, the seismic wavefield is extrapolated to obtain synthetic data at the Earth's surface. A key feature of the method is the use of a time reversal mirror to inject the wavefield induced by distant seismic source into the region of interest (Robertsson and Chapman 2000). We compute synthetic seismograms as follow: Inside the region of interest, we are using regional spectral element software RegSEM to compute wave propagation in 3D. Outside this region, the wavefield is extrapolated to the surface by convolution with the Green's functions from the mirror to the seismic stations. For now, these

  8. Multiscale Methods, Parallel Computation, and Neural Networks for Real-Time Computer Vision.

    Science.gov (United States)

    Battiti, Roberto

    1990-01-01

    This thesis presents new algorithms for low and intermediate level computer vision. The guiding ideas in the presented approach are those of hierarchical and adaptive processing, concurrent computation, and supervised learning. Processing of the visual data at different resolutions is used not only to reduce the amount of computation necessary to reach the fixed point, but also to produce a more accurate estimation of the desired parameters. The presented adaptive multiple scale technique is applied to the problem of motion field estimation. Different parts of the image are analyzed at a resolution that is chosen in order to minimize the error in the coefficients of the differential equations to be solved. Tests with video-acquired images show that velocity estimation is more accurate over a wide range of motion with respect to the homogeneous scheme. In some cases introduction of explicit discontinuities coupled to the continuous variables can be used to avoid propagation of visual information from areas corresponding to objects with different physical and/or kinematic properties. The human visual system uses concurrent computation in order to process the vast amount of visual data in "real -time." Although with different technological constraints, parallel computation can be used efficiently for computer vision. All the presented algorithms have been implemented on medium grain distributed memory multicomputers with a speed-up approximately proportional to the number of processors used. A simple two-dimensional domain decomposition assigns regions of the multiresolution pyramid to the different processors. The inter-processor communication needed during the solution process is proportional to the linear dimension of the assigned domain, so that efficiency is close to 100% if a large region is assigned to each processor. Finally, learning algorithms are shown to be a viable technique to engineer computer vision systems for different applications starting from

  9. A Computationally Efficient Method for Polyphonic Pitch Estimation

    Directory of Open Access Journals (Sweden)

    Ruohua Zhou

    2009-01-01

    Full Text Available This paper presents a computationally efficient method for polyphonic pitch estimation. The method employs the Fast Resonator Time-Frequency Image (RTFI as the basic time-frequency analysis tool. The approach is composed of two main stages. First, a preliminary pitch estimation is obtained by means of a simple peak-picking procedure in the pitch energy spectrum. Such spectrum is calculated from the original RTFI energy spectrum according to harmonic grouping principles. Then the incorrect estimations are removed according to spectral irregularity and knowledge of the harmonic structures of the music notes played on commonly used music instruments. The new approach is compared with a variety of other frame-based polyphonic pitch estimation methods, and results demonstrate the high performance and computational efficiency of the approach.

  10. A Novel Query Method for Spatial Data in Mobile Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Guangsheng Chen

    2018-01-01

    Full Text Available With the development of network communication, a 1000-fold increase in traffic demand from 4G to 5G, it is critical to provide efficient and fast spatial data access interface for applications in mobile environment. In view of the low I/O efficiency and high latency of existing methods, this paper presents a memory-based spatial data query method that uses the distributed memory file system Alluxio to store data and build a two-level index based on the Alluxio key-value structure; moreover, it aims to solve the problem of low efficiency of traditional method; according to the characteristics of Spark computing framework, a data input format for spatial data query is proposed, which can selectively read the file data and reduce the data I/O. The comparative experiments show that the memory-based file system Alluxio has better I/O performance than the disk file system; compared with the traditional distributed query method, the method we proposed reduces the retrieval time greatly.

  11. Geometric optical transfer function and tis computation method

    International Nuclear Information System (INIS)

    Wang Qi

    1992-01-01

    Geometric Optical Transfer Function formula is derived after expound some content to be easily ignored, and the computation method is given with Bessel function of order zero and numerical integration and Spline interpolation. The method is of advantage to ensure accuracy and to save calculation

  12. Computer-Based Molecular Modelling: Finnish School Teachers' Experiences and Views

    Science.gov (United States)

    Aksela, Maija; Lundell, Jan

    2008-01-01

    Modern computer-based molecular modelling opens up new possibilities for chemistry teaching at different levels. This article presents a case study seeking insight into Finnish school teachers' use of computer-based molecular modelling in teaching chemistry, into the different working and teaching methods used, and their opinions about necessary…

  13. Instructional Styles, Attitudes and Experiences of Seniors in Computer Workshops

    Science.gov (United States)

    Wood, Eileen; Lanuza, Catherine; Baciu, Iuliana; MacKenzie, Meagan; Nosko, Amanda

    2010-01-01

    Sixty-four seniors were introduced to computers through a series of five weekly workshops. Participants were given instruction followed by hands-on experience for topics related to social communication, information seeking, games, and word processing and were observed to determine their preferences for instructional support. Observations of…

  14. Methods and computer codes for probabilistic sensitivity and uncertainty analysis

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1985-01-01

    This paper describes the methods and applications experience with two computer codes that are now available from the National Energy Software Center at Argonne National Laboratory. The purpose of the SCREEN code is to identify a group of most important input variables of a code that has many (tens, hundreds) input variables with uncertainties, and do this without relying on judgment or exhaustive sensitivity studies. Purpose of the PROSA-2 code is to propagate uncertainties and calculate the distributions of interesting output variable(s) of a safety analysis code using response surface techniques, based on the same runs used for screening. Several applications are discussed, but the codes are generic, not tailored to any specific safety application code. They are compatible in terms of input/output requirements but also independent of each other, e.g., PROSA-2 can be used without first using SCREEN if a set of important input variables has first been selected by other methods. Also, although SCREEN can select cases to be run (by random sampling), a user can select cases by other methods if he so prefers, and still use the rest of SCREEN for identifying important input variables

  15. Digital image processing mathematical and computational methods

    CERN Document Server

    Blackledge, J M

    2005-01-01

    This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research

  16. Grid computing in pakistan and: opening to large hadron collider experiments

    International Nuclear Information System (INIS)

    Batool, N.; Osman, A.; Mahmood, A.; Rana, M.A.

    2009-01-01

    A grid computing facility was developed at sister institutes Pakistan Institute of Nuclear Science and Technology (PINSTECH) and Pakistan Institute of Engineering and Applied Sciences (PIEAS) in collaboration with Large Hadron Collider (LHC) Computing Grid during early years of the present decade. The Grid facility PAKGRID-LCG2 as one of the grid node in Pakistan was developed employing mainly local means and is capable of supporting local and international research and computational tasks in the domain of LHC Computing Grid. Functional status of the facility is presented in terms of number of jobs performed. The facility developed provides a forum to local researchers in the field of high energy physics to participate in the LHC experiments and related activities at European particle physics research laboratory (CERN), which is one of the best physics laboratories in the world. It also provides a platform of an emerging computing technology (CT). (author)

  17. CMS Distributed Computing Workflow Experience

    CERN Document Server

    Haas, Jeffrey David

    2010-01-01

    The vast majority of the CMS Computing capacity, which is organized in a tiered hierarchy, is located away from CERN. The 7 Tier-1 sites archive the LHC proton-proton collision data that is initially processed at CERN. These sites provide access to all recorded and simulated data for the Tier-2 sites, via wide-area network (WAN) transfers. All central data processing workflows are executed at the Tier-1 level, which contain re-reconstruction and skimming workflows of collision data as well as reprocessing of simulated data to adapt to changing detector conditions. This paper describes the operation of the CMS processing infrastructure at the Tier-1 level. The Tier-1 workflows are described in detail. The operational optimization of resource usage is described. In particular, the variation of different workflows during the data taking period of 2010, their efficiencies and latencies as well as their impact on the delivery of physics results is discussed and lessons are drawn from this experience. The simul...

  18. Spatial analysis statistics, visualization, and computational methods

    CERN Document Server

    Oyana, Tonny J

    2015-01-01

    An introductory text for the next generation of geospatial analysts and data scientists, Spatial Analysis: Statistics, Visualization, and Computational Methods focuses on the fundamentals of spatial analysis using traditional, contemporary, and computational methods. Outlining both non-spatial and spatial statistical concepts, the authors present practical applications of geospatial data tools, techniques, and strategies in geographic studies. They offer a problem-based learning (PBL) approach to spatial analysis-containing hands-on problem-sets that can be worked out in MS Excel or ArcGIS-as well as detailed illustrations and numerous case studies. The book enables readers to: Identify types and characterize non-spatial and spatial data Demonstrate their competence to explore, visualize, summarize, analyze, optimize, and clearly present statistical data and results Construct testable hypotheses that require inferential statistical analysis Process spatial data, extract explanatory variables, conduct statisti...

  19. Experience of computed tomographic myelography and discography in cervical problem

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, Shigeru; Yamamoto, Masayuki; Uratsuji, Masaaki; Suzuki, Kunio; Matsui, Eigo [Hyogo Prefectural Awaji Hospital, Sumoto, Hyogo (Japan); Kurihara, Akira

    1983-06-01

    CTM (computed tomographic myelography) was performed on 15 cases of cervical lesions, and on 5 of them, CTD (computed tomographic discography) was also made. CTM revealed the intervertebral state, and in combination with CTD, providing more accurate information. The combined method of CTM and CTD was useful for soft disc herniation.

  20. Simulating elastic light scattering using high performance computing methods

    NARCIS (Netherlands)

    Hoekstra, A.G.; Sloot, P.M.A.; Verbraeck, A.; Kerckhoffs, E.J.H.

    1993-01-01

    The Coupled Dipole method, as originally formulated byPurcell and Pennypacker, is a very powerful method tosimulate the Elastic Light Scattering from arbitraryparticles. This method, which is a particle simulationmodel for Computational Electromagnetics, has one majordrawback: if the size of the

  1. Systems, computer-implemented methods, and tangible computer-readable storage media for wide-field interferometry

    Science.gov (United States)

    Lyon, Richard G. (Inventor); Leisawitz, David T. (Inventor); Rinehart, Stephen A. (Inventor); Memarsadeghi, Nargess (Inventor)

    2012-01-01

    Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube.

  2. Integrating computational methods to retrofit enzymes to synthetic pathways.

    Science.gov (United States)

    Brunk, Elizabeth; Neri, Marilisa; Tavernelli, Ivano; Hatzimanikatis, Vassily; Rothlisberger, Ursula

    2012-02-01

    Microbial production of desired compounds provides an efficient framework for the development of renewable energy resources. To be competitive to traditional chemistry, one requirement is to utilize the full capacity of the microorganism to produce target compounds with high yields and turnover rates. We use integrated computational methods to generate and quantify the performance of novel biosynthetic routes that contain highly optimized catalysts. Engineering a novel reaction pathway entails addressing feasibility on multiple levels, which involves handling the complexity of large-scale biochemical networks while respecting the critical chemical phenomena at the atomistic scale. To pursue this multi-layer challenge, our strategy merges knowledge-based metabolic engineering methods with computational chemistry methods. By bridging multiple disciplines, we provide an integral computational framework that could accelerate the discovery and implementation of novel biosynthetic production routes. Using this approach, we have identified and optimized a novel biosynthetic route for the production of 3HP from pyruvate. Copyright © 2011 Wiley Periodicals, Inc.

  3. Data processing with PC-9801 micro-computer for HCN laser scattering experiments

    International Nuclear Information System (INIS)

    Iwasaki, T.; Okajima, S.; Kawahata, K.; Tetsuka, T.; Fujita, J.

    1986-09-01

    In order to process the data of HCN laser scattering experiments, a micro-computer software has been developed and applied to the measurements of density fluctuations in the JIPP T-IIU tokamak plasma. The data processing system consists of a spectrum analyzer, SM-2100A Signal Analyzer (IWATSU ELECTRIC CO., LTD.), PC-9801m3 micro-computer, a CRT-display and a dot-printer. The output signals from the spectrum analyzer are A/D converted, and stored on a mini-floppy-disk equipped to the signal analyzer. The software to process the data is composed of system-programs and several user-programs. The real time data processing is carried out for every shot of plasma at 4 minutes interval by the micro-computer connected with the signal analyzer through a GP-IB interface. The time evolutions of the frequency spectrum of the density fluctuations are displayed on the CRT attached to the micro-computer and printed out on a printer-sheet. In the case of the data processing after experiments, the data stored on the floppy-disk of the signal analyzer are read out by using a floppy-disk unit attached to the micro-computer. After computation with the user-programs, the results, such as monitored signal, frequency spectra, wave number spectra and the time evolutions of the spectrum, are displayed and printed out. In this technical report, the system, the software and the directions for use are described. (author)

  4. A computational study of inviscid hypersonic flows using energy relaxation method

    International Nuclear Information System (INIS)

    Nagdewe, Suryakant; Kim, H. D.; Shevare, G. R.

    2008-01-01

    Reasonable analysis of hypersonic flows requires a thermodynamic non-equilibrium model to properly simulate strong shock waves or high pressure and temperature states in the flow field. The energy relaxation method (ERM) has been used to model such a non-equilibrium effect which is generally expressed as a hyperbolic system of equations with a stiff relaxation source term. Relaxation time that is multiplied with source terms is responsible for nonequilibrium in the system. In the present study, a numerical analysis has been carried out with varying values of relaxation time for several hypersonic flows with AUSM (advection upstream splitting method) as a numerical scheme. Vibration modes of thermodynamic nonequilibrium effects are considered. The results obtained showed that, as the relaxation time reduces to zero, the solution marches toward equilibrium, while it shows non-equilibrium effects, as the relaxation time increases. The present computations predicted the experiment results of hypersonic flows with good accuracy. The work carried out suggests that the present energy relaxation method can be robust for analysis of hypersonic flows

  5. A Krylov Subspace Method for Unstructured Mesh SN Transport Computation

    International Nuclear Information System (INIS)

    Yoo, Han Jong; Cho, Nam Zin; Kim, Jong Woon; Hong, Ser Gi; Lee, Young Ouk

    2010-01-01

    Hong, et al., have developed a computer code MUST (Multi-group Unstructured geometry S N Transport) for the neutral particle transport calculations in three-dimensional unstructured geometry. In this code, the discrete ordinates transport equation is solved by using the discontinuous finite element method (DFEM) or the subcell balance methods with linear discontinuous expansion. In this paper, the conventional source iteration in the MUST code is replaced by the Krylov subspace method to reduce computing time and the numerical test results are given

  6. Numerical analysis of resonances induced by s wave neutrons in transmission time-of-flight experiments with a computer IBM 7094 II

    International Nuclear Information System (INIS)

    Corge, Ch.

    1969-01-01

    Numerical analysis of transmission resonances induced by s wave neutrons in time-of-flight experiments can be achieved in a fairly automatic way on an IBM 7094/II computer. The involved computations are carried out following a four step scheme: 1 - experimental raw data are processed to obtain the resonant transmissions, 2 - values of experimental quantities for each resonance are derived from the above transmissions, 3 - resonance parameters are determined using a least square method to solve the over determined system obtained by equalling theoretical functions to the correspondent experimental values. Four analysis methods are gathered in the same code, 4 - graphical control of the results is performed. (author) [fr

  7. Scalability Dilemma and Statistic Multiplexed Computing — A Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Justin Yuan Shi

    2017-08-01

    Full Text Available The For the last three decades, end-to-end computing paradigms, such as MPI (Message Passing Interface, RPC (Remote Procedure Call and RMI (Remote Method Invocation, have been the de facto paradigms for distributed and parallel programming. Despite of the successes, applications built using these paradigms suffer due to the proportionality factor of crash in the application with its size. Checkpoint/restore and backup/recovery are the only means to save otherwise lost critical information. The scalability dilemma is such a practical challenge that the probability of the data losses increases as the application scales in size. The theoretical significance of this practical challenge is that it undermines the fundamental structure of the scientific discovery process and mission critical services in production today. In 1997, the direct use of end-to-end reference model in distributed programming was recognized as a fallacy. The scalability dilemma was predicted. However, this voice was overrun by the passage of time. Today, the rapidly growing digitized data demands solving the increasingly critical scalability challenges. Computing architecture scalability, although loosely defined, is now the front and center of large-scale computing efforts. Constrained only by the economic law of diminishing returns, this paper proposes a narrow definition of a Scalable Computing Service (SCS. Three scalability tests are also proposed in order to distinguish service architecture flaws from poor application programming. Scalable data intensive service requires additional treatments. Thus, the data storage is assumed reliable in this paper. A single-sided Statistic Multiplexed Computing (SMC paradigm is proposed. A UVR (Unidirectional Virtual Ring SMC architecture is examined under SCS tests. SMC was designed to circumvent the well-known impossibility of end-to-end paradigms. It relies on the proven statistic multiplexing principle to deliver reliable service

  8. Computed tomography-guided core-needle biopsy of lung lesions: an oncology center experience

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcos Duarte; Fonte, Alexandre Calabria da; Chojniak, Rubens, E-mail: marcosduarte@yahoo.com.b [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Dept. of Radiology and Imaging Diagnosis; Andrade, Marcony Queiroz de [Hospital Alianca, Salvador, BA (Brazil); Gross, Jefferson Luiz [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Dept. of Chest Surgery

    2011-03-15

    Objective: The present study is aimed at describing the experience of an oncology center with computed tomography guided core-needle biopsy of pulmonary lesions. Materials and Methods: Retrospective analysis of 97 computed tomography-guided core-needle biopsy of pulmonary lesions performed in the period between 1996 and 2004 in a Brazilian reference oncology center (Hospital do Cancer - A.C. Camargo). Information regarding material appropriateness and the specific diagnoses were collected and analyzed. Results: Among 97 lung biopsies, 94 (96.9%) supplied appropriate specimens for histological analyses, with 71 (73.2%) cases being diagnosed as malignant lesions and 23 (23.7%) diagnosed as benign lesions. Specimens were inappropriate for analysis in three cases. The frequency of specific diagnosis was 83 (85.6%) cases, with high rates for both malignant lesions with 63 (88.7%) cases and benign lesions with 20 (86.7%). As regards complications, a total of 12 cases were observed as follows: 7 (7.2%) cases of hematoma, 3 (3.1%) cases of pneumothorax and 2 (2.1%) cases of hemoptysis. Conclusion: Computed tomography-guided core needle biopsy of lung lesions demonstrated high rates of material appropriateness and diagnostic specificity, and low rates of complications in the present study. (author)

  9. Computational electrodynamics the finite-difference time-domain method

    CERN Document Server

    Taflove, Allen

    2005-01-01

    This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates, making this new edition the ideal textbook on the subject as well.

  10. Can smartphones be used to bring computer-based tasks from the lab to the field? A mobile experience-sampling method study about the pace of life.

    Science.gov (United States)

    Stieger, Stefan; Lewetz, David; Reips, Ulf-Dietrich

    2017-12-06

    Researchers are increasingly using smartphones to collect scientific data. To date, most smartphone studies have collected questionnaire data or data from the built-in sensors. So far, few studies have analyzed whether smartphones can also be used to conduct computer-based tasks (CBTs). Using a mobile experience-sampling method study and a computer-based tapping task as examples (N = 246; twice a day for three weeks, 6,000+ measurements), we analyzed how well smartphones can be used to conduct a CBT. We assessed methodological aspects such as potential technologically induced problems, dropout, task noncompliance, and the accuracy of millisecond measurements. Overall, we found few problems: Dropout rate was low, and the time measurements were very accurate. Nevertheless, particularly at the beginning of the study, some participants did not comply with the task instructions, probably because they did not read the instructions before beginning the task. To summarize, the results suggest that smartphones can be used to transfer CBTs from the lab to the field, and that real-world variations across device manufacturers, OS types, and CPU load conditions did not substantially distort the results.

  11. Fully consistent CFD methods for incompressible flow computations

    DEFF Research Database (Denmark)

    Kolmogorov, Dmitry; Shen, Wen Zhong; Sørensen, Niels N.

    2014-01-01

    Nowadays collocated grid based CFD methods are one of the most e_cient tools for computations of the ows past wind turbines. To ensure the robustness of the methods they require special attention to the well-known problem of pressure-velocity coupling. Many commercial codes to ensure the pressure...

  12. High performance computing and quantum trajectory method in CPU and GPU systems

    International Nuclear Information System (INIS)

    Wiśniewska, Joanna; Sawerwain, Marek; Leoński, Wiesław

    2015-01-01

    Nowadays, a dynamic progress in computational techniques allows for development of various methods, which offer significant speed-up of computations, especially those related to the problems of quantum optics and quantum computing. In this work, we propose computational solutions which re-implement the quantum trajectory method (QTM) algorithm in modern parallel computation environments in which multi-core CPUs and modern many-core GPUs can be used. In consequence, new computational routines are developed in more effective way than those applied in other commonly used packages, such as Quantum Optics Toolbox (QOT) for Matlab or QuTIP for Python

  13. DABIE: a data banking system of integral experiments for reactor core characteristics computer codes

    International Nuclear Information System (INIS)

    Matsumoto, Kiyoshi; Naito, Yoshitaka; Ohkubo, Shuji; Aoyanagi, Hideo.

    1987-05-01

    A data banking system of integral experiments for reactor core characteristics computer codes, DABIE, has been developed to lighten the burden on searching so many documents to obtain experiment data required for verification of reactor core characteristics computer code. This data banking system, DABIE, has capabilities of systematic classification, registration and easy retrieval of experiment data. DABIE consists of data bank and supporting programs. Supporting programs are data registration program, data reference program and maintenance program. The system is designed so that user can easily register information of experiment systems including figures as well as geometry data and measured data or obtain those data through TSS terminal interactively. This manual describes the system structure, how-to-use and sample uses of this code system. (author)

  14. Parallel computation for solving the tridiagonal linear system of equations

    International Nuclear Information System (INIS)

    Ishiguro, Misako; Harada, Hiroo; Fujii, Minoru; Fujimura, Toichiro; Nakamura, Yasuhiro; Nanba, Katsumi.

    1981-09-01

    Recently, applications of parallel computation for scientific calculations have increased from the need of the high speed calculation of large scale programs. At the JAERI computing center, an array processor FACOM 230-75 APU has installed to study the applicability of parallel computation for nuclear codes. We made some numerical experiments by using the APU on the methods of solution of tridiagonal linear equation which is an important problem in scientific calculations. Referring to the recent papers with parallel methods, we investigate eight ones. These are Gauss elimination method, Parallel Gauss method, Accelerated parallel Gauss method, Jacobi method, Recursive doubling method, Cyclic reduction method, Chebyshev iteration method, and Conjugate gradient method. The computing time and accuracy were compared among the methods on the basis of the numerical experiments. As the result, it is found that the Cyclic reduction method is best both in computing time and accuracy and the Gauss elimination method is the second one. (author)

  15. On the computer simulation of the EPR-Bohm experiment

    International Nuclear Information System (INIS)

    McGoveran, D.O.; Noyes, H.P.; Manthey, M.J.

    1988-12-01

    We argue that supraluminal correlation without supraluminal signaling is a necessary consequence of any finite and discrete model for physics. Every day, the commercial and military practice of using encrypted communication based on correlated, pseudo-random signals illustrates this possibility. All that is needed are two levels of computational complexity which preclude using a smaller system to detect departures from ''randomness'' in the larger system. Hence the experimental realizations of the EPR-Bohm experiment leave open the question of whether the world of experience is ''random'' or pseudo-random. The latter possibility could be demonstrated experimentally if a complexity parameter related to the arm length and switching time in an Aspect-type realization of the EPR-Bohm experiment is sufficiently small compared to the number of reliable total counts which can be obtained in practice. 6 refs

  16. A stochastic method for computing hadronic matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computational-based Science and Technology Research Center; Dinter, Simon; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Collaboration: European Twisted Mass Collaboration

    2013-02-15

    We present a stochastic method for the calculation of baryon three-point functions that is more versatile compared to the typically used sequential method. We analyze the scaling of the error of the stochastically evaluated three-point function with the lattice volume and find a favorable signal-to-noise ratio suggesting that our stochastic method can be used efficiently at large volumes to compute hadronic matrix elements.

  17. Computational methods for 2D materials: discovery, property characterization, and application design.

    Science.gov (United States)

    Paul, J T; Singh, A K; Dong, Z; Zhuang, H; Revard, B C; Rijal, B; Ashton, M; Linscheid, A; Blonsky, M; Gluhovic, D; Guo, J; Hennig, R G

    2017-11-29

    The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials' electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.

  18. A New Computationally Frugal Method For Sensitivity Analysis Of Environmental Models

    Science.gov (United States)

    Rakovec, O.; Hill, M. C.; Clark, M. P.; Weerts, A.; Teuling, R.; Borgonovo, E.; Uijlenhoet, R.

    2013-12-01

    Effective and efficient parameter sensitivity analysis methods are crucial to understand the behaviour of complex environmental models and use of models in risk assessment. This paper proposes a new computationally frugal method for analyzing parameter sensitivity: the Distributed Evaluation of Local Sensitivity Analysis (DELSA). The DELSA method can be considered a hybrid of local and global methods, and focuses explicitly on multiscale evaluation of parameter sensitivity across the parameter space. Results of the DELSA method are compared with the popular global, variance-based Sobol' method and the delta method. We assess the parameter sensitivity of both (1) a simple non-linear reservoir model with only two parameters, and (2) five different "bucket-style" hydrologic models applied to a medium-sized catchment (200 km2) in the Belgian Ardennes. Results show that in both the synthetic and real-world examples, the global Sobol' method and the DELSA method provide similar sensitivities, with the DELSA method providing more detailed insight at much lower computational cost. The ability to understand how sensitivity measures vary through parameter space with modest computational requirements provides exciting new opportunities.

  19. Distributing the computation in combinatorial optimization experiments over the cloud

    Directory of Open Access Journals (Sweden)

    Mario Brcic

    2017-12-01

    Full Text Available Combinatorial optimization is an area of great importance since many of the real-world problems have discrete parameters which are part of the objective function to be optimized. Development of combinatorial optimization algorithms is guided by the empirical study of the candidate ideas and their performance over a wide range of settings or scenarios to infer general conclusions. Number of scenarios can be overwhelming, especially when modeling uncertainty in some of the problem’s parameters. Since the process is also iterative and many ideas and hypotheses may be tested, execution time of each experiment has an important role in the efficiency and successfulness. Structure of such experiments allows for significant execution time improvement by distributing the computation. We focus on the cloud computing as a cost-efficient solution in these circumstances. In this paper we present a system for validating and comparing stochastic combinatorial optimization algorithms. The system also deals with selection of the optimal settings for computational nodes and number of nodes in terms of performance-cost tradeoff. We present applications of the system on a new class of project scheduling problem. We show that we can optimize the selection over cloud service providers as one of the settings and, according to the model, it resulted in a substantial cost-savings while meeting the deadline.

  20. Educational Computer Use in Leisure Contexts: A Phenomenological Study of Adolescents' Experiences at Internet Cafes

    Science.gov (United States)

    Cilesiz, Sebnem

    2009-01-01

    Computer use is a widespread leisure activity for adolescents. Leisure contexts, such as Internet cafes, constitute specific social environments for computer use and may hold significant educational potential. This article reports a phenomenological study of adolescents' experiences of educational computer use at Internet cafes in Turkey. The…

  1. A Computational Realization of a Semi-Lagrangian Method for Solving the Advection Equation

    Directory of Open Access Journals (Sweden)

    Alexander Efremov

    2014-01-01

    Full Text Available A parallel implementation of a method of the semi-Lagrangian type for the advection equation on a hybrid architecture computation system is discussed. The difference scheme with variable stencil is constructed on the base of an integral equality between the neighboring time levels. The proposed approach allows one to avoid the Courant-Friedrichs-Lewy restriction on the relation between time step and mesh size. The theoretical results are confirmed by numerical experiments. Performance of a sequential algorithm and several parallel implementations with the OpenMP and CUDA technologies in the C language has been studied.

  2. A method of computer modelling the lithium-ion batteries aging process based on the experimental characteristics

    Science.gov (United States)

    Czerepicki, A.; Koniak, M.

    2017-06-01

    The paper presents a method of modelling the processes of aging lithium-ion batteries, its implementation as a computer application and results for battery state estimation. Authors use previously developed behavioural battery model, which was built using battery operating characteristics obtained from the experiment. This model was implemented in the form of a computer program using a database to store battery characteristics. Batteries aging process is a new extended functionality of the model. Algorithm of computer simulation uses a real measurements of battery capacity as a function of the battery charge and discharge cycles number. Simulation allows to take into account the incomplete cycles of charge or discharge battery, which are characteristic for transport powered by electricity. The developed model was used to simulate the battery state estimation for different load profiles, obtained by measuring the movement of the selected means of transport.

  3. Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.

    Science.gov (United States)

    Heald, Emerson F.

    1978-01-01

    Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)

  4. The Design and Evaluation of Teaching Experiments in Computer Science.

    Science.gov (United States)

    Forcheri, Paola; Molfino, Maria Teresa

    1992-01-01

    Describes a relational model that was developed to provide a framework for the design and evaluation of teaching experiments for the introduction of computer science in secondary schools in Italy. Teacher training is discussed, instructional materials are considered, and use of the model for the evaluation process is described. (eight references)…

  5. Computer-aided method for recognition of proton track in nuclear emulsion

    International Nuclear Information System (INIS)

    Ruan Jinlu; Li Hongyun; Song Jiwen; Zhang Jianfu; Chen Liang; Zhang Zhongbing; Liu Jinliang

    2014-01-01

    In order to overcome the shortcomings of the manual method for proton-recoil track recognition in nuclear emulsions, a computer-aided track recognition method was studied. In this method, image sequences captured by a microscope system were processed through image convolution with composite filters, binarization by multi thresholds, track grains clustering and redundant grains removing to recognize the track grains in the image sequences. Then the proton-recoil tracks were reconstructed from the recognized track grains through track reconstruction. The proton-recoil tracks in the nuclear emulsion irradiated by the neutron beam at energy of 14.9 MeV were recognized by the computer-aided method. The results show that proton-recoil tracks reconstructed by this method consist well with those reconstructed by the manual method. This compute-raided track recognition method lays an important technical foundation of developments of a proton-recoil track automatic recognition system and applications of nuclear emulsions in pulsed neutron spectrum measurement. (authors)

  6. Applications of meshless methods for damage computations with finite strains

    International Nuclear Information System (INIS)

    Pan Xiaofei; Yuan Huang

    2009-01-01

    Material defects such as cavities have great effects on the damage process in ductile materials. Computations based on finite element methods (FEMs) often suffer from instability due to material failure as well as large distortions. To improve computational efficiency and robustness the element-free Galerkin (EFG) method is applied in the micro-mechanical constitute damage model proposed by Gurson and modified by Tvergaard and Needleman (the GTN damage model). The EFG algorithm is implemented in the general purpose finite element code ABAQUS via the user interface UEL. With the help of the EFG method, damage processes in uniaxial tension specimens and notched specimens are analyzed and verified with experimental data. Computational results reveal that the damage which takes place in the interior of specimens will extend to the exterior and cause fracture of specimens; the damage is a fast procedure relative to the whole tensing process. The EFG method provides more stable and robust numerical solution in comparing with the FEM analysis

  7. Application of Computational Methods in Planaria Research: A Current Update

    Directory of Open Access Journals (Sweden)

    Ghosh Shyamasree

    2017-07-01

    Full Text Available Planaria is a member of the Phylum Platyhelminthes including flatworms. Planarians possess the unique ability of regeneration from adult stem cells or neoblasts and finds importance as a model organism for regeneration and developmental studies. Although research is being actively carried out globally through conventional methods to understand the process of regeneration from neoblasts, biology of development, neurobiology and immunology of Planaria, there are many thought provoking questions related to stem cell plasticity, and uniqueness of regenerative potential in Planarians amongst other members of Phylum Platyhelminthes. The complexity of receptors and signalling mechanisms, immune system network, biology of repair, responses to injury are yet to be understood in Planaria. Genomic and transcriptomic studies have generated a vast repository of data, but their availability and analysis is a challenging task. Data mining, computational approaches of gene curation, bioinformatics tools for analysis of transcriptomic data, designing of databases, application of algorithms in deciphering changes of morphology by RNA interference (RNAi approaches, understanding regeneration experiments is a new venture in Planaria research that is helping researchers across the globe in understanding the biology. We highlight the applications of Hidden Markov models (HMMs in designing of computational tools and their applications in Planaria decoding their complex biology.

  8. Computer control and monitoring of neutral beam injectors on the 2XIIB CTR experiment at LLL

    International Nuclear Information System (INIS)

    Pollock, G.G.

    1975-01-01

    The original manual control system for the 12 neutral beam injectors on the 2XIIB Machine is being integrated with a computer control system. This, in turn, is a part of a multiple computer network comprised of the three computers which are involved in the operation and instrumentation of the 2XIIB experiment. The computer control system simplifies neutral beam operation and centralizes it to a single operating position. A special purpose console utilizes computer generated graphics and interactive function entry buttons to optimize the human/machine interface. Through the facilities of the computer network, a high level control function will be implemented for the use of the experimenter in a remotely located experiment diagnositcs area. In addition to controlling the injectors in normal operation, the computer system provides automatic conditioning of the injectors, bringing rebuilt units back to full energy output with minimum loss of useful life. The computer system also provides detail archive data recording

  9. Efficient computation method of Jacobian matrix

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1995-05-01

    As well known, the elements of the Jacobian matrix are complex trigonometric functions of the joint angles, resulting in a matrix of staggering complexity when we write it all out in one place. This article addresses that difficulties to this subject are overcome by using velocity representation. The main point is that its recursive algorithm and computer algebra technologies allow us to derive analytical formulation with no human intervention. Particularly, it is to be noted that as compared to previous results the elements are extremely simplified throughout the effective use of frame transformations. Furthermore, in case of a spherical wrist, it is shown that the present approach is computationally most efficient. Due to such advantages, the proposed method is useful in studying kinematically peculiar properties such as singularity problems. (author)

  10. Computational methods of electron/photon transport

    International Nuclear Information System (INIS)

    Mack, J.M.

    1983-01-01

    A review of computational methods simulating the non-plasma transport of electrons and their attendant cascades is presented. Remarks are mainly restricted to linearized formalisms at electron energies above 1 keV. The effectiveness of various metods is discussed including moments, point-kernel, invariant imbedding, discrete-ordinates, and Monte Carlo. Future research directions and the potential impact on various aspects of science and engineering are indicated

  11. Decomposition and Cross-Product-Based Method for Computing the Dynamic Equation of Robots

    Directory of Open Access Journals (Sweden)

    Ching-Long Shih

    2012-08-01

    Full Text Available This paper aims to demonstrate a clear relationship between Lagrange equations and Newton-Euler equations regarding computational methods for robot dynamics, from which we derive a systematic method for using either symbolic or on-line numerical computations. Based on the decomposition approach and cross-product operation, a computing method for robot dynamics can be easily developed. The advantages of this computing framework are that: it can be used for both symbolic and on-line numeric computation purposes, and it can also be applied to biped systems, as well as some simple closed-chain robot systems.

  12. Computer-controlled back scattering and sputtering-experiment using a heavy-ion-accelerator

    International Nuclear Information System (INIS)

    Becker, H.; Birnbaum, M.; Degenhardt, K.H.; Mertens, P.; Tschammer, V.

    1978-12-01

    Control and data acquisition of a PDP 11/40 computer and CAMAC instrumentation are reported for an experiment that has been developed to measure sputtering in yields and energy losses for heavy 100 - 300 keV ions in thin metal foils. Besides a quadrupole mass filter or a bending magnet, a multichannel analyser is coupled to the computer, so that also pulse height analysis can be performed under computer control. CAMAC instrumentation and measuring programs are built in a modular form to enable an easy application to other experimental problems. (orig.) 891 KBE/orig. 892 BRE

  13. An Integrated Computational Materials Engineering Method for Woven Carbon Fiber Composites Preforming Process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weizhao; Ren, Huaqing; Wang, Zequn; Liu, Wing K.; Chen, Wei; Zeng, Danielle; Su, Xuming; Cao, Jian

    2016-10-19

    An integrated computational materials engineering method is proposed in this paper for analyzing the design and preforming process of woven carbon fiber composites. The goal is to reduce the cost and time needed for the mass production of structural composites. It integrates the simulation methods from the micro-scale to the macro-scale to capture the behavior of the composite material in the preforming process. In this way, the time consuming and high cost physical experiments and prototypes in the development of the manufacturing process can be circumvented. This method contains three parts: the micro-scale representative volume element (RVE) simulation to characterize the material; the metamodeling algorithm to generate the constitutive equations; and the macro-scale preforming simulation to predict the behavior of the composite material during forming. The results show the potential of this approach as a guidance to the design of composite materials and its manufacturing process.

  14. Doctors' experience with handheld computers in clinical practice: qualitative study.

    Science.gov (United States)

    McAlearney, Ann Scheck; Schweikhart, Sharon B; Medow, Mitchell A

    2004-05-15

    To examine doctors' perspectives about their experiences with handheld computers in clinical practice. Qualitative study of eight focus groups consisting of doctors with diverse training and practice patterns. Six practice settings across the United States and two additional focus group sessions held at a national meeting of general internists. 54 doctors who did or did not use handheld computers. Doctors who used handheld computers in clinical practice seemed generally satisfied with them and reported diverse patterns of use. Users perceived that the devices helped them increase productivity and improve patient care. Barriers to use concerned the device itself and personal and perceptual constraints, with perceptual factors such as comfort with technology, preference for paper, and the impression that the devices are not easy to use somewhat difficult to overcome. Participants suggested that organisations can help promote handheld computers by providing advice on purchase, usage, training, and user support. Participants expressed concern about reliability and security of the device but were particularly concerned about dependency on the device and over-reliance as a substitute for clinical thinking. Doctors expect handheld computers to become more useful, and most seem interested in leveraging (getting the most value from) their use. Key opportunities with handheld computers included their use as a stepping stone to build doctors' comfort with other information technology and ehealth initiatives and providing point of care support that helps improve patient care.

  15. Prediction of intestinal absorption and blood-brain barrier penetration by computational methods.

    Science.gov (United States)

    Clark, D E

    2001-09-01

    This review surveys the computational methods that have been developed with the aim of identifying drug candidates likely to fail later on the road to market. The specifications for such computational methods are outlined, including factors such as speed, interpretability, robustness and accuracy. Then, computational filters aimed at predicting "drug-likeness" in a general sense are discussed before methods for the prediction of more specific properties--intestinal absorption and blood-brain barrier penetration--are reviewed. Directions for future research are discussed and, in concluding, the impact of these methods on the drug discovery process, both now and in the future, is briefly considered.

  16. ONTOLOGY OF COMPUTATIONAL EXPERIMENT ORGANIZATION IN PROBLEMS OF SEARCHING AND SORTING

    Directory of Open Access Journals (Sweden)

    A. Spivakovsky

    2011-05-01

    Full Text Available Ontologies are a key technology of semantic processing of knowledge. We examine a methodology of ontology’s usage for the organization of computational experiment in problems of searching and sorting in studies of the course "Basics of algorithms and programming".

  17. High-integrity software, computation and the scientific method

    International Nuclear Information System (INIS)

    Hatton, L.

    2012-01-01

    Computation rightly occupies a central role in modern science. Datasets are enormous and the processing implications of some algorithms are equally staggering. With the continuing difficulties in quantifying the results of complex computations, it is of increasing importance to understand its role in the essentially Popperian scientific method. In this paper, some of the problems with computation, for example the long-term unquantifiable presence of undiscovered defect, problems with programming languages and process issues will be explored with numerous examples. One of the aims of the paper is to understand the implications of trying to produce high-integrity software and the limitations which still exist. Unfortunately Computer Science itself suffers from an inability to be suitably critical of its practices and has operated in a largely measurement-free vacuum since its earliest days. Within computer science itself, this has not been so damaging in that it simply leads to unconstrained creativity and a rapid turnover of new technologies. In the applied sciences however which have to depend on computational results, such unquantifiability significantly undermines trust. It is time this particular demon was put to rest. (author)

  18. Computer-Adaptive Testing: Implications for Students' Achievement, Motivation, Engagement, and Subjective Test Experience

    Science.gov (United States)

    Martin, Andrew J.; Lazendic, Goran

    2018-01-01

    The present study investigated the implications of computer-adaptive testing (operationalized by way of multistage adaptive testing; MAT) and "conventional" fixed order computer testing for various test-relevant outcomes in numeracy, including achievement, test-relevant motivation and engagement, and subjective test experience. It did so…

  19. Computer controls for the WITCH experiment

    CERN Document Server

    Tandecki, M; Van Gorp, S; Friedag, P; De Leebeeck, V; Beck, D; Brand, H; Weinheimer, C; Breitenfeldt, M; Traykov, E; Mader, J; Roccia, S; Severijns, N; Herlert, A; Wauters, F; Zakoucky, D; Kozlov, V; Soti, G

    2011-01-01

    The WITCH experiment is a medium-scale experimental set-up located at ISOLDE/CERN. It combines a double Penning trap system with,a retardation spectrometer for energy measurements of recoil ions from beta decay. For a correct operation of such a set-up a whole range of different devices is required. Along with the installation and optimization of the set-up a computer control system was developed to control these devices. The CS-Framework that is developed and maintained at GSI, was chosen as a basis for this control system as it is perfectly suited to handle the distributed nature of a control system.We report here on the required hardware for WITCH, along with the basis of this CS-Framework and the add-ons that were implemented for WITCH. (C) 2010 Elsevier B.V. All rights reserved.

  20. Cloud Computing Technologies in Writing Class: Factors Influencing Students’ Learning Experience

    Directory of Open Access Journals (Sweden)

    Jenny WANG

    2017-07-01

    Full Text Available The proposed interactive online group within the cloud computing technologies as a main contribution of this paper provides easy and simple access to the cloud-based Software as a Service (SaaS system and delivers effective educational tools for students and teacher on after-class group writing assignment activities. Therefore, this study addresses the implementation of the most commonly used cloud applications, Google Docs, in a higher education course. The learning environment integrated Google Docs that students are using to develop and deploy writing assignments in between classes has been subjected to learning experience assessment. Using the questionnaire as an instrument to study participants (n=28, the system has provided an effective learning environment in between classes for the students and the instructor to stay connected. Factors influencing students’ learning experience based on cloud applications include frequency of interaction online and students’ technology experience. Suggestions to cope with challenges regarding the use of them in higher education including the technical issues are also presented. Educators are therefore encouraged to embrace cloud computing technologies as they design the course curriculum in hoping to effectively enrich students’ learning.

  1. Experience building and operating the CMS Tier-1 computing centres

    Science.gov (United States)

    Albert, M.; Bakken, J.; Bonacorsi, D.; Brew, C.; Charlot, C.; Huang, Chih-Hao; Colling, D.; Dumitrescu, C.; Fagan, D.; Fassi, F.; Fisk, I.; Flix, J.; Giacchetti, L.; Gomez-Ceballos, G.; Gowdy, S.; Grandi, C.; Gutsche, O.; Hahn, K.; Holzman, B.; Jackson, J.; Kreuzer, P.; Kuo, C. M.; Mason, D.; Pukhaeva, N.; Qin, G.; Quast, G.; Rossman, P.; Sartirana, A.; Scheurer, A.; Schott, G.; Shih, J.; Tader, P.; Thompson, R.; Tiradani, A.; Trunov, A.

    2010-04-01

    The CMS Collaboration relies on 7 globally distributed Tier-1 computing centres located at large universities and national laboratories for a second custodial copy of the CMS RAW data and primary copy of the simulated data, data serving capacity to Tier-2 centres for analysis, and the bulk of the reprocessing and event selection capacity in the experiment. The Tier-1 sites have a challenging role in CMS because they are expected to ingest and archive data from both CERN and regional Tier-2 centres, while they export data to a global mesh of Tier-2s at rates comparable to the raw export data rate from CERN. The combined capacity of the Tier-1 centres is more than twice the resources located at CERN and efficiently utilizing this large distributed resources represents a challenge. In this article we will discuss the experience building, operating, and utilizing the CMS Tier-1 computing centres. We will summarize the facility challenges at the Tier-1s including the stable operations of CMS services, the ability to scale to large numbers of processing requests and large volumes of data, and the ability to provide custodial storage and high performance data serving. We will also present the operations experience utilizing the distributed Tier-1 centres from a distance: transferring data, submitting data serving requests, and submitting batch processing requests.

  2. Experience building and operating the CMS Tier-1 computing centres

    International Nuclear Information System (INIS)

    Albert, M; Bakken, J; Huang, Chih-Hao; Dumitrescu, C; Fagan, D; Fisk, I; Giacchetti, L; Gutsche, O; Holzman, B; Bonacorsi, D; Grandi, C; Brew, C; Jackson, J; Charlot, C; Colling, D; Fassi, F; Flix, J; Gomez-Ceballos, G; Hahn, K; Gowdy, S

    2010-01-01

    The CMS Collaboration relies on 7 globally distributed Tier-1 computing centres located at large universities and national laboratories for a second custodial copy of the CMS RAW data and primary copy of the simulated data, data serving capacity to Tier-2 centres for analysis, and the bulk of the reprocessing and event selection capacity in the experiment. The Tier-1 sites have a challenging role in CMS because they are expected to ingest and archive data from both CERN and regional Tier-2 centres, while they export data to a global mesh of Tier-2s at rates comparable to the raw export data rate from CERN. The combined capacity of the Tier-1 centres is more than twice the resources located at CERN and efficiently utilizing this large distributed resources represents a challenge. In this article we will discuss the experience building, operating, and utilizing the CMS Tier-1 computing centres. We will summarize the facility challenges at the Tier-1s including the stable operations of CMS services, the ability to scale to large numbers of processing requests and large volumes of data, and the ability to provide custodial storage and high performance data serving. We will also present the operations experience utilizing the distributed Tier-1 centres from a distance: transferring data, submitting data serving requests, and submitting batch processing requests.

  3. Big data mining analysis method based on cloud computing

    Science.gov (United States)

    Cai, Qing Qiu; Cui, Hong Gang; Tang, Hao

    2017-08-01

    Information explosion era, large data super-large, discrete and non-(semi) structured features have gone far beyond the traditional data management can carry the scope of the way. With the arrival of the cloud computing era, cloud computing provides a new technical way to analyze the massive data mining, which can effectively solve the problem that the traditional data mining method cannot adapt to massive data mining. This paper introduces the meaning and characteristics of cloud computing, analyzes the advantages of using cloud computing technology to realize data mining, designs the mining algorithm of association rules based on MapReduce parallel processing architecture, and carries out the experimental verification. The algorithm of parallel association rule mining based on cloud computing platform can greatly improve the execution speed of data mining.

  4. Computational Studies of Protein Hydration Methods

    Science.gov (United States)

    Morozenko, Aleksandr

    It is widely appreciated that water plays a vital role in proteins' functions. The long-range proton transfer inside proteins is usually carried out by the Grotthuss mechanism and requires a chain of hydrogen bonds that is composed of internal water molecules and amino acid residues of the protein. In other cases, water molecules can facilitate the enzymes catalytic reactions by becoming a temporary proton donor/acceptor. Yet a reliable way of predicting water protein interior is still not available to the biophysics community. This thesis presents computational studies that have been performed to gain insights into the problems of fast and accurate prediction of potential water sites inside internal cavities of protein. Specifically, we focus on the task of attainment of correspondence between results obtained from computational experiments and experimental data available from X-ray structures. An overview of existing methods of predicting water molecules in the interior of a protein along with a discussion of the trustworthiness of these predictions is a second major subject of this thesis. A description of differences of water molecules in various media, particularly, gas, liquid and protein interior, and theoretical aspects of designing an adequate model of water for the protein environment are widely discussed in chapters 3 and 4. In chapter 5, we discuss recently developed methods of placement of water molecules into internal cavities of a protein. We propose a new methodology based on the principle of docking water molecules to a protein body which allows to achieve a higher degree of matching experimental data reported in protein crystal structures than other techniques available in the world of biophysical software. The new methodology is tested on a set of high-resolution crystal structures of oligopeptide-binding protein (OppA) containing a large number of resolved internal water molecules and applied to bovine heart cytochrome c oxidase in the fully

  5. Self-adaptive method to distinguish inner and outer contours of industrial computed tomography image for rapid prototype

    International Nuclear Information System (INIS)

    Duan Liming; Ye Yong; Zhang Xia; Zuo Jian

    2013-01-01

    A self-adaptive identification method is proposed for realizing more accurate and efficient judgment about the inner and outer contours of industrial computed tomography (CT) slice images. The convexity-concavity of the single-pixel-wide closed contour is identified with angle method at first. Then, contours with concave vertices are distinguished to be inner or outer contours with ray method, and contours without concave vertices are distinguished with extreme coordinate value method. The method was chosen to automatically distinguish contours by means of identifying the convexity and concavity of the contours. Thus, the disadvantages of single distinguishing methods, such as ray method's time-consuming and extreme coordinate method's fallibility, can be avoided. The experiments prove the adaptability, efficiency, and accuracy of the self-adaptive method. (authors)

  6. Computational methods for constructing protein structure models from 3D electron microscopy maps.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-10-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Analyzing the security of an existing computer system

    Science.gov (United States)

    Bishop, M.

    1986-01-01

    Most work concerning secure computer systems has dealt with the design, verification, and implementation of provably secure computer systems, or has explored ways of making existing computer systems more secure. The problem of locating security holes in existing systems has received considerably less attention; methods generally rely on thought experiments as a critical step in the procedure. The difficulty is that such experiments require that a large amount of information be available in a format that makes correlating the details of various programs straightforward. This paper describes a method of providing such a basis for the thought experiment by writing a special manual for parts of the operating system, system programs, and library subroutines.

  8. 1992 CERN school of computing

    International Nuclear Information System (INIS)

    Verkerk, C.

    1993-01-01

    These Proceedings contain written accounts of most of the lectures given at the 1992 CERN School of Computing, covering a variety of topics. A number of aspects of parallel and of distributed computing were treated in five lecture series: 'Status of parallel computing', 'An introduction to the APE100 computer', 'Introduction to distributed systems', 'Interprocess communication' and 'SHIFT, heterogeneous workstation services at CERN'. Triggering and data acquisition for future colliders was covered in: 'Neural networks for tripper' and 'Architecture for future data acquisition systems'. Analysis of experiments was treated in two series of lectures; 'Off-line software in HEP: Experience and trends', and 'Is there a future for event display?'. Design techniques were the subject of lectures on: 'Computer-aided design of electronics', CADD, computer-aided detector design' and 'Software design, the methods and the tools'. The other lectures reproduced here treated various fields: 'Second generation expert systems', 'Multidatabase in health care systems', 'Multimedia networks, what is new?' 'Pandora: An experimental distributed multimedia system', 'Benchmarking computers for HEP', 'Experience with some early computers' and 'Turing and ACE; lessons from a 1946 computer design'. (orig.)

  9. Comparative study on the performance of Pod type waterjet by experiment and computation

    Directory of Open Access Journals (Sweden)

    Moon-Chan Kim

    2010-03-01

    Full Text Available A comparative study between a computation and an experiment has been conducted to predict the performance of a Pod type waterjet for an amphibious wheeled vehicle. The Pod type waterjet has been chosen on the basis of the required specific speed of more than 2500. As the Pod type waterjet is an extreme type of axial flow type waterjet, theoretical as well as experimental works about Pod type waterjets are very rare. The main purpose of the present study is to validate and compare to the experimental results of the Pod type waterjet with the developed CFD in-house code based on the RANS equations. The developed code has been validated by comparing with the experimental results of the well-known turbine problem. The validation also extended to the flush type waterjet where the pressures along the duct surface and also velocities at nozzle area have been compared with experimental results. The Pod type waterjet has been designed and the performance of the designed waterjet system including duct, impeller and stator was analyzed by the previously mentioned in-house CFD Code. The pressure distributions and limiting streamlines on the blade surfaces were computed to confirm the performance of the designed waterjets. In addition, the torque and momentum were computed to find the entire efficiency and these were compared with the model test results. Measurements were taken of the flow rate at the nozzle exit, static pressure at the various sections along the duct and also the nozzle, revolution of the impeller, torque, thrust and towing forces at various advance speeds for the prediction of performance as well as for comparison with the computations. Based on these measurements, the performance was analyzed according to the ITTC96 standard analysis method. The full-scale effective and the delivered power of the wheeled vehicle were estimated for the prediction of the service speed. This paper emphasizes the confirmation of the ITTC96 analysis method and

  10. The asymptotic expansion method via symbolic computation

    OpenAIRE

    Navarro, Juan F.

    2012-01-01

    This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.

  11. What role for qualitative methods in randomized experiments?

    DEFF Research Database (Denmark)

    Prowse, Martin; Camfield, Laura

    2009-01-01

    The vibrant debate on randomized experiments within international development has been slow to accept a role for qualitative methods within research designs. Whilst there are examples of how 'field visits' or descriptive analyses of context can play a complementary, but secondary, role...... history interviews have advantages over other qualitative methods, and offers one alternative to the conventional survey tool....... to quantitative methods, little attention has been paid to the possibility of randomized experiments that allow a primary role to qualitative methods. This paper assesses whether a range of qualitative methods compromise the internal and external validity criteria of randomized experiments. It suggests that life...

  12. Platform-independent method for computer aided schematic drawings

    Science.gov (United States)

    Vell, Jeffrey L [Slingerlands, NY; Siganporia, Darius M [Clifton Park, NY; Levy, Arthur J [Fort Lauderdale, FL

    2012-02-14

    A CAD/CAM method is disclosed for a computer system to capture and interchange schematic drawing and associated design information. The schematic drawing and design information are stored in an extensible, platform-independent format.

  13. A-VCI: A flexible method to efficiently compute vibrational spectra

    Science.gov (United States)

    Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier

    2017-06-01

    The adaptive vibrational configuration interaction algorithm has been introduced as a new method to efficiently reduce the dimension of the set of basis functions used in a vibrational configuration interaction process. It is based on the construction of nested bases for the discretization of the Hamiltonian operator according to a theoretical criterion that ensures the convergence of the method. In the present work, the Hamiltonian is written as a sum of products of operators. The purpose of this paper is to study the properties and outline the performance details of the main steps of the algorithm. New parameters have been incorporated to increase flexibility, and their influence has been thoroughly investigated. The robustness and reliability of the method are demonstrated for the computation of the vibrational spectrum up to 3000 cm-1 of a widely studied 6-atom molecule (acetonitrile). Our results are compared to the most accurate up to date computation; we also give a new reference calculation for future work on this system. The algorithm has also been applied to a more challenging 7-atom molecule (ethylene oxide). The computed spectrum up to 3200 cm-1 is the most accurate computation that exists today on such systems.

  14. Radiation physics of high power spallation targets. State of the art simulation methods and experiments, the 'European Spallation Source' (ESS)

    International Nuclear Information System (INIS)

    Filges, D.; Cloth, P.; Neef, R.D.; Schaal, H.

    1998-01-01

    Particle transport and nuclear interactions of planned high power spallation targets with GeV proton beams can be simulated using widely developed Monte Carlo transport methods. This includes available high energy radiation transport codes and systems for low energy, earlier developed for reactor physics and fusion technology. Monte Carlo simulation codes and applied methods are discussed. The capabilities of the world-wide existing state-of-the-art computer code systems are demonstrated. Results of computational studies for the 'European Spallation Source' (ESS) mercury high power target station are given. The needs for spallation related data and planned experiments are shown. (author)

  15. Interaction of Natural Organic Matter with Layered Minerals: Recent Developments in Computational Methods at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Jeffery A. Greathouse

    2014-06-01

    Full Text Available The role of mineral surfaces in the adsorption, transport, formation, and degradation of natural organic matter (NOM in the biosphere remains an active research area owing to the difficulties in identifying proper working models of both NOM and mineral phases present in the environment. The variety of aqueous chemistries encountered in the subsurface (e.g., oxic vs. anoxic, variable pH further complicate this field of study. Recently, the advent of nanoscale probes such as X-ray adsorption spectroscopy and surface vibrational spectroscopy applied to study such complicated interfacial systems have enabled new insight into NOM-mineral interfaces. Additionally, due to increasing capabilities in computational chemistry, it is now possible to simulate molecular processes of NOM at multiple scales, from quantum methods for electron transfer to classical methods for folding and adsorption of macroparticles. In this review, we present recent developments in interfacial properties of NOM adsorbed on mineral surfaces from a computational point of view that is informed by recent experiments.

  16. Computational Methods in Stochastic Dynamics Volume 2

    CERN Document Server

    Stefanou, George; Papadopoulos, Vissarion

    2013-01-01

    The considerable influence of inherent uncertainties on structural behavior has led the engineering community to recognize the importance of a stochastic approach to structural problems. Issues related to uncertainty quantification and its influence on the reliability of the computational models are continuously gaining in significance. In particular, the problems of dynamic response analysis and reliability assessment of structures with uncertain system and excitation parameters have been the subject of continuous research over the last two decades as a result of the increasing availability of powerful computing resources and technology.   This book is a follow up of a previous book with the same subject (ISBN 978-90-481-9986-0) and focuses on advanced computational methods and software tools which can highly assist in tackling complex problems in stochastic dynamic/seismic analysis and design of structures. The selected chapters are authored by some of the most active scholars in their respective areas and...

  17. Using computed tomography enterography to evaluate patients with Crohn's disease: what impact does examiner experience have on the reproducibility of the method?

    Energy Technology Data Exchange (ETDEWEB)

    Burlin, Stenio; Favaro, Larissa Rossini; Bretas, Elisa Almeida Sathler; Taniguchi, Lincoln Seiji; Argollo, Marjorie Costa; Ambrogini Junior, Orlando; D' Ippolito, Giuseppe, E-mail: stenioburlin@gmail.com [Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP (Brazil). Escola Paulista de Medicina; Loch, Ana Paula [Universidade de Sao Paulo (FM/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina

    2017-01-15

    Objective: To assess the impact that examiner experience has on the reproducibility and accuracy of computed tomography (CT) enterography in the detection of radiological signs in patients with Crohn's disease. Materials and Methods: This was a retrospective, cross-sectional observational study involving the analysis of CT enterography scans of 20 patients with Crohn's disease. The exams were analyzed independently by two radiologists in their last year of residence (duo I) and by two abdominal imaging specialists (duo II). The interobserver agreement of each pair of examiners in identifying the main radiological signs was calculated with the kappa test. The accuracy of the examiners with less experience was quantified by using the consensus among three experienced examiners as a reference. Results: Duo I and duo II obtained a similar interobserver agreement, with a moderate to good correlation, for mural hyper enhancement, parietal thickening, mural stratification, fat densification, and comb sign (kappa: 0.45 - 0.64). The less experienced examiners showed an accuracy > 80% for all signs, except for lymph nodes and fistula, for which it ranged from 60% to 75%. Conclusion: Less experienced examiners have a tendency to present a level of interobserver agreement similar to that of experienced examiners in evaluating Crohn's disease through CT enterography, as well as showing satisfactory accuracy in identifying most radiological signs of the disease. (author)

  18. Assessing Pre-Service Teachers' Computer Phobia Levels in Terms of Gender and Experience, Turkish Sample

    Science.gov (United States)

    Ursavas, Omer Faruk; Karal, Hasan

    2009-01-01

    In this study it is aimed to determine the level of pre-service teachers' computer phobia. Whether or not computer phobia meaningfully varies statistically according to gender and computer experience has been tested in the study. The study was performed on 430 pre-service teachers at the Education Faculty in Rize/Turkey. Data in the study were…

  19. The Asymptotic Expansion Method via Symbolic Computation

    Directory of Open Access Journals (Sweden)

    Juan F. Navarro

    2012-01-01

    Full Text Available This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.

  20. Applying Human Computation Methods to Information Science

    Science.gov (United States)

    Harris, Christopher Glenn

    2013-01-01

    Human Computation methods such as crowdsourcing and games with a purpose (GWAP) have each recently drawn considerable attention for their ability to synergize the strengths of people and technology to accomplish tasks that are challenging for either to do well alone. Despite this increased attention, much of this transformation has been focused on…

  1. RPM-WEBBSYS: A web-based computer system to apply the rational polynomial method for estimating static formation temperatures of petroleum and geothermal wells

    Science.gov (United States)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J. A.; Quiroz-Ruiz, A.

    2015-12-01

    A Web-Based Computer System (RPM-WEBBSYS) has been developed for the application of the Rational Polynomial Method (RPM) to estimate static formation temperatures (SFT) of geothermal and petroleum wells. The system is also capable to reproduce the full thermal recovery processes occurred during the well completion. RPM-WEBBSYS has been programmed using advances of the information technology to perform more efficiently computations of SFT. RPM-WEBBSYS may be friendly and rapidly executed by using any computing device (e.g., personal computers and portable computing devices such as tablets or smartphones) with Internet access and a web browser. The computer system was validated using bottomhole temperature (BHT) measurements logged in a synthetic heat transfer experiment, where a good matching between predicted and true SFT was achieved. RPM-WEBBSYS was finally applied to BHT logs collected from well drilling and shut-in operations, where the typical problems of the under- and over-estimation of the SFT (exhibited by most of the existing analytical methods) were effectively corrected.

  2. Electron beam treatment planning: A review of dose computation methods

    International Nuclear Information System (INIS)

    Mohan, R.; Riley, R.; Laughlin, J.S.

    1983-01-01

    Various methods of dose computations are reviewed. The equivalent path length methods used to account for body curvature and internal structure are not adequate because they ignore the lateral diffusion of electrons. The Monte Carlo method for the broad field three-dimensional situation in treatment planning is impractical because of the enormous computer time required. The pencil beam technique may represent a suitable compromise. The behavior of a pencil beam may be described by the multiple scattering theory or, alternatively, generated using the Monte Carlo method. Although nearly two orders of magnitude slower than the equivalent path length technique, the pencil beam method improves accuracy sufficiently to justify its use. It applies very well when accounting for the effect of surface irregularities; the formulation for handling inhomogeneous internal structure is yet to be developed

  3. A numerical method to compute interior transmission eigenvalues

    International Nuclear Information System (INIS)

    Kleefeld, Andreas

    2013-01-01

    In this paper the numerical calculation of eigenvalues of the interior transmission problem arising in acoustic scattering for constant contrast in three dimensions is considered. From the computational point of view existing methods are very expensive, and are only able to show the existence of such transmission eigenvalues. Furthermore, they have trouble finding them if two or more eigenvalues are situated closely together. We present a new method based on complex-valued contour integrals and the boundary integral equation method which is able to calculate highly accurate transmission eigenvalues. So far, this is the first paper providing such accurate values for various surfaces different from a sphere in three dimensions. Additionally, the computational cost is even lower than those of existing methods. Furthermore, the algorithm is capable of finding complex-valued eigenvalues for which no numerical results have been reported yet. Until now, the proof of existence of such eigenvalues is still open. Finally, highly accurate eigenvalues of the interior Dirichlet problem are provided and might serve as test cases to check newly derived Faber–Krahn type inequalities for larger transmission eigenvalues that are not yet available. (paper)

  4. Mathematical optics classical, quantum, and computational methods

    CERN Document Server

    Lakshminarayanan, Vasudevan

    2012-01-01

    Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical wave

  5. Advances of evolutionary computation methods and operators

    CERN Document Server

    Cuevas, Erik; Oliva Navarro, Diego Alberto

    2016-01-01

    The goal of this book is to present advances that discuss alternative Evolutionary Computation (EC) developments and non-conventional operators which have proved to be effective in the solution of several complex problems. The book has been structured so that each chapter can be read independently from the others. The book contains nine chapters with the following themes: 1) Introduction, 2) the Social Spider Optimization (SSO), 3) the States of Matter Search (SMS), 4) the collective animal behavior (CAB) algorithm, 5) the Allostatic Optimization (AO) method, 6) the Locust Search (LS) algorithm, 7) the Adaptive Population with Reduced Evaluations (APRE) method, 8) the multimodal CAB, 9) the constrained SSO method.

  6. National Fusion Collaboratory: Grid Computing for Simulations and Experiments

    Science.gov (United States)

    Greenwald, Martin

    2004-05-01

    The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.

  7. Computational mathematics models, methods, and analysis with Matlab and MPI

    CERN Document Server

    White, Robert E

    2004-01-01

    Computational Mathematics: Models, Methods, and Analysis with MATLAB and MPI explores and illustrates this process. Each section of the first six chapters is motivated by a specific application. The author applies a model, selects a numerical method, implements computer simulations, and assesses the ensuing results. These chapters include an abundance of MATLAB code. By studying the code instead of using it as a "black box, " you take the first step toward more sophisticated numerical modeling. The last four chapters focus on multiprocessing algorithms implemented using message passing interface (MPI). These chapters include Fortran 9x codes that illustrate the basic MPI subroutines and revisit the applications of the previous chapters from a parallel implementation perspective. All of the codes are available for download from www4.ncsu.edu./~white.This book is not just about math, not just about computing, and not just about applications, but about all three--in other words, computational science. Whether us...

  8. 1984 CERN school of computing

    International Nuclear Information System (INIS)

    1985-01-01

    The eighth CERN School of Computing covered subjects mainly related to computing for elementary-particle physics. These proceedings contain written versions of most of the lectures delivered at the School. Notes on the following topics are included: trigger and data-acquisition plans for the LEP experiments; unfolding methods in high-energy physics experiments; Monte Carlo techniques; relational data bases; data networks and open systems; the Newcastle connection; portable operating systems; expert systems; microprocessors - from basic chips to complete systems; algorithms for parallel computers; trends in supercomputers and computational physics; supercomputing and related national projects in Japan; application of VLSI in high-energy physics, and single-user systems. See hints under the relevant topics. (orig./HSI)

  9. Measuring methods in out-of-pile simulation experiments investigating the cooling capability of melted core material with internal heat production

    International Nuclear Information System (INIS)

    Fieg, G.

    1977-01-01

    The present paper deals with the application of various measuring methods in model experiments for studying the steady heat transport from volume-heated liquid films by natural convection. The aim of these model experiments is to test computing models for temperature and flow behavior of internally heated liquid films at different boundary conditions. Therefore, besides pure heat transfer measurements, temperature as well as velocity fields must be experimentally determined. Determination of the temperature fields is carried our with suitable thermoelements of small size, the velocity fields are determined by the laser-Doppler method as well as the stroboscopic method for photographically visualizing the flow. (orig.) [de

  10. PanDA: A New Paradigm for Distributed Computing in HEP Through the Lens of ATLAS and other Experiments

    CERN Document Server

    De, K; The ATLAS collaboration; Maeno, T; Nilsson, P; Wenaus, T

    2014-01-01

    Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide, thousands of physicists analyzing the data need remote access to hundreds of computing sites, the volume of processed data is beyond the exabyte scale, and data processing requires more than a billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of computing in HEP was discarded in favor of a far more flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at a million computing jobs per day, and processing over an exabyte of data in 2013. We will describe the design and implementation of PanDA, present data on the performance of PanDA a...

  11. Moving finite elements: A continuously adaptive method for computational fluid dynamics

    International Nuclear Information System (INIS)

    Glasser, A.H.; Miller, K.; Carlson, N.

    1991-01-01

    Moving Finite Elements (MFE), a recently developed method for computational fluid dynamics, promises major advances in the ability of computers to model the complex behavior of liquids, gases, and plasmas. Applications of computational fluid dynamics occur in a wide range of scientifically and technologically important fields. Examples include meteorology, oceanography, global climate modeling, magnetic and inertial fusion energy research, semiconductor fabrication, biophysics, automobile and aircraft design, industrial fluid processing, chemical engineering, and combustion research. The improvements made possible by the new method could thus have substantial economic impact. Moving Finite Elements is a moving node adaptive grid method which has a tendency to pack the grid finely in regions where it is most needed at each time and to leave it coarse elsewhere. It does so in a manner which is simple and automatic, and does not require a large amount of human ingenuity to apply it to each particular problem. At the same time, it often allows the time step to be large enough to advance a moving shock by many shock thicknesses in a single time step, moving the grid smoothly with the solution and minimizing the number of time steps required for the whole problem. For 2D problems (two spatial variables) the grid is composed of irregularly shaped and irregularly connected triangles which are very flexible in their ability to adapt to the evolving solution. While other adaptive grid methods have been developed which share some of these desirable properties, this is the only method which combines them all. In many cases, the method can save orders of magnitude of computing time, equivalent to several generations of advancing computer hardware

  12. Methods for computing SN eigenvalues and eigenvectors of slab geometry transport problems

    International Nuclear Information System (INIS)

    Yavuz, Musa

    1998-01-01

    We discuss computational methods for computing the eigenvalues and eigenvectors of single energy-group neutral particle transport (S N ) problems in homogeneous slab geometry, with an arbitrary scattering anisotropy of order L. These eigensolutions are important when exact (or very accurate) solutions are desired for coarse spatial cell problems demanding rapid execution times. Three methods, one of which is 'new', are presented for determining the eigenvalues and eigenvectors of such S N problems. In the first method, separation of variables is directly applied to the S N equations. In the second method, common characteristics of the S N and P N-1 equations are used. In the new method, the eigenvalues and eigenvectors can be computed provided that the cell-interface Green's functions (transmission and reflection factors) are known. Numerical results for S 4 test problems are given to compare the new method with the existing methods

  13. Methods for computing SN eigenvalues and eigenvectors of slab geometry transport problems

    International Nuclear Information System (INIS)

    Yavuz, M.

    1997-01-01

    We discuss computational methods for computing the eigenvalues and eigenvectors of single energy-group neutral particle transport (S N ) problems in homogeneous slab geometry, with an arbitrary scattering anisotropy of order L. These eigensolutions are important when exact (or very accurate) solutions are desired for coarse spatial cell problems demanding rapid execution times. Three methods, one of which is 'new', are presented for determining the eigenvalues and eigenvectors of such S N problems. In the first method, separation of variables is directly applied to the S N equations. In the second method, common characteristics of the S N and P N-1 equations are used. In the new method, the eigenvalues and eigenvectors can be computed provided that the cell-interface Green's functions (transmission and reflection factors) are known. Numerical results for S 4 test problems are given to compare the new method with the existing methods. (author)

  14. Application of a personal computer in a high energy physics experiment

    International Nuclear Information System (INIS)

    Petta, P.

    1987-04-01

    UA1 is a detector block at the CERN Super Synchrotron Collider, MacVEE is Micro computer applied to the Control of VME Electronic Equipment, a software development system for the data readout system and for the implementation of the user interface of the experiment control. A commercial personal computer is used. Examples of applications are the Data Acquisition Console, the Scanner Desc equipment and the AMERICA Ram Disks codes. Further topics are the MacUA1 development system for M68K-VME codes and an outline of the future MacVEE System Supervisor. 23 refs., 10 figs., 3 tabs. (qui)

  15. Delamination detection using methods of computational intelligence

    Science.gov (United States)

    Ihesiulor, Obinna K.; Shankar, Krishna; Zhang, Zhifang; Ray, Tapabrata

    2012-11-01

    Abstract Reliable delamination prediction scheme is indispensable in order to prevent potential risks of catastrophic failures in composite structures. The existence of delaminations changes the vibration characteristics of composite laminates and hence such indicators can be used to quantify the health characteristics of laminates. An approach for online health monitoring of in-service composite laminates is presented in this paper that relies on methods based on computational intelligence. Typical changes in the observed vibration characteristics (i.e. change in natural frequencies) are considered as inputs to identify the existence, location and magnitude of delaminations. The performance of the proposed approach is demonstrated using numerical models of composite laminates. Since this identification problem essentially involves the solution of an optimization problem, the use of finite element (FE) methods as the underlying tool for analysis turns out to be computationally expensive. A surrogate assisted optimization approach is hence introduced to contain the computational time within affordable limits. An artificial neural network (ANN) model with Bayesian regularization is used as the underlying approximation scheme while an improved rate of convergence is achieved using a memetic algorithm. However, building of ANN surrogate models usually requires large training datasets. K-means clustering is effectively employed to reduce the size of datasets. ANN is also used via inverse modeling to determine the position, size and location of delaminations using changes in measured natural frequencies. The results clearly highlight the efficiency and the robustness of the approach.

  16. Measuring decision weights in recognition experiments with multiple response alternatives: comparing the correlation and multinomial-logistic-regression methods.

    Science.gov (United States)

    Dai, Huanping; Micheyl, Christophe

    2012-11-01

    Psychophysical "reverse-correlation" methods allow researchers to gain insight into the perceptual representations and decision weighting strategies of individual subjects in perceptual tasks. Although these methods have gained momentum, until recently their development was limited to experiments involving only two response categories. Recently, two approaches for estimating decision weights in m-alternative experiments have been put forward. One approach extends the two-category correlation method to m > 2 alternatives; the second uses multinomial logistic regression (MLR). In this article, the relative merits of the two methods are discussed, and the issues of convergence and statistical efficiency of the methods are evaluated quantitatively using Monte Carlo simulations. The results indicate that, for a range of values of the number of trials, the estimated weighting patterns are closer to their asymptotic values for the correlation method than for the MLR method. Moreover, for the MLR method, weight estimates for different stimulus components can exhibit strong correlations, making the analysis and interpretation of measured weighting patterns less straightforward than for the correlation method. These and other advantages of the correlation method, which include computational simplicity and a close relationship to other well-established psychophysical reverse-correlation methods, make it an attractive tool to uncover decision strategies in m-alternative experiments.

  17. Subtraction method of computing QCD jet cross sections at NNLO accuracy

    Science.gov (United States)

    Trócsányi, Zoltán; Somogyi, Gábor

    2008-10-01

    We present a general subtraction method for computing radiative corrections to QCD jet cross sections at next-to-next-to-leading order accuracy. The steps needed to set up this subtraction scheme are the same as those used in next-to-leading order computations. However, all steps need non-trivial modifications, which we implement such that that those can be defined at any order in perturbation theory. We give a status report of the implementation of the method to computing jet cross sections in electron-positron annihilation at the next-to-next-to-leading order accuracy.

  18. Subtraction method of computing QCD jet cross sections at NNLO accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Trocsanyi, Zoltan [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen P.O.Box 51 (Hungary)], E-mail: Zoltan.Trocsanyi@cern.ch; Somogyi, Gabor [University of Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland)], E-mail: sgabi@physik.unizh.ch

    2008-10-15

    We present a general subtraction method for computing radiative corrections to QCD jet cross sections at next-to-next-to-leading order accuracy. The steps needed to set up this subtraction scheme are the same as those used in next-to-leading order computations. However, all steps need non-trivial modifications, which we implement such that that those can be defined at any order in perturbation theory. We give a status report of the implementation of the method to computing jet cross sections in electron-positron annihilation at the next-to-next-to-leading order accuracy.

  19. Vectorization on the star computer of several numerical methods for a fluid flow problem

    Science.gov (United States)

    Lambiotte, J. J., Jr.; Howser, L. M.

    1974-01-01

    A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.

  20. A journey from nuclear criticality methods to high energy density radflow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-30

    Los Alamos National Laboratory is a nuclear weapons laboratory supporting our nation's defense. In support of this mission is a high energy-density physics program in which we design and execute experiments to study radiationhydrodynamics phenomena and improve the predictive capability of our largescale multi-physics software codes on our big-iron computers. The Radflow project’s main experimental effort now is to understand why we haven't been able to predict opacities on Sandia National Laboratory's Z-machine. We are modeling an increasing fraction of the Z-machine's dynamic hohlraum to find multi-physics explanations for the experimental results. Further, we are building an entirely different opacity platform on Lawrence Livermore National Laboratory's National Ignition Facility (NIF), which is set to get results early 2017. Will the results match our predictions, match the Z-machine, or give us something entirely different? The new platform brings new challenges such as designing hohlraums and spectrometers. The speaker will recount his history, starting with one-dimensional Monte Carlo nuclear criticality methods in graduate school, radiative transfer methods research and software development for his first 16 years at LANL, and, now, radflow technology and experiments. Who knew that the real world was more than just radiation transport? Experiments aren't easy, but they sure are fun.

  1. "Sure, I Would Like to Continue": A Method for Mapping the Experience of Engagement in Video Games

    Science.gov (United States)

    Schonau-Fog, Henrik; Bjorner, Thomas

    2012-01-01

    In order to explore one aspect of the engaging nature of computer games, this study will propose a method that aims at classifying the experience of engagement in video games. Inspired by a literature review, we will focus on the fundamental causes of engagement that motivate a player so much that he or she wants to continue playing. By organizing…

  2. Control rod computer code IAMCOS: general theory and numerical methods

    International Nuclear Information System (INIS)

    West, G.

    1982-11-01

    IAMCOS is a computer code for the description of mechanical and thermal behavior of cylindrical control rods for fast breeders. This code version was applied, tested and modified from 1979 to 1981. In this report are described the basic model (02 version), theoretical definitions and computation methods [fr

  3. Reliable methods for computer simulation error control and a posteriori estimates

    CERN Document Server

    Neittaanmäki, P

    2004-01-01

    Recent decades have seen a very rapid success in developing numerical methods based on explicit control over approximation errors. It may be said that nowadays a new direction is forming in numerical analysis, the main goal of which is to develop methods ofreliable computations. In general, a reliable numerical method must solve two basic problems: (a) generate a sequence of approximations that converges to a solution and (b) verify the accuracy of these approximations. A computer code for such a method must consist of two respective blocks: solver and checker.In this book, we are chie

  4. Representation, testing and assessment of the 'Estelle' formal description technique from a computer-controlled neutron scatter experiment

    International Nuclear Information System (INIS)

    Wolschke, U.

    1986-08-01

    Estelle is a formal method of description, which was developed based on an extended state transition model for the specification of communication records and services. Regardless of the field of application, there are problems common to all systems in distributed systems, i.e. in communication systems as in process computer systems, which are to be specified. These include real time problems, such as waiting for events, reactions to expected events and those occurring at the correct time, reacting to unexpected events or those not occurring at the correct time, transmitting and receiving data and the synchronisation of process going on simultaneously. This work examines, using the example of a process computer-controlled neutron scatter experiment, whether Estelle is suitable for the specification of distributed real time systems in this field of application. (orig.) [de

  5. Using sobol sequences for planning computer experiments

    Science.gov (United States)

    Statnikov, I. N.; Firsov, G. I.

    2017-12-01

    Discusses the use for research of problems of multicriteria synthesis of dynamic systems method of Planning LP-search (PLP-search), which not only allows on the basis of the simulation model experiments to revise the parameter space within specified ranges of their change, but also through special randomized nature of the planning of these experiments is to apply a quantitative statistical evaluation of influence of change of varied parameters and their pairwise combinations to analyze properties of the dynamic system.Start your abstract here...

  6. Unfolding methods in high-energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    1985-01-01

    Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)

  7. Unfolding methods in high-energy physics experiments

    International Nuclear Information System (INIS)

    Blobel, V.

    1984-12-01

    Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)

  8. A systematic and efficient method to compute multi-loop master integrals

    Science.gov (United States)

    Liu, Xiao; Ma, Yan-Qing; Wang, Chen-Yu

    2018-04-01

    We propose a novel method to compute multi-loop master integrals by constructing and numerically solving a system of ordinary differential equations, with almost trivial boundary conditions. Thus it can be systematically applied to problems with arbitrary kinematic configurations. Numerical tests show that our method can not only achieve results with high precision, but also be much faster than the only existing systematic method sector decomposition. As a by product, we find a new strategy to compute scalar one-loop integrals without reducing them to master integrals.

  9. Computational methods in metabolic engineering for strain design.

    Science.gov (United States)

    Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L

    2015-08-01

    Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Development of computational methods of design by analysis for pressure vessel components

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan; Wu Honglin

    2005-01-01

    Stress classification is not only one of key steps when pressure vessel component is designed by analysis, but also a difficulty which puzzles engineers and designers at all times. At present, for calculating and categorizing the stress field of pressure vessel components, there are several computation methods of design by analysis such as Stress Equivalent Linearization, Two-Step Approach, Primary Structure method, Elastic Compensation method, GLOSS R-Node method and so on, that are developed and applied. Moreover, ASME code also gives an inelastic method of design by analysis for limiting gross plastic deformation only. When pressure vessel components design by analysis, sometimes there are huge differences between the calculating results for using different calculating and analysis methods mentioned above. As consequence, this is the main reason that affects wide application of design by analysis approach. Recently, a new approach, presented in the new proposal of a European Standard, CEN's unfired pressure vessel standard EN 13445-3, tries to avoid problems of stress classification by analyzing pressure vessel structure's various failure mechanisms directly based on elastic-plastic theory. In this paper, some stress classification methods mentioned above, are described briefly. And the computational methods cited in the European pressure vessel standard, such as Deviatoric Map, and nonlinear analysis methods (plastic analysis and limit analysis), are depicted compendiously. Furthermore, the characteristics of computational methods of design by analysis are summarized for selecting the proper computational method when design pressure vessel component by analysis. (authors)

  11. Profile modification computations for LHCD experiments on PBX-M using the TSC/LSC model

    International Nuclear Information System (INIS)

    Kaita, R.; Ignat, D.W.; Jardin, S.C.; Okabayashi, M.; Sun, Y.C.

    1996-01-01

    The TSC-LSC computational model of the dynamics of lower hybrid current drive has been exercised extensively in comparison with data from a Princeton Beta Experiment-Modification (PBX-M) discharge where the measured q(0) attained values slightly above unity. Several significant, but plausible, assumptions had to be introduced to keep the computation from behaving pathologically over time, producing singular profiles of plasma current density and q. Addition of a heuristic current diffusion estimate, or more exactly, a smoothing of the rf-driven current with a diffusion-like equation, greatly improved the behavior of the computation, and brought theory and measurement into reasonable agreement. The model was then extended to longer pulse lengths and higher powers to investigate performance to be expected in future PBX-M current profile modification experiments. copyright 1996 American Institute of Physics

  12. Multilink manipulator computer control: experience in development and commissioning

    International Nuclear Information System (INIS)

    Holt, J.E.

    1988-11-01

    This report describes development which has been carried out on the multilink manipulator computer control system. The system allows the manipulator to be driven using only two joysticks. The leading link is controlled and the other links follow its path into the reactor, thus avoiding any potential obstacles. The system has been fully commissioned and used with the Sizewell ''A'' reactor 2 Multilink T.V. manipulator. Experience of the use of the system is presented, together with recommendations for future improvements. (author)

  13. Recent Advances in Computational Methods for Nuclear Magnetic Resonance Data Processing

    KAUST Repository

    Gao, Xin

    2013-01-01

    research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing

  14. Multiscale methods in computational fluid and solid mechanics

    NARCIS (Netherlands)

    Borst, de R.; Hulshoff, S.J.; Lenz, S.; Munts, E.A.; Brummelen, van E.H.; Wall, W.; Wesseling, P.; Onate, E.; Periaux, J.

    2006-01-01

    First, an attempt is made towards gaining a more systematic understanding of recent progress in multiscale modelling in computational solid and fluid mechanics. Sub- sequently, the discussion is focused on variational multiscale methods for the compressible and incompressible Navier-Stokes

  15. The Importance of Business Model Factors for Cloud Computing Adoption: Role of Previous Experiences

    Directory of Open Access Journals (Sweden)

    Bogataj Habjan Kristina

    2017-08-01

    Full Text Available Background and Purpose: Bringing several opportunities for more effective and efficient IT governance and service exploitation, cloud computing is expected to impact the European and global economies significantly. Market data show that despite many advantages and promised benefits the adoption of cloud computing is not as fast and widespread as foreseen. This situation shows the need for further exploration of the potentials of cloud computing and its implementation on the market. The purpose of this research was to identify individual business model factors with the highest impact on cloud computing adoption. In addition, the aim was to identify the differences in opinion regarding the importance of business model factors on cloud computing adoption according to companies’ previous experiences with cloud computing services.

  16. A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system

    Science.gov (United States)

    Jia, Meng; Fan, Yang-Yu; Tian, Wei-Jian

    2011-03-01

    Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy. Project supported by the National Natural Science Foundation of China (Grant No. 60872159).

  17. A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system

    International Nuclear Information System (INIS)

    Jia Meng; Fan Yang-Yu; Tian Wei-Jian

    2011-01-01

    Attempting to find a fast computing method to DHT (distinguished hyperbolic trajectory), this study first proves that the errors of the stable DHT can be ignored in normal direction when they are computed as the trajectories extend. This conclusion means that the stable flow with perturbation will approach to the real trajectory as it extends over time. Based on this theory and combined with the improved DHT computing method, this paper reports a new fast computing method to DHT, which magnifies the DHT computing speed without decreasing its accuracy. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling.

    Science.gov (United States)

    Symeonidou, Athanasia; Blinder, David; Munteanu, Adrian; Schelkens, Peter

    2015-08-24

    We propose a novel fast method for full parallax computer-generated holograms with occlusion processing, suitable for volumetric data such as point clouds. A novel light wave propagation strategy relying on the sequential use of the wavefront recording plane method is proposed, which employs look-up tables in order to reduce the computational complexity in the calculation of the fields. Also, a novel technique for occlusion culling with little additional computation cost is introduced. Additionally, the method adheres a Gaussian distribution to the individual points in order to improve visual quality. Performance tests show that for a full-parallax high-definition CGH a speedup factor of more than 2,500 compared to the ray-tracing method can be achieved without hardware acceleration.

  19. Lattice Boltzmann method fundamentals and engineering applications with computer codes

    CERN Document Server

    Mohamad, A A

    2014-01-01

    Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.

  20. Experience in programming Assembly language of CDC CYBER 170/750 computer

    International Nuclear Information System (INIS)

    Caldeira, A.D.

    1987-10-01

    Aiming to optimize processing time of BCG computer code in the CDC CYBER 170/750 computer, the FORTRAN-V language of INTERP subroutine was converted to Assembly language. The BCG code was developed for solving neutron transport equation by iterative method, and the INTERP subroutine is innermost loop of the code carrying out 5 interpolation types. The central processor unit Assembly language of the CDC CYBER 170/750 computer and its application in implementing the interpolation subroutine of BCG code are described. (M.C.K.)

  1. Use of VME computers for the data acquisition system of the PHOENICS experiment

    International Nuclear Information System (INIS)

    Zucht, B.

    1989-10-01

    The data acquisition program PHON (PHOENICS ONLINE) for the PHOENICS-experiment at the stretcher ring ELSA in Bonn is described. PHON is based on a fast parallel CAMAC readout with special VME-front-end-processors (VIP) and a VAX computer, allowing comfortable control and programming. Special tools have been developed to facilitate the implementation of user programs. The PHON-compiler allows to specify the arrangement of the CAMAC-modules to be read out for each event (camaclist) using a simple language. The camaclist is translated in 68000 Assembly and runs on the front-end-processors, making high data rates possible. User programs for monitoring and control of the experiment normally require low data rates and therefore run on the VAX computer. CAMAC operations are supported by the PHON CAMAC-Library. For graphic representation of the data the CERN standard program libraries HBOOK and PAW are used. The data acquisition system is very flexible and can be easily adapted to different experiments. (orig.)

  2. Fluid-Induced Vibration Analysis for Reactor Internals Using Computational FSI Method

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jong Sung; Yi, Kun Woo; Sung, Ki Kwang; Im, In Young; Choi, Taek Sang [KEPCO E and C, Daejeon (Korea, Republic of)

    2013-10-15

    This paper introduces a fluid-induced vibration analysis method which calculates the response of the RVI to both deterministic and random loads at once and utilizes more realistic pressure distribution using the computational Fluid Structure Interaction (FSI) method. As addressed above, the FIV analysis for the RVI was carried out using the computational FSI method. This method calculates the response to deterministic and random turbulence loads at once. This method is also a simple and integrative method to get structural dynamic responses of reactor internals to various flow-induced loads. Because the analysis of this paper omitted the bypass flow region and Inner Barrel Assembly (IBA) due to the limitation of computer resources, it is necessary to find an effective way to consider all regions in the RV for the FIV analysis in the future. Reactor coolant flow makes Reactor Vessel Internals (RVI) vibrate and may affect the structural integrity of them. U. S. NRC Regulatory Guide 1.20 requires the Comprehensive Vibration Assessment Program (CVAP) to verify the structural integrity of the RVI for Fluid-Induced Vibration (FIV). The hydraulic forces on the RVI of OPR1000 and APR1400 were computed from the hydraulic formulas and the CVAP measurements in Palo Verde Unit 1 and Yonggwang Unit 4 for the structural vibration analyses. In this method, the hydraulic forces were divided into deterministic and random turbulence loads and were used for the excitation forces of the separate structural analyses. These forces are applied to the finite element model and the responses to them were combined into the resultant stresses.

  3. Performance of particle in cell methods on highly concurrent computational architectures

    International Nuclear Information System (INIS)

    Adams, M.F.; Ethier, S.; Wichmann, N.

    2009-01-01

    Particle in cell (PIC) methods are effective in computing Vlasov-Poisson system of equations used in simulations of magnetic fusion plasmas. PIC methods use grid based computations, for solving Poisson's equation or more generally Maxwell's equations, as well as Monte-Carlo type methods to sample the Vlasov equation. The presence of two types of discretizations, deterministic field solves and Monte-Carlo methods for the Vlasov equation, pose challenges in understanding and optimizing performance on today large scale computers which require high levels of concurrency. These challenges arises from the need to optimize two very different types of processes and the interactions between them. Modern cache based high-end computers have very deep memory hierarchies and high degrees of concurrency which must be utilized effectively to achieve good performance. The effective use of these machines requires maximizing concurrency by eliminating serial or redundant work and minimizing global communication. A related issue is minimizing the memory traffic between levels of the memory hierarchy because performance is often limited by the bandwidths and latencies of the memory system. This paper discusses some of the performance issues, particularly in regard to parallelism, of PIC methods. The gyrokinetic toroidal code (GTC) is used for these studies and a new radial grid decomposition is presented and evaluated. Scaling of the code is demonstrated on ITER sized plasmas with up to 16K Cray XT3/4 cores.

  4. Performance of particle in cell methods on highly concurrent computational architectures

    International Nuclear Information System (INIS)

    Adams, M F; Ethier, S; Wichmann, N

    2007-01-01

    Particle in cell (PIC) methods are effective in computing Vlasov-Poisson system of equations used in simulations of magnetic fusion plasmas. PIC methods use grid based computations, for solving Poisson's equation or more generally Maxwell's equations, as well as Monte-Carlo type methods to sample the Vlasov equation. The presence of two types of discretizations, deterministic field solves and Monte-Carlo methods for the Vlasov equation, pose challenges in understanding and optimizing performance on today large scale computers which require high levels of concurrency. These challenges arises from the need to optimize two very different types of processes and the interactions between them. Modern cache based high-end computers have very deep memory hierarchies and high degrees of concurrency which must be utilized effectively to achieve good performance. The effective use of these machines requires maximizing concurrency by eliminating serial or redundant work and minimizing global communication. A related issue is minimizing the memory traffic between levels of the memory hierarchy because performance is often limited by the bandwidths and latencies of the memory system. This paper discusses some of the performance issues, particularly in regard to parallelism, of PIC methods. The gyrokinetic toroidal code (GTC) is used for these studies and a new radial grid decomposition is presented and evaluated. Scaling of the code is demonstrated on ITER sized plasmas with up to 16K Cray XT3/4 cores

  5. Computational method for free surface hydrodynamics

    International Nuclear Information System (INIS)

    Hirt, C.W.; Nichols, B.D.

    1980-01-01

    There are numerous flow phenomena in pressure vessel and piping systems that involve the dynamics of free fluid surfaces. For example, fluid interfaces must be considered during the draining or filling of tanks, in the formation and collapse of vapor bubbles, and in seismically shaken vessels that are partially filled. To aid in the analysis of these types of flow phenomena, a new technique has been developed for the computation of complicated free-surface motions. This technique is based on the concept of a local average volume of fluid (VOF) and is embodied in a computer program for two-dimensional, transient fluid flow called SOLA-VOF. The basic approach used in the VOF technique is briefly described, and compared to other free-surface methods. Specific capabilities of the SOLA-VOF program are illustrated by generic examples of bubble growth and collapse, flows of immiscible fluid mixtures, and the confinement of spilled liquids

  6. A systematic and efficient method to compute multi-loop master integrals

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2018-04-01

    Full Text Available We propose a novel method to compute multi-loop master integrals by constructing and numerically solving a system of ordinary differential equations, with almost trivial boundary conditions. Thus it can be systematically applied to problems with arbitrary kinematic configurations. Numerical tests show that our method can not only achieve results with high precision, but also be much faster than the only existing systematic method sector decomposition. As a by product, we find a new strategy to compute scalar one-loop integrals without reducing them to master integrals.

  7. Advanced soft computing diagnosis method for tumour grading.

    Science.gov (United States)

    Papageorgiou, E I; Spyridonos, P P; Stylios, C D; Ravazoula, P; Groumpos, P P; Nikiforidis, G N

    2006-01-01

    To develop an advanced diagnostic method for urinary bladder tumour grading. A novel soft computing modelling methodology based on the augmentation of fuzzy cognitive maps (FCMs) with the unsupervised active Hebbian learning (AHL) algorithm is applied. One hundred and twenty-eight cases of urinary bladder cancer were retrieved from the archives of the Department of Histopathology, University Hospital of Patras, Greece. All tumours had been characterized according to the classical World Health Organization (WHO) grading system. To design the FCM model for tumour grading, three experts histopathologists defined the main histopathological features (concepts) and their impact on grade characterization. The resulted FCM model consisted of nine concepts. Eight concepts represented the main histopathological features for tumour grading. The ninth concept represented the tumour grade. To increase the classification ability of the FCM model, the AHL algorithm was applied to adjust the weights of the FCM. The proposed FCM grading model achieved a classification accuracy of 72.5%, 74.42% and 95.55% for tumours of grades I, II and III, respectively. An advanced computerized method to support tumour grade diagnosis decision was proposed and developed. The novelty of the method is based on employing the soft computing method of FCMs to represent specialized knowledge on histopathology and on augmenting FCMs ability using an unsupervised learning algorithm, the AHL. The proposed method performs with reasonably high accuracy compared to other existing methods and at the same time meets the physicians' requirements for transparency and explicability.

  8. Enabling Grid Computing resources within the KM3NeT computing model

    Directory of Open Access Journals (Sweden)

    Filippidis Christos

    2016-01-01

    Full Text Available KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that – located at the bottom of the Mediterranean Sea – will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. International collaborative scientific experiments, like KM3NeT, are generating datasets which are increasing exponentially in both complexity and volume, making their analysis, archival, and sharing one of the grand challenges of the 21st century. These experiments, in their majority, adopt computing models consisting of different Tiers with several computing centres and providing a specific set of services for the different steps of data processing such as detector calibration, simulation and data filtering, reconstruction and analysis. The computing requirements are extremely demanding and, usually, span from serial to multi-parallel or GPU-optimized jobs. The collaborative nature of these experiments demands very frequent WAN data transfers and data sharing among individuals and groups. In order to support the aforementioned demanding computing requirements we enabled Grid Computing resources, operated by EGI, within the KM3NeT computing model. In this study we describe our first advances in this field and the method for the KM3NeT users to utilize the EGI computing resources in a simulation-driven use-case.

  9. Improved computation method in residual life estimation of structural components

    Directory of Open Access Journals (Sweden)

    Maksimović Stevan M.

    2013-01-01

    Full Text Available This work considers the numerical computation methods and procedures for the fatigue crack growth predicting of cracked notched structural components. Computation method is based on fatigue life prediction using the strain energy density approach. Based on the strain energy density (SED theory, a fatigue crack growth model is developed to predict the lifetime of fatigue crack growth for single or mixed mode cracks. The model is based on an equation expressed in terms of low cycle fatigue parameters. Attention is focused on crack growth analysis of structural components under variable amplitude loads. Crack growth is largely influenced by the effect of the plastic zone at the front of the crack. To obtain efficient computation model plasticity-induced crack closure phenomenon is considered during fatigue crack growth. The use of the strain energy density method is efficient for fatigue crack growth prediction under cyclic loading in damaged structural components. Strain energy density method is easy for engineering applications since it does not require any additional determination of fatigue parameters (those would need to be separately determined for fatigue crack propagation phase, and low cyclic fatigue parameters are used instead. Accurate determination of fatigue crack closure has been a complex task for years. The influence of this phenomenon can be considered by means of experimental and numerical methods. Both of these models are considered. Finite element analysis (FEA has been shown to be a powerful and useful tool1,6 to analyze crack growth and crack closure effects. Computation results are compared with available experimental results. [Projekat Ministarstva nauke Republike Srbije, br. OI 174001

  10. Prevalence and Correlates of Problematic Internet Experiences and Computer-Using Time: A Two-Year Longitudinal Study in Korean School Children

    OpenAIRE

    Yang, Su-Jin; Stewart, Robert; Lee, Ju-Yeon; Kim, Jae-Min; Kim, Sung-Wan; Shin, Il-Seon; Yoon, Jin-Sang

    2014-01-01

    Objective To measure the prevalence of and factors associated with online inappropriate sexual exposure, cyber-bullying victimisation, and computer-using time in early adolescence. Methods A two-year, prospective school survey was performed with 1,173 children aged 13 at baseline. Data collected included demographic factors, bullying experience, depression, anxiety, coping strategies, self-esteem, psychopathology, attention-deficit hyperactivity disorder symptoms, and school performance. Thes...

  11. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    International Nuclear Information System (INIS)

    Norris, Edward T.; Liu, Xin; Hsieh, Jiang

    2015-01-01

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. The CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer

  12. Enabling the ATLAS Experiment at the LHC for High Performance Computing

    CERN Document Server

    AUTHOR|(CDS)2091107; Ereditato, Antonio

    In this thesis, I studied the feasibility of running computer data analysis programs from the Worldwide LHC Computing Grid, in particular large-scale simulations of the ATLAS experiment at the CERN LHC, on current general purpose High Performance Computing (HPC) systems. An approach for integrating HPC systems into the Grid is proposed, which has been implemented and tested on the „Todi” HPC machine at the Swiss National Supercomputing Centre (CSCS). Over the course of the test, more than 500000 CPU-hours of processing time have been provided to ATLAS, which is roughly equivalent to the combined computing power of the two ATLAS clusters at the University of Bern. This showed that current HPC systems can be used to efficiently run large-scale simulations of the ATLAS detector and of the detected physics processes. As a first conclusion of my work, one can argue that, in perspective, running large-scale tasks on a few large machines might be more cost-effective than running on relatively small dedicated com...

  13. Efficient method for computing the electronic transport properties of a multiterminal system

    Science.gov (United States)

    Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio

    2018-04-01

    We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.

  14. Particular application of methods of AdaBoost and LBP to the problems of computer vision

    OpenAIRE

    Волошин, Микола Володимирович

    2012-01-01

    The application of AdaBoost method and local binary pattern (LBP) method for different spheres of computer vision implementation, such as personality identification and computer iridology, is considered in the article. The goal of the research is to develop error-correcting methods and systems for implements of computer vision and computer iridology, in particular. This article considers the problem of colour spaces, which are used as a filter and as a pre-processing of images. Method of AdaB...

  15. Computer navigation experience in hip resurfacing improves femoral component alignment using a conventional jig.

    Science.gov (United States)

    Morison, Zachary; Mehra, Akshay; Olsen, Michael; Donnelly, Michael; Schemitsch, Emil

    2013-11-01

    The use of computer navigation has been shown to improve the accuracy of femoral component placement compared to conventional instrumentation in hip resurfacing. Whether exposure to computer navigation improves accuracy when the procedure is subsequently performed with conventional instrumentation without navigation has not been explored. We examined whether femoral component alignment utilizing a conventional jig improves following experience with the use of imageless computer navigation for hip resurfacing. Between December 2004 and December 2008, 213 consecutive hip resurfacings were performed by a single surgeon. The first 17 (Cohort 1) and the last 9 (Cohort 2) hip resurfacings were performed using a conventional guidewire alignment jig. In 187 cases, the femoral component was implanted using the imageless computer navigation. Cohorts 1 and 2 were compared for femoral component alignment accuracy. All components in Cohort 2 achieved the position determined by the preoperative plan. The mean deviation of the stem-shaft angle (SSA) from the preoperatively planned target position was 2.2° in Cohort 2 and 5.6° in Cohort 1 (P = 0.01). Four implants in Cohort 1 were positioned at least 10° varus compared to the target SSA position and another four were retroverted. Femoral component placement utilizing conventional instrumentation may be more accurate following experience using imageless computer navigation.

  16. EXPERIENCE WITH FPGA-BASED PROCESSOR CORE AS FRONT-END COMPUTER

    International Nuclear Information System (INIS)

    HOFF, L.T.

    2005-01-01

    The RHIC control system architecture follows the familiar ''standard model''. LINUX workstations are used as operator consoles. Front-end computers are distributed around the accelerator, close to equipment being controlled or monitored. These computers are generally based on VMEbus CPU modules running the VxWorks operating system. I/O is typically performed via the VMEbus, or via PMC daughter cards (via an internal PCI bus), or via on-board I/O interfaces (Ethernet or serial). Advances in FPGA size and sophistication now permit running virtual processor ''cores'' within the FPGA logic, including ''cores'' with advanced features such as memory management. Such systems offer certain advantages over traditional VMEbus Front-end computers. Advantages include tighter coupling with FPGA logic, and therefore higher I/O bandwidth, and flexibility in packaging, possibly resulting in a lower noise environment and/or lower cost. This paper presents the experience acquired while porting the RHIC control system to a PowerPC 405 core within a Xilinx FPGA for use in low-level RF control

  17. Computation for LHC experiments: a worldwide computing grid

    International Nuclear Information System (INIS)

    Fairouz, Malek

    2010-01-01

    In normal operating conditions the LHC detectors are expected to record about 10 10 collisions each year. The processing of all the consequent experimental data is a real computing challenge in terms of equipment, software and organization: it requires sustaining data flows of a few 10 9 octets per second and recording capacity of a few tens of 10 15 octets each year. In order to meet this challenge a computing network implying the dispatch and share of tasks, has been set. The W-LCG grid (World wide LHC computing grid) is made up of 4 tiers. Tiers 0 is the computer center in CERN, it is responsible for collecting and recording the raw data from the LHC detectors and to dispatch it to the 11 tiers 1. The tiers 1 is typically a national center, it is responsible for making a copy of the raw data and for processing it in order to recover relevant data with a physical meaning and to transfer the results to the 150 tiers 2. The tiers 2 is at the level of the Institute or laboratory, it is in charge of the final analysis of the data and of the production of the simulations. Tiers 3 are at the level of the laboratories, they provide a complementary and local resource to tiers 2 in terms of data analysis. (A.C.)

  18. Solving the Stokes problem on a massively parallel computer

    DEFF Research Database (Denmark)

    Axelsson, Owe; Barker, Vincent A.; Neytcheva, Maya

    2001-01-01

    boundary value problem for each velocity component, are solved by the conjugate gradient method with a preconditioning based on the algebraic multi‐level iteration (AMLI) technique. The velocity is found from the computed pressure. The method is optimal in the sense that the computational work...... is proportional to the number of unknowns. Further, it is designed to exploit a massively parallel computer with distributed memory architecture. Numerical experiments on a Cray T3E computer illustrate the parallel performance of the method....

  19. Game user experience evaluation

    CERN Document Server

    Bernhaupt, Regina

    2015-01-01

    Evaluating interactive systems for their user experience (UX) is a standard approach in industry and research today. This book explores the areas of game design and development and Human Computer Interaction (HCI) as ways to understand the various contributing aspects of the overall gaming experience. Fully updated, extended and revised this book is based upon the original publication Evaluating User Experience in Games, and provides updated methods and approaches ranging from user- orientated methods to game specific approaches. New and emerging methods and areas explored include physiologi

  20. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  1. Experience with the Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, E M.A. [Department of Mechanical Engineering University of New Brunswick, Fredericton, N.B., (Canada)

    2007-06-15

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed.

  2. Experience with the Monte Carlo Method

    International Nuclear Information System (INIS)

    Hussein, E.M.A.

    2007-01-01

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed

  3. Pair Programming as a Modern Method of Teaching Computer Science

    Directory of Open Access Journals (Sweden)

    Irena Nančovska Šerbec

    2008-10-01

    Full Text Available At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM Computing Curricula. The professional knowledge is therefore associated and combined with the teaching knowledge and skills. In the paper we present how to achieve competences related to programming by using different didactical models (semiotic ladder, cognitive objectives taxonomy, problem solving and modern teaching method “pair programming”. Pair programming differs from standard methods (individual work, seminars, projects etc.. It belongs to the extreme programming as a discipline of software development and is known to have positive effects on teaching first programming language. We have experimentally observed pair programming in the introductory programming course. The paper presents and analyzes the results of using this method: the aspects of satisfaction during programming and the level of gained knowledge. The results are in general positive and demonstrate the promising usage of this teaching method.

  4. Computing homography with RANSAC algorithm: a novel method of registration

    Science.gov (United States)

    Li, Xiaowei; Liu, Yue; Wang, Yongtian; Yan, Dayuan

    2005-02-01

    An AR (Augmented Reality) system can integrate computer-generated objects with the image sequences of real world scenes in either an off-line or a real-time way. Registration, or camera pose estimation, is one of the key techniques to determine its performance. The registration methods can be classified as model-based and move-matching. The former approach can accomplish relatively accurate registration results, but it requires the precise model of the scene, which is hard to be obtained. The latter approach carries out registration by computing the ego-motion of the camera. Because it does not require the prior-knowledge of the scene, its registration results sometimes turn out to be less accurate. When the model defined is as simple as a plane, a mixed method is introduced to take advantages of the virtues of the two methods mentioned above. Although unexpected objects often occlude this plane in an AR system, one can still try to detect corresponding points with a contract-expand method, while this will import erroneous correspondences. Computing homography with RANSAC algorithm is used to overcome such shortcomings. Using the robustly estimated homography resulted from RANSAC, the camera projective matrix can be recovered and thus registration is accomplished even when the markers are lost in the scene.

  5. Computer-assisted experiments with a laser diode

    Energy Technology Data Exchange (ETDEWEB)

    Kraftmakher, Yaakov, E-mail: krafty@mail.biu.ac.il [Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2011-05-15

    A laser diode from an inexpensive laser pen (laser pointer) is used in simple experiments. The radiant output power and efficiency of the laser are measured, and polarization of the light beam is shown. The h/e ratio is available from the threshold of spontaneous emission. The lasing threshold is found using several methods. With a data-acquisition system, the measurements are possible in a short time. The frequency response of the laser diode is determined in the range 10-10{sup 7} Hz. The experiments are suitable for undergraduate laboratories and for classroom demonstrations on semiconductors.

  6. Computer-assisted experiments with a laser diode

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2011-01-01

    A laser diode from an inexpensive laser pen (laser pointer) is used in simple experiments. The radiant output power and efficiency of the laser are measured, and polarization of the light beam is shown. The h/e ratio is available from the threshold of spontaneous emission. The lasing threshold is found using several methods. With a data-acquisition system, the measurements are possible in a short time. The frequency response of the laser diode is determined in the range 10-10 7 Hz. The experiments are suitable for undergraduate laboratories and for classroom demonstrations on semiconductors.

  7. Method and computer program product for maintenance and modernization backlogging

    Science.gov (United States)

    Mattimore, Bernard G; Reynolds, Paul E; Farrell, Jill M

    2013-02-19

    According to one embodiment, a computer program product for determining future facility conditions includes a computer readable medium having computer readable program code stored therein. The computer readable program code includes computer readable program code for calculating a time period specific maintenance cost, for calculating a time period specific modernization factor, and for calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. In another embodiment, a computer-implemented method for calculating future facility conditions includes calculating a time period specific maintenance cost, calculating a time period specific modernization factor, and calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. Other embodiments are also presented.

  8. F.E.M. of PWR's control rod cluster. Parametrical study of vibrating behavior by an Experiment Design method

    International Nuclear Information System (INIS)

    Bosselut, D.; Soulier, B.

    1997-03-01

    Some finite element models have been performed at EDF to simulate the vibrations of rod cluster and to analyse the wear phenomenon of rods using parametrical studies. In the first part, one of the finite element models is presented. The location of excitation sources is described. The calculated values are: rod displacement in the guiding cards, shock forces on the guiding cards and wear power produced. In the second part, a parametrical study is presented for a given computer experiment domain with an Experimental Design method. The building of the computer experiment design is described. The used polynomial model has all linear, quadratic and interactive terms for each of the 6 parameters (26 coefficients), 34 polynomials have been built to approach the effective shock forces and the mean wear power at each of the 17 guiding points. In the last part, the influence of parameters on calculated mean wear power is shown along rods and some responses surfaces are visualized. Systematism and closeness of experiment design technique is underlined. Easy simulation of all the response domain by polynomial approach, allows comparison with experiment feedback. (author)

  9. Interpretation of substitution experiments by homogenisation two-group method

    International Nuclear Information System (INIS)

    Sotic, O.

    1970-02-01

    This paper describes methods for interpretation of progressive substitution experiments for determining material buckling in homogeneous two-group approximation. These methods were applied for experiments on the zero power RB reactor in Vinca. Experiments were done on the reflected heavy water reactor core, the lattice pitch had unisotropy properties

  10. Recent advances in computational methods and clinical applications for spine imaging

    CERN Document Server

    Glocker, Ben; Klinder, Tobias; Li, Shuo

    2015-01-01

    This book contains the full papers presented at the MICCAI 2014 workshop on Computational Methods and Clinical Applications for Spine Imaging. The workshop brought together scientists and clinicians in the field of computational spine imaging. The chapters included in this book present and discuss the new advances and challenges in these fields, using several methods and techniques in order to address more efficiently different and timely applications involving signal and image acquisition, image processing and analysis, image segmentation, image registration and fusion, computer simulation, image based modeling, simulation and surgical planning, image guided robot assisted surgical and image based diagnosis. The book also includes papers and reports from the first challenge on vertebra segmentation held at the workshop.

  11. Regression modeling methods, theory, and computation with SAS

    CERN Document Server

    Panik, Michael

    2009-01-01

    Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression,

  12. Experiment Dashboard - a generic, scalable solution for monitoring of the LHC computing activities, distributed sites and services

    International Nuclear Information System (INIS)

    Andreeva, J; Cinquilli, M; Dieguez, D; Dzhunov, I; Karavakis, E; Karhula, P; Kenyon, M; Kokoszkiewicz, L; Nowotka, M; Ro, G; Saiz, P; Tuckett, D; Sargsyan, L; Schovancova, J

    2012-01-01

    The Experiment Dashboard system provides common solutions for monitoring job processing, data transfers and site/service usability. Over the last seven years, it proved to play a crucial role in the monitoring of the LHC computing activities, distributed sites and services. It has been one of the key elements during the commissioning of the distributed computing systems of the LHC experiments. The first years of data taking represented a serious test for Experiment Dashboard in terms of functionality, scalability and performance. And given that the usage of the Experiment Dashboard applications has been steadily increasing over time, it can be asserted that all the objectives were fully accomplished.

  13. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.; Bajic, Vladimir B.

    2016-01-01

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  14. In silico toxicology: computational methods for the prediction of chemical toxicity

    KAUST Repository

    Raies, Arwa B.

    2016-01-06

    Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models.

  15. A high-resolution computational localization method for transcranial magnetic stimulation mapping.

    Science.gov (United States)

    Aonuma, Shinta; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa; Takakura, Tomokazu; Tamura, Manabu; Muragaki, Yoshihiro

    2018-05-15

    Transcranial magnetic stimulation (TMS) is used for the mapping of brain motor functions. The complexity of the brain deters determining the exact localization of the stimulation site using simplified methods (e.g., the region below the center of the TMS coil) or conventional computational approaches. This study aimed to present a high-precision localization method for a specific motor area by synthesizing computed non-uniform current distributions in the brain for multiple sessions of TMS. Peritumoral mapping by TMS was conducted on patients who had intra-axial brain neoplasms located within or close to the motor speech area. The electric field induced by TMS was computed using realistic head models constructed from magnetic resonance images of patients. A post-processing method was implemented to determine a TMS hotspot by combining the computed electric fields for the coil orientations and positions that delivered high motor-evoked potentials during peritumoral mapping. The method was compared to the stimulation site localized via intraoperative direct brain stimulation and navigated TMS. Four main results were obtained: 1) the dependence of the computed hotspot area on the number of peritumoral measurements was evaluated; 2) the estimated localization of the hand motor area in eight non-affected hemispheres was in good agreement with the position of a so-called "hand-knob"; 3) the estimated hotspot areas were not sensitive to variations in tissue conductivity; and 4) the hand motor areas estimated by this proposal and direct electric stimulation (DES) were in good agreement in the ipsilateral hemisphere of four glioma patients. The TMS localization method was validated by well-known positions of the "hand-knob" in brains for the non-affected hemisphere, and by a hotspot localized via DES during awake craniotomy for the tumor-containing hemisphere. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Multigrid methods for the computation of propagators in gauge fields

    International Nuclear Information System (INIS)

    Kalkreuter, T.

    1992-11-01

    In the present work generalizations of multigrid methods for propagators in gauge fields are investigated. We discuss proper averaging operations for bosons and for staggered fermions. An efficient algorithm for computing C numerically is presented. The averaging kernels C can be used not only in deterministic multigrid computations, but also in multigrid Monte Carlo simulations, and for the definition of block spins and blocked gauge fields in Monte Carlo renormalization group studies of gauge theories. Actual numerical computations of kernels and propagators are performed in compact four-dimensional SU(2) gauge fields. (orig./HSI)

  17. A journey from nuclear criticality methods to high energy density radflow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    Los Alamos National Laboratory is a nuclear weapons laboratory supporting our nation's defense. In support of this mission is a high energy-density physics program in which we design and execute experiments to study radiationhydrodynamics phenomena and improve the predictive capability of our largescale multi-physics software codes on our big-iron computers. The Radflow project’s main experimental effort now is to understand why we haven't been able to predict opacities on Sandia National Laboratory's Z-machine. We are modeling an increasing fraction of the Z-machine's dynamic hohlraum to find multi-physics explanations for the experimental results. Further, we are building an entirely different opacity platform on Lawrence Livermore National Laboratory's National Ignition Facility (NIF), which is set to get results early 2017. Will the results match our predictions, match the Z-machine, or give us something entirely different? The new platform brings new challenges such as designing hohlraums and spectrometers. The speaker will recount his history, starting with one-dimensional Monte Carlo nuclear criticality methods in graduate school, radiative transfer methods research and software development for his first 16 years at LANL, and, now, radflow technology and experiments. Who knew that the real world was more than just radiation transport? Experiments aren't easy and they are as saturated with politics as a presidential election, but they sure are fun.

  18. Teaching and new technologies: change of time and teaching experience by the use of computer and internet

    Directory of Open Access Journals (Sweden)

    Domenica Martinez

    2017-05-01

    Full Text Available This article aimed to answer how the use of computers and the Internet, directly and indirectly, has affected the time of teaching work and how these tool have determined the experience of teachers. Sources of research consisted of doctoral and master theses, as well as official documents that referring to these concepts and instruments. The survey instrument was developed as a form, using a software for the collection and analysis of data; for the assessment of the results we used the content analysis technique. The results show the relationship between time and experience under different cultural conventions that permeate the school, consolidating awareness under contradictions supported by the potential of new technologies in a condition of atrophying the experience to which the training process and the work of the teacher would tend to be reduced. The method is achieved from critical theory, especially the concepts of experience indicated by Adorno and Benjamin, ideology of technological rationality and industrial society, by Marcuse, and key concepts of dialectical materialism, such as alienated labor, commodity and machinery, from Marx.

  19. EDUCATIONAL COMPUTER SIMULATION EXPERIMENT «REAL-TIME SINGLE-MOLECULE IMAGING OF QUANTUM INTERFERENCE»

    Directory of Open Access Journals (Sweden)

    Alexander V. Baranov

    2015-01-01

    Full Text Available Taking part in the organized project activities students of the technical University create virtual physics laboratories. The article gives an example of the student’s project-computer modeling and visualization one of the most wonderful manifestations of reality-quantum interference of particles. The real experiment with heavy organic fluorescent molecules is used as a prototype for this computer simulation. The student’s software product can be used in informational space of the system of open education.

  20. Computational analysis of water entry of a circular section at constant velocity based on Reynold's averaged Navier-Stokes method

    Science.gov (United States)

    Uddin, M. Maruf; Fuad, Muzaddid-E.-Zaman; Rahaman, Md. Mashiur; Islam, M. Rabiul

    2017-12-01

    With the rapid decrease in the cost of computational infrastructure with more efficient algorithm for solving non-linear problems, Reynold's averaged Navier-Stokes (RaNS) based Computational Fluid Dynamics (CFD) has been used widely now-a-days. As a preliminary evaluation tool, CFD is used to calculate the hydrodynamic loads on offshore installations, ships, and other structures in the ocean at initial design stages. Traditionally, wedges have been studied more than circular cylinders because cylinder section has zero deadrise angle at the instant of water impact, which increases with increase of submergence. In Present study, RaNS based commercial code ANSYS Fluent is used to simulate the water entry of a circular section at constant velocity. It is seen that present computational results were compared with experiment and other numerical method.

  1. Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Zaitsau, Dzmitry H.; Emeĺyanenko, Vladimir N.; Stepurko, Elena N.; Zherikova, Kseniya V.

    2015-01-01

    Highlights: • Vapor pressures of benzoic acid derivatives were measured. • Sublimation enthalpies were derived and compared with the literature. • Thermochemical data tested for consistency using additivity rules and computations. • Contradiction between available enthalpies of sublimation was resolved. • Pairwise interactions of substituents on the benzene ring were derived. - Abstract: Molar sublimation enthalpies of the methyl- and methoxybenzoic acids were derived from the transpiration method, static method, and TGA. Thermochemical data available in the literature were collected, evaluated, and combined with own experimental results. This collection together with the new experimental results reported here has helped to resolve contradictions in the available enthalpy data and to recommend sets of sublimation and formation enthalpies for the benzoic acid derivatives. Gas-phase enthalpies of formation calculated with the G4 quantum-chemical method were in agreement with the experiment. Pairwise interactions of the methyl, methoxy, and carboxyl substituents on the benzene ring were derived and used for the development of simple group-additivity procedures for estimation of the vaporization enthalpies, gas-phase, and liquid-phase enthalpies of formation of substituted benzenes.

  2. Benzoic acid derivatives: Evaluation of thermochemical properties with complementary experimental and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry and Department “Science and Technology of Life, Light and Matter”, University of Rostock, D-18059 Rostock (Germany); Department of Physical Chemistry, Kazan Federal University, 420008 Kazan (Russian Federation); Zaitsau, Dzmitry H. [Department of Physical Chemistry, Kazan Federal University, 420008 Kazan (Russian Federation); Emeĺyanenko, Vladimir N. [Department of Physical Chemistry and Department “Science and Technology of Life, Light and Matter”, University of Rostock, D-18059 Rostock (Germany); Stepurko, Elena N. [Chemistry Faculty and Research Institute for Physical Chemical Problems, Belarusian State University, 220030 Minsk (Belarus); Zherikova, Kseniya V. [Nikolaev Institute of Inorganic Chemistry of Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk (Russian Federation)

    2015-12-20

    Highlights: • Vapor pressures of benzoic acid derivatives were measured. • Sublimation enthalpies were derived and compared with the literature. • Thermochemical data tested for consistency using additivity rules and computations. • Contradiction between available enthalpies of sublimation was resolved. • Pairwise interactions of substituents on the benzene ring were derived. - Abstract: Molar sublimation enthalpies of the methyl- and methoxybenzoic acids were derived from the transpiration method, static method, and TGA. Thermochemical data available in the literature were collected, evaluated, and combined with own experimental results. This collection together with the new experimental results reported here has helped to resolve contradictions in the available enthalpy data and to recommend sets of sublimation and formation enthalpies for the benzoic acid derivatives. Gas-phase enthalpies of formation calculated with the G4 quantum-chemical method were in agreement with the experiment. Pairwise interactions of the methyl, methoxy, and carboxyl substituents on the benzene ring were derived and used for the development of simple group-additivity procedures for estimation of the vaporization enthalpies, gas-phase, and liquid-phase enthalpies of formation of substituted benzenes.

  3. Development of a real-time monitoring system and integration of different computer system in LHD experiments using IP multicast

    International Nuclear Information System (INIS)

    Emoto, Masahiko; Nakamura, Yukio; Teramachi, Yasuaki; Okumura, Haruhiko; Yamaguchi, Satarou

    2002-01-01

    There are several different computer systems in LHD (Large Helical Device) experiment, and therefore the coalition of these computers is a key to perform the experiment. Real-time monitoring system is also important because the long discharge is needed in the LHD experiment. In order to achieve these two requirements, the technique of IP multicast is adopted. The authors have developed three new systems, the first one is the real-time monitoring system, the next one is the delivery system of the shot number and the last one is the real-time notification system of the plasma data registration. The first system can deliver the real-time monitoring data to the LHD experimental LAN through the firewall of the LHD control LAN in NIFS. The other two systems are used to realize high coalition of the different computers in the LHD plasma experiment. We can conclude that IP multicast is very useful both in the LHD experiment and a future large plasma experiment from various experiences. (author)

  4. Comparison of meaningful learning characteristics in simulated nursing practice after traditional versus computer-based simulation method: a qualitative videography study.

    Science.gov (United States)

    Poikela, Paula; Ruokamo, Heli; Teräs, Marianne

    2015-02-01

    Nursing educators must ensure that nursing students acquire the necessary competencies; finding the most purposeful teaching methods and encouraging learning through meaningful learning opportunities is necessary to meet this goal. We investigated student learning in a simulated nursing practice using videography. The purpose of this paper is to examine how two different teaching methods presented students' meaningful learning in a simulated nursing experience. The 6-hour study was divided into three parts: part I, general information; part II, training; and part III, simulated nursing practice. Part II was delivered by two different methods: a computer-based simulation and a lecture. The study was carried out in the simulated nursing practice in two universities of applied sciences, in Northern Finland. The participants in parts II and I were 40 first year nursing students; 12 student volunteers continued to part III. Qualitative analysis method was used. The data were collected using video recordings and analyzed by videography. The students who used a computer-based simulation program were more likely to report meaningful learning themes than those who were first exposed to lecture method. Educators should be encouraged to use computer-based simulation teaching in conjunction with other teaching methods to ensure that nursing students are able to receive the greatest educational benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Advanced scientific computational methods and their applications to nuclear technologies. (3) Introduction of continuum simulation methods and their applications (3)

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kunugi, Tomoaki

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the third issue showing the introduction of continuum simulation methods and their applications. Spectral methods and multi-interface calculation methods in fluid dynamics are reviewed. (T. Tanaka)

  6. Method-independent, Computationally Frugal Convergence Testing for Sensitivity Analysis Techniques

    Science.gov (United States)

    Mai, J.; Tolson, B.

    2017-12-01

    The increasing complexity and runtime of environmental models lead to the current situation that the calibration of all model parameters or the estimation of all of their uncertainty is often computationally infeasible. Hence, techniques to determine the sensitivity of model parameters are used to identify most important parameters. All subsequent model calibrations or uncertainty estimation procedures focus then only on these subsets of parameters and are hence less computational demanding. While the examination of the convergence of calibration and uncertainty methods is state-of-the-art, the convergence of the sensitivity methods is usually not checked. If any, bootstrapping of the sensitivity results is used to determine the reliability of the estimated indexes. Bootstrapping, however, might as well become computationally expensive in case of large model outputs and a high number of bootstraps. We, therefore, present a Model Variable Augmentation (MVA) approach to check the convergence of sensitivity indexes without performing any additional model run. This technique is method- and model-independent. It can be applied either during the sensitivity analysis (SA) or afterwards. The latter case enables the checking of already processed sensitivity indexes. To demonstrate the method's independency of the convergence testing method, we applied it to two widely used, global SA methods: the screening method known as Morris method or Elementary Effects (Morris 1991) and the variance-based Sobol' method (Solbol' 1993). The new convergence testing method is first scrutinized using 12 analytical benchmark functions (Cuntz & Mai et al. 2015) where the true indexes of aforementioned three methods are known. This proof of principle shows that the method reliably determines the uncertainty of the SA results when different budgets are used for the SA. The results show that the new frugal method is able to test the convergence and therefore the reliability of SA results in an

  7. Evaluating a multi-player brain-computer interface game: challenge versus co-experience

    NARCIS (Netherlands)

    Gürkök, Hayrettin; Volpe, G; Reidsma, Dennis; Poel, Mannes; Camurri, A.; Obbink, Michel; Nijholt, Antinus

    2013-01-01

    Brain–computer interfaces (BCIs) have started to be considered as game controllers. The low level of control they provide prevents them from providing perfect control but allows the design of challenging games which can be enjoyed by players. Evaluation of enjoyment, or user experience (UX), is

  8. Practical methods to improve the development of computational software

    International Nuclear Information System (INIS)

    Osborne, A. G.; Harding, D. W.; Deinert, M. R.

    2013-01-01

    The use of computation has become ubiquitous in science and engineering. As the complexity of computer codes has increased, so has the need for robust methods to minimize errors. Past work has show that the number of functional errors is related the number of commands that a code executes. Since the late 1960's, major participants in the field of computation have encouraged the development of best practices for programming to help reduce coder induced error, and this has lead to the emergence of 'software engineering' as a field of study. Best practices for coding and software production have now evolved and become common in the development of commercial software. These same techniques, however, are largely absent from the development of computational codes by research groups. Many of the best practice techniques from the professional software community would be easy for research groups in nuclear science and engineering to adopt. This paper outlines the history of software engineering, as well as issues in modern scientific computation, and recommends practices that should be adopted by individual scientific programmers and university research groups. (authors)

  9. Experiments for the validation of computer codes uses to assess the protection factors afforded by dwellings

    International Nuclear Information System (INIS)

    Le Grand, J.; Roux, Y.; Kerlau, G.

    1988-09-01

    Two experimental campaigns were carried out to verify: 1) the method of assessing the mean kerma in a household used in the computer code BILL calculating the protection factor afforded by dwellings; 2) in what conditions the kerma calculated in cubic meshes of a given size (code PIECE) agreed with TLD measurements. To that purpose, a house was built near the caesium 137 source of the Ecosystem irradiator located at the Cadarache Nuclear Research Center. During the first campaign, four experiments with different house characteristics were conducted. Some 50 TLSs locations describing the inhabitable volume were defined in order to obtain the mean kerma. 16 locations were considered outside the house. During the second campaign a cobalt 60 source was installed on the side. Only five measurement locations were defined, each with 6 TLDs. The results of dosimetric measurements are presented and compared with the calculations of the two computer codes. The effects of wall heterogeneity were also studied [fr

  10. On the potential of computational methods and numerical simulation in ice mechanics

    International Nuclear Information System (INIS)

    Bergan, Paal G; Cammaert, Gus; Skeie, Geir; Tharigopula, Venkatapathi

    2010-01-01

    This paper deals with the challenge of developing better methods and tools for analysing interaction between sea ice and structures and, in particular, to be able to calculate ice loads on these structures. Ice loads have traditionally been estimated using empirical data and 'engineering judgment'. However, it is believed that computational mechanics and advanced computer simulations of ice-structure interaction can play an important role in developing safer and more efficient structures, especially for irregular structural configurations. The paper explains the complexity of ice as a material in computational mechanics terms. Some key words here are large displacements and deformations, multi-body contact mechanics, instabilities, multi-phase materials, inelasticity, time dependency and creep, thermal effects, fracture and crushing, and multi-scale effects. The paper points towards the use of advanced methods like ALE formulations, mesh-less methods, particle methods, XFEM, and multi-domain formulations in order to deal with these challenges. Some examples involving numerical simulation of interaction and loads between level sea ice and offshore structures are presented. It is concluded that computational mechanics may prove to become a very useful tool for analysing structures in ice; however, much research is still needed to achieve satisfactory reliability and versatility of these methods.

  11. An efficient method for computing the absorption of solar radiation by water vapor

    Science.gov (United States)

    Chou, M.-D.; Arking, A.

    1981-01-01

    Chou and Arking (1980) have developed a fast but accurate method for computing the IR cooling rate due to water vapor. Using a similar approach, the considered investigation develops a method for computing the heating rates due to the absorption of solar radiation by water vapor in the wavelength range from 4 to 8.3 micrometers. The validity of the method is verified by comparison with line-by-line calculations. An outline is provided of an efficient method for transmittance and flux computations based upon actual line parameters. High speed is achieved by employing a one-parameter scaling approximation to convert an inhomogeneous path into an equivalent homogeneous path at suitably chosen reference conditions.

  12. Our experience in the diagnosis of aortic dissection by multislice computed tomography

    International Nuclear Information System (INIS)

    Llerena Rojas, Luis R; Mendoza Rodriguez, Vladimir; Olivares Aquiles, Eddy

    2011-01-01

    Aortic dissection (AD) is the most frequent and life-threatening acute aortic syndrome. Currently the more used method for the aortic study is the multislice computed tomography. The purpose of this paper is to expose the more relevant features in 22 patients with AD consecutively studied by multislice computed tomography

  13. Computer research in teaching geometry future bachelors

    Directory of Open Access Journals (Sweden)

    Aliya V. Bukusheva

    2017-12-01

    Full Text Available The article is devoted to the study of the problem of usage educational studies and experiments in the geometric education of IT specialists. We consider research method applied in teaching Computer Geometry intending Bachelors studying `Mathematics and Computer Science` 02.03.01. Examples of educational and research geometric problems that require usage of computer means in order to be solved are given. These tasks are considered as variations of educational and research tasks creating problems that demand experiments with dynamic models of mathematic objects in order to be solved.

  14. A fast computation method for MUSIC spectrum function based on circular arrays

    Science.gov (United States)

    Du, Zhengdong; Wei, Ping

    2015-02-01

    The large computation amount of multiple signal classification (MUSIC) spectrum function seriously affects the timeliness of direction finding system using MUSIC algorithm, especially in the two-dimensional directions of arrival (DOA) estimation of azimuth and elevation with a large antenna array. This paper proposes a fast computation method for MUSIC spectrum. It is suitable for any circular array. First, the circular array is transformed into a virtual uniform circular array, in the process of calculating MUSIC spectrum, for the cyclic characteristics of steering vector, the inner product in the calculation of spatial spectrum is realised by cyclic convolution. The computational amount of MUSIC spectrum is obviously less than that of the conventional method. It is a very practical way for MUSIC spectrum computation in circular arrays.

  15. Frontiers in Computer Education

    CERN Document Server

    Zhu, Egui; 2011 International Conference on Frontiers in Computer Education (ICFCE 2011)

    2012-01-01

    This book is the proceedings of the 2011 International Conference on Frontiers in Computer Education (ICFCE 2011) in Sanya, China, December 1-2, 2011. The contributions can be useful for researchers, software engineers, and programmers, all interested in promoting the computer and education development. Topics covered are computing and communication technology, network management, wireless networks, telecommunication, Signal and Image Processing, Machine Learning, educational management, educational psychology, educational system, education engineering, education technology and training.  The emphasis is on methods and calculi for computer science and education technology development, verification and verification tools support, experiences from doing developments, and the associated theoretical problems.

  16. Phased searching with NEAT in a time-scaled framework: experiments on a computer-aided detection system for lung nodules.

    Science.gov (United States)

    Tan, Maxine; Deklerck, Rudi; Cornelis, Jan; Jansen, Bart

    2013-11-01

    In the field of computer-aided detection (CAD) systems for lung nodules in computed tomography (CT) scans, many image features are presented and many artificial neural network (ANN) classifiers with various structural topologies are analyzed; frequently, the classifier topologies are selected by trial-and-error experiments. To avoid these trial and error approaches, we present a novel classifier that evolves ANNs using genetic algorithms, called "Phased Searching with NEAT in a Time or Generation-Scaled Framework", integrating feature selection with the classification task. We analyzed our method's performance on 360 CT scans from the public Lung Image Database Consortium database. We compare our method's performance with other more-established classifiers, namely regular NEAT, Feature-Deselective NEAT (FD-NEAT), fixed-topology ANNs, and support vector machines (SVMs) using ten-fold cross-validation experiments of all 360 scans. The results show that the proposed "Phased Searching" method performs better and faster than regular NEAT, better than FD-NEAT, and achieves sensitivities at 3 and 4 false positives (FP) per scan that are comparable with the fixed-topology ANN and SVM classifiers, but with fewer input features. It achieves a detection sensitivity of 83.0±9.7% with an average of 4FP/scan, for nodules with a diameter greater than or equal to 3mm. It also evolves networks with shorter evolution times and with lower complexities than regular NEAT (p=0.026 and pNEAT and by our approach shows that our approach searches for good solutions in lower dimensional search spaces, and evolves networks without superfluous structure. We have presented a novel approach that combines feature selection with the evolution of ANN topology and weights. Compared with the original threshold-based Phased Searching method of Green, our method requires fewer parameters and converges to the optimal network complexity required for the classification task at hand. The results of the

  17. Computational methods for nuclear criticality safety analysis

    International Nuclear Information System (INIS)

    Maragni, M.G.

    1992-01-01

    Nuclear criticality safety analyses require the utilization of methods which have been tested and verified against benchmarks results. In this work, criticality calculations based on the KENO-IV and MCNP codes are studied aiming the qualification of these methods at the IPEN-CNEN/SP and COPESP. The utilization of variance reduction techniques is important to reduce the computer execution time, and several of them are analysed. As practical example of the above methods, a criticality safety analysis for the storage tubes for irradiated fuel elements from the IEA-R1 research has been carried out. This analysis showed that the MCNP code is more adequate for problems with complex geometries, and the KENO-IV code shows conservative results when it is not used the generalized geometry option. (author)

  18. Accelerating phylogenetics computing on the desktop: experiments with executing UPGMA in programmable logic.

    Science.gov (United States)

    Davis, J P; Akella, S; Waddell, P H

    2004-01-01

    Having greater computational power on the desktop for processing taxa data sets has been a dream of biologists/statisticians involved in phylogenetics data analysis. Many existing algorithms have been highly optimized-one example being Felsenstein's PHYLIP code, written in C, for UPGMA and neighbor joining algorithms. However, the ability to process more than a few tens of taxa in a reasonable amount of time using conventional computers has not yielded a satisfactory speedup in data processing, making it difficult for phylogenetics practitioners to quickly explore data sets-such as might be done from a laptop computer. We discuss the application of custom computing techniques to phylogenetics. In particular, we apply this technology to speed up UPGMA algorithm execution by a factor of a hundred, against that of PHYLIP code running on the same PC. We report on these experiments and discuss how custom computing techniques can be used to not only accelerate phylogenetics algorithm performance on the desktop, but also on larger, high-performance computing engines, thus enabling the high-speed processing of data sets involving thousands of taxa.

  19. Heterogeneous computation tests of both substitution and reactivity worth experiments in the RB-3 reactor

    International Nuclear Information System (INIS)

    Broccoli, U.; Cambi, G.; Vanossi, A.; Zapellini, G.

    1977-01-01

    This report presents the results of several experiments carried out in the D 2 O-moderated RB-3 reactors at the CNEN's Laboratory of Montecuccolino, Bologna. The experiments referred to are either fuel-element substitution experiments or interstitial absorber experiments and were performed during the period 1972-1974. The results of measurements are compared with those obtained by means of computational procedure based on some ''cell'' codes coupled with heterogeneous codes. (authors)

  20. Computational Methods and Function Theory

    CERN Document Server

    Saff, Edward; Salinas, Luis; Varga, Richard

    1990-01-01

    The volume is devoted to the interaction of modern scientific computation and classical function theory. Many problems in pure and more applied function theory can be tackled using modern computing facilities: numerically as well as in the sense of computer algebra. On the other hand, computer algorithms are often based on complex function theory, and dedicated research on their theoretical foundations can lead to great enhancements in performance. The contributions - original research articles, a survey and a collection of problems - cover a broad range of such problems.

  1. Introducing a method for mapping recreational experience

    DEFF Research Database (Denmark)

    Lindholst, Andrej Christian; Dempsey, Nicola; Burton, Mel

    2013-01-01

    spaces provide and support a range of recreational experiences. The exploration reported here is based on a short review of the methods background and an application in two test sites in Sheffield, South Yorkshire in early summer 2010. This paper critically appraises the application of rec......-mapping’, an innovative method of analysing and mapping positive recreational experiences in urban green spaces is explored and piloted within the UK planning context. Originating in the Nordic countries, this on-site method can provide urban planners and designers with data about the extent to which specific green......-mapping at smaller spatial scales and recommends further explorations within the UK planning context, as the method adds to existing open space assessment by providing a unique layer of information to analyse more fully the recreational qualities of urban green spaces....

  2. Advanced computational tools and methods for nuclear analyses of fusion technology systems

    International Nuclear Information System (INIS)

    Fischer, U.; Chen, Y.; Pereslavtsev, P.; Simakov, S.P.; Tsige-Tamirat, H.; Loughlin, M.; Perel, R.L.; Petrizzi, L.; Tautges, T.J.; Wilson, P.P.H.

    2005-01-01

    An overview is presented of advanced computational tools and methods developed recently for nuclear analyses of Fusion Technology systems such as the experimental device ITER ('International Thermonuclear Experimental Reactor') and the intense neutron source IFMIF ('International Fusion Material Irradiation Facility'). These include Monte Carlo based computational schemes for the calculation of three-dimensional shut-down dose rate distributions, methods, codes and interfaces for the use of CAD geometry models in Monte Carlo transport calculations, algorithms for Monte Carlo based sensitivity/uncertainty calculations, as well as computational techniques and data for IFMIF neutronics and activation calculations. (author)

  3. Soft Computing Methods for Disulfide Connectivity Prediction.

    Science.gov (United States)

    Márquez-Chamorro, Alfonso E; Aguilar-Ruiz, Jesús S

    2015-01-01

    The problem of protein structure prediction (PSP) is one of the main challenges in structural bioinformatics. To tackle this problem, PSP can be divided into several subproblems. One of these subproblems is the prediction of disulfide bonds. The disulfide connectivity prediction problem consists in identifying which nonadjacent cysteines would be cross-linked from all possible candidates. Determining the disulfide bond connectivity between the cysteines of a protein is desirable as a previous step of the 3D PSP, as the protein conformational search space is highly reduced. The most representative soft computing approaches for the disulfide bonds connectivity prediction problem of the last decade are summarized in this paper. Certain aspects, such as the different methodologies based on soft computing approaches (artificial neural network or support vector machine) or features of the algorithms, are used for the classification of these methods.

  4. Developments of multibody system dynamics: computer simulations and experiments

    International Nuclear Information System (INIS)

    Yoo, Wan-Suk; Kim, Kee-Nam; Kim, Hyun-Woo; Sohn, Jeong-Hyun

    2007-01-01

    It is an exceptional success when multibody dynamics researchers Multibody System Dynamics journal one of the most highly ranked journals in the last 10 years. In the inaugural issue, Professor Schiehlen wrote an interesting article explaining the roots and perspectives of multibody system dynamics. Professor Shabana also wrote an interesting article to review developments in flexible multibody dynamics. The application possibilities of multibody system dynamics have grown wider and deeper, with many application examples being introduced with multibody techniques in the past 10 years. In this paper, the development of multibody dynamics is briefly reviewed and several applications of multibody dynamics are described according to the author's research results. Simulation examples are compared to physical experiments, which show reasonableness and accuracy of the multibody formulation applied to real problems. Computer simulations using the absolute nodal coordinate formulation (ANCF) were also compared to physical experiments; therefore, the validity of ANCF for large-displacement and large-deformation problems was shown. Physical experiments for large deformation problems include beam, plate, chain, and strip. Other research topics currently being carried out in the author's laboratory are also briefly explained

  5. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions

    International Nuclear Information System (INIS)

    Dragt, A.J.; Gluckstern, R.L.

    1992-11-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides

  6. Fast calculation method for computer-generated cylindrical holograms.

    Science.gov (United States)

    Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi

    2008-07-01

    Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.

  7. Mathematical modellings and computational methods for structural analysis of LMFBR's

    International Nuclear Information System (INIS)

    Liu, W.K.; Lam, D.

    1983-01-01

    In this paper, two aspects of nuclear reactor problems are discussed, modelling techniques and computational methods for large scale linear and nonlinear analyses of LMFBRs. For nonlinear fluid-structure interaction problem with large deformation, arbitrary Lagrangian-Eulerian description is applicable. For certain linear fluid-structure interaction problem, the structural response spectrum can be found via 'added mass' approach. In a sense, the fluid inertia is accounted by a mass matrix added to the structural mass. The fluid/structural modes of certain fluid-structure problem can be uncoupled to get the reduced added mass. The advantage of this approach is that it can account for the many repeated structures of nuclear reactor. In regard to nonlinear dynamic problem, the coupled nonlinear fluid-structure equations usually have to be solved by direct time integration. The computation can be very expensive and time consuming for nonlinear problems. Thus, it is desirable to optimize the accuracy and computation effort by using implicit-explicit mixed time integration method. (orig.)

  8. Automated uncertainty analysis methods in the FRAP computer codes

    International Nuclear Information System (INIS)

    Peck, S.O.

    1980-01-01

    A user oriented, automated uncertainty analysis capability has been incorporated in the Fuel Rod Analysis Program (FRAP) computer codes. The FRAP codes have been developed for the analysis of Light Water Reactor fuel rod behavior during steady state (FRAPCON) and transient (FRAP-T) conditions as part of the United States Nuclear Regulatory Commission's Water Reactor Safety Research Program. The objective of uncertainty analysis of these codes is to obtain estimates of the uncertainty in computed outputs of the codes is to obtain estimates of the uncertainty in computed outputs of the codes as a function of known uncertainties in input variables. This paper presents the methods used to generate an uncertainty analysis of a large computer code, discusses the assumptions that are made, and shows techniques for testing them. An uncertainty analysis of FRAP-T calculated fuel rod behavior during a hypothetical loss-of-coolant transient is presented as an example and carried through the discussion to illustrate the various concepts

  9. Robust fault detection of linear systems using a computationally efficient set-membership method

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Bak, Thomas

    2014-01-01

    In this paper, a computationally efficient set-membership method for robust fault detection of linear systems is proposed. The method computes an interval outer-approximation of the output of the system that is consistent with the model, the bounds on noise and disturbance, and the past measureme...... is trivially parallelizable. The method is demonstrated for fault detection of a hydraulic pitch actuator of a wind turbine. We show the effectiveness of the proposed method by comparing our results with two zonotope-based set-membership methods....

  10. MATLAB-aided teaching and learning in optics and photonics using the methods of computational photonics

    Science.gov (United States)

    Lin, Zhili; Li, Xiaoyan; Zhu, Daqing; Pu, Jixiong

    2017-08-01

    Due to the nature of light fields of laser waves and pulses as vector quantities with complex spatial distribution and temporal dependence, the optics and photonics courses have always been difficult to teach and learn without the support of graphical visualization, numerical simulations and hands-on experiments. One of the state-of-the-art method of computational photonics, the finite-difference time-domain(FDTD) method, is applied with MATLAB simulations to model typical teaching cases in optics and photonics courses. The obtained results with graphical visualization in the form of animated pictures allow students to more deeply understand the dynamic process of light interaction with classical optical structures. The discussed teaching methodology is aimed to enhance the teaching effectiveness of optics and photonics courses and arousing the students' learning interest.

  11. Applications of small computers for systems control on the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Bork, R.G.; Kane, R.J.; Moore, T.L.

    1983-01-01

    Desktop computers operating into a CAMAC-based interface are used to control and monitor the operation of the various subsystems on the Tandem Mirror Experiment-Upgrade (TMX-U) at Lawrence Livermore National Laboratory (LLNL). These systems include: shot sequencer/master timing, neutral beam control (four consoles), magnet power system control, ion-cyclotron resonant heating (ICRH) control, thermocouple monitoring, getter system control, gas fueling system control, and electron-cyclotron resonant heating (ECRH) monitoring. Two additional computers are used to control the TMX-U neutral beam test stand and provide computer-aided repair/test and development of CAMAC modules. These machines are usually programmed in BASIC, but some codes have been interpreted into assembly language to increase speed. Details of the computer interfaces and system complexity are described as well as the evolution of the systems to their present states

  12. Computationally mediated experiments: the next frontier in microscopy

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    2002-01-01

    Full text: It's reasonably safe to say that most of the simple experimental techniques that can be employed in microscopy have been well documented and exploited over the last 20 years. Thus, if we are interested in extending the range and diversity of problems that we will be dealing with in the next decade then we will have to takeup challenges which here-to-for were considered beyond the realm of routine work. Given the ever growing tendency to add computational resources to our instruments it is clear that the next breakthrough will be directly tied to how well we can effectively tie these two realms together. In the past we have used computers to simply speed up our experiments, but in the up coming decade the key will be to realize that once an effective interface of instrumentation and computational tools is developed we must change the way in which we design our experiments. This means re-examining how we do experiments so that measurements are done not just quickly, but precisely and to maximize the information measured so that the data therein can be 'mined' for content which might have been missed in the past. As example of this consider the experimental technique of Position Resolved Diffraction which is currently being developed for the study of nanoscale magnetic structures using ANL's Advanced Analytical Electron Microscope. Here a focused electron probe is sequentially scanned across a two dimensional field of view of a thin specimen and at each point on the specimen a two dimensional electron diffraction pattern is acquired and stored. Analysis of the spatial variation in the electron diffraction pattern allows a researcher to study the subtle changes resulting from microstructural differences such as ferro and electro magnetic domain formation and motion. There is, however, a severe limitation in this technique-namely its need to store and dynamically process large data sets preferably in near real time. A minimal scoping measurement would involve

  13. Complex data modeling and computationally intensive methods for estimation and prediction

    CERN Document Server

    Secchi, Piercesare; Advances in Complex Data Modeling and Computational Methods in Statistics

    2015-01-01

    The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new developments for bootstrapping complex data; regression analysis for measuring the downsize reputational risk; statistical methods for research on the human genome dynamics; inference in non-euclidean settings and for shape data; Bayesian methods for reliability and the analysis of complex data; methodological issues in using administrative data for clinical and epidemiological research; regression models with differential regularization; geostatistical methods for mobility analysis through mobile phone data exploration. This volume is the result of a careful selection among the contributions presented at the conference "S.Co.2013: Complex data modeling and computationally intensive methods for estimation and prediction" held...

  14. Methods for building an inexpensive computer-controlled olfactometer for temporally-precise experiments

    NARCIS (Netherlands)

    Lundstrom, J.N.; Gordon, A.; Alden, E.C.; Boesveldt, S.; Albrecht, J.

    2010-01-01

    Many human olfactory experiments call for fast and stable stimulus-rise times as well as exact and stable stimulus-onset times. Due to these temporal demands, an olfactometer is often needed. However, an olfactometer is a piece of equipment that either comes with a high price tag or requires a high

  15. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography

    International Nuclear Information System (INIS)

    Timp, Sheila; Karssemeijer, Nico

    2004-01-01

    Mass segmentation plays a crucial role in computer-aided diagnosis (CAD) systems for classification of suspicious regions as normal, benign, or malignant. In this article we present a robust and automated segmentation technique--based on dynamic programming--to segment mass lesions from surrounding tissue. In addition, we propose an efficient algorithm to guarantee resulting contours to be closed. The segmentation method based on dynamic programming was quantitatively compared with two other automated segmentation methods (region growing and the discrete contour model) on a dataset of 1210 masses. For each mass an overlap criterion was calculated to determine the similarity with manual segmentation. The mean overlap percentage for dynamic programming was 0.69, for the other two methods 0.60 and 0.59, respectively. The difference in overlap percentage was statistically significant. To study the influence of the segmentation method on the performance of a CAD system two additional experiments were carried out. The first experiment studied the detection performance of the CAD system for the different segmentation methods. Free-response receiver operating characteristics analysis showed that the detection performance was nearly identical for the three segmentation methods. In the second experiment the ability of the classifier to discriminate between malignant and benign lesions was studied. For region based evaluation the area A z under the receiver operating characteristics curve was 0.74 for dynamic programming, 0.72 for the discrete contour model, and 0.67 for region growing. The difference in A z values obtained by the dynamic programming method and region growing was statistically significant. The differences between other methods were not significant

  16. Prediction of the Thermal Conductivity of Refrigerants by Computational Methods and Artificial Neural Network.

    Science.gov (United States)

    Ghaderi, Forouzan; Ghaderi, Amir H; Ghaderi, Noushin; Najafi, Bijan

    2017-01-01

    Background: The thermal conductivity of fluids can be calculated by several computational methods. However, these methods are reliable only at the confined levels of density, and there is no specific computational method for calculating thermal conductivity in the wide ranges of density. Methods: In this paper, two methods, an Artificial Neural Network (ANN) approach and a computational method established upon the Rainwater-Friend theory, were used to predict the value of thermal conductivity in all ranges of density. The thermal conductivity of six refrigerants, R12, R14, R32, R115, R143, and R152 was predicted by these methods and the effectiveness of models was specified and compared. Results: The results show that the computational method is a usable method for predicting thermal conductivity at low levels of density. However, the efficiency of this model is considerably reduced in the mid-range of density. It means that this model cannot be used at density levels which are higher than 6. On the other hand, the ANN approach is a reliable method for thermal conductivity prediction in all ranges of density. The best accuracy of ANN is achieved when the number of units is increased in the hidden layer. Conclusion: The results of the computational method indicate that the regular dependence between thermal conductivity and density at higher densities is eliminated. It can develop a nonlinear problem. Therefore, analytical approaches are not able to predict thermal conductivity in wide ranges of density. Instead, a nonlinear approach such as, ANN is a valuable method for this purpose.

  17. Statistical Methodologies to Integrate Experimental and Computational Research

    Science.gov (United States)

    Parker, P. A.; Johnson, R. T.; Montgomery, D. C.

    2008-01-01

    Development of advanced algorithms for simulating engine flow paths requires the integration of fundamental experiments with the validation of enhanced mathematical models. In this paper, we provide an overview of statistical methods to strategically and efficiently conduct experiments and computational model refinement. Moreover, the integration of experimental and computational research efforts is emphasized. With a statistical engineering perspective, scientific and engineering expertise is combined with statistical sciences to gain deeper insights into experimental phenomenon and code development performance; supporting the overall research objectives. The particular statistical methods discussed are design of experiments, response surface methodology, and uncertainty analysis and planning. Their application is illustrated with a coaxial free jet experiment and a turbulence model refinement investigation. Our goal is to provide an overview, focusing on concepts rather than practice, to demonstrate the benefits of using statistical methods in research and development, thereby encouraging their broader and more systematic application.

  18. Computer application in scientific investigations

    International Nuclear Information System (INIS)

    Govorun, N.N.

    1981-01-01

    A short review of the computer development and application and software in JINR for the last 15 years is presented. Main trends of studies on computer application in experimental and theoretical investigations are enumerated: software of computers and their systems, software of data processing systems, designing automatic and automized systems for measuring track detectors images, development of technique of carrying out experiments on computer line, packets of applied computer codes and specialized systems. The development of the on line technique is successfully used in investigations of nuclear processes at relativistic energies. The new trend is the development of television methods of data output and its computer recording [ru

  19. Using AMDD method for Database Design in Mobile Cloud Computing Systems

    OpenAIRE

    Silviu Claudiu POPA; Mihai-Constantin AVORNICULUI; Vasile Paul BRESFELEAN

    2013-01-01

    The development of the technologies of wireless telecommunications gave birth of new kinds of e-commerce, the so called Mobile e-Commerce or m-Commerce. Mobile Cloud Computing (MCC) represents a new IT research area that combines mobile computing and cloud compu-ting techniques. Behind a cloud mobile commerce system there is a database containing all necessary information for transactions. By means of Agile Model Driven Development (AMDD) method, we are able to achieve many benefits that smoo...

  20. Computer-Assisted Experiments with a Laser Diode

    Science.gov (United States)

    Kraftmakher, Yaakov

    2011-01-01

    A laser diode from an inexpensive laser pen (laser pointer) is used in simple experiments. The radiant output power and efficiency of the laser are measured, and polarization of the light beam is shown. The "h/e" ratio is available from the threshold of spontaneous emission. The lasing threshold is found using several methods. With a…

  1. A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments

    KAUST Repository

    Harman, Radoslav; Filová , Lenka; Richtarik, Peter

    2018-01-01

    We propose a class of subspace ascent methods for computing optimal approximate designs that covers both existing as well as new and more efficient algorithms. Within this class of methods, we construct a simple, randomized exchange algorithm (REX). Numerical comparisons suggest that the performance of REX is comparable or superior to the performance of state-of-the-art methods across a broad range of problem structures and sizes. We focus on the most commonly used criterion of D-optimality that also has applications beyond experimental design, such as the construction of the minimum volume ellipsoid containing a given set of data-points. For D-optimality, we prove that the proposed algorithm converges to the optimum. We also provide formulas for the optimal exchange of weights in the case of the criterion of A-optimality. These formulas enable one to use REX for computing A-optimal and I-optimal designs.

  2. A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments

    KAUST Repository

    Harman, Radoslav

    2018-01-17

    We propose a class of subspace ascent methods for computing optimal approximate designs that covers both existing as well as new and more efficient algorithms. Within this class of methods, we construct a simple, randomized exchange algorithm (REX). Numerical comparisons suggest that the performance of REX is comparable or superior to the performance of state-of-the-art methods across a broad range of problem structures and sizes. We focus on the most commonly used criterion of D-optimality that also has applications beyond experimental design, such as the construction of the minimum volume ellipsoid containing a given set of data-points. For D-optimality, we prove that the proposed algorithm converges to the optimum. We also provide formulas for the optimal exchange of weights in the case of the criterion of A-optimality. These formulas enable one to use REX for computing A-optimal and I-optimal designs.

  3. Evaluating the efficiency of divestiture policy in promoting competitiveness using an analytical method and agent-based computational economics

    International Nuclear Information System (INIS)

    Rahimiyan, Morteza; Rajabi Mashhadi, Habib

    2010-01-01

    Choosing a desired policy for divestiture of dominant firms' generation assets has been a challenging task and open question for regulatory authority. To deal with this problem, in this paper, an analytical method and agent-based computational economics (ACE) approach are used for ex-ante analysis of divestiture policy in reducing market power. The analytical method is applied to solve a designed concentration boundary problem, even for situations where the cost data of generators are unknown. The concentration boundary problem is the problem of minimizing or maximizing market concentration subject to operation constraints of the electricity market. It is proved here that the market concentration corresponding to operation condition is certainly viable in an interval calculated by the analytical method. For situations where the cost function of generators is available, the ACE is used to model the electricity market. In ACE, each power producer's profit-maximization problem is solved by the computational approach of Q-learning. The power producer using the Q-learning method learns from past experiences to implicitly identify the market power, and find desired response in competing with the rivals. Both methods are applied in a multi-area power system and effects of different divestiture policies on market behavior are analyzed.

  4. Evaluating the efficiency of divestiture policy in promoting competitiveness using an analytical method and agent-based computational economics

    Energy Technology Data Exchange (ETDEWEB)

    Rahimiyan, Morteza; Rajabi Mashhadi, Habib [Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad (Iran)

    2010-03-15

    Choosing a desired policy for divestiture of dominant firms' generation assets has been a challenging task and open question for regulatory authority. To deal with this problem, in this paper, an analytical method and agent-based computational economics (ACE) approach are used for ex-ante analysis of divestiture policy in reducing market power. The analytical method is applied to solve a designed concentration boundary problem, even for situations where the cost data of generators are unknown. The concentration boundary problem is the problem of minimizing or maximizing market concentration subject to operation constraints of the electricity market. It is proved here that the market concentration corresponding to operation condition is certainly viable in an interval calculated by the analytical method. For situations where the cost function of generators is available, the ACE is used to model the electricity market. In ACE, each power producer's profit-maximization problem is solved by the computational approach of Q-learning. The power producer using the Q-learning method learns from past experiences to implicitly identify the market power, and find desired response in competing with the rivals. Both methods are applied in a multi-area power system and effects of different divestiture policies on market behavior are analyzed. (author)

  5. A methodology for the design of experiments in computational intelligence with multiple regression models.

    Science.gov (United States)

    Fernandez-Lozano, Carlos; Gestal, Marcos; Munteanu, Cristian R; Dorado, Julian; Pazos, Alejandro

    2016-01-01

    The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable.

  6. A methodology for the design of experiments in computational intelligence with multiple regression models

    Directory of Open Access Journals (Sweden)

    Carlos Fernandez-Lozano

    2016-12-01

    Full Text Available The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable.

  7. A new computational method for reactive power market clearing

    International Nuclear Information System (INIS)

    Zhang, T.; Elkasrawy, A.; Venkatesh, B.

    2009-01-01

    After deregulation of electricity markets, ancillary services such as reactive power supply are priced separately. However, unlike real power supply, procedures for costing and pricing reactive power supply are still evolving and spot markets for reactive power do not exist as of now. Further, traditional formulations proposed for clearing reactive power markets use a non-linear mixed integer programming formulation that are difficult to solve. This paper proposes a new reactive power supply market clearing scheme. Novelty of this formulation lies in the pricing scheme that rewards transformers for tap shifting while participating in this market. The proposed model is a non-linear mixed integer challenge. A significant portion of the manuscript is devoted towards the development of a new successive mixed integer linear programming (MILP) technique to solve this formulation. The successive MILP method is computationally robust and fast. The IEEE 6-bus and 300-bus systems are used to test the proposed method. These tests serve to demonstrate computational speed and rigor of the proposed method. (author)

  8. Oligomerization of G protein-coupled receptors: computational methods.

    Science.gov (United States)

    Selent, J; Kaczor, A A

    2011-01-01

    Recent research has unveiled the complexity of mechanisms involved in G protein-coupled receptor (GPCR) functioning in which receptor dimerization/oligomerization may play an important role. Although the first high-resolution X-ray structure for a likely functional chemokine receptor dimer has been deposited in the Protein Data Bank, the interactions and mechanisms of dimer formation are not yet fully understood. In this respect, computational methods play a key role for predicting accurate GPCR complexes. This review outlines computational approaches focusing on sequence- and structure-based methodologies as well as discusses their advantages and limitations. Sequence-based approaches that search for possible protein-protein interfaces in GPCR complexes have been applied with success in several studies, but did not yield always consistent results. Structure-based methodologies are a potent complement to sequence-based approaches. For instance, protein-protein docking is a valuable method especially when guided by experimental constraints. Some disadvantages like limited receptor flexibility and non-consideration of the membrane environment have to be taken into account. Molecular dynamics simulation can overcome these drawbacks giving a detailed description of conformational changes in a native-like membrane. Successful prediction of GPCR complexes using computational approaches combined with experimental efforts may help to understand the role of dimeric/oligomeric GPCR complexes for fine-tuning receptor signaling. Moreover, since such GPCR complexes have attracted interest as potential drug target for diverse diseases, unveiling molecular determinants of dimerization/oligomerization can provide important implications for drug discovery.

  9. Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods.

    Science.gov (United States)

    Kim, Seung-Cheol; Kim, Eun-Soo

    2009-02-20

    In this paper we propose a new approach for fast generation of computer-generated holograms (CGHs) of a 3D object by using the run-length encoding (RLE) and the novel look-up table (N-LUT) methods. With the RLE method, spatially redundant data of a 3D object are extracted and regrouped into the N-point redundancy map according to the number of the adjacent object points having the same 3D value. Based on this redundancy map, N-point principle fringe patterns (PFPs) are newly calculated by using the 1-point PFP of the N-LUT, and the CGH pattern for the 3D object is generated with these N-point PFPs. In this approach, object points to be involved in calculation of the CGH pattern can be dramatically reduced and, as a result, an increase of computational speed can be obtained. Some experiments with a test 3D object are carried out and the results are compared to those of the conventional methods.

  10. Realization of the Evristic Combination Methods by Means of Computer Graphics

    Directory of Open Access Journals (Sweden)

    S. A. Novoselov

    2012-01-01

    Full Text Available The paper looks at the ways of enhancing and stimulating the creative activity and initiative of pedagogic students – the prospective specialists called for educating and upbringing socially and professionally competent, originally thinking, versatile personalities. For developing their creative abilities the author recommends introducing the heuristic combination methods, applied for engineering creativity facilitation; associative-synectic technology; and computer graphics tools. The paper contains the comparative analysis of the main heuristic method operations and the computer graphics redactor in creating a visual composition. The examples of implementing the heuristic combination methods are described along with the extracts of the laboratory classes designed for creativity and its motivation developments. The approbation of the given method in the several universities confirms the prospects of enhancing the students’ learning and creative activities. 

  11. Using Computer Simulation Method to Improve Throughput of Production Systems by Buffers and Workers Allocation

    Directory of Open Access Journals (Sweden)

    Kłos Sławomir

    2015-12-01

    Full Text Available This paper proposes the application of computer simulation methods to support decision making regarding intermediate buffer allocations in a series-parallel production line. The simulation model of the production system is based on a real example of a manufacturing company working in the automotive industry. Simulation experiments were conducted for different allocations of buffer capacities and different numbers of employees. The production system consists of three technological operations with intermediate buffers between each operation. The technological operations are carried out using machines and every machine can be operated by one worker. Multi-work in the production system is available (one operator operates several machines. On the basis of the simulation experiments, the relationship between system throughput, buffer allocation and the number of employees is analyzed. Increasing the buffer capacity results in an increase in the average product lifespan. Therefore, in the article a new index is proposed that includes the throughput of the manufacturing system and product life span. Simulation experiments were performed for different configurations of technological operations.

  12. Review of studies on criticality safety evaluation and criticality experiment methods

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Yamamoto, Toshihiro; Misawa, Tsuyoshi; Yamane, Yuichi

    2013-01-01

    Since the early 1960s, many studies on criticality safety evaluation have been conducted in Japan. Computer code systems were developed initially by employing finite difference methods, and more recently by using Monte Carlo methods. Criticality experiments have also been carried out in many laboratories in Japan as well as overseas. By effectively using these study results, the Japanese Criticality Safety Handbook was published in 1988, almost the intermediate point of the last 50 years. An increased interest has been shown in criticality safety studies, and a Working Party on Nuclear Criticality Safety (WPNCS) was set up by the Nuclear Science Committee of Organisation Economic Co-operation and Development in 1997. WPNCS has several task forces in charge of each of the International Criticality Safety Benchmark Evaluation Program (ICSBEP), Subcritical Measurement, Experimental Needs, Burn-up Credit Studies and Minimum Critical Values. Criticality safety studies in Japan have been carried out in cooperation with WPNCS. This paper describes criticality safety study activities in Japan along with the contents of the Japanese Criticality Safety Handbook and the tasks of WPNCS. (author)

  13. Computational method for thermoviscoelasticity with application to rock mechanics. [Ph. D. Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.C.

    1984-01-01

    Large-scale numerical computations associated with rock mechanics problems have required efficient and economical models for predicting temperature, stress, failure, and deformed structural configuration under various loading conditions. To meet this requirement, the complex dependence of the properties of geological materials on the time and temperature is modified to yield a reduced time scale as a function of time and temperature under the thermorheologically simple material (TSM) postulate. The thermorheologically linear concept is adopted in the finite element formulation by uncoupling thermal and mechanical responses. The thermal responses, based on transient heat conduction or convective-diffusion, are formulated by using the two-point recurrence scheme and the upwinding scheme, respectively. An incremental solution procedure with the implicit time stepping scheme is proposed for the solution of the thermoviscoelastic response. The proposed thermoviscoelastic solution algorithm is based on the uniaxial creep experimental data and the corresponding temperature shift functions, and is intended to minimize computational efforts by allowing large time step size with stable solutions. A thermoelastic fracture formulation is also presented by introducing the degenerate quadratic isoparametric singular element for the thermally-induced line crack problems. The stress intensity factors are computed by use of the displacement method. Efficiency of the presented formulation and solution algorithm is initially demonstrated by comparison with other available solutions for a variety of problems. Subsequent field applications are made to simulate the post-burn and post-repose phases of an underground coal conversion (UCC) experiment and in-situ nuclear waste disposal management problems. 137 references, 48 figures, 6 tables.

  14. Complex Data Modeling and Computationally Intensive Statistical Methods

    CERN Document Server

    Mantovan, Pietro

    2010-01-01

    The last years have seen the advent and development of many devices able to record and store an always increasing amount of complex and high dimensional data; 3D images generated by medical scanners or satellite remote sensing, DNA microarrays, real time financial data, system control datasets. The analysis of this data poses new challenging problems and requires the development of novel statistical models and computational methods, fueling many fascinating and fast growing research areas of modern statistics. The book offers a wide variety of statistical methods and is addressed to statistici

  15. On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers

    KAUST Repository

    Collier, Nathan; Dalcin, Lisandro; Calo, Victor M.

    2014-01-01

    SUMMARY: We compare the computational efficiency of isogeometric Galerkin and collocation methods for partial differential equations in the asymptotic regime. We define a metric to identify when numerical experiments have reached this regime. We then apply these ideas to analyze the performance of different isogeometric discretizations, which encompass C0 finite element spaces and higher-continuous spaces. We derive convergence and cost estimates in terms of the total number of degrees of freedom and then perform an asymptotic numerical comparison of the efficiency of these methods applied to an elliptic problem. These estimates are derived assuming that the underlying solution is smooth, the full Gauss quadrature is used in each non-zero knot span and the numerical solution of the discrete system is found using a direct multi-frontal solver. We conclude that under the assumptions detailed in this paper, higher-continuous basis functions provide marginal benefits.

  16. On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers

    KAUST Repository

    Collier, Nathan

    2014-09-17

    SUMMARY: We compare the computational efficiency of isogeometric Galerkin and collocation methods for partial differential equations in the asymptotic regime. We define a metric to identify when numerical experiments have reached this regime. We then apply these ideas to analyze the performance of different isogeometric discretizations, which encompass C0 finite element spaces and higher-continuous spaces. We derive convergence and cost estimates in terms of the total number of degrees of freedom and then perform an asymptotic numerical comparison of the efficiency of these methods applied to an elliptic problem. These estimates are derived assuming that the underlying solution is smooth, the full Gauss quadrature is used in each non-zero knot span and the numerical solution of the discrete system is found using a direct multi-frontal solver. We conclude that under the assumptions detailed in this paper, higher-continuous basis functions provide marginal benefits.

  17. Thermoelectricity analogy method for computing the periodic heat transfer in external building envelopes

    International Nuclear Information System (INIS)

    Peng Changhai; Wu Zhishen

    2008-01-01

    Simple and effective computation methods are needed to calculate energy efficiency in buildings for building thermal comfort and HVAC system simulations. This paper, which is based upon the theory of thermoelectricity analogy, develops a new harmonic method, the thermoelectricity analogy method (TEAM), to compute the periodic heat transfer in external building envelopes (EBE). It presents, in detail, the principles and specific techniques of TEAM to calculate both the decay rates and time lags of EBE. First, a set of linear equations is established using the theory of thermoelectricity analogy. Second, the temperature of each node is calculated by solving the linear equations set. Finally, decay rates and time lags are found by solving simple mathematical expressions. Comparisons show that this method is highly accurate and efficient. Moreover, relative to the existing harmonic methods, which are based on the classical control theory and the method of separation of variables, TEAM does not require complicated derivation and is amenable to hand computation and programming

  18. Computational gestalts and perception thresholds.

    Science.gov (United States)

    Desolneux, Agnès; Moisan, Lionel; Morel, Jean-Michel

    2003-01-01

    In 1923, Max Wertheimer proposed a research programme and method in visual perception. He conjectured the existence of a small set of geometric grouping laws governing the perceptual synthesis of phenomenal objects, or "gestalt" from the atomic retina input. In this paper, we review this set of geometric grouping laws, using the works of Metzger, Kanizsa and their schools. In continuation, we explain why the Gestalt theory research programme can be translated into a Computer Vision programme. This translation is not straightforward, since Gestalt theory never addressed two fundamental matters: image sampling and image information measurements. Using these advances, we shall show that gestalt grouping laws can be translated into quantitative laws allowing the automatic computation of gestalts in digital images. From the psychophysical viewpoint, a main issue is raised: the computer vision gestalt detection methods deliver predictable perception thresholds. Thus, we are set in a position where we can build artificial images and check whether some kind of agreement can be found between the computationally predicted thresholds and the psychophysical ones. We describe and discuss two preliminary sets of experiments, where we compared the gestalt detection performance of several subjects with the predictable detection curve. In our opinion, the results of this experimental comparison support the idea of a much more systematic interaction between computational predictions in Computer Vision and psychophysical experiments.

  19. Advanced computational methods for the assessment of reactor core behaviour during reactivity initiated accidents. Final report; Fortschrittliche Rechenmethoden zum Kernverhalten bei Reaktivitaetsstoerfaellen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Pautz, A.; Perin, Y.; Pasichnyk, I.; Velkov, K.; Zwermann, W.; Seubert, A.; Klein, M.; Gallner, L.; Krzycacz-Hausmann, B.

    2012-05-15

    The document at hand serves as the final report for the reactor safety research project RS1183 ''Advanced Computational Methods for the Assessment of Reactor Core Behavior During Reactivity-Initiated Accidents''. The work performed in the framework of this project was dedicated to the development, validation and application of advanced computational methods for the simulation of transients and accidents of nuclear installations. These simulation tools describe in particular the behavior of the reactor core (with respect to neutronics, thermal-hydraulics and thermal mechanics) at a very high level of detail. The overall goal of this project was the deployment of a modern nuclear computational chain which provides, besides advanced 3D tools for coupled neutronics/ thermal-hydraulics full core calculations, also appropriate tools for the generation of multi-group cross sections and Monte Carlo models for the verification of the individual calculational steps. This computational chain shall primarily be deployed for light water reactors (LWR), but should beyond that also be applicable for innovative reactor concepts. Thus, validation on computational benchmarks and critical experiments was of paramount importance. Finally, appropriate methods for uncertainty and sensitivity analysis were to be integrated into the computational framework, in order to assess and quantify the uncertainties due to insufficient knowledge of data, as well as due to methodological aspects.

  20. Moment-based method for computing the two-dimensional discrete Hartley transform

    Science.gov (United States)

    Dong, Zhifang; Wu, Jiasong; Shu, Huazhong

    2009-10-01

    In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.