WorldWideScience

Sample records for computer code physical

  1. Computer codes in particle transport physics

    International Nuclear Information System (INIS)

    Pesic, M.

    2004-01-01

    Simulation of transport and interaction of various particles in complex media and wide energy range (from 1 MeV up to 1 TeV) is very complicated problem that requires valid model of a real process in nature and appropriate solving tool - computer code and data library. A brief overview of computer codes based on Monte Carlo techniques for simulation of transport and interaction of hadrons and ions in wide energy range in three dimensional (3D) geometry is shown. Firstly, a short attention is paid to underline the approach to the solution of the problem - process in nature - by selection of the appropriate 3D model and corresponding tools - computer codes and cross sections data libraries. Process of data collection and evaluation from experimental measurements and theoretical approach to establishing reliable libraries of evaluated cross sections data is Ion g, difficult and not straightforward activity. For this reason, world reference data centers and specialized ones are acknowledged, together with the currently available, state of art evaluated nuclear data libraries, as the ENDF/B-VI, JEF, JENDL, CENDL, BROND, etc. Codes for experimental and theoretical data evaluations (e.g., SAMMY and GNASH) together with the codes for data processing (e.g., NJOY, PREPRO and GRUCON) are briefly described. Examples of data evaluation and data processing to generate computer usable data libraries are shown. Among numerous and various computer codes developed in transport physics of particles, the most general ones are described only: MCNPX, FLUKA and SHIELD. A short overview of basic application of these codes, physical models implemented with their limitations, energy ranges of particles and types of interactions, is given. General information about the codes covers also programming language, operation system, calculation speed and the code availability. An example of increasing computation speed of running MCNPX code using a MPI cluster compared to the code sequential option

  2. GASFLOW computer code (physical models and input data)

    International Nuclear Information System (INIS)

    Muehlbauer, Petr

    2007-11-01

    The GASFLOW computer code was developed jointly by the Los Alamos National Laboratory, USA, and Forschungszentrum Karlsruhe, Germany. The code is primarily intended for calculations of the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and in other facilities. The physical models and the input data are described, and a commented simple calculation is presented

  3. Status of computer codes available in AEOI for reactor physics analysis

    International Nuclear Information System (INIS)

    Karbassiafshar, M.

    1986-01-01

    Many of the nuclear computer codes available in Atomic Energy Organization of Iran AEOI can be used for physics analysis of an operating reactor or design purposes. Grasp of the various methods involved and practical experience with these codes would be the starting point for interesting design studies or analysis of operating conditions of presently existing and future reactors. A review of the objectives and flowchart of commonly practiced procedures in reactor physics analysis of LWRs and related computer codes was made, extrapolating to the nationally and internationally available resources. Finally, effective utilization of the existing facilities is discussed and called upon

  4. Theoretical Atomic Physics code development IV: LINES, A code for computing atomic line spectra

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.

    1988-12-01

    A new computer program, LINES, has been developed for simulating atomic line emission and absorption spectra using the accurate fine structure energy levels and transition strengths calculated by the (CATS) Cowan Atomic Structure code. Population distributions for the ion stages are obtained in LINES by using the Local Thermodynamic Equilibrium (LTE) model. LINES is also useful for displaying the pertinent atomic data generated by CATS. This report describes the use of LINES. Both CATS and LINES are part of the Theoretical Atomic PhysicS (TAPS) code development effort at Los Alamos. 11 refs., 9 figs., 1 tab

  5. Porting plasma physics simulation codes to modern computing architectures using the libmrc framework

    Science.gov (United States)

    Germaschewski, Kai; Abbott, Stephen

    2015-11-01

    Available computing power has continued to grow exponentially even after single-core performance satured in the last decade. The increase has since been driven by more parallelism, both using more cores and having more parallelism in each core, e.g. in GPUs and Intel Xeon Phi. Adapting existing plasma physics codes is challenging, in particular as there is no single programming model that covers current and future architectures. We will introduce the open-source libmrc framework that has been used to modularize and port three plasma physics codes: The extended MHD code MRCv3 with implicit time integration and curvilinear grids; the OpenGGCM global magnetosphere model; and the particle-in-cell code PSC. libmrc consolidates basic functionality needed for simulations based on structured grids (I/O, load balancing, time integrators), and also introduces a parallel object model that makes it possible to maintain multiple implementations of computational kernels, on e.g. conventional processors and GPUs. It handles data layout conversions and enables us to port performance-critical parts of a code to a new architecture step-by-step, while the rest of the code can remain unchanged. We will show examples of the performance gains and some physics applications.

  6. Validation of physics and thermalhydraulic computer codes for advanced Candu reactor applications

    International Nuclear Information System (INIS)

    Wren, D.J.; Popov, N.; Snell, V.G.

    2004-01-01

    Atomic Energy of Canada Ltd. (AECL) is developing an Advanced Candu Reactor (ACR) that is an evolutionary advancement of the currently operating Candu 6 reactors. The ACR is being designed to produce electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The ACR retains the modular Candu concept of horizontal fuel channels surrounded by a heavy water moderator. However, ACR uses slightly enriched uranium fuel compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (via large reductions in the heavy water moderator volume and replacement of the heavy water coolant with light water coolant) and improved safety. AECL has developed and implemented a software quality assurance program to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. Since the basic design of the ACR is equivalent to that of the Candu 6, most of the key phenomena associated with the safety analyses of ACR are common, and the Candu industry standard tool-set of safety analysis codes can be applied to the analysis of the ACR. A systematic assessment of computer code applicability addressing the unique features of the ACR design was performed covering the important aspects of the computer code structure, models, constitutive correlations, and validation database. Arising from this assessment, limited additional requirements for code modifications and extensions to the validation databases have been identified. This paper provides an outline of the AECL software quality assurance program process for the validation of computer codes used to perform physics and thermal-hydraulics safety analyses of the ACR. It describes the additional validation work that has been identified for these codes and the planned, and ongoing, experimental programs to extend the code validation as required to address specific ACR design

  7. Computation of Thermodynamic Equilibria Pertinent to Nuclear Materials in Multi-Physics Codes

    Science.gov (United States)

    Piro, Markus Hans Alexander

    Nuclear energy plays a vital role in supporting electrical needs and fulfilling commitments to reduce greenhouse gas emissions. Research is a continuing necessity to improve the predictive capabilities of fuel behaviour in order to reduce costs and to meet increasingly stringent safety requirements by the regulator. Moreover, a renewed interest in nuclear energy has given rise to a "nuclear renaissance" and the necessity to design the next generation of reactors. In support of this goal, significant research efforts have been dedicated to the advancement of numerical modelling and computational tools in simulating various physical and chemical phenomena associated with nuclear fuel behaviour. This undertaking in effect is collecting the experience and observations of a past generation of nuclear engineers and scientists in a meaningful way for future design purposes. There is an increasing desire to integrate thermodynamic computations directly into multi-physics nuclear fuel performance and safety codes. A new equilibrium thermodynamic solver is being developed with this matter as a primary objective. This solver is intended to provide thermodynamic material properties and boundary conditions for continuum transport calculations. There are several concerns with the use of existing commercial thermodynamic codes: computational performance; limited capabilities in handling large multi-component systems of interest to the nuclear industry; convenient incorporation into other codes with quality assurance considerations; and, licensing entanglements associated with code distribution. The development of this software in this research is aimed at addressing all of these concerns. The approach taken in this work exploits fundamental principles of equilibrium thermodynamics to simplify the numerical optimization equations. In brief, the chemical potentials of all species and phases in the system are constrained by estimates of the chemical potentials of the system

  8. VOA: a 2-d plasma physics code

    International Nuclear Information System (INIS)

    Eltgroth, P.G.

    1975-12-01

    A 2-dimensional relativistic plasma physics code was written and tested. The non-thermal components of the particle distribution functions are represented by expansion into moments in momentum space. These moments are computed directly from numerical equations. Currently three species are included - electrons, ions and ''beam electrons''. The computer code runs on either the 7600 or STAR machines at LLL. Both the physics and the operation of the code are discussed

  9. Theoretical Atomic Physics code development II: ACE: Another collisional excitation code

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Abdallah, J. Jr.; Csanak, G.; Mann, J.B.; Cowan, R.D.

    1988-12-01

    A new computer code for calculating collisional excitation data (collision strengths or cross sections) using a variety of models is described. The code uses data generated by the Cowan Atomic Structure code or CATS for the atomic structure. Collisional data are placed on a random access file and can be displayed in a variety of formats using the Theoretical Atomic Physics Code or TAPS. All of these codes are part of the Theoretical Atomic Physics code development effort at Los Alamos. 15 refs., 10 figs., 1 tab

  10. Quantum computation with Turaev-Viro codes

    International Nuclear Information System (INIS)

    Koenig, Robert; Kuperberg, Greg; Reichardt, Ben W.

    2010-01-01

    For a 3-manifold with triangulated boundary, the Turaev-Viro topological invariant can be interpreted as a quantum error-correcting code. The code has local stabilizers, identified by Levin and Wen, on a qudit lattice. Kitaev's toric code arises as a special case. The toric code corresponds to an abelian anyon model, and therefore requires out-of-code operations to obtain universal quantum computation. In contrast, for many categories, such as the Fibonacci category, the Turaev-Viro code realizes a non-abelian anyon model. A universal set of fault-tolerant operations can be implemented by deforming the code with local gates, in order to implement anyon braiding. We identify the anyons in the code space, and present schemes for initialization, computation and measurement. This provides a family of constructions for fault-tolerant quantum computation that are closely related to topological quantum computation, but for which the fault tolerance is implemented in software rather than coming from a physical medium.

  11. Theoretical atomic physics code development III TAPS: A display code for atomic physics data

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Abdallah, J. Jr.; Kramer, S.P.

    1988-12-01

    A large amount of theoretical atomic physics data is becoming available through use of the computer codes CATS and ACE developed at Los Alamos National Laboratory. A new code, TAPS, has been written to access this data, perform averages over terms and configurations, and display information in graphical or text form. 7 refs., 13 figs., 1 tab

  12. Quantum computation with topological codes from qubit to topological fault-tolerance

    CERN Document Server

    Fujii, Keisuke

    2015-01-01

    This book presents a self-consistent review of quantum computation with topological quantum codes. The book covers everything required to understand topological fault-tolerant quantum computation, ranging from the definition of the surface code to topological quantum error correction and topological fault-tolerant operations. The underlying basic concepts and powerful tools, such as universal quantum computation, quantum algorithms, stabilizer formalism, and measurement-based quantum computation, are also introduced in a self-consistent way. The interdisciplinary fields between quantum information and other fields of physics such as condensed matter physics and statistical physics are also explored in terms of the topological quantum codes. This book thus provides the first comprehensive description of the whole picture of topological quantum codes and quantum computation with them.

  13. Development of additional module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)

    2007-07-01

    The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes.

  14. Development of additional module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N.

    2007-01-01

    The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes

  15. The archaeology of computer codes - illustrated on the basis of the code SABINE

    International Nuclear Information System (INIS)

    Sdouz, G.

    1987-02-01

    Computer codes used by the physics group of the Institute for Reactor Safety are stored on back-up-tapes. However during the last years both the computer and the system have been changed. For new tasks these programmes have to be available. A new procedure is necessary to find and to activate a stored programme. This procedure is illustrated on the basis of the code SABINE. (Author)

  16. Uniform physical theory of diffraction equivalent edge currents for implementation in general computer codes

    DEFF Research Database (Denmark)

    Johansen, Peter Meincke

    1996-01-01

    New uniform closed-form expressions for physical theory of diffraction equivalent edge currents are derived for truncated incremental wedge strips. In contrast to previously reported expressions, the new expressions are well-behaved for all directions of incidence and observation and take a finite...... value for zero strip length. Consequently, the new equivalent edge currents are, to the knowledge of the author, the first that are well-suited for implementation in general computer codes...

  17. Low Computational Complexity Network Coding For Mobile Networks

    DEFF Research Database (Denmark)

    Heide, Janus

    2012-01-01

    Network Coding (NC) is a technique that can provide benefits in many types of networks, some examples from wireless networks are: In relay networks, either the physical or the data link layer, to reduce the number of transmissions. In reliable multicast, to reduce the amount of signaling and enable......-flow coding technique. One of the key challenges of this technique is its inherent computational complexity which can lead to high computational load and energy consumption in particular on the mobile platforms that are the target platform in this work. To increase the coding throughput several...

  18. Operational reactor physics analysis codes (ORPAC)

    International Nuclear Information System (INIS)

    Kumar, Jainendra; Singh, K.P.; Singh, Kanchhi

    2007-07-01

    For efficient, smooth and safe operation of a nuclear research reactor, many reactor physics evaluations are regularly required. As part of reactor core management the important activities are maintaining core reactivity status, core power distribution, xenon estimations, safety evaluation of in-pile irradiation samples and experimental assemblies and assessment of nuclear safety in fuel handling/storage. In-pile irradiation of samples requires a prior estimation of the reactivity load due to the sample, the heating rate and the activity developed in it during irradiation. For the safety of personnel handling irradiated samples the dose rate at the surface of shielded flask housing the irradiated sample should be less than 200 mR/Hr.Therefore, a proper shielding and radioactive cooling of the irradiated sample are required to meet the said requirement. Knowledge of xenon load variation with time (Startup-curve) helps in estimating Xenon override time. Monitoring of power in individual fuel channels during reactor operation is essential to know any abnormal power distribution to avoid unsafe situations. Complexities in the estimation of above mentioned reactor parameters and their frequent requirement compel one to use computer codes to avoid possible human errors. For efficient and quick evaluation of parameters related to reactor operations such as xenon load, critical moderator height and nuclear heating and reactivity load of isotope samples/experimental assembly, a computer code ORPAC (Operational Reactor Physics Analysis Codes) has been developed. This code is being used for regular assessment of reactor physics parameters in Dhruva and Cirus. The code ORPAC written in Visual Basic 6.0 environment incorporates several important operational reactor physics aspects on a single platform with graphical user interfaces (GUI) to make it more user-friendly and presentable. (author)

  19. KC-A Kinectic computer code for investigation of parametric plasma instabilities

    International Nuclear Information System (INIS)

    Olshansky, V.

    1995-07-01

    In the frame of a joint research program of the Institute of Plasma Physics of the NationaI Science Center 'Kharkov Institute of Physics and Technology' (Kh IPT), Ukraine, and the plasma physics group of the Austrian Research Center Seibersdorf (FZS) a kinetic computer code with the acronym KC for investigation of paramarametric plasma instabilities has been implemented at the computer facilities of FZS as a starting point for further research in this field. This code based on a macroparticle technique is appropriate for studying the evolution of instabilities in a turbulent plasma including saturation. The results can be of interest for heating of tokamaks of the next generation, i.g. ITER. The present report describes the underlying physical models and numerical methods as well as the code structure and how to use the code as a reference of forthcoming joint papers. (author)

  20. Nonuniform code concatenation for universal fault-tolerant quantum computing

    Science.gov (United States)

    Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza

    2017-09-01

    Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.

  1. The computational physics program of the National MFE Computer Center

    International Nuclear Information System (INIS)

    Mirin, A.A.

    1988-01-01

    The principal objective of the Computational Physics Group is to develop advanced numerical models for the investigation of plasma phenomena and the simulation of present and future magnetic confinement devices. Another major objective of the group is to develop efficient algorithms and programming techniques for current and future generation of supercomputers. The computational physics group is involved in several areas of fusion research. One main area is the application of Fokker-Planck/quasilinear codes to tokamaks. Another major area is the investigation of resistive magnetohydrodynamics in three dimensions, with applications to compact toroids. Another major area is the investigation of kinetic instabilities using a 3-D particle code. This work is often coupled with the task of numerically generating equilibria which model experimental devices. Ways to apply statistical closure approximations to study tokamak-edge plasma turbulence are being examined. In addition to these computational physics studies, the group has developed a number of linear systems solvers for general classes of physics problems and has been making a major effort at ascertaining how to efficiently utilize multiprocessor computers

  2. The use of personal computers in reactor physics

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1988-01-01

    This paper points out that personal computers are now powerful enough (in terms of core size and speed) to allow them to be used for serious reactor physics applications. In addition the low cost of personal computers means that even small institutes can now have access to a significant amount of computer power. At the present time distribution centers, such as RSIC, are beginning to distribute reactor physics codes for use on personal computers; hopefully in the near future more and more of these codes will become available through distribution centers, such as RSIC

  3. A theory manual for multi-physics code coupling in LIME.

    Energy Technology Data Exchange (ETDEWEB)

    Belcourt, Noel; Bartlett, Roscoe Ainsworth; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren

    2011-03-01

    The Lightweight Integrating Multi-physics Environment (LIME) is a software package for creating multi-physics simulation codes. Its primary application space is when computer codes are currently available to solve different parts of a multi-physics problem and now need to be coupled with other such codes. In this report we define a common domain language for discussing multi-physics coupling and describe the basic theory associated with multiphysics coupling algorithms that are to be supported in LIME. We provide an assessment of coupling techniques for both steady-state and time dependent coupled systems. Example couplings are also demonstrated.

  4. Continuous Materiality: Through a Hierarchy of Computational Codes

    Directory of Open Access Journals (Sweden)

    Jichen Zhu

    2008-01-01

    Full Text Available The legacy of Cartesian dualism inherent in linguistic theory deeply influences current views on the relation between natural language, computer code, and the physical world. However, the oversimplified distinction between mind and body falls short of capturing the complex interaction between the material and the immaterial. In this paper, we posit a hierarchy of codes to delineate a wide spectrum of continuous materiality. Our research suggests that diagrams in architecture provide a valuable analog for approaching computer code in emergent digital systems. After commenting on ways that Cartesian dualism continues to haunt discussions of code, we turn our attention to diagrams and design morphology. Finally we notice the implications a material understanding of code bears for further research on the relation between human cognition and digital code. Our discussion concludes by noticing several areas that we have projected for ongoing research.

  5. CHEP95: Computing in high energy physics. Abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    These proceedings cover the technical papers on computation in High Energy Physics, including computer codes, computer devices, control systems, simulations, data acquisition systems. New approaches on computer architectures are also discussed

  6. LMFBR models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; McAdoo, J.W.; Bjerke, M.A.

    1981-10-01

    Reactor physics calculations have led to the development of nine liquid-metal fast breeder reactor (LMFBR) models for the ORIGEN2 computer code. Four of the models are based on the U-Pu fuel cycle, two are based on the Th-U-Pu fuel cycle, and three are based on the Th- 238 U fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST are given

  7. LWR-WIMS, a computer code for light water reactor lattice calculations

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1982-06-01

    LMR-WIMS is a comprehensive scheme of computation for studying the reactor physics aspects and burnup behaviour of typical lattices of light water reactors. This report describes the physics methods that have been incorporated in the code, and the modifications that have been made since the code was issued in 1972. (U.K.)

  8. The Computational Physics Program of the national MFE Computer Center

    International Nuclear Information System (INIS)

    Mirin, A.A.

    1989-01-01

    Since June 1974, the MFE Computer Center has been engaged in a significant computational physics effort. The principal objective of the Computational Physics Group is to develop advanced numerical models for the investigation of plasma phenomena and the simulation of present and future magnetic confinement devices. Another major objective of the group is to develop efficient algorithms and programming techniques for current and future generations of supercomputers. The Computational Physics Group has been involved in several areas of fusion research. One main area is the application of Fokker-Planck/quasilinear codes to tokamaks. Another major area is the investigation of resistive magnetohydrodynamics in three dimensions, with applications to tokamaks and compact toroids. A third area is the investigation of kinetic instabilities using a 3-D particle code; this work is often coupled with the task of numerically generating equilibria which model experimental devices. Ways to apply statistical closure approximations to study tokamak-edge plasma turbulence have been under examination, with the hope of being able to explain anomalous transport. Also, we are collaborating in an international effort to evaluate fully three-dimensional linear stability of toroidal devices. In addition to these computational physics studies, the group has developed a number of linear systems solvers for general classes of physics problems and has been making a major effort at ascertaining how to efficiently utilize multiprocessor computers. A summary of these programs are included in this paper. 6 tabs

  9. H0 precessor computer code

    International Nuclear Information System (INIS)

    van Dyck, O.B.; Floyd, R.A.

    1981-05-01

    A spin precessor using H - to H 0 stripping, followed by small precession magnets, has been developed for the LAMPF 800-MeV polarized H - beam. The performance of the system was studied with the computer code documented in this report. The report starts from the fundamental physics of a system of spins with hyperfine coupling in a magnetic field and contains many examples of beam behavior as calculated by the program

  10. GPU in Physics Computation: Case Geant4 Navigation

    CERN Document Server

    Seiskari, Otto; Niemi, Tapio

    2012-01-01

    General purpose computing on graphic processing units (GPU) is a potential method of speeding up scientific computation with low cost and high energy efficiency. We experimented with the particle physics simulation toolkit Geant4 used at CERN to benchmark its geometry navigation functionality on a GPU. The goal was to find out whether Geant4 physics simulations could benefit from GPU acceleration and how difficult it is to modify Geant4 code to run in a GPU. We ported selected parts of Geant4 code to C99 & CUDA and implemented a simple gamma physics simulation utilizing this code to measure efficiency. The performance of the program was tested by running it on two different platforms: NVIDIA GeForce 470 GTX GPU and a 12-core AMD CPU system. Our conclusion was that GPUs can be a competitive alternate for multi-core computers but porting existing software in an efficient way is challenging.

  11. V.S.O.P. (99/09) computer code system for reactor physics and fuel cycle simulation. Version 2009

    Energy Technology Data Exchange (ETDEWEB)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.

    2010-07-15

    V.S.O.P. (99/ 09) represents the further development of V.S.O.P. (99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to gas-cooled reactors and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. This latest code version was developed and tested under the WINDOWS-XP - operating system. (orig.)

  12. V.S.O.P. (99/09) computer code system for reactor physics and fuel cycle simulation. Version 2009

    International Nuclear Information System (INIS)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.

    2010-07-01

    V.S.O.P. (99/ 09) represents the further development of V.S.O.P. (99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to gas-cooled reactors and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. This latest code version was developed and tested under the WINDOWS-XP - operating system. (orig.)

  13. Selection of a computer code for Hanford low-level waste engineered-system performance assessment

    International Nuclear Information System (INIS)

    McGrail, B.P.; Mahoney, L.A.

    1995-10-01

    Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected to affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites

  14. Computational-physics program of the National MFE Computer Center

    International Nuclear Information System (INIS)

    Mirin, A.A.

    1982-02-01

    The computational physics group is ivolved in several areas of fusion research. One main area is the application of multidimensional Fokker-Planck, transport and combined Fokker-Planck/transport codes to both toroidal and mirror devices. Another major area is the investigation of linear and nonlinear resistive magnetohydrodynamics in two and three dimensions, with applications to all types of fusion devices. The MHD work is often coupled with the task of numerically generating equilibria which model experimental devices. In addition to these computational physics studies, investigations of more efficient numerical algorithms are being carried out

  15. Computation of thermodynamic equilibria of nuclear materials in multi-physics codes

    International Nuclear Information System (INIS)

    Piro, M.H.; Lewis, B.J.; Thompson, W.T.; Simunovic, S.; Besmann, T.M.

    2011-01-01

    A new equilibrium thermodynamic solver is being developed with the primary impetus of direct integration into nuclear fuel performance and safety codes to provide improved predictions of fuel behavior. This solver is intended to provide boundary conditions and material properties for continuum transport calculations. There are several legitimate concerns with the use of existing commercial thermodynamic codes: 1) licensing entanglements associated with code distribution, 2) computational performance, and 3) limited capabilities of handling large multi-component systems of interest to the nuclear industry. The development of this solver is specifically aimed at addressing these concerns. In support of this goal, a new numerical algorithm for computing chemical equilibria is presented which is not based on the traditional steepest descent method or 'Gibbs energy minimization' technique. This new approach exploits fundamental principles of equilibrium thermodynamics, which simplifies the optimization equations. The chemical potentials of all species and phases in the system are constrained by the system chemical potentials, and the objective is to minimize the residuals of the mass balance equations. Several numerical advantages are achieved through this simplification, as described in this paper. (author)

  16. Standard interface files and procedures for reactor physics codes. Version IV

    International Nuclear Information System (INIS)

    O'Dell, R.D.

    1977-09-01

    Standards, procedures, and recommendations of the Committee on Computer Code Coordination for promoting the exchange of reactor physics codes are updated to Version IV status. Standards and procedures covering general programming, program structure, standard interface files, and file management and handling subroutines are included

  17. Independent peer review of nuclear safety computer codes

    International Nuclear Information System (INIS)

    Boyack, B.E.; Jenks, R.P.

    1993-01-01

    A structured, independent computer code peer-review process has been developed to assist the US Nuclear Regulatory Commission (NRC) and the US Department of Energy in their nuclear safety missions. This paper describes a structured process of independent code peer review, benefits associated with a code-independent peer review, as well as the authors' recent peer-review experience. The NRC adheres to the principle that safety of plant design, construction, and operation are the responsibility of the licensee. Nevertheless, NRC staff must have the ability to independently assess plant designs and safety analyses submitted by license applicants. According to Ref. 1, open-quotes this requires that a sound understanding be obtained of the important physical phenomena that may occur during transients in operating power plants.close quotes The NRC concluded that computer codes are the principal products to open-quotes understand and predict plant response to deviations from normal operating conditionsclose quotes and has developed several codes for that purpose. However, codes cannot be used blindly; they must be assessed and found adequate for the purposes they are intended. A key part of the qualification process can be accomplished through code peer reviews; this approach has been adopted by the NRC

  18. High performance computer code for molecular dynamics simulations

    International Nuclear Information System (INIS)

    Levay, I.; Toekesi, K.

    2007-01-01

    Complete text of publication follows. Molecular Dynamics (MD) simulation is a widely used technique for modeling complicated physical phenomena. Since 2005 we are developing a MD simulations code for PC computers. The computer code is written in C++ object oriented programming language. The aim of our work is twofold: a) to develop a fast computer code for the study of random walk of guest atoms in Be crystal, b) 3 dimensional (3D) visualization of the particles motion. In this case we mimic the motion of the guest atoms in the crystal (diffusion-type motion), and the motion of atoms in the crystallattice (crystal deformation). Nowadays, it is common to use Graphics Devices in intensive computational problems. There are several ways to use this extreme processing performance, but never before was so easy to programming these devices as now. The CUDA (Compute Unified Device) Architecture introduced by nVidia Corporation in 2007 is a very useful for every processor hungry application. A Unified-architecture GPU include 96-128, or more stream processors, so the raw calculation performance is 576(!) GFLOPS. It is ten times faster, than the fastest dual Core CPU [Fig.1]. Our improved MD simulation software uses this new technology, which speed up our software and the code run 10 times faster in the critical calculation code segment. Although the GPU is a very powerful tool, it has a strongly paralleled structure. It means, that we have to create an algorithm, which works on several processors without deadlock. Our code currently uses 256 threads, shared and constant on-chip memory, instead of global memory, which is 100 times slower than others. It is possible to implement the total algorithm on GPU, therefore we do not need to download and upload the data in every iteration. On behalf of maximal throughput, every thread run with the same instructions

  19. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  20. Lattice Boltzmann method fundamentals and engineering applications with computer codes

    CERN Document Server

    Mohamad, A A

    2014-01-01

    Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.

  1. Opacity calculations for extreme physical systems: code RACHEL

    Science.gov (United States)

    Drska, Ladislav; Sinor, Milan

    1996-08-01

    Computer simulations of physical systems under extreme conditions (high density, temperature, etc.) require the availability of extensive sets of atomic data. This paper presents basic information on a self-consistent approach to calculations of radiative opacity, one of the key characteristics of such systems. After a short explanation of general concepts of the atomic physics of extreme systems, the structure of the opacity code RACHEL is discussed and some of its applications are presented.

  2. The DIT nuclear fuel assembly physics design code

    International Nuclear Information System (INIS)

    Jonsson, A.

    1988-01-01

    The DIT code is the Combustion Engineering, Inc. (C-E) nuclear fuel assembly design code. It belongs to a class of codes, all similar in structure and strategy, that may be characterized by the spectrum and spatial calculations being performed in two dimensions and in a single job step for the entire assembly. The forerunner of this class of codes is the United Kingdom Atomic Energy Authority WIMS code, the first version of which was completed 25 yr ago. The structure and strategy of assembly spectrum codes have remained remarkably similar to the original concept thus proving its usefulness. As other organizations, including C-E, have developed their own versions of the concept, many important variations have been added that significantly influence the accuracy and performance of the resulting computational tool. Those features, which are unique to the DIT code and which might be of interest to the community of fuel assembly physics design code users and developers, are described and discussed

  3. Geochemical computer codes. A review

    International Nuclear Information System (INIS)

    Andersson, K.

    1987-01-01

    In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)

  4. Computer code TOBUNRAD for PWR fuel bundle heat-up calculations

    International Nuclear Information System (INIS)

    Shimooke, Takanori; Yoshida, Kazuo

    1979-05-01

    The computer code TOBUNRAD developed is for analysis of ''fuel-bundle'' heat-up phenomena in a loss-of-coolant accident of PWR. The fuel bundle consists of fuel pins in square lattice; its behavior is different from that of individual pins during heat-up. The code is based on the existing TOODEE2 code which analyzes heat-up phenomena of single fuel pins, so that the basic models of heat conduction and transfer and coolant flow are the same as the TOODEE2's. In addition to the TOODEE2 features, unheated rods are modeled and radiation heat loss is considered between fuel pins, a fuel pin and other heat sinks. The TOBUNRAD code is developed by a new FORTRAN technique which makes it possible to interrupt a flow of program controls wherever desired, thereby attaching several subprograms to the main code. Users' manual for TOBUNRAD is presented: The basic program-structure by interruption method, physical and computational model in each sub-code, usage of the code and sample problems. (author)

  5. Recent progress of an integrated implosion code and modeling of element physics

    International Nuclear Information System (INIS)

    Nagatomo, H.; Takabe, H.; Mima, K.; Ohnishi, N.; Sunahara, A.; Takeda, T.; Nishihara, K.; Nishiguchu, A.; Sawada, K.

    2001-01-01

    Physics of the inertial fusion is based on a variety of elements such as compressible hydrodynamics, radiation transport, non-ideal equation of state, non-LTE atomic process, and relativistic laser plasma interaction. In addition, implosion process is not in stationary state and fluid dynamics, energy transport and instabilities should be solved simultaneously. In order to study such complex physics, an integrated implosion code including all physics important in the implosion process should be developed. The details of physics elements should be studied and the resultant numerical modeling should be installed in the integrated code so that the implosion can be simulated with available computer within realistic CPU time. Therefore, this task can be basically separated into two parts. One is to integrate all physics elements into a code, which is strongly related to the development of hydrodynamic equation solver. We have developed 2-D integrated implosion code which solves mass, momentum, electron energy, ion energy, equation of states, laser ray-trace, laser absorption radiation, surface tracing and so on. The reasonable results in simulating Rayleigh-Taylor instability and cylindrical implosion are obtained using this code. The other is code development on each element physics and verification of these codes. We had progress in developing a nonlocal electron transport code and 2 and 3 dimension radiation hydrodynamic code. (author)

  6. Geometrical modification transfer between specific meshes of each coupled physical codes. Application to the Jules Horowitz research reactor experimental devices

    International Nuclear Information System (INIS)

    Duplex, B.

    2011-01-01

    The CEA develops and uses scientific software, called physical codes, in various physical disciplines to optimize installation and experimentation costs. During a study, several physical phenomena interact, so a code coupling and some data exchanges between different physical codes are required. Each physical code computes on a particular geometry, usually represented by a mesh composed of thousands to millions of elements. This PhD Thesis focuses on the geometrical modification transfer between specific meshes of each coupled physical code. First, it presents a physical code coupling method where deformations are computed by one of these codes. Next, it discusses the establishment of a model, common to different physical codes, grouping all the shared data. Finally, it covers the deformation transfers between meshes of the same geometry or adjacent geometries. Geometrical modifications are discrete data because they are based on a mesh. In order to permit every code to access deformations and to transfer them, a continuous representation is computed. Two functions are developed, one with a global support, and the other with a local support. Both functions combine a simplification method and a radial basis function network. A whole use case is dedicated to the Jules Horowitz reactor. The effect of differential dilatations on experimental device cooling is studied. (author) [fr

  7. A proposed framework for computational fluid dynamics code calibration/validation

    International Nuclear Information System (INIS)

    Oberkampf, W.L.

    1993-01-01

    The paper reviews the terminology and methodology that have been introduced during the last several years for building confidence n the predictions from Computational Fluid Dynamics (CID) codes. Code validation terminology developed for nuclear reactor analyses and aerospace applications is reviewed and evaluated. Currently used terminology such as ''calibrated code,'' ''validated code,'' and a ''validation experiment'' is discussed along with the shortcomings and criticisms of these terms. A new framework is proposed for building confidence in CFD code predictions that overcomes some of the difficulties of past procedures and delineates the causes of uncertainty in CFD predictions. Building on previous work, new definitions of code verification and calibration are proposed. These definitions provide more specific requirements for the knowledge level of the flow physics involved and the solution accuracy of the given partial differential equations. As part of the proposed framework, categories are also proposed for flow physics research, flow modeling research, and the application of numerical predictions. The contributions of physical experiments, analytical solutions, and other numerical solutions are discussed, showing that each should be designed to achieve a distinctively separate purpose in building confidence in accuracy of CFD predictions. A number of examples are given for each approach to suggest methods for obtaining the highest value for CFD code quality assurance

  8. The Dit nuclear fuel assembly physics design code

    International Nuclear Information System (INIS)

    Jonsson, A.

    1987-01-01

    DIT is the Combustion Engineering, Inc. (C-E) nuclear fuel assembly design code. It belongs to a class of codes, all similar in structure and strategy, which may be characterized by the spectrum and spatial calculations being performed in 2D and in a single job step for the entire assembly. The forerunner of this class of codes is the U.K.A.E.A. WIMS code, the first version of which was completed 25 years ago. The structure and strategy of assembly spectrum codes have remained remarkably similar to the original concept thus proving its usefulness. As other organizations, including C-E, have developed their own versions of the concept, many important variations have been added which significantly influence the accuracy and performance of the resulting computational tool. This paper describes and discusses those features which are unique to the DIT code and which might be of interest to the community of fuel assembly physics design code users and developers

  9. Utility subroutine package used by Applied Physics Division export codes

    International Nuclear Information System (INIS)

    Adams, C.H.; Derstine, K.L.; Henryson, H. II; Hosteny, R.P.; Toppel, B.J.

    1983-04-01

    This report describes the current state of the utility subroutine package used with codes being developed by the staff of the Applied Physics Division. The package provides a variety of useful functions for BCD input processing, dynamic core-storage allocation and managemnt, binary I/0 and data manipulation. The routines were written to conform to coding standards which facilitate the exchange of programs between different computers

  10. Once-through CANDU reactor models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; Bjerke, M.A.

    1980-11-01

    Reactor physics calculations have led to the development of two CANDU reactor models for the ORIGEN2 computer code. The model CANDUs are based on (1) the existing once-through fuel cycle with feed comprised of natural uranium and (2) a projected slightly enriched (1.2 wt % 235 U) fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models, as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST, are given

  11. PEBBLES: A COMPUTER CODE FOR MODELING PACKING, FLOW AND RECIRCULATIONOF PEBBLES IN A PEBBLE BED REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-10-01

    A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.

  12. A computer code for Tokamak reactor concepts evaluation

    International Nuclear Information System (INIS)

    Rosatelli, F.; Raia, G.

    1985-01-01

    A computer package has been developed which could preliminarily investigate the engineering configuration of a tokamak reactor concept. The code is essentially intended to synthesize, starting from a set of geometrical and plasma physics parameters and the required performances and objectives, three fundamental components of a tokamak reactor core: blanket+shield, TF magnet, PF magnet. An iterative evaluation of the size, power supply and cooling system requirements of these components allows the judgment and the preliminary design optimization on the considered reactor concept. The versatility of the code allows its application both to next generation tokamak devices and power reactor concepts

  13. Coupling of 3-D core computational codes and a reactor simulation software for the computation of PWR reactivity accidents induced by thermal-hydraulic transients

    International Nuclear Information System (INIS)

    Raymond, P.; Caruge, D.; Paik, H.J.

    1994-01-01

    The French CEA has recently developed a set of new computer codes for reactor physics computations called the Saphir system which includes CRONOS-2, a three-dimensional neutronic code, FLICA-4, a three-dimensional core thermal hydraulic code, and FLICA-S, a primary loops thermal-hydraulic transient computation code, which are coupled and applied to analyze a severe reactivity accident induced by a thermal hydraulic transient: the Steamline Break accident for a pressurized water reactor until soluble boron begins to accumulate in the core. The coupling of these codes has proved to be numerically stable. 15 figs., 7 refs

  14. Use of computer codes for system reliability analysis

    International Nuclear Information System (INIS)

    Sabek, M.; Gaafar, M.; Poucet, A.

    1988-01-01

    This paper gives a collective summary of the studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRANTIC, FTAP, computer code package RALLY, and BOUNDS codes. Two reference study cases were executed by each code. The results obtained logic/probabilistic analysis as well as computation time are compared

  15. Reactor physics computations for nuclear engineering undergraduates

    International Nuclear Information System (INIS)

    Huria, H.C.

    1989-01-01

    The undergraduate program in nuclear engineering at the University of Cincinnati provides three-quarters of nuclear reactor theory that concentrate on physical principles, with calculations limited to those that can be conveniently completed on programmable calculators. An additional one-quarter course is designed to introduce the student to realistic core physics calculational methods, which necessarily requires a computer. Such calculations can be conveniently demonstrated and completed with the modern microcomputer. The one-quarter reactor computations course includes a one-group, one-dimensional diffusion code to introduce the concepts of inner and outer iterations, a cell spectrum code based on integral transport theory to generate cell-homogenized few-group cross sections, and a multigroup diffusion code to determine multiplication factors and power distributions in one-dimensional systems. Problem assignments include the determination of multiplication factors and flux distributions for typical pressurized water reactor (PWR) cores under various operating conditions, such as cold clean, hot clean, hot clean at full power, hot full power with xenon and samarium, and a boron concentration search. Moderator and Doppler coefficients can also be evaluated and examined

  16. Development of Advanced Suite of Deterministic Codes for VHTR Physics Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, J. Y.; Lee, K. H. (and others)

    2007-07-15

    Advanced Suites of deterministic codes for VHTR physics analysis has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. These code suites include the conventional 2-step procedure in which a few group constants are generated by a transport lattice calculation, and the reactor physics analysis is performed by a 3-dimensional diffusion calculation, and a whole core transport code that can model local heterogeneities directly at the core level. Particular modeling issues in physics analysis of the gas-cooled VHTRs were resolved, which include a double heterogeneity of the coated fuel particles, a neutron streaming in the coolant channels, a strong core-reflector interaction, and large spectrum shifts due to changes of the surrounding environment, temperature and burnup. And the geometry handling capability of the DeCART code were extended to deal with the hexagonal fuel elements of the VHTR core. The developed code suites were validated and verified by comparing the computational results with those of the Monte Carlo calculations for the benchmark problems.

  17. Physics of codes

    International Nuclear Information System (INIS)

    Cooper, R.K.; Jones, M.E.

    1989-01-01

    The title given this paper is a bit presumptuous, since one can hardly expect to cover the physics incorporated into all the codes already written and currently being written. The authors focus on those codes which have been found to be particularly useful in the analysis and design of linacs. At that the authors will be a bit parochial and discuss primarily those codes used for the design of radio-frequency (rf) linacs, although the discussions of TRANSPORT and MARYLIE have little to do with the time structures of the beams being analyzed. The plan of this paper is first to describe rather simply the concepts of emittance and brightness, then to describe rather briefly each of the codes TRANSPORT, PARMTEQ, TBCI, MARYLIE, and ISIS, indicating what physics is and is not included in each of them. It is expected that the vast majority of what is covered will apply equally well to protons and electrons (and other particles). This material is intended to be tutorial in nature and can in no way be expected to be exhaustive. 31 references, 4 figures

  18. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  19. Translation of ARAC computer codes

    International Nuclear Information System (INIS)

    Takahashi, Kunio; Chino, Masamichi; Honma, Toshimitsu; Ishikawa, Hirohiko; Kai, Michiaki; Imai, Kazuhiko; Asai, Kiyoshi

    1982-05-01

    In 1981 we have translated the famous MATHEW, ADPIC and their auxiliary computer codes for CDC 7600 computer version to FACOM M-200's. The codes consist of a part of the Atmospheric Release Advisory Capability (ARAC) system of Lawrence Livermore National Laboratory (LLNL). The MATHEW is a code for three-dimensional wind field analysis. Using observed data, it calculates the mass-consistent wind field of grid cells by a variational method. The ADPIC is a code for three-dimensional concentration prediction of gases and particulates released to the atmosphere. It calculates concentrations in grid cells by the particle-in-cell method. They are written in LLLTRAN, i.e., LLNL Fortran language and are implemented on the CDC 7600 computers of LLNL. In this report, i) the computational methods of the MATHEW/ADPIC and their auxiliary codes, ii) comparisons of the calculated results with our JAERI particle-in-cell, and gaussian plume models, iii) translation procedures from the CDC version to FACOM M-200's, are described. Under the permission of LLNL G-Division, this report is published to keep the track of the translation procedures and to serve our JAERI researchers for comparisons and references of their works. (author)

  20. Computer codes for evaluation of control room habitability (HABIT)

    International Nuclear Information System (INIS)

    Stage, S.A.

    1996-06-01

    This report describes the Computer Codes for Evaluation of Control Room Habitability (HABIT). HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. Given information about the design of a nuclear power plant, a scenario for the release of toxic chemicals or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel. HABIT is an integrated package of several programs that previously needed to be run separately and required considerable user intervention. This report discusses the theoretical basis and physical assumptions made by each of the modules in HABIT and gives detailed information about the data entry windows. Sample runs are given for each of the modules. A brief section of programming notes is included. A set of computer disks will accompany this report if the report is ordered from the Energy Science and Technology Software Center. The disks contain the files needed to run HABIT on a personal computer running DOS. Source codes for the various HABIT routines are on the disks. Also included are input and output files for three demonstration runs

  1. Computer code development plant for SMART design

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Choi, S.; Cho, B.H.; Kim, K.K.; Lee, J.C.; Kim, J.P.; Kim, J.H.; Chung, M.; Kang, D.J.; Chang, M.H.

    1999-03-01

    In accordance with the localization plan for the nuclear reactor design driven since the middle of 1980s, various computer codes have been transferred into the korea nuclear industry through the technical transfer program from the worldwide major pressurized water reactor supplier or through the international code development program. These computer codes have been successfully utilized in reactor and reload core design works. As the results, design- related technologies have been satisfactorily accumulated. However, the activities for the native code development activities to substitute the some important computer codes of which usages are limited by the original technique owners have been carried out rather poorly. Thus, it is most preferentially required to secure the native techniques on the computer code package and analysis methodology in order to establish the capability required for the independent design of our own model of reactor. Moreover, differently from the large capacity loop-type commercial reactors, SMART (SYSTEM-integrated Modular Advanced ReacTor) design adopts a single reactor pressure vessel containing the major primary components and has peculiar design characteristics such as self-controlled gas pressurizer, helical steam generator, passive residual heat removal system, etc. Considering those peculiar design characteristics for SMART, part of design can be performed with the computer codes used for the loop-type commercial reactor design. However, most of those computer codes are not directly applicable to the design of an integral reactor such as SMART. Thus, they should be modified to deal with the peculiar design characteristics of SMART. In addition to the modification efforts, various codes should be developed in several design area. Furthermore, modified or newly developed codes should be verified their reliability through the benchmarking or the test for the object design. Thus, it is necessary to proceed the design according to the

  2. Computer code development plant for SMART design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Choi, S.; Cho, B.H.; Kim, K.K.; Lee, J.C.; Kim, J.P.; Kim, J.H.; Chung, M.; Kang, D.J.; Chang, M.H

    1999-03-01

    In accordance with the localization plan for the nuclear reactor design driven since the middle of 1980s, various computer codes have been transferred into the korea nuclear industry through the technical transfer program from the worldwide major pressurized water reactor supplier or through the international code development program. These computer codes have been successfully utilized in reactor and reload core design works. As the results, design- related technologies have been satisfactorily accumulated. However, the activities for the native code development activities to substitute the some important computer codes of which usages are limited by the original technique owners have been carried out rather poorly. Thus, it is most preferentially required to secure the native techniques on the computer code package and analysis methodology in order to establish the capability required for the independent design of our own model of reactor. Moreover, differently from the large capacity loop-type commercial reactors, SMART (SYSTEM-integrated Modular Advanced ReacTor) design adopts a single reactor pressure vessel containing the major primary components and has peculiar design characteristics such as self-controlled gas pressurizer, helical steam generator, passive residual heat removal system, etc. Considering those peculiar design characteristics for SMART, part of design can be performed with the computer codes used for the loop-type commercial reactor design. However, most of those computer codes are not directly applicable to the design of an integral reactor such as SMART. Thus, they should be modified to deal with the peculiar design characteristics of SMART. In addition to the modification efforts, various codes should be developed in several design area. Furthermore, modified or newly developed codes should be verified their reliability through the benchmarking or the test for the object design. Thus, it is necessary to proceed the design according to the

  3. Enhanced Verification Test Suite for Physics Simulation Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, J R; Brock, J S; Brandon, S T; Cotrell, D L; Johnson, B; Knupp, P; Rider, W; Trucano, T; Weirs, V G

    2008-10-10

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest. This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of

  4. Integrated severe accident containment analysis with the CONTAIN computer code

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Williams, D.C.; Rexroth, P.E.; Tills, J.L.

    1985-12-01

    Analysis of physical and radiological conditions iunside the containment building during a severe (core-melt) nuclear reactor accident requires quantitative evaluation of numerous highly disparate yet coupled phenomenologies. These include two-phase thermodynamics and thermal-hydraulics, aerosol physics, fission product phenomena, core-concrete interactions, the formation and combustion of flammable gases, and performance of engineered safety features. In the past, this complexity has meant that a complete containment analysis would require application of suites of separate computer codes each of which would treat only a narrower subset of these phenomena, e.g., a thermal-hydraulics code, an aerosol code, a core-concrete interaction code, etc. In this paper, we describe the development and some recent applications of the CONTAIN code, which offers an integrated treatment of the dominant containment phenomena and the interactions among them. We describe the results of a series of containment phenomenology studies, based upon realistic accident sequence analyses in actual plants. These calculations highlight various phenomenological effects that have potentially important implications for source term and/or containment loading issues, and which are difficult or impossible to treat using a less integrated code suite

  5. SERPENT Monte Carlo reactor physics code

    International Nuclear Information System (INIS)

    Leppaenen, J.

    2010-01-01

    SERPENT is a three-dimensional continuous-energy Monte Carlo reactor physics burnup calculation code, developed at VTT Technical Research Centre of Finland since 2004. The code is specialized in lattice physics applications, but the universe-based geometry description allows transport simulation to be carried out in complicated three-dimensional geometries as well. The suggested applications of SERPENT include generation of homogenized multi-group constants for deterministic reactor simulator calculations, fuel cycle studies involving detailed assembly-level burnup calculations, validation of deterministic lattice transport codes, research reactor applications, educational purposes and demonstration of reactor physics phenomena. The Serpent code has been publicly distributed by the OECD/NEA Data Bank since May 2009 and RSICC in the U. S. since March 2010. The code is being used in some 35 organizations in 20 countries around the world. This paper presents an overview of the methods and capabilities of the Serpent code, with examples in the modelling of WWER-440 reactor physics. (Author)

  6. SEAPATH: A microcomputer code for evaluating physical security effectiveness using adversary sequence diagrams

    International Nuclear Information System (INIS)

    Darby, J.L.

    1986-01-01

    The Adversary Sequence Diagram (ASD) concept was developed by Sandia National Laboratories (SNL) to examine physical security system effectiveness. Sandia also developed a mainframe computer code, PANL, to analyze the ASD. The authors have developed a microcomputer code, SEAPATH, which also analyzes ASD's. The Authors are supporting SNL in software development of the SAVI code; SAVI utilizes the SEAPATH algorithm to identify and quantify paths

  7. (Nearly) portable PIC code for parallel computers

    International Nuclear Information System (INIS)

    Decyk, V.K.

    1993-01-01

    As part of the Numerical Tokamak Project, the author has developed a (nearly) portable, one dimensional version of the GCPIC algorithm for particle-in-cell codes on parallel computers. This algorithm uses a spatial domain decomposition for the fields, and passes particles from one domain to another as the particles move spatially. With only minor changes, the code has been run in parallel on the Intel Delta, the Cray C-90, the IBM ES/9000 and a cluster of workstations. After a line by line translation into cmfortran, the code was also run on the CM-200. Impressive speeds have been achieved, both on the Intel Delta and the Cray C-90, around 30 nanoseconds per particle per time step. In addition, the author was able to isolate the data management modules, so that the physics modules were not changed much from their sequential version, and the data management modules can be used as open-quotes black boxes.close quotes

  8. Implementing a modular system of computer codes

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1983-07-01

    A modular computation system has been developed for nuclear reactor core analysis. The codes can be applied repeatedly in blocks without extensive user input data, as needed for reactor history calculations. The primary control options over the calculational paths and task assignments within the codes are blocked separately from other instructions, admitting ready access by user input instruction or directions from automated procedures and promoting flexible and diverse applications at minimum application cost. Data interfacing is done under formal specifications with data files manipulated by an informed manager. This report emphasizes the system aspects and the development of useful capability, hopefully informative and useful to anyone developing a modular code system of much sophistication. Overall, this report in a general way summarizes the many factors and difficulties that are faced in making reactor core calculations, based on the experience of the authors. It provides the background on which work on HTGR reactor physics is being carried out

  9. Benchmarking Severe Accident Computer Codes for Heavy Water Reactor Applications

    International Nuclear Information System (INIS)

    2013-12-01

    Requests for severe accident investigations and assurance of mitigation measures have increased for operating nuclear power plants and the design of advanced nuclear power plants. Severe accident analysis investigations necessitate the analysis of the very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. The IAEA organizes coordinated research projects (CRPs) to facilitate technology development through international collaboration among Member States. The CRP on Benchmarking Severe Accident Computer Codes for HWR Applications was planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). This publication summarizes the results from the CRP participants. The CRP promoted international collaboration among Member States to improve the phenomenological understanding of severe core damage accidents and the capability to analyse them. The CRP scope included the identification and selection of a severe accident sequence, selection of appropriate geometrical and boundary conditions, conduct of benchmark analyses, comparison of the results of all code outputs, evaluation of the capabilities of computer codes to predict important severe accident phenomena, and the proposal of necessary code improvements and/or new experiments to reduce uncertainties. Seven institutes from five countries with HWRs participated in this CRP

  10. Adaptation of HAMMER computer code to CYBER 170/750 computer

    International Nuclear Information System (INIS)

    Pinheiro, A.M.B.S.; Nair, R.P.K.

    1982-01-01

    The adaptation of HAMMER computer code to CYBER 170/750 computer is presented. The HAMMER code calculates cell parameters by multigroup transport theory and reactor parameters by few group diffusion theory. The auxiliary programs, the carried out modifications and the use of HAMMER system adapted to CYBER 170/750 computer are described. (M.C.K.) [pt

  11. Phenomenological optical potentials and optical model computer codes

    International Nuclear Information System (INIS)

    Prince, A.

    1980-01-01

    An introduction to the Optical Model is presented. Starting with the purpose and nature of the physical problems to be analyzed, a general formulation and the various phenomenological methods of solution are discussed. This includes the calculation of observables based on assumed potentials such as local and non-local and their forms, e.g. Woods-Saxon, folded model etc. Also discussed are the various calculational methods and model codes employed to describe nuclear reactions in the spherical and deformed regions (e.g. coupled-channel analysis). An examination of the numerical solutions and minimization techniques associated with the various codes, is briefly touched upon. Several computer programs are described for carrying out the calculations. The preparation of input, (formats and options), determination of model parameters and analysis of output are described. The class is given a series of problems to carry out using the available computer. Interpretation and evaluation of the samples includes the effect of varying parameters, and comparison of calculations with the experimental data. Also included is an intercomparison of the results from the various model codes, along with their advantages and limitations. (author)

  12. Validation of containment thermal hydraulic computer codes for VVER reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jiri Macek; Lubomir Denk [Nuclear Research Institute Rez plc Thermal-Hydraulic Analyses Department CZ 250 68 Husinec-Rez (Czech Republic)

    2005-07-01

    Full text of publication follows: The Czech Republic operates 4 VVER-440 units, two VVER-1000 units are being finalized (one of them is undergoing commissioning). Thermal-hydraulics Department of the Nuclear Research Institute Rez performs accident analyses for these plants using a number of computer codes. To model the primary and secondary circuits behaviour the system codes ATHLET, CATHARE, RELAP, TRAC are applied. Containment and pressure-suppression system are modelled with COCOSYS and MELCOR codes, the reactor power calculations (point and space-neutron kinetics) are made with DYN3D, NESTLE and CDF codes (FLUENT, TRIO) are used for some specific problems.An integral part of the current Czech project 'New Energy Sources' is selection of a new nuclear source. Within this and the preceding projects financed by the Czech Ministry of Industry and Trade and the EU PHARE, the Department carries and has carried out the systematic validation of thermal-hydraulic and reactor physics computer codes applying data obtained on several experimental facilities as well as the real operational data. One of the important components of the VVER 440/213 NPP is its containment with pressure suppression system (bubble condenser). For safety analyses of this system, computer codes of the type MELCOR and COCOSYS are used in the Czech Republic. These codes were developed for containments of classic PWRs or BWRs. In order to apply these codes for VVER 440 systems, their validation on experimental facilities must be performed.The paper provides concise information on these activities of the NRI and its Thermal-hydraulics Department. The containment system of the VVER 440/213, its functions and approaches to solution of its safety is described with definition of acceptance criteria. A detailed example of the containment code validation on EREC Test facility (LOCA and MSLB) and the consequent utilisation of the results for a real NPP purposes is included. An approach to

  13. Computational plasma physics

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-08-01

    The behavior of a plasma confined by a magnetic field is simulated by a variety of numerical models. Some models used on a short time scale give detailed knowledge of the plasma on a microscopic scale, while other models used on much longer time scales compute macroscopic properties of the plasma dynamics. In the last two years there has been a substantial increase in the numerical modelling of fusion devices. The status of MHD, transport, equilibrium, stability, Vlasov, Fokker-Planck, and Hybrid codes is reviewed. These codes have already been essential in the design and understanding of low and high beta toroidal experiments and mirror systems. The design of the next generation of fusion experiments and fusion test reactors will require continual development of these numerical models in order to include the best available plasma physics description and also to increase the geometric complexity of the model. (auth)

  14. Verification of SACI-2 computer code comparing with experimental results of BIBLIS-A and LOOP-7 computer code

    International Nuclear Information System (INIS)

    Soares, P.A.; Sirimarco, L.F.

    1984-01-01

    SACI-2 is a computer code created to study the dynamic behaviour of a PWR nuclear power plant. To evaluate the quality of its results, SACI-2 was used to recalculate commissioning tests done in BIBLIS-A nuclear power plant and to calculate postulated transients for Angra-2 reactor. The results of SACI-2 computer code from BIBLIS-A showed as much good agreement as those calculated with the KWU Loop 7 computer code for Angra-2. (E.G.) [pt

  15. APC: A new code for Atmospheric Polarization Computations

    International Nuclear Information System (INIS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2013-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface. -- Highlights: •A new code, APC, has been developed. •The code was validated against well-known codes. •The BPDF for an arbitrary Mueller matrix is computed

  16. Advances in Reactor physics, mathematics and computation. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume 3, are divided into sessions bearing on: - poster sessions on benchmark and codes: 35 conferences - review of status of assembly spectrum codes: 9 conferences - Numerical methods in fluid mechanics and thermal hydraulics: 16 conferences - stochastic transport and methods: 7 conferences.

  17. Selection of a computer code for Hanford low-level waste engineered-system performance assessment. Revision 1

    International Nuclear Information System (INIS)

    McGrail, B.P.; Bacon, D.H.

    1998-02-01

    Planned performance assessments for the proposed disposal of low-activity waste (LAW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. The available computer codes with suitable capabilities at the time Revision 0 of this document was prepared were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical processes expected to affect LAW glass corrosion and the mobility of radionuclides. This analysis was repeated in this report but updated to include additional processes that have been found to be important since Revision 0 was issued and to include additional codes that have been released. The highest ranked computer code was found to be the STORM code developed at PNNL for the US Department of Energy for evaluation of arid land disposal sites

  18. Upgrade and benchmarking of the NIFS physics-engineering-cost code

    International Nuclear Information System (INIS)

    Dolan, T.J.; Yamazaki, K.

    2004-07-01

    The NIFS Physics-Engineering-Cost (PEC) code for helical and tokamak fusion reactors is upgraded by adding data from three blanket-shield designs, a new cost section based on the ARIES cost schedule, more recent unit costs, and improved algorithms for various computations. The PEC code is also benchmarked by modeling the ARIES-AT (advanced technology) tokamak and the ARIES-SPPS (stellarator power plant system). The PEC code succeeds in predicting many of the pertinent plasma parameters and reactor component masses within about 10%. There are cost differences greater than 10% for some fusion power core components, which may be attributed to differences of unit costs used by the codes. The COEs estimated by the PEC code differ from the COEs of the ARIES-AT and ARIES-SPPS studies by 5%. (author)

  19. The RETRAN-03 computer code

    International Nuclear Information System (INIS)

    Paulsen, M.P.; McFadden, J.H.; Peterson, C.E.; McClure, J.A.; Gose, G.C.; Jensen, P.J.

    1991-01-01

    The RETRAN-03 code development effort is designed to overcome the major theoretical and practical limitations associated with the RETRAN-02 computer code. The major objectives of the development program are to extend the range of analyses that can be performed with RETRAN, to make the code more dependable and faster running, and to have a more transportable code. The first two objectives are accomplished by developing new models and adding other models to the RETRAN-02 base code. The major model additions for RETRAN-03 are as follows: implicit solution methods for the steady-state and transient forms of the field equations; additional options for the velocity difference equation; a new steady-state initialization option for computer low-power steam generator initial conditions; models for nonequilibrium thermodynamic conditions; and several special-purpose models. The source code and the environmental library for RETRAN-03 are written in standard FORTRAN 77, which allows the last objective to be fulfilled. Some models in RETRAN-02 have been deleted in RETRAN-03. In this paper the changes between RETRAN-02 and RETRAN-03 are reviewed

  20. VAMPIR - A two-group two-dimensional diffusion computer code for burnup calculation

    International Nuclear Information System (INIS)

    Zmijarevic, I.; Petrovic, I.

    1985-01-01

    VAMPIR is a computer code which simulates the burnup within a reactor coe. It computes the neutron flux, power distribution and burnup taking into account spatial variations of temperature and xenon poisoning. Its overall reactor calculation uses diffusion theory with finite differences approximation in X-Y or R-Z geometry. Two-group macroscopic cross section data are prepared by the lattice cell code WIMS-D4 and stored in the library form of multi entry tabulation against the various parameters that significantly affect the physical conditions in the reactor core. herein, the main features of the program are presented. (author)

  1. Fuel rod computations. The COMETHE code in its CEA version

    International Nuclear Information System (INIS)

    Lenepveu, Dominique.

    1976-01-01

    The COMETHE code (COde d'evolution MEcanique et THermique) is intended for computing the irradiation behavior of water reactor fuel pins. It is concerned with steadily operated cylindrical pins, containing fuel pellet stacks (UO 2 or PuO 2 ). The pin consists in five different axial zones: two expansion chambers, two blankets, and a central core that may be divided into several stacks parted by plugs. As far as computation is concerned, the pin is divided into slices (maximum 15) in turn divided into rings (maximum 50). Information are obtained for each slice: the radial temperature distribution, heat transfer coefficients, thermal flux at the pin surface, changes in geometry according to temperature conditions, and specific burn-up. The physical models involved take account for: heat transfer, fission gas release, fuel expansion, and creep of the can. Results computed with COMETHE are compared with those from ELP and EPEL irradiation experiments [fr

  2. ANTEO: An optimised PC computer code for the steady state thermal hydraulic analysis of rod bundles

    International Nuclear Information System (INIS)

    Cevolani, S.

    1996-07-01

    The paper deals with the description of a Personal Computer oriented subchannel code, devoted to the steady state thermal hydraulic analysis of nuclear reactor fuel bundles. The development of a such code was made possible by two facts: first, the increase the computing power of the desk machines; secondly, the fact several years of experience into operate subchannels codes have shown how to simplify many of the physical models without a sensible loss of accuracy. For sake of validation, the developed code was compared with a traditional subchannel code, the COBRA one. The results of the comparison show a very good agreement between the two codes

  3. Users manual for CAFE-3D : a computational fluid dynamics fire code

    International Nuclear Information System (INIS)

    Khalil, Imane; Lopez, Carlos; Suo-Anttila, Ahti Jorma

    2005-01-01

    The Container Analysis Fire Environment (CAFE) computer code has been developed to model all relevant fire physics for predicting the thermal response of massive objects engulfed in large fires. It provides realistic fire thermal boundary conditions for use in design of radioactive material packages and in risk-based transportation studies. The CAFE code can be coupled to commercial finite-element codes such as MSC PATRAN/THERMAL and ANSYS. This coupled system of codes can be used to determine the internal thermal response of finite element models of packages to a range of fire environments. This document is a user manual describing how to use the three-dimensional version of CAFE, as well as a description of CAFE input and output parameters. Since this is a user manual, only a brief theoretical description of the equations and physical models is included

  4. Computation of the bounce-average code

    International Nuclear Information System (INIS)

    Cutler, T.A.; Pearlstein, L.D.; Rensink, M.E.

    1977-01-01

    The bounce-average computer code simulates the two-dimensional velocity transport of ions in a mirror machine. The code evaluates and bounce-averages the collision operator and sources along the field line. A self-consistent equilibrium magnetic field is also computed using the long-thin approximation. Optionally included are terms that maintain μ, J invariance as the magnetic field changes in time. The assumptions and analysis that form the foundation of the bounce-average code are described. When references can be cited, the required results are merely stated and explained briefly. A listing of the code is appended

  5. Implatation of MC2 computer code

    International Nuclear Information System (INIS)

    Seehusen, J.; Nair, R.P.K.; Becceneri, J.C.

    1981-01-01

    The implantation of MC2 computer code in the CDC system is presented. The MC2 computer code calculates multigroup cross sections for tipical compositions of fast reactors. The multigroup constants are calculated using solutions of PI or BI approximations for determined buckling value as weighting function. (M.C.K.) [pt

  6. Cloud Computing for Complex Performance Codes.

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klein, Brandon Thorin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miner, John Gifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.

  7. Computer codes for safety analysis

    International Nuclear Information System (INIS)

    Holland, D.F.

    1986-11-01

    Computer codes for fusion safety analysis have been under development in the United States for about a decade. This paper will discuss five codes that are currently under development by the Fusion Safety Program. The purpose and capability of each code will be presented, a sample given, followed by a discussion of the present status and future development plans

  8. RAP-2A Computer code for transients analysis in fast reactors

    International Nuclear Information System (INIS)

    Iftode, I.; Popescu, C.; Turcu, I.; Biro, L.

    1975-10-01

    The RAP-2A computer code is designed for analyzing thermohydraulic transients and/or steady state problems for large LMFBR cores. Physical and mathematical models, main input-output data, the flow chart of the code and a sample problem are given. RAP-2A calculates the power and the thermoydraulic transients initiated by a flow or reactivity changes, from a normal operating state of the reactor up to core disassembly. In this analysis a representative fuel pin is considered: a one-group space-independent (point) kinetics model to describe the neutron kinetics and a one-dimensional model describing the heat transfer (radial in the fuel and axial in the coolant) are used. Mechanical deformations due to temperature gradient, pressure losses, fuel melting, etc., are also calculated. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer

  9. Use of computer codes for system reliability analysis

    International Nuclear Information System (INIS)

    Sabek, M.; Gaafar, M.; Poucet, A.

    1989-01-01

    This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author)

  10. Use of computer codes for system reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sabek, M.; Gaafar, M. (Nuclear Regulatory and Safety Centre, Atomic Energy Authority, Cairo (Egypt)); Poucet, A. (Commission of the European Communities, Ispra (Italy). Joint Research Centre)

    1989-01-01

    This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author).

  11. HOTSPOT Health Physics codes for the PC

    Energy Technology Data Exchange (ETDEWEB)

    Homann, S.G.

    1994-03-01

    The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculation tool for evaluating accidents involving radioactive materials. HOTSPOT codes are a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. HOTSPOT programs are reasonably accurate for a timely initial assessment. More importantly, HOTSPOT codes produce a consistent output for the same input assumptions and minimize the probability of errors associated with reading a graph incorrectly or scaling a universal nomogram during an emergency. The HOTSPOT codes are designed for short-term (less than 24 hours) release durations. Users requiring radiological release consequences for release scenarios over a longer time period, e.g., annual windrose data, are directed to such long-term models as CAPP88-PC (Parks, 1992). Users requiring more sophisticated modeling capabilities, e.g., complex terrain; multi-location real-time wind field data; etc., are directed to such capabilities as the Department of Energy`s ARAC computer codes (Sullivan, 1993). Four general programs -- Plume, Explosion, Fire, and Resuspension -- calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosive release, fuel fire, or an area contamination event. Other programs deal with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. Additional programs estimate the dose commitment from the inhalation of any one of the radionuclides listed in the database of radionuclides; calibrate a radiation survey instrument for ground-survey measurements; and screen plutonium uptake in the lung (see FIDLER Calibration and LUNG Screening sections).

  12. HOTSPOT Health Physics codes for the PC

    International Nuclear Information System (INIS)

    Homann, S.G.

    1994-03-01

    The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculation tool for evaluating accidents involving radioactive materials. HOTSPOT codes are a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. HOTSPOT programs are reasonably accurate for a timely initial assessment. More importantly, HOTSPOT codes produce a consistent output for the same input assumptions and minimize the probability of errors associated with reading a graph incorrectly or scaling a universal nomogram during an emergency. The HOTSPOT codes are designed for short-term (less than 24 hours) release durations. Users requiring radiological release consequences for release scenarios over a longer time period, e.g., annual windrose data, are directed to such long-term models as CAPP88-PC (Parks, 1992). Users requiring more sophisticated modeling capabilities, e.g., complex terrain; multi-location real-time wind field data; etc., are directed to such capabilities as the Department of Energy's ARAC computer codes (Sullivan, 1993). Four general programs -- Plume, Explosion, Fire, and Resuspension -- calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosive release, fuel fire, or an area contamination event. Other programs deal with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. Additional programs estimate the dose commitment from the inhalation of any one of the radionuclides listed in the database of radionuclides; calibrate a radiation survey instrument for ground-survey measurements; and screen plutonium uptake in the lung (see FIDLER Calibration and LUNG Screening sections)

  13. Computer-assisted Particle-in-Cell code development

    International Nuclear Information System (INIS)

    Kawata, S.; Boonmee, C.; Teramoto, T.; Drska, L.; Limpouch, J.; Liska, R.; Sinor, M.

    1997-12-01

    This report presents a new approach for an electromagnetic Particle-in-Cell (PIC) code development by a computer: in general PIC codes have a common structure, and consist of a particle pusher, a field solver, charge and current density collections, and a field interpolation. Because of the common feature, the main part of the PIC code can be mechanically developed on a computer. In this report we use the packages FIDE and GENTRAN of the REDUCE computer algebra system for discretizations of field equations and a particle equation, and for an automatic generation of Fortran codes. The approach proposed is successfully applied to the development of 1.5-dimensional PIC code. By using the generated PIC code the Weibel instability in a plasma is simulated. The obtained growth rate agrees well with the theoretical value. (author)

  14. Development of improved methods for the LWR lattice physics code EPRI-CELL

    International Nuclear Information System (INIS)

    Williams, M.L.; Wright, R.Q.; Barhen, J.

    1982-07-01

    A number of improvements have been made by ORNL to the lattice physics code EPRI-CELL (E-C) which is widely used by utilities for analysis of power reactors. The code modifications were made mainly in the thermal and epithermal routines and resulted in improved reactor physics approximations and more efficient running times. The improvements in the thermal flux calculation included implementation of a group-dependent rebalance procedure to accelerate the iterative process and a more rigorous calculation of interval-to-interval collision probabilities. The epithermal resonance shielding methods used in the code have been extensively studied to determine its major approximations and to examine the sensitivity of computed results to these approximations. The study has resulted in several improvements in the original methodology

  15. "SMART": A Compact and Handy FORTRAN Code for the Physics of Stellar Atmospheres

    Science.gov (United States)

    Sapar, A.; Poolamäe, R.

    2003-01-01

    A new computer code SMART (Spectra from Model Atmospheres by Radiative Transfer) for computing the stellar spectra, forming in plane-parallel atmospheres, has been compiled by us and A. Aret. To guarantee wide compatibility of the code with shell environment, we chose FORTRAN-77 as programming language and tried to confine ourselves to common part of its numerous versions both in WINDOWS and LINUX. SMART can be used for studies of several processes in stellar atmospheres. The current version of the programme is undergoing rapid changes due to our goal to elaborate a simple, handy and compact code. Instead of linearisation (being a mathematical method of recurrent approximations) we propose to use the physical evolutionary changes or in other words relaxation of quantum state populations rates from LTE to NLTE has been studied using small number of NLTE states. This computational scheme is essentially simpler and more compact than the linearisation. This relaxation scheme enables using instead of the Λ-iteration procedure a physically changing emissivity (or the source function) which incorporates in itself changing Menzel coefficients for NLTE quantum state populations. However, the light scattering on free electrons is in the terms of Feynman graphs a real second-order quantum process and cannot be reduced to consequent processes of absorption and emission as in the case of radiative transfer in spectral lines. With duly chosen input parameters the code SMART enables computing radiative acceleration to the matter of stellar atmosphere in turbulence clumps. This also enables to connect the model atmosphere in more detail with the problem of the stellar wind triggering. Another problem, which has been incorporated into the computer code SMART, is diffusion of chemical elements and their isotopes in the atmospheres of chemically peculiar (CP) stars due to usual radiative acceleration and the essential additional acceleration generated by the light-induced drift. As

  16. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-08-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity toning and matching problems

  17. Benchmarking severe accident computer codes for heavy water reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H. [International Atomic Energy Agency, Vienna (Austria)

    2010-07-01

    Consideration of severe accidents at a nuclear power plant (NPP) is an essential component of the defence in depth approach used in nuclear safety. Severe accident analysis involves very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. International cooperative research programmes are established by the IAEA in areas that are of common interest to a number of Member States. These co-operative efforts are carried out through coordinated research projects (CRPs), typically 3 to 6 years in duration, and often involving experimental activities. Such CRPs allow a sharing of efforts on an international basis, foster team-building and benefit from the experience and expertise of researchers from all participating institutes. The IAEA is organizing a CRP on benchmarking severe accident computer codes for heavy water reactor (HWR) applications. The CRP scope includes defining the severe accident sequence and conducting benchmark analyses for HWRs, evaluating the capabilities of existing computer codes to predict important severe accident phenomena, and suggesting necessary code improvements and/or new experiments to reduce uncertainties. The CRP has been planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Groups on Advanced Technologies for HWRs. (author)

  18. The Physical Models and Statistical Procedures Used in the RACER Monte Carlo Code

    International Nuclear Information System (INIS)

    Sutton, T.M.; Brown, F.B.; Bischoff, F.G.; MacMillan, D.B.; Ellis, C.L.; Ward, J.T.; Ballinger, C.T.; Kelly, D.J.; Schindler, L.

    1999-01-01

    This report describes the MCV (Monte Carlo - Vectorized)Monte Carlo neutron transport code [Brown, 1982, 1983; Brown and Mendelson, 1984a]. MCV is a module in the RACER system of codes that is used for Monte Carlo reactor physics analysis. The MCV module contains all of the neutron transport and statistical analysis functions of the system, while other modules perform various input-related functions such as geometry description, material assignment, output edit specification, etc. MCV is very closely related to the 05R neutron Monte Carlo code [Irving et al., 1965] developed at Oak Ridge National Laboratory. 05R evolved into the 05RR module of the STEMB system, which was the forerunner of the RACER system. Much of the overall logic and physics treatment of 05RR has been retained and, indeed, the original verification of MCV was achieved through comparison with STEMB results. MCV has been designed to be very computationally efficient [Brown, 1981, Brown and Martin, 1984b; Brown, 1986]. It was originally programmed to make use of vector-computing architectures such as those of the CDC Cyber- 205 and Cray X-MP. MCV was the first full-scale production Monte Carlo code to effectively utilize vector-processing capabilities. Subsequently, MCV was modified to utilize both distributed-memory [Sutton and Brown, 1994] and shared memory parallelism. The code has been compiled and run on platforms ranging from 32-bit UNIX workstations to clusters of 64-bit vector-parallel supercomputers. The computational efficiency of the code allows the analyst to perform calculations using many more neutron histories than is practical with most other Monte Carlo codes, thereby yielding results with smaller statistical uncertainties. MCV also utilizes variance reduction techniques such as survival biasing, splitting, and rouletting to permit additional reduction in uncertainties. While a general-purpose neutron Monte Carlo code, MCV is optimized for reactor physics calculations. It has the

  19. Linking CATHENA with other computer codes through a remote process

    Energy Technology Data Exchange (ETDEWEB)

    Vasic, A.; Hanna, B.N.; Waddington, G.M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Sabourin, G. [Atomic Energy of Canada Limited, Montreal, Quebec (Canada); Girard, R. [Hydro-Quebec, Montreal, Quebec (Canada)

    2005-07-01

    'Full text:' CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a computer code developed by Atomic Energy of Canada Limited (AECL). The code uses a transient, one-dimensional, two-fluid representation of two-phase flow in piping networks. CATHENA is used primarily for the analysis of postulated upset conditions in CANDU reactors; however, the code has found a wider range of applications. In the past, the CATHENA thermalhydraulics code included other specialized codes, i.e. ELOCA and the Point LEPreau CONtrol system (LEPCON) as callable subroutine libraries. The combined program was compiled and linked as a separately named code. This code organizational process is not suitable for independent development, maintenance, validation and version tracking of separate computer codes. The alternative solution to provide code development independence is to link CATHENA to other computer codes through a Parallel Virtual Machine (PVM) interface process. PVM is a public domain software package, developed by Oak Ridge National Laboratory and enables a heterogeneous collection of computers connected by a network to be used as a single large parallel machine. The PVM approach has been well accepted by the global computing community and has been used successfully for solving large-scale problems in science, industry, and business. Once development of the appropriate interface for linking independent codes through PVM is completed, future versions of component codes can be developed, distributed separately and coupled as needed by the user. This paper describes the coupling of CATHENA to the ELOCA-IST and the TROLG2 codes through a PVM remote process as an illustration of possible code connections. ELOCA (Element Loss Of Cooling Analysis) is the Industry Standard Toolset (IST) code developed by AECL to simulate the thermo-mechanical response of CANDU fuel elements to transient thermalhydraulics boundary conditions. A separate ELOCA driver program

  20. Linking CATHENA with other computer codes through a remote process

    International Nuclear Information System (INIS)

    Vasic, A.; Hanna, B.N.; Waddington, G.M.; Sabourin, G.; Girard, R.

    2005-01-01

    'Full text:' CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a computer code developed by Atomic Energy of Canada Limited (AECL). The code uses a transient, one-dimensional, two-fluid representation of two-phase flow in piping networks. CATHENA is used primarily for the analysis of postulated upset conditions in CANDU reactors; however, the code has found a wider range of applications. In the past, the CATHENA thermalhydraulics code included other specialized codes, i.e. ELOCA and the Point LEPreau CONtrol system (LEPCON) as callable subroutine libraries. The combined program was compiled and linked as a separately named code. This code organizational process is not suitable for independent development, maintenance, validation and version tracking of separate computer codes. The alternative solution to provide code development independence is to link CATHENA to other computer codes through a Parallel Virtual Machine (PVM) interface process. PVM is a public domain software package, developed by Oak Ridge National Laboratory and enables a heterogeneous collection of computers connected by a network to be used as a single large parallel machine. The PVM approach has been well accepted by the global computing community and has been used successfully for solving large-scale problems in science, industry, and business. Once development of the appropriate interface for linking independent codes through PVM is completed, future versions of component codes can be developed, distributed separately and coupled as needed by the user. This paper describes the coupling of CATHENA to the ELOCA-IST and the TROLG2 codes through a PVM remote process as an illustration of possible code connections. ELOCA (Element Loss Of Cooling Analysis) is the Industry Standard Toolset (IST) code developed by AECL to simulate the thermo-mechanical response of CANDU fuel elements to transient thermalhydraulics boundary conditions. A separate ELOCA driver program starts, ends

  1. Development of the computer code to monitor gamma radiation in the nuclear facility environment

    International Nuclear Information System (INIS)

    Akhmad, Y. R.; Pudjiyanto, M.S.

    1998-01-01

    Computer codes for gamma radiation monitoring in the vicinity of nuclear facility which have been developed could be introduced to the commercial potable gamma analyzer. The crucial stage of the first year activity was succeeded ; that is the codes have been tested to transfer data file (pulse high distribution) from Micro NOMAD gamma spectrometer (ORTEC product) and the convert them into dosimetry and physics quantities. Those computer codes are called as GABATAN (Gamma Analyzer of Batan) and NAGABAT (Natural Gamma Analyzer of Batan). GABATAN code can isable to used at various nuclear facilities for analyzing gamma field up to 9 MeV, while NAGABAT could be used for analyzing the contribution of natural gamma rays to the exposure rate in the certain location

  2. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-01-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity tuning and matching problems. (Author) 8 refs., 10 figs

  3. Computer access security code system

    Science.gov (United States)

    Collins, Earl R., Jr. (Inventor)

    1990-01-01

    A security code system for controlling access to computer and computer-controlled entry situations comprises a plurality of subsets of alpha-numeric characters disposed in random order in matrices of at least two dimensions forming theoretical rectangles, cubes, etc., such that when access is desired, at least one pair of previously unused character subsets not found in the same row or column of the matrix is chosen at random and transmitted by the computer. The proper response to gain access is transmittal of subsets which complete the rectangle, and/or a parallelepiped whose opposite corners were defined by first groups of code. Once used, subsets are not used again to absolutely defeat unauthorized access by eavesdropping, and the like.

  4. Microgravity computing codes. User's guide

    Science.gov (United States)

    1982-01-01

    Codes used in microgravity experiments to compute fluid parameters and to obtain data graphically are introduced. The computer programs are stored on two diskettes, compatible with the floppy disk drives of the Apple 2. Two versions of both disks are available (DOS-2 and DOS-3). The codes are written in BASIC and are structured as interactive programs. Interaction takes place through the keyboard of any Apple 2-48K standard system with single floppy disk drive. The programs are protected against wrong commands given by the operator. The programs are described step by step in the same order as the instructions displayed on the monitor. Most of these instructions are shown, with samples of computation and of graphics.

  5. CONCEPT computer code

    International Nuclear Information System (INIS)

    Delene, J.

    1984-01-01

    CONCEPT is a computer code that will provide conceptual capital investment cost estimates for nuclear and coal-fired power plants. The code can develop an estimate for construction at any point in time. Any unit size within the range of about 400 to 1300 MW electric may be selected. Any of 23 reference site locations across the United States and Canada may be selected. PWR, BWR, and coal-fired plants burning high-sulfur and low-sulfur coal can be estimated. Multiple-unit plants can be estimated. Costs due to escalation/inflation and interest during construction are calculated

  6. 40 CFR 194.23 - Models and computer codes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  7. Computer codes for the analysis of flask impact problems

    International Nuclear Information System (INIS)

    Neilson, A.J.

    1984-09-01

    This review identifies typical features of the design of transportation flasks and considers some of the analytical tools required for the analysis of impact events. Because of the complexity of the physical problem, it is unlikely that a single code will adequately deal with all the aspects of the impact incident. Candidate codes are identified on the basis of current understanding of their strengths and limitations. It is concluded that the HONDO-II, DYNA3D AND ABAQUS codes which ar already mounted on UKAEA computers will be suitable tools for use in the analysis of experiments conducted in the proposed AEEW programme and of general flask impact problems. Initial attention should be directed at the DYNA3D and ABAQUS codes with HONDO-II being reserved for situations where the three-dimensional elements of DYNA3D may provide uneconomic simulations in planar or axisymmetric geometries. Attention is drawn to the importance of access to suitable mesh generators to create the nodal coordinate and element topology data required by these structural analysis codes. (author)

  8. Validation of thermal hydraulic computer codes for advanced light water reactor

    International Nuclear Information System (INIS)

    Macek, J.

    2001-01-01

    The Czech Republic operates 4 WWER-440 units, two WWER-1000 units are being finalised (one of them is undergoing commissioning). Thermal-hydraulics Department of the Nuclear Research Institute Rez performs accident analyses for these plants using a number of computer codes. To model the primary and secondary circuits behaviour the system codes ATHLET, CATHARE, RELAP, TRAC are applied. Containment and pressure-suppressure system are modelled with RALOC and MELCOR codes, the reactor power calculations (point and space-neutron kinetics) are made with DYN3D, NESTLE and CDF codes (FLUENT, TRIO) are used for some specific problems. An integral part of the current Czech project 'New Energy Sources' is selection of a new nuclear source. Within this and the preceding projects financed by the Czech Ministry of Industry and Trade and the EU PHARE, the Department carries and has carried out the systematic validation of thermal-hydraulic and reactor physics computer codes applying data obtained on several experimental facilities as well as the real operational data. The paper provides a concise information on these activities of the NRI and its Thermal-hydraulics Department. A detailed example of the system code validation and the consequent utilisation of the results for a real NPP purposes is included. (author)

  9. GPU-computing in econophysics and statistical physics

    Science.gov (United States)

    Preis, T.

    2011-03-01

    A recent trend in computer science and related fields is general purpose computing on graphics processing units (GPUs), which can yield impressive performance. With multiple cores connected by high memory bandwidth, today's GPUs offer resources for non-graphics parallel processing. This article provides a brief introduction into the field of GPU computing and includes examples. In particular computationally expensive analyses employed in financial market context are coded on a graphics card architecture which leads to a significant reduction of computing time. In order to demonstrate the wide range of possible applications, a standard model in statistical physics - the Ising model - is ported to a graphics card architecture as well, resulting in large speedup values.

  10. Statistical theory applications and associated computer codes

    International Nuclear Information System (INIS)

    Prince, A.

    1980-01-01

    The general format is along the same lines as that used in the O.M. Session, i.e. an introduction to the nature of the physical problems and methods of solution based on the statistical model of the nucleus. Both binary and higher multiple reactions are considered. The computer codes used in this session are a combination of optical model and statistical theory. As with the O.M. sessions, the preparation of input and analysis of output are thoroughly examined. Again, comparison with experimental data serves to demonstrate the validity of the results and possible areas for improvement. (author)

  11. SMILEI: A collaborative, open-source, multi-purpose PIC code for the next generation of super-computers

    Science.gov (United States)

    Grech, Mickael; Derouillat, J.; Beck, A.; Chiaramello, M.; Grassi, A.; Niel, F.; Perez, F.; Vinci, T.; Fle, M.; Aunai, N.; Dargent, J.; Plotnikov, I.; Bouchard, G.; Savoini, P.; Riconda, C.

    2016-10-01

    Over the last decades, Particle-In-Cell (PIC) codes have been central tools for plasma simulations. Today, new trends in High-Performance Computing (HPC) are emerging, dramatically changing HPC-relevant software design and putting some - if not most - legacy codes far beyond the level of performance expected on the new and future massively-parallel super computers. SMILEI is a new open-source PIC code co-developed by both plasma physicists and HPC specialists, and applied to a wide range of physics-related studies: from laser-plasma interaction to astrophysical plasmas. It benefits from an innovative parallelization strategy that relies on a super-domain-decomposition allowing for enhanced cache-use and efficient dynamic load balancing. Beyond these HPC-related developments, SMILEI also benefits from additional physics modules allowing to deal with binary collisions, field and collisional ionization and radiation back-reaction. This poster presents the SMILEI project, its HPC capabilities and illustrates some of the physics problems tackled with SMILEI.

  12. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    Energy Technology Data Exchange (ETDEWEB)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  13. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    Science.gov (United States)

    Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix

    2017-07-01

    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.

  14. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    Directory of Open Access Journals (Sweden)

    Daniel Litinski

    2017-09-01

    Full Text Available We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall–superconductor hybrids.

  15. WWER reactor physics code applications

    International Nuclear Information System (INIS)

    Gado, J.; Kereszturi, A.; Gacs, A.; Telbisz, M.

    1994-01-01

    The coupled steady-state reactor physics and thermohydraulic code system KARATE has been developed and applied for WWER-1000 and WWER-440 operational calculations. The 3 D coupled kinetic code KIKO3D has been developed and validated for WWER-440 accident analysis applications. The coupled kinetic code SMARTA developed by VTT Helsinki has been applied for WWER-440 accident analysis. The paper gives a summary of the experience in code development and application. (authors). 10 refs., 2 tabs., 5 figs

  16. Computer code MLCOSP for multiple-correlation and spectrum analysis with a hybrid computer

    International Nuclear Information System (INIS)

    Oguma, Ritsuo; Fujii, Yoshio; Usui, Hozumi; Watanabe, Koichi

    1975-10-01

    Usage of the computer code MLCOSP(Multiple Correlation and Spectrum) developed is described for a hybrid computer installed in JAERI Functions of the hybrid computer and its terminal devices are utilized ingeniously in the code to reduce complexity of the data handling which occurrs in analysis of the multivariable experimental data and to perform the analysis in perspective. Features of the code are as follows; Experimental data can be fed to the digital computer through the analog part of the hybrid computer by connecting with a data recorder. The computed results are displayed in figures, and hardcopies are taken when necessary. Series-messages to the code are shown on the terminal, so man-machine communication is possible. And further the data can be put in through a keyboard, so case study according to the results of analysis is possible. (auth.)

  17. Extreme Scale Computing for First-Principles Plasma Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choogn-Seock [Princeton University

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  18. Turbo Pascal Computer Code for PIXE Analysis

    International Nuclear Information System (INIS)

    Darsono

    2002-01-01

    To optimal utilization of the 150 kV ion accelerator facilities and to govern the analysis technique using ion accelerator, the research and development of low energy PIXE technology has been done. The R and D for hardware of the low energy PIXE installation in P3TM have been carried on since year 2000. To support the R and D of PIXE accelerator facilities in harmonize with the R and D of the PIXE hardware, the development of PIXE software for analysis is also needed. The development of database of PIXE software for analysis using turbo Pascal computer code is reported in this paper. This computer code computes the ionization cross-section, the fluorescence yield, and the stopping power of elements also it computes the coefficient attenuation of X- rays energy. The computer code is named PIXEDASIS and it is part of big computer code planed for PIXE analysis that will be constructed in the near future. PIXEDASIS is designed to be communicative with the user. It has the input from the keyboard. The output shows in the PC monitor, which also can be printed. The performance test of the PIXEDASIS shows that it can be operated well and it can provide data agreement with data form other literatures. (author)

  19. Users guide for NRC145-2 accident assessment computer code

    International Nuclear Information System (INIS)

    Pendergast, M.M.

    1982-08-01

    An accident assessment computer code has been developed for use at the Savannah River Plant. This computer code is based upon NRC Regulatory Guide 1.145 which provides guidence for accident assessements for power reactors. The code contains many options so that the user may utilize the code for many different assessments. For example the code can be used for non-nuclear assessments such as Sulpher Dioxide which may be required by the EPA. A discription of the code is contained in DP-1646. This document is a compilation of step-by-step instructions on how to use the code on the SRP IBM 3308 computer. This document consists of a number of tables which contain copies of computer listings. Some of the computer listings are copies of input; other listings give examples of computer output

  20. Reactor physics computer code development for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs

    International Nuclear Information System (INIS)

    Rastogi, B.P.

    1989-01-01

    This report discusses various reactor physics codes developed for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs. These code packages have been utilized for nuclear design of 500 MWe and new 235 MWe PHWRs. (author)

  1. Data exchange between zero dimensional code and physics platform in the CFETR integrated system code

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guoliang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Shi, Nan [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Zhou, Yifu; Mao, Shifeng [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Jian, Xiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jiale [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Liu, Li; Chan, Vincent [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China)

    2016-11-01

    Highlights: • The workflow of the zero dimensional code and the multi-dimension physics platform of CFETR integrated system codeis introduced. • The iteration process among the codes in the physics platform. • The data transfer between the zero dimensionalcode and the physical platform, including data iteration and validation, and justification for performance parameters.. - Abstract: The China Fusion Engineering Test Reactor (CFETR) integrated system code contains three parts: a zero dimensional code, a physics platform and an engineering platform. We use the zero dimensional code to identify a set of preliminary physics and engineering parameters for CFETR, which is used as input to initiate multi-dimension studies using the physics and engineering platform for design, verification and validation. Effective data exchange between the zero dimensional code and the physical platform is critical for the optimization of CFETR design. For example, in evaluating the impact of impurity radiation on core performance, an open field line code is used to calculate the impurity transport from the first-wall boundary to the pedestal. The impurity particle in the pedestal are used as boundary conditions in a transport code for calculating impurity transport in the core plasma and the impact of core radiation on core performance. Comparison of the results from the multi-dimensional study to those from the zero dimensional code is used to further refine the controlled radiation model. The data transfer between the zero dimensional code and the physical platform, including data iteration and validation, and justification for performance parameters will be presented in this paper.

  2. Benchmarking of epithermal methods in the lattice-physics code EPRI-CELL

    International Nuclear Information System (INIS)

    Williams, M.L.; Wright, R.Q.; Barhen, J.; Rothenstein, W.; Toney, B.

    1982-01-01

    The epithermal cross section shielding methods used in the lattice physics code EPRI-CELL (E-C) have been extensively studied to determine its major approximations and to examine the sensitivity of computed results to these approximations. The study has resulted in several improvements in the original methodology. These include: treatment of the external moderator source with intermediate resonance (IR) theory, development of a new Dancoff factor expression to account for clad interactions, development of a new method for treating resonance interference, and application of a generalized least squares method to compute best-estimate values for the Bell factor and group-dependent IR parameters. The modified E-C code with its new ENDF/B-V cross section library is tested for several numerical benchmark problems. Integral parameters computed by EC are compared with those obtained with point-cross section Monte Carlo calculations, and E-C fine group cross sections are benchmarked against point-cross section descrete ordinates calculations. It is found that the code modifications improve agreement between E-C and the more sophisticated methods. E-C shows excellent agreement on the integral parameters and usually agrees within a few percent on fine-group, shielded cross sections

  3. Evaluation of the SCANAIR Computer Code

    International Nuclear Information System (INIS)

    Jernkvist, Lars Olof; Massih, Ali

    2001-11-01

    The SCANAIR computer code, version 3.2, has been evaluated from the standpoint of its capability to analyze, simulate and predict nuclear fuel behavior during severe power transients. SCANAIR calculates the thermal and mechanical behavior of a pressurized water reactor (PWR) fuel rod during a postulated reactivity initiated accident (RIA), and our evaluation indicates that SCANAIR is a state of the art computational tool for this purpose. Our evaluation starts by reviewing the basic theoretical models in SCANAIR, namely the governing equations for heat transfer, the mechanical response of fuel and clad, and the fission gas release behavior. The numerical methods used to solve the governing equations are briefly reviewed, and the range of applicability of the models and their limitations are discussed and illustrated with examples. Next, the main features of the SCANAIR user interface are delineated. The code requires an extensive amount of input data, in order to define burnup-dependent initial conditions to the simulated RIA. These data must be provided in a special format by a thermal-mechanical fuel rod analysis code. The user also has to supply the transient power history under RIA as input, which requires a code for neutronics calculation. The programming structure and documentation of the code are also addressed in our evaluation. SCANAIR is programmed in Fortran-77, and makes use of several general Fortran-77 libraries for handling input/output, data storage and graphical presentation of computed results. The documentation of SCANAIR and its helping libraries is generally of good quality. A drawback with SCANAIR in its present form, is that the code and its pre- and post-processors are tied to computers running the Unix or Linux operating systems. As part of our evaluation, we have performed a large number of computations with SCANAIR, some of which are documented in this report. The computations presented here include a hypothetical RIA in a high

  4. Computer codes used in particle accelerator design: First edition

    International Nuclear Information System (INIS)

    1987-01-01

    This paper contains a listing of more than 150 programs that have been used in the design and analysis of accelerators. Given on each citation are person to contact, classification of the computer code, publications describing the code, computer and language runned on, and a short description of the code. Codes are indexed by subject, person to contact, and code acronym

  5. MISER-I: a computer code for JOYO fuel management

    International Nuclear Information System (INIS)

    Yamashita, Yoshioki

    1976-06-01

    A computer code ''MISER-I'' is for a nuclear fuel management of Japan Experimental Fast Breeder Reactor JOYO. The nuclear fuel management in JOYO can be regarded as a fuel assembly management because a handling unit of fuel in JOYO plant is a fuel subassembly (core and blanket subassembly), and so the recording of material balance in computer code is made with each subassembly. The input information into computer code is given with each subassembly for a transfer operation, or with one reactor cycle and every one month for a burn-up in reactor core. The output information of MISER-I code is the fuel assembly storage record, fuel storage weight record in each material balance subarea at any specified day, and fuel subassembly transfer history record. Change of nuclear fuel composition and weight due to a burn-up is calculated with JOYO-Monitoring Code by off-line computation system. MISER-I code is written in FORTRAN-IV language for FACOM 230-48 computer. (auth.)

  6. Comparison of computer codes related to the sodium oxide aerosol behavior in a containment building

    International Nuclear Information System (INIS)

    Fermandjian, J.

    1984-09-01

    In order to ensure that the problems of describing the physical behavior of sodium aerosols, during hypothetical fast reactor accidents, were adequately understood, a comparison of the computer codes (ABC/INTG, PNC, Japan; AEROSIM, UKAEA/SRD, United Kingdom; PARDISEKO IIIb, KfK, Germany; AEROSOLS/A2 and AEROSOLS/B1, CEA France) was undertaken in the frame of the CEC: exercise in which code users have run their own codes with a prearranged input

  7. FIRAC - a computer code to predict fire accident effects in nuclear facilities

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Foster, R.D.; Gregory, W.S.

    1983-01-01

    FIRAC is a medium-sized computer code designed to predict fire-induced flows, temperatures, and material transport within the ventilating systems and other airflow pathways in nuclear-related facilities. The code is designed to analyze the behavior of interconnected networks of rooms and typical ventilation system components. This code is one in a family of computer codes that is designed to provide improved methods of safety analysis for the nuclear industry. The structure of this code closely follows that of the previously developed TVENT and EVENT codes. Because a lumped-parameter formulation is used, this code is particularly suitable for calculating the effects of fires in the far field (that is, in regions removed from the fire compartment), where the fire may be represented parametrically. However, a fire compartment model to simulate conditions in the enclosure is included. This model provides transport source terms to the ventilation system that can affect its operation and in turn affect the fire. A basic material transport capability that features the effects of convection, deposition, entrainment, and filtration of material is included. The interrelated effects of filter plugging, heat transfer, gas dynamics, and material transport are taken into account. In this paper the authors summarize the physical models used to describe the gas dynamics, material transport, and heat transfer processes. They also illustrate how a typical facility is modeled using the code

  8. HEPLIB '91: International users meeting on the support and environments of high energy physics computing

    International Nuclear Information System (INIS)

    Johnstad, H.

    1991-01-01

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, data base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards

  9. A method of non-contact reading code based on computer vision

    Science.gov (United States)

    Zhang, Chunsen; Zong, Xiaoyu; Guo, Bingxuan

    2018-03-01

    With the purpose of guarantee the computer information exchange security between internal and external network (trusted network and un-trusted network), A non-contact Reading code method based on machine vision has been proposed. Which is different from the existing network physical isolation method. By using the computer monitors, camera and other equipment. Deal with the information which will be on exchanged, Include image coding ,Generate the standard image , Display and get the actual image , Calculate homography matrix, Image distort correction and decoding in calibration, To achieve the computer information security, Non-contact, One-way transmission between the internal and external network , The effectiveness of the proposed method is verified by experiments on real computer text data, The speed of data transfer can be achieved 24kb/s. The experiment shows that this algorithm has the characteristics of high security, fast velocity and less loss of information. Which can meet the daily needs of the confidentiality department to update the data effectively and reliably, Solved the difficulty of computer information exchange between Secret network and non-secret network, With distinctive originality, practicability, and practical research value.

  10. Hamor-2: a computer code for LWR inventory calculation

    International Nuclear Information System (INIS)

    Guimaraes, L.N.F.; Marzo, M.A.S.

    1985-01-01

    A method for calculating the accuracy inventory of LWR reactors is presented. This method uses the Hamor-2 computer code. Hamor-2 is obtained from the coupling of two other computer codes Hammer-Techion and Origen-2 for testing Hamor-2, its results were compared to concentration values measured from activides of two PWR reactors; Kernkraftwerk Obrighein (KWO) and H.B. Robinson (HBR). These actinides are U 235 , U 236 , U 238 , Pu 239 , Pu 241 and PU 242 . The computer code Hammor-2 shows better results than the computer code Origem-2, when both are compared with experimental results. (E.G.) [pt

  11. The HELIOS-2 lattice physics code

    International Nuclear Information System (INIS)

    Wemple, C.A.; Gheorghiu, H-N.M.; Stamm'ler, R.J.J.; Villarino, E.A.

    2008-01-01

    Major advances have been made in the HELIOS code, resulting in the impending release of a new version, HELIOS-2. The new code includes a method of characteristics (MOC) transport solver to supplement the existing collision probabilities (CP) solver. A 177-group, ENDF/B-VII nuclear data library has been developed for inclusion with the new code package. Computational tests have been performed to verify the performance of the MOC solver against the CP solver, and validation testing against computational and measured benchmarks is underway. Results to-date of the verification and validation testing are presented, demonstrating the excellent performance of the new transport solver and nuclear data library. (Author)

  12. Selection of Computer Codes for Shallow Land Waste Disposal in PPTA Serpong

    International Nuclear Information System (INIS)

    Syahrir

    1996-01-01

    Selection of Computer Codes for Shallow Land Waste Disposal in PPTA Serpong. Models and computer codes have been selected for safety assessment of near surface waste disposal facility. This paper provides a summary and overview of the methodology and codes selected. The methodology allows analyses of dose to individuals from offsite releases under normal conditions as well as on-site doses to inadvertent intruders. A demonstration in the case of shallow land waste disposal in Nuclear Research Establishment are in Serpong has been given for normal release scenario. The assessment includes infiltration of rainfall, source-term, ground water (well) and surface water transport, food-chain and dosimetry. The results show dose history of maximally exposed individuals. The codes used are VS2DT, PAGAN and GENII. The application of 1 m silt loam as a moisture barrier cover decreases flow in the disposal unit by a factor of 27. The selected radionuclides show variety of dose histories according to their chemical and physical characteristics and behavior in the environment

  13. V.S.O.P. (99/05) computer code system

    International Nuclear Information System (INIS)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Scherer, W.

    2005-11-01

    V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to HTRs and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. V.S.O.P.(99 / 05) represents the further development of V.S.O.P. (99). Compared to its precursor, the code system has been improved in many details. Major improvements and extensions have been included concerning the neutron spectrum calculation, the 3-d neutron diffusion options, and the thermal hydraulic section with respect to 'multi-pass'-fuelled pebblebed cores. This latest code version was developed and tested under the WINDOWS-XP - operating system. The storage requirement for the executables and the basic libraries associated with the code amounts to about 15 MB. Another 5 MB are required - if desired - for storage of the source code (∼65000 Fortran statements). (orig.)

  14. V.S.O.P. (99/05) computer code system

    Energy Technology Data Exchange (ETDEWEB)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Scherer, W.

    2005-11-01

    V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to HTRs and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. V.S.O.P.(99 / 05) represents the further development of V.S.O.P. (99). Compared to its precursor, the code system has been improved in many details. Major improvements and extensions have been included concerning the neutron spectrum calculation, the 3-d neutron diffusion options, and the thermal hydraulic section with respect to 'multi-pass'-fuelled pebblebed cores. This latest code version was developed and tested under the WINDOWS-XP - operating system. The storage requirement for the executables and the basic libraries associated with the code amounts to about 15 MB. Another 5 MB are required - if desired - for storage of the source code ({approx}65000 Fortran statements). (orig.)

  15. Computer codes for level 1 probabilistic safety assessment

    International Nuclear Information System (INIS)

    1990-06-01

    Probabilistic Safety Assessment (PSA) entails several laborious tasks suitable for computer codes assistance. This guide identifies these tasks, presents guidelines for selecting and utilizing computer codes in the conduct of the PSA tasks and for the use of PSA results in safety management and provides information on available codes suggested or applied in performing PSA in nuclear power plants. The guidance is intended for use by nuclear power plant system engineers, safety and operating personnel, and regulators. Large efforts are made today to provide PC-based software systems and PSA processed information in a way to enable their use as a safety management tool by the nuclear power plant overall management. Guidelines on the characteristics of software needed for management to prepare a software that meets their specific needs are also provided. Most of these computer codes are also applicable for PSA of other industrial facilities. The scope of this document is limited to computer codes used for the treatment of internal events. It does not address other codes available mainly for the analysis of external events (e.g. seismic analysis) flood and fire analysis. Codes discussed in the document are those used for probabilistic rather than for phenomenological modelling. It should be also appreciated that these guidelines are not intended to lead the user to selection of one specific code. They provide simply criteria for the selection. Refs and tabs

  16. A study on the nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Huh, Young Hwan; Lee, Jong Bok; Choi, Young Gil; Suh, Soong Hyok; Kang, Byong Heon; Kim, Hee Kyung; Kim, Ko Ryeo; Park, Soo Jin

    1990-12-01

    According to current software development and quality assurance trends. It is necessary to develop computer code management system for nuclear programs. For this reason, the project started in 1987. Main objectives of the project are to establish a nuclear computer code management system, to secure software reliability, and to develop nuclear computer code packages. Contents of performing the project in this year were to operate and maintain computer code information system of KAERI computer codes, to develop application tool, AUTO-i, for solving the 1st and 2nd moments of inertia on polygon or circle, and to research nuclear computer code conversion between different machines. For better supporting the nuclear code availability and reliability, assistance from users who are using codes is required. Lastly, for easy reference about the codes information, we presented list of code names and information on the codes which were introduced or developed during this year. (Author)

  17. Computer and compiler effects on code results: status report

    International Nuclear Information System (INIS)

    1996-01-01

    Within the framework of the international effort on the assessment of computer codes, which are designed to describe the overall reactor coolant system (RCS) thermalhydraulic response, core damage progression, and fission product release and transport during severe accidents, there has been a continuous debate as to whether the code results are influenced by different code users or by different computers or compilers. The first aspect, the 'Code User Effect', has been investigated already. In this paper the other aspects will be discussed and proposals are given how to make large system codes insensitive to different computers and compilers. Hardware errors and memory problems are not considered in this report. The codes investigated herein are integrated code systems (e. g. ESTER, MELCOR) and thermalhydraulic system codes with extensions for severe accident simulation (e. g. SCDAP/RELAP, ICARE/CATHARE, ATHLET-CD), and codes to simulate fission product transport (e. g. TRAPMELT, SOPHAEROS). Since all of these codes are programmed in Fortran 77, the discussion herein is based on this programming language although some remarks are made about Fortran 90. Some observations about different code results by using different computers are reported and possible reasons for this unexpected behaviour are listed. Then methods are discussed how to avoid portability problems

  18. HUDU: The Hanford Unified Dose Utility computer code

    International Nuclear Information System (INIS)

    Scherpelz, R.I.

    1991-02-01

    The Hanford Unified Dose Utility (HUDU) computer program was developed to provide rapid initial assessment of radiological emergency situations. The HUDU code uses a straight-line Gaussian atmospheric dispersion model to estimate the transport of radionuclides released from an accident site. For dose points on the plume centerline, it calculates internal doses due to inhalation and external doses due to exposure to the plume. The program incorporates a number of features unique to the Hanford Site (operated by the US Department of Energy), including a library of source terms derived from various facilities' safety analysis reports. The HUDU code was designed to run on an IBM-PC or compatible personal computer. The user interface was designed for fast and easy operation with minimal user training. The theoretical basis and mathematical models used in the HUDU computer code are described, as are the computer code itself and the data libraries used. Detailed instructions for operating the code are also included. Appendices to the report contain descriptions of the program modules, listings of HUDU's data library, and descriptions of the verification tests that were run as part of the code development. 14 refs., 19 figs., 2 tabs

  19. Compendium of computer codes for the researcher in magnetic fusion energy

    International Nuclear Information System (INIS)

    Porter, G.D.

    1989-01-01

    This is a compendium of computer codes, which are available to the fusion researcher. It is intended to be a document that permits a quick evaluation of the tools available to the experimenter who wants to both analyze his data, and compare the results of his analysis with the predictions of available theories. This document will be updated frequently to maintain its usefulness. I would appreciate receiving further information about codes not included here from anyone who has used them. The information required includes a brief description of the code (including any special features), a bibliography of the documentation available for the code and/or the underlying physics, a list of people to contact for help in running the code, instructions on how to access the code, and a description of the output from the code. Wherever possible, the code contacts should include people from each of the fusion facilities so that the novice can talk to someone ''down the hall'' when he first tries to use a code. I would also appreciate any comments about possible additions and improvements in the index. I encourage any additional criticism of this document. 137 refs

  20. RAP-3A Computer code for thermal and hydraulic calculations in steady state conditions for fuel element clusters

    International Nuclear Information System (INIS)

    Popescu, C.; Biro, L.; Iftode, I.; Turcu, I.

    1975-10-01

    The RAP-3A computer code is designed for calculating the main steady state thermo-hydraulic parameters of multirod fuel clusters with liquid metal cooling. The programme provides a double accuracy computation of temperatures and axial enthalpy distributions of pressure losses and axial heat flux distributions in fuel clusters before boiling conditions occur. Physical and mathematical models as well as a sample problem are presented. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer

  1. Computer codes for ventilation in nuclear facilities

    International Nuclear Information System (INIS)

    Mulcey, P.

    1987-01-01

    In this paper the authors present some computer codes, developed in the last years, for ventilation and radioprotection. These codes are used for safety analysis in the conception, exploitation and dismantlement of nuclear facilities. The authors present particularly: DACC1 code used for aerosol deposit in sampling circuit of radiation monitors; PIAF code used for modelization of complex ventilation system; CLIMAT 6 code used for optimization of air conditioning system [fr

  2. Automated uncertainty analysis methods in the FRAP computer codes

    International Nuclear Information System (INIS)

    Peck, S.O.

    1980-01-01

    A user oriented, automated uncertainty analysis capability has been incorporated in the Fuel Rod Analysis Program (FRAP) computer codes. The FRAP codes have been developed for the analysis of Light Water Reactor fuel rod behavior during steady state (FRAPCON) and transient (FRAP-T) conditions as part of the United States Nuclear Regulatory Commission's Water Reactor Safety Research Program. The objective of uncertainty analysis of these codes is to obtain estimates of the uncertainty in computed outputs of the codes is to obtain estimates of the uncertainty in computed outputs of the codes as a function of known uncertainties in input variables. This paper presents the methods used to generate an uncertainty analysis of a large computer code, discusses the assumptions that are made, and shows techniques for testing them. An uncertainty analysis of FRAP-T calculated fuel rod behavior during a hypothetical loss-of-coolant transient is presented as an example and carried through the discussion to illustrate the various concepts

  3. Study of nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Ryu, Chang Mo; Kim, Yeon Seung; Eom, Heung Seop; Lee, Jong Bok; Kim, Ho Joon; Choi, Young Gil; Kim, Ko Ryeo

    1989-01-01

    Software maintenance is one of the most important problems since late 1970's.We wish to develop a nuclear computer code system to maintenance and manage KAERI's nuclear software. As a part of this system, we have developed three code management programs for use on CYBER and PC systems. They are used in systematic management of computer code in KAERI. The first program is embodied on the CYBER system to rapidly provide information on nuclear codes to the users. The second and the third programs were embodied on the PC system for the code manager and for the management of data in korean language, respectively. In the requirement analysis, we defined each code, magnetic tape, manual and abstract information data. In the conceptual design, we designed retrieval, update, and output functions. In the implementation design, we described the technical considerations of database programs, utilities, and directions for the use of databases. As a result of this research, we compiled the status of nuclear computer codes which belonged KAERI until September, 1988. Thus, by using these three database programs, we could provide the nuclear computer code information to the users more rapidly. (Author)

  4. Implantation of FRAPCON-2 code in HB computer

    International Nuclear Information System (INIS)

    Silva, C.F. da.

    1987-05-01

    The modifications carried out for implanting FRAPCON-2 computer code in the HB DPS-T7 computer are presented. The FRAPCON-2 code calculates thermo-mechanical response during long period of burnup in stationary state for fuel rods of PWR type reactors. (M.C.K.)

  5. Introduction to massively-parallel computing in high-energy physics

    CERN Document Server

    AUTHOR|(CDS)2083520

    1993-01-01

    Ever since computers were first used for scientific and numerical work, there has existed an "arms race" between the technical development of faster computing hardware, and the desires of scientists to solve larger problems in shorter time-scales. However, the vast leaps in processor performance achieved through advances in semi-conductor science have reached a hiatus as the technology comes up against the physical limits of the speed of light and quantum effects. This has lead all high performance computer manufacturers to turn towards a parallel architecture for their new machines. In these lectures we will introduce the history and concepts behind parallel computing, and review the various parallel architectures and software environments currently available. We will then introduce programming methodologies that allow efficient exploitation of parallel machines, and present case studies of the parallelization of typical High Energy Physics codes for the two main classes of parallel computing architecture (S...

  6. Computational physics

    CERN Document Server

    Newman, Mark

    2013-01-01

    A complete introduction to the field of computational physics, with examples and exercises in the Python programming language. Computers play a central role in virtually every major physics discovery today, from astrophysics and particle physics to biophysics and condensed matter. This book explains the fundamentals of computational physics and describes in simple terms the techniques that every physicist should know, such as finite difference methods, numerical quadrature, and the fast Fourier transform. The book offers a complete introduction to the topic at the undergraduate level, and is also suitable for the advanced student or researcher who wants to learn the foundational elements of this important field.

  7. NAUA-Mod 3 - A computer code for the description of the aerosol behaviour in a condensing atmosphere

    International Nuclear Information System (INIS)

    Bunz, H.; Koyro, M.; Schoeck, W.

    1981-09-01

    This report gives a description of the computer code NAUA-Mod 3. Its purpose is to calculate the behaviour of a polydisperse aerosol system in the containment of a light water reactor after a postulated core meltdown accident as a function of the time. The most important effect being added to those already taken into account in comparable computer codes is the steam condensation onto the particles. In the report the equations taken as basis of the code are given and the physical processes they are derived from are explained. Another main objekt of the report is the description of the numerical methods used as well as the input and output of the code. (orig.) [de

  8. Computer code FIT

    International Nuclear Information System (INIS)

    Rohmann, D.; Koehler, T.

    1987-02-01

    This is a description of the computer code FIT, written in FORTRAN-77 for a PDP 11/34. FIT is an interactive program to decude position, width and intensity of lines of X-ray spectra (max. length of 4K channels). The lines (max. 30 lines per fit) may have Gauss- or Voigt-profile, as well as exponential tails. Spectrum and fit can be displayed on a Tektronix terminal. (orig.) [de

  9. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    International Nuclear Information System (INIS)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files

  10. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files.

  11. Computational physics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-01-15

    Computers have for many years played a vital role in the acquisition and treatment of experimental data, but they have more recently taken up a much more extended role in physics research. The numerical and algebraic calculations now performed on modern computers make it possible to explore consequences of basic theories in a way which goes beyond the limits of both analytic insight and experimental investigation. This was brought out clearly at the Conference on Perspectives in Computational Physics, held at the International Centre for Theoretical Physics, Trieste, Italy, from 29-31 October.

  12. Computational physics

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Computers have for many years played a vital role in the acquisition and treatment of experimental data, but they have more recently taken up a much more extended role in physics research. The numerical and algebraic calculations now performed on modern computers make it possible to explore consequences of basic theories in a way which goes beyond the limits of both analytic insight and experimental investigation. This was brought out clearly at the Conference on Perspectives in Computational Physics, held at the International Centre for Theoretical Physics, Trieste, Italy, from 29-31 October

  13. APC: A New Code for Atmospheric Polarization Computations

    Science.gov (United States)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2014-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface.

  14. Quantum computing with Majorana fermion codes

    Science.gov (United States)

    Litinski, Daniel; von Oppen, Felix

    2018-05-01

    We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.

  15. On The Computational Capabilities of Physical Systems. Part 2; Relationship With Conventional Computer Science

    Science.gov (United States)

    Wolpert, David H.; Koga, Dennis (Technical Monitor)

    2000-01-01

    In the first of this pair of papers, it was proven that there cannot be a physical computer to which one can properly pose any and all computational tasks concerning the physical universe. It was then further proven that no physical computer C can correctly carry out all computational tasks that can be posed to C. As a particular example, this result means that no physical computer that can, for any physical system external to that computer, take the specification of that external system's state as input and then correctly predict its future state before that future state actually occurs; one cannot build a physical computer that can be assured of correctly "processing information faster than the universe does". These results do not rely on systems that are infinite, and/or non-classical, and/or obey chaotic dynamics. They also hold even if one uses an infinitely fast, infinitely dense computer, with computational powers greater than that of a Turing Machine. This generality is a direct consequence of the fact that a novel definition of computation - "physical computation" - is needed to address the issues considered in these papers, which concern real physical computers. While this novel definition does not fit into the traditional Chomsky hierarchy, the mathematical structure and impossibility results associated with it have parallels in the mathematics of the Chomsky hierarchy. This second paper of the pair presents a preliminary exploration of some of this mathematical structure. Analogues of Chomskian results concerning universal Turing Machines and the Halting theorem are derived, as are results concerning the (im)possibility of certain kinds of error-correcting codes. In addition, an analogue of algorithmic information complexity, "prediction complexity", is elaborated. A task-independent bound is derived on how much the prediction complexity of a computational task can differ for two different reference universal physical computers used to solve that task

  16. Two-dimensional color-code quantum computation

    International Nuclear Information System (INIS)

    Fowler, Austin G.

    2011-01-01

    We describe in detail how to perform universal fault-tolerant quantum computation on a two-dimensional color code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent logical qubits. Triple-defect logical qubits are deformed into isolated triangular sections of color code to enable transversal implementation of all single logical qubit Clifford group gates. Controlled-NOT (CNOT) is implemented between pairs of triple-defect logical qubits via braiding.

  17. MELCOR computer code manuals

    Energy Technology Data Exchange (ETDEWEB)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  18. MELCOR computer code manuals

    International Nuclear Information System (INIS)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L.; Hodge, S.A.; Hyman, C.R.; Sanders, R.L.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR's phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package

  19. Revised uranium--plutonium cycle PWR and BWR models for the ORIGEN computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; Bjerke, M.A.; Morrison, G.W.; Petrie, L.M.

    1978-09-01

    Reactor physics calculations and literature searches have been conducted, leading to the creation of revised enriched-uranium and enriched-uranium/mixed-oxide-fueled PWR and BWR reactor models for the ORIGEN computer code. These ORIGEN reactor models are based on cross sections that have been taken directly from the reactor physics codes and eliminate the need to make adjustments in uncorrected cross sections in order to obtain correct depletion results. Revised values of the ORIGEN flux parameters THERM, RES, and FAST were calculated along with new parameters related to the activation of fuel-assembly structural materials not located in the active fuel zone. Recommended fuel and structural material masses and compositions are presented. A summary of the new ORIGEN reactor models is given

  20. Reactor safety computer code development at INEL

    International Nuclear Information System (INIS)

    Johnsen, G.W.

    1985-01-01

    This report provides a brief overview of the computer code development programs being conducted at EG and G Idaho, Inc. on behalf of US Nuclear Regulatory Commission and the Department of Energy, Idaho Operations Office. Included are descriptions of the codes being developed, their development status as of the date of this report, and resident code development expertise

  1. SKEMA - A computer code to estimate atmospheric dispersion

    International Nuclear Information System (INIS)

    Sacramento, A.M. do.

    1985-01-01

    This computer code is a modified version of DWNWND code, developed in Oak Ridge National Laboratory. The Skema code makes an estimative of concentration in air of a material released in atmosphery, by ponctual source. (C.M.) [pt

  2. Current status of the reactor physics code WIMS and recent developments

    International Nuclear Information System (INIS)

    Lindley, B.A.; Hosking, J.G.; Smith, P.J.; Powney, D.J.; Tollit, B.S.; Newton, T.D.; Perry, R.; Ware, T.C.; Smith, P.N.

    2017-01-01

    Highlights: • The current status of the WIMS reactor physics code is presented. • Applications range from 2D lattice calculations up to 3D whole core geometries. • Gamma transport and thermal-hydraulic feedback models added. • Calculations methodologies described for several Gen II, III and IV reactor types. - Abstract: The WIMS modular reactor physics code has been under continuous development for over fifty years. This paper discusses the current status of WIMS and recent developments, in particular developments to the resonance shielding methodology and 3D transport solvers. Traditionally, WIMS is used to perform 2D lattice calculations, typically to generate homogenized reactor physics parameters for a whole core code such as PANTHER. However, with increasing computational resources there has been a growing trend for performing transport calculations on larger problems, up to and including 3D full core models. To this end, a number of the WIMS modules have been parallelised to allow efficient performance for whole core calculations, and WIMS includes a 3D method of characteristics solver with reflective and once-through tracking methods, which can be used to analyse problems of varying size and complexity. A time-dependent flux solver has been incorporated and thermal-hydraulic modelling capability is also being added to allow steady-state and transient coupled calculations to be performed. WIMS has been validated against a range of experimental data and other codes, in particular for water and graphite moderated thermal reactors. Future developments will include improved parallelization, enhancing the thermal-hydraulic feedback models and validating the WIMS/PANTHER code system for BWRs and fast reactors.

  3. The r-Java 2.0 code: nuclear physics

    Science.gov (United States)

    Kostka, M.; Koning, N.; Shand, Z.; Ouyed, R.; Jaikumar, P.

    2014-08-01

    Aims: We present r-Java 2.0, a nucleosynthesis code for open use that performs r-process calculations, along with a suite of other analysis tools. Methods: Equipped with a straightforward graphical user interface, r-Java 2.0 is capable of simulating nuclear statistical equilibrium (NSE), calculating r-process abundances for a wide range of input parameters and astrophysical environments, computing the mass fragmentation from neutron-induced fission and studying individual nucleosynthesis processes. Results: In this paper we discuss enhancements to this version of r-Java, especially the ability to solve the full reaction network. The sophisticated fission methodology incorporated in r-Java 2.0 that includes three fission channels (beta-delayed, neutron-induced, and spontaneous fission), along with computation of the mass fragmentation, is compared to the upper limit on mass fission approximation. The effects of including beta-delayed neutron emission on r-process yield is studied. The role of Coulomb interactions in NSE abundances is shown to be significant, supporting previous findings. A comparative analysis was undertaken during the development of r-Java 2.0 whereby we reproduced the results found in the literature from three other r-process codes. This code is capable of simulating the physical environment of the high-entropy wind around a proto-neutron star, the ejecta from a neutron star merger, or the relativistic ejecta from a quark nova. Likewise the users of r-Java 2.0 are given the freedom to define a custom environment. This software provides a platform for comparing proposed r-process sites.

  4. Computer code qualification program for the Advanced CANDU Reactor

    International Nuclear Information System (INIS)

    Popov, N.K.; Wren, D.J.; Snell, V.G.; White, A.J.; Boczar, P.G.

    2003-01-01

    Atomic Energy of Canada Ltd (AECL) has developed and implemented a Software Quality Assurance program (SQA) to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. This paper provides an overview of the computer programs used in Advanced CANDU Reactor (ACR) safety analysis, and assessment of their applicability in the safety analyses of the ACR design. An outline of the incremental validation program, and an overview of the experimental program in support of the code validation are also presented. An outline of the SQA program used to qualify these computer codes is also briefly presented. To provide context to the differences in the SQA with respect to current CANDUs, the paper also provides an overview of the ACR design features that have an impact on the computer code qualification. (author)

  5. VARSKIN MOD 2 and SADDE MOD2: Computer codes for assessing skin dose from skin contamination

    International Nuclear Information System (INIS)

    Durham, J.S.

    1992-12-01

    The computer code VARSKIN has been modified to calculate dose to skin from three-dimensional sources, sources separated from the skin by layers of protective clothing, and gamma dose from certain radionuclides correction for backscatter has also been incorporated for certain geometries. This document describes the new code, VARSKIN Mod 2, including installation and operation instructions, provides detailed descriptions of the models used, and suggests methods for avoiding misuse of the code. The input data file for VARSKIN Mod 2 has been modified to reflect current physical data, to include the contribution to dose from internal conversion and Auger electrons, and to reflect a correction for low-energy electrons. In addition, the computer code SADDE: Scaled Absorbed Dose Distribution Evaluator has been modified to allow the generation of scaled absorbed dose distributions for mixtures of radionuclides and intereat conversion and Auger electrons. This new code, SADDE Mod 2, is also described in this document. Instructions for installation and operation of the code and detailed descriptions of the models used in the code are provided

  6. Computer code conversion using HISTORIAN

    International Nuclear Information System (INIS)

    Matsumoto, Kiyoshi; Kumakura, Toshimasa.

    1990-09-01

    When a computer program written for a computer A is converted for a computer B, in general, the A version source program is rewritten for B version. However, in this way of program conversion, the following inconvenient problems arise. 1) The original statements to be rewritten for B version are lost. 2) If the original statements of the A version rewritten for B version would remain as comment lines, the B version source program becomes quite large. 3) When update directives of the program are mailed from the organization which developed the program or when some modifications are needed for the program, it is difficult to point out the part to be updated or modified in the B version source program. To solve these problems, the conversion method using the general-purpose software management aid system, HISTORIAN, has been introduced. This conversion method makes a large computer code a easy-to-use program for use to update, modify or improve after the conversion. This report describes the planning and procedures of the conversion method and the MELPROG-PWR/MOD1 code conversion from the CRAY version to the JAERI FACOM version as an example. This report would provide useful information for those who develop or introduce large programs. (author)

  7. Development of DUST: A computer code that calculates release rates from a LLW disposal unit

    International Nuclear Information System (INIS)

    Sullivan, T.M.

    1992-01-01

    Performance assessment of a Low-Level Waste (LLW) disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the disposal unit source term). The major physical processes that influence the source term are water flow, container degradation, waste form leaching, and radionuclide transport. A computer code, DUST (Disposal Unit Source Term) has been developed which incorporates these processes in a unified manner. The DUST code improves upon existing codes as it has the capability to model multiple container failure times, multiple waste form release properties, and radionuclide specific transport properties. Verification studies performed on the code are discussed

  8. Holonomic surface codes for fault-tolerant quantum computation

    Science.gov (United States)

    Zhang, Jiang; Devitt, Simon J.; You, J. Q.; Nori, Franco

    2018-02-01

    Surface codes can protect quantum information stored in qubits from local errors as long as the per-operation error rate is below a certain threshold. Here we propose holonomic surface codes by harnessing the quantum holonomy of the system. In our scheme, the holonomic gates are built via auxiliary qubits rather than the auxiliary levels in multilevel systems used in conventional holonomic quantum computation. The key advantage of our approach is that the auxiliary qubits are in their ground state before and after each gate operation, so they are not involved in the operation cycles of surface codes. This provides an advantageous way to implement surface codes for fault-tolerant quantum computation.

  9. Resonance interference method in lattice physics code stream

    International Nuclear Information System (INIS)

    Choi, Sooyoung; Khassenov, Azamat; Lee, Deokjung

    2015-01-01

    Newly developed resonance interference model is implemented in the lattice physics code STREAM, and the model shows a significant improvement in computing accurate eigenvalues. Equivalence theory is widely used in production calculations to generate the effective multigroup (MG) cross-sections (XS) for commercial reactors. Although a lot of methods have been developed to enhance the accuracy in computing effective XSs, the current resonance treatment methods still do not have a clear resonance interference model. The conventional resonance interference model simply adds the absorption XSs of resonance isotopes to the background XS. However, the conventional models show non-negligible errors in computing effective XSs and eigenvalues. In this paper, a resonance interference factor (RIF) library method is proposed. This method interpolates the RIFs in a pre-generated RIF library and corrects the effective XS, rather than solving the time consuming slowing down calculation. The RIF library method is verified for homogeneous and heterogeneous problems. The verification results using the proposed method show significant improvements of accuracy in treating the interference effect. (author)

  10. The FOCON96 1.0 computer code

    International Nuclear Information System (INIS)

    Merle-Szeremeta, A.; Thomassin, A.

    1999-01-01

    The Institute of Protection and Nuclear Safety (I.P.S.N.) has developed a computer code, FOCON96 1.0 to calculate the dosimetric consequences of atmospheric radioactive releases from nuclear installations after several years of usual operation. This communication describes the principal characteristics of FOCON96 1.0 and its functionalities. The principal elements of a comparison between FOCON96 1.0 and PC-CREAM ( European computer code developed by the N.R.P.B. and answering the same criteria) are given here. (N.C.)

  11. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    International Nuclear Information System (INIS)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E.; Tills, J.

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions

  12. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E. [Sandia National Labs., Albuquerque, NM (United States); Tills, J. [J. Tills and Associates, Inc., Sandia Park, NM (United States)

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.

  13. Computer Security: is your code sane?

    CERN Multimedia

    Stefan Lueders, Computer Security Team

    2015-01-01

    How many of us write code? Software? Programs? Scripts? How many of us are properly trained in this and how well do we do it? Do we write functional, clean and correct code, without flaws, bugs and vulnerabilities*? In other words: are our codes sane?   Figuring out weaknesses is not that easy (see our quiz in an earlier Bulletin article). Therefore, in order to improve the sanity of your code, prevent common pit-falls, and avoid the bugs and vulnerabilities that can crash your code, or – worse – that can be misused and exploited by attackers, the CERN Computer Security team has reviewed its recommendations for checking the security compliance of your code. “Static Code Analysers” are stand-alone programs that can be run on top of your software stack, regardless of whether it uses Java, C/C++, Perl, PHP, Python, etc. These analysers identify weaknesses and inconsistencies including: employing undeclared variables; expressions resu...

  14. Computer codes for shaping the magnetic field of the JINR phasotron

    International Nuclear Information System (INIS)

    Zaplatin, N.L.; Morozov, N.A.

    1983-01-01

    The computer codes providing for the shaping the magnetic field of the JINR high current phasotron are presented. Using these codes the control for the magnetic field mapping was realized in on- or off-line regimes. Then these field parameters were calculated and ferromagnetic correcting elements and trim coils setting were chosen. Some computer codes were realised for the magnetic field horizontal component measurements. The data are presented on some codes possibilities. The codes were used on the EC-1010 and the CDC-6500 computers

  15. Advanced computations in plasma physics

    International Nuclear Information System (INIS)

    Tang, W.M.

    2002-01-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to

  16. The impact of changing computing technology on EPRI [Electric Power Research Institute] nuclear analysis codes

    International Nuclear Information System (INIS)

    Breen, R.J.

    1988-01-01

    The Nuclear Reload Management Program of the Nuclear Power Division (NPD) of the Electric Power Research Institute (EPRI) has the responsibility for initiating and managing applied research in selected nuclear engineering analysis functions for nuclear utilities. The computer systems that result from the research projects consist of large FORTRAN programs containing elaborate computational algorithms used to access such areas as core physics, fuel performance, thermal hydraulics, and transient analysis. This paper summarizes a study of computing technology trends sponsored by the NPD. The approach taken was to interview hardware and software vendors, industry observers, and utility personnel focusing on expected changes that will occur in the computing industry over the next 3 to 5 yr. Particular emphasis was placed on how these changes will impact engineering/scientific computer code development, maintenance, and use. In addition to the interviews, a workshop was held with attendees from EPRI, Power Computing Company, industry, and utilities. The workshop provided a forum for discussing issues and providing input into EPRI's long-term computer code planning process

  17. COMPUTATION FORMAT computer codes X4TOC4 and PLOTC4. Implementing and Testing on a Personal Computer

    International Nuclear Information System (INIS)

    McLaughlin, P.K.

    1987-05-01

    This document describes the contents of the diskette containing the COMPUTATION FORMAT codes X4TOC4 and PLOTC4 by D.E. Cullen, and example data for use in implementing and testing these codes on a Personal Computer of the type IBM-PC/AT. Upon request the codes are available from the IAEA Nuclear Data Section, free of charge, on a single diskette. (author)

  18. Physical layer network coding

    DEFF Research Database (Denmark)

    Fukui, Hironori; Popovski, Petar; Yomo, Hiroyuki

    2014-01-01

    Physical layer network coding (PLNC) has been proposed to improve throughput of the two-way relay channel, where two nodes communicate with each other, being assisted by a relay node. Most of the works related to PLNC are focused on a simple three-node model and they do not take into account...

  19. IVA3: Computer code for modelling of transient three dimensional three phase flow in complicated geometry

    International Nuclear Information System (INIS)

    Kolev, N.I.

    1991-12-01

    This report describes the input and output ov IVA3 computer code and the procedure how to compile, link, and run the code. The common blocs recorded for restarts files and post processing are described in detail as well as the IVA3 interface for thermodynamic and thermo physical properties. Some recommendations for the input preparation together with some detailed comments on some architectural and functional features of the code are given in order to give some insight of the caused actions by changing some control parameters. (orig.) [de

  20. Quasi-optical converters for high-power gyrotrons: a brief review of physical models, numerical methods and computer codes

    International Nuclear Information System (INIS)

    Sabchevski, S; Zhelyazkov, I; Benova, E; Atanassov, V; Dankov, P; Thumm, M; Arnold, A; Jin, J; Rzesnicki, T

    2006-01-01

    Quasi-optical (QO) mode converters are used to transform electromagnetic waves of complex structure and polarization generated in gyrotron cavities into a linearly polarized, Gaussian-like beam suitable for transmission. The efficiency of this conversion as well as the maintenance of low level of diffraction losses are crucial for the implementation of powerful gyrotrons as radiation sources for electron-cyclotron-resonance heating of fusion plasmas. The use of adequate physical models, efficient numerical schemes and up-to-date computer codes may provide the high accuracy necessary for the design and analysis of these devices. In this review, we briefly sketch the most commonly used QO converters, the mathematical base they have been treated on and the basic features of the numerical schemes used. Further on, we discuss the applicability of several commercially available and free software packages, their advantages and drawbacks, for solving QO related problems

  1. Results of comparative RBMK neutron computation using VNIIEF codes (cell computation, 3D statics, 3D kinetics). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grebennikov, A.N.; Zhitnik, A.K.; Zvenigorodskaya, O.A. [and others

    1995-12-31

    In conformity with the protocol of the Workshop under Contract {open_quotes}Assessment of RBMK reactor safety using modern Western Codes{close_quotes} VNIIEF performed a neutronics computation series to compare western and VNIIEF codes and assess whether VNIIEF codes are suitable for RBMK type reactor safety assessment computation. The work was carried out in close collaboration with M.I. Rozhdestvensky and L.M. Podlazov, NIKIET employees. The effort involved: (1) cell computations with the WIMS, EKRAN codes (improved modification of the LOMA code) and the S-90 code (VNIIEF Monte Carlo). Cell, polycell, burnup computation; (2) 3D computation of static states with the KORAT-3D and NEU codes and comparison with results of computation with the NESTLE code (USA). The computations were performed in the geometry and using the neutron constants presented by the American party; (3) 3D computation of neutron kinetics with the KORAT-3D and NEU codes. These computations were performed in two formulations, both being developed in collaboration with NIKIET. Formulation of the first problem maximally possibly agrees with one of NESTLE problems and imitates gas bubble travel through a core. The second problem is a model of the RBMK as a whole with imitation of control and protection system controls (CPS) movement in a core.

  2. HYDRA-II: A hydrothermal analysis computer code: Volume 1, Equations and numerics

    International Nuclear Information System (INIS)

    McCann, R.A.

    1987-04-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite difference solution in Cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the Cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations for conservation of momentum are enhanced by the incorporation of directional porosities and permeabilities that aid in modeling solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits of modeling of orthotropic physical properties and film resistances. Several automated procedures are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. This volume, Volume I - Equations and Numerics, describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. Volume II - User's Manual contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a model problem. The final volume, Volume III - Verification/Validation Assessments, presents results of numerical simulations of single- and multiassembly storage systems and comparisons with experimental data. 4 refs

  3. User manual of FRAPCON-I computer code

    International Nuclear Information System (INIS)

    Chia, C.T.

    1985-11-01

    The manual for using the FRAPCON-I code implanted by Reactor Department of Brazilian-CNEN to convert IBM FORTRAN in FORTRAN 77 of Honeywell Bull computer is presented. The FRAPCON-I code describes the behaviour of fuel rods of PWR type reactors at stationary state during long periods of burnup. (M.C.K.)

  4. Some neutronics and thermal-hydraulics codes for reactor analysis using personal computers

    International Nuclear Information System (INIS)

    Woodruff, W.L.

    1990-01-01

    Some neutronics and thermal-hydraulics codes formerly available only for main frame computers may now be run on personal computers. Brief descriptions of the codes are provided. Running times for some of the codes are compared for an assortment of personal and main frame computers. With some limitations in detail, personal computer versions of the codes can be used to solve many problems of interest in reactor analyses at very modest costs. 11 refs., 4 tabs

  5. SURE: a system of computer codes for performing sensitivity/uncertainty analyses with the RELAP code

    International Nuclear Information System (INIS)

    Bjerke, M.A.

    1983-02-01

    A package of computer codes has been developed to perform a nonlinear uncertainty analysis on transient thermal-hydraulic systems which are modeled with the RELAP computer code. Using an uncertainty around the analyses of experiments in the PWR-BDHT Separate Effects Program at Oak Ridge National Laboratory. The use of FORTRAN programs running interactively on the PDP-10 computer has made the system very easy to use and provided great flexibility in the choice of processing paths. Several experiments simulating a loss-of-coolant accident in a nuclear reactor have been successfully analyzed. It has been shown that the system can be automated easily to further simplify its use and that the conversion of the entire system to a base code other than RELAP is possible

  6. Reactor physics computations

    International Nuclear Information System (INIS)

    Shapiro, A.

    1977-01-01

    Those reactor-core calculations which provide the effective multiplication factor (or eigenvalue) and the stationary (or fundamental mode) neutron-flux distribution at selected times during the lifetime of the core are considered. The multiplication factor is required to establish the nuclear composition and configuration which satisfy criticality and control requirements. The steady-state flux distribution must be known to calculate reaction rates and power distributions which are needed for the thermal, mechanical and shielding design of the reactor, as well as for evaluating refueling requirements. The calculational methods and techniques used for evaluating the nuclear design information vary with the type of reactor and with the preferences and prejudices of the reactor-physics group responsible for the calculation. Additionally, new methods and techniques are continually being developed and made operational. This results in a rather large conglomeration of methods and computer codes which are available for reactor analysis. The author provides the basic calculational framework and discusses the more prominent techniques which have evolved. (Auth.)

  7. Evaluation of the HTR-10 Reactor as a Benchmark for Physics Code QA

    International Nuclear Information System (INIS)

    William K. Terry; Soon Sam Kim; Leland M. Montierth; Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-01-01

    The HTR-10 is a small (10 MWt) pebble-bed research reactor intended to develop pebble-bed reactor (PBR) technology in China. It will be used to test and develop fuel, verify PBR safety features, demonstrate combined electricity production and co-generation of heat, and provide experience in PBR design, operation, and construction. As the only currently operating PBR in the world, the HTR-10 can provide data of great interest to everyone involved in PBR technology. In particular, if it yields data of sufficient quality, it can be used as a benchmark for assessing the accuracy of computer codes proposed for use in PBR analysis. This paper summarizes the evaluation for the International Reactor Physics Experiment Evaluation Project (IRPhEP) of data obtained in measurements of the HTR-10's initial criticality experiment for use as benchmarks for reactor physics codes

  8. A survey of computational physics introductory computational science

    CERN Document Server

    Landau, Rubin H; Bordeianu, Cristian C

    2008-01-01

    Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics

  9. Two-phase computer codes for zero-gravity applications

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1986-10-01

    This paper discusses the problems existing in the development of computer codes which can analyze the thermal-hydraulic behavior of two-phase fluids especially in low gravity nuclear reactors. The important phenomenon affecting fluid flow and heat transfer in reduced gravity is discussed. The applicability of using existing computer codes for space applications is assessed. Recommendations regarding the use of existing earth based fluid flow and heat transfer correlations are made and deficiencies in these correlations are identified

  10. Physics options in the plasma code VOA

    International Nuclear Information System (INIS)

    Eltgroth, P.G.

    1976-06-01

    A two dimensional relativistic plasma physics code has been modified to accomodate general electromagnetic boundary conditions and various approximations of basic physics. The code can treat internal conductors and insulators, imposed electromagnetic fields, the effects of external circuitry and non-equilibrium starting conditions. Particle dynamics options include a full microscopic treatment, fully relaxed electrons, a low frequency electron approximation and a combination of approximations for specified zones. Electromagnetic options include the full wave treatment, an electrostatic approximation and two varieties of magnetohydrodynamic approximations in specified zones

  11. ETFOD: a point model physics code with arbitrary input

    International Nuclear Information System (INIS)

    Rothe, K.E.; Attenberger, S.E.

    1980-06-01

    ETFOD is a zero-dimensional code which solves a set of physics equations by minimization. The technique used is different than normally used, in that the input is arbitrary. The user is supplied with a set of variables from which he specifies which variables are input (unchanging). The remaining variables become the output. Presently the code is being used for ETF reactor design studies. The code was written in a manner to allow easy modificaton of equations, variables, and physics calculations. The solution technique is presented along with hints for using the code

  12. Development of codes for physical calculations of WWER

    International Nuclear Information System (INIS)

    Novikov, A.N.

    2000-01-01

    A package of codes for physical calculations of WWER reactors, used at the RRC 'Kurchatov Institute' is discussed including the purpose of these codes, approximations used, degree of data verification, possibilities of automation of calculations and presentation of results, trends of further development of the codes. (Authors)

  13. Computer codes for designing proton linear accelerators

    International Nuclear Information System (INIS)

    Kato, Takao

    1992-01-01

    Computer codes for designing proton linear accelerators are discussed from the viewpoint of not only designing but also construction and operation of the linac. The codes are divided into three categories according to their purposes: 1) design code, 2) generation and simulation code, and 3) electric and magnetic fields calculation code. The role of each category is discussed on the basis of experience at KEK (the design of the 40-MeV proton linac and its construction and operation, and the design of the 1-GeV proton linac). We introduce our recent work relevant to three-dimensional calculation and supercomputer calculation: 1) tuning of MAFIA (three-dimensional electric and magnetic fields calculation code) for supercomputer, 2) examples of three-dimensional calculation of accelerating structures by MAFIA, 3) development of a beam transport code including space charge effects. (author)

  14. 2016 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bachrach, Harrison Ian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Nils [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Collier, Angela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dumas, William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fankell, Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ferris, Natalie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzalez, Francisco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griffith, Alec [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guston, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kenyon, Connor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Benson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mookerjee, Adaleena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parkinson, Christian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peck, Hailee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peters, Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poondla, Yasvanth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rogers, Brandon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shaffer, Nathaniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trettel, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valaitis, Sonata Mae [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venzke, Joel Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Black, Mason [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Demircan, Samet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holladay, Robert Tyler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.

  15. A compendium of computer codes in fault tree analysis

    International Nuclear Information System (INIS)

    Lydell, B.

    1981-03-01

    In the past ten years principles and methods for a unified system reliability and safety analysis have been developed. Fault tree techniques serve as a central feature of unified system analysis, and there exists a specific discipline within system reliability concerned with the theoretical aspects of fault tree evaluation. Ever since the fault tree concept was established, computer codes have been developed for qualitative and quantitative analyses. In particular the presentation of the kinetic tree theory and the PREP-KITT code package has influenced the present use of fault trees and the development of new computer codes. This report is a compilation of some of the better known fault tree codes in use in system reliability. Numerous codes are available and new codes are continuously being developed. The report is designed to address the specific characteristics of each code listed. A review of the theoretical aspects of fault tree evaluation is presented in an introductory chapter, the purpose of which is to give a framework for the validity of the different codes. (Auth.)

  16. Computer code ANISN multiplying media and shielding calculation II. Code description (input/output)

    International Nuclear Information System (INIS)

    Maiorino, J.R.

    1990-01-01

    The user manual of the ANISN computer code describing input and output subroutines is presented. ANISN code was developed to solve one-dimensional transport equation for neutron or gamma rays in slab, sphere or cylinder geometry with general anisotropic scattering. The solution technique is the discrete ordinate method. (M.C.K.)

  17. Evaluation of the FRAPCON-3 Computer Code

    Energy Technology Data Exchange (ETDEWEB)

    Jernkvist, Lars Olof; Massih, Ali [Quantum Technologies AB, Uppsala (Sweden)

    2002-03-01

    The FRAPCON-3 computer code has been evaluated with respect to its applicability, modeling capability, user friendliness, source code structure and supporting experimental database. The code is intended for thermo-mechanical analyses of light water reactor nuclear fuel rods under steady-state operational conditions and moderate power excursions. It is applicable to both boiling- and pressurized water reactor fuel rods with UO{sub 2} fuel, ranging up to about 65 MWd/kg U in rod average burnup. The models and numerical methods in FRAPCON-3 are relatively simple, which makes the code transparent and also fairly easy to modify and extend for the user. The fundamental equations for heat transfer, structural analysis and fuel fission gas release are solved in one-dimensional (radial) and stationary (time-independent) form, and interaction between axial segments of the rod is confined to calculations of coolant axial flow and rod internal gas pressure. The code is fairly easy to use; fuel rod design data and time histories of fuel rod power and coolant inlet conditions are input via a single text file, and the corresponding calculated variation with time of important fuel rod parameters are printed to a single output file in textual form. The results can also be presented in graphical form through an interface to the general graphics program xmgr. FRAPCON-3 also provides the possibility to export calculated results to the transient fuel rod analysis code FRAPTRAN, where the data can be used as burnup-dependent initial conditions to a postulated transient. Most of the source code to FRAPCON-3 is written in Fortran-IV, which is an archaic, non-standard dialect of the Fortran programming language. Since Fortran-IV is not accepted by all compilers for the latest standard of the language, Fortran-95, there is a risk that the source code must be partly rewritten in the future. Documentation of the code comprises (i) a general code description, which briefly presents models

  18. Evaluation of the FRAPCON-3 Computer Code

    International Nuclear Information System (INIS)

    Jernkvist, Lars Olof; Massih, Ali

    2002-03-01

    The FRAPCON-3 computer code has been evaluated with respect to its applicability, modeling capability, user friendliness, source code structure and supporting experimental database. The code is intended for thermo-mechanical analyses of light water reactor nuclear fuel rods under steady-state operational conditions and moderate power excursions. It is applicable to both boiling- and pressurized water reactor fuel rods with UO 2 fuel, ranging up to about 65 MWd/kg U in rod average burnup. The models and numerical methods in FRAPCON-3 are relatively simple, which makes the code transparent and also fairly easy to modify and extend for the user. The fundamental equations for heat transfer, structural analysis and fuel fission gas release are solved in one-dimensional (radial) and stationary (time-independent) form, and interaction between axial segments of the rod is confined to calculations of coolant axial flow and rod internal gas pressure. The code is fairly easy to use; fuel rod design data and time histories of fuel rod power and coolant inlet conditions are input via a single text file, and the corresponding calculated variation with time of important fuel rod parameters are printed to a single output file in textual form. The results can also be presented in graphical form through an interface to the general graphics program xmgr. FRAPCON-3 also provides the possibility to export calculated results to the transient fuel rod analysis code FRAPTRAN, where the data can be used as burnup-dependent initial conditions to a postulated transient. Most of the source code to FRAPCON-3 is written in Fortran-IV, which is an archaic, non-standard dialect of the Fortran programming language. Since Fortran-IV is not accepted by all compilers for the latest standard of the language, Fortran-95, there is a risk that the source code must be partly rewritten in the future. Documentation of the code comprises (i) a general code description, which briefly presents models

  19. The extensive international use of commercial computational fluid dynamics (CFD) codes

    International Nuclear Information System (INIS)

    Hartmut Wider

    2005-01-01

    What are the main reasons for the extensive international success of commercial CFD codes? This is due to their ability to calculate the fine structures of the investigated processes due to their versatility, their numerical stability and that they can guarantee the proper solution in most cases. This was made possible by the constantly increasing computer power at an ever more affordable prize. Furthermore it is much more efficient to have researchers use a CFD code rather than to develop a similar code system due to the time consuming nature of this activity and the high probability of hidden coding errors. The centralized development and upgrading makes these reliable CFD codes possible and affordable. However, the CFD companies' developments are naturally concentrated on the most profitable areas, and thus, if one works in a 'non-priority' field one cannot use them. Moreover, the prize of renting CFD codes, applications to complex systems such as whole nuclear reactors and the need to teach students gives the development of self-made codes still plenty of room. But CFD codes can model detailed aspects of large systems and subroutines generated by users can be added. Since there are only a few heavily used CFD codes such as FLUENT, STAR-CD, ANSYS CFX, these are used in many countries. Also international training courses are given and the news bulletins of these codes help to spread the news on further developments. A larger number of international codes would increase the competition but would at the same time make it harder to select the most appropriate CFD code for a given problem. Examples will be presented of uses of CFD codes as more detailed system codes for the decay heat removal from reactors, the application to aerosol physics and the application to heavy metal fluids using different turbulence models. (author)

  20. Radiological impact assessment in Malaysia using RESRAD computer code

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma Syed Ahmad; Khairuddin Mohamad Kontol; Razali Hamzah

    1999-01-01

    Radiological Impact Assessment (RIA) can be conducted in Malaysia by using the RESRAD computer code developed by Argonne National Laboratory, U.S.A. The code can do analysis to derive site specific guidelines for allowable residual concentrations of radionuclides in soil. Concepts of the RIA in the context of waste management concern in Malaysia, some regulatory information and assess status of data collection are shown. Appropriate use scenarios and site specific parameters are used as much as possible so as to be realistic so that will reasonably ensure that individual dose limits and or constraints will be achieved. Case study have been conducted to fulfil Atomic Energy Licensing Board (AELB) requirements where for disposal purpose the operator must be required to carry out. a radiological impact assessment to all proposed disposals. This is to demonstrate that no member of public will be exposed to more than 1 mSv/year from all activities. Results obtained from analyses show the RESRAD computer code is able to calculate doses, risks, and guideline values. Sensitivity analysis by the computer code shows that the parameters used as input are justified so as to improve confidence to the public and the AELB the results of the analysis. The computer code can also be used as an initial assessment to conduct screening assessment in order to determine a proper disposal site. (Author)

  1. Applied computational physics

    CERN Document Server

    Boudreau, Joseph F; Bianchi, Riccardo Maria

    2018-01-01

    Applied Computational Physics is a graduate-level text stressing three essential elements: advanced programming techniques, numerical analysis, and physics. The goal of the text is to provide students with essential computational skills that they will need in their careers, and to increase the confidence with which they write computer programs designed for their problem domain. The physics problems give them an opportunity to reinforce their programming skills, while the acquired programming skills augment their ability to solve physics problems. The C++ language is used throughout the text. Physics problems include Hamiltonian systems, chaotic systems, percolation, critical phenomena, few-body and multi-body quantum systems, quantum field theory, simulation of radiation transport, and data modeling. The book, the fruit of a collaboration between a theoretical physicist and an experimental physicist, covers a broad range of topics from both viewpoints. Examples, program libraries, and additional documentatio...

  2. A DOE Computer Code Toolbox: Issues and Opportunities

    International Nuclear Information System (INIS)

    Vincent, A.M. III

    2001-01-01

    The initial activities of a Department of Energy (DOE) Safety Analysis Software Group to establish a Safety Analysis Toolbox of computer models are discussed. The toolbox shall be a DOE Complex repository of verified and validated computer models that are configuration-controlled and made available for specific accident analysis applications. The toolbox concept was recommended by the Defense Nuclear Facilities Safety Board staff as a mechanism to partially address Software Quality Assurance issues. Toolbox candidate codes have been identified through review of a DOE Survey of Software practices and processes, and through consideration of earlier findings of the Accident Phenomenology and Consequence Evaluation program sponsored by the DOE National Nuclear Security Agency/Office of Defense Programs. Planning is described to collect these high-use codes, apply tailored SQA specific to the individual codes, and implement the software toolbox concept. While issues exist such as resource allocation and the interface among code developers, code users, and toolbox maintainers, significant benefits can be achieved through a centralized toolbox and subsequent standardized applications

  3. Parallel computing by Monte Carlo codes MVP/GMVP

    International Nuclear Information System (INIS)

    Nagaya, Yasunobu; Nakagawa, Masayuki; Mori, Takamasa

    2001-01-01

    General-purpose Monte Carlo codes MVP/GMVP are well-vectorized and thus enable us to perform high-speed Monte Carlo calculations. In order to achieve more speedups, we parallelized the codes on the different types of parallel computing platforms or by using a standard parallelization library MPI. The platforms used for benchmark calculations are a distributed-memory vector-parallel computer Fujitsu VPP500, a distributed-memory massively parallel computer Intel paragon and a distributed-memory scalar-parallel computer Hitachi SR2201, IBM SP2. As mentioned generally, linear speedup could be obtained for large-scale problems but parallelization efficiency decreased as the batch size per a processing element(PE) was smaller. It was also found that the statistical uncertainty for assembly powers was less than 0.1% by the PWR full-core calculation with more than 10 million histories and it took about 1.5 hours by massively parallel computing. (author)

  4. Utilization of KENO-IV computer code with HANSEN-ROACH library

    International Nuclear Information System (INIS)

    Lima Barros, M. de; Vellozo, S.O.

    1982-01-01

    Several analysis with KENO-IV computer code, which is based in the Monte Carlo method, and the cross section library HANSEN-ROACH, were done, aiming to present the more convenient form to execute criticality calculations with this computer code and this cross sections. (E.G.) [pt

  5. Heat Transfer treatment in computer codes for safety analysis

    International Nuclear Information System (INIS)

    Jerele, A.; Gregoric, M.

    1984-01-01

    Increased number of operating nuclear power plants has stressed importance of nuclear safety evaluation. For this reason, accordingly to regulatory commission request, safety analyses with computer codes are preformed. In this paper part of this thermohydraulic models dealing with wall-to-fluid heat transfer correlations in computer codes TRAC=PF1, RELAP4/MOD5, RELAP5/MOD1 and COBRA-IV is discussed. (author)

  6. Integral transport computation of gamma detector response with the CPM2 code

    International Nuclear Information System (INIS)

    Jones, D.B.

    1989-12-01

    CPM-2 Version 3 is an enhanced version of the CPM-2 lattice physics computer code which supports the capabilities to (1) perform a two-dimensional gamma flux calculation and (2) perform Restart/Data file maintenance operations. The Gamma Calculation Module implemented in CPM-2 was first developed for EPRI in the CASMO-1 computer code by Studsvik Energiteknik under EPRI Agreement RP2352-01. The gamma transport calculation uses the CPM-HET code module to calculate the transport of gamma rays in two dimensions in a mixed cylindrical-rectangular geometry, where the basic fuel assembly and component regions are maintained in a rectangular geometry, but the fuel pins are represented as cylinders within a square pin cell mesh. Such a capability is needed to represent gamma transport in an essentially transparent medium containing spatially distributed ''black'' cylindrical pins. Under a subcontract to RP2352-01, RPI developed the gamma production and gamma interaction library used for gamma calculation. The CPM-2 gamma calculation was verified against reference results generated by Studsvik using the CASMO-1 program. The CPM-2 Restart/Data file maintenance capabilities provide the user with options to copy files between Restart/Data tapes and to purge files from the Restart/Data tapes

  7. FLASH: A finite element computer code for variably saturated flow

    International Nuclear Information System (INIS)

    Baca, R.G.; Magnuson, S.O.

    1992-05-01

    A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A

  8. Computing the Feng-Rao distances for codes from order domains

    DEFF Research Database (Denmark)

    Ruano Benito, Diego

    2007-01-01

    We compute the Feng–Rao distance of a code coming from an order domain with a simplicial value semigroup. The main tool is the Apéry set of a semigroup that can be computed using a Gröbner basis.......We compute the Feng–Rao distance of a code coming from an order domain with a simplicial value semigroup. The main tool is the Apéry set of a semigroup that can be computed using a Gröbner basis....

  9. Development Of A Navier-Stokes Computer Code

    Science.gov (United States)

    Yoon, Seokkwan; Kwak, Dochan

    1993-01-01

    Report discusses aspects of development of CENS3D computer code, solving three-dimensional Navier-Stokes equations of compressible, viscous, unsteady flow. Implements implicit finite-difference or finite-volume numerical-integration scheme, called "lower-upper symmetric-Gauss-Seidel" (LU-SGS), offering potential for very low computer time per iteration and for fast convergence.

  10. Verification of MVP-II and SRAC2006 code to the core physics vera benchmark problem

    International Nuclear Information System (INIS)

    Jati Susilo

    2014-01-01

    In this research, verification calculation for VERA core physics benchmark on the Zero Power Physical Test (ZPPT) of the nuclear reactor Watts Bar 1. The reactor is a 1000 MWe class of PWR designed by. Westinghouse, arranged from 193 unit of 17 x 17 fuel assembly consisting 3 type enrichment of UO2 that are 2.1wt%, 2.619wt% and 3.1wt%. Core power factor distribution and k-eff calculation has been done for the first cycle operation of the core at beginning of cycle (BOC) and hot zero power (HZP). In this calculation, MVP-II and CITATION module of SRAC2006 computer code has been used with ENDF/B-VII.0. cross section data library. Calculation result showed that differences value of k-eff for the core at controlled and uncontrolled condition between reference with MVP-II (-0,07% and -0,014%) and SRAC2006 (0,92% and 0,99%) are very small or below 1%. Differences value of radial power peaking factor at controlled and uncontrolled of the core between reference value with MVP-II are 0,38% and 1,53%, even though with SRAC2006 are 1,13% and -2,45%. It can be said that the calculation result by both computer code showing suitability with reference value. In order to determinate of criticality of the core, the calculation result using MVP-II code is more conservative compare with SRAC2006 code. (author)

  11. Modular ORIGEN-S for multi-physics code systems

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C., E-mail: yesilyurtg@ornl.gov, E-mail: clarnokt@ornl.gov, E-mail: gauldi@ornl.gov [Oak Ridge National Laboratory, TN (United States); Galloway, Jack, E-mail: jack@galloways.net [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2011-07-01

    The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including

  12. Modular ORIGEN-S for multi-physics code systems

    International Nuclear Information System (INIS)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C.; Galloway, Jack

    2011-01-01

    The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including

  13. Development of a dose assessment computer code for the NPP severe accident

    International Nuclear Information System (INIS)

    Cheong, Jae Hak

    1993-02-01

    A real-time emergency dose assessment computer code called KEDA (KAIST NPP Emergency Dose Assessment) has been developed for the NPP severe accident. A new mathematical model which can calculate cloud shine has been developed and implemented in the code. KEDA considers the specific Korean situations(complex topography, orientals' thyroid metabolism, continuous washout, etc.), and provides functions of dose-monitoring and automatic decision-making. To verify the code results, KEDA has been compared with an NRC officially certified code, RASCAL, for eight hypertical accident scenarios. Through the comparison, KEDA has been proved to provide reasonable results. Qualitative sensitivity analysis also the been performed for potentially important six input parameters, and the trends of the dose v.s. down-wind distance curve have been analyzed comparing with the physical phenomena occurred in the real atmosphere. The source term and meteorological conditions are turned out to be the most important input parameters. KEDA also has been applied to simulate Kori site and a hyperthetical accident with semi-real meteorological data has been simulated and analyzed

  14. Control rod computer code IAMCOS: general theory and numerical methods

    International Nuclear Information System (INIS)

    West, G.

    1982-11-01

    IAMCOS is a computer code for the description of mechanical and thermal behavior of cylindrical control rods for fast breeders. This code version was applied, tested and modified from 1979 to 1981. In this report are described the basic model (02 version), theoretical definitions and computation methods [fr

  15. Verification of thermal-hydraulic computer codes against standard problems for WWER reflooding

    International Nuclear Information System (INIS)

    Alexander D Efanov; Vladimir N Vinogradov; Victor V Sergeev; Oleg A Sudnitsyn

    2005-01-01

    Full text of publication follows: The computational assessment of reactor core components behavior under accident conditions is impossible without knowledge of the thermal-hydraulic processes occurring in this case. The adequacy of the results obtained using the computer codes to the real processes is verified by carrying out a number of standard problems. In 2000-2003, the fulfillment of three Russian standard problems on WWER core reflooding was arranged using the experiments on full-height electrically heated WWER 37-rod bundle model cooldown in regimes of bottom (SP-1), top (SP-2) and combined (SP-3) reflooding. The representatives from the eight MINATOM's organizations took part in this work, in the course of which the 'blind' and posttest calculations were performed using various versions of the RELAP5, ATHLET, CATHARE, COBRA-TF, TRAP, KORSAR computer codes. The paper presents a brief description of the test facility, test section, test scenarios and conditions as well as the basic results of computational analysis of the experiments. The analysis of the test data revealed a significantly non-one-dimensional nature of cooldown and rewetting of heater rods heated up to a high temperature in a model bundle. This was most pronounced at top and combined reflooding. The verification of the model reflooding computer codes showed that most of computer codes fairly predict the peak rod temperature and the time of bundle cooldown. The exception is provided by the results of calculations with the ATHLET and CATHARE codes. The nature and rate of rewetting front advance in the lower half of the bundle are fairly predicted practically by all computer codes. The disagreement between the calculations and experimental results for the upper half of the bundle is caused by the difficulties of computational simulation of multidimensional effects by 1-D computer codes. In this regard, a quasi-two-dimensional computer code COBRA-TF offers certain advantages. Overall, the closest

  16. Thermohydraulic analysis of nuclear power plant accidents by computer codes

    International Nuclear Information System (INIS)

    Petelin, S.; Stritar, A.; Istenic, R.; Gregoric, M.; Jerele, A.; Mavko, B.

    1982-01-01

    RELAP4/MOD6, BRUCH-D-06, CONTEMPT-LT-28, RELAP5/MOD1 and COBRA-4-1 codes were successful y implemented at the CYBER 172 computer in Ljubljana. Input models of NPP Krsko for the first three codes were prepared. Because of the high computer cost only one analysis of double ended guillotine break of the cold leg of NPP Krsko by RELAP4 code has been done. BRUCH code is easier and cheaper for use. Several analysis have been done. Sensitivity study was performed with CONTEMPT-LT-28 for double ended pump suction break. These codes are intended to be used as a basis for independent safety analyses. (author)

  17. 2015 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Runnels, Scott Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caldwell, Wendy [Arizona State Univ., Mesa, AZ (United States); Brown, Barton Jed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pederson, Clark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Justin [Univ. of California, Santa Cruz, CA (United States); Burrill, Daniel [Univ. of Vermont, Burlington, VT (United States); Feinblum, David [Univ. of California, Irvine, CA (United States); Hyde, David [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Levick, Nathan [Univ. of New Mexico, Albuquerque, NM (United States); Lyngaas, Isaac [Florida State Univ., Tallahassee, FL (United States); Maeng, Brad [Univ. of Michigan, Ann Arbor, MI (United States); Reed, Richard LeRoy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarno-Smith, Lois [Univ. of Michigan, Ann Arbor, MI (United States); Shohet, Gil [Univ. of Illinois, Urbana-Champaign, IL (United States); Skarda, Jinhie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stevens, Josey [Missouri Univ. of Science and Technology, Rolla, MO (United States); Zeppetello, Lucas [Columbia Univ., New York, NY (United States); Grossman-Ponemon, Benjamin [Stanford Univ., CA (United States); Bottini, Joseph Larkin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Loudon, Tyson Shane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); VanGessel, Francis Gilbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagaraj, Sriram [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Price, Jacob [Univ. of Washington, Seattle, WA (United States)

    2015-10-15

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transport and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.

  18. The SEDA computer code and its utilization for Angra 1

    International Nuclear Information System (INIS)

    Fernandes Filho, T.L.

    1988-11-01

    The implementation of SEDA 2.0 computer code, developed at Ezeiza Atomic Center, Argentine for Angra 1 reactor is described. The SEDA code gives an estimate for radiological consequences of nuclear accidents with release of radiactive materials for the environment. This code is now available for an IBM PC-XT. The computer environment, the files used, data, the programining structure and the models used are presented. The input data and results for two sample case are described. (author) [pt

  19. Interface between computational fluid dynamics (CFD) and plant analysis computer codes

    International Nuclear Information System (INIS)

    Coffield, R.D.; Dunckhorst, F.F.; Tomlinson, E.T.; Welch, J.W.

    1993-01-01

    Computational fluid dynamics (CFD) can provide valuable input to the development of advanced plant analysis computer codes. The types of interfacing discussed in this paper will directly contribute to modeling and accuracy improvements throughout the plant system and should result in significant reduction of design conservatisms that have been applied to such analyses in the past

  20. Development of a Computer Code for the Estimation of Fuel Rod Failure

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, I.H.; Ahn, H.J. [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    1997-12-31

    Much research has already been performed to obtain the information on the degree of failed fuel rods from the primary coolant activities of operating PWRs in the last few decades. The computer codes that are currently in use for domestic nuclear power plants, such as CADE code and ABB-CE codes developed by Westinghouse and ABB-CE, respectively, still give significant overall errors in estimating the failed fuel rods. In addition, with the CADE code, it is difficult to predict the degree of fuel rod failures during the transient period of nuclear reactor operation, where as the ABB-CE codes are relatively more difficult to use for end-users. In particular, the rapid progresses made recently in the area of the computer hardware and software systems that their computer programs be more versatile and user-friendly. While the MS windows system that is centered on the graphic user interface and multitasking is now in widespread use, the computer codes currently employed at the nuclear power plants, such as CADE and ABB-CE codes, can only be run on the DOS system. Moreover, it is desirable to have a computer code for the fuel rod failure estimation that can directly use the radioactivity data obtained from the on-line monitoring system of the primary coolant activity. The main purpose of this study is, therefore, to develop a Windows computer code that can predict the location, the number of failed fuel rods,and the degree of failures using the radioactivity data obtained from the primary coolant activity for PWRs. Another objective is to combine this computer code with the on-line monitoring system of the primary coolant radioactivity at Kori 3 and 4 operating nuclear power plants and enable their combined use for on-line evaluation of the number and degree of fuel rod failures. (author). 49 refs., 85 figs., 30 tabs.

  1. HTR core physics and transient analyses by the Panthermix code system

    International Nuclear Information System (INIS)

    Haas, J.B.M. de; Kuijper, J.C.; Oppe, J.

    2005-01-01

    At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes

  2. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Watase, Yoshiyuki

    1991-09-15

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.

  3. Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †.

    Science.gov (United States)

    Murdani, Muhammad Harist; Kwon, Joonho; Choi, Yoon-Ho; Hong, Bonghee

    2018-03-24

    In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes ( Ad-Hoc ) and neighborhood proximity ( Top-K ). Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space.

  4. Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †

    Directory of Open Access Journals (Sweden)

    Muhammad Harist Murdani

    2018-03-01

    Full Text Available In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes (Ad-Hoc and neighborhood proximity (Top-K. Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space.

  5. Computing in high energy physics

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1991-01-01

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors

  6. Consideration of turbulent deposition in aerosol behaviour modelling with the CONTAIN code and comparison of the computations to sodium release experiments

    International Nuclear Information System (INIS)

    Jonas, R.

    1988-09-01

    CONTAIN is a computer code to analyze physical, chemical and radiological processes inside the reactor containment in the sequence of severe reactor accident. Modelling of the aerosol behaviour is included. We have improved the code by implementing a subroutine for turbulent deposition of aerosols. In contrast to previous calculations in which this effect was neglected, the computer results are in good agreement with sodium release experiments. If a typical friction velocity of 1 m/s is chosen, the computed aerosol mass median diameters and aerosol mass concentrations agree with the experimental results within a factor of 1.5 or 2, respectively. We have also found a good agreement between the CONTAIN calculations and results from other aerosol codes. (orig.) [de

  7. Case studies in Gaussian process modelling of computer codes

    International Nuclear Information System (INIS)

    Kennedy, Marc C.; Anderson, Clive W.; Conti, Stefano; O'Hagan, Anthony

    2006-01-01

    In this paper we present a number of recent applications in which an emulator of a computer code is created using a Gaussian process model. Tools are then applied to the emulator to perform sensitivity analysis and uncertainty analysis. Sensitivity analysis is used both as an aid to model improvement and as a guide to how much the output uncertainty might be reduced by learning about specific inputs. Uncertainty analysis allows us to reflect output uncertainty due to unknown input parameters, when the finished code is used for prediction. The computer codes themselves are currently being developed within the UK Centre for Terrestrial Carbon Dynamics

  8. Computer codes for beam dynamics analysis of cyclotronlike accelerators

    Science.gov (United States)

    Smirnov, V.

    2017-12-01

    Computer codes suitable for the study of beam dynamics in cyclotronlike (classical and isochronous cyclotrons, synchrocyclotrons, and fixed field alternating gradient) accelerators are reviewed. Computer modeling of cyclotron segments, such as the central zone, acceleration region, and extraction system is considered. The author does not claim to give a full and detailed description of the methods and algorithms used in the codes. Special attention is paid to the codes already proven and confirmed at the existing accelerating facilities. The description of the programs prepared in the worldwide known accelerator centers is provided. The basic features of the programs available to users and limitations of their applicability are described.

  9. LATTICE: an interactive lattice computer code

    International Nuclear Information System (INIS)

    Staples, J.

    1976-10-01

    LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included

  10. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Control modules C4, C6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U. S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume is part of the manual related to the control modules for the newest updated version of this computational package.

  11. Applying Physical-Layer Network Coding in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Liew SoungChang

    2010-01-01

    Full Text Available A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes, simultaneously. Rather than a blessing, this feature is treated more as an interference-inducing nuisance in most wireless networks today (e.g., IEEE 802.11. This paper shows that the concept of network coding can be applied at the physical layer to turn the broadcast property into a capacity-boosting advantage in wireless ad hoc networks. Specifically, we propose a physical-layer network coding (PNC scheme to coordinate transmissions among nodes. In contrast to "straightforward" network coding which performs coding arithmetic on digital bit streams after they have been received, PNC makes use of the additive nature of simultaneously arriving electromagnetic (EM waves for equivalent coding operation. And in doing so, PNC can potentially achieve 100% and 50% throughput increases compared with traditional transmission and straightforward network coding, respectively, in 1D regular linear networks with multiple random flows. The throughput improvements are even larger in 2D regular networks: 200% and 100%, respectively.

  12. User's manual for computer code RIBD-II, a fission product inventory code

    International Nuclear Information System (INIS)

    Marr, D.R.

    1975-01-01

    The computer code RIBD-II is used to calculate inventories, activities, decay powers, and energy releases for the fission products generated in a fuel irradiation. Changes from the earlier RIBD code are: the expansion to include up to 850 fission product isotopes, input in the user-oriented NAMELIST format, and run-time choice of fuels from an extensively enlarged library of nuclear data. The library that is included in the code package contains yield data for 818 fission product isotopes for each of fourteen different fissionable isotopes, together with fission product transmutation cross sections for fast and thermal systems. Calculational algorithms are little changed from those in RIBD. (U.S.)

  13. Computations in plasma physics

    International Nuclear Information System (INIS)

    Cohen, B.I.; Killeen, J.

    1984-01-01

    A review of computer application in plasma physics is presented. Computer contribution to the investigation of magnetic and inertial confinement of a plasma and charged particle beam propagation is described. Typical utilization of computer for simulation and control of laboratory and cosmic experiments with a plasma and for data accumulation in these experiments is considered. Basic computational methods applied in plasma physics are discussed. Future trends of computer utilization in plasma reseaches are considered in terms of an increasing role of microprocessors and high-speed data plotters and the necessity of more powerful computer application

  14. HTR core physics and transient analyses by the Panthermix code system

    Energy Technology Data Exchange (ETDEWEB)

    Haas, J.B.M. de; Kuijper, J.C.; Oppe, J. [NRG - Fuels, Actinides and Isotopes group, Petten (Netherlands)

    2005-07-01

    At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes.

  15. Optimization and parallelization of the thermal–hydraulic subchannel code CTF for high-fidelity multi-physics applications

    International Nuclear Information System (INIS)

    Salko, Robert K.; Schmidt, Rodney C.; Avramova, Maria N.

    2015-01-01

    Highlights: • COBRA-TF was adopted by the Consortium for Advanced Simulation of LWRs. • We have improved code performance to support running large-scale LWR simulations. • Code optimization has led to reductions in execution time and memory usage. • An MPI parallelization has reduced full-core simulation time from days to minutes. - Abstract: This paper describes major improvements to the computational infrastructure of the CTF subchannel code so that full-core, pincell-resolved (i.e., one computational subchannel per real bundle flow channel) simulations can now be performed in much shorter run-times, either in stand-alone mode or as part of coupled-code multi-physics calculations. These improvements support the goals of the Department Of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL) Energy Innovation Hub to develop high fidelity multi-physics simulation tools for nuclear energy design and analysis. A set of serial code optimizations—including fixing computational inefficiencies, optimizing the numerical approach, and making smarter data storage choices—are first described and shown to reduce both execution time and memory usage by about a factor of ten. Next, a “single program multiple data” parallelization strategy targeting distributed memory “multiple instruction multiple data” platforms utilizing domain decomposition is presented. In this approach, data communication between processors is accomplished by inserting standard Message-Passing Interface (MPI) calls at strategic points in the code. The domain decomposition approach implemented assigns one MPI process to each fuel assembly, with each domain being represented by its own CTF input file. The creation of CTF input files, both for serial and parallel runs, is also fully automated through use of a pressurized water reactor (PWR) pre-processor utility that uses a greatly simplified set of user input compared with the traditional CTF input. To run CTF in

  16. SWIMS: a small-angle multiple scattering computer code

    International Nuclear Information System (INIS)

    Sayer, R.O.

    1976-07-01

    SWIMS (Sigmund and WInterbon Multiple Scattering) is a computer code for calculation of the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media. The code uses the tabulated angular distributions of Sigmund and Winterbon for a Thomas-Fermi screened Coulomb potential. The fraction of the incident beam scattered into a cone defined by the polar angle α is computed as a function of α for reduced thicknesses over the range 0.01 less than or equal to tau less than or equal to 10.0. 1 figure, 2 tables

  17. War of ontology worlds: mathematics, computer code, or Esperanto?

    Science.gov (United States)

    Rzhetsky, Andrey; Evans, James A

    2011-09-01

    The use of structured knowledge representations-ontologies and terminologies-has become standard in biomedicine. Definitions of ontologies vary widely, as do the values and philosophies that underlie them. In seeking to make these views explicit, we conducted and summarized interviews with a dozen leading ontologists. Their views clustered into three broad perspectives that we summarize as mathematics, computer code, and Esperanto. Ontology as mathematics puts the ultimate premium on rigor and logic, symmetry and consistency of representation across scientific subfields, and the inclusion of only established, non-contradictory knowledge. Ontology as computer code focuses on utility and cultivates diversity, fitting ontologies to their purpose. Like computer languages C++, Prolog, and HTML, the code perspective holds that diverse applications warrant custom designed ontologies. Ontology as Esperanto focuses on facilitating cross-disciplinary communication, knowledge cross-referencing, and computation across datasets from diverse communities. We show how these views align with classical divides in science and suggest how a synthesis of their concerns could strengthen the next generation of biomedical ontologies.

  18. Compendium of computer codes for the safety analysis of LMFBR's

    International Nuclear Information System (INIS)

    1975-06-01

    A high level of mathematical sophistication is required in the safety analysis of LMFBR's to adequately meet the demands for realism and confidence in all areas of accident consequence evaluation. The numerical solution procedures associated with these analyses are generally so complex and time consuming as to necessitate their programming into computer codes. These computer codes have become extremely powerful tools for safety analysis, combining unique advantages in accuracy, speed and cost. The number, diversity and complexity of LMFBR safety codes in the U. S. has grown rapidly in recent years. It is estimated that over 100 such codes exist in various stages of development throughout the country. It is inevitable that such a large assortment of codes will require rigorous cataloguing and abstracting to aid individuals in identifying what is available. It is the purpose of this compendium to provide such a service through the compilation of code summaries which describe and clarify the status of domestic LMFBR safety codes. (U.S.)

  19. PC as physics computer for LHC?

    CERN Document Server

    Jarp, S; Simmins, A; Yaari, R; Jarp, Sverre; Tang, Hong; Simmins, Antony; Yaari, Refael

    1995-01-01

    In the last five years, we have seen RISC workstations take over the computing scene that was once controlled by mainframes and supercomputers. In this paper we will argue that the same phenomenon might happen again. A project, active since March this year in the Physics Data Processing group of CERN's CN division is described where ordinary desktop PCs running Windows (NT and 3.11) have been used for creating an environment for running large LHC batch jobs (initially the DICE simulation job of Atlas). The problems encountered in porting both the CERN library and the specific Atlas codes are described together with some encouraging benchmark results when comparing to existing RISC workstations in use by the Atlas collaboration. The issues of establishing the batch environment (Batch monitor, staging software, etc.) are also covered. Finally a quick extrapolation of commodity computing power available in the future is touched upon to indicate what kind of cost envelope could be sufficient for the simulation fa...

  20. User's manual for the NEFTRAN II computer code

    International Nuclear Information System (INIS)

    Olague, N.E.; Campbell, J.E.; Leigh, C.D.; Longsine, D.E.

    1991-02-01

    This document describes the NEFTRAN II (NEtwork Flow and TRANsport in Time-Dependent Velocity Fields) computer code and is intended to provide the reader with sufficient information to use the code. NEFTRAN II was developed as part of a performance assessment methodology for storage of high-level nuclear waste in unsaturated, welded tuff. NEFTRAN II is a successor to the NEFTRAN and NWFT/DVM computer codes and contains several new capabilities. These capabilities include: (1) the ability to input pore velocities directly to the transport model and bypass the network fluid flow model, (2) the ability to transport radionuclides in time-dependent velocity fields, (3) the ability to account for the effect of time-dependent saturation changes on the retardation factor, and (4) the ability to account for time-dependent flow rates through the source regime. In addition to these changes, the input to NEFTRAN II has been modified to be more convenient for the user. This document is divided into four main sections consisting of (1) a description of all the models contained in the code, (2) a description of the program and subprograms in the code, (3) a data input guide and (4) verification and sample problems. Although NEFTRAN II is the fourth generation code, this document is a complete description of the code and reference to past user's manuals should not be necessary. 19 refs., 33 figs., 25 tabs

  1. Use and development of coupled computer codes for the analysis of accidents at nuclear power plants. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-01-01

    Computer codes are widely used in Member States for the analysis of safety at nuclear power plants (NPPs). Coupling of computer codes, a further tool for safety analysis, is especially beneficial to safety analysis. The significantly increased capacity of new computation technology has made it possible to switch to a newer generation of computer codes, which are capable of representing physical phenomena in detail and include a more precise consideration of multidimensional effects. The coupling of advanced, best estimate computer codes is an efficient method of addressing the multidisciplinary nature of reactor accidents with complex interfaces between disciplines. Coupling of computer codes is very advantageous for studies which relate to licensing of new NPPs, safety upgrading programmes for existing plants, periodic safety reviews, renewal of operating licences, use of safety margins for reactor power uprating, better utilization of nuclear fuel and higher operational flexibility, justification for lifetime extensions, development of new emergency operating procedures, analysis of operational events and development of accident management programmes. In this connection, the OECD/NEA Working Group on the Analysis and Management of Accidents (GAMA) recently highlighted the application of coupled computer codes as an area of 'high collective interest'. Coupled computer codes are being developed in many Member States independently or within small groups composed of several technical organizations. These developments revealed that there are many types and methods of code coupling. In this context, it was believed that an exchange of views and experience while addressing these problems at an international meeting could contribute to the more efficient and reliable use of advanced computer codes in nuclear safety applications. The present publication constitutes the report on the Technical Meeting on Progress in the Development and Use of Coupled Codes for Accident

  2. Use and development of coupled computer codes for the analysis of accidents at nuclear power plants. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-01-01

    Computer codes are widely used in Member States for the analysis of safety at nuclear power plants (NPPs). Coupling of computer codes, a further tool for safety analysis, is especially beneficial to safety analysis. The significantly increased capacity of new computation technology has made it possible to switch to a newer generation of computer codes, which are capable of representing physical phenomena in detail and include a more precise consideration of multidimensional effects. The coupling of advanced, best estimate computer codes is an efficient method of addressing the multidisciplinary nature of reactor accidents with complex interfaces between disciplines. Coupling of computer codes is very advantageous for studies which relate to licensing of new NPPs, safety upgrading programmes for existing plants, periodic safety reviews, renewal of operating licences, use of safety margins for reactor power uprating, better utilization of nuclear fuel and higher operational flexibility, justification for lifetime extensions, development of new emergency operating procedures, analysis of operational events and development of accident management programmes. In this connection, the OECD/NEA Working Group on the Analysis and Management of Accidents (GAMA) recently highlighted the application of coupled computer codes as an area of 'high collective interest'. Coupled computer codes are being developed in many Member States independently or within small groups composed of several technical organizations. These developments revealed that there are many types and methods of code coupling. In this context, it was believed that an exchange of views and experience while addressing these problems at an international meeting could contribute to the more efficient and reliable use of advanced computer codes in nuclear safety applications. The present publication constitutes the report on the Technical Meeting on Progress in the Development and Use of Coupled Codes for Accident

  3. Gender codes why women are leaving computing

    CERN Document Server

    Misa, Thomas J

    2010-01-01

    The computing profession is facing a serious gender crisis. Women are abandoning the computing field at an alarming rate. Fewer are entering the profession than anytime in the past twenty-five years, while too many are leaving the field in mid-career. With a maximum of insight and a minimum of jargon, Gender Codes explains the complex social and cultural processes at work in gender and computing today. Edited by Thomas Misa and featuring a Foreword by Linda Shafer, Chair of the IEEE Computer Society Press, this insightful collection of essays explores the persisting gender imbalance in computing and presents a clear course of action for turning things around.

  4. Computational physics an introduction

    CERN Document Server

    Vesely, Franz J

    1994-01-01

    Author Franz J. Vesely offers students an introductory text on computational physics, providing them with the important basic numerical/computational techniques. His unique text sets itself apart from others by focusing on specific problems of computational physics. The author also provides a selection of modern fields of research. Students will benefit from the appendixes which offer a short description of some properties of computing and machines and outline the technique of 'Fast Fourier Transformation.'

  5. Statistical screening of input variables in a complex computer code

    International Nuclear Information System (INIS)

    Krieger, T.J.

    1982-01-01

    A method is presented for ''statistical screening'' of input variables in a complex computer code. The object is to determine the ''effective'' or important input variables by estimating the relative magnitudes of their associated sensitivity coefficients. This is accomplished by performing a numerical experiment consisting of a relatively small number of computer runs with the code followed by a statistical analysis of the results. A formula for estimating the sensitivity coefficients is derived. Reference is made to an earlier work in which the method was applied to a complex reactor code with good results

  6. A restructuring of CF package for MIDAS computer code

    International Nuclear Information System (INIS)

    Park, S. H.; Kim, K. R.; Kim, D. H.; Cho, S. W.

    2004-01-01

    CF package, which evaluates user-specified 'control functions' and applies them to define or control various aspects of computation, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and modernized data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the CF package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory, difficulty is more over because its data is location information of other package's data due to characteristics of CF package. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the CF package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The verification has been done by comparing the results of the modified code with those from the existing code. As the trends are similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  7. A study on the nuclear computer codes installation and management system

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Huh, Young Hwan; Kim, Hee Kyung; Kang, Byung Heon; Kim, Ko Ryeo; Suh, Soong Hyok; Choi, Young Gil; Lee, Jong Bok

    1990-12-01

    From 1987 a number of technical transfer related to nuclear power plant had been performed from C-E for YGN 3 and 4 construction. Among them, installation and management of the computer codes for YGN 3 and 4 fuel and nuclear steam supply system was one of the most important project. Main objectives of this project are to establish the nuclear computer code management system, to develop QA procedure for nuclear codes, to secure the nuclear code reliability and to extend techanical applicabilities including the user-oriented utility programs for nuclear codes. Contents of performing the project in this year was to produce 215 transmittal packages of nuclear codes installation including making backup magnetic tape and microfiche for software quality assurance. Lastly, for easy reference about the nuclear codes information we presented list of code names and information on the codes which were introduced from C-E. (Author)

  8. Citham-2 computer code-User manual

    International Nuclear Information System (INIS)

    Batista, J.L.

    1984-01-01

    The procedures and the input data for the Citham-2 computer code are described. It is a subroutine that modifies the nuclide concentration taking in account its burn and prepares cross sections library in 2,3 or 4 energy groups, to the used for Citation program. (E.G.) [pt

  9. Citham a computer code for calculating fuel depletion-description, tests, modifications and evaluation

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.

    1984-12-01

    The CITHAN computer code was developed at IPEN (Instituto de Pesquisas Energeticas e Nucleares) to link the HAMMER computer code with a fuel depletion routine and to provide neutron cross sections to be read with the appropriate format of the CITATION code. The problem arised due to the efforts to addapt the new version denomined HAMMER-TECHION with the routine refered. The HAMMER-TECHION computer code was elaborated by Haifa Institute, Israel within a project with EPRI. This version is at CNEN to be used in multigroup constant generation for neutron diffusion calculation in the scope of the new methodology to be adopted by CNEN. The theoretical formulation of CITHAM computer code, tests and modificatins are described. (Author) [pt

  10. Computational Physics' Greatest Hits

    Science.gov (United States)

    Bug, Amy

    2011-03-01

    The digital computer, has worked its way so effectively into our profession that now, roughly 65 years after its invention, it is virtually impossible to find a field of experimental or theoretical physics unaided by computational innovation. It is tough to think of another device about which one can make that claim. In the session ``What is computational physics?'' speakers will distinguish computation within the field of computational physics from this ubiquitous importance across all subfields of physics. This talk will recap the invited session ``Great Advances...Past, Present and Future'' in which five dramatic areas of discovery (five of our ``greatest hits'') are chronicled: The physics of many-boson systems via Path Integral Monte Carlo, the thermodynamic behavior of a huge number of diverse systems via Monte Carlo Methods, the discovery of new pharmaceutical agents via molecular dynamics, predictive simulations of global climate change via detailed, cross-disciplinary earth system models, and an understanding of the formation of the first structures in our universe via galaxy formation simulations. The talk will also identify ``greatest hits'' in our field from the teaching and research perspectives of other members of DCOMP, including its Executive Committee.

  11. Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code

    Science.gov (United States)

    Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Fleetwood, Daniel M.; Warren, Kevin M.; Sierawski, Brian D.; King, Michael P.; Schrimpf, Ronald D.; Auden, Elizabeth C.

    2015-08-01

    MRED is a Python-language scriptable computer application that simulates radiation transport. It is the computational engine for the on-line tool CRÈME-MC. MRED is based on c++ code from Geant4 with additional Fortran components to simulate electron transport and nuclear reactions with high precision. We provide a detailed description of the structure of MRED and the implementation of the simulation of physical processes used to simulate radiation effects in electronic devices and circuits. Extensive discussion and references are provided that illustrate the validation of models used to implement specific simulations of relevant physical processes. Several applications of MRED are summarized that demonstrate its ability to predict and describe basic physical phenomena associated with irradiation of electronic circuits and devices. These include effects from single particle radiation (including both direct ionization and indirect ionization effects), dose enhancement effects, and displacement damage effects. MRED simulations have also helped to identify new single event upset mechanisms not previously observed by experiment, but since confirmed, including upsets due to muons and energetic electrons.

  12. Computing Challenges in Coded Mask Imaging

    Science.gov (United States)

    Skinner, Gerald

    2009-01-01

    This slide presaentation reviews the complications and challenges in developing computer systems for Coded Mask Imaging telescopes. The coded mask technique is used when there is no other way to create the telescope, (i.e., when there are wide fields of view, high energies for focusing or low energies for the Compton/Tracker Techniques and very good angular resolution.) The coded mask telescope is described, and the mask is reviewed. The coded Masks for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) instruments are shown, and a chart showing the types of position sensitive detectors used for the coded mask telescopes is also reviewed. Slides describe the mechanism of recovering an image from the masked pattern. The correlation with the mask pattern is described. The Matrix approach is reviewed, and other approaches to image reconstruction are described. Included in the presentation is a review of the Energetic X-ray Imaging Survey Telescope (EXIST) / High Energy Telescope (HET), with information about the mission, the operation of the telescope, comparison of the EXIST/HET with the SWIFT/BAT and details of the design of the EXIST/HET.

  13. Computer code for quantitative ALARA evaluations

    International Nuclear Information System (INIS)

    Voilleque, P.G.

    1984-01-01

    A FORTRAN computer code has been developed to simplify the determination of whether dose reduction actions meet the as low as is reasonably achievable (ALARA) criterion. The calculations are based on the methodology developed for the Atomic Industrial Forum. The code is used for analyses of eight types of dose reduction actions, characterized as follows: reduce dose rate, reduce job frequency, reduce productive working time, reduce crew size, increase administrative dose limit for the task, and increase the workers' time utilization and dose utilization through (a) improved working conditions, (b) basic skill training, or (c) refresher training for special skills. For each type of action, two analysis modes are available. The first is a generic analysis in which the program computes potential benefits (in dollars) for a range of possible improvements, e.g., for a range of lower dose rates. Generic analyses are most useful in the planning stage and for evaluating the general feasibility of alternative approaches. The second is a specific analysis in which the potential annual benefits of a specific level of improvement and the annual implementation cost are compared. The potential benefits reflect savings in operational and societal costs that can be realized if occupational radiation doses are reduced. Because the potential benefits depend upon many variables which characterize the job, the workplace, and the workers, there is no unique relationship between the potential dollar savings and the dose savings. The computer code permits rapid quantitative analyses of alternatives and is a tool that supplements the health physicist's professional judgment. The program output provides a rational basis for decision-making and a record of the assumptions employed

  14. Computer-aided software understanding systems to enhance confidence of scientific codes

    International Nuclear Information System (INIS)

    Sheng, G.; Oeren, T.I.

    1991-01-01

    A unique characteristic of nuclear waste disposal is the very long time span over which the combined engineered and natural containment system must remain effective: hundreds of thousands of years. Since there is no precedent in human history for such an endeavour, simulation with the use of computers is the only means we have of forecasting possible future outcomes quantitatively. The need for reliable models and software to make such forecasts so far into the future is obvious. One of the critical elements necessary to ensure reliability is the degree of reviewability of the computer program. Among others, there are two very important reasons for this. Firstly, if there is to be any chance at all of validating the conceptual models as implemented by the computer code, peer reviewers must be able to see and understand what the program is doing. It is all but impossible to achieve this understanding by just looking at the code due to possible unfamiliarity with the language and often due as well to the length and complexity of the code. Secondly, a thorough understanding of the code is also necessary to carry out code maintenance activities which include among others, error detection, error correction and code modification for purposes of enhancing its performance, functionality or to adapt it to a changed environment. The emerging concepts of computer-aided software understanding and reverse engineering can answer precisely these needs. This paper will discuss the role they can play in enhancing the confidence one has on computer codes and several examples will be provided. Finally a brief discussion of combining state-of-art forward engineering systems with reverse engineering systems will show how powerfully they can contribute to the overall quality assurance of a computer program. (13 refs., 7 figs.)

  15. Algorithms and computer codes for atomic and molecular quantum scattering theory

    International Nuclear Information System (INIS)

    Thomas, L.

    1979-01-01

    This workshop has succeeded in bringing up 11 different coupled equation codes on the NRCC computer, testing them against a set of 24 different test problems and making them available to the user community. These codes span a wide variety of methodologies, and factors of up to 300 were observed in the spread of computer times on specific problems. A very effective method was devised for examining the performance of the individual codes in the different regions of the integration range. Many of the strengths and weaknesses of the codes have been identified. Based on these observations, a hybrid code has been developed which is significantly superior to any single code tested. Thus, not only have the original goals been fully met, the workshop has resulted directly in an advancement of the field. All of the computer programs except VIVS are available upon request from the NRCC. Since an improved version of VIVS is contained in the hybrid program, VIVAS, it was not made available for distribution. The individual program LOGD is, however, available. In addition, programs which compute the potential energy matrices of the test problems are also available. The software library names for Tests 1, 2 and 4 are HEH2, LICO, and EN2, respectively

  16. GAM-HEAT -- a computer code to compute heat transfer in complex enclosures

    International Nuclear Information System (INIS)

    Cooper, R.E.; Taylor, J.R.; Kielpinski, A.L.; Steimke, J.L.

    1991-02-01

    The GAM-HEAT code was developed for heat transfer analyses associated with postulated Double Ended Guillotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re- radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices, and also accounts for convective, conductive, and advective heat exchanges. The code is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium. The GAM-HEAT code has been exercised extensively for computing transient temperatures in SRS reactors with specific charges and control components. Results from these computations have been used to establish the need for and to evaluate hardware modifications designed to mitigate results of postulated accident scenarios, and to assist in the specification of safe reactor operating power limits. The code utilizes temperature dependence on material properties. The efficiency of the code has been enhanced by the use of an iterative equation solver. Verification of the code to date consists of comparisons with parallel efforts at Los Alamos National Laboratory and with similar efforts at Westinghouse Science and Technology Center in Pittsburgh, PA, and benchmarked using problems with known analytical or iterated solutions. All comparisons and tests yield results that indicate the GAM-HEAT code performs as intended

  17. Independent validation testing of the FLAME computer code, Version 1.0

    International Nuclear Information System (INIS)

    Martian, P.; Chung, J.N.

    1992-07-01

    Independent testing of the FLAME computer code, Version 1.0, was conducted to determine if the code is ready for use in hydrological and environmental studies at Department of Energy sites. This report describes the technical basis, approach, and results of this testing. Validation tests, (i.e., tests which compare field data to the computer generated solutions) were used to determine the operational status of the FLAME computer code and were done on a qualitative basis through graphical comparisons of the experimental and numerical data. These tests were specifically designed to check: (1) correctness of the FORTRAN coding, (2) computational accuracy, and (3) suitability to simulating actual hydrologic conditions. This testing was performed using a structured evaluation protocol which consisted of: (1) independent applications, and (2) graduated difficulty of test cases. Three tests ranging in complexity from simple one-dimensional steady-state flow field problems under near-saturated conditions to two-dimensional transient flow problems with very dry initial conditions

  18. High energy physics and grid computing

    International Nuclear Information System (INIS)

    Yu Chuansong

    2004-01-01

    The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)

  19. Compilation of the abstracts of nuclear computer codes available at CPD/IPEN

    International Nuclear Information System (INIS)

    Granzotto, A.; Gouveia, A.S. de; Lourencao, E.M.

    1981-06-01

    A compilation of all computer codes available at IPEN in S.Paulo are presented. These computer codes are classified according to Argonne National Laboratory - and Energy Nuclear Agency schedule. (E.G.) [pt

  20. PERCON: A flexible computer code for detailed thermal performance studies

    International Nuclear Information System (INIS)

    Boardman, F.B.; Collier, W.D.

    1975-07-01

    PERCON is a computer code which evaluates temperatures in three dimensions for a block containing heat sources and having coolant flow in one dimension. The solution is obtained at successive planes perpendicular to the coolant flow and the progression from one plane to the next occurs by the heat to the coolant determining convective boundary conditions at the next plane after due allowance being made for any lateral mixing or mass transfer between coolants. It is also possible to calculate the diametral change along a radius as a function of irradiation shrinkage and thermal expansion. This is used in a 'through life' calculation which evalates interaction pressure in tubular fuel elements. Physical property data used by the code may be specified as functions of temperature. The coolant flow may be specified, or alternatively derived by the program to satisfy either a specified overall pressure drop or mixed mean temperature rise. The pressure drop through each coolant is calculated and the flow modified, followed by a repeat of the temperature calculation, until the pressure imbalance between chosen flow channels at chosen axial positions is less than the specified convergence limit. A detailed description of the facilities in the code is given and some cases which have been studied are discussed. (U.K.)

  1. The computer code EURDYN-1M (release 2). User's manual

    International Nuclear Information System (INIS)

    1982-01-01

    EURDYN-1M is a finite element computer code developed at J.R.C. Ispra to compute the response of two-dimensional coupled fluid-structure configurations to transient dynamic loading for reactor safety studies. This report gives instructions for preparing input data to EURDYN-1M, release 2, and describes a test problem in order to illustrate both the input and the output of the code

  2. Additional extensions to the NASCAP computer code, volume 3

    Science.gov (United States)

    Mandell, M. J.; Cooke, D. L.

    1981-01-01

    The ION computer code is designed to calculate charge exchange ion densities, electric potentials, plasma temperatures, and current densities external to a neutralized ion engine in R-Z geometry. The present version assumes the beam ion current and density to be known and specified, and the neutralizing electrons to originate from a hot-wire ring surrounding the beam orifice. The plasma is treated as being resistive, with an electron relaxation time comparable to the plasma frequency. Together with the thermal and electrical boundary conditions described below and other straightforward engine parameters, these assumptions suffice to determine the required quantities. The ION code, written in ASCII FORTRAN for UNIVAC 1100 series computers, is designed to be run interactively, although it can also be run in batch mode. The input is free-format, and the output is mainly graphical, using the machine-independent graphics developed for the NASCAP code. The executive routine calls the code's major subroutines in user-specified order, and the code allows great latitude for restart and parameter change.

  3. Verification study of the FORE-2M nuclear/thermal-hydraulilc analysis computer code

    International Nuclear Information System (INIS)

    Coffield, R.D.; Tang, Y.S.; Markley, R.A.

    1982-01-01

    The verification of the LMFBR core transient performance code, FORE-2M, was performed in two steps. Different components of the computation (individual models) were verified by comparing with analytical solutions and with results obtained from other conventionally accepted computer codes (e.g., TRUMP, LIFE, etc.). For verification of the integral computation method of the code, experimental data in TREAT, SEFOR and natural circulation experiments in EBR-II were compared with the code calculations. Good agreement was obtained for both of these steps. Confirmation of the code verification for undercooling transients is provided by comparisons with the recent FFTF natural circulation experiments. (orig.)

  4. A zero-dimensional EXTRAP computer code

    International Nuclear Information System (INIS)

    Karlsson, P.

    1982-10-01

    A zero-dimensional computer code has been designed for the EXTRAP experiment to predict the density and the temperature and their dependence upon paramenters such as the plasma current and the filling pressure of neutral gas. EXTRAP is a Z-pinch immersed in a vacuum octupole field and could be either linear or toroidal. In this code the density and temperature are assumed to be constant from the axis up to a breaking point from where they decrease linearly in the radial direction out to the plasma radius. All quantities, however, are averaged over the plasma volume thus giving the zero-dimensional character of the code. The particle, momentum and energy one-fluid equations are solved including the effects of the surrounding neutral gas and oxygen impurities. The code shows that the temperature and density are very sensitive to the shape of the plasma, flatter profiles giving higher temperatures and densities. The temperature, however, is not strongly affected for oxygen concentration less than 2% and is well above the radiation barrier even for higher concentrations. (Author)

  5. The implementation of CP1 computer code in the Honeywell Bull computer in Brazilian Nuclear Energy Commission (CNEN)

    International Nuclear Information System (INIS)

    Couto, R.T.

    1987-01-01

    The implementation of the CP1 computer code in the Honeywell Bull computer in Brazilian Nuclear Energy Comission is presented. CP1 is a computer code used to solve the equations of punctual kinetic with Doppler feed back from the system temperature variation based on the Newton refrigeration equation (E.G.) [pt

  6. The computer code system for reactor radiation shielding in design of nuclear power plant

    International Nuclear Information System (INIS)

    Li Chunhuai; Fu Shouxin; Liu Guilian

    1995-01-01

    The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities

  7. Interface code between WIMS-AECL and RFSP-IST for coupling computing

    International Nuclear Information System (INIS)

    Xu Liangwang; Liu Yu; Jia Baoshan

    2007-01-01

    A code based on the protocols of Telnet and FTP is developed with C++ for coupling computing between WIMS-AECL and RFSP-IST. the input document of WIMS-AECL and RFSP-ISP cna be generated automatically and be submitted to server, the output document will be downloaded by the end of computing. the function of analyzing standard output document is also included in this code. After simple updating, this code can meet the requirement of other code using input document, e.g. CATHENA. A pilot study of the relation between void fraction and reactivity in TACR, some valuable conclusions has been achieved. (authors)

  8. TPASS: a gamma-ray spectrum analysis and isotope identification computer code

    International Nuclear Information System (INIS)

    Dickens, J.K.

    1981-03-01

    The gamma-ray spectral data-reduction and analysis computer code TPASS is described. This computer code is used to analyze complex Ge(Li) gamma-ray spectra to obtain peak areas corrected for detector efficiencies, from which are determined gamma-ray yields. These yields are compared with an isotope gamma-ray data file to determine the contributions to the observed spectrum from decay of specific radionuclides. A complete FORTRAN listing of the code and a complex test case are given

  9. Development of computer code models for analysis of subassembly voiding in the LMFBR

    International Nuclear Information System (INIS)

    Hinkle, W.

    1979-12-01

    The research program discussed in this report was started in FY1979 under the combined sponsorship of the US Department of Energy (DOE), General Electric (GE) and Hanford Engineering Development Laboratory (HEDL). The objective of the program is to develop multi-dimensional computer codes which can be used for the analysis of subassembly voiding incoherence under postulated accident conditions in the LMFBR. Two codes are being developed in parallel. The first will use a two fluid (6 equation) model which is more difficult to develop but has the potential for providing a code with the utmost in flexibility and physical consistency for use in the long term. The other will use a mixture (< 6 equation) model which is less general but may be more amenable to interpretation and use of experimental data and therefore, easier to develop for use in the near term. To assure that the models developed are not design dependent, geometries and transient conditions typical of both foreign and US designs are being considered

  10. Computational atomic and nuclear physics

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.; McGrory, J.B.

    1990-01-01

    The evolution of parallel processor supercomputers in recent years provides opportunities to investigate in detail many complex problems, in many branches of physics, which were considered to be intractable only a few years ago. But to take advantage of these new machines, one must have a better understanding of how the computers organize their work than was necessary with previous single processor machines. Equally important, the scientist must have this understanding as well as a good understanding of the structure of the physics problem under study. In brief, a new field of computational physics is evolving, which will be led by investigators who are highly literate both computationally and physically. A Center for Computationally Intensive Problems has been established with the collaboration of the University of Tennessee Science Alliance, Vanderbilt University, and the Oak Ridge National Laboratory. The objective of this Center is to carry out forefront research in computationally intensive areas of atomic, nuclear, particle, and condensed matter physics. An important part of this effort is the appropriate training of students. An early effort of this Center was to conduct a Summer School of Computational Atomic and Nuclear Physics. A distinguished faculty of scientists in atomic, nuclear, and particle physics gave lectures on the status of present understanding of a number of topics at the leading edge in these fields, and emphasized those areas where computational physics was in a position to make a major contribution. In addition, there were lectures on numerical techniques which are particularly appropriate for implementation on parallel processor computers and which are of wide applicability in many branches of science

  11. A photon dominated region code comparison study

    NARCIS (Netherlands)

    Roellig, M.; Abel, N. P.; Bell, T.; Bensch, F.; Black, J.; Ferland, G. J.; Jonkheid, B.; Kamp, I.; Kaufman, M. J.; Le Bourlot, J.; Le Petit, F.; Meijerink, R.; Morata, O.; Ossenkopf, Volker; Roueff, E.; Shaw, G.; Spaans, M.; Sternberg, A.; Stutzki, J.; Thi, W.-F.; van Dishoeck, E. F.; van Hoof, P. A. M.; Viti, S.; Wolfire, M. G.

    Aims. We present a comparison between independent computer codes, modeling the physics and chemistry of interstellar photon dominated regions (PDRs). Our goal was to understand the mutual differences in the PDR codes and their effects on the physical and chemical structure of the model clouds, and

  12. Development of the computer code system for the analyses of PWR core

    International Nuclear Information System (INIS)

    Tsujimoto, Iwao; Naito, Yoshitaka.

    1992-11-01

    This report is one of the materials for the work titled 'Development of the computer code system for the analyses of PWR core phenomena', which is performed under contracts between Shikoku Electric Power Company and JAERI. In this report, the numerical method adopted in our computer code system are described, that is, 'The basic course and the summary of the analysing method', 'Numerical method for solving the Boltzmann equation', 'Numerical method for solving the thermo-hydraulic equations' and 'Description on the computer code system'. (author)

  13. Theory and application of the RAZOR two-dimensional continuous energy lattice physics code

    International Nuclear Information System (INIS)

    Zerkle, M.L.; Abu-Shumays, I.K.; Ott, M.W.; Winwood, J.P.

    1997-01-01

    The theory and application of the RAZOR two-dimensional, continuous energy lattice physics code are discussed. RAZOR solves the continuous energy neutron transport equation in one- and two-dimensional geometries, and calculates equivalent few-group diffusion theory constants that rigorously account for spatial and spectral self-shielding effects. A dual energy resolution slowing down algorithm is used to reduce computer memory and disk storage requirements for the slowing down calculation. Results are presented for a 2D BWR pin cell depletion benchmark problem

  14. Code system to compute radiation dose in human phantoms

    International Nuclear Information System (INIS)

    Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.

    1986-01-01

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods

  15. Computer codes developed in FRG to analyse hypothetical meltdown accidents

    International Nuclear Information System (INIS)

    Hassmann, K.; Hosemann, J.P.; Koerber, H.; Reineke, H.

    1978-01-01

    It is the purpose of this paper to give the status of all significant computer codes developed in the core melt-down project which is incorporated in the light water reactor safety research program of the Federal Ministry of Research and Technology. For standard pressurized water reactors, results of some computer codes will be presented, describing the course and the duration of the hypothetical core meltdown accident. (author)

  16. Validation of the VTT's reactor physics code system

    International Nuclear Information System (INIS)

    Tanskanen, A.

    1998-01-01

    At VTT Energy several international reactor physics codes and nuclear data libraries are used in a variety of applications. The codes and libraries are under constant development and every now and then new updated versions are released, which are taken in use as soon as they have been validated at VTT Energy. The primary aim of the validation is to ensure that the code works properly, and that it can be used correctly. Moreover, the applicability of the codes and libraries are studied in order to establish their advantages and weak points. The capability of generating program-specific nuclear data for different reactor physics codes starting from the same evaluated data is sometimes of great benefit. VTT Energy has acquired a nuclear data processing system based on the NJOY-94.105 and TRANSX-2.15 processing codes. The validity of the processing system has been demonstrated by generating pointwise (MCNP) and groupwise (ANISN) temperature-dependent cross section sets for the benchmark calculations of the Doppler coefficient of reactivity. At VTT Energy the KENO-VI three-dimensional Monte Carlo code is used in criticality safety analyses. The KENO-VI code and the 44GROUPNDF5 data library have been validated at VTT Energy against the ZR-6 and LR-0 critical experiments. Burnup Credit refers to the reduction in reactivity of burned nuclear fuel due to the change in composition during irradiation. VTT Energy has participated in the calculational VVER-440 burnup credit benchmark in order to validate criticality safety calculation tools. (orig.)

  17. A three-dimensional magnetostatics computer code for insertion devices

    International Nuclear Information System (INIS)

    Chubar, O.; Elleaume, P.; Chavanne, J.

    1998-01-01

    RADIA is a three-dimensional magnetostatics computer code optimized for the design of undulators and wigglers. It solves boundary magnetostatics problems with magnetized and current-carrying volumes using the boundary integral approach. The magnetized volumes can be arbitrary polyhedrons with non-linear (iron) or linear anisotropic (permanent magnet) characteristics. The current-carrying elements can be straight or curved blocks with rectangular cross sections. Boundary conditions are simulated by the technique of mirroring. Analytical formulae used for the computation of the field produced by a magnetized volume of a polyhedron shape are detailed. The RADIA code is written in object-oriented C++ and interfaced to Mathematica (Mathematica is a registered trademark of Wolfram Research, Inc.). The code outperforms currently available finite-element packages with respect to the CPU time of the solver and accuracy of the field integral estimations. An application of the code to the case of a wedge-pole undulator is presented

  18. Computation of the Genetic Code

    Science.gov (United States)

    Kozlov, Nicolay N.; Kozlova, Olga N.

    2018-03-01

    One of the problems in the development of mathematical theory of the genetic code (summary is presented in [1], the detailed -to [2]) is the problem of the calculation of the genetic code. Similar problems in the world is unknown and could be delivered only in the 21st century. One approach to solving this problem is devoted to this work. For the first time provides a detailed description of the method of calculation of the genetic code, the idea of which was first published earlier [3]), and the choice of one of the most important sets for the calculation was based on an article [4]. Such a set of amino acid corresponds to a complete set of representations of the plurality of overlapping triple gene belonging to the same DNA strand. A separate issue was the initial point, triggering an iterative search process all codes submitted by the initial data. Mathematical analysis has shown that the said set contains some ambiguities, which have been founded because of our proposed compressed representation of the set. As a result, the developed method of calculation was limited to the two main stages of research, where the first stage only the of the area were used in the calculations. The proposed approach will significantly reduce the amount of computations at each step in this complex discrete structure.

  19. Physics Computing '92: Proceedings of the 4th International Conference

    Science.gov (United States)

    de Groot, Robert A.; Nadrchal, Jaroslav

    1993-04-01

    * Ordered Particle Simulations for Serial and MIMD Parallel Computers * "NOLP" -- Program Package for Laser Plasma Nonlinear Optics * Algorithms to Solve Nonlinear Least Square Problems * Distribution of Hydrogen Atoms in Pd-H Computed by Molecular Dynamics * A Ray Tracing of Optical System for Protein Crystallography Beamline at Storage Ring-SIBERIA-2 * Vibrational Properties of a Pseudobinary Linear Chain with Correlated Substitutional Disorder * Application of the Software Package Mathematica in Generalized Master Equation Method * Linelist: An Interactive Program for Analysing Beam-foil Spectra * GROMACS: A Parallel Computer for Molecular Dynamics Simulations * GROMACS Method of Virial Calculation Using a Single Sum * The Interactive Program for the Solution of the Laplace Equation with the Elimination of Singularities for Boundary Functions * Random-Number Generators: Testing Procedures and Comparison of RNG Algorithms * Micro-TOPIC: A Tokamak Plasma Impurities Code * Rotational Molecular Scattering Calculations * Orthonormal Polynomial Method for Calibrating of Cryogenic Temperature Sensors * Frame-based System Representing Basis of Physics * The Role of Massively Data-parallel Computers in Large Scale Molecular Dynamics Simulations * Short-range Molecular Dynamics on a Network of Processors and Workstations * An Algorithm for Higher-order Perturbation Theory in Radiative Transfer Computations * Hydrostochastics: The Master Equation Formulation of Fluid Dynamics * HPP Lattice Gas on Transputers and Networked Workstations * Study on the Hysteresis Cycle Simulation Using Modeling with Different Functions on Intervals * Refined Pruning Techniques for Feed-forward Neural Networks * Random Walk Simulation of the Motion of Transient Charges in Photoconductors * The Optical Hysteresis in Hydrogenated Amorphous Silicon * Diffusion Monte Carlo Analysis of Modern Interatomic Potentials for He * A Parallel Strategy for Molecular Dynamics Simulations of Polar Liquids on

  20. ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Charles R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anderson, Andrew T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barton, Nathan R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bramwell, Jamie A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Capps, Arlie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, Michael H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chou, Jin J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dawson, David M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Diana, Emily R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunn, Timothy A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Faux, Douglas R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fisher, Aaron C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinz, Ines [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kanarska, Yuliya [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Khairallah, Saad A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Liu, Benjamin T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Margraf, Jon D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nichols, Albert L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Puso, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reus, James F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Robinson, Peter B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shestakov, Alek I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Solberg, Jerome M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Taller, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tsuji, Paul H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Christopher A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Jeremy L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-23

    ALE3D is a multi-physics numerical simulation software tool utilizing arbitrary-Lagrangian- Eulerian (ALE) techniques. The code is written to address both two-dimensional (2D plane and axisymmetric) and three-dimensional (3D) physics and engineering problems using a hybrid finite element and finite volume formulation to model fluid and elastic-plastic response of materials on an unstructured grid. As shown in Figure 1, ALE3D is a single code that integrates many physical phenomena.

  1. PORPST: A statistical postprocessor for the PORMC computer code

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Didier, B.T.

    1991-06-01

    This report describes the theory underlying the PORPST code and gives details for using the code. The PORPST code is designed to do statistical postprocessing on files written by the PORMC computer code. The data written by PORMC are summarized in terms of means, variances, standard deviations, or statistical distributions. In addition, the PORPST code provides for plotting of the results, either internal to the code or through use of the CONTOUR3 postprocessor. Section 2.0 discusses the mathematical basis of the code, and Section 3.0 discusses the code structure. Section 4.0 describes the free-format point command language. Section 5.0 describes in detail the commands to run the program. Section 6.0 provides an example program run, and Section 7.0 provides the references. 11 refs., 1 fig., 17 tabs

  2. Microdosimetry computation code of internal sources - MICRODOSE 1

    International Nuclear Information System (INIS)

    Li Weibo; Zheng Wenzhong; Ye Changqing

    1995-01-01

    This paper describes a microdosimetry computation code, MICRODOSE 1, on the basis of the following described methods: (1) the method of calculating f 1 (z) for charged particle in the unit density tissues; (2) the method of calculating f(z) for a point source; (3) the method of applying the Fourier transform theory to the calculation of the compound Poisson process; (4) the method of using fast Fourier transform technique to determine f(z) and, giving some computed examples based on the code, MICRODOSE 1, including alpha particles emitted from 239 Pu in the alveolar lung tissues and from radon progeny RaA and RAC in the human respiratory tract. (author). 13 refs., 6 figs

  3. Probabilistic evaluations for CANTUP computer code analysis improvement

    International Nuclear Information System (INIS)

    Florea, S.; Pavelescu, M.

    2004-01-01

    Structural analysis with finite element method is today an usual way to evaluate and predict the behavior of structural assemblies subject to hard conditions in order to ensure their safety and reliability during their operation. A CANDU 600 fuel channel is an example of an assembly working in hard conditions, in which, except the corrosive and thermal aggression, long time irradiation, with implicit consequences on material properties evolution, interferes. That leads inevitably to material time-dependent properties scattering, their dynamic evolution being subject to a great degree of uncertainness. These are the reasons for developing, in association with deterministic evaluations with computer codes, the probabilistic and statistical methods in order to predict the structural component response. This work initiates the possibility to extend the deterministic thermomechanical evaluation on fuel channel components to probabilistic structural mechanics approach starting with deterministic analysis performed with CANTUP computer code which is a code developed to predict the long term mechanical behavior of the pressure tube - calandria tube assembly. To this purpose the structure of deterministic calculus CANTUP computer code has been reviewed. The code has been adapted from LAHEY 77 platform to Microsoft Developer Studio - Fortran Power Station platform. In order to perform probabilistic evaluations, it was added a part to the deterministic code which, using a subroutine from IMSL library from Microsoft Developer Studio - Fortran Power Station platform, generates pseudo-random values of a specified value. It was simulated a normal distribution around the deterministic value and 5% standard deviation for Young modulus material property in order to verify the statistical calculus of the creep behavior. The tube deflection and effective stresses were the properties subject to probabilistic evaluation. All the values of these properties obtained for all the values for

  4. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    Science.gov (United States)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the

  5. Validation of thermohydraulic codes by comparison of experimental results with computer simulations

    International Nuclear Information System (INIS)

    Madeira, A.A.; Galetti, M.R.S.; Pontedeiro, A.C.

    1989-01-01

    The results obtained by simulation of three cases from CANON depressurization experience, using the TRAC-PF1 computer code, version 7.6, implanted in the VAX-11/750 computer of Brazilian CNEN, are presented. The CANON experience was chosen as first standard problem in thermo-hydraulic to be discussed at ENFIR for comparing results from different computer codes with results obtained experimentally. The ability of TRAC-PF1 code to prevent the depressurization phase of a loss of primary collant accident in pressurized water reactors is evaluated. (M.C.K.) [pt

  6. High energy physics and cloud computing

    International Nuclear Information System (INIS)

    Cheng Yaodong; Liu Baoxu; Sun Gongxing; Chen Gang

    2011-01-01

    High Energy Physics (HEP) has been a strong promoter of computing technology, for example WWW (World Wide Web) and the grid computing. In the new era of cloud computing, HEP has still a strong demand, and major international high energy physics laboratories have launched a number of projects to research on cloud computing technologies and applications. It describes the current developments in cloud computing and its applications in high energy physics. Some ongoing projects in the institutes of high energy physics, Chinese Academy of Sciences, including cloud storage, virtual computing clusters, and BESⅢ elastic cloud, are also described briefly in the paper. (authors)

  7. CASKETSS: a computer code system for thermal and structural analysis of nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1989-02-01

    A computer program CASKETSS has been developed for the purpose of thermal and structural analysis of nuclear fuel shipping casks. CASKETSS measn a modular code system for CASK Evaluation code system Thermal and Structural Safety. Main features of CASKETSS are as follow; (1) Thermal and structural analysis computer programs for one-, two-, three-dimensional geometries are contained in the code system. (2) Some of the computer programs in the code system has been programmed to provide near optimal speed on vector processing computers. (3) Data libralies fro thermal and structural analysis are provided in the code system. (4) Input data generator is provided in the code system. (5) Graphic computer program is provided in the code system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)

  8. Multitasking the code ARC3D. [for computational fluid dynamics

    Science.gov (United States)

    Barton, John T.; Hsiung, Christopher C.

    1986-01-01

    The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.

  9. A new 3-D integral code for computation of accelerator magnets

    International Nuclear Information System (INIS)

    Turner, L.R.; Kettunen, L.

    1991-01-01

    For computing accelerator magnets, integral codes have several advantages over finite element codes; far-field boundaries are treated automatically, and computed field in the bore region satisfy Maxwell's equations exactly. A new integral code employing edge elements rather than nodal elements has overcome the difficulties associated with earlier integral codes. By the use of field integrals (potential differences) as solution variables, the number of unknowns is reduced to one less than the number of nodes. Two examples, a hollow iron sphere and the dipole magnet of Advanced Photon Source injector synchrotron, show the capability of the code. The CPU time requirements are comparable to those of three-dimensional (3-D) finite-element codes. Experiments show that in practice it can realize much of the potential CPU time saving that parallel processing makes possible. 8 refs., 4 figs., 1 tab

  10. Analysis of parallel computing performance of the code MCNP

    International Nuclear Information System (INIS)

    Wang Lei; Wang Kan; Yu Ganglin

    2006-01-01

    Parallel computing can reduce the running time of the code MCNP effectively. With the MPI message transmitting software, MCNP5 can achieve its parallel computing on PC cluster with Windows operating system. Parallel computing performance of MCNP is influenced by factors such as the type, the complexity level and the parameter configuration of the computing problem. This paper analyzes the parallel computing performance of MCNP regarding with these factors and gives measures to improve the MCNP parallel computing performance. (authors)

  11. High-performance computational fluid dynamics: a custom-code approach

    International Nuclear Information System (INIS)

    Fannon, James; Náraigh, Lennon Ó; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain

    2016-01-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier–Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing. (paper)

  12. High-performance computational fluid dynamics: a custom-code approach

    Science.gov (United States)

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  13. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics

    International Nuclear Information System (INIS)

    Seker, V.; Thomas, J. W.; Downar, T. J.

    2007-01-01

    The interest in high fidelity modeling of nuclear reactor cores has increased over the last few years and has become computationally more feasible because of the dramatic improvements in processor speed and the availability of low cost parallel platforms. In the research here high fidelity, multi-physics analyses was performed by solving the neutron transport equation using Monte Carlo methods and by solving the thermal-hydraulics equations using computational fluid dynamics. A computation tool based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR' along with the verification and validation efforts. McSTAR is written in PERL programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STAR-CD for every region. Three different methods were investigated and two of them are implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. The necessary input file manipulation, data file generation, normalization and multi-processor calculation settings are all done through the program flow in McSTAR. Initial testing of the code was performed using a single pin cell and a 3X3 PWR pin-cell problem. The preliminary results of the single pin-cell problem are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code De

  14. LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN

    Science.gov (United States)

    Barranco, Javier; Cai, Yunhai; Cameron, David; Crouch, Matthew; Maria, Riccardo De; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D.; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Veken, Frederik Van der; Zacharov, Igor

    2017-12-01

    The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted in this paper.

  15. The ZPIC educational code suite

    Science.gov (United States)

    Calado, R.; Pardal, M.; Ninhos, P.; Helm, A.; Mori, W. B.; Decyk, V. K.; Vieira, J.; Silva, L. O.; Fonseca, R. A.

    2017-10-01

    Particle-in-Cell (PIC) codes are used in almost all areas of plasma physics, such as fusion energy research, plasma accelerators, space physics, ion propulsion, and plasma processing, and many other areas. In this work, we present the ZPIC educational code suite, a new initiative to foster training in plasma physics using computer simulations. Leveraging on our expertise and experience from the development and use of the OSIRIS PIC code, we have developed a suite of 1D/2D fully relativistic electromagnetic PIC codes, as well as 1D electrostatic. These codes are self-contained and require only a standard laptop/desktop computer with a C compiler to be run. The output files are written in a new file format called ZDF that can be easily read using the supplied routines in a number of languages, such as Python, and IDL. The code suite also includes a number of example problems that can be used to illustrate several textbook and advanced plasma mechanisms, including instructions for parameter space exploration. We also invite contributions to this repository of test problems that will be made freely available to the community provided the input files comply with the format defined by the ZPIC team. The code suite is freely available and hosted on GitHub at https://github.com/zambzamb/zpic. Work partially supported by PICKSC.

  16. PC as physics computer for LHC?

    International Nuclear Information System (INIS)

    Jarp, Sverre; Simmins, Antony; Tang, Hong

    1996-01-01

    In the last five years, we have seen RISC workstations take over the computing scene that was once controlled by mainframes and supercomputers. In this paper we will argue that the same phenomenon might happen again. A project, active since March this year in the Physics Data Processing group of CERN's CN division is described where ordinary desktop PCs running Windows (NT and 3.11) have been used for creating an environment for running large LHC batch jobs (initially the DICE simulation job of Atlas). The problems encountered in porting both the CERN library and the specific Atlas codes are described together with some encouraging benchmark results when comparing to existing to existing RISC workstation in use by the Atlas collaboration. The issues of establishing the batch environment (Batch monitor, staging software, etc) are also covered. Finally a quick extrapolation of commodity computing power available in the future is touched upon to indicate what kind of cost envelope could be sufficient for the simulation farms required by the LHC experiments. (author)

  17. Pc as Physics Computer for Lhc ?

    Science.gov (United States)

    Jarp, Sverre; Simmins, Antony; Tang, Hong; Yaari, R.

    In the last five years, we have seen RISC workstations take over the computing scene that was once controlled by mainframes and supercomputers. In this paper we will argue that the same phenomenon might happen again. A project, active since March this year in the Physics Data Processing group, of CERN's CN division is described where ordinary desktop PCs running Windows (NT and 3.11) have been used for creating an environment for running large LHC batch jobs (initially the DICE simulation job of Atlas). The problems encountered in porting both the CERN library and the specific Atlas codes are described together with some encouraging benchmark results when comparing to existing RISC workstations in use by the Atlas collaboration. The issues of establishing the batch environment (Batch monitor, staging software, etc.) are also covered. Finally a quick extrapolation of commodity computing power available in the future is touched upon to indicate what kind of cost envelope could be sufficient for the simulation farms required by the LHC experiments.

  18. New coding technique for computer generated holograms.

    Science.gov (United States)

    Haskell, R. E.; Culver, B. C.

    1972-01-01

    A coding technique is developed for recording computer generated holograms on a computer controlled CRT in which each resolution cell contains two beam spots of equal size and equal intensity. This provides a binary hologram in which only the position of the two dots is varied from cell to cell. The amplitude associated with each resolution cell is controlled by selectively diffracting unwanted light into a higher diffraction order. The recording of the holograms is fast and simple.

  19. Hauser*5, a computer code to calculate nuclear cross sections

    International Nuclear Information System (INIS)

    Mann, F.M.

    1979-07-01

    HAUSER*5 is a computer code that uses the statistical (Hauser-Feshbach) model, the pre-equilibrium model, and a statistical model of direct reactions to predict nuclear cross sections. The code is unrestricted as to particle type, includes fission and capture, makes width-fluctuation corrections, and performs three-body calculations - all in minimum computer time. Transmission coefficients can be generated internally or supplied externally. This report describes equations used, necessary input, and resulting output. 2 figures, 4 tables

  20. NADAC and MERGE: computer codes for processing neutron activation analysis data

    International Nuclear Information System (INIS)

    Heft, R.E.; Martin, W.E.

    1977-01-01

    Absolute disintegration rates of specific radioactive products induced by neutron irradition of a sample are determined by spectrometric analysis of gamma-ray emissions. Nuclide identification and quantification is carried out by a complex computer code GAMANAL (described elsewhere). The output of GAMANAL is processed by NADAC, a computer code that converts the data on observed distintegration rates to data on the elemental composition of the original sample. Computations by NADAC are on an absolute basis in that stored nuclear parameters are used rather than the difference between the observed disintegration rate and the rate obtained by concurrent irradiation of elemental standards. The NADAC code provides for the computation of complex cases including those involving interrupted irradiations, parent and daughter decay situations where the daughter may also be produced independently, nuclides with very short half-lives compared to counting interval, and those involving interference by competing neutron-induced reactions. The NADAC output consists of a printed report, which summarizes analytical results, and a card-image file, which can be used as input to another computer code MERGE. The purpose of MERGE is to combine the results of multiple analyses and produce a single final answer, based on all available information, for each element found

  1. Survey of computer codes applicable to waste facility performance evaluations

    International Nuclear Information System (INIS)

    Alsharif, M.; Pung, D.L.; Rivera, A.L.; Dole, L.R.

    1988-01-01

    This study is an effort to review existing information that is useful to develop an integrated model for predicting the performance of a radioactive waste facility. A summary description of 162 computer codes is given. The identified computer programs address the performance of waste packages, waste transport and equilibrium geochemistry, hydrological processes in unsaturated and saturated zones, and general waste facility performance assessment. Some programs also deal with thermal analysis, structural analysis, and special purposes. A number of these computer programs are being used by the US Department of Energy, the US Nuclear Regulatory Commission, and their contractors to analyze various aspects of waste package performance. Fifty-five of these codes were identified as being potentially useful on the analysis of low-level radioactive waste facilities located above the water table. The code summaries include authors, identification data, model types, and pertinent references. 14 refs., 5 tabs

  2. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  3. Computational plasma physics and supercomputers

    International Nuclear Information System (INIS)

    Killeen, J.; McNamara, B.

    1984-09-01

    The Supercomputers of the 80's are introduced. They are 10 to 100 times more powerful than today's machines. The range of physics modeling in the fusion program is outlined. New machine architecture will influence particular codes, but parallel processing poses new coding difficulties. Increasing realism in simulations will require better numerics and more elaborate mathematics

  4. CSNI Integral Test Facility Matrices for Validation of Best-Estimate Thermal-Hydraulic Computer Codes

    International Nuclear Information System (INIS)

    Glaeser, H.

    2008-01-01

    Internationally agreed Integral Test Facility (ITF) matrices for validation of realistic thermal hydraulic system computer codes were established. ITF development is mainly for Pressurised Water Reactors (PWRs) and Boiling Water Reactors (BWRs). A separate activity was for Russian Pressurised Water-cooled and Water-moderated Energy Reactors (WWER). Firstly, the main physical phenomena that occur during considered accidents are identified, test types are specified, and test facilities suitable for reproducing these aspects are selected. Secondly, a list of selected experiments carried out in these facilities has been set down. The criteria to achieve the objectives are outlined. In this paper some specific examples from the ITF matrices will also be provided. The matrices will be a guide for code validation, will be a basis for comparisons of code predictions performed with different system codes, and will contribute to the quantification of the uncertainty range of code model predictions. In addition to this objective, the construction of such a matrix is an attempt to record information which has been generated around the world over the last years, so that it is more accessible to present and future workers in that field than would otherwise be the case.

  5. Poisson/Superfish codes for personal computers

    International Nuclear Information System (INIS)

    Humphries, S.

    1992-01-01

    The Poisson/Superfish codes calculate static E or B fields in two-dimensions and electromagnetic fields in resonant structures. New versions for 386/486 PCs and Macintosh computers have capabilities that exceed the mainframe versions. Notable improvements are interactive graphical post-processors, improved field calculation routines, and a new program for charged particle orbit tracking. (author). 4 refs., 1 tab., figs

  6. CAT: a computer code for the automated construction of fault trees

    International Nuclear Information System (INIS)

    Apostolakis, G.E.; Salem, S.L.; Wu, J.S.

    1978-03-01

    A computer code, CAT (Computer Automated Tree, is presented which applies decision table methods to model the behavior of components for systematic construction of fault trees. The decision tables for some commonly encountered mechanical and electrical components are developed; two nuclear subsystems, a Containment Spray Recirculation System and a Consequence Limiting Control System, are analyzed to demonstrate the applications of CAT code

  7. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes.

  8. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules, F9-F11

    International Nuclear Information System (INIS)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes

  9. Preliminary Coupling of MATRA Code for Multi-physics Analysis

    International Nuclear Information System (INIS)

    Kim, Seongjin; Choi, Jinyoung; Yang, Yongsik; Kwon, Hyouk; Hwang, Daehyun

    2014-01-01

    The boundary conditions such as the inlet temperature, mass flux, averaged heat flux, power distributions of the rods, and core geometry is given by constant values or functions of time. These conditions are separately calculated and provided by other codes, such as a neutronics or a system codes, into the MATRA code. In addition, the coupling of several codes in the different physics field is focused and embodied. In this study, multiphysics coupling methods were developed for a subchannel code (MATRA) with neutronics codes (MASTER, DeCART) and a fuel performance code (FRAPCON-3). Preliminary evaluation results for representative sample cases are presented. The MASTER and DeCART codes provide the power distribution of the rods in the core to the MATRA code. In case of the FRAPCON-3 code, the variation of the rod diameter induced by the thermal expansion is yielded and provided. The MATRA code transfers the thermal-hydraulic conditions that each code needs. Moreover, the coupling method with each code is described

  10. Verification of the network flow and transport/distributed velocity (NWFT/DVM) computer code

    International Nuclear Information System (INIS)

    Duda, L.E.

    1984-05-01

    The Network Flow and Transport/Distributed Velocity Method (NWFT/DVM) computer code was developed primarily to fulfill a need for a computationally efficient ground-water flow and contaminant transport capability for use in risk analyses where, quite frequently, large numbers of calculations are required. It is a semi-analytic, quasi-two-dimensional network code that simulates ground-water flow and the transport of dissolved species (radionuclides) in a saturated porous medium. The development of this code was carried out under a program funded by the US Nuclear Regulatory Commission (NRC) to develop a methodology for assessing the risk from disposal of radioactive wastes in deep geologic formations (FIN: A-1192 and A-1266). In support to the methodology development program, the NRC has funded a separate Maintenance of Computer Programs Project (FIN: A-1166) to ensure that the codes developed under A-1192 or A-1266 remain consistent with current operating systems, are as error-free as possible, and have up-to-date documentations for reference by the NRC staff. Part of this effort would include verification and validation tests to assure that a code correctly performs the operations specified and/or is representing the processes or system for which it is intended. This document contains four verification problems for the NWFT/DVM computer code. Two of these problems are analytical verifications of NWFT/DVM where results are compared to analytical solutions. The other two are code-to-code verifications where results from NWFT/DVM are compared to those of another computer code. In all cases NWFT/DVM showed good agreement with both the analytical solutions and the results from the other code

  11. Nuclear Physics computer networking: Report of the Nuclear Physics Panel on Computer Networking

    International Nuclear Information System (INIS)

    Bemis, C.; Erskine, J.; Franey, M.; Greiner, D.; Hoehn, M.; Kaletka, M.; LeVine, M.; Roberson, R.; Welch, L.

    1990-05-01

    This paper discusses: the state of computer networking within nuclear physics program; network requirements for nuclear physics; management structure; and issues of special interest to the nuclear physics program office

  12. Physical computation and cognitive science

    CERN Document Server

    Fresco, Nir

    2014-01-01

    This book presents a study of digital computation in contemporary cognitive science. Digital computation is a highly ambiguous concept, as there is no common core definition for it in cognitive science. Since this concept plays a central role in cognitive theory, an adequate cognitive explanation requires an explicit account of digital computation. More specifically, it requires an account of how digital computation is implemented in physical systems. The main challenge is to deliver an account encompassing the multiple types of existing models of computation without ending up in pancomputationalism, that is, the view that every physical system is a digital computing system. This book shows that only two accounts, among the ones examined by the author, are adequate for explaining physical computation. One of them is the instructional information processing account, which is developed here for the first time.   “This book provides a thorough and timely analysis of differing accounts of computation while adv...

  13. Computing in high energy physics

    International Nuclear Information System (INIS)

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  14. Computational Physics as a Path for Physics Education

    Science.gov (United States)

    Landau, Rubin H.

    2008-04-01

    Evidence and arguments will be presented that modifications in the undergraduate physics curriculum are necessary to maintain the long-term relevance of physics. Suggested will a balance of analytic, experimental, computational, and communication skills, that in many cases will require an increased inclusion of computation and its associated skill set into the undergraduate physics curriculum. The general arguments will be followed by a detailed enumeration of suggested subjects and student learning outcomes, many of which have already been adopted or advocated by the computational science community, and which permit high performance computing and communication. Several alternative models for how these computational topics can be incorporated into the undergraduate curriculum will be discussed. This includes enhanced topics in the standard existing courses, as well as stand-alone courses. Applications and demonstrations will be presented throughout the talk, as well as prototype video-based materials and electronic books.

  15. Concatenated codes for fault tolerant quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E.; Laflamme, R.; Zurek, W.

    1995-05-01

    The application of concatenated codes to fault tolerant quantum computing is discussed. We have previously shown that for quantum memories and quantum communication, a state can be transmitted with error {epsilon} provided each gate has error at most c{epsilon}. We show how this can be used with Shor`s fault tolerant operations to reduce the accuracy requirements when maintaining states not currently participating in the computation. Viewing Shor`s fault tolerant operations as a method for reducing the error of operations, we give a concatenated implementation which promises to propagate the reduction hierarchically. This has the potential of reducing the accuracy requirements in long computations.

  16. Mathematics, Physics and Computer Sciences The computation of ...

    African Journals Online (AJOL)

    Mathematics, Physics and Computer Sciences The computation of system matrices for biquadraticsquare finite ... Global Journal of Pure and Applied Sciences ... The computation of system matrices for biquadraticsquare finite elements.

  17. Dispersed flow film boiling: An investigation of the possibility to improve the models implemented in the NRC computer codes for the reflooding phase of the LOCA

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.; Paul Scherrer Inst.

    1992-08-01

    Dispersed Flow Film Boiling is the heat transfer regime that occurs at high void fractions in a heated channel. The way this heat transfer mode is modelled in the NRC computer codes (RELAP5 and TRAC) and the validity of the assumptions and empirical correlations used is discussed. An extensive review of the theoretical and experimental work related with heat transfer to highly dispersed mixtures reveals the basic deficiencies of these models: the investigation refers mostly to the typical conditions of low rate bottom reflooding, since the simulation of this physical situation by the computer codes has often showed poor results. The alternative models that are available in the literature are reviewed, and their merits and limits are highlighted. The modifications that could improve the physics of the models implemented in the codes are identified

  18. Computing in high energy physics

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Hoogland, W.

    1986-01-01

    This book deals with advanced computing applications in physics, and in particular in high energy physics environments. The main subjects covered are networking; vector and parallel processing; and embedded systems. Also examined are topics such as operating systems, future computer architectures and commercial computer products. The book presents solutions that are foreseen as coping, in the future, with computing problems in experimental and theoretical High Energy Physics. In the experimental environment the large amounts of data to be processed offer special problems on-line as well as off-line. For on-line data reduction, embedded special purpose computers, which are often used for trigger applications are applied. For off-line processing, parallel computers such as emulator farms and the cosmic cube may be employed. The analysis of these topics is therefore a main feature of this volume

  19. ANIMAL code

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1979-01-01

    This report describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic computer code. ANIMAL's physical model also appears. Formulated are temporal and spatial finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined are the functions of the algorithm's FORTRAN subroutines and variables

  20. Vectorization of nuclear codes on FACOM 230-75 APU computer

    International Nuclear Information System (INIS)

    Harada, Hiroo; Higuchi, Kenji; Ishiguro, Misako; Tsutsui, Tsuneo; Fujii, Minoru

    1983-02-01

    To provide for the future usage of supercomputer, we have investigated the vector processing efficiency of nuclear codes which are being used at JAERI. The investigation is performed by using FACOM 230-75 APU computer. The codes are CITATION (3D neutron diffusion), SAP5 (structural analysis), CASCMARL (irradiation damage simulation). FEM-BABEL (3D neutron diffusion by FEM), GMSCOPE (microscope simulation). DWBA (cross section calculation at molecular collisions). A new type of cell density calculation for particle-in-cell method is also investigated. For each code we have obtained a significant speedup which ranges from 1.8 (CASCMARL) to 7.5 (GMSCOPE), respectively. We have described in this report the running time dynamic profile analysis of the codes, numerical algorithms used, program restructuring for the vectorization, numerical experiments of the iterative process, vectorized ratios, speedup ratios on the FACOM 230-75 APU computer, and some vectorization views. (author)

  1. Prodeto, a computer code for probabilistic fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Braam, H [ECN-Solar and Wind Energy, Petten (Netherlands); Christensen, C J; Thoegersen, M L [Risoe National Lab., Roskilde (Denmark); Ronold, K O [Det Norske Veritas, Hoevik (Norway)

    1999-03-01

    A computer code for structural relibility analyses of wind turbine rotor blades subjected to fatigue loading is presented. With pre-processors that can transform measured and theoretically predicted load series to load range distributions by rain-flow counting and with a family of generic distribution models for parametric representation of these distribution this computer program is available for carying through probabilistic fatigue analyses of rotor blades. (au)

  2. Computer code PRECIP-II for the calculation of Zr-steam reaction

    International Nuclear Information System (INIS)

    Suzuki, Motoye; Kawasaki, Satoru; Furuta, Teruo

    1978-06-01

    The computer code PRECIP-II developed, a modification of S.Malang's SIMTRAN-I, is to calculate Zr-Steam reaction under LOCA conditions. Improved are the following: 1. treatment of boundary conditions at alpha/beta phase interface during temperature decrease. 2. method of time-mesh control. 3. number of input-controllable parameters, and output format. These improvements made possible physically reasonable calculations for an increased number of temperature history patterns, including the cladding temperature excursion assumed during LOCA. Calculations were made along various transient temperature histories, with the parameters so modified as to enable fitting of numerical results of weight gain, oxide thickness and alpha phase thickness in isothermal reactions to the experimental data. Then the computed results were compared with the corresponding experimental values, which revealed that most of the differences lie within +-10%. Slow cooling effect on ductility change of Zircaloy-4 was investigated with some of the oxidized specimens by a ring compression test; the effect is only slight. (auth.)

  3. Development of a graphical interface computer code for reactor fuel reloading optimization

    International Nuclear Information System (INIS)

    Do Quang Binh; Nguyen Phuoc Lan; Bui Xuan Huy

    2007-01-01

    This report represents the results of the project performed in 2007. The aim of this project is to develop a graphical interface computer code that allows refueling engineers to design fuel reloading patterns for research reactor using simulated graphical model of reactor core. Besides, this code can perform refueling optimization calculations based on genetic algorithms as well as simulated annealing. The computer code was verified based on a sample problem, which relies on operational and experimental data of Dalat research reactor. This code can play a significant role in in-core fuel management practice at nuclear research reactor centers and in training. (author)

  4. The failure mechanisms of HTR coated particle fuel and computer code

    International Nuclear Information System (INIS)

    Yang Lin; Liu Bing; Shao Youlin; Liang Tongxiang; Tang Chunhe

    2010-01-01

    The basic constituent unit of fuel element in HTR is ceramic coated particle fuel. And the performance of coated particle fuel determines the safety of HTR. In addition to the traditional detection of radiation experiments, establishing computer code is of great significance to the research. This paper mainly introduces the structure and the failure mechanism of TRISO-coated particle fuel, as well as a few basic assumptions,principles and characteristics of some existed main overseas codes. Meanwhile, this paper has proposed direction of future research by comparing the advantages and disadvantages of several computer codes. (authors)

  5. Computer simulation of variform fuel assemblies using Dragon code

    International Nuclear Information System (INIS)

    Ju Haitao; Wu Hongchun; Yao Dong

    2005-01-01

    The DRAGON is a cell code that developed for the CANDU reactor by the Ecole Polytechnique de Montreal of CANADA. Although, the DRAGON is mainly used to simulate the CANDU super-cell fuel assembly, it has an ability to simulate other geometries of the fuel assembly. However, only NEACRP benchmark problem of the BWR lattice cell was analyzed until now except for the CANDU reactor. We also need to develop the code to simulate the variform fuel assemblies, especially, for design of the advanced reactor. We validated that the cell code DRAGON is useful for simulating various kinds of the fuel assembly by analyzing the rod-shape fuel assembly of the PWR and the MTR plate-shape fuel assembly. Some other kinds of geometry of geometry were computed. Computational results show that the DRAGON is able to analyze variform fuel assembly problems and the precision is high. (authors)

  6. Applications of the ARGUS code in accelerator physics

    International Nuclear Information System (INIS)

    Petillo, J.J.; Mankofsky, A.; Krueger, W.A.; Kostas, C.; Mondelli, A.A.; Drobot, A.T.

    1993-01-01

    ARGUS is a three-dimensional, electromagnetic, particle-in-cell (PIC) simulation code that is being distributed to U.S. accelerator laboratories in collaboration between SAIC and the Los Alamos Accelerator Code Group. It uses a modular architecture that allows multiple physics modules to share common utilities for grid and structure input., memory management, disk I/O, and diagnostics, Physics modules are in place for electrostatic and electromagnetic field solutions., frequency-domain (eigenvalue) solutions, time- dependent PIC, and steady-state PIC simulations. All of the modules are implemented with a domain-decomposition architecture that allows large problems to be broken up into pieces that fit in core and that facilitates the adaptation of ARGUS for parallel processing ARGUS operates on either Cray or workstation platforms, and MOTIF-based user interface is available for X-windows terminals. Applications of ARGUS in accelerator physics and design are described in this paper

  7. COMPBRN III: a computer code for modeling compartment fires

    International Nuclear Information System (INIS)

    Ho, V.; Siu, N.; Apostolakis, G.; Flanagan, G.F.

    1986-07-01

    The computer code COMPBRN III deterministically models the behavior of compartment fires. This code is an improvement of the original COMPBRN codes. It employs a different air entrainment model and numerical scheme to estimate properties of the ceiling hot gas layer model. Moreover, COMPBRN III incorporates a number of improvements in shape factor calculations and error checking, which distinguish it from the COMPBRN II code. This report presents the ceiling hot gas layer model employed by COMPBRN III as well as several other modifications. Information necessary to run COMPBRN III, including descriptions of required input and resulting output, are also presented. Simulation of experiments and a sample problem are included to demonstrate the usage of the code. 37 figs., 46 refs

  8. ABINIT: a computer code for matter; Abinit: un code au service de la matiere

    Energy Technology Data Exchange (ETDEWEB)

    Amadon, B.; Bottin, F.; Bouchet, J.; Dewaele, A.; Jollet, F.; Jomard, G.; Loubeyre, P.; Mazevet, S.; Recoules, V.; Torrent, M.; Zerah, G. [CEA Bruyeres-le-Chatel, 91 (France)

    2008-07-01

    The PAW (Projector Augmented Wave) method has been implemented in the ABINIT Code that computes electronic structures in atoms. This method relies on the simultaneous use of a set of auxiliary functions (in plane waves) and a sphere around each atom. This method allows the computation of systems including many atoms and gives the expression of energy, forces, stress... in terms of the auxiliary function only. We have generated atomic data for iron at very high pressure (over 200 GPa). We get a bcc-hcp transition around 10 GPa and the magnetic order disappears around 50 GPa. This method has been validated on a series of metals. The development of the PAW method has required a great effort for the massive parallelization of the ABINIT code. (A.C.)

  9. Physical Computing and Its Scope--Towards a Constructionist Computer Science Curriculum with Physical Computing

    Science.gov (United States)

    Przybylla, Mareen; Romeike, Ralf

    2014-01-01

    Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…

  10. Calculations of reactor-accident consequences, Version 2. CRAC2: computer code user's guide

    International Nuclear Information System (INIS)

    Ritchie, L.T.; Johnson, J.D.; Blond, R.M.

    1983-02-01

    The CRAC2 computer code is a revision of the Calculation of Reactor Accident Consequences computer code, CRAC, developed for the Reactor Safety Study. The CRAC2 computer code incorporates significant modeling improvements in the areas of weather sequence sampling and emergency response, and refinements to the plume rise, atmospheric dispersion, and wet deposition models. New output capabilities have also been added. This guide is to facilitate the informed and intelligent use of CRAC2. It includes descriptions of the input data, the output results, the file structures, control information, and five sample problems

  11. Present state of the SOURCES computer code

    International Nuclear Information System (INIS)

    Shores, Erik F.

    2002-01-01

    In various stages of development for over two decades, the SOURCES computer code continues to calculate neutron production rates and spectra from four types of problems: homogeneous media, two-region interfaces, three-region interfaces and that of a monoenergetic alpha particle beam incident on a slab of target material. Graduate work at the University of Missouri - Rolla, in addition to user feedback from a tutorial course, provided the impetus for a variety of code improvements. Recently upgraded to version 4B, initial modifications to SOURCES focused on updates to the 'tape5' decay data library. Shortly thereafter, efforts focused on development of a graphical user interface for the code. This paper documents the Los Alamos SOURCES Tape1 Creator and Library Link (LASTCALL) and describes additional library modifications in more detail. Minor improvements and planned enhancements are discussed.

  12. Theory of the space-dependent fuel management computer code ''UAFCC''

    International Nuclear Information System (INIS)

    El-Meshad, Y.; Morsy, S.; El-Osery, I.A.

    1981-01-01

    This report displays the theory of the spatial burnup computer code ''UAFCC'' which has been constructed as a part of an integrated reactor calculation scheme proposed at the Reactors Department of the ARE Atomic Energy Authority. The ''UAFCC'' is a single energy-one-dimensional diffusion burnup FORTRAN computer code for well moderated, multiregion, cylindrical thermal reactors. The effect of reactivity variation with burnup is introduced in the steady state diffusion equation by a fictitious neutron source. The infinite multiplication factor, the total migration area, and the power density per unit thermal flux are calculated from the point model burnup code ''UABUC'' fitted to polynomials of suitable degree in the flux-time, and then used as an input data to the ''UAFCC'' code. The proposed burnup spatial model has been used to study the different stratogemes of the incore fuel management schemes. The conclusions of this study will be presented in a future publication. (author)

  13. The NIMROD Code

    Science.gov (United States)

    Schnack, D. D.; Glasser, A. H.

    1996-11-01

    NIMROD is a new code system that is being developed for the analysis of modern fusion experiments. It is being designed from the beginning to make the maximum use of massively parallel computer architectures and computer graphics. The NIMROD physics kernel solves the three-dimensional, time-dependent two-fluid equations with neo-classical effects in toroidal geometry of arbitrary poloidal cross section. The NIMROD system also includes a pre-processor, a grid generator, and a post processor. User interaction with NIMROD is facilitated by a modern graphical user interface (GUI). The NIMROD project is using Quality Function Deployment (QFD) team management techniques to minimize re-engineering and reduce code development time. This paper gives an overview of the NIMROD project. Operation of the GUI is demonstrated, and the first results from the physics kernel are given.

  14. submitter LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN

    CERN Document Server

    Barranco, Javier; Cameron, David; Crouch, Matthew; De Maria, Riccardo; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Van der Veken, Frederik; Zacharov, Igor

    2017-01-01

    The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted i...

  15. Three computer codes for safety and stability of large superconducting magnets

    International Nuclear Information System (INIS)

    Turner, L.R.

    1985-01-01

    For analyzing the safety and stability of large superconducting magnets, three computer codes TASS, SHORTURN, and SSICC have been developed, applicable to bath-cooled magnets, bath-cooled magnets with shorted turns, and magnets with internally cooled conductors respectively. The TASS code is described, and the use of the three codes is reviewed

  16. CRACKEL: a computer code for CFR fuel management calculations

    International Nuclear Information System (INIS)

    Burstall, R.F.; Ball, M.A.; Thornton, D.E.J.

    1975-12-01

    The CRACKLE computer code is designed to perform rapid fuel management surveys of CFR systems. The code calculates overall features such as reactivity, power distributions and breeding gain, and also calculates for each sub-assembly plutonium content and power output. A number of alternative options are built into the code, in order to permit different fuel management strategies to be calculated, and to perform more detailed calculations when necessary. A brief description is given of the methods of calculation, and the input facilities of CRACKLE, with examples. (author)

  17. Qualification of FEAST 3.0 and FEAT 4.0 computer codes

    International Nuclear Information System (INIS)

    Xu, Z.; Lai, L.; Sim, K.-S.; Huang, F.; Wong, B.

    2005-01-01

    FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. FEAST models the thermo-elastic, thermo-elasto-plastic and creep deformations in CANDU fuel. FEAT (Finite Element Analysis for Temperature) is another AECL computer code and is used to assess the thermal integrity of fuel elements. FEAT models the steady-state and transient heat flows in CANDU fuel, under conditions such as flux depression, end flux peaking, temperature-dependent thermal conductivity, and non-uniform time-dependent boundary conditions. Both computer programs are used in design and qualification analyses of CANDU fuel. Formal qualifications (including coding verification and validation) of both codes were performed, in accordance with AECL software quality assurance (SQA) manual and procedures that are consistent with CSA N286.7-99. Validation of FEAST 3.0 shows very good agreement with independent analytical solutions or measurements. Validation of FEAT 4.0 also shows very good agreement with independent WIMS-AECL calculations, analytical solutions, ANSYS calculations and measurement. (author)

  18. Qualification of FEAST 3.0 and FEAT 4.0 computer codes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Lai, L.; Sim, K.-S.; Huang, F.; Wong, B. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2005-07-01

    FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. FEAST models the thermo-elastic, thermo-elasto-plastic and creep deformations in CANDU fuel. FEAT (Finite Element Analysis for Temperature) is another AECL computer code and is used to assess the thermal integrity of fuel elements. FEAT models the steady-state and transient heat flows in CANDU fuel, under conditions such as flux depression, end flux peaking, temperature-dependent thermal conductivity, and non-uniform time-dependent boundary conditions. Both computer programs are used in design and qualification analyses of CANDU fuel. Formal qualifications (including coding verification and validation) of both codes were performed, in accordance with AECL software quality assurance (SQA) manual and procedures that are consistent with CSA N286.7-99. Validation of FEAST 3.0 shows very good agreement with independent analytical solutions or measurements. Validation of FEAT 4.0 also shows very good agreement with independent WIMS-AECL calculations, analytical solutions, ANSYS calculations and measurement. (author)

  19. plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry

    Science.gov (United States)

    Venkattraman, Ayyaswamy; Verma, Abhishek Kumar

    2016-09-01

    As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.

  20. Description of the TREBIL, CRESSEX and STREUSL computer programs, that belongs to RALLY computer code pack for the analysis of reliability systems

    International Nuclear Information System (INIS)

    Fernandes Filho, T.L.

    1982-11-01

    The RALLY computer code pack (RALLY pack) is a set of computer codes destinate to the reliability of complex systems, aiming to a risk analysis. Three of the six codes, are commented, presenting their purpose, input description, calculation methods and results obtained with each one of those computer codes. The computer codes are: TREBIL, to obtain the fault tree logical equivalent; CRESSEX, to obtain the minimal cut and the punctual values of the non-reliability and non-availability of the system; and STREUSL, for the dispersion calculation of those values around the media. In spite of the CRESSEX, in its version available at CNEN, uses a little long method to obtain the minimal cut in an HB-CNEN system, the three computer programs show good results, mainly the STREUSL, which permits the simulation of various components. (E.G.) [pt

  1. Reducing Computational Overhead of Network Coding with Intrinsic Information Conveying

    DEFF Research Database (Denmark)

    Heide, Janus; Zhang, Qi; Pedersen, Morten V.

    is RLNC (Random Linear Network Coding) and the goal is to reduce the amount of coding operations both at the coding and decoding node, and at the same time remove the need for dedicated signaling messages. In a traditional RLNC system, coding operation takes up significant computational resources and adds...... the coding operations must be performed in a particular way, which we introduce. Finally we evaluate the suggested system and find that the amount of coding can be significantly reduced both at nodes that recode and decode.......This paper investigated the possibility of intrinsic information conveying in network coding systems. The information is embedded into the coding vector by constructing the vector based on a set of predefined rules. This information can subsequently be retrieved by any receiver. The starting point...

  2. Research on V and V strategy of reactor physics code of COSINE

    International Nuclear Information System (INIS)

    Liu Zhanquan; Chen Yixue; Yang Chao; Dang Halei

    2013-01-01

    Verification and validation (V and V) is very important for the software quality assurance. Reasonable and efficient V and V strategy can achieve twice the result with half the effort. Core and system integrated engine for design and analysis (COSINE) software package contains three reactor physics codes, the lattice code (LATC), the core simulator (CORE) and the kinetics code (KIND), which is called the reactor physics subsystem. The V and V strategy for the physics subsystem was researched based on the foundation of scientific software's V and V method. The module based verification method and the function based validation method were proposed, composing the physical subsystem V and V strategy of COSINE software package. (authors)

  3. Development and validation of GWHEAD, a three-dimensional groundwater head computer code

    International Nuclear Information System (INIS)

    Beckmeyer, R.R.; Root, R.W.; Routt, K.R.

    1980-03-01

    A computer code has been developed to solve the groundwater flow equation in three dimensions. The code has finite-difference approximations solved by the strongly implicit solution procedure. Input parameters to the code include hydraulic conductivity, specific storage, porosity, accretion (recharge), and initial hydralic head. These parameters may be input as varying spatially. The hydraulic conductivity may be input as isotropic or anisotropic. The boundaries either may permit flow across them or may be impermeable. The code has been used to model leaky confined groundwater conditions and spherical flow to a continuous point sink, both of which have exact analytical solutions. The results generated by the computer code compare well with those of the analytical solutions. The code was designed to be used to model groundwater flow beneath fuel reprocessing and waste storage areas at the Savannah River Plant

  4. Catalogue of nuclear fusion codes - 1976

    International Nuclear Information System (INIS)

    1976-10-01

    A catalogue is presented of the computer codes in nuclear fusion research developed by JAERI, Division of Thermonuclear Fusion Research and Division of Large Tokamak Development in particular. It contains a total of about 100 codes under the categories: Atomic Process, Data Handling, Experimental Data Processing, Engineering, Input and Output, Special Languages and Their Application, Mathematical Programming, Miscellaneous, Numerical Analysis, Nuclear Physics, Plasma Physics and Fusion Research, Plasma Simulation and Numerical Technique, Reactor Design, Solid State Physics, Statistics, and System Program. (auth.)

  5. Multi keno-VAX a modified version of the reactor computer code Multi keno-2

    Energy Technology Data Exchange (ETDEWEB)

    Imam, M [National center for nuclear safety and radiation control, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    The reactor computer code Multi keno-2 is developed in Japan from the original Monte Carlo Keno-IV. By applications of this code on some real problems, fatal errors were detected. These errors are related to the restart option in the code. The restart option is essential for solving time-consuming problems on mini-computer like VAX-6320. These errors were corrected and other modifications were carried out in the code. Because of these modifications new input data description was written for the code. Thus a new VAX/VMS version for the program was developed which is also adaptable for mini-mainframes. This new developed program, called Multi keno-VAX is accepted in the Nea-IAEA data bank and is added to its international computer codes library. 1 fig.

  6. Multi keno-VAX a modified version of the reactor computer code Multi keno-2

    International Nuclear Information System (INIS)

    Imam, M.

    1995-01-01

    The reactor computer code Multi keno-2 is developed in Japan from the original Monte Carlo Keno-IV. By applications of this code on some real problems, fatal errors were detected. These errors are related to the restart option in the code. The restart option is essential for solving time-consuming problems on mini-computer like VAX-6320. These errors were corrected and other modifications were carried out in the code. Because of these modifications new input data description was written for the code. Thus a new VAX/VMS version for the program was developed which is also adaptable for mini-mainframes. This new developed program, called Multi keno-VAX is accepted in the Nea-IAEA data bank and is added to its international computer codes library. 1 fig

  7. SHEAT for PC. A computer code for probabilistic seismic hazard analysis for personal computer, user's manual

    International Nuclear Information System (INIS)

    Yamada, Hiroyuki; Tsutsumi, Hideaki; Ebisawa, Katsumi; Suzuki, Masahide

    2002-03-01

    The SHEAT code developed at Japan Atomic Energy Research Institute is for probabilistic seismic hazard analysis which is one of the tasks needed for seismic Probabilistic Safety Assessment (PSA) of a nuclear power plant. At first, SHEAT was developed as the large sized computer version. In addition, a personal computer version was provided to improve operation efficiency and generality of this code in 2001. It is possible to perform the earthquake hazard analysis, display and the print functions with the Graphical User Interface. With the SHEAT for PC code, seismic hazard which is defined as an annual exceedance frequency of occurrence of earthquake ground motions at various levels of intensity at a given site is calculated by the following two steps as is done with the large sized computer. One is the modeling of earthquake generation around a site. Future earthquake generation (locations, magnitudes and frequencies of postulated earthquake) is modeled based on the historical earthquake records, active fault data and expert judgment. Another is the calculation of probabilistic seismic hazard at the site. An earthquake ground motion is calculated for each postulated earthquake using an attenuation model taking into account its standard deviation. Then the seismic hazard at the site is calculated by summing the frequencies of ground motions by all the earthquakes. This document is the user's manual of the SHEAT for PC code. It includes: (1) Outline of the code, which include overall concept, logical process, code structure, data file used and special characteristics of code, (2) Functions of subprogram and analytical models in them, (3) Guidance of input and output data, (4) Sample run result, and (5) Operational manual. (author)

  8. RADTRAN II: revised computer code to analyze transportation of radioactive material

    International Nuclear Information System (INIS)

    Taylor, J.M.; Daniel, S.L.

    1982-10-01

    A revised and updated version of the RADTRAN computer code is presented. This code has the capability to predict the radiological impacts associated with specific schemes of radioactive material shipments and mode specific transport variables

  9. Advanced thermohydraulic simulation code for transients in LMFBRs (SSC-L code)

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, A.K.

    1978-02-01

    Physical models for various processes that are encountered in preaccident and transient simulation of thermohydraulic transients in the entire liquid metal fast breeder reactor (LMFBR) plant are described in this report. A computer code, SSC-L, was written as a part of the Super System Code (SSC) development project for the ''loop''-type designs of LMFBRs. This code has the self-starting capability, i.e., preaccident or steady-state calculations are performed internally. These results then serve as the starting point for the transient simulation.

  10. Advanced thermohydraulic simulation code for transients in LMFBRs (SSC-L code)

    International Nuclear Information System (INIS)

    Agrawal, A.K.

    1978-02-01

    Physical models for various processes that are encountered in preaccident and transient simulation of thermohydraulic transients in the entire liquid metal fast breeder reactor (LMFBR) plant are described in this report. A computer code, SSC-L, was written as a part of the Super System Code (SSC) development project for the ''loop''-type designs of LMFBRs. This code has the self-starting capability, i.e., preaccident or steady-state calculations are performed internally. These results then serve as the starting point for the transient simulation

  11. FIRAC: a computer code to predict fire-accident effects in nuclear facilities

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Krause, F.R.; Tang, P.K.; Andrae, R.W.; Martin, R.A.; Gregory, W.S.

    1983-01-01

    FIRAC is a medium-sized computer code designed to predict fire-induced flows, temperatures, and material transport within the ventilating systems and other airflow pathways in nuclear-related facilities. The code is designed to analyze the behavior of interconnected networks of rooms and typical ventilation system components. This code is one in a family of computer codes that is designed to provide improved methods of safety analysis for the nuclear industry. The structure of this code closely follows that of the previously developed TVENT and EVENT codes. Because a lumped-parameter formulation is used, this code is particularly suitable for calculating the effects of fires in the far field (that is, in regions removed from the fire compartment), where the fire may be represented parametrically. However, a fire compartment model to simulate conditions in the enclosure is included. This model provides transport source terms to the ventilation system that can affect its operation and in turn affect the fire

  12. Computer codes for simulating atomic-displacement cascades in solids subject to irradiation

    International Nuclear Information System (INIS)

    Asaoka, Takumi; Taji, Yukichi; Tsutsui, Tsuneo; Nakagawa, Masayuki; Nishida, Takahiko

    1979-03-01

    In order to study atomic displacement cascades originating from primary knock-on atoms in solids subject to incident radiation, the simulation code CASCADE/CLUSTER is adapted for use on FACOM/230-75 computer system. In addition, the code is modified so as to plot the defect patterns in crystalline solids. As other simulation code of the cascade process, MARLOWE is also available for use on the FACOM system. To deal with the thermal annealing of point defects produced in the cascade process, the code DAIQUIRI developed originally for body-centered cubic crystals is modified to be applicable also for face-centered cubic lattices. By combining CASCADE/CLUSTER and DAIQUIRI, we then prepared a computer code system CASCSRB to deal with heavy irradiation or saturation damage state of solids at normal temperature. Furthermore, a code system for the simulation of heavy irradiations CASCMARL is available, in which MARLOWE code is substituted for CASCADE in the CASCSRB system. (author)

  13. Theoretical calculation possibilities of the computer code HAMMER

    International Nuclear Information System (INIS)

    Onusic Junior, J.

    1978-06-01

    With the aim to know the theoretical calculation possibilities of the computer code HAMMER, developed at Savanah River Laboratory, a analysis of the crytical cells assembly of the kind utilized in PWR reactors is made. (L.F.S.) [pt

  14. Use of computer codes to improve nuclear power plant operation

    International Nuclear Information System (INIS)

    Misak, J.; Polak, V.; Filo, J.; Gatas, J.

    1985-01-01

    For safety and economic reasons, the scope for carrying out experiments on operational nuclear power plants (NPPs) is very limited and any changes in technical equipment and operating parameters or conditions have to be supported by theoretical calculations. In the Nuclear Power Plant Scientific Research Institute (NIIAEhS), computer codes are systematically used to analyse actual operating events, assess safety aspects of changes in equipment and operating conditions, optimize the conditions, preparation and analysis of NPP startup trials and review and amend operating instructions. In addition, calculation codes are gradually being introduced into power plant computer systems to perform real time processing of the parameters being measured. The paper describes a number of specific examples of the use of calculation codes for the thermohydraulic analysis of operating and accident conditions aimed at improving the operation of WWER-440 units at the Jaslovske Bohunice V-1 and V-2 nuclear power plants. These examples confirm that computer calculations are an effective way of solving operating problems and of further increasing the level of safety and economic efficiency of NPP operation. (author)

  15. A computer code for fault tree calculations: PATREC

    International Nuclear Information System (INIS)

    Blin, A.; Carnino, A.; Koen, B.V.; Duchemin, B.; Lanore, J.M.; Kalli, H.

    1978-01-01

    A computer code for evaluating the reliability of complex system by fault tree is described in this paper. It uses pattern recognition approach and programming techniques from IBM PL1 language. It can take account of many of the present day problems: multi-dependencies treatment, dispersion in the reliability data parameters, influence of common mode failures. The code is running currently since two years now in Commissariat a l'Energie Atomique Saclay center and shall be used in a future extension for automatic fault trees construction

  16. Development of a tracer transport option for the NAPSAC fracture network computer code

    International Nuclear Information System (INIS)

    Herbert, A.W.

    1990-06-01

    The Napsac computer code predicts groundwater flow through fractured rock using a direct fracture network approach. This paper describes the development of a tracer transport algorithm for the NAPSAC code. A very efficient particle-following approach is used enabling tracer transport to be predicted through large fracture networks. The new algorithm is tested against three test examples. These demonstrations confirm the accuracy of the code for simple networks, where there is an analytical solution to the transport problem, and illustrates the use of the computer code on a more realistic problem. (author)

  17. Computer code for the thermal-hydraulic analysis of ITU TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Ustun, G.; Durmayaz, A.

    2002-01-01

    Istanbul Technical University (ITU) TRIGA Mark-II reactor core consists of ninety vertical cylindrical elements located in five rings. Sixty-nine of them are fuel elements. The reactor is operated and cooled with natural convection by pool water, which is also cooled and purified in external coolant circuits by forced convection. This characteristic leads to consider both the natural and forced convection heat transfer in a 'porous-medium analysis'. The safety analysis of the reactor requires a thermal-hydraulic model of the reactor to determine the thermal-hydraulic parameters in each mode of operation. In this study, a computer code cooled TRIGA-PM (TRIGA - Porous Medium) for the thermal-hydraulic analysis of ITU is considered. TRIGA Mark-II reactor code has been developed to obtain velocity, pressure and temperature distributions in the reactor pool as a function of core design parameters and pool configuration. The code is a transient, thermal-hydraulic code and requires geometric and physical modelling parameters. In the model, although the reactor is considered as only porous medium, the other part of the reactor pool is considered partly as continuum and partly as porous medium. COMMIX-1C code is used for the benchmark purpose of TRIGA-PM code. For the normal operating conditions of the reactor, estimations of TRIGA-PM are in good agreement with those of COMMIX-1C. After some more improvements, this code will be employed for the estimation of LOCA scenario, which can not be analyses by COMMIX-1C and the other multi-purpose codes, considering a break at one of the beam tubes of the reactor

  18. FRAP-T1: a computer code for the transient analysis of oxide fuel rods

    International Nuclear Information System (INIS)

    Dearien, J.A.; Miller, R.L.; Hobbins, R.R.; Siefken, L.J.; Baston, V.F.; Coleman, D.R.

    1977-02-01

    FRAP-T is a FORTRAN IV computer code which can be used to solve for the transient response of a light water reactor (LWR) fuel rod during accident transients such as loss-of-coolant accident (LOCA) or a power-cooling-mismatch (PCM). The coupled effects of mechanical, thermal, internal gas, and material property response on the behavior of the fuel rod are considered. FRAP-T is a modular code with each major computational model isolated within the code and coupled to the main code by subroutine calls and data transfer through argument lists. FRAP-T is coupled to a materials properties subcode (MATPRO) which is used to provide gas, fuel, and cladding properties to the FRAP-T computational subcodes. No material properties need be supplied by the code user. The needed water properties are stored in tables built into the code. Critical heat flux (CHF) and heat transfer correlations for a wide range of coolant conditions are contained in modular subroutines. FRAP-T has been evaluated by making extensive comparisons between predictions of the code and experimental data. Comparison of predicted and experimental results are presented for a range of FRAP-T calculated parameters. The code is presently programmed and running on an IBM-360/75 and a CDC 7600 computer

  19. Improvement of level-1 PSA computer code package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Park, C. K.; Kim, K. Y.; Han, S. H.; Jung, W. D.; Chang, S. C.; Yang, J. E.; Sung, T. Y.; Kang, D. I.; Park, J. H.; Lee, Y. H.; Kim, S. H.; Hwang, M. J.; Choi, S. Y.

    1997-07-01

    This year the fifth (final) year of the phase-I of the Government-sponsored Mid- and Long-term Nuclear Power Technology Development Project. The scope of this subproject titled on `The improvement of level-1 PSA Computer Codes` is divided into two main activities : (1) improvement of level-1 PSA methodology, (2) development of applications methodology of PSA techniques to operations and maintenance of nuclear power plant. Level-1 PSA code KIRAP is converted to PC-Windows environment. For the improvement of efficiency in performing PSA, the fast cutset generation algorithm and an analytical technique for handling logical loop in fault tree modeling are developed. Using about 30 foreign generic data sources, generic component reliability database (GDB) are developed considering dependency among source data. A computer program which handles dependency among data sources are also developed based on three stage bayesian updating technique. Common cause failure (CCF) analysis methods are reviewed and CCF database are established. Impact vectors can be estimated from this CCF database. A computer code, called MPRIDP, which handles CCF database are also developed. A CCF analysis reflecting plant-specific defensive strategy against CCF event is also performed. A risk monitor computer program, called Risk Monster, are being developed for the application to the operation and maintenance of nuclear power plant. The PSA application technique is applied to review the feasibility study of on-line maintenance and to the prioritization of in-service test (IST) of motor-operated valves (MOV). Finally, the root cause analysis (RCA) and reliability-centered maintenance (RCM) technologies are adopted and applied to the improvement of reliability of emergency diesel generators (EDG) of nuclear power plant. To help RCA and RCM analyses, two software programs are developed, which are EPIS and RAM Pro. (author). 129 refs., 20 tabs., 60 figs.

  20. Improvement of level-1 PSA computer code package

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Park, C. K.; Kim, K. Y.; Han, S. H.; Jung, W. D.; Chang, S. C.; Yang, J. E.; Sung, T. Y.; Kang, D. I.; Park, J. H.; Lee, Y. H.; Kim, S. H.; Hwang, M. J.; Choi, S. Y.

    1997-07-01

    This year the fifth (final) year of the phase-I of the Government-sponsored Mid- and Long-term Nuclear Power Technology Development Project. The scope of this subproject titled on 'The improvement of level-1 PSA Computer Codes' is divided into two main activities : 1) improvement of level-1 PSA methodology, 2) development of applications methodology of PSA techniques to operations and maintenance of nuclear power plant. Level-1 PSA code KIRAP is converted to PC-Windows environment. For the improvement of efficiency in performing PSA, the fast cutset generation algorithm and an analytical technique for handling logical loop in fault tree modeling are developed. Using about 30 foreign generic data sources, generic component reliability database (GDB) are developed considering dependency among source data. A computer program which handles dependency among data sources are also developed based on three stage bayesian updating technique. Common cause failure (CCF) analysis methods are reviewed and CCF database are established. Impact vectors can be estimated from this CCF database. A computer code, called MPRIDP, which handles CCF database are also developed. A CCF analysis reflecting plant-specific defensive strategy against CCF event is also performed. A risk monitor computer program, called Risk Monster, are being developed for the application to the operation and maintenance of nuclear power plant. The PSA application technique is applied to review the feasibility study of on-line maintenance and to the prioritization of in-service test (IST) of motor-operated valves (MOV). Finally, the root cause analysis (RCA) and reliability-centered maintenance (RCM) technologies are adopted and applied to the improvement of reliability of emergency diesel generators (EDG) of nuclear power plant. To help RCA and RCM analyses, two software programs are developed, which are EPIS and RAM Pro. (author). 129 refs., 20 tabs., 60 figs

  1. NEWSPEC: A computer code to unfold neutron spectra from Bonner sphere data

    International Nuclear Information System (INIS)

    Lemley, E.C.; West, L.

    1996-01-01

    A new computer code, NEWSPEC, is in development at the University of Arkansas. The NEWSPEC code allows a user to unfold, fold, rebin, display, and manipulate neutron spectra as applied to Bonner sphere measurements. The SPUNIT unfolding algorithm, a new rebinning algorithm, and the graphical capabilities of Microsoft (MS) Windows and MS Excel are utilized to perform these operations. The computer platform for NEWSPEC is a personal computer (PC) running MS Windows 3.x or Win95, while the code is written in MS Visual Basic (VB) and MS VB for Applications (VBA) under Excel. One of the most useful attributes of the NEWSPEC software is the link to Excel allowing additional manipulation of program output or creation of program input

  2. User's manual for the Oak Ridge Tokamak Transport Code

    International Nuclear Information System (INIS)

    Munro, J.K.; Hogan, J.T.; Howe, H.C.; Arnurius, D.E.

    1977-02-01

    A one-dimensional tokamak transport code is described which simulates a plasma discharge using a fluid model which includes power balances for electrons and ions, conservation of mass, and Maxwell's equations. The modular structure of the code allows a user to add models of various physical processes which can modify the discharge behavior. Such physical processes treated in the version of the code described here include effects of plasma transport, neutral gas transport, impurity diffusion, and neutral beam injection. Each process can be modeled by a parameterized analytic formula or at least one detailed numerical calculation. The program logic of each module is presented, followed by detailed descriptions of each subroutine used by the module. The physics underlying the models is only briefly summarized. The transport code was written in IBM FORTRAN-IV and implemented on IBM 360/370 series computers at the Oak Ridge National Laboratory and on the CDC 7600 computers of the Magnetic Fusion Energy (MFE) Computing Center of the Lawrence Livermore Laboratory. A listing of the current reference version is provided on accompanying microfiche

  3. Computer codes for problems of isotope and radiation research

    International Nuclear Information System (INIS)

    Remer, M.

    1986-12-01

    A survey is given of computer codes for problems in isotope and radiation research. Altogether 44 codes are described as titles with abstracts. 17 of them are in the INIS scope and are processed individually. The subjects are indicated in the chapter headings: 1) analysis of tracer experiments, 2) spectrum calculations, 3) calculations of ion and electron trajectories, 4) evaluation of gamma irradiation plants, and 5) general software

  4. Sample test cases using the environmental computer code NECTAR

    International Nuclear Information System (INIS)

    Ponting, A.C.

    1984-06-01

    This note demonstrates a few of the many different ways in which the environmental computer code NECTAR may be used. Four sample test cases are presented and described to show how NECTAR input data are structured. Edited output is also presented to illustrate the format of the results. Two test cases demonstrate how NECTAR may be used to study radio-isotopes not explicitly included in the code. (U.K.)

  5. Standardization of computer programs - basis of the Czechoslovak library of nuclear codes

    International Nuclear Information System (INIS)

    Gregor, M.

    1987-01-01

    A standardized form of computer code documentation has been established in the CSSR in the field of reactor safety. Structure and content of the documentation are described and codes already subject to this process are mentioned. The formation of a Czechoslovak nuclear code library and facilitated discussion of safety reports containing results of standardized codes are aimed at

  6. Cooperation of experts' opinion, experiment and computer code development

    International Nuclear Information System (INIS)

    Wolfert, K.; Hicken, E.

    The connection between code development, code assessment and confidence in the analysis of transients will be discussed. In this manner, the major sources of errors in the codes and errors in applications of the codes will be shown. Standard problem results emphasize that, in order to have confidence in licensing statements, the codes must be physically realistic and the code user must be qualified and experienced. We will discuss why there is disagreement between the licensing authority and vendor concerning assessment of the fullfillment of safety goal requirements. The answer to the question lies in the different confidence levels of the assessment of transient analysis. It is expected that a decrease in the disagreement will result from an increased confidence level. Strong efforts will be made to increase this confidence level through improvements in the codes, experiments and related organizational strcutures. Because of the low probability for loss-of-coolant-accidents in the nuclear industry, assessment must rely on analytical techniques and experimental investigations. (orig./HP) [de

  7. SIEX3: A correlated computer code for prediction of fast reactor mixed oxide fuel and blanket pin performance

    International Nuclear Information System (INIS)

    Baker, R.B.; Wilson, D.R.

    1986-04-01

    The SIEX3 computer program was developed to calculate the fuel and cladding performance of oxide fuel and oxide blanket pins irradiated in the fast neutron environment of a liquid metal cooled reactor. The code is uniquely designed to be accurate yet quick running and use a minimum of computer core storage. This was accomplished through the correlation of physically based models to very large data bases of irradiation test results. Data from over 200 fuel pins and over 800 transverse fuel microscopy samples were used in the calibrations

  8. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes

    International Nuclear Information System (INIS)

    Nagels-Silvert, V.

    2004-09-01

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  9. Quality assurance aspects of the computer code CODAR2

    International Nuclear Information System (INIS)

    Maul, P.R.

    1986-03-01

    The computer code CODAR2 was developed originally for use in connection with the Sizewell Public Inquiry to evaluate the radiological impact of routine discharges to the sea from the proposed PWR. It has subsequently bee used to evaluate discharges from Heysham 2. The code was frozen in September 1983, and this note gives details of its verification, validation and evaluation. Areas where either improved modelling methods or more up-to-date information relevant to CODAR2 data bases have subsequently become available are indicated; these will be incorporated in any future versions of the code. (author)

  10. A restructuring of TF package for MIDAS computer code

    International Nuclear Information System (INIS)

    Park, S. H.; Song, Y. M.; Kim, D. H.

    2002-01-01

    TF package which defines some interpolation and extrapolation condition through user defined table has been restructured in MIDAS computer code. To do this, data transferring methods of current MELCOR code are modified and adopted into TF package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of the meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of TF package addressed in this paper does module development and subroutine modification, and treats MELGEN which is making restart file as well as MELCOR which is processing calculation. The validation has been done by comparing the results of the modified code with those from the existing code, and it is confirmed that the results are the same. It hints that the similar approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  11. FLAME: A finite element computer code for contaminant transport n variably-saturated media

    International Nuclear Information System (INIS)

    Baca, R.G.; Magnuson, S.O.

    1992-06-01

    A numerical model was developed for use in performance assessment studies at the INEL. The numerical model referred to as the FLAME computer code, is designed to simulate subsurface contaminant transport in a variably-saturated media. The code can be applied to model two-dimensional contaminant transport in an and site vadose zone or in an unconfined aquifer. In addition, the code has the capability to describe transport processes in a porous media with discrete fractures. This report presents the following: description of the conceptual framework and mathematical theory, derivations of the finite element techniques and algorithms, computational examples that illustrate the capability of the code, and input instructions for the general use of the code. The development of the FLAME computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of energy Order 5820.2A

  12. FLAME: A finite element computer code for contaminant transport n variably-saturated media

    Energy Technology Data Exchange (ETDEWEB)

    Baca, R.G.; Magnuson, S.O.

    1992-06-01

    A numerical model was developed for use in performance assessment studies at the INEL. The numerical model referred to as the FLAME computer code, is designed to simulate subsurface contaminant transport in a variably-saturated media. The code can be applied to model two-dimensional contaminant transport in an and site vadose zone or in an unconfined aquifer. In addition, the code has the capability to describe transport processes in a porous media with discrete fractures. This report presents the following: description of the conceptual framework and mathematical theory, derivations of the finite element techniques and algorithms, computational examples that illustrate the capability of the code, and input instructions for the general use of the code. The development of the FLAME computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of energy Order 5820.2A.

  13. BSMBench: a flexible and scalable supercomputer benchmark from computational particle physics

    CERN Document Server

    Bennett, Ed; Del Debbio, Luigi; Jordan, Kirk; Patella, Agostino; Pica, Claudio; Rago, Antonio

    2016-01-01

    Benchmarking plays a central role in the evaluation of High Performance Computing architectures. Several benchmarks have been designed that allow users to stress various components of supercomputers. In order for the figures they provide to be useful, benchmarks need to be representative of the most common real-world scenarios. In this work, we introduce BSMBench, a benchmarking suite derived from Monte Carlo code used in computational particle physics. The advantage of this suite (which can be freely downloaded from http://www.bsmbench.org/) over others is the capacity to vary the relative importance of computation and communication. This enables the tests to simulate various practical situations. To showcase BSMBench, we perform a wide range of tests on various architectures, from desktop computers to state-of-the-art supercomputers, and discuss the corresponding results. Possible future directions of development of the benchmark are also outlined.

  14. Atmospheric dispersion of radioactive releases: Computer code DIASPORA

    International Nuclear Information System (INIS)

    Synodinou, B.M.; Bartzis, J.M.

    1982-05-01

    The computer code DIASPORA is presented. Air and ground concentrations of an airborne radioactive material released from an elevated continuous point source are calculated using Gaussian plume models. Dry and wet deposition as well as plume rise effects are taken into consideration. (author)

  15. Validation and uncertainty analysis of the Athlet thermal-hydraulic computer code

    International Nuclear Information System (INIS)

    Glaeser, H.

    1995-01-01

    The computer code ATHLET is being developed by GRS as an advanced best-estimate code for the simulation of breaks and transients in Pressurized Water Reactor (PWRs) and Boiling Water Reactor (BWRs) including beyond design basis accidents. A systematic validation of ATHLET is based on a well balanced set of integral and separate effects tests emphasizing the German combined Emergency Core Cooling (ECC) injection system. When using best estimate codes for predictions of reactor plant states during assumed accidents, qualification of the uncertainty in these calculations is highly desirable. A method for uncertainty and sensitivity evaluation has been developed by GRS where the computational effort is independent of the number of uncertain parameters. (author)

  16. Exploring Physics with Computer Animation and PhysGL

    Science.gov (United States)

    Bensky, T. J.

    2016-10-01

    This book shows how the web-based PhysGL programming environment (http://physgl.org) can be used to teach and learn elementary mechanics (physics) using simple coding exercises. The book's theme is that the lessons encountered in such a course can be used to generate physics-based animations, providing students with compelling and self-made visuals to aid their learning. Topics presented are parallel to those found in a traditional physics text, making for straightforward integration into a typical lecture-based physics course. Users will appreciate the ease at which compelling OpenGL-based graphics and animations can be produced using PhysGL, as well as its clean, simple language constructs. The author argues that coding should be a standard part of lower-division STEM courses, and provides many anecdotal experiences and observations, that include observed benefits of the coding work.

  17. SALE: Safeguards Analytical Laboratory Evaluation computer code

    International Nuclear Information System (INIS)

    Carroll, D.J.; Bush, W.J.; Dolan, C.A.

    1976-09-01

    The Safeguards Analytical Laboratory Evaluation (SALE) program implements an industry-wide quality control and evaluation system aimed at identifying and reducing analytical chemical measurement errors. Samples of well-characterized materials are distributed to laboratory participants at periodic intervals for determination of uranium or plutonium concentration and isotopic distributions. The results of these determinations are statistically-evaluated, and each participant is informed of the accuracy and precision of his results in a timely manner. The SALE computer code which produces the report is designed to facilitate rapid transmission of this information in order that meaningful quality control will be provided. Various statistical techniques comprise the output of the SALE computer code. Assuming an unbalanced nested design, an analysis of variance is performed in subroutine NEST resulting in a test of significance for time and analyst effects. A trend test is performed in subroutine TREND. Microfilm plots are obtained from subroutine CUMPLT. Within-laboratory standard deviations are calculated in the main program or subroutine VAREST, and between-laboratory standard deviations are calculated in SBLV. Other statistical tests are also performed. Up to 1,500 pieces of data for each nuclear material sampled by 75 (or fewer) laboratories may be analyzed with this code. The input deck necessary to run the program is shown, and input parameters are discussed in detail. Printed output and microfilm plot output are described. Output from a typical SALE run is included as a sample problem

  18. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    International Nuclear Information System (INIS)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE

  19. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE.

  20. Computer Code for Nanostructure Simulation

    Science.gov (United States)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  1. Regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes

    International Nuclear Information System (INIS)

    Vitkova, M.; Kalchev, B.; Stefanova, S.

    2006-01-01

    The paper presents an overview of the regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes, which are used for safety assessment of the fuel design and the fuel utilization. Some requirements to the model development, verification and validation of the codes and analysis of code uncertainties are also define. Questions concerning Quality Assurance during development and implementation of the codes as well as preparation of a detailed verification and validation plan are briefly discussed

  2. FRANTIC: a computer code for time dependent unavailability analysis

    International Nuclear Information System (INIS)

    Vesely, W.E.; Goldberg, F.F.

    1977-03-01

    The FRANTIC computer code evaluates the time dependent and average unavailability for any general system model. The code is written in FORTRAN IV for the IBM 370 computer. Non-repairable components, monitored components, and periodically tested components are handled. One unique feature of FRANTIC is the detailed, time dependent modeling of periodic testing which includes the effects of test downtimes, test overrides, detection inefficiencies, and test-caused failures. The exponential distribution is used for the component failure times and periodic equations are developed for the testing and repair contributions. Human errors and common mode failures can be included by assigning an appropriate constant probability for the contributors. The output from FRANTIC consists of tables and plots of the system unavailability along with a breakdown of the unavailability contributions. Sensitivity studies can be simply performed and a wide range of tables and plots can be obtained for reporting purposes. The FRANTIC code represents a first step in the development of an approach that can be of direct value in future system evaluations. Modifications resulting from use of the code, along with the development of reliability data based on operating reactor experience, can be expected to provide increased confidence in its use and potential application to the licensing process

  3. Computational Nuclear Physics and Post Hartree-Fock Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lietz, Justin [Michigan State University; Sam, Novario [Michigan State University; Hjorth-Jensen, M. [University of Oslo, Norway; Hagen, Gaute [ORNL; Jansen, Gustav R. [ORNL

    2017-05-01

    We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions on strategies for porting the code to present and planned high-performance computing facilities.

  4. LIMBO computer code for analyzing coolant-voiding dynamics in LMFBR safety tests

    International Nuclear Information System (INIS)

    Bordner, G.L.

    1979-10-01

    The LIMBO (liquid metal boiling) code for the analysis of two-phase flow phenomena in an LMFBR reactor coolant channel is presented. The code uses a nonequilibrium, annular, two-phase flow model, which allows for slip between the phases. Furthermore, the model is intended to be valid for both quasi-steady boiling and rapid coolant voiding of the channel. The code was developed primarily for the prediction of, and the posttest analysis of, coolant-voiding behavior in the SLSF P-series in-pile safety test experiments. The program was conceived to be simple, efficient, and easy to use. It is particularly suited for parametric studies requiring many computer runs and for the evaluation of the effects of model or correlation changes that require modification of the computer program. The LIMBO code, of course, lacks the sophistication and model detail of the reactor safety codes, such as SAS, and is therefore intended to compliment these safety codes

  5. SIMCRI: a simple computer code for calculating nuclear criticality parameters

    International Nuclear Information System (INIS)

    Nakamaru, Shou-ichi; Sugawara, Nobuhiko; Naito, Yoshitaka; Katakura, Jun-ichi; Okuno, Hiroshi.

    1986-03-01

    This is a user's manual for a simple criticality calculation code SIMCRI. The code has been developed to facilitate criticality calculation on a single unit of nuclear fuel. SIMCRI makes an extensive survey with a little computing time. Cross section library MGCL for SIMCRI is the same one for the Monte Carlo criticality code KENOIV; it is, therefore, easy to compare the results of the two codes. SIMCRI solves eigenvalue problems and fixed source problems based on the one space point B 1 equation. The results include infinite and effective multiplication factor, critical buckling, migration area, diffusion coefficient and so on. SIMCRI is comprised in the criticality safety evaluation code system JACS. (author)

  6. Analysis of the Length of Braille Texts in English Braille American Edition, the Nemeth Code, and Computer Braille Code versus the Unified English Braille Code

    Science.gov (United States)

    Knowlton, Marie; Wetzel, Robin

    2006-01-01

    This study compared the length of text in English Braille American Edition, the Nemeth code, and the computer braille code with the Unified English Braille Code (UEBC)--also known as Unified English Braille (UEB). The findings indicate that differences in the length of text are dependent on the type of material that is transcribed and the grade…

  7. Accuracy assessment of a new Monte Carlo based burnup computer code

    International Nuclear Information System (INIS)

    El Bakkari, B.; ElBardouni, T.; Nacir, B.; ElYounoussi, C.; Boulaich, Y.; Meroun, O.; Zoubair, M.; Chakir, E.

    2012-01-01

    Highlights: ► A new burnup code called BUCAL1 was developed. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► Validation of BUCAL1 was done by code to code comparison using VVER-1000 LEU Benchmark Assembly. ► Differences from BM value were found to be ± 600 pcm for k ∞ and ±6% for the isotopic compositions. ► The effect on reactivity due to the burnup of Gd isotopes is well reproduced by BUCAL1. - Abstract: This study aims to test for the suitability and accuracy of a new home-made Monte Carlo burnup code, called BUCAL1, by investigating and predicting the neutronic behavior of a “VVER-1000 LEU Assembly Computational Benchmark”, at lattice level. BUCAL1 uses MCNP tally information directly in the computation; this approach allows performing straightforward and accurate calculation without having to use the calculated group fluxes to perform transmutation analysis in a separate code. ENDF/B-VII evaluated nuclear data library was used in these calculations. Processing of the data library is performed using recent updates of NJOY99 system. Code to code comparisons with the reported Nuclear OECD/NEA results are presented and analyzed.

  8. Analysis of the Behavior of CAREM-25 Fuel Rods Using Computer Code BACO

    International Nuclear Information System (INIS)

    Estevez, Esteban; Markiewicz, Mario; Marino, Armando

    2000-01-01

    The thermo-mechanical behavior of a fuel rod subjected to irradiation is a complex process, on which a great quantity of interrelated physical-chemical phenomena are coupled.The code BACO simulates the thermo-mechanical behavior and the evolution of fission gases of a cylindrical rod in operation.The power history of fuel rods, arising from neutronic calculations, is the program input.The code calculates, among others, the temperature distribution and the principal stresses in the pellet and cladding, changes in the porosity and restructuring of pellet, the fission gases release, evolution of the internal gas pressure.In this work some of design limits of CAREM-25's fuel rods are analyzed by means of the computer code BACO.The main variables directly related with the integrity of the fuel rod are: Maximum temperature of pellet; Cladding hoop stresses; Gases pressure in the fuel rod; Cladding axial and radial strains, etc.The analysis of results indicates that, under normal operation conditions, the maximum fuel pellet temperature, cladding stresses, pressure of gases at end of life, etc, are below the design limits considered for the fuel rod of CAREM-25 reactor

  9. Computers in Nuclear Physics Division

    International Nuclear Information System (INIS)

    Kowalczyk, M.; Tarasiuk, J.; Srebrny, J.

    1997-01-01

    Improving of the computer equipment in Nuclear Physics Division is described. It include: new computer equipment and hardware upgrading, software developing, new programs for computer booting and modernization of data acquisition systems

  10. Structural dynamics in LMFBR containment analysis: a brief survey of computational methods and codes

    International Nuclear Information System (INIS)

    Chang, Y.W.; Gvildys, J.

    1977-01-01

    In recent years, the use of computer codes to study the response of primary containment of large, liquid-metal fast breeder reactors (LMFBR) under postulated accident conditions has been adopted by most fast reactor projects. Since the first introduction of REXCO-H containment code in 1969, a number of containment codes have evolved and been reported in the literature. The paper briefly summarizes the various numerical methods commonly used in containment analysis in computer programs. They are compared on the basis of truncation errors resulting in the numerical approximation, the method of integration, the resolution of the computed results, and the ease of programming in computer codes. The aim of the paper is to provide enough information to an analyst so that he can suitably define his choice of method, and hence his choice of programs

  11. Physical activity and influenza-coded outpatient visits, a population-based cohort study.

    Directory of Open Access Journals (Sweden)

    Eric Siu

    Full Text Available Although the benefits of physical activity in preventing chronic medical conditions are well established, its impacts on infectious diseases, and seasonal influenza in particular, are less clearly defined. We examined the association between physical activity and influenza-coded outpatient visits, as a proxy for influenza infection.We conducted a cohort study of Ontario respondents to Statistics Canada's population health surveys over 12 influenza seasons. We assessed physical activity levels through survey responses, and influenza-coded physician office and emergency department visits through physician billing claims. We used logistic regression to estimate the risk of influenza-coded outpatient visits during influenza seasons. The cohort comprised 114,364 survey respondents who contributed 357,466 person-influenza seasons of observation. Compared to inactive individuals, moderately active (OR 0.83; 95% CI 0.74-0.94 and active (OR 0.87; 95% CI 0.77-0.98 individuals were less likely to experience an influenza-coded visit. Stratifying by age, the protective effect of physical activity remained significant for individuals <65 years (active OR 0.86; 95% CI 0.75-0.98, moderately active: OR 0.85; 95% CI 0.74-0.97 but not for individuals ≥ 65 years. The main limitations of this study were the use of influenza-coded outpatient visits rather than laboratory-confirmed influenza as the outcome measure, the reliance on self-report for assessing physical activity and various covariates, and the observational study design.Moderate to high amounts of physical activity may be associated with reduced risk of influenza for individuals <65 years. Future research should use laboratory-confirmed influenza outcomes to confirm the association between physical activity and influenza.

  12. Statistical physics inspired energy-efficient coded-modulation for optical communications.

    Science.gov (United States)

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2012-04-15

    Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America

  13. Physics vs. computer science

    International Nuclear Information System (INIS)

    Pike, R.

    1982-01-01

    With computers becoming more frequently used in theoretical and experimental physics, physicists can no longer afford to be ignorant of the basic techniques and results of computer science. Computing principles belong in a physicist's tool box, along with experimental methods and applied mathematics, and the easiest way to educate physicists in computing is to provide, as part of the undergraduate curriculum, a computing course designed specifically for physicists. As well, the working physicist should interact with computer scientists, giving them challenging problems in return for their expertise. (orig.)

  14. INTRA/Mod3.2. Manual and Code Description. Volume I - Physical Modelling

    International Nuclear Information System (INIS)

    Andersson, Jenny; Edlund, O.; Hermann, J.; Johansson, Lise-Lotte

    1999-01-01

    The INTRA Manual consists of two volumes. Volume I of the manual is a thorough description of the code INTRA, the Physical modelling of INTRA and the ruling numerical methods and volume II, the User's Manual is an input description. This document, the Physical modelling of INTRA, contains code characteristics, integration methods and applications

  15. INTRA/Mod3.2. Manual and Code Description. Volume I - Physical Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jenny; Edlund, O; Hermann, J; Johansson, Lise-Lotte

    1999-01-01

    The INTRA Manual consists of two volumes. Volume I of the manual is a thorough description of the code INTRA, the Physical modelling of INTRA and the ruling numerical methods and volume II, the User`s Manual is an input description. This document, the Physical modelling of INTRA, contains code characteristics, integration methods and applications

  16. Nuclear model codes available at the Nuclear Energy Agency Computer Program Library (NEA-CPL)

    International Nuclear Information System (INIS)

    Sartori, E.; Garcia Viedma, L. de

    1976-01-01

    This paper briefly outlines the objectives of the NEA-CPL and its activities in the field of Nuclear Model Computer Codes. A short description of the computer codes available from the CPL in this field is also presented. (author)

  17. Improvement of the computing speed of the FBR fuel pin bundle deformation analysis code 'BAMBOO'

    International Nuclear Information System (INIS)

    Ito, Masahiro; Uwaba, Tomoyuki

    2005-04-01

    JNC has developed a coupled analysis system of a fuel pin bundle deformation analysis code 'BAMBOO' and a thermal hydraulics analysis code ASFRE-IV' for the purpose of evaluating the integrity of a subassembly under the BDI condition. This coupled analysis took much computation time because it needs convergent calculations to obtain numerically stationary solutions for thermal and mechanical behaviors. We improved the computation time of the BAMBOO code analysis to make the coupled analysis practicable. 'BAMBOO' is a FEM code and as such its matrix calculations consume large memory area to temporarily stores intermediate results in the solution of simultaneous linear equations. The code used the Hard Disk Drive (HDD) for the virtual memory area to save Random Access Memory (RAM) of the computer. However, the use of the HDD increased the computation time because Input/Output (I/O) processing with the HDD took much time in data accesses. We improved the code in order that it could conduct I/O processing only with the RAM in matrix calculations and run with in high-performance computers. This improvement considerably increased the CPU occupation rate during the simulation and reduced the total simulation time of the BAMBOO code to about one-seventh of that before the improvement. (author)

  18. Verification of reactor safety codes

    International Nuclear Information System (INIS)

    Murley, T.E.

    1978-01-01

    The safety evaluation of nuclear power plants requires the investigation of wide range of potential accidents that could be postulated to occur. Many of these accidents deal with phenomena that are outside the range of normal engineering experience. Because of the expense and difficulty of full scale tests covering the complete range of accident conditions, it is necessary to rely on complex computer codes to assess these accidents. The central role that computer codes play in safety analyses requires that the codes be verified, or tested, by comparing the code predictions with a wide range of experimental data chosen to span the physical phenomena expected under potential accident conditions. This paper discusses the plans of the Nuclear Regulatory Commission for verifying the reactor safety codes being developed by NRC to assess the safety of light water reactors and fast breeder reactors. (author)

  19. A computer code for analysis of severe accidents in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  20. A computer code for analysis of severe accidents in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  1. A computer code for analysis of severe accidents in LWRs

    International Nuclear Information System (INIS)

    2001-01-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  2. Benchmark of physics design of a proposed 30 MW Multi Purpose Research Reactor using a Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Singh, Tej; Kumar, Jainendra; Sharma, Archana; Singh, Kanchhi; Raina, V.K.; Srinivasan, P.

    2009-01-01

    At present Dhruva and Cirus reactors provide majority of research reactor based experimental/irradiation facilities to cater to various needs of the vast pool of researchers in the field of sciences research and development work for nuclear power plants and production of radioisotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 30 MWt Multi Purpose Research Reactor is proposed to be constructed. This paper describes some of the physics design features of this reactor using MCNP code to validate the deterministic methods. The criticality calculations for 100 material testing reactor (JHR) of France and 610 MW SAVANNAH thermal reactor were performed using MCNP computer codes to boost the confidence level in designing the physics design of reactor core. (author)

  3. Los Alamos radiation transport code system on desktop computing platforms

    International Nuclear Information System (INIS)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T.

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines

  4. PAD: a one-dimensional, coupled neutronic-thermodynamic-hydrodynamic computer code

    International Nuclear Information System (INIS)

    Peterson, D.M.; Stratton, W.R.; McLaughlin, T.P.

    1976-12-01

    Theoretical and numerical foundations, utilization guide, sample problems, and program listing and glossary are given for the PAD computer code which describes dynamic systems with interactive neutronics, thermodynamics, and hydrodynamics in one-dimensional spherical, cylindrical, and planar geometries. The code has been applied to prompt critical excursions in various fissioning systems (solution, metal, LMFBR, etc.) as well as to nonfissioning systems

  5. Study and application of Dot 3.5 computer code in radiation shielding problems

    International Nuclear Information System (INIS)

    Otto, A.C.; Mendonca, A.G.; Maiorino, J.R.

    1983-01-01

    The application of nuclear transportation code S sub(N), Dot 3.5, to radiation shielding problems is revised. Aiming to study the better available option (convergence scheme, calculation mode), of DOT 3.5 computer code to be applied in radiation shielding problems, a standard model from 'Argonne Code Center' was selected and a combination of several calculation options to evaluate the accuracy of the results and the computational time was used, for then to select the more efficient option. To illustrate the versatility and efficacy in the application of the code for tipical shielding problems, the streaming neutrons calculation along a sodium coolant channel is ilustrated. (E.G.) [pt

  6. Integrated analysis of core debris interactions and their effects on containment integrity using the CONTAIN computer code

    International Nuclear Information System (INIS)

    Carroll, D.E.; Bergeron, K.D.; Williams, D.C.; Tills, J.L.; Valdez, G.D.

    1987-01-01

    The CONTAIN computer code includes a versatile system of phenomenological models for analyzing the physical, chemical and radiological conditions inside the containment building during severe reactor accidents. Important contributors to these conditions are the interactions which may occur between released corium and cavity concrete. The phenomena associated with interactions between ejected corium debris and the containment atmosphere (Direct Containment Heating or DCH) also pose a potential threat to containment integrity. In this paper, we describe recent enhancements of the CONTAIN code which allow an integrated analysis of these effects in the presence of other mitigating or aggravating physical processes. In particular, the recent inclusion of the CORCON and VANESA models is described and a calculation example presented. With this capability CONTAIN can model core-concrete interactions occurring simultaneously in multiple compartments and can couple the aerosols thereby generated to the mechanistic description of all atmospheric aerosol components. Also discussed are some recent results of modeling the phenomena involved in Direct Containment Heating. (orig.)

  7. TBCI and URMEL - New computer codes for wake field and cavity mode calculations

    International Nuclear Information System (INIS)

    Weiland, T.

    1983-01-01

    Wake force computation is important for any study of instabilities in high current accelerators and storage rings. These forces are generated by intense bunches of charged particles passing cylindrically symmetric structures on or off axis. The adequate method for computing such forces is the time domain approach. The computer Code TBCI computes for relativistic as well as for nonrelativistic bunches of arbitrary shape longitudinal and transverse wake forces up to the octupole component. TBCI is not limited to cavity-like objects and thus applicable to bellows, beam pipes with varying cross sections and any other nonresonant structures. For the accelerating cavities one also needs to know the resonant modes and frequencies for the study of instabilities and mode couplers. The complementary code named URMEL computes these fields for any azimuthal dependence of the fields in ascending order. The mathematical procedure being used is very safe and does not miss modes. Both codes together represent a unique tool for accelerator design and are easy to use

  8. Independent verification and validation testing of the FLASH computer code, Versiion 3.0

    International Nuclear Information System (INIS)

    Martian, P.; Chung, J.N.

    1992-06-01

    Independent testing of the FLASH computer code, Version 3.0, was conducted to determine if the code is ready for use in hydrological and environmental studies at various Department of Energy sites. This report describes the technical basis, approach, and results of this testing. Verification tests, and validation tests, were used to determine the operational status of the FLASH computer code. These tests were specifically designed to test: correctness of the FORTRAN coding, computational accuracy, and suitability to simulating actual hydrologic conditions. This testing was performed using a structured evaluation protocol which consisted of: blind testing, independent applications, and graduated difficulty of test cases. Both quantitative and qualitative testing was performed through evaluating relative root mean square values and graphical comparisons of the numerical, analytical, and experimental data. Four verification test were used to check the computational accuracy and correctness of the FORTRAN coding, and three validation tests were used to check the suitability to simulating actual conditions. These tests cases ranged in complexity from simple 1-D saturated flow to 2-D variably saturated problems. The verification tests showed excellent quantitative agreement between the FLASH results and analytical solutions. The validation tests showed good qualitative agreement with the experimental data. Based on the results of this testing, it was concluded that the FLASH code is a versatile and powerful two-dimensional analysis tool for fluid flow. In conclusion, all aspects of the code that were tested, except for the unit gradient bottom boundary condition, were found to be fully operational and ready for use in hydrological and environmental studies

  9. Physics Verification Overview

    Energy Technology Data Exchange (ETDEWEB)

    Doebling, Scott William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-12

    The purpose of the verification project is to establish, through rigorous convergence analysis, that each ASC computational physics code correctly implements a set of physics models and algorithms (code verification); Evaluate and analyze the uncertainties of code outputs associated with the choice of temporal and spatial discretization (solution or calculation verification); and Develop and maintain the capability to expand and update these analyses on demand. This presentation describes project milestones.

  10. Neutron-photon energy deposition in CANDU reactor fuel channels: a comparison of modelling techniques using ANISN and MCNP computer codes

    International Nuclear Information System (INIS)

    Bilanovic, Z.; McCracken, D.R.

    1994-12-01

    In order to assess irradiation-induced corrosion effects, coolant radiolysis and the degradation of the physical properties of reactor materials and components, it is necessary to determine the neutron, photon, and electron energy deposition profiles in the fuel channels of the reactor core. At present, several different computer codes must be used to do this. The most recent, advanced and versatile of these is the latest version of MCNP, which may be capable of replacing all the others. Different codes have different assumptions and different restrictions on the way they can model the core physics and geometry. This report presents the results of ANISN and MCNP models of neutron and photon energy deposition. The results validate the use of MCNP for simplified geometrical modelling of energy deposition by neutrons and photons in the complex geometry of the CANDU reactor fuel channel. Discrete ordinates codes such as ANISN were the benchmark codes used in previous work. The results of calculations using various models are presented, and they show very good agreement for fast-neutron energy deposition. In the case of photon energy deposition, however, some modifications to the modelling procedures had to be incorporated. Problems with the use of reflective boundaries were solved by either including the eight surrounding fuel channels in the model, or using a boundary source at the bounding surface of the problem. Once these modifications were incorporated, consistent results between the computer codes were achieved. Historically, simple annular representations of the core were used, because of the difficulty of doing detailed modelling with older codes. It is demonstrated that modelling by MCNP, using more accurate and more detailed geometry, gives significantly different and improved results. (author). 9 refs., 12 tabs., 20 figs

  11. A restructuring of COR package for MIDAS computer code

    International Nuclear Information System (INIS)

    Park, S.H.; Kim, K.R.; Kim, D.H.

    2004-01-01

    The COR package, which calculates the thermal response of the core and the lower plenum internal structures and models the relocation of the core and lower plenum structural materials, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and a modernized data structure. To do this, the data transferring methods of the current MELCOR code are modified and adopted into the COR package. The data structure of the current MELCOR code using FORTRAN77 has a difficulty in grasping the meaning of the variables as well as a waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which leads to an efficient memory treatment and an easy understanding of the code. Restructuring of the COR package addressed in this paper includes a module development, subroutine modification. The verification has been done by comparing the results of the modified code with those of the existing code. As the trends are similar to each other, it implies that the same approach could be extended to the entire code package. It is expected that the code restructuring will accelerated the code's domestication thanks to a direct understanding of each variable and an easy implementation of the modified or newly developed models. (author)

  12. A general purpose code for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Wilcke, W.W.; Rochester Univ., NY

    1984-01-01

    A general-purpose computer code MONTHY has been written to perform Monte Carlo simulations of physical systems. To achieve a high degree of flexibility the code is organized like a general purpose computer, operating on a vector describing the time dependent state of the system under simulation. The instruction set of the 'computer' is defined by the user and is therefore adaptable to the particular problem studied. The organization of MONTHY allows iterative and conditional execution of operations. (orig.)

  13. Neutron spectrum unfolding using computer code SAIPS

    International Nuclear Information System (INIS)

    Karim, S.

    1999-01-01

    The main objective of this project was to study the neutron energy spectrum at rabbit station-1 in Pakistan Research Reactor (PARR-I). To do so, multiple foils activation method was used to get the saturated activities. The computer code SAIPS was used to unfold the neutron spectra from the measured reaction rates. Of the three built in codes in SAIPS, only SANDI and WINDOWS were used. Contribution of thermal part of the spectra was observed to be higher than the fast one. It was found that the WINDOWS gave smooth spectra while SANDII spectra have violet oscillations in the resonance region. The uncertainties in the WINDOWS results are higher than those of SANDII. The results show reasonable agreement with the published results. (author)

  14. Compilation of documented computer codes applicable to environmental assessment of radioactivity releases

    International Nuclear Information System (INIS)

    Hoffman, F.O.; Miller, C.W.; Shaeffer, D.L.; Garten, C.T. Jr.; Shor, R.W.; Ensminger, J.T.

    1977-04-01

    The objective of this paper is to present a compilation of computer codes for the assessment of accidental or routine releases of radioactivity to the environment from nuclear power facilities. The capabilities of 83 computer codes in the areas of environmental transport and radiation dosimetry are summarized in tabular form. This preliminary analysis clearly indicates that the initial efforts in assessment methodology development have concentrated on atmospheric dispersion, external dosimetry, and internal dosimetry via inhalation. The incorporation of terrestrial and aquatic food chain pathways has been a more recent development and reflects the current requirements of environmental legislation and the needs of regulatory agencies. The characteristics of the conceptual models employed by these codes are reviewed. The appendixes include abstracts of the codes and indexes by author, key words, publication description, and title

  15. Computer code to assess accidental pollutant releases

    International Nuclear Information System (INIS)

    Pendergast, M.M.; Huang, J.C.

    1980-07-01

    A computer code was developed to calculate the cumulative frequency distributions of relative concentrations of an air pollutant following an accidental release from a stack or from a building penetration such as a vent. The calculations of relative concentration are based on the Gaussian plume equations. The meteorological data used for the calculation are in the form of joint frequency distributions of wind and atmospheric stability

  16. High energy physics computing in Japan

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1989-01-01

    A brief overview of the computing provision for high energy physics in Japan is presented. Most of the computing power for high energy physics is concentrated in KEK. Here there are two large scale systems: one providing a general computing service including vector processing and the other dedicated to TRISTAN experiments. Each university group has a smaller sized mainframe or VAX system to facilitate both their local computing needs and the remote use of the KEK computers through a network. The large computer system for the TRISTAN experiments is described. An overview of a prospective future large facility is also given. (orig.)

  17. FLICA-4 (version 1) a computer code for three dimensional thermal analysis of nuclear reactor cores

    International Nuclear Information System (INIS)

    Raymond, P.; Allaire, G.; Boudsocq, G.

    1995-01-01

    FLICA-4 is a thermal-hydraulic computer code developed at the French Energy Atomic Commission (CEA) for three dimensional steady state or transient two phase flow for design and safety thermal analysis of nuclear reactor cores. The two phase flow model of FLICA-4 is based on four balance equations for the fluid which includes: three balance equations for the mixture and a mass balance equation for the less concentrated phase which permits the calculation of non-equilibrium flows as sub cooled boiling and superheated steam. A drift velocity model takes into account the velocity disequilibrium between phases. The thermal behaviour of fuel elements can be computed by a one dimensional heat conduction equation in plane, cylindrical or spherical geometries and coupled to the fluid flow calculation. Convection and diffusion of solution products which are transported either by the liquid or by the gas, can be evaluated by solving specific mass conservation equations. A one dimensional two phase flow model can also be used to compute 1-D flow in pipes, guide tubes, BWR assemblies or RBMK channels. The FLICA-4 computer code uses fast running time steam-water functions. Phasic and saturation physical properties are computed by using bi-cubic spline functions. Polynomial coefficients are tabulated from 0.1 to 22 MPa and 0 to 800 degrees C. Specific modules can be utilised in order to generate the spline coefficients for any other fluid properties

  18. Methods tuned on the physical problem. A way to improve numerical codes

    International Nuclear Information System (INIS)

    Ixaru, L.Gr.

    2010-01-01

    We consider the problem on how the numerical methods tuned on the physical problem can contribute to the enhancement of the performance of the codes. We illustrate this on two simple cases: solution of time independent one-dimensional Schroedinger equation, and the computation of integrals with oscillatory integrands. In both cases the tuned versions bring a massive gain in accuracy at negligible extra cost. We presented two simple problems where successive levels of tuning enhance significantly the accuracy at negligible extra cost. These problems should be seen as representing only some illustrations on how the codes can be improved but we must also mention that in many cases tuned versions still have to be developed. Just for a suggestion, quadrature formulae which involve the integrand and a number of successive derivatives of this exist, but no formula is available when some of these derivatives are missing, for example when we dispose of y and y'' but not of y'. A direct application will be on the case when the integrand involves the solution of the Schrodinger equation by the method of Numerov. (author)

  19. Establishment of computer code system for nuclear reactor design - analysis

    International Nuclear Information System (INIS)

    Subki, I.R.; Santoso, B.; Syaukat, A.; Lee, S.M.

    1996-01-01

    Establishment of computer code system for nuclear reactor design analysis is given in this paper. This establishment is an effort to provide the capability in running various codes from nuclear data to reactor design and promote the capability for nuclear reactor design analysis particularly from neutronics and safety points. This establishment is also an effort to enhance the coordination of nuclear codes application and development existing in various research centre in Indonesia. Very prospective results have been obtained with the help of IAEA technical assistance. (author). 6 refs, 1 fig., 1 tab

  20. MQRAD, a computer code for synchrotron radiation from quadrupole magnets

    International Nuclear Information System (INIS)

    Morimoto, Teruhisa.

    1984-01-01

    The computer code, MQRAD, is developed for the calculation of the synchrotron radiation from the particles passing through quadrupole magnets at the straight section of the electron-positron colliding machine. This code computes the distributions of photon numbers and photon energies at any given points on the beam orbit. In this code, elements such as the quadrupole magnets and the drift spaces can be divided into many sub-elements in order to obtain the results with good accuracy. The synchrotron radiation produced by inserted quadrupole magnets at the interaction region of the electron-positron collider is one of the main background sources to the detector. The masking system against the synchrotron radiation at TRISTAN is very important because of the relatively high beam energy and the long straight section, which are 30 GeV and 100 meters, respectively. MQRAD has been used to design the masking system of the TOPAZ detector and the result is presented here as an example. (author)

  1. Proceedings of the conference on computer codes and the linear accelerator community

    International Nuclear Information System (INIS)

    Cooper, R.K.

    1990-07-01

    The conference whose proceedings you are reading was envisioned as the second in a series, the first having been held in San Diego in January 1988. The intended participants were those people who are actively involved in writing and applying computer codes for the solution of problems related to the design and construction of linear accelerators. The first conference reviewed many of the codes both extant and under development. This second conference provided an opportunity to update the status of those codes, and to provide a forum in which emerging new 3D codes could be described and discussed. The afternoon poster session on the second day of the conference provided an opportunity for extended discussion. All in all, this conference was felt to be quite a useful interchange of ideas and developments in the field of 3D calculations, parallel computation, higher-order optics calculations, and code documentation and maintenance for the linear accelerator community. A third conference is planned

  2. Proceedings of the conference on computer codes and the linear accelerator community

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.K. (comp.)

    1990-07-01

    The conference whose proceedings you are reading was envisioned as the second in a series, the first having been held in San Diego in January 1988. The intended participants were those people who are actively involved in writing and applying computer codes for the solution of problems related to the design and construction of linear accelerators. The first conference reviewed many of the codes both extant and under development. This second conference provided an opportunity to update the status of those codes, and to provide a forum in which emerging new 3D codes could be described and discussed. The afternoon poster session on the second day of the conference provided an opportunity for extended discussion. All in all, this conference was felt to be quite a useful interchange of ideas and developments in the field of 3D calculations, parallel computation, higher-order optics calculations, and code documentation and maintenance for the linear accelerator community. A third conference is planned.

  3. Abstracts of digital computer code packages. Assembled by the Radiation Shielding Information Center. [Radiation transport codes

    Energy Technology Data Exchange (ETDEWEB)

    McGill, B.; Maskewitz, B.F.; Anthony, C.M.; Comolander, H.E.; Hendrickson, H.R.

    1976-01-01

    The term ''code package'' is used to describe a miscellaneous grouping of materials which, when interpreted in connection with a digital computer, enables the scientist--user to solve technical problems in the area for which the material was designed. In general, a ''code package'' consists of written material--reports, instructions, flow charts, listings of data, and other useful material and IBM card decks (or, more often, a reel of magnetic tape) on which the source decks, sample problem input (including libraries of data) and the BCD/EBCDIC output listing from the sample problem are written. In addition to the main code, and any available auxiliary routines are also included. The abstract format was chosen to give to a potential code user several criteria for deciding whether or not he wishes to request the code package. (RWR)

  4. EXTRAN: A computer code for estimating concentrations of toxic substances at control room air intakes

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1991-03-01

    This report presents the NRC staff with a tool for assessing the potential effects of accidental releases of radioactive materials and toxic substances on habitability of nuclear facility control rooms. The tool is a computer code that estimates concentrations at nuclear facility control room air intakes given information about the release and the environmental conditions. The name of the computer code is EXTRAN. EXTRAN combines procedures for estimating the amount of airborne material, a Gaussian puff dispersion model, and the most recent algorithms for estimating diffusion coefficients in building wakes. It is a modular computer code, written in FORTRAN-77, that runs on personal computers. It uses a math coprocessor, if present, but does not require one. Code output may be directed to a printer or disk files. 25 refs., 8 figs., 4 tabs

  5. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  6. Monocrystal sputtering by the computer simulation code ACOCT

    International Nuclear Information System (INIS)

    Yamamura, Yasunori; Takeuchi, Wataru.

    1987-09-01

    A new computer code ACOCT has been developed in order to simulate the atomic collisions in the crystalline target within the binary collision approximation. The present code is more convenient as compared with the MARLOWE code, and takes the higher-order simultaneous collisions into account. To cheke the validity of the ACOCT program, we have calculated sputtering yields for various ion-target combinations and compared with the MARLOWE results. It is found that the calculated yields by the ACOCT program are in good agreements with those by the MARLOWE code. The ejection patterns of sputtered atoms were also calculated for the major surfaces of fcc, bcc, diamond and hcp structures, and we have got reasonable agreements with experimental results. In order to know the effects of the simultaneous collision in the slowing down process the sputtering yields and the projected ranges are calculated, changeing the parameter of the criterion for the simultaneous collision, and the effect of the simultaneous collision is found to depend on the crystal orientation. (author)

  7. User's manual for the G.T.M.-1 computer code

    International Nuclear Information System (INIS)

    Prado-Herrero, P.

    1992-01-01

    This document describes the GTM-1 ( Geosphere Transport Model, release-1) computer code and is intended to provide the reader with enough detailed information in order to use the code. GTM-1 was developed for the assessment of radionuclide migration by the ground water through geologic deposits whose properties can change along the pathway.GTM-1 solves the transport equation by the finite differences method ( Crank-Nicolson scheme ). It was developped for specific use within Probabilistic System Assessment (PSA) Monte Carlo Method codes; in this context the first application of GTM-1 was within the LISA (Long Term Isolation System Assessment) code. GTM-1 is also available as an independent model, which includes various submodels simulating a multi-barrier disposal system. The code has been tested with the PSACOIN ( Probabilistic System Assessment Codes intercomparison) benchmarks exercises from PSAC User Group (OECD/NEA). 10 refs., 6 Annex., 2 tabs

  8. Computational geometry for reactor applications

    International Nuclear Information System (INIS)

    Brown, F.B.; Bischoff, F.G.

    1988-01-01

    Monte Carlo codes for simulating particle transport involve three basic computational sections: a geometry package for locating particles and computing distances to regional boundaries, a physics package for analyzing interactions between particles and problem materials, and an editing package for determining event statistics and overall results. This paper describes the computational geometry methods in RACER, a vectorized Monte Carlo code used for reactor physics analysis, so that comparisons may be made with techniques used in other codes. The principal applications for RACER are eigenvalue calculations and power distributions associated with reactor core physics analysis. Successive batches of neutrons are run until convergence and acceptable confidence intervals are obtained, with typical problems involving >10 6 histories. As such, the development of computational geometry methods has emphasized two basic needs: a flexible but compact geometric representation that permits accurate modeling of reactor core details and efficient geometric computation to permit very large numbers of histories to be run. The current geometric capabilities meet these needs effectively, supporting a variety of very large and demanding applications

  9. A physics computing bureau

    CERN Document Server

    Laurikainen, P

    1975-01-01

    The author first reviews the services offered by the Bureau to the user community scattered over three separate physics departments and a theory research institute. Limited services are offered also to non- physics research in the University, in collaboration with the University Computing Center. The personnel is divided into operations sections responsible for the terminal and data archive management, punching and document services, etc. and into analysts sections with half a dozen full-time scientific programmers recruited among promising graduate level physics students, rather than computer scientists or mathematicians. Analysts are thus able not only to communicate with physicists but also to participate in research to some extent. Only more demanding program development tasks can be handled by the Bureau, most of the routine data processing is the users responsibility.

  10. TRIO-EF a general thermal hydraulics computer code applied to the Avlis process

    International Nuclear Information System (INIS)

    Magnaud, J.P.; Claveau, M.; Coulon, N.; Yala, P.; Guilbaud, D.; Mejane, A.

    1993-01-01

    TRIO(EF is a general purpose Fluid Mechanics 3D Finite Element Code. The system capabilities cover areas such as steady state or transient, laminar or turbulent, isothermal or temperature dependent fluid flows; it is applicable to the study of coupled thermo-fluid problems involving heat conduction and possibly radiative heat transfer. It has been used to study the thermal behaviour of the AVLIS process separation module. In this process, a linear electron beam impinges the free surface of a uranium ingot, generating a two dimensional curtain emission of vapour from a water-cooled crucible. The energy transferred to the metal causes its partial melting, forming a pool where strong convective motion increases heat transfer towards the crucible. In the upper part of the Separation Module, the internal structures are devoted to two main functions: vapor containment and reflux, irradiation and physical separation. They are subjected to very high temperature levels and heat transfer occurs mainly by radiation. Moreover, special attention has to be paid to electron backscattering. These two major points have been simulated numerically with TRIO-EF and the paper presents and comments the results of such a computation, for each of them. After a brief overview of the computer code, two examples of the TRIO-EF capabilities are given: a crucible thermal hydraulics model, a thermal analysis of the internal structures

  11. SWAAM-LT: The long-term, sodium/water reaction analysis method computer code

    International Nuclear Information System (INIS)

    Shin, Y.W.; Chung, H.H.; Wiedermann, A.H.; Tanabe, H.

    1993-01-01

    The SWAAM-LT Code, developed for analysis of long-term effects of sodium/water reactions, is discussed. The theoretical formulation of the code is described, including the introduction of system matrices for ease of computer programming as a general system code. Also, some typical results of the code predictions for available large scale tests are presented. Test data for the steam generator design with the cover-gas feature and without the cover-gas feature are available and analyzed. The capabilities and limitations of the code are then discussed in light of the comparison between the code prediction and the test data

  12. Introduction of SCIENCE code package

    International Nuclear Information System (INIS)

    Lu Haoliang; Li Jinggang; Zhu Ya'nan; Bai Ning

    2012-01-01

    The SCIENCE code package is a set of neutronics tools based on 2D assembly calculations and 3D core calculations. It is made up of APOLLO2F, SMART and SQUALE and used to perform the nuclear design and loading pattern analysis for the reactors on operation or under construction of China Guangdong Nuclear Power Group. The purpose of paper is to briefly present the physical and numerical models used in each computation codes of the SCIENCE code pack age, including the description of the general structure of the code package, the coupling relationship of APOLLO2-F transport lattice code and SMART core nodal code, and the SQUALE code used for processing the core maps. (authors)

  13. Analog system for computing sparse codes

    Science.gov (United States)

    Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell

    2010-08-24

    A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.

  14. A code to compute borehole fluid conductivity profiles with multiple feed points

    International Nuclear Information System (INIS)

    Hale, F.V.; Tsang, C.F.

    1988-03-01

    It is of much current interest to determine the flow characteristics of fractures intersecting a wellbore in order to understand the hydrologic behavior of fractured rocks. Often inflow from these fractures into the wellbore is at very low rates. A new procedure has been proposed and a corresponding method of analysis developed to obtain fracture inflow parameters from a time sequence of electric conductivity logs of the borehole fluid. The present report is a companion document to NTB--88-13 giving the details of equations and computer code used to compute borehole fluid conductivity distributions. Verification of the code used and a listing of the code are also given. (author) 9 refs., 5 figs., 7 tabs

  15. The MESORAD dose assessment model: Computer code

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Athey, G.F.; Bander, T.J.; Scherpelz, R.I.

    1988-10-01

    MESORAD is a dose equivalent model for emergency response applications that is designed to be run on minicomputers. It has been developed by the Pacific Northwest Laboratory for use as part of the Intermediate Dose Assessment System in the US Nuclear Regulatory Commission Operations Center in Washington, DC, and the Emergency Management System in the US Department of Energy Unified Dose Assessment Center in Richland, Washington. This volume describes the MESORAD computer code and contains a listing of the code. The technical basis for MESORAD is described in the first volume of this report (Scherpelz et al. 1986). A third volume of the documentation planned. That volume will contain utility programs and input and output files that can be used to check the implementation of MESORAD. 18 figs., 4 tabs

  16. Protect Heterogeneous Environment Distributed Computing from Malicious Code Assignment

    Directory of Open Access Journals (Sweden)

    V. S. Gorbatov

    2011-09-01

    Full Text Available The paper describes the practical implementation of the protection system of heterogeneous environment distributed computing from malicious code for the assignment. A choice of technologies, development of data structures, performance evaluation of the implemented system security are conducted.

  17. Quantum computing for physics research

    International Nuclear Information System (INIS)

    Georgeot, B.

    2006-01-01

    Quantum computers hold great promises for the future of computation. In this paper, this new kind of computing device is presented, together with a short survey of the status of research in this field. The principal algorithms are introduced, with an emphasis on the applications of quantum computing to physics. Experimental implementations are also briefly discussed

  18. Computing in high-energy physics

    International Nuclear Information System (INIS)

    Mount, Richard P.

    2016-01-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software

  19. Computing in high-energy physics

    Science.gov (United States)

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  20. ENDF/B Pre-Processing Codes: Implementing and testing on a Personal Computer

    International Nuclear Information System (INIS)

    McLaughlin, P.K.

    1987-05-01

    This document describes the contents of the diskettes containing the ENDF/B Pre-Processing codes by D.E. Cullen, and example data for use in implementing and testing these codes on a Personal Computer of the type IBM-PC/AT. Upon request the codes are available from the IAEA Nuclear Data Section, free of charge, on a series of 7 diskettes. (author)

  1. Computer code for calculating personnel doses due to tritium exposures

    International Nuclear Information System (INIS)

    Graham, C.L.; Parlagreco, J.R.

    1977-01-01

    This report describes a computer code written in LLL modified Fortran IV that can be used on a CDC 7600 for calculating personnel doses due to internal exposures to tritium. The code is capable of handling various exposure situations and is also capable of detecting a large variety of data input errors that would lead to errors in the dose assessment. The critical organ is the body water

  2. RADTRAN: a computer code to analyze transportation of radioactive material

    International Nuclear Information System (INIS)

    Taylor, J.M.; Daniel, S.L.

    1977-04-01

    A computer code is presented which predicts the environmental impact of any specific scheme of radioactive material transportation. Results are presented in terms of annual latent cancer fatalities and annual early fatility probability resulting from exposure, during normal transportation or transport accidents. The code is developed in a generalized format to permit wide application including normal transportation analysis; consideration of alternatives; and detailed consideration of specific sectors of industry

  3. Recommendations for computer code selection of a flow and transport code to be used in undisturbed vadose zone calculations for TWRS immobilized wastes environmental analyses

    International Nuclear Information System (INIS)

    VOOGD, J.A.

    1999-01-01

    An analysis of three software proposals is performed to recommend a computer code for immobilized low activity waste flow and transport modeling. The document uses criteria restablished in HNF-1839, ''Computer Code Selection Criteria for Flow and Transport Codes to be Used in Undisturbed Vadose Zone Calculation for TWRS Environmental Analyses'' as the basis for this analysis

  4. User's manual for the Oak Ridge Tokamak Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Munro, J.K.; Hogan, J.T.; Howe, H.C.; Arnurius, D.E.

    1977-02-01

    A one-dimensional tokamak transport code is described which simulates a plasma discharge using a fluid model which includes power balances for electrons and ions, conservation of mass, and Maxwell's equations. The modular structure of the code allows a user to add models of various physical processes which can modify the discharge behavior. Such physical processes treated in the version of the code described here include effects of plasma transport, neutral gas transport, impurity diffusion, and neutral beam injection. Each process can be modeled by a parameterized analytic formula or at least one detailed numerical calculation. The program logic of each module is presented, followed by detailed descriptions of each subroutine used by the module. The physics underlying the models is only briefly summarized. The transport code was written in IBM FORTRAN-IV and implemented on IBM 360/370 series computers at the Oak Ridge National Laboratory and on the CDC 7600 computers of the Magnetic Fusion Energy (MFE) Computing Center of the Lawrence Livermore Laboratory. A listing of the current reference version is provided on accompanying microfiche.

  5. Parallelization of Subchannel Analysis Code MATRA

    International Nuclear Information System (INIS)

    Kim, Seongjin; Hwang, Daehyun; Kwon, Hyouk

    2014-01-01

    A stand-alone calculation of MATRA code used up pertinent computing time for the thermal margin calculations while a relatively considerable time is needed to solve the whole core pin-by-pin problems. In addition, it is strongly required to improve the computation speed of the MATRA code to satisfy the overall performance of the multi-physics coupling calculations. Therefore, a parallel approach to improve and optimize the computability of the MATRA code is proposed and verified in this study. The parallel algorithm is embodied in the MATRA code using the MPI communication method and the modification of the previous code structure was minimized. An improvement is confirmed by comparing the results between the single and multiple processor algorithms. The speedup and efficiency are also evaluated when increasing the number of processors. The parallel algorithm was implemented to the subchannel code MATRA using the MPI. The performance of the parallel algorithm was verified by comparing the results with those from the MATRA with the single processor. It is also noticed that the performance of the MATRA code was greatly improved by implementing the parallel algorithm for the 1/8 core and whole core problems

  6. Computed radiography simulation using the Monte Carlo code MCNPX

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.

    2009-01-01

    Simulating x-ray images has been of great interest in recent years as it makes possible an analysis of how x-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data. (author)

  7. Computed radiography simulation using the Monte Carlo code MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Centro Universitario Estadual da Zona Oeste (CCMAT)/UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, 23070-200, Rio de Janeiro, RJ (Brazil); Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.b [PEN/COPPE-DNC/Poli CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Cassiano, D.H. [Instituto de Radioprotecao e Dosimetria/CNEN Av. Salvador Allende, s/n, Recreio, 22780-160, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil)

    2010-09-15

    Simulating X-ray images has been of great interest in recent years as it makes possible an analysis of how X-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data.

  8. Building a dynamic code to simulate new reactor concepts

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.-T.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.; Varvayanni, M.

    2012-01-01

    Highlights: ► We develop a stochastic neutronic code based on an existing High Energy Physics code. ► The code simulates innovative reactor designs including Accelerator Driven Systems. ► Core materials evolution will be dynamically simulated, including fuel burnup. ► Continuous feedback between the main inter-related parameters will be established. ► A description of the current research development and achievements is also given. - Abstract: Innovative nuclear reactor designs have been proposed, such as the Accelerator Driven Systems (ADSs), the “candle” reactors, etc. These reactor designs introduce computational nuclear technology problems the solution of which necessitates a new, global and dynamic computational approach of the system. A continuous feedback procedure must be established between the main inter-related parameters of the system such as the chemical, physical and isotopic composition of the core, the neutron flux distribution and the temperature field. Furthermore, as far as ADSs are concerned, the ability of the computational tool to simulate the nuclear cascade created from the interaction of accelerated protons with the spallation target as well as the produced neutrons, is also required. The new Monte Carlo code ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is being developed based on the GEANT3 High Energy Physics code, aiming to progressively satisfy all the above requirements. A description of the capabilities and methodologies implemented in the present version of ANET is given here, together with some illustrative applications of the code.

  9. Challenges in the twentieth century and beyond: Computer codes and data

    International Nuclear Information System (INIS)

    Kirk, B.L.

    1995-01-01

    The second half of the twentieth century has seen major changes in computer architecture. From the early fifties to the early seventies, the word open-quotes computerclose quotes demanded reverence, respect, and even fear. Computers, then, were almost open-quotes untouchable.close quotes Computers have become the mainstream of communication on rapidly expanding communication highways. They have become necessities of life. This report describes computer codes and packaging, as well as compilers and operating systems

  10. Benchmarking of computer codes and approaches for modeling exposure scenarios

    International Nuclear Information System (INIS)

    Seitz, R.R.; Rittmann, P.D.; Wood, M.I.; Cook, J.R.

    1994-08-01

    The US Department of Energy Headquarters established a performance assessment task team (PATT) to integrate the activities of DOE sites that are preparing performance assessments for the disposal of newly generated low-level waste. The PATT chartered a subteam with the task of comparing computer codes and exposure scenarios used for dose calculations in performance assessments. This report documents the efforts of the subteam. Computer codes considered in the comparison include GENII, PATHRAE-EPA, MICROSHIELD, and ISOSHLD. Calculations were also conducted using spreadsheets to provide a comparison at the most fundamental level. Calculations and modeling approaches are compared for unit radionuclide concentrations in water and soil for the ingestion, inhalation, and external dose pathways. Over 30 tables comparing inputs and results are provided

  11. Integrated Numerical Experiments (INEX) and the Free-Electron Laser Physical Process Code (FELPPC)

    International Nuclear Information System (INIS)

    Thode, L.E.; Chan, K.C.D.; Schmitt, M.J.; McKee, J.; Ostic, J.; Elliott, C.J.; McVey, B.D.

    1990-01-01

    The strong coupling of subsystem elements, such as the accelerator, wiggler, and optics, greatly complicates the understanding and design of a free electron laser (FEL), even at the conceptual level. To address the strong coupling character of the FEL the concept of an Integrated Numerical Experiment (INEX) was proposed. Unique features of the INEX approach are consistency and numerical equivalence of experimental diagnostics. The equivalent numerical diagnostics mitigates the major problem of misinterpretation that often occurs when theoretical and experimental data are compared. The INEX approach has been applied to a large number of accelerator and FEL experiments. Overall, the agreement between INEX and the experiments is very good. Despite the success of INEX, the approach is difficult to apply to trade-off and initial design studies because of the significant manpower and computational requirements. On the other hand, INEX provides a base from which realistic accelerator, wiggler, and optics models can be developed. The Free Electron Laser Physical Process Code (FELPPC) includes models developed from INEX, provides coupling between the subsystem models, and incorporates application models relevant to a specific trade-off or design study. In other words, FELPPC solves the complete physical process model using realistic physics and technology constraints. Because FELPPC provides a detailed design, a good estimate for the FEL mass, cost, and size can be made from a piece-part count of the FEL. FELPPC requires significant accelerator and FEL expertise to operate. The code can calculate complex FEL configurations including multiple accelerator and wiggler combinations

  12. Validation and testing of the VAM2D computer code

    International Nuclear Information System (INIS)

    Kool, J.B.; Wu, Y.S.

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, ''Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs

  13. Acceleration of a Monte Carlo radiation transport code

    International Nuclear Information System (INIS)

    Hochstedler, R.D.; Smith, L.M.

    1996-01-01

    Execution time for the Integrated TIGER Series (ITS) Monte Carlo radiation transport code has been reduced by careful re-coding of computationally intensive subroutines. Three test cases for the TIGER (1-D slab geometry), CYLTRAN (2-D cylindrical geometry), and ACCEPT (3-D arbitrary geometry) codes were identified and used to benchmark and profile program execution. Based upon these results, sixteen top time-consuming subroutines were examined and nine of them modified to accelerate computations with equivalent numerical output to the original. The results obtained via this study indicate that speedup factors of 1.90 for the TIGER code, 1.67 for the CYLTRAN code, and 1.11 for the ACCEPT code are achievable. copyright 1996 American Institute of Physics

  14. Development of a computer code for Dalat research reactor transient analysis

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Nguyen Thai Sinh; Huynh Ton Nghiem; Luong Ba Vien; Pham Van Lam; Nguyen Kien Cuong

    2003-01-01

    DRSIM (Dalat Reactor SIMulation) computer code has been developed for Dalat reactor transient analysis. It is basically a coupled neutronics-hydrodynamics-heat transfer code employing point kinetics, one dimensional hydrodynamics and one dimensional heat transfer. The work was financed by VAEC and DNRI in the framework of institutional R and D programme. Some transient problems related to reactivity and loss of coolant flow was carried out by DRSIM using temperature and void coefficients calculated by WIMS and HEXNOD2D codes. (author)

  15. What Computational Approaches Should be Taught for Physics?

    Science.gov (United States)

    Landau, Rubin

    2005-03-01

    The standard Computational Physics courses are designed for upper-level physics majors who already have some computational skills. We believe that it is important for first-year physics students to learn modern computing techniques that will be useful throughout their college careers, even before they have learned the math and science required for Computational Physics. To teach such Introductory Scientific Computing courses requires that some choices be made as to what subjects and computer languages wil be taught. Our survey of colleagues active in Computational Physics and Physics Education show no predominant choice, with strong positions taken for the compiled languages Java, C, C++ and Fortran90, as well as for problem-solving environments like Maple and Mathematica. Over the last seven years we have developed an Introductory course and have written up those courses as text books for others to use. We will describe our model of using both a problem-solving environment and a compiled language. The developed materials are available in both Maple and Mathaematica, and Java and Fortran90ootnotetextPrinceton University Press, to be published; www.physics.orst.edu/˜rubin/IntroBook/.

  16. Two-phase wall friction model for the trace computer code

    International Nuclear Information System (INIS)

    Wang Weidong

    2005-01-01

    The wall drag model in the TRAC/RELAP5 Advanced Computational Engine computer code (TRACE) has certain known deficiencies. For example, in an annular flow regime, the code predicts an unphysical high liquid velocity compared to the experimental data. To address those deficiencies, a new wall frictional drag package has been developed and implemented in the TRACE code to model the wall drag for two-phase flow system code. The modeled flow regimes are (1) annular/mist, (2) bubbly/slug, and (3) bubbly/slug with wall nucleation. The new models use void fraction (instead of flow quality) as the correlating variable to minimize the calculation oscillation. In addition, the models allow for transitions between the three regimes. The annular/mist regime is subdivided into three separate regimes for pure annular flow, annular flow with entrainment, and film breakdown. For adiabatic two-phase bubbly/slug flows, the vapor phase primarily exists outside of the boundary layer, and the wall shear uses single-phase liquid velocity for friction calculation. The vapor phase wall friction drag is set to zero for bubbly/slug flows. For bubbly/slug flows with wall nucleation, the bubbles are presented within the hydrodynamic boundary layer, and the two-phase wall friction drag is significantly higher with a pronounced mass flux effect. An empirical correlation has been studied and applied to account for nucleate boiling. Verification and validation tests have been performed, and the test results showed a significant code improvement. (authors)

  17. Physical models and codes for prediction of activity release from defective fuel rods under operation conditions and in leakage tests during refuelling

    International Nuclear Information System (INIS)

    Likhanskii, V.; Evdokimov, I.; Khoruzhii, O.; Sorokin, A.; Novikov, V.

    2003-01-01

    It is appropriate to use the dependences, based on physical models, in the design-analytical codes for improving of reliability of defective fuel rod detection and for determination of defect characteristics by activity measuring in the primary coolant. In the paper the results on development of some physical models and integral mechanistic codes, assigned for prediction of defective fuel rod behaviour are presented. The analysis of mass transfer and mass exchange between fuel rod and coolant showed that the rates of these processes depends on many factors, such as coolant turbulent flow, pressure, effective hydraulic diameter of defect, fuel rod geometric parameters. The models, which describe these dependences, have been created. The models of thermomechanical fuel behaviour, stable gaseous FP release were modified and new computer code RTOP-CA was created thereupon for description of defective fuel rod behaviour and activity release into the primary coolant. The model of fuel oxidation in in-pile conditions, which includes radiolysis and RTOP-LT after validation of physical models are planned to be used for prediction of defective fuel rods behaviour

  18. Modification in the CITATION computer code: change of microscopic cross sections by zone

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Kosaka, N.

    1983-01-01

    Some modifications done in the CITATION computer code are presented, aiming to calculate the accumulated burnup for each reactor zone in each step of burnup and allow changing the microscopic cross sections for each zone in accordance to the burnup accumulated after each step of burnup. Some input data were put in the computer code. The alterations were tested and the results were compared with and without modifications. (E.G.) [pt

  19. Engineering computations at the national magnetic fusion energy computer center

    International Nuclear Information System (INIS)

    Murty, S.

    1983-01-01

    The National Magnetic Fusion Energy Computer Center (NMFECC) was established by the U.S. Department of Energy's Division of Magnetic Fusion Energy (MFE). The NMFECC headquarters is located at Lawrence Livermore National Laboratory. Its purpose is to apply large-scale computational technology and computing techniques to the problems of controlled thermonuclear research. In addition to providing cost effective computing services, the NMFECC also maintains a large collection of computer codes in mathematics, physics, and engineering that is shared by the entire MFE research community. This review provides a broad perspective of the NMFECC, and a list of available codes at the NMFECC for engineering computations is given

  20. Improving system modeling accuracy with Monte Carlo codes

    International Nuclear Information System (INIS)

    Johnson, A.S.

    1996-01-01

    The use of computer codes based on Monte Carlo methods to perform criticality calculations has become common-place. Although results frequently published in the literature report calculated k eff values to four decimal places, people who use the codes in their everyday work say that they only believe the first two decimal places of any result. The lack of confidence in the computed k eff values may be due to the tendency of the reported standard deviation to underestimate errors associated with the Monte Carlo process. The standard deviation as reported by the codes is the standard deviation of the mean of the k eff values for individual generations in the computer simulation, not the standard deviation of the computed k eff value compared with the physical system. A more subtle problem with the standard deviation of the mean as reported by the codes is that all the k eff values from the separate generations are not statistically independent since the k eff of a given generation is a function of k eff of the previous generation, which is ultimately based on the starting source. To produce a standard deviation that is more representative of the physical system, statistically independent values of k eff are needed

  1. Improved Algorithms Speed It Up for Codes

    International Nuclear Information System (INIS)

    Hazi, A

    2005-01-01

    Huge computers, huge codes, complex problems to solve. The longer it takes to run a code, the more it costs. One way to speed things up and save time and money is through hardware improvements--faster processors, different system designs, bigger computers. But another side of supercomputing can reap savings in time and speed: software improvements to make codes--particularly the mathematical algorithms that form them--run faster and more efficiently. Speed up math? Is that really possible? According to Livermore physicist Eugene Brooks, the answer is a resounding yes. ''Sure, you get great speed-ups by improving hardware,'' says Brooks, the deputy leader for Computational Physics in N Division, which is part of Livermore's Physics and Advanced Technologies (PAT) Directorate. ''But the real bonus comes on the software side, where improvements in software can lead to orders of magnitude improvement in run times.'' Brooks knows whereof he speaks. Working with Laboratory physicist Abraham Szoeke and others, he has been instrumental in devising ways to shrink the running time of what has, historically, been a tough computational nut to crack: radiation transport codes based on the statistical or Monte Carlo method of calculation. And Brooks is not the only one. Others around the Laboratory, including physicists Andrew Williamson, Randolph Hood, and Jeff Grossman, have come up with innovative ways to speed up Monte Carlo calculations using pure mathematics

  2. A first accident simulation for Angra-1 power plant using the ALMOD computer code

    International Nuclear Information System (INIS)

    Camargo, C.T.M.

    1981-02-01

    The acquisition of the Almod computer code from GRS-Munich to CNEN has permited doing calculations of transients in PWR nuclear power plants, in which doesn't occur loss of coolant. The implementation of the german computer code Almod and its application in the calculation of Angra-1, a nuclear power plant different from the KWU power plants, demanded study and models adaptation; and due to economic reasons simplifications and optimizations were necessary. The first results define the analytical potential of the computer code, confirm the adequacy of the adaptations done and provide relevant conclusions about the Angra-1 safety analysis, showing at the same time areas in which the model can be applied or simply improved. (Author) [pt

  3. Extreme Physics and Informational/Computational Limits

    Energy Technology Data Exchange (ETDEWEB)

    Di Sia, Paolo, E-mail: paolo.disia@univr.it, E-mail: 10alla33@virgilio.it [Department of Computer Science, Faculty of Science, Verona University, Strada Le Grazie 15, I-37134 Verona (Italy) and Faculty of Computer Science, Free University of Bozen, Piazza Domenicani 3, I-39100 Bozen-Bolzano (Italy)

    2011-07-08

    A sector of the current theoretical physics, even called 'extreme physics', deals with topics concerning superstring theories, multiverse, quantum teleportation, negative energy, and more, that only few years ago were considered scientific imaginations or purely speculative physics. Present experimental lines of evidence and implications of cosmological observations seem on the contrary support such theories. These new physical developments lead to informational limits, as the quantity of information, that a physical system can record, and computational limits, resulting from considerations regarding black holes and space-time fluctuations. In this paper I consider important limits for information and computation resulting in particular from string theories and its foundations.

  4. Extreme Physics and Informational/Computational Limits

    International Nuclear Information System (INIS)

    Di Sia, Paolo

    2011-01-01

    A sector of the current theoretical physics, even called 'extreme physics', deals with topics concerning superstring theories, multiverse, quantum teleportation, negative energy, and more, that only few years ago were considered scientific imaginations or purely speculative physics. Present experimental lines of evidence and implications of cosmological observations seem on the contrary support such theories. These new physical developments lead to informational limits, as the quantity of information, that a physical system can record, and computational limits, resulting from considerations regarding black holes and space-time fluctuations. In this paper I consider important limits for information and computation resulting in particular from string theories and its foundations.

  5. QR-codes as a tool to increase physical activity level among school children during class hours

    DEFF Research Database (Denmark)

    Christensen, Jeanette Reffstrup; Kristensen, Allan; Bredahl, Thomas Viskum Gjelstrup

    the students physical activity level during class hours. Methods: A before-after study was used to examine 12 students physical activity level, measured with pedometers for six lessons. Three lessons of traditional teaching and three lessons, where QR-codes were used to make orienteering in school area...... as old fashioned. The students also felt positive about being physically active in teaching. Discussion and conclusion: QR-codes as a tool for teaching are usable for making students more physically active in teaching. The students were exited for using QR-codes and they experienced a good motivation......QR-codes as a tool to increase physical activity level among school children during class hours Introduction: Danish students are no longer fulfilling recommendations for everyday physical activity. Since August 2014, Danish students in public schools are therefore required to be physically active...

  6. Development of a computer code for thermohydraulic analysis of a heated channel in transients

    International Nuclear Information System (INIS)

    Jafari, J.; Kazeminejad, H.; Davilu, H.

    2004-01-01

    This paper discusses the thermohydraulic analysis of a heated channel of a nuclear reactor in transients by a computer code that has been developed by the writer. The considered geometry is a channel of a nuclear reactor with cylindrical or planar fuel rods. The coolant is water and flows from the outer surface of the fuel rod. To model the heat transfer in the fuel rod, two dimensional time dependent conduction equations has been solved by combination of numerical methods, O rthogonal Collocation Method in radial direction and finite difference method in axial direction . For coolant modelling the single phase time dependent energy equation has been used and solved by finite difference method . The combination of the first module that solves the conduction in the fuel rod and a second one that solved the energy balance in the coolant region constitute the computer code (Thyc-1) to analysis thermohydraulic of a heated channel in transients. The Orthogonal collocation method maintains the accuracy and computing time of conventional finite difference methods, while the computer storage is reduced by a factor of two. The same problem has been modelled by RELAP5/M3 system code to asses the validity of the Thyc-1 code. The good agreement of the results qualifies the developed code

  7. CORESAFE: A Formal Approach against Code Replacement Attacks on Cyber Physical Systems

    Science.gov (United States)

    2018-04-19

    AFRL-AFOSR-JP-TR-2018-0035 CORESAFE:A Formal Approach against Code Replacement Attacks on Cyber Physical Systems Sandeep Shukla INDIAN INSTITUTE OF...Formal Approach against Code Replacement Attacks on Cyber Physical Systems 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-16-1-4099 5c.  PROGRAM ELEMENT...SUPPLEMENTARY NOTES 14.  ABSTRACT Industrial Control Systems (ICS) used in manufacturing, power generators and other critical infrastructure monitoring and

  8. XXVII IUPAP Conference on Computational Physics (CCP2015)

    International Nuclear Information System (INIS)

    Santra, Sitangshu Bikas; Ray, Purusattam

    2016-01-01

    The 27th IUPAP Conference on Computational Physics, CCP2015, was held in the heritage city Guwahati, in the eastern part of India, next to the mighty river Brahmaputra, during December 2-5, 2015. The Conference on Computational Physics is organized annually under the auspices of Commission 20 (C20) of the IUPAP (International Union of Pure and Applied Physics). This is the first time it has been held in India. Almost 300 participants from 25 countries convened at the auditorium and lecture halls at the Indian Institute of Technology Guwahati for four days. Thirteen plenary speakers, fifty six invited speakers, three presnters from the computer industries and two hundred and eight contributory participants coverd a broad range of topics in computational physics and related areas. Thirty eight women participated in CCP2015 and seven of them presented invited talks. This volume of Journal of Physics: Conference Series contains the proceedings of the scientific contributions presented at the Conference. The main purpose of the meeting was to discuss the progress, opportunities and challenges of common interest to physicists engaged in computational research. Computational physics has taken giant leaps during the lat few years, not only because of the enormous increases in computer power but especially because of the development of new methods and algorithms. Computational physics now represents a third leg of research alongside analytical theory and experiments. A meeting such as CCP, must have sufficient depth in different areas and at the same time should be broad and accessible. The topics covered in this conference were: Materials/Condensed Matter Theory and Nanoscience, Strongly Correlated Systems and Quantum Phase Transitions, Quantum Chemistry and Atomic Physics, Quantum Chromodynamics, Astrophysics, Plasma Physics, Nuclear and High Energy Physics, Complex Systems: Chaos and Statistical Physics, Macroscopic Transport and Mesoscopic Methods, Biological Physics

  9. STADIC: a computer code for combining probability distributions

    International Nuclear Information System (INIS)

    Cairns, J.J.; Fleming, K.N.

    1977-03-01

    The STADIC computer code uses a Monte Carlo simulation technique for combining probability distributions. The specific function for combination of the input distribution is defined by the user by introducing the appropriate FORTRAN statements to the appropriate subroutine. The code generates a Monte Carlo sampling from each of the input distributions and combines these according to the user-supplied function to provide, in essence, a random sampling of the combined distribution. When the desired number of samples is obtained, the output routine calculates the mean, standard deviation, and confidence limits for the resultant distribution. This method of combining probability distributions is particularly useful in cases where analytical approaches are either too difficult or undefined

  10. Challenges for the computational fluid dynamics codes in the nineties. Various examples of application

    International Nuclear Information System (INIS)

    Chabard, J.P.; Viollet, P.L.

    1991-08-01

    Most of the computational fluid dynamics applications which are encountered at the Research and Development Division of EDF (RDD) are dealing with thermal exchanges. The development of numerical tools for the simulation of flows, devoted to this class of application, has been under way for 15 years. At the beginning this work was mainly concerned with a good simulation of the dynamics of the flow. Now these tools can be used to compute flows with thermal exchanges. The presentation will be limited to incompressible and one phase flows. First the softwares developed at RDD will be presented. Then some applications of these tools to flows with thermal exchanges will be discussed. To conclude, the paper will treat be general case of the CFD codes. The challenges for the next years will be detailed in order to make these tools available for users involved in complex physical modeling

  11. Computer code validation by high temperature chemistry

    International Nuclear Information System (INIS)

    Alexander, C.A.; Ogden, J.S.

    1988-01-01

    At least five of the computer codes utilized in analysis of severe fuel damage-type events are directly dependent upon or can be verified by high temperature chemistry. These codes are ORIGEN, CORSOR, CORCON, VICTORIA, and VANESA. With the exemption of CORCON and VANESA, it is necessary that verification experiments be performed on real irradiated fuel. For ORIGEN, the familiar knudsen effusion cell is the best choice and a small piece of known mass and known burn-up is selected and volatilized completely into the mass spectrometer. The mass spectrometer is used in the integral mode to integrate the entire signal from preselected radionuclides, and from this integrated signal the total mass of the respective nuclides can be determined. For CORSOR and VICTORIA, experiments with flowing high pressure hydrogen/steam must flow over the irradiated fuel and then enter the mass spectrometer. For these experiments, a high pressure-high temperature molecular beam inlet must be employed. Finally, in support of VANESA-CORCON, the very highest temperature and molten fuels must be contained and analyzed. Results from all types of experiments will be discussed and their applicability to present and future code development will also be covered

  12. Computer code for qualitative analysis of gamma-ray spectra

    International Nuclear Information System (INIS)

    Yule, H.P.

    1979-01-01

    Computer code QLN1 provides complete analysis of gamma-ray spectra observed with Ge(Li) detectors and is used at both the National Bureau of Standards and the Environmental Protection Agency. It locates peaks, resolves multiplets, identifies component radioisotopes, and computes quantitative results. The qualitative-analysis (or component identification) algorithms feature thorough, self-correcting steps which provide accurate isotope identification in spite of errors in peak centroids, energy calibration, and other typical problems. The qualitative-analysis algorithm is described in this paper

  13. Report on nuclear industry quality assurance procedures for safety analysis computer code development and use

    International Nuclear Information System (INIS)

    Sheron, B.W.; Rosztoczy, Z.R.

    1980-08-01

    As a result of a request from Commissioner V. Gilinsky to investigate in detail the causes of an error discovered in a vendor Emergency Core Cooling System (ECCS) computer code in March, 1978, the staff undertook an extensive investigation of the vendor quality assurance practices applied to safety analysis computer code development and use. This investigation included inspections of code development and use practices of the four major Light Water Reactor Nuclear Steam Supply System vendors and a major reload fuel supplier. The conclusion reached by the staff as a result of the investigation is that vendor practices for code development and use are basically sound. A number of areas were identified, however, where improvements to existing vendor procedures should be made. In addition, the investigation also addressed the quality assurance (QA) review and inspection process for computer codes and identified areas for improvement

  14. Simulation and interpretation codes for the JET ECE diagnostic. Part 1: physics of the codes' operation

    International Nuclear Information System (INIS)

    Bartlett, D.V.

    1983-06-01

    The codes which have been developed for the analysis of electron cyclotron emission measurements in JET are described. Their principal function is to interpret the spectra measured by the diagnostic so as to give the spatial distribution of the electron temperature in the poloidal cross-section. Various systematic effects in the data are corrected using look-up tables generated by an elaborate simulation code. The part of this code responsible for the accurate calculation of single-pass emission and refraction has been written at CNR-Milan and is described in a separate report. The present report is divided into two parts. This first part describes the methods used for the simulation and interpretation of spectra, the physical/mathematical basis of the codes written at CEA-Fontenay and presents some illustrative results

  15. CASKETSS-2: a computer code system for thermal and structural analysis of nuclear fuel shipping casks (version 2)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1991-08-01

    A computer program CASKETSS-2 has been developed for the purpose of thermal and structural analysis of nuclear fuel shipping casks. CASKETSS-2 means a modular code system for CASK Evaluation code system Thermal and Structural Safety (Version 2). Main features of CASKETSS-2 are as follow; (1) Thermal and structural analysis computer programs for one-, two-, three-dimensional geometries are contained in the code system. (2) There are simplified computer programs and a detailed one in the structural analysis part in the code system. (3) Input data generator is provided in the code system. (4) Graphic computer program is provided in the code system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)

  16. Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.

    1988-12-01

    An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs

  17. TRANGE: computer code to calculate the energy beam degradation in target stack

    International Nuclear Information System (INIS)

    Bellido, Luis F.

    1995-07-01

    A computer code to calculate the projectile energy degradation along a target stack was developed for an IBM or compatible personal microcomputer. A comparison of protons and deuterons bombarding uranium and aluminium targets was made. The results showed that the data obtained with TRANGE were in agreement with other computers code such as TRIM, EDP and also using Williamsom and Janni range and stopping power tables. TRANGE can be used for any charged particle ion, for energies between 1 to 100 MeV, in metal foils and solid compounds targets. (author). 8 refs., 2 tabs

  18. Computer code for double beta decay QRPA based calculations

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, C. A.; Mariano, A. [Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina and Instituto de Física La Plata, CONICET, La Plata (Argentina); Krmpotić, F. [Instituto de Física La Plata, CONICET, La Plata, Argentina and Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo (Brazil); Samana, A. R.; Ferreira, V. dos Santos [Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, BA (Brazil); Bertulani, C. A. [Department of Physics, Texas A and M University-Commerce, Commerce, TX (United States)

    2014-11-11

    The computer code developed by our group some years ago for the evaluation of nuclear matrix elements, within the QRPA and PQRPA nuclear structure models, involved in neutrino-nucleus reactions, muon capture and β{sup ±} processes, is extended to include also the nuclear double beta decay.

  19. Connecting Neural Coding to Number Cognition: A Computational Account

    Science.gov (United States)

    Prather, Richard W.

    2012-01-01

    The current study presents a series of computational simulations that demonstrate how the neural coding of numerical magnitude may influence number cognition and development. This includes behavioral phenomena cataloged in cognitive literature such as the development of numerical estimation and operational momentum. Though neural research has…

  20. Computational Methods in Plasma Physics

    CERN Document Server

    Jardin, Stephen

    2010-01-01

    Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency,

  1. Software Design Document for the AMP Nuclear Fuel Performance Code

    International Nuclear Information System (INIS)

    Philip, Bobby; Clarno, Kevin T.; Cochran, Bill

    2010-01-01

    The purpose of this document is to describe the design of the AMP nuclear fuel performance code. It provides an overview of the decomposition into separable components, an overview of what those components will do, and the strategic basis for the design. The primary components of a computational physics code include a user interface, physics packages, material properties, mathematics solvers, and computational infrastructure. Some capability from established off-the-shelf (OTS) packages will be leveraged in the development of AMP, but the primary physics components will be entirely new. The material properties required by these physics operators include many highly non-linear properties, which will be replicated from FRAPCON and LIFE where applicable, as well as some computationally-intensive operations, such as gap conductance, which depends upon the plenum pressure. Because there is extensive capability in off-the-shelf leadership class computational solvers, AMP will leverage the Trilinos, PETSc, and SUNDIALS packages. The computational infrastructure includes a build system, mesh database, and other building blocks of a computational physics package. The user interface will be developed through a collaborative effort with the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Capability Transfer program element as much as possible and will be discussed in detail in a future document.

  2. An improved UO2 thermal conductivity model in the ELESTRES computer code

    International Nuclear Information System (INIS)

    Chassie, G.G.; Tochaie, M.; Xu, Z.

    2010-01-01

    This paper describes the improved UO 2 thermal conductivity model for use in the ELESTRES (ELEment Simulation and sTRESses) computer code. The ELESTRES computer code models the thermal, mechanical and microstructural behaviour of a CANDU® fuel element under normal operating conditions. The main purpose of the code is to calculate fuel temperatures, fission gas release, internal gas pressure, fuel pellet deformation, and fuel sheath strains for fuel element design and assessment. It is also used to provide initial conditions for evaluating fuel behaviour during high temperature transients. The thermal conductivity of UO 2 fuel is one of the key parameters that affect ELESTRES calculations. The existing ELESTRES thermal conductivity model has been assessed and improved based on a large amount of thermal conductivity data from measurements of irradiated and un-irradiated UO 2 fuel with different densities. The UO 2 thermal conductivity data cover 90% to 99% theoretical density of UO 2 , temperature up to 3027 K, and burnup up to 1224 MW·h/kg U. The improved thermal conductivity model, which is recommended for a full implementation in the ELESTRES computer code, has reduced the ELESTRES code prediction biases of temperature, fission gas release, and fuel sheath strains when compared with the available experimental data. This improved thermal conductivity model has also been checked with a test version of ELESTRES over the full ranges of fuel temperature, fuel burnup, and fuel density expected in CANDU fuel. (author)

  3. Just-in-Time Compilation-Inspired Methodology for Parallelization of Compute Intensive Java Code

    Directory of Open Access Journals (Sweden)

    GHULAM MUSTAFA

    2017-01-01

    Full Text Available Compute intensive programs generally consume significant fraction of execution time in a small amount of repetitive code. Such repetitive code is commonly known as hotspot code. We observed that compute intensive hotspots often possess exploitable loop level parallelism. A JIT (Just-in-Time compiler profiles a running program to identify its hotspots. Hotspots are then translated into native code, for efficient execution. Using similar approach, we propose a methodology to identify hotspots and exploit their parallelization potential on multicore systems. Proposed methodology selects and parallelizes each DOALL loop that is either contained in a hotspot method or calls a hotspot method. The methodology could be integrated in front-end of a JIT compiler to parallelize sequential code, just before native translation. However, compilation to native code is out of scope of this work. As a case study, we analyze eighteen JGF (Java Grande Forum benchmarks to determine parallelization potential of hotspots. Eight benchmarks demonstrate a speedup of up to 7.6x on an 8-core system

  4. Just-in-time compilation-inspired methodology for parallelization of compute intensive java code

    International Nuclear Information System (INIS)

    Mustafa, G.; Ghani, M.U.

    2017-01-01

    Compute intensive programs generally consume significant fraction of execution time in a small amount of repetitive code. Such repetitive code is commonly known as hotspot code. We observed that compute intensive hotspots often possess exploitable loop level parallelism. A JIT (Just-in-Time) compiler profiles a running program to identify its hotspots. Hotspots are then translated into native code, for efficient execution. Using similar approach, we propose a methodology to identify hotspots and exploit their parallelization potential on multicore systems. Proposed methodology selects and parallelizes each DOALL loop that is either contained in a hotspot method or calls a hotspot method. The methodology could be integrated in front-end of a JIT compiler to parallelize sequential code, just before native translation. However, compilation to native code is out of scope of this work. As a case study, we analyze eighteen JGF (Java Grande Forum) benchmarks to determine parallelization potential of hotspots. Eight benchmarks demonstrate a speedup of up to 7.6x on an 8-core system. (author)

  5. CEDNBR: a computer code for transient thermal margin analysis of a reactor core

    International Nuclear Information System (INIS)

    Shesler, A.T.; Lehmann, C.R.

    1976-09-01

    The report describes the CEDNBR computer code. This code was developed for the transient thermal analysis of a pressurized water reactor core or a critical heat flux test. Included are the code structure, conservation equations, and correlations utilized by CEDNBR. The methods of modelling a reactor core and hot channel and a CHF test are presented. Comparisons of CEDNBR calculations are made with both empirical pressure loss data and simulated loss of flow test data. The code solves the one-dimensional conservation of mass, energy, and momentum equations and the equation of state for the fluid for either steady-state or transient conditions. Tabular time dependent functions of inlet temperatures, pressure, mass velocity, axial heat flux distributions, normalized heat flux, radial peaking factors, and incremental mixing factors are required input to the code. Transient effects are included in the calculation of enthalpy rise and fluid properties. The Departure from Nucleate Boiling Ratio (DNBR) is calculated by applying a Critical Heat Flux (CHF) correlation to the computed local fluid properties. A code user's guide is provided for preparing input to the code. In addition, descriptions of the sub-routines used by CEDNBR are given

  6. Survey of particle codes in the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    1977-12-01

    In the spring of 1976, the Fusion Plasma Theory Branch of the Division of Magnetic Fusion Energy conducted a survey of all the physics computer codes being supported at that time. The purpose of that survey was to allow DMFE to prepare a description of the codes for distribution to the plasma physics community. This document is the first of several planned and covers those types of codes which treat the plasma as a group of particles

  7. On the Computational Capabilities of Physical Systems. Part 1; The Impossibility of Infallible Computation

    Science.gov (United States)

    Wolpert, David H.; Koga, Dennis (Technical Monitor)

    2000-01-01

    In this first of two papers, strong limits on the accuracy of physical computation are established. First it is proven that there cannot be a physical computer C to which one can pose any and all computational tasks concerning the physical universe. Next it is proven that no physical computer C can correctly carry out any computational task in the subset of such tasks that can be posed to C. This result holds whether the computational tasks concern a system that is physically isolated from C, or instead concern a system that is coupled to C. As a particular example, this result means that there cannot be a physical computer that can, for any physical system external to that computer, take the specification of that external system's state as input and then correctly predict its future state before that future state actually occurs; one cannot build a physical computer that can be assured of correctly 'processing information faster than the universe does'. The results also mean that there cannot exist an infallible, general-purpose observation apparatus, and that there cannot be an infallible, general-purpose control apparatus. These results do not rely on systems that are infinite, and/or non-classical, and/or obey chaotic dynamics. They also hold even if one uses an infinitely fast, infinitely dense computer, with computational powers greater than that of a Turing Machine. This generality is a direct consequence of the fact that a novel definition of computation - a definition of 'physical computation' - is needed to address the issues considered in these papers. While this definition does not fit into the traditional Chomsky hierarchy, the mathematical structure and impossibility results associated with it have parallels in the mathematics of the Chomsky hierarchy. The second in this pair of papers presents a preliminary exploration of some of this mathematical structure, including in particular that of prediction complexity, which is a 'physical computation

  8. MOSRA-Light; high speed three-dimensional nodal diffusion code for vector computers

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Keisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    MOSRA-Light is a three-dimensional neutron diffusion calculation code for X-Y-Z geometry. It is based on the 4th order polynomial nodal expansion method (NEM). As the 4th order NEM is not sensitive to mesh sizes, accurate calculation is possible by the use of coarse meshes of about 20 cm. The drastic decrease of number of unknowns in a 3-dimensional problem results in very fast computation. Furthermore, it employs newly developed computation algorithm `boundary separated checkerboard sweep method` appropriate to vector computers. This method is very efficient because the speedup factor by vectorization increases, as a scale of problem becomes larger. Speed-up factor compared to the scalar calculation is from 20 to 40 in the case of PWR core calculation. Considering the both effects by the vectorization and the coarse mesh method, total speedup factor is more than 1000 as compared with conventional scalar code with the finite difference method. MOSRA-Light can be available on most of vector or scalar computers with the UNIX or it`s similar operating systems (e.g. freeware like Linux). Users can easily install it by the help of the conversation style installer. This report contains the general theory of NEM, the fast computation algorithm, benchmark calculation results and detailed information for usage of this code including input data instructions and sample input data. (author)

  9. MOSRA-Light; high speed three-dimensional nodal diffusion code for vector computers

    International Nuclear Information System (INIS)

    Okumura, Keisuke

    1998-10-01

    MOSRA-Light is a three-dimensional neutron diffusion calculation code for X-Y-Z geometry. It is based on the 4th order polynomial nodal expansion method (NEM). As the 4th order NEM is not sensitive to mesh sizes, accurate calculation is possible by the use of coarse meshes of about 20 cm. The drastic decrease of number of unknowns in a 3-dimensional problem results in very fast computation. Furthermore, it employs newly developed computation algorithm 'boundary separated checkerboard sweep method' appropriate to vector computers. This method is very efficient because the speedup factor by vectorization increases, as a scale of problem becomes larger. Speed-up factor compared to the scalar calculation is from 20 to 40 in the case of PWR core calculation. Considering the both effects by the vectorization and the coarse mesh method, total speedup factor is more than 1000 as compared with conventional scalar code with the finite difference method. MOSRA-Light can be available on most of vector or scalar computers with the UNIX or it's similar operating systems (e.g. freeware like Linux). Users can easily install it by the help of the conversation style installer. This report contains the general theory of NEM, the fast computation algorithm, benchmark calculation results and detailed information for usage of this code including input data instructions and sample input data. (author)

  10. Compendium of computer codes for the safety analysis of fast breeder reactors

    International Nuclear Information System (INIS)

    1977-10-01

    The objective of the compendium is to provide the reader with a guide which briefly describes many of the computer codes used for liquid metal fast breeder reactor safety analyses, since it is for this system that most of the codes have been developed. The compendium is designed to address the following frequently asked questions from individuals in licensing and research and development activities: (1) What does the code do. (2) To what safety problems has it been applied. (3) What are the code's limitations. (4) What is being done to remove these limitations. (5) How does the code compare with experimental observations and other code predictions. (6) What reference documents are available

  11. A restructuring of RN1 package for MIDAS computer code

    International Nuclear Information System (INIS)

    Park, S. H.; Kim, D. H.; Kim, K. R.

    2003-01-01

    RN1 package, which is one of two fission product-related packages in MELCOR, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and modernized data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the RN1 package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the RN1 package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The verification has been done by comparing the results of the modified code with those from the existing code. As the trends are similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  12. A restructuring of RN2 package for MIDAS computer code

    International Nuclear Information System (INIS)

    Park, S. H.; Kim, D. H.

    2003-01-01

    RN2 package, which is one of two fission product-related package in MELCOR, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the RN2 package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the RN2 package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The validation has been done by comparing the results of the modified code with those from the existing code. As the trends are the similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  13. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 1: Theory and Computational Model

    International Nuclear Information System (INIS)

    Nichols, B.D.; Mueller, C.; Necker, G.A.; Travis, J.R.; Spore, J.W.; Lam, K.L.; Royl, P.; Redlinger, R.; Wilson, T.L.

    1998-01-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior (1) in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and (2) during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included

  14. Generation of initial geometries for the simulation of the physical system in the DualPHYsics code

    International Nuclear Information System (INIS)

    Segura Q, E.

    2013-01-01

    In the diverse research areas of the Instituto Nacional de Investigaciones Nucleares (ININ) are different activities related to science and technology, one of great interest is the study and treatment of the collection and storage of radioactive waste. Therefore at ININ the draft on the simulation of the pollutants diffusion in the soil through a porous medium (third stage) has this problem inherent aspects, hence a need for such a situation is to generate the initial geometry of the physical system For the realization of the simulation method is implemented smoothed particle hydrodynamics (SPH). This method runs in DualSPHysics code, which has great versatility and ability to simulate phenomena of any physical system where hydrodynamic aspects combine. In order to simulate a physical system DualSPHysics code, you need to preset the initial geometry of the system of interest, then this is included in the input file of the code. The simulation sets the initial geometry through regular geometric bodies positioned at different points in space. This was done through a programming language (Fortran, C + +, Java, etc..). This methodology will provide the basis to simulate more complex geometries future positions and form. (Author)

  15. CARP: a computer code and albedo data library for use by BREESE, the MORSE albedo package

    International Nuclear Information System (INIS)

    Emmett, M.B.; Rhoades, W.A.

    1978-10-01

    The CARP computer code was written to allow processing of DOT angular flux tapes to produce albedo data for use in the MORSE computer code. An albedo data library was produced containing several materials. 3 tables

  16. Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems

    Science.gov (United States)

    2017-04-13

    AFRL-AFOSR-UK-TR-2017-0029 Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems ...2012, “ Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems .” 2. The objective...2012 - 01/25/2015 4. TITLE AND SUBTITLE Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous

  17. SKYSHIN: A computer code for calculating radiation dose over a barrier

    International Nuclear Information System (INIS)

    Atwood, C.L.; Boland, J.R.; Dickman, P.T.

    1986-11-01

    SKYSHIN is a computer code for calculating the radioactive dose (mrem), when there is a barrier between the point source and the receptor. The two geometrical configurations considered are: the source and receptor separated by a rectangular wall, and the source at the bottom of a cylindrical hole in the ground. Each gamma ray traveling over the barrier is assumed to be scattered at a single point. The dose to a receptor from such paths is numerically integrated for the total dose, with symmetry used to reduce the triple integral to a double integral. The buildup factor used along a straight line through air is based on published data, and extrapolated in a stable way to low energy levels. This buildup factor was validated by comparing calculated and experimental line-of-sight doses. The entire code shows good agreement to limited field data. The code runs on a CDC or on a Vax computer, and could be modified easily for others

  18. TERRA: a computer code for simulating the transport of environmentally released radionuclides through agriculture

    International Nuclear Information System (INIS)

    Baes, C.F. III; Sharp, R.D.; Sjoreen, A.L.; Hermann, O.W.

    1984-11-01

    TERRA is a computer code which calculates concentrations of radionuclides and ingrowing daughters in surface and root-zone soil, produce and feed, beef, and milk from a given deposition rate at any location in the conterminous United States. The code is fully integrated with seven other computer codes which together comprise a Computerized Radiological Risk Investigation System, CRRIS. Output from either the long range (> 100 km) atmospheric dispersion code RETADD-II or the short range (<80 km) atmospheric dispersion code ANEMOS, in the form of radionuclide air concentrations and ground deposition rates by downwind location, serves as input to TERRA. User-defined deposition rates and air concentrations may also be provided as input to TERRA through use of the PRIMUS computer code. The environmental concentrations of radionuclides predicted by TERRA serve as input to the ANDROS computer code which calculates population and individual intakes, exposures, doses, and risks. TERRA incorporates models to calculate uptake from soil and atmospheric deposition on four groups of produce for human consumption and four groups of livestock feeds. During the environmental transport simulation, intermediate calculations of interception fraction for leafy vegetables, produce directly exposed to atmospherically depositing material, pasture, hay, and silage are made based on location-specific estimates of standing crop biomass. Pasture productivity is estimated by a model which considers the number and types of cattle and sheep, pasture area, and annual production of other forages (hay and silage) at a given location. Calculations are made of the fraction of grain imported from outside the assessment area. TERRA output includes the above calculations and estimated radionuclide concentrations in plant produce, milk, and a beef composite by location

  19. TERRA: a computer code for simulating the transport of environmentally released radionuclides through agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Baes, C.F. III; Sharp, R.D.; Sjoreen, A.L.; Hermann, O.W.

    1984-11-01

    TERRA is a computer code which calculates concentrations of radionuclides and ingrowing daughters in surface and root-zone soil, produce and feed, beef, and milk from a given deposition rate at any location in the conterminous United States. The code is fully integrated with seven other computer codes which together comprise a Computerized Radiological Risk Investigation System, CRRIS. Output from either the long range (> 100 km) atmospheric dispersion code RETADD-II or the short range (<80 km) atmospheric dispersion code ANEMOS, in the form of radionuclide air concentrations and ground deposition rates by downwind location, serves as input to TERRA. User-defined deposition rates and air concentrations may also be provided as input to TERRA through use of the PRIMUS computer code. The environmental concentrations of radionuclides predicted by TERRA serve as input to the ANDROS computer code which calculates population and individual intakes, exposures, doses, and risks. TERRA incorporates models to calculate uptake from soil and atmospheric deposition on four groups of produce for human consumption and four groups of livestock feeds. During the environmental transport simulation, intermediate calculations of interception fraction for leafy vegetables, produce directly exposed to atmospherically depositing material, pasture, hay, and silage are made based on location-specific estimates of standing crop biomass. Pasture productivity is estimated by a model which considers the number and types of cattle and sheep, pasture area, and annual production of other forages (hay and silage) at a given location. Calculations are made of the fraction of grain imported from outside the assessment area. TERRA output includes the above calculations and estimated radionuclide concentrations in plant produce, milk, and a beef composite by location.

  20. Verification of structural analysis computer codes in nuclear engineering

    International Nuclear Information System (INIS)

    Zebeljan, Dj.; Cizelj, L.

    1990-01-01

    Sources of potential errors, which can take place during use of finite element method based computer programs, are described in the paper. The magnitude of errors was defined as acceptance criteria for those programs. Error sources are described as they are treated by 'National Agency for Finite Element Methods and Standards (NAFEMS)'. Specific verification examples are used from literature of Nuclear Regulatory Commission (NRC). Example of verification is made on PAFEC-FE computer code for seismic response analyses of piping systems by response spectrum method. (author)