Computer codes in particle transport physics
International Nuclear Information System (INIS)
Pesic, M.
2004-01-01
Simulation of transport and interaction of various particles in complex media and wide energy range (from 1 MeV up to 1 TeV) is very complicated problem that requires valid model of a real process in nature and appropriate solving tool - computer code and data library. A brief overview of computer codes based on Monte Carlo techniques for simulation of transport and interaction of hadrons and ions in wide energy range in three dimensional (3D) geometry is shown. Firstly, a short attention is paid to underline the approach to the solution of the problem - process in nature - by selection of the appropriate 3D model and corresponding tools - computer codes and cross sections data libraries. Process of data collection and evaluation from experimental measurements and theoretical approach to establishing reliable libraries of evaluated cross sections data is Ion g, difficult and not straightforward activity. For this reason, world reference data centers and specialized ones are acknowledged, together with the currently available, state of art evaluated nuclear data libraries, as the ENDF/B-VI, JEF, JENDL, CENDL, BROND, etc. Codes for experimental and theoretical data evaluations (e.g., SAMMY and GNASH) together with the codes for data processing (e.g., NJOY, PREPRO and GRUCON) are briefly described. Examples of data evaluation and data processing to generate computer usable data libraries are shown. Among numerous and various computer codes developed in transport physics of particles, the most general ones are described only: MCNPX, FLUKA and SHIELD. A short overview of basic application of these codes, physical models implemented with their limitations, energy ranges of particles and types of interactions, is given. General information about the codes covers also programming language, operation system, calculation speed and the code availability. An example of increasing computation speed of running MCNPX code using a MPI cluster compared to the code sequential option
GASFLOW computer code (physical models and input data)
International Nuclear Information System (INIS)
Muehlbauer, Petr
2007-11-01
The GASFLOW computer code was developed jointly by the Los Alamos National Laboratory, USA, and Forschungszentrum Karlsruhe, Germany. The code is primarily intended for calculations of the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and in other facilities. The physical models and the input data are described, and a commented simple calculation is presented
Theoretical Atomic Physics code development IV: LINES, A code for computing atomic line spectra
International Nuclear Information System (INIS)
Abdallah, J. Jr.; Clark, R.E.H.
1988-12-01
A new computer program, LINES, has been developed for simulating atomic line emission and absorption spectra using the accurate fine structure energy levels and transition strengths calculated by the (CATS) Cowan Atomic Structure code. Population distributions for the ion stages are obtained in LINES by using the Local Thermodynamic Equilibrium (LTE) model. LINES is also useful for displaying the pertinent atomic data generated by CATS. This report describes the use of LINES. Both CATS and LINES are part of the Theoretical Atomic PhysicS (TAPS) code development effort at Los Alamos. 11 refs., 9 figs., 1 tab
Status of computer codes available in AEOI for reactor physics analysis
International Nuclear Information System (INIS)
Karbassiafshar, M.
1986-01-01
Many of the nuclear computer codes available in Atomic Energy Organization of Iran AEOI can be used for physics analysis of an operating reactor or design purposes. Grasp of the various methods involved and practical experience with these codes would be the starting point for interesting design studies or analysis of operating conditions of presently existing and future reactors. A review of the objectives and flowchart of commonly practiced procedures in reactor physics analysis of LWRs and related computer codes was made, extrapolating to the nationally and internationally available resources. Finally, effective utilization of the existing facilities is discussed and called upon
Validation of physics and thermalhydraulic computer codes for advanced Candu reactor applications
International Nuclear Information System (INIS)
Wren, D.J.; Popov, N.; Snell, V.G.
2004-01-01
Atomic Energy of Canada Ltd. (AECL) is developing an Advanced Candu Reactor (ACR) that is an evolutionary advancement of the currently operating Candu 6 reactors. The ACR is being designed to produce electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The ACR retains the modular Candu concept of horizontal fuel channels surrounded by a heavy water moderator. However, ACR uses slightly enriched uranium fuel compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (via large reductions in the heavy water moderator volume and replacement of the heavy water coolant with light water coolant) and improved safety. AECL has developed and implemented a software quality assurance program to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. Since the basic design of the ACR is equivalent to that of the Candu 6, most of the key phenomena associated with the safety analyses of ACR are common, and the Candu industry standard tool-set of safety analysis codes can be applied to the analysis of the ACR. A systematic assessment of computer code applicability addressing the unique features of the ACR design was performed covering the important aspects of the computer code structure, models, constitutive correlations, and validation database. Arising from this assessment, limited additional requirements for code modifications and extensions to the validation databases have been identified. This paper provides an outline of the AECL software quality assurance program process for the validation of computer codes used to perform physics and thermal-hydraulics safety analyses of the ACR. It describes the additional validation work that has been identified for these codes and the planned, and ongoing, experimental programs to extend the code validation as required to address specific ACR design
Porting plasma physics simulation codes to modern computing architectures using the libmrc framework
Germaschewski, Kai; Abbott, Stephen
2015-11-01
Available computing power has continued to grow exponentially even after single-core performance satured in the last decade. The increase has since been driven by more parallelism, both using more cores and having more parallelism in each core, e.g. in GPUs and Intel Xeon Phi. Adapting existing plasma physics codes is challenging, in particular as there is no single programming model that covers current and future architectures. We will introduce the open-source libmrc framework that has been used to modularize and port three plasma physics codes: The extended MHD code MRCv3 with implicit time integration and curvilinear grids; the OpenGGCM global magnetosphere model; and the particle-in-cell code PSC. libmrc consolidates basic functionality needed for simulations based on structured grids (I/O, load balancing, time integrators), and also introduces a parallel object model that makes it possible to maintain multiple implementations of computational kernels, on e.g. conventional processors and GPUs. It handles data layout conversions and enables us to port performance-critical parts of a code to a new architecture step-by-step, while the rest of the code can remain unchanged. We will show examples of the performance gains and some physics applications.
DEFF Research Database (Denmark)
Johansen, Peter Meincke
1996-01-01
New uniform closed-form expressions for physical theory of diffraction equivalent edge currents are derived for truncated incremental wedge strips. In contrast to previously reported expressions, the new expressions are well-behaved for all directions of incidence and observation and take a finite...... value for zero strip length. Consequently, the new equivalent edge currents are, to the knowledge of the author, the first that are well-suited for implementation in general computer codes...
Computation of Thermodynamic Equilibria Pertinent to Nuclear Materials in Multi-Physics Codes
Piro, Markus Hans Alexander
Nuclear energy plays a vital role in supporting electrical needs and fulfilling commitments to reduce greenhouse gas emissions. Research is a continuing necessity to improve the predictive capabilities of fuel behaviour in order to reduce costs and to meet increasingly stringent safety requirements by the regulator. Moreover, a renewed interest in nuclear energy has given rise to a "nuclear renaissance" and the necessity to design the next generation of reactors. In support of this goal, significant research efforts have been dedicated to the advancement of numerical modelling and computational tools in simulating various physical and chemical phenomena associated with nuclear fuel behaviour. This undertaking in effect is collecting the experience and observations of a past generation of nuclear engineers and scientists in a meaningful way for future design purposes. There is an increasing desire to integrate thermodynamic computations directly into multi-physics nuclear fuel performance and safety codes. A new equilibrium thermodynamic solver is being developed with this matter as a primary objective. This solver is intended to provide thermodynamic material properties and boundary conditions for continuum transport calculations. There are several concerns with the use of existing commercial thermodynamic codes: computational performance; limited capabilities in handling large multi-component systems of interest to the nuclear industry; convenient incorporation into other codes with quality assurance considerations; and, licensing entanglements associated with code distribution. The development of this software in this research is aimed at addressing all of these concerns. The approach taken in this work exploits fundamental principles of equilibrium thermodynamics to simplify the numerical optimization equations. In brief, the chemical potentials of all species and phases in the system are constrained by estimates of the chemical potentials of the system
Energy Technology Data Exchange (ETDEWEB)
Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)
2007-07-01
The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes.
International Nuclear Information System (INIS)
Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N.
2007-01-01
The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes
Computation of thermodynamic equilibria of nuclear materials in multi-physics codes
International Nuclear Information System (INIS)
Piro, M.H.; Lewis, B.J.; Thompson, W.T.; Simunovic, S.; Besmann, T.M.
2011-01-01
A new equilibrium thermodynamic solver is being developed with the primary impetus of direct integration into nuclear fuel performance and safety codes to provide improved predictions of fuel behavior. This solver is intended to provide boundary conditions and material properties for continuum transport calculations. There are several legitimate concerns with the use of existing commercial thermodynamic codes: 1) licensing entanglements associated with code distribution, 2) computational performance, and 3) limited capabilities of handling large multi-component systems of interest to the nuclear industry. The development of this solver is specifically aimed at addressing these concerns. In support of this goal, a new numerical algorithm for computing chemical equilibria is presented which is not based on the traditional steepest descent method or 'Gibbs energy minimization' technique. This new approach exploits fundamental principles of equilibrium thermodynamics, which simplifies the optimization equations. The chemical potentials of all species and phases in the system are constrained by the system chemical potentials, and the objective is to minimize the residuals of the mass balance equations. Several numerical advantages are achieved through this simplification, as described in this paper. (author)
Newman, Mark
2013-01-01
A complete introduction to the field of computational physics, with examples and exercises in the Python programming language. Computers play a central role in virtually every major physics discovery today, from astrophysics and particle physics to biophysics and condensed matter. This book explains the fundamentals of computational physics and describes in simple terms the techniques that every physicist should know, such as finite difference methods, numerical quadrature, and the fast Fourier transform. The book offers a complete introduction to the topic at the undergraduate level, and is also suitable for the advanced student or researcher who wants to learn the foundational elements of this important field.
V.S.O.P. (99/09) computer code system for reactor physics and fuel cycle simulation. Version 2009
International Nuclear Information System (INIS)
Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.
2010-07-01
V.S.O.P. (99/ 09) represents the further development of V.S.O.P. (99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to gas-cooled reactors and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. This latest code version was developed and tested under the WINDOWS-XP - operating system. (orig.)
V.S.O.P. (99/09) computer code system for reactor physics and fuel cycle simulation. Version 2009
Energy Technology Data Exchange (ETDEWEB)
Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.
2010-07-15
V.S.O.P. (99/ 09) represents the further development of V.S.O.P. (99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to gas-cooled reactors and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. This latest code version was developed and tested under the WINDOWS-XP - operating system. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Anon.
1987-01-15
Computers have for many years played a vital role in the acquisition and treatment of experimental data, but they have more recently taken up a much more extended role in physics research. The numerical and algebraic calculations now performed on modern computers make it possible to explore consequences of basic theories in a way which goes beyond the limits of both analytic insight and experimental investigation. This was brought out clearly at the Conference on Perspectives in Computational Physics, held at the International Centre for Theoretical Physics, Trieste, Italy, from 29-31 October.
International Nuclear Information System (INIS)
Anon.
1987-01-01
Computers have for many years played a vital role in the acquisition and treatment of experimental data, but they have more recently taken up a much more extended role in physics research. The numerical and algebraic calculations now performed on modern computers make it possible to explore consequences of basic theories in a way which goes beyond the limits of both analytic insight and experimental investigation. This was brought out clearly at the Conference on Perspectives in Computational Physics, held at the International Centre for Theoretical Physics, Trieste, Italy, from 29-31 October
International Nuclear Information System (INIS)
Delene, J.
1984-01-01
CONCEPT is a computer code that will provide conceptual capital investment cost estimates for nuclear and coal-fired power plants. The code can develop an estimate for construction at any point in time. Any unit size within the range of about 400 to 1300 MW electric may be selected. Any of 23 reference site locations across the United States and Canada may be selected. PWR, BWR, and coal-fired plants burning high-sulfur and low-sulfur coal can be estimated. Multiple-unit plants can be estimated. Costs due to escalation/inflation and interest during construction are calculated
International Nuclear Information System (INIS)
Rohmann, D.; Koehler, T.
1987-02-01
This is a description of the computer code FIT, written in FORTRAN-77 for a PDP 11/34. FIT is an interactive program to decude position, width and intensity of lines of X-ray spectra (max. length of 4K channels). The lines (max. 30 lines per fit) may have Gauss- or Voigt-profile, as well as exponential tails. Spectrum and fit can be displayed on a Tektronix terminal. (orig.) [de
DEFF Research Database (Denmark)
Fukui, Hironori; Popovski, Petar; Yomo, Hiroyuki
2014-01-01
Physical layer network coding (PLNC) has been proposed to improve throughput of the two-way relay channel, where two nodes communicate with each other, being assisted by a relay node. Most of the works related to PLNC are focused on a simple three-node model and they do not take into account...
International Nuclear Information System (INIS)
Rastogi, B.P.
1989-01-01
This report discusses various reactor physics codes developed for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs. These code packages have been utilized for nuclear design of 500 MWe and new 235 MWe PHWRs. (author)
International Nuclear Information System (INIS)
van Dyck, O.B.; Floyd, R.A.
1981-05-01
A spin precessor using H - to H 0 stripping, followed by small precession magnets, has been developed for the LAMPF 800-MeV polarized H - beam. The performance of the system was studied with the computer code documented in this report. The report starts from the fundamental physics of a system of spins with hyperfine coupling in a magnetic field and contains many examples of beam behavior as calculated by the program
Energy Technology Data Exchange (ETDEWEB)
Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)
1995-03-01
MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.
International Nuclear Information System (INIS)
Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L.; Hodge, S.A.; Hyman, C.R.; Sanders, R.L.
1995-03-01
MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR's phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package
Applications of the lots computer code to laser fusion systems and other physical optics problems
International Nuclear Information System (INIS)
Lawrence, G.; Wolfe, P.N.
1979-01-01
The Laser Optical Train Simulation (LOTS) code has been developed at the Optical Sciences Center, University of Arizona under contract to Los Alamos Scientific Laboratory (LASL). LOTS is a diffraction based code designed to beam quality and energy of the laser fusion system in an end-to-end calculation
International Nuclear Information System (INIS)
Cooper, R.K.; Jones, M.E.
1989-01-01
The title given this paper is a bit presumptuous, since one can hardly expect to cover the physics incorporated into all the codes already written and currently being written. The authors focus on those codes which have been found to be particularly useful in the analysis and design of linacs. At that the authors will be a bit parochial and discuss primarily those codes used for the design of radio-frequency (rf) linacs, although the discussions of TRANSPORT and MARYLIE have little to do with the time structures of the beams being analyzed. The plan of this paper is first to describe rather simply the concepts of emittance and brightness, then to describe rather briefly each of the codes TRANSPORT, PARMTEQ, TBCI, MARYLIE, and ISIS, indicating what physics is and is not included in each of them. It is expected that the vast majority of what is covered will apply equally well to protons and electrons (and other particles). This material is intended to be tutorial in nature and can in no way be expected to be exhaustive. 31 references, 4 figures
VOA: a 2-d plasma physics code
International Nuclear Information System (INIS)
Eltgroth, P.G.
1975-12-01
A 2-dimensional relativistic plasma physics code was written and tested. The non-thermal components of the particle distribution functions are represented by expansion into moments in momentum space. These moments are computed directly from numerical equations. Currently three species are included - electrons, ions and ''beam electrons''. The computer code runs on either the 7600 or STAR machines at LLL. Both the physics and the operation of the code are discussed
V.S.O.P.-computer code system for reactor physics and fuel cycle simulation
International Nuclear Information System (INIS)
Teuchert, E.; Hansen, U.; Haas, K.A.
1980-03-01
V.S.O.P. (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shutdown features, incore and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. A limitation of the storage requirement to 360 K-bites is achieved by an overlay structure. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. Beside its use in research and development work for the high temperature reactor the system has been applied successfully to LWR and Heavy Water Reactors. (orig.) [de
International Nuclear Information System (INIS)
Sabchevski, S; Zhelyazkov, I; Benova, E; Atanassov, V; Dankov, P; Thumm, M; Arnold, A; Jin, J; Rzesnicki, T
2006-01-01
Quasi-optical (QO) mode converters are used to transform electromagnetic waves of complex structure and polarization generated in gyrotron cavities into a linearly polarized, Gaussian-like beam suitable for transmission. The efficiency of this conversion as well as the maintenance of low level of diffraction losses are crucial for the implementation of powerful gyrotrons as radiation sources for electron-cyclotron-resonance heating of fusion plasmas. The use of adequate physical models, efficient numerical schemes and up-to-date computer codes may provide the high accuracy necessary for the design and analysis of these devices. In this review, we briefly sketch the most commonly used QO converters, the mathematical base they have been treated on and the basic features of the numerical schemes used. Further on, we discuss the applicability of several commercially available and free software packages, their advantages and drawbacks, for solving QO related problems
A TSTT integrated FronTier code and its applications in computational fluid physics
International Nuclear Information System (INIS)
Fix, Brian; Glimm, James; Li Xiaolin; Li Yuanhua; Liu Xinfeng; Samulyak, Roman; Xu Zhiliang
2005-01-01
We introduce the FronTier-Lite software package and its adaptation to the TSTT geometry and mesh entity data interface. This package is extracted from the original front tracking code for general purpose scientific and engineering applications. The package contains a static interface library and a dynamic front propagation library. It can be used in research of different scientific problems. We demonstrate the application of FronTier in the simulations of fuel injection jet, the fusion pellet injection and fluid mixing problems
DEFF Research Database (Denmark)
Fukui, Hironori; Yomo, Hironori; Popovski, Petar
2013-01-01
of interfering nodes and usage of spatial reservation mechanisms. Specifically, we introduce a reserved area in order to protect the nodes involved in two-way relaying from the interference caused by neighboring nodes. We analytically derive the end-to-end rate achieved by PLNC considering the impact......Physical layer network coding (PLNC) has the potential to improve throughput of multi-hop networks. However, most of the works are focused on the simple, three-node model with two-way relaying, not taking into account the fact that there can be other neighboring nodes that can cause....../receive interference. The way to deal with this problem in distributed wireless networks is usage of MAC-layer mechanisms that make a spatial reservation of the shared wireless medium, similar to the well-known RTS/CTS in IEEE 802.11 wireless networks. In this paper, we investigate two-way relaying in presence...
Medical Applications of the PHITS Code (3): User Assistance Program for Medical Physics Computation.
Furuta, Takuya; Hashimoto, Shintaro; Sato, Tatsuhiko
2016-01-01
DICOM2PHITS and PSFC4PHITS are user assistance programs for medical physics PHITS applications. DICOM2PHITS is a program to construct the voxel PHITS simulation geometry from patient CT DICOM image data by using a conversion table from CT number to material composition. PSFC4PHITS is a program to convert the IAEA phase-space file data to PHITS format to be used as a simulation source of PHITS. Both of the programs are useful for users who want to apply PHITS simulation to verification of the treatment planning of radiation therapy. We are now developing a program to convert dose distribution obtained by PHITS to DICOM RT-dose format. We also want to develop a program which is able to implement treatment information included in other DICOM files (RT-plan and RT-structure) as a future plan.
Computer codes for safety analysis
International Nuclear Information System (INIS)
Holland, D.F.
1986-11-01
Computer codes for fusion safety analysis have been under development in the United States for about a decade. This paper will discuss five codes that are currently under development by the Fusion Safety Program. The purpose and capability of each code will be presented, a sample given, followed by a discussion of the present status and future development plans
Geochemical computer codes. A review
International Nuclear Information System (INIS)
Andersson, K.
1987-01-01
In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)
WWER reactor physics code applications
International Nuclear Information System (INIS)
Gado, J.; Kereszturi, A.; Gacs, A.; Telbisz, M.
1994-01-01
The coupled steady-state reactor physics and thermohydraulic code system KARATE has been developed and applied for WWER-1000 and WWER-440 operational calculations. The 3 D coupled kinetic code KIKO3D has been developed and validated for WWER-440 accident analysis applications. The coupled kinetic code SMARTA developed by VTT Helsinki has been applied for WWER-440 accident analysis. The paper gives a summary of the experience in code development and application. (authors). 10 refs., 2 tabs., 5 figs
Quantum computation with Turaev-Viro codes
International Nuclear Information System (INIS)
Koenig, Robert; Kuperberg, Greg; Reichardt, Ben W.
2010-01-01
For a 3-manifold with triangulated boundary, the Turaev-Viro topological invariant can be interpreted as a quantum error-correcting code. The code has local stabilizers, identified by Levin and Wen, on a qudit lattice. Kitaev's toric code arises as a special case. The toric code corresponds to an abelian anyon model, and therefore requires out-of-code operations to obtain universal quantum computation. In contrast, for many categories, such as the Fibonacci category, the Turaev-Viro code realizes a non-abelian anyon model. A universal set of fault-tolerant operations can be implemented by deforming the code with local gates, in order to implement anyon braiding. We identify the anyons in the code space, and present schemes for initialization, computation and measurement. This provides a family of constructions for fault-tolerant quantum computation that are closely related to topological quantum computation, but for which the fault tolerance is implemented in software rather than coming from a physical medium.
Computer code abstract: NESTLE
International Nuclear Information System (INIS)
Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.
1995-01-01
NESTLE is a few-group neutron diffusion equation solver utilizing the nodal expansion method (NEM) for eigenvalue, adjoint, and fixed-source steady-state and transient problems. The NESTLE code solve the eigenvalue (criticality), eigenvalue adjoint, external fixed-source steady-state, and external fixed-source or eigenvalue initiated transient problems. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two- or four-energy groups can be utilized, with all energy groups being thermal groups (i.e., upscatter exits) is desired. Core geometries modeled include Cartesian and hexagonal. Three-, two-, and one-dimensional models can be utilized with various symmetries. The thermal conditions predicted by the thermal-hydraulic model of the core are used to correct cross sections for temperature and density effects. Cross sections for temperature and density effects. Cross sections are parameterized by color, control rod state (i.e., in or out), and burnup, allowing fuel depletion to be modeled. Either a macroscopic or microscopic model may be employed
ACCELERATION PHYSICS CODE WEB REPOSITORY.
Energy Technology Data Exchange (ETDEWEB)
WEI, J.
2006-06-26
In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.
Translation of ARAC computer codes
International Nuclear Information System (INIS)
Takahashi, Kunio; Chino, Masamichi; Honma, Toshimitsu; Ishikawa, Hirohiko; Kai, Michiaki; Imai, Kazuhiko; Asai, Kiyoshi
1982-05-01
In 1981 we have translated the famous MATHEW, ADPIC and their auxiliary computer codes for CDC 7600 computer version to FACOM M-200's. The codes consist of a part of the Atmospheric Release Advisory Capability (ARAC) system of Lawrence Livermore National Laboratory (LLNL). The MATHEW is a code for three-dimensional wind field analysis. Using observed data, it calculates the mass-consistent wind field of grid cells by a variational method. The ADPIC is a code for three-dimensional concentration prediction of gases and particulates released to the atmosphere. It calculates concentrations in grid cells by the particle-in-cell method. They are written in LLLTRAN, i.e., LLNL Fortran language and are implemented on the CDC 7600 computers of LLNL. In this report, i) the computational methods of the MATHEW/ADPIC and their auxiliary codes, ii) comparisons of the calculated results with our JAERI particle-in-cell, and gaussian plume models, iii) translation procedures from the CDC version to FACOM M-200's, are described. Under the permission of LLNL G-Division, this report is published to keep the track of the translation procedures and to serve our JAERI researchers for comparisons and references of their works. (author)
Theoretical atomic physics code development III TAPS: A display code for atomic physics data
International Nuclear Information System (INIS)
Clark, R.E.H.; Abdallah, J. Jr.; Kramer, S.P.
1988-12-01
A large amount of theoretical atomic physics data is becoming available through use of the computer codes CATS and ACE developed at Los Alamos National Laboratory. A new code, TAPS, has been written to access this data, perform averages over terms and configurations, and display information in graphical or text form. 7 refs., 13 figs., 1 tab
International Nuclear Information System (INIS)
Paulsen, M.P.; McFadden, J.H.; Peterson, C.E.; McClure, J.A.; Gose, G.C.; Jensen, P.J.
1991-01-01
The RETRAN-03 code development effort is designed to overcome the major theoretical and practical limitations associated with the RETRAN-02 computer code. The major objectives of the development program are to extend the range of analyses that can be performed with RETRAN, to make the code more dependable and faster running, and to have a more transportable code. The first two objectives are accomplished by developing new models and adding other models to the RETRAN-02 base code. The major model additions for RETRAN-03 are as follows: implicit solution methods for the steady-state and transient forms of the field equations; additional options for the velocity difference equation; a new steady-state initialization option for computer low-power steam generator initial conditions; models for nonequilibrium thermodynamic conditions; and several special-purpose models. The source code and the environmental library for RETRAN-03 are written in standard FORTRAN 77, which allows the last objective to be fulfilled. Some models in RETRAN-02 have been deleted in RETRAN-03. In this paper the changes between RETRAN-02 and RETRAN-03 are reviewed
Computer access security code system
Collins, Earl R., Jr. (Inventor)
1990-01-01
A security code system for controlling access to computer and computer-controlled entry situations comprises a plurality of subsets of alpha-numeric characters disposed in random order in matrices of at least two dimensions forming theoretical rectangles, cubes, etc., such that when access is desired, at least one pair of previously unused character subsets not found in the same row or column of the matrix is chosen at random and transmitted by the computer. The proper response to gain access is transmittal of subsets which complete the rectangle, and/or a parallelepiped whose opposite corners were defined by first groups of code. Once used, subsets are not used again to absolutely defeat unauthorized access by eavesdropping, and the like.
Microgravity computing codes. User's guide
1982-01-01
Codes used in microgravity experiments to compute fluid parameters and to obtain data graphically are introduced. The computer programs are stored on two diskettes, compatible with the floppy disk drives of the Apple 2. Two versions of both disks are available (DOS-2 and DOS-3). The codes are written in BASIC and are structured as interactive programs. Interaction takes place through the keyboard of any Apple 2-48K standard system with single floppy disk drive. The programs are protected against wrong commands given by the operator. The programs are described step by step in the same order as the instructions displayed on the monitor. Most of these instructions are shown, with samples of computation and of graphics.
International Nuclear Information System (INIS)
Killeen, J.
1975-08-01
The behavior of a plasma confined by a magnetic field is simulated by a variety of numerical models. Some models used on a short time scale give detailed knowledge of the plasma on a microscopic scale, while other models used on much longer time scales compute macroscopic properties of the plasma dynamics. In the last two years there has been a substantial increase in the numerical modelling of fusion devices. The status of MHD, transport, equilibrium, stability, Vlasov, Fokker-Planck, and Hybrid codes is reviewed. These codes have already been essential in the design and understanding of low and high beta toroidal experiments and mirror systems. The design of the next generation of fusion experiments and fusion test reactors will require continual development of these numerical models in order to include the best available plasma physics description and also to increase the geometric complexity of the model. (auth)
Stepanek, J; Laissue, J A; Lyubimova, N; Di Michiel, F; Slatkin, D N
2000-01-01
Microbeam radiation therapy (MRT) is a currently experimental method of radiotherapy which is mediated by an array of parallel microbeams of synchrotron-wiggler-generated X-rays. Suitably selected, nominally supralethal doses of X-rays delivered to parallel microslices of tumor-bearing tissues in rats can be either palliative or curative while causing little or no serious damage to contiguous normal tissues. Although the pathogenesis of MRT-mediated tumor regression is not understood, as in all radiotherapy such understanding will be based ultimately on our understanding of the relationships among the following three factors: (1) microdosimetry, (2) damage to normal tissues, and (3) therapeutic efficacy. Although physical microdosimetry is feasible, published information on MRT microdosimetry to date is computational. This report describes Monte Carlo-based computational MRT microdosimetry using photon and/or electron scattering and photoionization cross-section data in the 1 e V through 100 GeV range distrib...
Computer code conversion using HISTORIAN
International Nuclear Information System (INIS)
Matsumoto, Kiyoshi; Kumakura, Toshimasa.
1990-09-01
When a computer program written for a computer A is converted for a computer B, in general, the A version source program is rewritten for B version. However, in this way of program conversion, the following inconvenient problems arise. 1) The original statements to be rewritten for B version are lost. 2) If the original statements of the A version rewritten for B version would remain as comment lines, the B version source program becomes quite large. 3) When update directives of the program are mailed from the organization which developed the program or when some modifications are needed for the program, it is difficult to point out the part to be updated or modified in the B version source program. To solve these problems, the conversion method using the general-purpose software management aid system, HISTORIAN, has been introduced. This conversion method makes a large computer code a easy-to-use program for use to update, modify or improve after the conversion. This report describes the planning and procedures of the conversion method and the MELPROG-PWR/MOD1 code conversion from the CRAY version to the JAERI FACOM version as an example. This report would provide useful information for those who develop or introduce large programs. (author)
Davis, A. B.; Cahalan, R. F.
2001-05-01
The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards
Computation of the Genetic Code
Kozlov, Nicolay N.; Kozlova, Olga N.
2018-03-01
One of the problems in the development of mathematical theory of the genetic code (summary is presented in [1], the detailed -to [2]) is the problem of the calculation of the genetic code. Similar problems in the world is unknown and could be delivered only in the 21st century. One approach to solving this problem is devoted to this work. For the first time provides a detailed description of the method of calculation of the genetic code, the idea of which was first published earlier [3]), and the choice of one of the most important sets for the calculation was based on an article [4]. Such a set of amino acid corresponds to a complete set of representations of the plurality of overlapping triple gene belonging to the same DNA strand. A separate issue was the initial point, triggering an iterative search process all codes submitted by the initial data. Mathematical analysis has shown that the said set contains some ambiguities, which have been founded because of our proposed compressed representation of the set. As a result, the developed method of calculation was limited to the two main stages of research, where the first stage only the of the area were used in the calculations. The proposed approach will significantly reduce the amount of computations at each step in this complex discrete structure.
Computer Code for Nanostructure Simulation
Filikhin, Igor; Vlahovic, Branislav
2009-01-01
Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.
Implementing a modular system of computer codes
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.
1983-07-01
A modular computation system has been developed for nuclear reactor core analysis. The codes can be applied repeatedly in blocks without extensive user input data, as needed for reactor history calculations. The primary control options over the calculational paths and task assignments within the codes are blocked separately from other instructions, admitting ready access by user input instruction or directions from automated procedures and promoting flexible and diverse applications at minimum application cost. Data interfacing is done under formal specifications with data files manipulated by an informed manager. This report emphasizes the system aspects and the development of useful capability, hopefully informative and useful to anyone developing a modular code system of much sophistication. Overall, this report in a general way summarizes the many factors and difficulties that are faced in making reactor core calculations, based on the experience of the authors. It provides the background on which work on HTGR reactor physics is being carried out
(Nearly) portable PIC code for parallel computers
International Nuclear Information System (INIS)
Decyk, V.K.
1993-01-01
As part of the Numerical Tokamak Project, the author has developed a (nearly) portable, one dimensional version of the GCPIC algorithm for particle-in-cell codes on parallel computers. This algorithm uses a spatial domain decomposition for the fields, and passes particles from one domain to another as the particles move spatially. With only minor changes, the code has been run in parallel on the Intel Delta, the Cray C-90, the IBM ES/9000 and a cluster of workstations. After a line by line translation into cmfortran, the code was also run on the CM-200. Impressive speeds have been achieved, both on the Intel Delta and the Cray C-90, around 30 nanoseconds per particle per time step. In addition, the author was able to isolate the data management modules, so that the physics modules were not changed much from their sequential version, and the data management modules can be used as open-quotes black boxes.close quotes
Operational reactor physics analysis codes (ORPAC)
International Nuclear Information System (INIS)
Kumar, Jainendra; Singh, K.P.; Singh, Kanchhi
2007-07-01
For efficient, smooth and safe operation of a nuclear research reactor, many reactor physics evaluations are regularly required. As part of reactor core management the important activities are maintaining core reactivity status, core power distribution, xenon estimations, safety evaluation of in-pile irradiation samples and experimental assemblies and assessment of nuclear safety in fuel handling/storage. In-pile irradiation of samples requires a prior estimation of the reactivity load due to the sample, the heating rate and the activity developed in it during irradiation. For the safety of personnel handling irradiated samples the dose rate at the surface of shielded flask housing the irradiated sample should be less than 200 mR/Hr.Therefore, a proper shielding and radioactive cooling of the irradiated sample are required to meet the said requirement. Knowledge of xenon load variation with time (Startup-curve) helps in estimating Xenon override time. Monitoring of power in individual fuel channels during reactor operation is essential to know any abnormal power distribution to avoid unsafe situations. Complexities in the estimation of above mentioned reactor parameters and their frequent requirement compel one to use computer codes to avoid possible human errors. For efficient and quick evaluation of parameters related to reactor operations such as xenon load, critical moderator height and nuclear heating and reactivity load of isotope samples/experimental assembly, a computer code ORPAC (Operational Reactor Physics Analysis Codes) has been developed. This code is being used for regular assessment of reactor physics parameters in Dhruva and Cirus. The code ORPAC written in Visual Basic 6.0 environment incorporates several important operational reactor physics aspects on a single platform with graphical user interfaces (GUI) to make it more user-friendly and presentable. (author)
Theoretical Atomic Physics code development II: ACE: Another collisional excitation code
International Nuclear Information System (INIS)
Clark, R.E.H.; Abdallah, J. Jr.; Csanak, G.; Mann, J.B.; Cowan, R.D.
1988-12-01
A new computer code for calculating collisional excitation data (collision strengths or cross sections) using a variety of models is described. The code uses data generated by the Cowan Atomic Structure code or CATS for the atomic structure. Collisional data are placed on a random access file and can be displayed in a variety of formats using the Theoretical Atomic Physics Code or TAPS. All of these codes are part of the Theoretical Atomic Physics code development effort at Los Alamos. 15 refs., 10 figs., 1 tab
Computational physics an introduction
Vesely, Franz J
1994-01-01
Author Franz J. Vesely offers students an introductory text on computational physics, providing them with the important basic numerical/computational techniques. His unique text sets itself apart from others by focusing on specific problems of computational physics. The author also provides a selection of modern fields of research. Students will benefit from the appendixes which offer a short description of some properties of computing and machines and outline the technique of 'Fast Fourier Transformation.'
Lattice Boltzmann method fundamentals and engineering applications with computer codes
Mohamad, A A
2014-01-01
Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.
Computations in plasma physics
International Nuclear Information System (INIS)
Cohen, B.I.; Killeen, J.
1984-01-01
A review of computer application in plasma physics is presented. Computer contribution to the investigation of magnetic and inertial confinement of a plasma and charged particle beam propagation is described. Typical utilization of computer for simulation and control of laboratory and cosmic experiments with a plasma and for data accumulation in these experiments is considered. Basic computational methods applied in plasma physics are discussed. Future trends of computer utilization in plasma reseaches are considered in terms of an increasing role of microprocessors and high-speed data plotters and the necessity of more powerful computer application
Statistical theory applications and associated computer codes
International Nuclear Information System (INIS)
Prince, A.
1980-01-01
The general format is along the same lines as that used in the O.M. Session, i.e. an introduction to the nature of the physical problems and methods of solution based on the statistical model of the nucleus. Both binary and higher multiple reactions are considered. The computer codes used in this session are a combination of optical model and statistical theory. As with the O.M. sessions, the preparation of input and analysis of output are thoroughly examined. Again, comparison with experimental data serves to demonstrate the validity of the results and possible areas for improvement. (author)
Computer codes for ventilation in nuclear facilities
International Nuclear Information System (INIS)
Mulcey, P.
1987-01-01
In this paper the authors present some computer codes, developed in the last years, for ventilation and radioprotection. These codes are used for safety analysis in the conception, exploitation and dismantlement of nuclear facilities. The authors present particularly: DACC1 code used for aerosol deposit in sampling circuit of radiation monitors; PIAF code used for modelization of complex ventilation system; CLIMAT 6 code used for optimization of air conditioning system [fr
International Nuclear Information System (INIS)
Shapiro, A.
1977-01-01
Those reactor-core calculations which provide the effective multiplication factor (or eigenvalue) and the stationary (or fundamental mode) neutron-flux distribution at selected times during the lifetime of the core are considered. The multiplication factor is required to establish the nuclear composition and configuration which satisfy criticality and control requirements. The steady-state flux distribution must be known to calculate reaction rates and power distributions which are needed for the thermal, mechanical and shielding design of the reactor, as well as for evaluating refueling requirements. The calculational methods and techniques used for evaluating the nuclear design information vary with the type of reactor and with the preferences and prejudices of the reactor-physics group responsible for the calculation. Additionally, new methods and techniques are continually being developed and made operational. This results in a rather large conglomeration of methods and computer codes which are available for reactor analysis. The author provides the basic calculational framework and discusses the more prominent techniques which have evolved. (Auth.)
International Nuclear Information System (INIS)
Pike, R.
1982-01-01
With computers becoming more frequently used in theoretical and experimental physics, physicists can no longer afford to be ignorant of the basic techniques and results of computer science. Computing principles belong in a physicist's tool box, along with experimental methods and applied mathematics, and the easiest way to educate physicists in computing is to provide, as part of the undergraduate curriculum, a computing course designed specifically for physicists. As well, the working physicist should interact with computer scientists, giving them challenging problems in return for their expertise. (orig.)
Computing in high energy physics
Energy Technology Data Exchange (ETDEWEB)
Watase, Yoshiyuki
1991-09-15
The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.
Reactor safety computer code development at INEL
International Nuclear Information System (INIS)
Johnsen, G.W.
1985-01-01
This report provides a brief overview of the computer code development programs being conducted at EG and G Idaho, Inc. on behalf of US Nuclear Regulatory Commission and the Department of Energy, Idaho Operations Office. Included are descriptions of the codes being developed, their development status as of the date of this report, and resident code development expertise
HOTSPOT Health Physics codes for the PC
Energy Technology Data Exchange (ETDEWEB)
Homann, S.G.
1994-03-01
The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculation tool for evaluating accidents involving radioactive materials. HOTSPOT codes are a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. HOTSPOT programs are reasonably accurate for a timely initial assessment. More importantly, HOTSPOT codes produce a consistent output for the same input assumptions and minimize the probability of errors associated with reading a graph incorrectly or scaling a universal nomogram during an emergency. The HOTSPOT codes are designed for short-term (less than 24 hours) release durations. Users requiring radiological release consequences for release scenarios over a longer time period, e.g., annual windrose data, are directed to such long-term models as CAPP88-PC (Parks, 1992). Users requiring more sophisticated modeling capabilities, e.g., complex terrain; multi-location real-time wind field data; etc., are directed to such capabilities as the Department of Energy`s ARAC computer codes (Sullivan, 1993). Four general programs -- Plume, Explosion, Fire, and Resuspension -- calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosive release, fuel fire, or an area contamination event. Other programs deal with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. Additional programs estimate the dose commitment from the inhalation of any one of the radionuclides listed in the database of radionuclides; calibrate a radiation survey instrument for ground-survey measurements; and screen plutonium uptake in the lung (see FIDLER Calibration and LUNG Screening sections).
HOTSPOT Health Physics codes for the PC
International Nuclear Information System (INIS)
Homann, S.G.
1994-03-01
The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculation tool for evaluating accidents involving radioactive materials. HOTSPOT codes are a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. HOTSPOT programs are reasonably accurate for a timely initial assessment. More importantly, HOTSPOT codes produce a consistent output for the same input assumptions and minimize the probability of errors associated with reading a graph incorrectly or scaling a universal nomogram during an emergency. The HOTSPOT codes are designed for short-term (less than 24 hours) release durations. Users requiring radiological release consequences for release scenarios over a longer time period, e.g., annual windrose data, are directed to such long-term models as CAPP88-PC (Parks, 1992). Users requiring more sophisticated modeling capabilities, e.g., complex terrain; multi-location real-time wind field data; etc., are directed to such capabilities as the Department of Energy's ARAC computer codes (Sullivan, 1993). Four general programs -- Plume, Explosion, Fire, and Resuspension -- calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosive release, fuel fire, or an area contamination event. Other programs deal with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. Additional programs estimate the dose commitment from the inhalation of any one of the radionuclides listed in the database of radionuclides; calibrate a radiation survey instrument for ground-survey measurements; and screen plutonium uptake in the lung (see FIDLER Calibration and LUNG Screening sections)
Computer codes for RF cavity design
International Nuclear Information System (INIS)
Ko, K.
1992-08-01
In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity toning and matching problems
Implatation of MC2 computer code
International Nuclear Information System (INIS)
Seehusen, J.; Nair, R.P.K.; Becceneri, J.C.
1981-01-01
The implantation of MC2 computer code in the CDC system is presented. The MC2 computer code calculates multigroup cross sections for tipical compositions of fast reactors. The multigroup constants are calculated using solutions of PI or BI approximations for determined buckling value as weighting function. (M.C.K.) [pt
Computer codes for RF cavity design
International Nuclear Information System (INIS)
Ko, K.
1992-01-01
In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity tuning and matching problems. (Author) 8 refs., 10 figs
Boudreau, Joseph F; Bianchi, Riccardo Maria
2018-01-01
Applied Computational Physics is a graduate-level text stressing three essential elements: advanced programming techniques, numerical analysis, and physics. The goal of the text is to provide students with essential computational skills that they will need in their careers, and to increase the confidence with which they write computer programs designed for their problem domain. The physics problems give them an opportunity to reinforce their programming skills, while the acquired programming skills augment their ability to solve physics problems. The C++ language is used throughout the text. Physics problems include Hamiltonian systems, chaotic systems, percolation, critical phenomena, few-body and multi-body quantum systems, quantum field theory, simulation of radiation transport, and data modeling. The book, the fruit of a collaboration between a theoretical physicist and an experimental physicist, covers a broad range of topics from both viewpoints. Examples, program libraries, and additional documentatio...
CHEP95: Computing in high energy physics. Abstracts
International Nuclear Information System (INIS)
1995-01-01
These proceedings cover the technical papers on computation in High Energy Physics, including computer codes, computer devices, control systems, simulations, data acquisition systems. New approaches on computer architectures are also discussed
The archaeology of computer codes - illustrated on the basis of the code SABINE
International Nuclear Information System (INIS)
Sdouz, G.
1987-02-01
Computer codes used by the physics group of the Institute for Reactor Safety are stored on back-up-tapes. However during the last years both the computer and the system have been changed. For new tasks these programmes have to be available. A new procedure is necessary to find and to activate a stored programme. This procedure is illustrated on the basis of the code SABINE. (Author)
Accelerator Physics Code Web Repository
Zimmermann, Frank; Bellodi, G; Benedetto, E; Dorda, U; Giovannozzi, Massimo; Papaphilippou, Y; Pieloni, T; Ruggiero, F; Rumolo, G; Schmidt, F; Todesco, E; Zotter, Bruno W; Payet, J; Bartolini, R; Farvacque, L; Sen, T; Chin, Y H; Ohmi, K; Oide, K; Furman, M; Qiang, J; Sabbi, G L; Seidl, P A; Vay, J L; Friedman, A; Grote, D P; Cousineau, S M; Danilov, V; Holmes, J A; Shishlo, A; Kim, E S; Cai, Y; Pivi, M; Kaltchev, D I; Abell, D T; Katsouleas, Thomas C; Boine-Frankenheim, O; Franchetti, G; Hofmann, I; Machida, S; Wei, J
2006-01-01
In the framework of the CARE HHH European Network, we have developed a web-based dynamic acceleratorphysics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.
Computation of the bounce-average code
International Nuclear Information System (INIS)
Cutler, T.A.; Pearlstein, L.D.; Rensink, M.E.
1977-01-01
The bounce-average computer code simulates the two-dimensional velocity transport of ions in a mirror machine. The code evaluates and bounce-averages the collision operator and sources along the field line. A self-consistent equilibrium magnetic field is also computed using the long-thin approximation. Optionally included are terms that maintain μ, J invariance as the magnetic field changes in time. The assumptions and analysis that form the foundation of the bounce-average code are described. When references can be cited, the required results are merely stated and explained briefly. A listing of the code is appended
Computational Physics' Greatest Hits
Bug, Amy
2011-03-01
The digital computer, has worked its way so effectively into our profession that now, roughly 65 years after its invention, it is virtually impossible to find a field of experimental or theoretical physics unaided by computational innovation. It is tough to think of another device about which one can make that claim. In the session ``What is computational physics?'' speakers will distinguish computation within the field of computational physics from this ubiquitous importance across all subfields of physics. This talk will recap the invited session ``Great Advances...Past, Present and Future'' in which five dramatic areas of discovery (five of our ``greatest hits'') are chronicled: The physics of many-boson systems via Path Integral Monte Carlo, the thermodynamic behavior of a huge number of diverse systems via Monte Carlo Methods, the discovery of new pharmaceutical agents via molecular dynamics, predictive simulations of global climate change via detailed, cross-disciplinary earth system models, and an understanding of the formation of the first structures in our universe via galaxy formation simulations. The talk will also identify ``greatest hits'' in our field from the teaching and research perspectives of other members of DCOMP, including its Executive Committee.
International Nuclear Information System (INIS)
Yerkess, A.
1984-01-01
SEURBNUK-2 has been designed to model the hydrodynamic development in time of a hypothetical core disrupture accident in a fast breeder reactor. SEURBNUK-2 is a two-dimensional, axisymmetric, eulerian, finite difference containment code. The numerical procedure adopted in SEURBNUK to solve the hydrodynamic equations is based on the semi-implicit ICE method. SEURBNUK has a full thin shell treatment for tanks of arbitrary shape and includes the effects of the compressibility of the fluid. Fluid flow through porous media and porous structures can also be accommodated. An important feature of SEURBNUK is that the thin shell equations are solved quite separately from those of the fluid, and the time step for the fluid flow calculation can be an integer multiple of that for calculating the shell motion. The interaction of the shell with the fluid is then considered as a modification to the coefficients in the implicit pressure equations, the modifications naturally depending on the behaviour of the thin shell section within the fluid cell. The code is limited to dealing with a single fluid, the coolant, whereas the bubble and the cover gas are treated as cavities of uniform pressure calculated via appropriate pressure-volume-energy relationships. This manual describes the input data specifications needed for the execution of SEURBNUK-2 calculations and nine sample problems of varying degrees of complexity highlight the code capabilities. After explaining the output facilities information is included to aid those unfamiliar with SEURBNUK-2 to avoid the common pit-falls experienced by novices
Continuous Materiality: Through a Hierarchy of Computational Codes
Directory of Open Access Journals (Sweden)
Jichen Zhu
2008-01-01
Full Text Available The legacy of Cartesian dualism inherent in linguistic theory deeply influences current views on the relation between natural language, computer code, and the physical world. However, the oversimplified distinction between mind and body falls short of capturing the complex interaction between the material and the immaterial. In this paper, we posit a hierarchy of codes to delineate a wide spectrum of continuous materiality. Our research suggests that diagrams in architecture provide a valuable analog for approaching computer code in emergent digital systems. After commenting on ways that Cartesian dualism continues to haunt discussions of code, we turn our attention to diagrams and design morphology. Finally we notice the implications a material understanding of code bears for further research on the relation between human cognition and digital code. Our discussion concludes by noticing several areas that we have projected for ongoing research.
Cloud Computing for Complex Performance Codes.
Energy Technology Data Exchange (ETDEWEB)
Appel, Gordon John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klein, Brandon Thorin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miner, John Gifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-02-01
This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.
Computer codes for designing proton linear accelerators
International Nuclear Information System (INIS)
Kato, Takao
1992-01-01
Computer codes for designing proton linear accelerators are discussed from the viewpoint of not only designing but also construction and operation of the linac. The codes are divided into three categories according to their purposes: 1) design code, 2) generation and simulation code, and 3) electric and magnetic fields calculation code. The role of each category is discussed on the basis of experience at KEK (the design of the 40-MeV proton linac and its construction and operation, and the design of the 1-GeV proton linac). We introduce our recent work relevant to three-dimensional calculation and supercomputer calculation: 1) tuning of MAFIA (three-dimensional electric and magnetic fields calculation code) for supercomputer, 2) examples of three-dimensional calculation of accelerating structures by MAFIA, 3) development of a beam transport code including space charge effects. (author)
Low Computational Complexity Network Coding For Mobile Networks
DEFF Research Database (Denmark)
Heide, Janus
2012-01-01
Network Coding (NC) is a technique that can provide benefits in many types of networks, some examples from wireless networks are: In relay networks, either the physical or the data link layer, to reduce the number of transmissions. In reliable multicast, to reduce the amount of signaling and enable......-flow coding technique. One of the key challenges of this technique is its inherent computational complexity which can lead to high computational load and energy consumption in particular on the mobile platforms that are the target platform in this work. To increase the coding throughput several...
Laurikainen, P
1975-01-01
The author first reviews the services offered by the Bureau to the user community scattered over three separate physics departments and a theory research institute. Limited services are offered also to non- physics research in the University, in collaboration with the University Computing Center. The personnel is divided into operations sections responsible for the terminal and data archive management, punching and document services, etc. and into analysts sections with half a dozen full-time scientific programmers recruited among promising graduate level physics students, rather than computer scientists or mathematicians. Analysts are thus able not only to communicate with physicists but also to participate in research to some extent. Only more demanding program development tasks can be handled by the Bureau, most of the routine data processing is the users responsibility.
Computer code development plant for SMART design
International Nuclear Information System (INIS)
Bae, Kyoo Hwan; Choi, S.; Cho, B.H.; Kim, K.K.; Lee, J.C.; Kim, J.P.; Kim, J.H.; Chung, M.; Kang, D.J.; Chang, M.H.
1999-03-01
In accordance with the localization plan for the nuclear reactor design driven since the middle of 1980s, various computer codes have been transferred into the korea nuclear industry through the technical transfer program from the worldwide major pressurized water reactor supplier or through the international code development program. These computer codes have been successfully utilized in reactor and reload core design works. As the results, design- related technologies have been satisfactorily accumulated. However, the activities for the native code development activities to substitute the some important computer codes of which usages are limited by the original technique owners have been carried out rather poorly. Thus, it is most preferentially required to secure the native techniques on the computer code package and analysis methodology in order to establish the capability required for the independent design of our own model of reactor. Moreover, differently from the large capacity loop-type commercial reactors, SMART (SYSTEM-integrated Modular Advanced ReacTor) design adopts a single reactor pressure vessel containing the major primary components and has peculiar design characteristics such as self-controlled gas pressurizer, helical steam generator, passive residual heat removal system, etc. Considering those peculiar design characteristics for SMART, part of design can be performed with the computer codes used for the loop-type commercial reactor design. However, most of those computer codes are not directly applicable to the design of an integral reactor such as SMART. Thus, they should be modified to deal with the peculiar design characteristics of SMART. In addition to the modification efforts, various codes should be developed in several design area. Furthermore, modified or newly developed codes should be verified their reliability through the benchmarking or the test for the object design. Thus, it is necessary to proceed the design according to the
Computer code development plant for SMART design
Energy Technology Data Exchange (ETDEWEB)
Bae, Kyoo Hwan; Choi, S.; Cho, B.H.; Kim, K.K.; Lee, J.C.; Kim, J.P.; Kim, J.H.; Chung, M.; Kang, D.J.; Chang, M.H
1999-03-01
In accordance with the localization plan for the nuclear reactor design driven since the middle of 1980s, various computer codes have been transferred into the korea nuclear industry through the technical transfer program from the worldwide major pressurized water reactor supplier or through the international code development program. These computer codes have been successfully utilized in reactor and reload core design works. As the results, design- related technologies have been satisfactorily accumulated. However, the activities for the native code development activities to substitute the some important computer codes of which usages are limited by the original technique owners have been carried out rather poorly. Thus, it is most preferentially required to secure the native techniques on the computer code package and analysis methodology in order to establish the capability required for the independent design of our own model of reactor. Moreover, differently from the large capacity loop-type commercial reactors, SMART (SYSTEM-integrated Modular Advanced ReacTor) design adopts a single reactor pressure vessel containing the major primary components and has peculiar design characteristics such as self-controlled gas pressurizer, helical steam generator, passive residual heat removal system, etc. Considering those peculiar design characteristics for SMART, part of design can be performed with the computer codes used for the loop-type commercial reactor design. However, most of those computer codes are not directly applicable to the design of an integral reactor such as SMART. Thus, they should be modified to deal with the peculiar design characteristics of SMART. In addition to the modification efforts, various codes should be developed in several design area. Furthermore, modified or newly developed codes should be verified their reliability through the benchmarking or the test for the object design. Thus, it is necessary to proceed the design according to the
Concentration - dose - risk computer code
International Nuclear Information System (INIS)
Frujinoiu, C.; Preda, M.
1997-01-01
Generally, the society is less willing in promoting remedial actions in case of low level chronic exposure situations. Radon in dwellings and workplaces is a case connected to chronic exposure. Apart from radon, the solely source on which the international community agreed for setting action levels, there are other numerous sources technically modified by man that can generate chronic exposure. Even if the nuclear installations are the most relevant, we are surrounded by 'man-made radioactivity' such as: mining industry, coal-fired power plants and fertilizer industry. The operating of an installation even within 'normal limits' could generate chronic exposure due to accumulation of the pollutants after a definite time. This asymptotic proclivity to a constant level define a steady-state concentration that represents a characteristic of the source's presence in the environment. The paper presents a methodology and a code package that derives sequentially the steady-state concentration, doses, detriments, as well as the costs of the effects of installation operation in a given environment. (authors)
International Nuclear Information System (INIS)
Nuehrenberg, J.
1986-01-01
These proceedings contain the articles presented at the named conference. These concern numerical methods for astrophysical plasmas, the numerical simulation of reversed-field pinch dynamics, methods for numerical simulation of ideal MHD stability of axisymmetric plasmas, calculations of the resistive internal m=1 mode in tokamaks, parallel computing and multitasking, particle simulation methods in plasma physics, 2-D Lagrangian studies of symmetry and stability of laser fusion targets, computing of rf heating and current drive in tokamaks, three-dimensional free boundary calculations using a spectral Green's function method, as well as the calculation of three-dimensional MHD equilibria with islands and stochastic regions. See hints under the relevant topics. (HSI)
Nonuniform code concatenation for universal fault-tolerant quantum computing
Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza
2017-09-01
Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.
Quantum computing with Majorana fermion codes
Litinski, Daniel; von Oppen, Felix
2018-05-01
We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.
Gender codes why women are leaving computing
Misa, Thomas J
2010-01-01
The computing profession is facing a serious gender crisis. Women are abandoning the computing field at an alarming rate. Fewer are entering the profession than anytime in the past twenty-five years, while too many are leaving the field in mid-career. With a maximum of insight and a minimum of jargon, Gender Codes explains the complex social and cultural processes at work in gender and computing today. Edited by Thomas Misa and featuring a Foreword by Linda Shafer, Chair of the IEEE Computer Society Press, this insightful collection of essays explores the persisting gender imbalance in computing and presents a clear course of action for turning things around.
The HELIOS-2 lattice physics code
International Nuclear Information System (INIS)
Wemple, C.A.; Gheorghiu, H-N.M.; Stamm'ler, R.J.J.; Villarino, E.A.
2008-01-01
Major advances have been made in the HELIOS code, resulting in the impending release of a new version, HELIOS-2. The new code includes a method of characteristics (MOC) transport solver to supplement the existing collision probabilities (CP) solver. A 177-group, ENDF/B-VII nuclear data library has been developed for inclusion with the new code package. Computational tests have been performed to verify the performance of the MOC solver against the CP solver, and validation testing against computational and measured benchmarks is underway. Results to-date of the verification and validation testing are presented, demonstrating the excellent performance of the new transport solver and nuclear data library. (Author)
Turbo Pascal Computer Code for PIXE Analysis
International Nuclear Information System (INIS)
Darsono
2002-01-01
To optimal utilization of the 150 kV ion accelerator facilities and to govern the analysis technique using ion accelerator, the research and development of low energy PIXE technology has been done. The R and D for hardware of the low energy PIXE installation in P3TM have been carried on since year 2000. To support the R and D of PIXE accelerator facilities in harmonize with the R and D of the PIXE hardware, the development of PIXE software for analysis is also needed. The development of database of PIXE software for analysis using turbo Pascal computer code is reported in this paper. This computer code computes the ionization cross-section, the fluorescence yield, and the stopping power of elements also it computes the coefficient attenuation of X- rays energy. The computer code is named PIXEDASIS and it is part of big computer code planed for PIXE analysis that will be constructed in the near future. PIXEDASIS is designed to be communicative with the user. It has the input from the keyboard. The output shows in the PC monitor, which also can be printed. The performance test of the PIXEDASIS shows that it can be operated well and it can provide data agreement with data form other literatures. (author)
Computing in high energy physics
International Nuclear Information System (INIS)
Watase, Yoshiyuki
1991-01-01
The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors
Utility subroutine package used by Applied Physics Division export codes
International Nuclear Information System (INIS)
Adams, C.H.; Derstine, K.L.; Henryson, H. II; Hosteny, R.P.; Toppel, B.J.
1983-04-01
This report describes the current state of the utility subroutine package used with codes being developed by the staff of the Applied Physics Division. The package provides a variety of useful functions for BCD input processing, dynamic core-storage allocation and managemnt, binary I/0 and data manipulation. The routines were written to conform to coding standards which facilitate the exchange of programs between different computers
SERPENT Monte Carlo reactor physics code
International Nuclear Information System (INIS)
Leppaenen, J.
2010-01-01
SERPENT is a three-dimensional continuous-energy Monte Carlo reactor physics burnup calculation code, developed at VTT Technical Research Centre of Finland since 2004. The code is specialized in lattice physics applications, but the universe-based geometry description allows transport simulation to be carried out in complicated three-dimensional geometries as well. The suggested applications of SERPENT include generation of homogenized multi-group constants for deterministic reactor simulator calculations, fuel cycle studies involving detailed assembly-level burnup calculations, validation of deterministic lattice transport codes, research reactor applications, educational purposes and demonstration of reactor physics phenomena. The Serpent code has been publicly distributed by the OECD/NEA Data Bank since May 2009 and RSICC in the U. S. since March 2010. The code is being used in some 35 organizations in 20 countries around the world. This paper presents an overview of the methods and capabilities of the Serpent code, with examples in the modelling of WWER-440 reactor physics. (Author)
Advanced computations in plasma physics
International Nuclear Information System (INIS)
Tang, W.M.
2002-01-01
Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to
New coding technique for computer generated holograms.
Haskell, R. E.; Culver, B. C.
1972-01-01
A coding technique is developed for recording computer generated holograms on a computer controlled CRT in which each resolution cell contains two beam spots of equal size and equal intensity. This provides a binary hologram in which only the position of the two dots is varied from cell to cell. The amplitude associated with each resolution cell is controlled by selectively diffracting unwanted light into a higher diffraction order. The recording of the holograms is fast and simple.
LMFBR models for the ORIGEN2 computer code
International Nuclear Information System (INIS)
Croff, A.G.; McAdoo, J.W.; Bjerke, M.A.
1981-10-01
Reactor physics calculations have led to the development of nine liquid-metal fast breeder reactor (LMFBR) models for the ORIGEN2 computer code. Four of the models are based on the U-Pu fuel cycle, two are based on the Th-U-Pu fuel cycle, and three are based on the Th- 238 U fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST are given
LATTICE: an interactive lattice computer code
International Nuclear Information System (INIS)
Staples, J.
1976-10-01
LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included
Citham-2 computer code-User manual
International Nuclear Information System (INIS)
Batista, J.L.
1984-01-01
The procedures and the input data for the Citham-2 computer code are described. It is a subroutine that modifies the nuclide concentration taking in account its burn and prepares cross sections library in 2,3 or 4 energy groups, to the used for Citation program. (E.G.) [pt
Computer Security: is your code sane?
Stefan Lueders, Computer Security Team
2015-01-01
How many of us write code? Software? Programs? Scripts? How many of us are properly trained in this and how well do we do it? Do we write functional, clean and correct code, without flaws, bugs and vulnerabilities*? In other words: are our codes sane? Figuring out weaknesses is not that easy (see our quiz in an earlier Bulletin article). Therefore, in order to improve the sanity of your code, prevent common pit-falls, and avoid the bugs and vulnerabilities that can crash your code, or – worse – that can be misused and exploited by attackers, the CERN Computer Security team has reviewed its recommendations for checking the security compliance of your code. “Static Code Analysers” are stand-alone programs that can be run on top of your software stack, regardless of whether it uses Java, C/C++, Perl, PHP, Python, etc. These analysers identify weaknesses and inconsistencies including: employing undeclared variables; expressions resu...
Computers in Nuclear Physics Division
International Nuclear Information System (INIS)
Kowalczyk, M.; Tarasiuk, J.; Srebrny, J.
1997-01-01
Improving of the computer equipment in Nuclear Physics Division is described. It include: new computer equipment and hardware upgrading, software developing, new programs for computer booting and modernization of data acquisition systems
Evaluation of the SCANAIR Computer Code
International Nuclear Information System (INIS)
Jernkvist, Lars Olof; Massih, Ali
2001-11-01
The SCANAIR computer code, version 3.2, has been evaluated from the standpoint of its capability to analyze, simulate and predict nuclear fuel behavior during severe power transients. SCANAIR calculates the thermal and mechanical behavior of a pressurized water reactor (PWR) fuel rod during a postulated reactivity initiated accident (RIA), and our evaluation indicates that SCANAIR is a state of the art computational tool for this purpose. Our evaluation starts by reviewing the basic theoretical models in SCANAIR, namely the governing equations for heat transfer, the mechanical response of fuel and clad, and the fission gas release behavior. The numerical methods used to solve the governing equations are briefly reviewed, and the range of applicability of the models and their limitations are discussed and illustrated with examples. Next, the main features of the SCANAIR user interface are delineated. The code requires an extensive amount of input data, in order to define burnup-dependent initial conditions to the simulated RIA. These data must be provided in a special format by a thermal-mechanical fuel rod analysis code. The user also has to supply the transient power history under RIA as input, which requires a code for neutronics calculation. The programming structure and documentation of the code are also addressed in our evaluation. SCANAIR is programmed in Fortran-77, and makes use of several general Fortran-77 libraries for handling input/output, data storage and graphical presentation of computed results. The documentation of SCANAIR and its helping libraries is generally of good quality. A drawback with SCANAIR in its present form, is that the code and its pre- and post-processors are tied to computers running the Unix or Linux operating systems. As part of our evaluation, we have performed a large number of computations with SCANAIR, some of which are documented in this report. The computations presented here include a hypothetical RIA in a high
Concatenated codes for fault tolerant quantum computing
Energy Technology Data Exchange (ETDEWEB)
Knill, E.; Laflamme, R.; Zurek, W.
1995-05-01
The application of concatenated codes to fault tolerant quantum computing is discussed. We have previously shown that for quantum memories and quantum communication, a state can be transmitted with error {epsilon} provided each gate has error at most c{epsilon}. We show how this can be used with Shor`s fault tolerant operations to reduce the accuracy requirements when maintaining states not currently participating in the computation. Viewing Shor`s fault tolerant operations as a method for reducing the error of operations, we give a concatenated implementation which promises to propagate the reduction hierarchically. This has the potential of reducing the accuracy requirements in long computations.
Physics options in the plasma code VOA
International Nuclear Information System (INIS)
Eltgroth, P.G.
1976-06-01
A two dimensional relativistic plasma physics code has been modified to accomodate general electromagnetic boundary conditions and various approximations of basic physics. The code can treat internal conductors and insulators, imposed electromagnetic fields, the effects of external circuitry and non-equilibrium starting conditions. Particle dynamics options include a full microscopic treatment, fully relaxed electrons, a low frequency electron approximation and a combination of approximations for specified zones. Electromagnetic options include the full wave treatment, an electrostatic approximation and two varieties of magnetohydrodynamic approximations in specified zones
Opacity calculations for extreme physical systems: code RACHEL
Drska, Ladislav; Sinor, Milan
1996-08-01
Computer simulations of physical systems under extreme conditions (high density, temperature, etc.) require the availability of extensive sets of atomic data. This paper presents basic information on a self-consistent approach to calculations of radiative opacity, one of the key characteristics of such systems. After a short explanation of general concepts of the atomic physics of extreme systems, the structure of the opacity code RACHEL is discussed and some of its applications are presented.
High-fidelity plasma codes for burn physics
Energy Technology Data Exchange (ETDEWEB)
Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)
2016-10-19
Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.
Computer codes used in particle accelerator design: First edition
International Nuclear Information System (INIS)
1987-01-01
This paper contains a listing of more than 150 programs that have been used in the design and analysis of accelerators. Given on each citation are person to contact, classification of the computer code, publications describing the code, computer and language runned on, and a short description of the code. Codes are indexed by subject, person to contact, and code acronym
Present state of the SOURCES computer code
International Nuclear Information System (INIS)
Shores, Erik F.
2002-01-01
In various stages of development for over two decades, the SOURCES computer code continues to calculate neutron production rates and spectra from four types of problems: homogeneous media, two-region interfaces, three-region interfaces and that of a monoenergetic alpha particle beam incident on a slab of target material. Graduate work at the University of Missouri - Rolla, in addition to user feedback from a tutorial course, provided the impetus for a variety of code improvements. Recently upgraded to version 4B, initial modifications to SOURCES focused on updates to the 'tape5' decay data library. Shortly thereafter, efforts focused on development of a graphical user interface for the code. This paper documents the Los Alamos SOURCES Tape1 Creator and Library Link (LASTCALL) and describes additional library modifications in more detail. Minor improvements and planned enhancements are discussed.
Independent peer review of nuclear safety computer codes
International Nuclear Information System (INIS)
Boyack, B.E.; Jenks, R.P.
1993-01-01
A structured, independent computer code peer-review process has been developed to assist the US Nuclear Regulatory Commission (NRC) and the US Department of Energy in their nuclear safety missions. This paper describes a structured process of independent code peer review, benefits associated with a code-independent peer review, as well as the authors' recent peer-review experience. The NRC adheres to the principle that safety of plant design, construction, and operation are the responsibility of the licensee. Nevertheless, NRC staff must have the ability to independently assess plant designs and safety analyses submitted by license applicants. According to Ref. 1, open-quotes this requires that a sound understanding be obtained of the important physical phenomena that may occur during transients in operating power plants.close quotes The NRC concluded that computer codes are the principal products to open-quotes understand and predict plant response to deviations from normal operating conditionsclose quotes and has developed several codes for that purpose. However, codes cannot be used blindly; they must be assessed and found adequate for the purposes they are intended. A key part of the qualification process can be accomplished through code peer reviews; this approach has been adopted by the NRC
Evaluation of the FRAPCON-3 Computer Code
International Nuclear Information System (INIS)
Jernkvist, Lars Olof; Massih, Ali
2002-03-01
The FRAPCON-3 computer code has been evaluated with respect to its applicability, modeling capability, user friendliness, source code structure and supporting experimental database. The code is intended for thermo-mechanical analyses of light water reactor nuclear fuel rods under steady-state operational conditions and moderate power excursions. It is applicable to both boiling- and pressurized water reactor fuel rods with UO 2 fuel, ranging up to about 65 MWd/kg U in rod average burnup. The models and numerical methods in FRAPCON-3 are relatively simple, which makes the code transparent and also fairly easy to modify and extend for the user. The fundamental equations for heat transfer, structural analysis and fuel fission gas release are solved in one-dimensional (radial) and stationary (time-independent) form, and interaction between axial segments of the rod is confined to calculations of coolant axial flow and rod internal gas pressure. The code is fairly easy to use; fuel rod design data and time histories of fuel rod power and coolant inlet conditions are input via a single text file, and the corresponding calculated variation with time of important fuel rod parameters are printed to a single output file in textual form. The results can also be presented in graphical form through an interface to the general graphics program xmgr. FRAPCON-3 also provides the possibility to export calculated results to the transient fuel rod analysis code FRAPTRAN, where the data can be used as burnup-dependent initial conditions to a postulated transient. Most of the source code to FRAPCON-3 is written in Fortran-IV, which is an archaic, non-standard dialect of the Fortran programming language. Since Fortran-IV is not accepted by all compilers for the latest standard of the language, Fortran-95, there is a risk that the source code must be partly rewritten in the future. Documentation of the code comprises (i) a general code description, which briefly presents models
Evaluation of the FRAPCON-3 Computer Code
Energy Technology Data Exchange (ETDEWEB)
Jernkvist, Lars Olof; Massih, Ali [Quantum Technologies AB, Uppsala (Sweden)
2002-03-01
The FRAPCON-3 computer code has been evaluated with respect to its applicability, modeling capability, user friendliness, source code structure and supporting experimental database. The code is intended for thermo-mechanical analyses of light water reactor nuclear fuel rods under steady-state operational conditions and moderate power excursions. It is applicable to both boiling- and pressurized water reactor fuel rods with UO{sub 2} fuel, ranging up to about 65 MWd/kg U in rod average burnup. The models and numerical methods in FRAPCON-3 are relatively simple, which makes the code transparent and also fairly easy to modify and extend for the user. The fundamental equations for heat transfer, structural analysis and fuel fission gas release are solved in one-dimensional (radial) and stationary (time-independent) form, and interaction between axial segments of the rod is confined to calculations of coolant axial flow and rod internal gas pressure. The code is fairly easy to use; fuel rod design data and time histories of fuel rod power and coolant inlet conditions are input via a single text file, and the corresponding calculated variation with time of important fuel rod parameters are printed to a single output file in textual form. The results can also be presented in graphical form through an interface to the general graphics program xmgr. FRAPCON-3 also provides the possibility to export calculated results to the transient fuel rod analysis code FRAPTRAN, where the data can be used as burnup-dependent initial conditions to a postulated transient. Most of the source code to FRAPCON-3 is written in Fortran-IV, which is an archaic, non-standard dialect of the Fortran programming language. Since Fortran-IV is not accepted by all compilers for the latest standard of the language, Fortran-95, there is a risk that the source code must be partly rewritten in the future. Documentation of the code comprises (i) a general code description, which briefly presents models
The Computational Physics Program of the national MFE Computer Center
International Nuclear Information System (INIS)
Mirin, A.A.
1989-01-01
Since June 1974, the MFE Computer Center has been engaged in a significant computational physics effort. The principal objective of the Computational Physics Group is to develop advanced numerical models for the investigation of plasma phenomena and the simulation of present and future magnetic confinement devices. Another major objective of the group is to develop efficient algorithms and programming techniques for current and future generations of supercomputers. The Computational Physics Group has been involved in several areas of fusion research. One main area is the application of Fokker-Planck/quasilinear codes to tokamaks. Another major area is the investigation of resistive magnetohydrodynamics in three dimensions, with applications to tokamaks and compact toroids. A third area is the investigation of kinetic instabilities using a 3-D particle code; this work is often coupled with the task of numerically generating equilibria which model experimental devices. Ways to apply statistical closure approximations to study tokamak-edge plasma turbulence have been under examination, with the hope of being able to explain anomalous transport. Also, we are collaborating in an international effort to evaluate fully three-dimensional linear stability of toroidal devices. In addition to these computational physics studies, the group has developed a number of linear systems solvers for general classes of physics problems and has been making a major effort at ascertaining how to efficiently utilize multiprocessor computers. A summary of these programs are included in this paper. 6 tabs
Computer code to assess accidental pollutant releases
International Nuclear Information System (INIS)
Pendergast, M.M.; Huang, J.C.
1980-07-01
A computer code was developed to calculate the cumulative frequency distributions of relative concentrations of an air pollutant following an accidental release from a stack or from a building penetration such as a vent. The calculations of relative concentration are based on the Gaussian plume equations. The meteorological data used for the calculation are in the form of joint frequency distributions of wind and atmospheric stability
Poisson/Superfish codes for personal computers
International Nuclear Information System (INIS)
Humphries, S.
1992-01-01
The Poisson/Superfish codes calculate static E or B fields in two-dimensions and electromagnetic fields in resonant structures. New versions for 386/486 PCs and Macintosh computers have capabilities that exceed the mainframe versions. Notable improvements are interactive graphical post-processors, improved field calculation routines, and a new program for charged particle orbit tracking. (author). 4 refs., 1 tab., figs
Use of computer codes for system reliability analysis
International Nuclear Information System (INIS)
Sabek, M.; Gaafar, M.; Poucet, A.
1988-01-01
This paper gives a collective summary of the studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRANTIC, FTAP, computer code package RALLY, and BOUNDS codes. Two reference study cases were executed by each code. The results obtained logic/probabilistic analysis as well as computation time are compared
Computing Challenges in Coded Mask Imaging
Skinner, Gerald
2009-01-01
This slide presaentation reviews the complications and challenges in developing computer systems for Coded Mask Imaging telescopes. The coded mask technique is used when there is no other way to create the telescope, (i.e., when there are wide fields of view, high energies for focusing or low energies for the Compton/Tracker Techniques and very good angular resolution.) The coded mask telescope is described, and the mask is reviewed. The coded Masks for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) instruments are shown, and a chart showing the types of position sensitive detectors used for the coded mask telescopes is also reviewed. Slides describe the mechanism of recovering an image from the masked pattern. The correlation with the mask pattern is described. The Matrix approach is reviewed, and other approaches to image reconstruction are described. Included in the presentation is a review of the Energetic X-ray Imaging Survey Telescope (EXIST) / High Energy Telescope (HET), with information about the mission, the operation of the telescope, comparison of the EXIST/HET with the SWIFT/BAT and details of the design of the EXIST/HET.
Computational plasma physics and supercomputers
International Nuclear Information System (INIS)
Killeen, J.; McNamara, B.
1984-09-01
The Supercomputers of the 80's are introduced. They are 10 to 100 times more powerful than today's machines. The range of physics modeling in the fusion program is outlined. New machine architecture will influence particular codes, but parallel processing poses new coding difficulties. Increasing realism in simulations will require better numerics and more elaborate mathematics
A computer code for Tokamak reactor concepts evaluation
International Nuclear Information System (INIS)
Rosatelli, F.; Raia, G.
1985-01-01
A computer package has been developed which could preliminarily investigate the engineering configuration of a tokamak reactor concept. The code is essentially intended to synthesize, starting from a set of geometrical and plasma physics parameters and the required performances and objectives, three fundamental components of a tokamak reactor core: blanket+shield, TF magnet, PF magnet. An iterative evaluation of the size, power supply and cooling system requirements of these components allows the judgment and the preliminary design optimization on the considered reactor concept. The versatility of the code allows its application both to next generation tokamak devices and power reactor concepts
Quantum computing for physics research
International Nuclear Information System (INIS)
Georgeot, B.
2006-01-01
Quantum computers hold great promises for the future of computation. In this paper, this new kind of computing device is presented, together with a short survey of the status of research in this field. The principal algorithms are introduced, with an emphasis on the applications of quantum computing to physics. Experimental implementations are also briefly discussed
Benchmarking Severe Accident Computer Codes for Heavy Water Reactor Applications
International Nuclear Information System (INIS)
2013-12-01
Requests for severe accident investigations and assurance of mitigation measures have increased for operating nuclear power plants and the design of advanced nuclear power plants. Severe accident analysis investigations necessitate the analysis of the very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. The IAEA organizes coordinated research projects (CRPs) to facilitate technology development through international collaboration among Member States. The CRP on Benchmarking Severe Accident Computer Codes for HWR Applications was planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). This publication summarizes the results from the CRP participants. The CRP promoted international collaboration among Member States to improve the phenomenological understanding of severe core damage accidents and the capability to analyse them. The CRP scope included the identification and selection of a severe accident sequence, selection of appropriate geometrical and boundary conditions, conduct of benchmark analyses, comparison of the results of all code outputs, evaluation of the capabilities of computer codes to predict important severe accident phenomena, and the proposal of necessary code improvements and/or new experiments to reduce uncertainties. Seven institutes from five countries with HWRs participated in this CRP
Fuel rod computations. The COMETHE code in its CEA version
International Nuclear Information System (INIS)
Lenepveu, Dominique.
1976-01-01
The COMETHE code (COde d'evolution MEcanique et THermique) is intended for computing the irradiation behavior of water reactor fuel pins. It is concerned with steadily operated cylindrical pins, containing fuel pellet stacks (UO 2 or PuO 2 ). The pin consists in five different axial zones: two expansion chambers, two blankets, and a central core that may be divided into several stacks parted by plugs. As far as computation is concerned, the pin is divided into slices (maximum 15) in turn divided into rings (maximum 50). Information are obtained for each slice: the radial temperature distribution, heat transfer coefficients, thermal flux at the pin surface, changes in geometry according to temperature conditions, and specific burn-up. The physical models involved take account for: heat transfer, fission gas release, fuel expansion, and creep of the can. Results computed with COMETHE are compared with those from ELP and EPEL irradiation experiments [fr
SALE: Safeguards Analytical Laboratory Evaluation computer code
International Nuclear Information System (INIS)
Carroll, D.J.; Bush, W.J.; Dolan, C.A.
1976-09-01
The Safeguards Analytical Laboratory Evaluation (SALE) program implements an industry-wide quality control and evaluation system aimed at identifying and reducing analytical chemical measurement errors. Samples of well-characterized materials are distributed to laboratory participants at periodic intervals for determination of uranium or plutonium concentration and isotopic distributions. The results of these determinations are statistically-evaluated, and each participant is informed of the accuracy and precision of his results in a timely manner. The SALE computer code which produces the report is designed to facilitate rapid transmission of this information in order that meaningful quality control will be provided. Various statistical techniques comprise the output of the SALE computer code. Assuming an unbalanced nested design, an analysis of variance is performed in subroutine NEST resulting in a test of significance for time and analyst effects. A trend test is performed in subroutine TREND. Microfilm plots are obtained from subroutine CUMPLT. Within-laboratory standard deviations are calculated in the main program or subroutine VAREST, and between-laboratory standard deviations are calculated in SBLV. Other statistical tests are also performed. Up to 1,500 pieces of data for each nuclear material sampled by 75 (or fewer) laboratories may be analyzed with this code. The input deck necessary to run the program is shown, and input parameters are discussed in detail. Printed output and microfilm plot output are described. Output from a typical SALE run is included as a sample problem
Integrated severe accident containment analysis with the CONTAIN computer code
International Nuclear Information System (INIS)
Bergeron, K.D.; Williams, D.C.; Rexroth, P.E.; Tills, J.L.
1985-12-01
Analysis of physical and radiological conditions iunside the containment building during a severe (core-melt) nuclear reactor accident requires quantitative evaluation of numerous highly disparate yet coupled phenomenologies. These include two-phase thermodynamics and thermal-hydraulics, aerosol physics, fission product phenomena, core-concrete interactions, the formation and combustion of flammable gases, and performance of engineered safety features. In the past, this complexity has meant that a complete containment analysis would require application of suites of separate computer codes each of which would treat only a narrower subset of these phenomena, e.g., a thermal-hydraulics code, an aerosol code, a core-concrete interaction code, etc. In this paper, we describe the development and some recent applications of the CONTAIN code, which offers an integrated treatment of the dominant containment phenomena and the interactions among them. We describe the results of a series of containment phenomenology studies, based upon realistic accident sequence analyses in actual plants. These calculations highlight various phenomenological effects that have potentially important implications for source term and/or containment loading issues, and which are difficult or impossible to treat using a less integrated code suite
High performance computer code for molecular dynamics simulations
International Nuclear Information System (INIS)
Levay, I.; Toekesi, K.
2007-01-01
Complete text of publication follows. Molecular Dynamics (MD) simulation is a widely used technique for modeling complicated physical phenomena. Since 2005 we are developing a MD simulations code for PC computers. The computer code is written in C++ object oriented programming language. The aim of our work is twofold: a) to develop a fast computer code for the study of random walk of guest atoms in Be crystal, b) 3 dimensional (3D) visualization of the particles motion. In this case we mimic the motion of the guest atoms in the crystal (diffusion-type motion), and the motion of atoms in the crystallattice (crystal deformation). Nowadays, it is common to use Graphics Devices in intensive computational problems. There are several ways to use this extreme processing performance, but never before was so easy to programming these devices as now. The CUDA (Compute Unified Device) Architecture introduced by nVidia Corporation in 2007 is a very useful for every processor hungry application. A Unified-architecture GPU include 96-128, or more stream processors, so the raw calculation performance is 576(!) GFLOPS. It is ten times faster, than the fastest dual Core CPU [Fig.1]. Our improved MD simulation software uses this new technology, which speed up our software and the code run 10 times faster in the critical calculation code segment. Although the GPU is a very powerful tool, it has a strongly paralleled structure. It means, that we have to create an algorithm, which works on several processors without deadlock. Our code currently uses 256 threads, shared and constant on-chip memory, instead of global memory, which is 100 times slower than others. It is possible to implement the total algorithm on GPU, therefore we do not need to download and upload the data in every iteration. On behalf of maximal throughput, every thread run with the same instructions
A zero-dimensional EXTRAP computer code
International Nuclear Information System (INIS)
Karlsson, P.
1982-10-01
A zero-dimensional computer code has been designed for the EXTRAP experiment to predict the density and the temperature and their dependence upon paramenters such as the plasma current and the filling pressure of neutral gas. EXTRAP is a Z-pinch immersed in a vacuum octupole field and could be either linear or toroidal. In this code the density and temperature are assumed to be constant from the axis up to a breaking point from where they decrease linearly in the radial direction out to the plasma radius. All quantities, however, are averaged over the plasma volume thus giving the zero-dimensional character of the code. The particle, momentum and energy one-fluid equations are solved including the effects of the surrounding neutral gas and oxygen impurities. The code shows that the temperature and density are very sensitive to the shape of the plasma, flatter profiles giving higher temperatures and densities. The temperature, however, is not strongly affected for oxygen concentration less than 2% and is well above the radiation barrier even for higher concentrations. (Author)
SKEMA - A computer code to estimate atmospheric dispersion
International Nuclear Information System (INIS)
Sacramento, A.M. do.
1985-01-01
This computer code is a modified version of DWNWND code, developed in Oak Ridge National Laboratory. The Skema code makes an estimative of concentration in air of a material released in atmosphery, by ponctual source. (C.M.) [pt
Computational-physics program of the National MFE Computer Center
International Nuclear Information System (INIS)
Mirin, A.A.
1982-02-01
The computational physics group is ivolved in several areas of fusion research. One main area is the application of multidimensional Fokker-Planck, transport and combined Fokker-Planck/transport codes to both toroidal and mirror devices. Another major area is the investigation of linear and nonlinear resistive magnetohydrodynamics in two and three dimensions, with applications to all types of fusion devices. The MHD work is often coupled with the task of numerically generating equilibria which model experimental devices. In addition to these computational physics studies, investigations of more efficient numerical algorithms are being carried out
The DIT nuclear fuel assembly physics design code
International Nuclear Information System (INIS)
Jonsson, A.
1988-01-01
The DIT code is the Combustion Engineering, Inc. (C-E) nuclear fuel assembly design code. It belongs to a class of codes, all similar in structure and strategy, that may be characterized by the spectrum and spatial calculations being performed in two dimensions and in a single job step for the entire assembly. The forerunner of this class of codes is the United Kingdom Atomic Energy Authority WIMS code, the first version of which was completed 25 yr ago. The structure and strategy of assembly spectrum codes have remained remarkably similar to the original concept thus proving its usefulness. As other organizations, including C-E, have developed their own versions of the concept, many important variations have been added that significantly influence the accuracy and performance of the resulting computational tool. Those features, which are unique to the DIT code and which might be of interest to the community of fuel assembly physics design code users and developers, are described and discussed
Physics of quantum computation
International Nuclear Information System (INIS)
Belokurov, V.V.; Khrustalev, O.A.; Sadovnichij, V.A.; Timofeevskaya, O.D.
2003-01-01
In the paper, the modern status of the theory of quantum computation is considered. The fundamental principles of quantum computers and their basic notions such as quantum processors and computational basis states of the quantum Turing machine as well as the quantum Fourier transform are discussed. Some possible experimental realizations on the basis of NMR methods are given
The MESORAD dose assessment model: Computer code
International Nuclear Information System (INIS)
Ramsdell, J.V.; Athey, G.F.; Bander, T.J.; Scherpelz, R.I.
1988-10-01
MESORAD is a dose equivalent model for emergency response applications that is designed to be run on minicomputers. It has been developed by the Pacific Northwest Laboratory for use as part of the Intermediate Dose Assessment System in the US Nuclear Regulatory Commission Operations Center in Washington, DC, and the Emergency Management System in the US Department of Energy Unified Dose Assessment Center in Richland, Washington. This volume describes the MESORAD computer code and contains a listing of the code. The technical basis for MESORAD is described in the first volume of this report (Scherpelz et al. 1986). A third volume of the documentation planned. That volume will contain utility programs and input and output files that can be used to check the implementation of MESORAD. 18 figs., 4 tabs
Neutron spectrum unfolding using computer code SAIPS
International Nuclear Information System (INIS)
Karim, S.
1999-01-01
The main objective of this project was to study the neutron energy spectrum at rabbit station-1 in Pakistan Research Reactor (PARR-I). To do so, multiple foils activation method was used to get the saturated activities. The computer code SAIPS was used to unfold the neutron spectra from the measured reaction rates. Of the three built in codes in SAIPS, only SANDI and WINDOWS were used. Contribution of thermal part of the spectra was observed to be higher than the fast one. It was found that the WINDOWS gave smooth spectra while SANDII spectra have violet oscillations in the resonance region. The uncertainties in the WINDOWS results are higher than those of SANDII. The results show reasonable agreement with the published results. (author)
Physical computation and cognitive science
Fresco, Nir
2014-01-01
This book presents a study of digital computation in contemporary cognitive science. Digital computation is a highly ambiguous concept, as there is no common core definition for it in cognitive science. Since this concept plays a central role in cognitive theory, an adequate cognitive explanation requires an explicit account of digital computation. More specifically, it requires an account of how digital computation is implemented in physical systems. The main challenge is to deliver an account encompassing the multiple types of existing models of computation without ending up in pancomputationalism, that is, the view that every physical system is a digital computing system. This book shows that only two accounts, among the ones examined by the author, are adequate for explaining physical computation. One of them is the instructional information processing account, which is developed here for the first time. “This book provides a thorough and timely analysis of differing accounts of computation while adv...
Computer code for quantitative ALARA evaluations
International Nuclear Information System (INIS)
Voilleque, P.G.
1984-01-01
A FORTRAN computer code has been developed to simplify the determination of whether dose reduction actions meet the as low as is reasonably achievable (ALARA) criterion. The calculations are based on the methodology developed for the Atomic Industrial Forum. The code is used for analyses of eight types of dose reduction actions, characterized as follows: reduce dose rate, reduce job frequency, reduce productive working time, reduce crew size, increase administrative dose limit for the task, and increase the workers' time utilization and dose utilization through (a) improved working conditions, (b) basic skill training, or (c) refresher training for special skills. For each type of action, two analysis modes are available. The first is a generic analysis in which the program computes potential benefits (in dollars) for a range of possible improvements, e.g., for a range of lower dose rates. Generic analyses are most useful in the planning stage and for evaluating the general feasibility of alternative approaches. The second is a specific analysis in which the potential annual benefits of a specific level of improvement and the annual implementation cost are compared. The potential benefits reflect savings in operational and societal costs that can be realized if occupational radiation doses are reduced. Because the potential benefits depend upon many variables which characterize the job, the workplace, and the workers, there is no unique relationship between the potential dollar savings and the dose savings. The computer code permits rapid quantitative analyses of alternatives and is a tool that supplements the health physicist's professional judgment. The program output provides a rational basis for decision-making and a record of the assumptions employed
Analog system for computing sparse codes
Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell
2010-08-24
A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.
High burnup models in computer code fair
Energy Technology Data Exchange (ETDEWEB)
Dutta, B K; Swami Prasad, P; Kushwaha, H S; Mahajan, S C; Kakodar, A [Bhabha Atomic Research Centre, Bombay (India)
1997-08-01
An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ``Light water reactor fuel rod modelling code evaluation`` and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs.
High burnup models in computer code fair
International Nuclear Information System (INIS)
Dutta, B.K.; Swami Prasad, P.; Kushwaha, H.S.; Mahajan, S.C.; Kakodar, A.
1997-01-01
An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ''Light water reactor fuel rod modelling code evaluation'' and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs
Computer code validation by high temperature chemistry
International Nuclear Information System (INIS)
Alexander, C.A.; Ogden, J.S.
1988-01-01
At least five of the computer codes utilized in analysis of severe fuel damage-type events are directly dependent upon or can be verified by high temperature chemistry. These codes are ORIGEN, CORSOR, CORCON, VICTORIA, and VANESA. With the exemption of CORCON and VANESA, it is necessary that verification experiments be performed on real irradiated fuel. For ORIGEN, the familiar knudsen effusion cell is the best choice and a small piece of known mass and known burn-up is selected and volatilized completely into the mass spectrometer. The mass spectrometer is used in the integral mode to integrate the entire signal from preselected radionuclides, and from this integrated signal the total mass of the respective nuclides can be determined. For CORSOR and VICTORIA, experiments with flowing high pressure hydrogen/steam must flow over the irradiated fuel and then enter the mass spectrometer. For these experiments, a high pressure-high temperature molecular beam inlet must be employed. Finally, in support of VANESA-CORCON, the very highest temperature and molten fuels must be contained and analyzed. Results from all types of experiments will be discussed and their applicability to present and future code development will also be covered
Computing in high energy physics
Energy Technology Data Exchange (ETDEWEB)
Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)
1989-07-15
Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.
Computing in high energy physics
International Nuclear Information System (INIS)
Smith, Sarah; Devenish, Robin
1989-01-01
Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'
ANTEO: An optimised PC computer code for the steady state thermal hydraulic analysis of rod bundles
International Nuclear Information System (INIS)
Cevolani, S.
1996-07-01
The paper deals with the description of a Personal Computer oriented subchannel code, devoted to the steady state thermal hydraulic analysis of nuclear reactor fuel bundles. The development of a such code was made possible by two facts: first, the increase the computing power of the desk machines; secondly, the fact several years of experience into operate subchannels codes have shown how to simplify many of the physical models without a sensible loss of accuracy. For sake of validation, the developed code was compared with a traditional subchannel code, the COBRA one. The results of the comparison show a very good agreement between the two codes
The Dit nuclear fuel assembly physics design code
International Nuclear Information System (INIS)
Jonsson, A.
1987-01-01
DIT is the Combustion Engineering, Inc. (C-E) nuclear fuel assembly design code. It belongs to a class of codes, all similar in structure and strategy, which may be characterized by the spectrum and spatial calculations being performed in 2D and in a single job step for the entire assembly. The forerunner of this class of codes is the U.K.A.E.A. WIMS code, the first version of which was completed 25 years ago. The structure and strategy of assembly spectrum codes have remained remarkably similar to the original concept thus proving its usefulness. As other organizations, including C-E, have developed their own versions of the concept, many important variations have been added which significantly influence the accuracy and performance of the resulting computational tool. This paper describes and discusses those features which are unique to the DIT code and which might be of interest to the community of fuel assembly physics design code users and developers
Benchmarking severe accident computer codes for heavy water reactor applications
Energy Technology Data Exchange (ETDEWEB)
Choi, J.H. [International Atomic Energy Agency, Vienna (Austria)
2010-07-01
Consideration of severe accidents at a nuclear power plant (NPP) is an essential component of the defence in depth approach used in nuclear safety. Severe accident analysis involves very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. International cooperative research programmes are established by the IAEA in areas that are of common interest to a number of Member States. These co-operative efforts are carried out through coordinated research projects (CRPs), typically 3 to 6 years in duration, and often involving experimental activities. Such CRPs allow a sharing of efforts on an international basis, foster team-building and benefit from the experience and expertise of researchers from all participating institutes. The IAEA is organizing a CRP on benchmarking severe accident computer codes for heavy water reactor (HWR) applications. The CRP scope includes defining the severe accident sequence and conducting benchmark analyses for HWRs, evaluating the capabilities of existing computer codes to predict important severe accident phenomena, and suggesting necessary code improvements and/or new experiments to reduce uncertainties. The CRP has been planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Groups on Advanced Technologies for HWRs. (author)
Linking CATHENA with other computer codes through a remote process
Energy Technology Data Exchange (ETDEWEB)
Vasic, A.; Hanna, B.N.; Waddington, G.M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Sabourin, G. [Atomic Energy of Canada Limited, Montreal, Quebec (Canada); Girard, R. [Hydro-Quebec, Montreal, Quebec (Canada)
2005-07-01
'Full text:' CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a computer code developed by Atomic Energy of Canada Limited (AECL). The code uses a transient, one-dimensional, two-fluid representation of two-phase flow in piping networks. CATHENA is used primarily for the analysis of postulated upset conditions in CANDU reactors; however, the code has found a wider range of applications. In the past, the CATHENA thermalhydraulics code included other specialized codes, i.e. ELOCA and the Point LEPreau CONtrol system (LEPCON) as callable subroutine libraries. The combined program was compiled and linked as a separately named code. This code organizational process is not suitable for independent development, maintenance, validation and version tracking of separate computer codes. The alternative solution to provide code development independence is to link CATHENA to other computer codes through a Parallel Virtual Machine (PVM) interface process. PVM is a public domain software package, developed by Oak Ridge National Laboratory and enables a heterogeneous collection of computers connected by a network to be used as a single large parallel machine. The PVM approach has been well accepted by the global computing community and has been used successfully for solving large-scale problems in science, industry, and business. Once development of the appropriate interface for linking independent codes through PVM is completed, future versions of component codes can be developed, distributed separately and coupled as needed by the user. This paper describes the coupling of CATHENA to the ELOCA-IST and the TROLG2 codes through a PVM remote process as an illustration of possible code connections. ELOCA (Element Loss Of Cooling Analysis) is the Industry Standard Toolset (IST) code developed by AECL to simulate the thermo-mechanical response of CANDU fuel elements to transient thermalhydraulics boundary conditions. A separate ELOCA driver program
Linking CATHENA with other computer codes through a remote process
International Nuclear Information System (INIS)
Vasic, A.; Hanna, B.N.; Waddington, G.M.; Sabourin, G.; Girard, R.
2005-01-01
'Full text:' CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a computer code developed by Atomic Energy of Canada Limited (AECL). The code uses a transient, one-dimensional, two-fluid representation of two-phase flow in piping networks. CATHENA is used primarily for the analysis of postulated upset conditions in CANDU reactors; however, the code has found a wider range of applications. In the past, the CATHENA thermalhydraulics code included other specialized codes, i.e. ELOCA and the Point LEPreau CONtrol system (LEPCON) as callable subroutine libraries. The combined program was compiled and linked as a separately named code. This code organizational process is not suitable for independent development, maintenance, validation and version tracking of separate computer codes. The alternative solution to provide code development independence is to link CATHENA to other computer codes through a Parallel Virtual Machine (PVM) interface process. PVM is a public domain software package, developed by Oak Ridge National Laboratory and enables a heterogeneous collection of computers connected by a network to be used as a single large parallel machine. The PVM approach has been well accepted by the global computing community and has been used successfully for solving large-scale problems in science, industry, and business. Once development of the appropriate interface for linking independent codes through PVM is completed, future versions of component codes can be developed, distributed separately and coupled as needed by the user. This paper describes the coupling of CATHENA to the ELOCA-IST and the TROLG2 codes through a PVM remote process as an illustration of possible code connections. ELOCA (Element Loss Of Cooling Analysis) is the Industry Standard Toolset (IST) code developed by AECL to simulate the thermo-mechanical response of CANDU fuel elements to transient thermalhydraulics boundary conditions. A separate ELOCA driver program starts, ends
Computers and theoretical physics
International Nuclear Information System (INIS)
Terrano, A.E.
1987-01-01
The outline of the lectures is as follows: 1) The architecture of conventional computers. 2) The design of special-purpose machines. 3) Elements of modern programming. 4) Algebraic and interactive programs. (orig./BBO)
The computational physics program of the National MFE Computer Center
International Nuclear Information System (INIS)
Mirin, A.A.
1988-01-01
The principal objective of the Computational Physics Group is to develop advanced numerical models for the investigation of plasma phenomena and the simulation of present and future magnetic confinement devices. Another major objective of the group is to develop efficient algorithms and programming techniques for current and future generation of supercomputers. The computational physics group is involved in several areas of fusion research. One main area is the application of Fokker-Planck/quasilinear codes to tokamaks. Another major area is the investigation of resistive magnetohydrodynamics in three dimensions, with applications to compact toroids. Another major area is the investigation of kinetic instabilities using a 3-D particle code. This work is often coupled with the task of numerically generating equilibria which model experimental devices. Ways to apply statistical closure approximations to study tokamak-edge plasma turbulence are being examined. In addition to these computational physics studies, the group has developed a number of linear systems solvers for general classes of physics problems and has been making a major effort at ascertaining how to efficiently utilize multiprocessor computers
LWR-WIMS, a computer code for light water reactor lattice calculations
International Nuclear Information System (INIS)
Halsall, M.J.
1982-06-01
LMR-WIMS is a comprehensive scheme of computation for studying the reactor physics aspects and burnup behaviour of typical lattices of light water reactors. This report describes the physics methods that have been incorporated in the code, and the modifications that have been made since the code was issued in 1972. (U.K.)
Validation of containment thermal hydraulic computer codes for VVER reactor
Energy Technology Data Exchange (ETDEWEB)
Jiri Macek; Lubomir Denk [Nuclear Research Institute Rez plc Thermal-Hydraulic Analyses Department CZ 250 68 Husinec-Rez (Czech Republic)
2005-07-01
Full text of publication follows: The Czech Republic operates 4 VVER-440 units, two VVER-1000 units are being finalized (one of them is undergoing commissioning). Thermal-hydraulics Department of the Nuclear Research Institute Rez performs accident analyses for these plants using a number of computer codes. To model the primary and secondary circuits behaviour the system codes ATHLET, CATHARE, RELAP, TRAC are applied. Containment and pressure-suppression system are modelled with COCOSYS and MELCOR codes, the reactor power calculations (point and space-neutron kinetics) are made with DYN3D, NESTLE and CDF codes (FLUENT, TRIO) are used for some specific problems.An integral part of the current Czech project 'New Energy Sources' is selection of a new nuclear source. Within this and the preceding projects financed by the Czech Ministry of Industry and Trade and the EU PHARE, the Department carries and has carried out the systematic validation of thermal-hydraulic and reactor physics computer codes applying data obtained on several experimental facilities as well as the real operational data. One of the important components of the VVER 440/213 NPP is its containment with pressure suppression system (bubble condenser). For safety analyses of this system, computer codes of the type MELCOR and COCOSYS are used in the Czech Republic. These codes were developed for containments of classic PWRs or BWRs. In order to apply these codes for VVER 440 systems, their validation on experimental facilities must be performed.The paper provides concise information on these activities of the NRI and its Thermal-hydraulics Department. The containment system of the VVER 440/213, its functions and approaches to solution of its safety is described with definition of acceptance criteria. A detailed example of the containment code validation on EREC Test facility (LOCA and MSLB) and the consequent utilisation of the results for a real NPP purposes is included. An approach to
Computer codes for evaluation of control room habitability (HABIT)
International Nuclear Information System (INIS)
Stage, S.A.
1996-06-01
This report describes the Computer Codes for Evaluation of Control Room Habitability (HABIT). HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. Given information about the design of a nuclear power plant, a scenario for the release of toxic chemicals or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel. HABIT is an integrated package of several programs that previously needed to be run separately and required considerable user intervention. This report discusses the theoretical basis and physical assumptions made by each of the modules in HABIT and gives detailed information about the data entry windows. Sample runs are given for each of the modules. A brief section of programming notes is included. A set of computer disks will accompany this report if the report is ordered from the Energy Science and Technology Software Center. The disks contain the files needed to run HABIT on a personal computer running DOS. Source codes for the various HABIT routines are on the disks. Also included are input and output files for three demonstration runs
Computing in high energy physics
International Nuclear Information System (INIS)
Hertzberger, L.O.; Hoogland, W.
1986-01-01
This book deals with advanced computing applications in physics, and in particular in high energy physics environments. The main subjects covered are networking; vector and parallel processing; and embedded systems. Also examined are topics such as operating systems, future computer architectures and commercial computer products. The book presents solutions that are foreseen as coping, in the future, with computing problems in experimental and theoretical High Energy Physics. In the experimental environment the large amounts of data to be processed offer special problems on-line as well as off-line. For on-line data reduction, embedded special purpose computers, which are often used for trigger applications are applied. For off-line processing, parallel computers such as emulator farms and the cosmic cube may be employed. The analysis of these topics is therefore a main feature of this volume
Development of Probabilistic Internal Dosimetry Computer Code
Energy Technology Data Exchange (ETDEWEB)
Noh, Siwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Tae-Eun [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Jai-Ki [Korean Association for Radiation Protection, Seoul (Korea, Republic of)
2017-02-15
Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values (e.g. the 2.5{sup th}, 5{sup th}, median, 95{sup th}, and 97.5{sup th} percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various
Development of Probabilistic Internal Dosimetry Computer Code
International Nuclear Information System (INIS)
Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki
2017-01-01
Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values (e.g. the 2.5 th , 5 th , median, 95 th , and 97.5 th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases
40 CFR 194.23 - Models and computer codes.
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...
Successful vectorization - reactor physics Monte Carlo code
International Nuclear Information System (INIS)
Martin, W.R.
1989-01-01
Most particle transport Monte Carlo codes in use today are based on the ''history-based'' algorithm, wherein one particle history at a time is simulated. Unfortunately, the ''history-based'' approach (present in all Monte Carlo codes until recent years) is inherently scalar and cannot be vectorized. In particular, the history-based algorithm cannot take advantage of vector architectures, which characterize the largest and fastest computers at the current time, vector supercomputers such as the Cray X/MP or IBM 3090/600. However, substantial progress has been made in recent years in developing and implementing a vectorized Monte Carlo algorithm. This algorithm follows portions of many particle histories at the same time and forms the basis for all successful vectorized Monte Carlo codes that are in use today. This paper describes the basic vectorized algorithm along with descriptions of several variations that have been developed by different researchers for specific applications. These applications have been mainly in the areas of neutron transport in nuclear reactor and shielding analysis and photon transport in fusion plasmas. The relative merits of the various approach schemes will be discussed and the present status of known vectorization efforts will be summarized along with available timing results, including results from the successful vectorization of 3-D general geometry, continuous energy Monte Carlo. (orig.)
ICAN Computer Code Adapted for Building Materials
Murthy, Pappu L. N.
1997-01-01
The NASA Lewis Research Center has been involved in developing composite micromechanics and macromechanics theories over the last three decades. These activities have resulted in several composite mechanics theories and structural analysis codes whose applications range from material behavior design and analysis to structural component response. One of these computer codes, the Integrated Composite Analyzer (ICAN), is designed primarily to address issues related to designing polymer matrix composites and predicting their properties - including hygral, thermal, and mechanical load effects. Recently, under a cost-sharing cooperative agreement with a Fortune 500 corporation, Master Builders Inc., ICAN was adapted to analyze building materials. The high costs and technical difficulties involved with the fabrication of continuous-fiber-reinforced composites sometimes limit their use. Particulate-reinforced composites can be thought of as a viable alternative. They are as easily processed to near-net shape as monolithic materials, yet have the improved stiffness, strength, and fracture toughness that is characteristic of continuous-fiber-reinforced composites. For example, particlereinforced metal-matrix composites show great potential for a variety of automotive applications, such as disk brake rotors, connecting rods, cylinder liners, and other hightemperature applications. Building materials, such as concrete, can be thought of as one of the oldest materials in this category of multiphase, particle-reinforced materials. The adaptation of ICAN to analyze particle-reinforced composite materials involved the development of new micromechanics-based theories. A derivative of the ICAN code, ICAN/PART, was developed and delivered to Master Builders Inc. as a part of the cooperative activity.
A surface code quantum computer in silicon
Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.
2015-01-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310
A surface code quantum computer in silicon.
Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L
2015-10-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.
Computer Tutorial Programs in Physics.
Faughn, Jerry; Kuhn, Karl
1979-01-01
Describes a series of computer tutorial programs which are intended to help college students in introductory physics courses. Information about these programs, which are either calculus or algebra-trig based, is presented. (HM)
Reactor physics and reactor computations
International Nuclear Information System (INIS)
Ronen, Y.; Elias, E.
1994-01-01
Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference
Computational atomic and nuclear physics
International Nuclear Information System (INIS)
Bottcher, C.; Strayer, M.R.; McGrory, J.B.
1990-01-01
The evolution of parallel processor supercomputers in recent years provides opportunities to investigate in detail many complex problems, in many branches of physics, which were considered to be intractable only a few years ago. But to take advantage of these new machines, one must have a better understanding of how the computers organize their work than was necessary with previous single processor machines. Equally important, the scientist must have this understanding as well as a good understanding of the structure of the physics problem under study. In brief, a new field of computational physics is evolving, which will be led by investigators who are highly literate both computationally and physically. A Center for Computationally Intensive Problems has been established with the collaboration of the University of Tennessee Science Alliance, Vanderbilt University, and the Oak Ridge National Laboratory. The objective of this Center is to carry out forefront research in computationally intensive areas of atomic, nuclear, particle, and condensed matter physics. An important part of this effort is the appropriate training of students. An early effort of this Center was to conduct a Summer School of Computational Atomic and Nuclear Physics. A distinguished faculty of scientists in atomic, nuclear, and particle physics gave lectures on the status of present understanding of a number of topics at the leading edge in these fields, and emphasized those areas where computational physics was in a position to make a major contribution. In addition, there were lectures on numerical techniques which are particularly appropriate for implementation on parallel processor computers and which are of wide applicability in many branches of science
Computational Methods in Plasma Physics
Jardin, Stephen
2010-01-01
Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency,
Computer codes for the analysis of flask impact problems
International Nuclear Information System (INIS)
Neilson, A.J.
1984-09-01
This review identifies typical features of the design of transportation flasks and considers some of the analytical tools required for the analysis of impact events. Because of the complexity of the physical problem, it is unlikely that a single code will adequately deal with all the aspects of the impact incident. Candidate codes are identified on the basis of current understanding of their strengths and limitations. It is concluded that the HONDO-II, DYNA3D AND ABAQUS codes which ar already mounted on UKAEA computers will be suitable tools for use in the analysis of experiments conducted in the proposed AEEW programme and of general flask impact problems. Initial attention should be directed at the DYNA3D and ABAQUS codes with HONDO-II being reserved for situations where the three-dimensional elements of DYNA3D may provide uneconomic simulations in planar or axisymmetric geometries. Attention is drawn to the importance of access to suitable mesh generators to create the nodal coordinate and element topology data required by these structural analysis codes. (author)
Quantum computation with topological codes from qubit to topological fault-tolerance
Fujii, Keisuke
2015-01-01
This book presents a self-consistent review of quantum computation with topological quantum codes. The book covers everything required to understand topological fault-tolerant quantum computation, ranging from the definition of the surface code to topological quantum error correction and topological fault-tolerant operations. The underlying basic concepts and powerful tools, such as universal quantum computation, quantum algorithms, stabilizer formalism, and measurement-based quantum computation, are also introduced in a self-consistent way. The interdisciplinary fields between quantum information and other fields of physics such as condensed matter physics and statistical physics are also explored in terms of the topological quantum codes. This book thus provides the first comprehensive description of the whole picture of topological quantum codes and quantum computation with them.
Energy Technology Data Exchange (ETDEWEB)
Joshua J. Cogliati; Abderrafi M. Ougouag
2006-10-01
A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.
Stornetta, Wakefield Scott, Jr.
The large numbers of elements in distributed computational systems such as systolic arrays, connectionist models, and groups of agents, makes it difficult to do a "bottom -up" analysis of system performance. This raises the issue of what aspects of such systems can be analyzed without detailed knowledge of the lowest-level interactions. Such an approach is analogous in spirit to seeking a thermodynamic description of a gas, rather than tracking the motions of individual molecules. Four concrete illustrations of this notion are presented as follows: (1) an alternative to the NetTalk approach to temporal pattern processing in connectionist networks, which exhibits simple scaling laws that reduce the system's dependence on the sampling rate, (2) an experimental study of the effect that symmetrizing the operating range of the back propagation connectionist model has on relaxation rates and capacity (3) a phenomenological model of a recently introduced fault-stealing mechanism for multi-pipeline systolic arrays, which predicts global failure rates on arrays of arbitrary size based on only a small number of measurements, and (4) the effects that the range of interaction has on specialization and fault tolerance for a group of agents engaged in problem solving.
Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis
Energy Technology Data Exchange (ETDEWEB)
Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E. [Sandia National Labs., Albuquerque, NM (United States); Tills, J. [J. Tills and Associates, Inc., Sandia Park, NM (United States)
1997-12-01
The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.
Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis
International Nuclear Information System (INIS)
Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E.; Tills, J.
1997-12-01
The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions
Enhanced Verification Test Suite for Physics Simulation Codes
Energy Technology Data Exchange (ETDEWEB)
Kamm, J R; Brock, J S; Brandon, S T; Cotrell, D L; Johnson, B; Knupp, P; Rider, W; Trucano, T; Weirs, V G
2008-10-10
This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest. This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of
Development of computer code in PNC, 3
International Nuclear Information System (INIS)
Ohtaki, Akira; Ohira, Hiroaki
1990-01-01
Super-COPD, a code which is integrated by calculation modules, has been developed in order to evaluate kinds of dynamics of LMFBR plant by improving COPD. The code involves all models and its advanced models of COPD in module structures. The code makes it possible to simulate the system dynamics of LMFBR plant of any configurations and components. (author)
Hamor-2: a computer code for LWR inventory calculation
International Nuclear Information System (INIS)
Guimaraes, L.N.F.; Marzo, M.A.S.
1985-01-01
A method for calculating the accuracy inventory of LWR reactors is presented. This method uses the Hamor-2 computer code. Hamor-2 is obtained from the coupling of two other computer codes Hammer-Techion and Origen-2 for testing Hamor-2, its results were compared to concentration values measured from activides of two PWR reactors; Kernkraftwerk Obrighein (KWO) and H.B. Robinson (HBR). These actinides are U 235 , U 236 , U 238 , Pu 239 , Pu 241 and PU 242 . The computer code Hammor-2 shows better results than the computer code Origem-2, when both are compared with experimental results. (E.G.) [pt
Use of computer codes for system reliability analysis
International Nuclear Information System (INIS)
Sabek, M.; Gaafar, M.; Poucet, A.
1989-01-01
This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author)
Use of computer codes for system reliability analysis
Energy Technology Data Exchange (ETDEWEB)
Sabek, M.; Gaafar, M. (Nuclear Regulatory and Safety Centre, Atomic Energy Authority, Cairo (Egypt)); Poucet, A. (Commission of the European Communities, Ispra (Italy). Joint Research Centre)
1989-01-01
This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author).
Nuclear data to support computer code validation
International Nuclear Information System (INIS)
Fisher, S.E.; Broadhead, B.L.; DeHart, M.D.; Primm, R.T. III
1997-04-01
The rate of plutonium disposition will be a key parameter in determining the degree of success of the Fissile Materials Disposition Program. Estimates of the disposition rate are dependent on neutronics calculations. To ensure that these calculations are accurate, the codes and data should be validated against applicable experimental measurements. Further, before mixed-oxide (MOX) fuel can be fabricated and loaded into a reactor, the fuel vendors, fabricators, fuel transporters, reactor owners and operators, regulatory authorities, and the Department of Energy (DOE) must accept the validity of design calculations. This report presents sources of neutronics measurements that have potential application for validating reactor physics (predicting the power distribution in the reactor core), predicting the spent fuel isotopic content, predicting the decay heat generation rate, certifying criticality safety of fuel cycle facilities, and ensuring adequate radiation protection at the fuel cycle facilities and the reactor. The U.S. in-reactor experience with MOX fuel is first presented, followed by information related to other aspects of the MOX fuel performance information that is valuable to this program, but the data base remains largely proprietary. Thus, this information is not reported here. It is expected that the selected consortium will make the necessary arrangements to procure or have access to the requisite information
Phenomenological optical potentials and optical model computer codes
International Nuclear Information System (INIS)
Prince, A.
1980-01-01
An introduction to the Optical Model is presented. Starting with the purpose and nature of the physical problems to be analyzed, a general formulation and the various phenomenological methods of solution are discussed. This includes the calculation of observables based on assumed potentials such as local and non-local and their forms, e.g. Woods-Saxon, folded model etc. Also discussed are the various calculational methods and model codes employed to describe nuclear reactions in the spherical and deformed regions (e.g. coupled-channel analysis). An examination of the numerical solutions and minimization techniques associated with the various codes, is briefly touched upon. Several computer programs are described for carrying out the calculations. The preparation of input, (formats and options), determination of model parameters and analysis of output are described. The class is given a series of problems to carry out using the available computer. Interpretation and evaluation of the samples includes the effect of varying parameters, and comparison of calculations with the experimental data. Also included is an intercomparison of the results from the various model codes, along with their advantages and limitations. (author)
The use of personal computers in reactor physics
International Nuclear Information System (INIS)
Cullen, D.E.
1988-01-01
This paper points out that personal computers are now powerful enough (in terms of core size and speed) to allow them to be used for serious reactor physics applications. In addition the low cost of personal computers means that even small institutes can now have access to a significant amount of computer power. At the present time distribution centers, such as RSIC, are beginning to distribute reactor physics codes for use on personal computers; hopefully in the near future more and more of these codes will become available through distribution centers, such as RSIC
International Nuclear Information System (INIS)
2004-03-01
A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)
Basic concepts in computational physics
Stickler, Benjamin A
2016-01-01
This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the read...
International Nuclear Information System (INIS)
Soares, P.A.; Sirimarco, L.F.
1984-01-01
SACI-2 is a computer code created to study the dynamic behaviour of a PWR nuclear power plant. To evaluate the quality of its results, SACI-2 was used to recalculate commissioning tests done in BIBLIS-A nuclear power plant and to calculate postulated transients for Angra-2 reactor. The results of SACI-2 computer code from BIBLIS-A showed as much good agreement as those calculated with the KWU Loop 7 computer code for Angra-2. (E.G.) [pt
Advances in Reactor physics, mathematics and computation. Volume 3
Energy Technology Data Exchange (ETDEWEB)
1987-01-01
These proceedings of the international topical meeting on advances in reactor physics, mathematics and computation, volume 3, are divided into sessions bearing on: - poster sessions on benchmark and codes: 35 conferences - review of status of assembly spectrum codes: 9 conferences - Numerical methods in fluid mechanics and thermal hydraulics: 16 conferences - stochastic transport and methods: 7 conferences.
Reactor physics computations for nuclear engineering undergraduates
International Nuclear Information System (INIS)
Huria, H.C.
1989-01-01
The undergraduate program in nuclear engineering at the University of Cincinnati provides three-quarters of nuclear reactor theory that concentrate on physical principles, with calculations limited to those that can be conveniently completed on programmable calculators. An additional one-quarter course is designed to introduce the student to realistic core physics calculational methods, which necessarily requires a computer. Such calculations can be conveniently demonstrated and completed with the modern microcomputer. The one-quarter reactor computations course includes a one-group, one-dimensional diffusion code to introduce the concepts of inner and outer iterations, a cell spectrum code based on integral transport theory to generate cell-homogenized few-group cross sections, and a multigroup diffusion code to determine multiplication factors and power distributions in one-dimensional systems. Problem assignments include the determination of multiplication factors and flux distributions for typical pressurized water reactor (PWR) cores under various operating conditions, such as cold clean, hot clean, hot clean at full power, hot full power with xenon and samarium, and a boron concentration search. Moderator and Doppler coefficients can also be evaluated and examined
Computer codes for neutron data evaluation
International Nuclear Information System (INIS)
Nakagawa, Tsuneo
1979-01-01
Data compilation codes such as NESTOR and REPSTOR, and NDES (Neutron Data Evaluation System) are mainly discussed. NDES is a code for neutron data evaluation using a TSS terminal, TEKTRONIX 4014. Users of NDES can perform plotting of data and calculation with nuclear models under conversational mode. (author)
A theory manual for multi-physics code coupling in LIME.
Energy Technology Data Exchange (ETDEWEB)
Belcourt, Noel; Bartlett, Roscoe Ainsworth; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren
2011-03-01
The Lightweight Integrating Multi-physics Environment (LIME) is a software package for creating multi-physics simulation codes. Its primary application space is when computer codes are currently available to solve different parts of a multi-physics problem and now need to be coupled with other such codes. In this report we define a common domain language for discussing multi-physics coupling and describe the basic theory associated with multiphysics coupling algorithms that are to be supported in LIME. We provide an assessment of coupling techniques for both steady-state and time dependent coupled systems. Example couplings are also demonstrated.
Potential of the MCNP computer code
International Nuclear Information System (INIS)
Kyncl, J.
1995-01-01
The MCNP code is designed for numerical solution of neutron, photon, and electron transport problems by the Monte Carlo method. The code is based on the linear transport theory of behavior of the differential flux of the particles. The code directly uses data from the cross section point data library for input. Experience is outlined, gained in the application of the code to the calculation of the effective parameters of fuel assemblies and of the entire reactor core, to the determination of the effective parameters of the elementary fuel cell, and to the numerical solution of neutron diffusion and/or transport problems of the fuel assembly. The agreement between the calculated and observed data gives evidence that the MCNP code can be used with advantage for calculations involving WWER type fuel assemblies. (J.B.). 4 figs., 6 refs
Control rod computer code IAMCOS: general theory and numerical methods
International Nuclear Information System (INIS)
West, G.
1982-11-01
IAMCOS is a computer code for the description of mechanical and thermal behavior of cylindrical control rods for fast breeders. This code version was applied, tested and modified from 1979 to 1981. In this report are described the basic model (02 version), theoretical definitions and computation methods [fr
Implantation of FRAPCON-2 code in HB computer
International Nuclear Information System (INIS)
Silva, C.F. da.
1987-05-01
The modifications carried out for implanting FRAPCON-2 computer code in the HB DPS-T7 computer are presented. The FRAPCON-2 code calculates thermo-mechanical response during long period of burnup in stationary state for fuel rods of PWR type reactors. (M.C.K.)
Selection of a computer code for Hanford low-level waste engineered-system performance assessment
International Nuclear Information System (INIS)
McGrail, B.P.; Mahoney, L.A.
1995-10-01
Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected to affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites
Computational physics of the mind
Duch, Włodzisław
1996-08-01
In the XIX century and earlier physicists such as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of the mind. In this paper several approaches relevant to modeling of the mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From a computational point of view realistic models require massively parallel architectures.
Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing
2010-03-01
that the hybridization that occurs between a DNA strand and its Watson - Crick complement can be used to perform mathematical computation. This research...ssDNA single stranded DNA WC Watson – Crick A Adenine C Cytosine G Guanine T Thymine ... Watson - Crick (WC) duplex, e.g., TCGCA TCGCA . Note that non-WC duplexes can form and such a formation is called a cross-hybridization. Cross
The SEDA computer code and its utilization for Angra 1
International Nuclear Information System (INIS)
Fernandes Filho, T.L.
1988-11-01
The implementation of SEDA 2.0 computer code, developed at Ezeiza Atomic Center, Argentine for Angra 1 reactor is described. The SEDA code gives an estimate for radiological consequences of nuclear accidents with release of radiactive materials for the environment. This code is now available for an IBM PC-XT. The computer environment, the files used, data, the programining structure and the models used are presented. The input data and results for two sample case are described. (author) [pt
APC: A new code for Atmospheric Polarization Computations
International Nuclear Information System (INIS)
Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.
2013-01-01
A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface. -- Highlights: •A new code, APC, has been developed. •The code was validated against well-known codes. •The BPDF for an arbitrary Mueller matrix is computed
Computer and compiler effects on code results: status report
International Nuclear Information System (INIS)
1996-01-01
Within the framework of the international effort on the assessment of computer codes, which are designed to describe the overall reactor coolant system (RCS) thermalhydraulic response, core damage progression, and fission product release and transport during severe accidents, there has been a continuous debate as to whether the code results are influenced by different code users or by different computers or compilers. The first aspect, the 'Code User Effect', has been investigated already. In this paper the other aspects will be discussed and proposals are given how to make large system codes insensitive to different computers and compilers. Hardware errors and memory problems are not considered in this report. The codes investigated herein are integrated code systems (e. g. ESTER, MELCOR) and thermalhydraulic system codes with extensions for severe accident simulation (e. g. SCDAP/RELAP, ICARE/CATHARE, ATHLET-CD), and codes to simulate fission product transport (e. g. TRAPMELT, SOPHAEROS). Since all of these codes are programmed in Fortran 77, the discussion herein is based on this programming language although some remarks are made about Fortran 90. Some observations about different code results by using different computers are reported and possible reasons for this unexpected behaviour are listed. Then methods are discussed how to avoid portability problems
Analysis of parallel computing performance of the code MCNP
International Nuclear Information System (INIS)
Wang Lei; Wang Kan; Yu Ganglin
2006-01-01
Parallel computing can reduce the running time of the code MCNP effectively. With the MPI message transmitting software, MCNP5 can achieve its parallel computing on PC cluster with Windows operating system. Parallel computing performance of MCNP is influenced by factors such as the type, the complexity level and the parameter configuration of the computing problem. This paper analyzes the parallel computing performance of MCNP regarding with these factors and gives measures to improve the MCNP parallel computing performance. (authors)
Standard interface files and procedures for reactor physics codes. Version IV
International Nuclear Information System (INIS)
O'Dell, R.D.
1977-09-01
Standards, procedures, and recommendations of the Committee on Computer Code Coordination for promoting the exchange of reactor physics codes are updated to Version IV status. Standards and procedures covering general programming, program structure, standard interface files, and file management and handling subroutines are included
Comparison of computer codes related to the sodium oxide aerosol behavior in a containment building
International Nuclear Information System (INIS)
Fermandjian, J.
1984-09-01
In order to ensure that the problems of describing the physical behavior of sodium aerosols, during hypothetical fast reactor accidents, were adequately understood, a comparison of the computer codes (ABC/INTG, PNC, Japan; AEROSIM, UKAEA/SRD, United Kingdom; PARDISEKO IIIb, KfK, Germany; AEROSOLS/A2 and AEROSOLS/B1, CEA France) was undertaken in the frame of the CEC: exercise in which code users have run their own codes with a prearranged input
A Comparative Study of RCS Computation Codes
National Research Council Canada - National Science Library
Tong, Chia T; Wah, Ang T; Hwee, Lim K; Philip, Ou S; Heng, Yar K; Rowse, David; Amos, Matthew; Keen, Alan; Pegg, Neil; Thain, Andrew
2005-01-01
.... The first test object is a (fictitious) generic missile. It provides a test problem for benchmarking the performance of CEM codes on geometries containing real world deficiencies, such as thin bodies and sharp corners...
KC-A Kinectic computer code for investigation of parametric plasma instabilities
International Nuclear Information System (INIS)
Olshansky, V.
1995-07-01
In the frame of a joint research program of the Institute of Plasma Physics of the NationaI Science Center 'Kharkov Institute of Physics and Technology' (Kh IPT), Ukraine, and the plasma physics group of the Austrian Research Center Seibersdorf (FZS) a kinetic computer code with the acronym KC for investigation of paramarametric plasma instabilities has been implemented at the computer facilities of FZS as a starting point for further research in this field. This code based on a macroparticle technique is appropriate for studying the evolution of instabilities in a turbulent plasma including saturation. The results can be of interest for heating of tokamaks of the next generation, i.g. ITER. The present report describes the underlying physical models and numerical methods as well as the code structure and how to use the code as a reference of forthcoming joint papers. (author)
PERCON: A flexible computer code for detailed thermal performance studies
International Nuclear Information System (INIS)
Boardman, F.B.; Collier, W.D.
1975-07-01
PERCON is a computer code which evaluates temperatures in three dimensions for a block containing heat sources and having coolant flow in one dimension. The solution is obtained at successive planes perpendicular to the coolant flow and the progression from one plane to the next occurs by the heat to the coolant determining convective boundary conditions at the next plane after due allowance being made for any lateral mixing or mass transfer between coolants. It is also possible to calculate the diametral change along a radius as a function of irradiation shrinkage and thermal expansion. This is used in a 'through life' calculation which evalates interaction pressure in tubular fuel elements. Physical property data used by the code may be specified as functions of temperature. The coolant flow may be specified, or alternatively derived by the program to satisfy either a specified overall pressure drop or mixed mean temperature rise. The pressure drop through each coolant is calculated and the flow modified, followed by a repeat of the temperature calculation, until the pressure imbalance between chosen flow channels at chosen axial positions is less than the specified convergence limit. A detailed description of the facilities in the code is given and some cases which have been studied are discussed. (U.K.)
Computer-assisted Particle-in-Cell code development
International Nuclear Information System (INIS)
Kawata, S.; Boonmee, C.; Teramoto, T.; Drska, L.; Limpouch, J.; Liska, R.; Sinor, M.
1997-12-01
This report presents a new approach for an electromagnetic Particle-in-Cell (PIC) code development by a computer: in general PIC codes have a common structure, and consist of a particle pusher, a field solver, charge and current density collections, and a field interpolation. Because of the common feature, the main part of the PIC code can be mechanically developed on a computer. In this report we use the packages FIDE and GENTRAN of the REDUCE computer algebra system for discretizations of field equations and a particle equation, and for an automatic generation of Fortran codes. The approach proposed is successfully applied to the development of 1.5-dimensional PIC code. By using the generated PIC code the Weibel instability in a plasma is simulated. The obtained growth rate agrees well with the theoretical value. (author)
Development of codes for physical calculations of WWER
International Nuclear Information System (INIS)
Novikov, A.N.
2000-01-01
A package of codes for physical calculations of WWER reactors, used at the RRC 'Kurchatov Institute' is discussed including the purpose of these codes, approximations used, degree of data verification, possibilities of automation of calculations and presentation of results, trends of further development of the codes. (Authors)
Information technology and computational physics
Kóczy, László; Mesiar, Radko; Kacprzyk, Janusz
2017-01-01
A broad spectrum of modern Information Technology (IT) tools, techniques, main developments and still open challenges is presented. Emphasis is on new research directions in various fields of science and technology that are related to data analysis, data mining, knowledge discovery, information retrieval, clustering and classification, decision making and decision support, control, computational mathematics and physics, to name a few. Applications in many relevant fields are presented, notably in telecommunication, social networks, recommender systems, fault detection, robotics, image analysis and recognition, electronics, etc. The methods used by the authors range from high level formal mathematical tools and techniques, through algorithmic and computational tools, to modern metaheuristics.
Physical Realizations of Quantum Computing
Kanemitsu, Shigeru; Salomaa, Martti; Takagi, Shin; Are the DiVincenzo Criteria Fulfilled in 2004 ?
2006-01-01
The contributors of this volume are working at the forefront of various realizations of quantum computers. They survey the recent developments in each realization, in the context of the DiVincenzo criteria, including nuclear magnetic resonance, Josephson junctions, quantum dots, and trapped ions. There are also some theoretical contributions which have relevance in the physical realizations of a quantum computer. This book fills the gap between elementary introductions to the subject and highly specialized research papers to allow beginning graduate students to understand the cutting-edge of r
Computer programs in accelerator physics
International Nuclear Information System (INIS)
Keil, E.
1984-01-01
Three areas of accelerator physics are discussed in which computer programs have been applied with much success: i) single-particle beam dynamics in circular machines, i.e. the design and matching of machine lattices; ii) computations of electromagnetic fields in RF cavities and similar objects, useful for the design of RF cavities and for the calculation of wake fields; iii) simulation of betatron and synchrotron oscillations in a machine with non-linear elements, e.g. sextupoles, and of bunch lengthening due to longitudinal wake fields. (orig.)
International Nuclear Information System (INIS)
Darby, J.L.
1986-01-01
The Adversary Sequence Diagram (ASD) concept was developed by Sandia National Laboratories (SNL) to examine physical security system effectiveness. Sandia also developed a mainframe computer code, PANL, to analyze the ASD. The authors have developed a microcomputer code, SEAPATH, which also analyzes ASD's. The Authors are supporting SNL in software development of the SAVI code; SAVI utilizes the SEAPATH algorithm to identify and quantify paths
Reducing Computational Overhead of Network Coding with Intrinsic Information Conveying
DEFF Research Database (Denmark)
Heide, Janus; Zhang, Qi; Pedersen, Morten V.
is RLNC (Random Linear Network Coding) and the goal is to reduce the amount of coding operations both at the coding and decoding node, and at the same time remove the need for dedicated signaling messages. In a traditional RLNC system, coding operation takes up significant computational resources and adds...... the coding operations must be performed in a particular way, which we introduce. Finally we evaluate the suggested system and find that the amount of coding can be significantly reduced both at nodes that recode and decode.......This paper investigated the possibility of intrinsic information conveying in network coding systems. The information is embedded into the coding vector by constructing the vector based on a set of predefined rules. This information can subsequently be retrieved by any receiver. The starting point...
PORPST: A statistical postprocessor for the PORMC computer code
International Nuclear Information System (INIS)
Eslinger, P.W.; Didier, B.T.
1991-06-01
This report describes the theory underlying the PORPST code and gives details for using the code. The PORPST code is designed to do statistical postprocessing on files written by the PORMC computer code. The data written by PORMC are summarized in terms of means, variances, standard deviations, or statistical distributions. In addition, the PORPST code provides for plotting of the results, either internal to the code or through use of the CONTOUR3 postprocessor. Section 2.0 discusses the mathematical basis of the code, and Section 3.0 discusses the code structure. Section 4.0 describes the free-format point command language. Section 5.0 describes in detail the commands to run the program. Section 6.0 provides an example program run, and Section 7.0 provides the references. 11 refs., 1 fig., 17 tabs
SIMCRI: a simple computer code for calculating nuclear criticality parameters
International Nuclear Information System (INIS)
Nakamaru, Shou-ichi; Sugawara, Nobuhiko; Naito, Yoshitaka; Katakura, Jun-ichi; Okuno, Hiroshi.
1986-03-01
This is a user's manual for a simple criticality calculation code SIMCRI. The code has been developed to facilitate criticality calculation on a single unit of nuclear fuel. SIMCRI makes an extensive survey with a little computing time. Cross section library MGCL for SIMCRI is the same one for the Monte Carlo criticality code KENOIV; it is, therefore, easy to compare the results of the two codes. SIMCRI solves eigenvalue problems and fixed source problems based on the one space point B 1 equation. The results include infinite and effective multiplication factor, critical buckling, migration area, diffusion coefficient and so on. SIMCRI is comprised in the criticality safety evaluation code system JACS. (author)
Recent progress of an integrated implosion code and modeling of element physics
International Nuclear Information System (INIS)
Nagatomo, H.; Takabe, H.; Mima, K.; Ohnishi, N.; Sunahara, A.; Takeda, T.; Nishihara, K.; Nishiguchu, A.; Sawada, K.
2001-01-01
Physics of the inertial fusion is based on a variety of elements such as compressible hydrodynamics, radiation transport, non-ideal equation of state, non-LTE atomic process, and relativistic laser plasma interaction. In addition, implosion process is not in stationary state and fluid dynamics, energy transport and instabilities should be solved simultaneously. In order to study such complex physics, an integrated implosion code including all physics important in the implosion process should be developed. The details of physics elements should be studied and the resultant numerical modeling should be installed in the integrated code so that the implosion can be simulated with available computer within realistic CPU time. Therefore, this task can be basically separated into two parts. One is to integrate all physics elements into a code, which is strongly related to the development of hydrodynamic equation solver. We have developed 2-D integrated implosion code which solves mass, momentum, electron energy, ion energy, equation of states, laser ray-trace, laser absorption radiation, surface tracing and so on. The reasonable results in simulating Rayleigh-Taylor instability and cylindrical implosion are obtained using this code. The other is code development on each element physics and verification of these codes. We had progress in developing a nonlocal electron transport code and 2 and 3 dimension radiation hydrodynamic code. (author)
GPU in Physics Computation: Case Geant4 Navigation
Seiskari, Otto; Niemi, Tapio
2012-01-01
General purpose computing on graphic processing units (GPU) is a potential method of speeding up scientific computation with low cost and high energy efficiency. We experimented with the particle physics simulation toolkit Geant4 used at CERN to benchmark its geometry navigation functionality on a GPU. The goal was to find out whether Geant4 physics simulations could benefit from GPU acceleration and how difficult it is to modify Geant4 code to run in a GPU. We ported selected parts of Geant4 code to C99 & CUDA and implemented a simple gamma physics simulation utilizing this code to measure efficiency. The performance of the program was tested by running it on two different platforms: NVIDIA GeForce 470 GTX GPU and a 12-core AMD CPU system. Our conclusion was that GPUs can be a competitive alternate for multi-core computers but porting existing software in an efficient way is challenging.
Code 672 observational science branch computer networks
Hancock, D. W.; Shirk, H. G.
1988-01-01
In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.
Two-dimensional color-code quantum computation
International Nuclear Information System (INIS)
Fowler, Austin G.
2011-01-01
We describe in detail how to perform universal fault-tolerant quantum computation on a two-dimensional color code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent logical qubits. Triple-defect logical qubits are deformed into isolated triangular sections of color code to enable transversal implementation of all single logical qubit Clifford group gates. Controlled-NOT (CNOT) is implemented between pairs of triple-defect logical qubits via braiding.
Theoretical calculation possibilities of the computer code HAMMER
International Nuclear Information System (INIS)
Onusic Junior, J.
1978-06-01
With the aim to know the theoretical calculation possibilities of the computer code HAMMER, developed at Savanah River Laboratory, a analysis of the crytical cells assembly of the kind utilized in PWR reactors is made. (L.F.S.) [pt
Computer code qualification program for the Advanced CANDU Reactor
International Nuclear Information System (INIS)
Popov, N.K.; Wren, D.J.; Snell, V.G.; White, A.J.; Boczar, P.G.
2003-01-01
Atomic Energy of Canada Ltd (AECL) has developed and implemented a Software Quality Assurance program (SQA) to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. This paper provides an overview of the computer programs used in Advanced CANDU Reactor (ACR) safety analysis, and assessment of their applicability in the safety analyses of the ACR design. An outline of the incremental validation program, and an overview of the experimental program in support of the code validation are also presented. An outline of the SQA program used to qualify these computer codes is also briefly presented. To provide context to the differences in the SQA with respect to current CANDUs, the paper also provides an overview of the ACR design features that have an impact on the computer code qualification. (author)
Computer codes for level 1 probabilistic safety assessment
International Nuclear Information System (INIS)
1990-06-01
Probabilistic Safety Assessment (PSA) entails several laborious tasks suitable for computer codes assistance. This guide identifies these tasks, presents guidelines for selecting and utilizing computer codes in the conduct of the PSA tasks and for the use of PSA results in safety management and provides information on available codes suggested or applied in performing PSA in nuclear power plants. The guidance is intended for use by nuclear power plant system engineers, safety and operating personnel, and regulators. Large efforts are made today to provide PC-based software systems and PSA processed information in a way to enable their use as a safety management tool by the nuclear power plant overall management. Guidelines on the characteristics of software needed for management to prepare a software that meets their specific needs are also provided. Most of these computer codes are also applicable for PSA of other industrial facilities. The scope of this document is limited to computer codes used for the treatment of internal events. It does not address other codes available mainly for the analysis of external events (e.g. seismic analysis) flood and fire analysis. Codes discussed in the document are those used for probabilistic rather than for phenomenological modelling. It should be also appreciated that these guidelines are not intended to lead the user to selection of one specific code. They provide simply criteria for the selection. Refs and tabs
User manual of FRAPCON-I computer code
International Nuclear Information System (INIS)
Chia, C.T.
1985-11-01
The manual for using the FRAPCON-I code implanted by Reactor Department of Brazilian-CNEN to convert IBM FORTRAN in FORTRAN 77 of Honeywell Bull computer is presented. The FRAPCON-I code describes the behaviour of fuel rods of PWR type reactors at stationary state during long periods of burnup. (M.C.K.)
Study of nuclear computer code maintenance and management system
International Nuclear Information System (INIS)
Ryu, Chang Mo; Kim, Yeon Seung; Eom, Heung Seop; Lee, Jong Bok; Kim, Ho Joon; Choi, Young Gil; Kim, Ko Ryeo
1989-01-01
Software maintenance is one of the most important problems since late 1970's.We wish to develop a nuclear computer code system to maintenance and manage KAERI's nuclear software. As a part of this system, we have developed three code management programs for use on CYBER and PC systems. They are used in systematic management of computer code in KAERI. The first program is embodied on the CYBER system to rapidly provide information on nuclear codes to the users. The second and the third programs were embodied on the PC system for the code manager and for the management of data in korean language, respectively. In the requirement analysis, we defined each code, magnetic tape, manual and abstract information data. In the conceptual design, we designed retrieval, update, and output functions. In the implementation design, we described the technical considerations of database programs, utilities, and directions for the use of databases. As a result of this research, we compiled the status of nuclear computer codes which belonged KAERI until September, 1988. Thus, by using these three database programs, we could provide the nuclear computer code information to the users more rapidly. (Author)
APC: A New Code for Atmospheric Polarization Computations
Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.
2014-01-01
A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface.
The r-Java 2.0 code: nuclear physics
Kostka, M.; Koning, N.; Shand, Z.; Ouyed, R.; Jaikumar, P.
2014-08-01
Aims: We present r-Java 2.0, a nucleosynthesis code for open use that performs r-process calculations, along with a suite of other analysis tools. Methods: Equipped with a straightforward graphical user interface, r-Java 2.0 is capable of simulating nuclear statistical equilibrium (NSE), calculating r-process abundances for a wide range of input parameters and astrophysical environments, computing the mass fragmentation from neutron-induced fission and studying individual nucleosynthesis processes. Results: In this paper we discuss enhancements to this version of r-Java, especially the ability to solve the full reaction network. The sophisticated fission methodology incorporated in r-Java 2.0 that includes three fission channels (beta-delayed, neutron-induced, and spontaneous fission), along with computation of the mass fragmentation, is compared to the upper limit on mass fission approximation. The effects of including beta-delayed neutron emission on r-process yield is studied. The role of Coulomb interactions in NSE abundances is shown to be significant, supporting previous findings. A comparative analysis was undertaken during the development of r-Java 2.0 whereby we reproduced the results found in the literature from three other r-process codes. This code is capable of simulating the physical environment of the high-entropy wind around a proto-neutron star, the ejecta from a neutron star merger, or the relativistic ejecta from a quark nova. Likewise the users of r-Java 2.0 are given the freedom to define a custom environment. This software provides a platform for comparing proposed r-process sites.
Hauser*5, a computer code to calculate nuclear cross sections
International Nuclear Information System (INIS)
Mann, F.M.
1979-07-01
HAUSER*5 is a computer code that uses the statistical (Hauser-Feshbach) model, the pre-equilibrium model, and a statistical model of direct reactions to predict nuclear cross sections. The code is unrestricted as to particle type, includes fission and capture, makes width-fluctuation corrections, and performs three-body calculations - all in minimum computer time. Transmission coefficients can be generated internally or supplied externally. This report describes equations used, necessary input, and resulting output. 2 figures, 4 tables
Computer codes developed in FRG to analyse hypothetical meltdown accidents
International Nuclear Information System (INIS)
Hassmann, K.; Hosemann, J.P.; Koerber, H.; Reineke, H.
1978-01-01
It is the purpose of this paper to give the status of all significant computer codes developed in the core melt-down project which is incorporated in the light water reactor safety research program of the Federal Ministry of Research and Technology. For standard pressurized water reactors, results of some computer codes will be presented, describing the course and the duration of the hypothetical core meltdown accident. (author)
The computer code EURDYN-1M (release 2). User's manual
International Nuclear Information System (INIS)
1982-01-01
EURDYN-1M is a finite element computer code developed at J.R.C. Ispra to compute the response of two-dimensional coupled fluid-structure configurations to transient dynamic loading for reactor safety studies. This report gives instructions for preparing input data to EURDYN-1M, release 2, and describes a test problem in order to illustrate both the input and the output of the code
Heat Transfer treatment in computer codes for safety analysis
International Nuclear Information System (INIS)
Jerele, A.; Gregoric, M.
1984-01-01
Increased number of operating nuclear power plants has stressed importance of nuclear safety evaluation. For this reason, accordingly to regulatory commission request, safety analyses with computer codes are preformed. In this paper part of this thermohydraulic models dealing with wall-to-fluid heat transfer correlations in computer codes TRAC=PF1, RELAP4/MOD5, RELAP5/MOD1 and COBRA-IV is discussed. (author)
Two-phase computer codes for zero-gravity applications
International Nuclear Information System (INIS)
Krotiuk, W.J.
1986-10-01
This paper discusses the problems existing in the development of computer codes which can analyze the thermal-hydraulic behavior of two-phase fluids especially in low gravity nuclear reactors. The important phenomenon affecting fluid flow and heat transfer in reduced gravity is discussed. The applicability of using existing computer codes for space applications is assessed. Recommendations regarding the use of existing earth based fluid flow and heat transfer correlations are made and deficiencies in these correlations are identified
Los Alamos radiation transport code system on desktop computing platforms
International Nuclear Information System (INIS)
Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T.
1990-01-01
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines
ETFOD: a point model physics code with arbitrary input
International Nuclear Information System (INIS)
Rothe, K.E.; Attenberger, S.E.
1980-06-01
ETFOD is a zero-dimensional code which solves a set of physics equations by minimization. The technique used is different than normally used, in that the input is arbitrary. The user is supplied with a set of variables from which he specifies which variables are input (unchanging). The remaining variables become the output. Presently the code is being used for ETF reactor design studies. The code was written in a manner to allow easy modificaton of equations, variables, and physics calculations. The solution technique is presented along with hints for using the code
A restructuring of CF package for MIDAS computer code
International Nuclear Information System (INIS)
Park, S. H.; Kim, K. R.; Kim, D. H.; Cho, S. W.
2004-01-01
CF package, which evaluates user-specified 'control functions' and applies them to define or control various aspects of computation, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and modernized data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the CF package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory, difficulty is more over because its data is location information of other package's data due to characteristics of CF package. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the CF package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The verification has been done by comparing the results of the modified code with those from the existing code. As the trends are similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models
Computer code ANISN multiplying media and shielding calculation II. Code description (input/output)
International Nuclear Information System (INIS)
Maiorino, J.R.
1990-01-01
The user manual of the ANISN computer code describing input and output subroutines is presented. ANISN code was developed to solve one-dimensional transport equation for neutron or gamma rays in slab, sphere or cylinder geometry with general anisotropic scattering. The solution technique is the discrete ordinate method. (M.C.K.)
Computer codes incorporating pre-equilibrium decay
International Nuclear Information System (INIS)
Prince, A.
1980-01-01
After establishing the need to describe the high-energy particle spectrum which is evident in the experimental data, the various models used in the interpretation are presented. This includes the following: a) Cascade Model; b) Fermi-Gas Relaxation Model; c) Exciton Model; d) Hybrid and Geometry-Dependent Model. The codes description and preparation of input data for STAPRE was presented (Dr. Strohmaier). A simulated output was employed for a given input and comparison with experimental data substantiated the rather sophisticated treatment. (author)
Data exchange between zero dimensional code and physics platform in the CFETR integrated system code
Energy Technology Data Exchange (ETDEWEB)
Xu, Guoliang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Shi, Nan [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Zhou, Yifu; Mao, Shifeng [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Jian, Xiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jiale [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Liu, Li; Chan, Vincent [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China)
2016-11-01
Highlights: • The workflow of the zero dimensional code and the multi-dimension physics platform of CFETR integrated system codeis introduced. • The iteration process among the codes in the physics platform. • The data transfer between the zero dimensionalcode and the physical platform, including data iteration and validation, and justification for performance parameters.. - Abstract: The China Fusion Engineering Test Reactor (CFETR) integrated system code contains three parts: a zero dimensional code, a physics platform and an engineering platform. We use the zero dimensional code to identify a set of preliminary physics and engineering parameters for CFETR, which is used as input to initiate multi-dimension studies using the physics and engineering platform for design, verification and validation. Effective data exchange between the zero dimensional code and the physical platform is critical for the optimization of CFETR design. For example, in evaluating the impact of impurity radiation on core performance, an open field line code is used to calculate the impurity transport from the first-wall boundary to the pedestal. The impurity particle in the pedestal are used as boundary conditions in a transport code for calculating impurity transport in the core plasma and the impact of core radiation on core performance. Comparison of the results from the multi-dimensional study to those from the zero dimensional code is used to further refine the controlled radiation model. The data transfer between the zero dimensional code and the physical platform, including data iteration and validation, and justification for performance parameters will be presented in this paper.
Mathematics, Physics and Computer Sciences The computation of ...
African Journals Online (AJOL)
Mathematics, Physics and Computer Sciences The computation of system matrices for biquadraticsquare finite ... Global Journal of Pure and Applied Sciences ... The computation of system matrices for biquadraticsquare finite elements.
Development of DUST: A computer code that calculates release rates from a LLW disposal unit
International Nuclear Information System (INIS)
Sullivan, T.M.
1992-01-01
Performance assessment of a Low-Level Waste (LLW) disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the disposal unit source term). The major physical processes that influence the source term are water flow, container degradation, waste form leaching, and radionuclide transport. A computer code, DUST (Disposal Unit Source Term) has been developed which incorporates these processes in a unified manner. The DUST code improves upon existing codes as it has the capability to model multiple container failure times, multiple waste form release properties, and radionuclide specific transport properties. Verification studies performed on the code are discussed
International Nuclear Information System (INIS)
Raymond, P.; Caruge, D.; Paik, H.J.
1994-01-01
The French CEA has recently developed a set of new computer codes for reactor physics computations called the Saphir system which includes CRONOS-2, a three-dimensional neutronic code, FLICA-4, a three-dimensional core thermal hydraulic code, and FLICA-S, a primary loops thermal-hydraulic transient computation code, which are coupled and applied to analyze a severe reactivity accident induced by a thermal hydraulic transient: the Steamline Break accident for a pressurized water reactor until soluble boron begins to accumulate in the core. The coupling of these codes has proved to be numerically stable. 15 figs., 7 refs
Adaptation of HAMMER computer code to CYBER 170/750 computer
International Nuclear Information System (INIS)
Pinheiro, A.M.B.S.; Nair, R.P.K.
1982-01-01
The adaptation of HAMMER computer code to CYBER 170/750 computer is presented. The HAMMER code calculates cell parameters by multigroup transport theory and reactor parameters by few group diffusion theory. The auxiliary programs, the carried out modifications and the use of HAMMER system adapted to CYBER 170/750 computer are described. (M.C.K.) [pt
High energy physics and grid computing
International Nuclear Information System (INIS)
Yu Chuansong
2004-01-01
The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)
Case studies in Gaussian process modelling of computer codes
International Nuclear Information System (INIS)
Kennedy, Marc C.; Anderson, Clive W.; Conti, Stefano; O'Hagan, Anthony
2006-01-01
In this paper we present a number of recent applications in which an emulator of a computer code is created using a Gaussian process model. Tools are then applied to the emulator to perform sensitivity analysis and uncertainty analysis. Sensitivity analysis is used both as an aid to model improvement and as a guide to how much the output uncertainty might be reduced by learning about specific inputs. Uncertainty analysis allows us to reflect output uncertainty due to unknown input parameters, when the finished code is used for prediction. The computer codes themselves are currently being developed within the UK Centre for Terrestrial Carbon Dynamics
Statistical screening of input variables in a complex computer code
International Nuclear Information System (INIS)
Krieger, T.J.
1982-01-01
A method is presented for ''statistical screening'' of input variables in a complex computer code. The object is to determine the ''effective'' or important input variables by estimating the relative magnitudes of their associated sensitivity coefficients. This is accomplished by performing a numerical experiment consisting of a relatively small number of computer runs with the code followed by a statistical analysis of the results. A formula for estimating the sensitivity coefficients is derived. Reference is made to an earlier work in which the method was applied to a complex reactor code with good results
Computer codes for beam dynamics analysis of cyclotronlike accelerators
Smirnov, V.
2017-12-01
Computer codes suitable for the study of beam dynamics in cyclotronlike (classical and isochronous cyclotrons, synchrocyclotrons, and fixed field alternating gradient) accelerators are reviewed. Computer modeling of cyclotron segments, such as the central zone, acceleration region, and extraction system is considered. The author does not claim to give a full and detailed description of the methods and algorithms used in the codes. Special attention is paid to the codes already proven and confirmed at the existing accelerating facilities. The description of the programs prepared in the worldwide known accelerator centers is provided. The basic features of the programs available to users and limitations of their applicability are described.
Multitasking the code ARC3D. [for computational fluid dynamics
Barton, John T.; Hsiung, Christopher C.
1986-01-01
The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.
Preliminary Coupling of MATRA Code for Multi-physics Analysis
International Nuclear Information System (INIS)
Kim, Seongjin; Choi, Jinyoung; Yang, Yongsik; Kwon, Hyouk; Hwang, Daehyun
2014-01-01
The boundary conditions such as the inlet temperature, mass flux, averaged heat flux, power distributions of the rods, and core geometry is given by constant values or functions of time. These conditions are separately calculated and provided by other codes, such as a neutronics or a system codes, into the MATRA code. In addition, the coupling of several codes in the different physics field is focused and embodied. In this study, multiphysics coupling methods were developed for a subchannel code (MATRA) with neutronics codes (MASTER, DeCART) and a fuel performance code (FRAPCON-3). Preliminary evaluation results for representative sample cases are presented. The MASTER and DeCART codes provide the power distribution of the rods in the core to the MATRA code. In case of the FRAPCON-3 code, the variation of the rod diameter induced by the thermal expansion is yielded and provided. The MATRA code transfers the thermal-hydraulic conditions that each code needs. Moreover, the coupling method with each code is described
Code system to compute radiation dose in human phantoms
International Nuclear Information System (INIS)
Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.
1986-01-01
Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods
Resonance interference method in lattice physics code stream
International Nuclear Information System (INIS)
Choi, Sooyoung; Khassenov, Azamat; Lee, Deokjung
2015-01-01
Newly developed resonance interference model is implemented in the lattice physics code STREAM, and the model shows a significant improvement in computing accurate eigenvalues. Equivalence theory is widely used in production calculations to generate the effective multigroup (MG) cross-sections (XS) for commercial reactors. Although a lot of methods have been developed to enhance the accuracy in computing effective XSs, the current resonance treatment methods still do not have a clear resonance interference model. The conventional resonance interference model simply adds the absorption XSs of resonance isotopes to the background XS. However, the conventional models show non-negligible errors in computing effective XSs and eigenvalues. In this paper, a resonance interference factor (RIF) library method is proposed. This method interpolates the RIFs in a pre-generated RIF library and corrects the effective XS, rather than solving the time consuming slowing down calculation. The RIF library method is verified for homogeneous and heterogeneous problems. The verification results using the proposed method show significant improvements of accuracy in treating the interference effect. (author)
A computer code for analysis of severe accidents in LWRs
International Nuclear Information System (INIS)
2001-01-01
The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)
A computer code for analysis of severe accidents in LWRs
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-07-01
The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)
A computer code for analysis of severe accidents in LWRs
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-07-01
The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)
Thermohydraulic analysis of nuclear power plant accidents by computer codes
International Nuclear Information System (INIS)
Petelin, S.; Stritar, A.; Istenic, R.; Gregoric, M.; Jerele, A.; Mavko, B.
1982-01-01
RELAP4/MOD6, BRUCH-D-06, CONTEMPT-LT-28, RELAP5/MOD1 and COBRA-4-1 codes were successful y implemented at the CYBER 172 computer in Ljubljana. Input models of NPP Krsko for the first three codes were prepared. Because of the high computer cost only one analysis of double ended guillotine break of the cold leg of NPP Krsko by RELAP4 code has been done. BRUCH code is easier and cheaper for use. Several analysis have been done. Sensitivity study was performed with CONTEMPT-LT-28 for double ended pump suction break. These codes are intended to be used as a basis for independent safety analyses. (author)
MISER-I: a computer code for JOYO fuel management
International Nuclear Information System (INIS)
Yamashita, Yoshioki
1976-06-01
A computer code ''MISER-I'' is for a nuclear fuel management of Japan Experimental Fast Breeder Reactor JOYO. The nuclear fuel management in JOYO can be regarded as a fuel assembly management because a handling unit of fuel in JOYO plant is a fuel subassembly (core and blanket subassembly), and so the recording of material balance in computer code is made with each subassembly. The input information into computer code is given with each subassembly for a transfer operation, or with one reactor cycle and every one month for a burn-up in reactor core. The output information of MISER-I code is the fuel assembly storage record, fuel storage weight record in each material balance subarea at any specified day, and fuel subassembly transfer history record. Change of nuclear fuel composition and weight due to a burn-up is calculated with JOYO-Monitoring Code by off-line computation system. MISER-I code is written in FORTRAN-IV language for FACOM 230-48 computer. (auth.)
Development Of A Navier-Stokes Computer Code
Yoon, Seokkwan; Kwak, Dochan
1993-01-01
Report discusses aspects of development of CENS3D computer code, solving three-dimensional Navier-Stokes equations of compressible, viscous, unsteady flow. Implements implicit finite-difference or finite-volume numerical-integration scheme, called "lower-upper symmetric-Gauss-Seidel" (LU-SGS), offering potential for very low computer time per iteration and for fast convergence.
A survey of computational physics introductory computational science
Landau, Rubin H; Bordeianu, Cristian C
2008-01-01
Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics
A restructuring of RN1 package for MIDAS computer code
International Nuclear Information System (INIS)
Park, S. H.; Kim, D. H.; Kim, K. R.
2003-01-01
RN1 package, which is one of two fission product-related packages in MELCOR, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and modernized data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the RN1 package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the RN1 package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The verification has been done by comparing the results of the modified code with those from the existing code. As the trends are similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models
A restructuring of COR package for MIDAS computer code
International Nuclear Information System (INIS)
Park, S.H.; Kim, K.R.; Kim, D.H.
2004-01-01
The COR package, which calculates the thermal response of the core and the lower plenum internal structures and models the relocation of the core and lower plenum structural materials, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and a modernized data structure. To do this, the data transferring methods of the current MELCOR code are modified and adopted into the COR package. The data structure of the current MELCOR code using FORTRAN77 has a difficulty in grasping the meaning of the variables as well as a waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which leads to an efficient memory treatment and an easy understanding of the code. Restructuring of the COR package addressed in this paper includes a module development, subroutine modification. The verification has been done by comparing the results of the modified code with those of the existing code. As the trends are similar to each other, it implies that the same approach could be extended to the entire code package. It is expected that the code restructuring will accelerated the code's domestication thanks to a direct understanding of each variable and an easy implementation of the modified or newly developed models. (author)
A restructuring of RN2 package for MIDAS computer code
International Nuclear Information System (INIS)
Park, S. H.; Kim, D. H.
2003-01-01
RN2 package, which is one of two fission product-related package in MELCOR, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the RN2 package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the RN2 package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The validation has been done by comparing the results of the modified code with those from the existing code. As the trends are the similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models
High energy physics and cloud computing
International Nuclear Information System (INIS)
Cheng Yaodong; Liu Baoxu; Sun Gongxing; Chen Gang
2011-01-01
High Energy Physics (HEP) has been a strong promoter of computing technology, for example WWW (World Wide Web) and the grid computing. In the new era of cloud computing, HEP has still a strong demand, and major international high energy physics laboratories have launched a number of projects to research on cloud computing technologies and applications. It describes the current developments in cloud computing and its applications in high energy physics. Some ongoing projects in the institutes of high energy physics, Chinese Academy of Sciences, including cloud storage, virtual computing clusters, and BESⅢ elastic cloud, are also described briefly in the paper. (authors)
Automated uncertainty analysis methods in the FRAP computer codes
International Nuclear Information System (INIS)
Peck, S.O.
1980-01-01
A user oriented, automated uncertainty analysis capability has been incorporated in the Fuel Rod Analysis Program (FRAP) computer codes. The FRAP codes have been developed for the analysis of Light Water Reactor fuel rod behavior during steady state (FRAPCON) and transient (FRAP-T) conditions as part of the United States Nuclear Regulatory Commission's Water Reactor Safety Research Program. The objective of uncertainty analysis of these codes is to obtain estimates of the uncertainty in computed outputs of the codes is to obtain estimates of the uncertainty in computed outputs of the codes as a function of known uncertainties in input variables. This paper presents the methods used to generate an uncertainty analysis of a large computer code, discusses the assumptions that are made, and shows techniques for testing them. An uncertainty analysis of FRAP-T calculated fuel rod behavior during a hypothetical loss-of-coolant transient is presented as an example and carried through the discussion to illustrate the various concepts
HUDU: The Hanford Unified Dose Utility computer code
International Nuclear Information System (INIS)
Scherpelz, R.I.
1991-02-01
The Hanford Unified Dose Utility (HUDU) computer program was developed to provide rapid initial assessment of radiological emergency situations. The HUDU code uses a straight-line Gaussian atmospheric dispersion model to estimate the transport of radionuclides released from an accident site. For dose points on the plume centerline, it calculates internal doses due to inhalation and external doses due to exposure to the plume. The program incorporates a number of features unique to the Hanford Site (operated by the US Department of Energy), including a library of source terms derived from various facilities' safety analysis reports. The HUDU code was designed to run on an IBM-PC or compatible personal computer. The user interface was designed for fast and easy operation with minimal user training. The theoretical basis and mathematical models used in the HUDU computer code are described, as are the computer code itself and the data libraries used. Detailed instructions for operating the code are also included. Appendices to the report contain descriptions of the program modules, listings of HUDU's data library, and descriptions of the verification tests that were run as part of the code development. 14 refs., 19 figs., 2 tabs
Computer Security: better code, fewer problems
Stefan Lueders, Computer Security Team
2016-01-01
The origin of many security incidents is negligence or unintentional mistakes made by web developers or programmers. In the rush to complete the work, due to skewed priorities, or just to ignorance, basic security principles can be omitted or forgotten. The resulting vulnerabilities lie dormant until the evil side spots them and decides to hit hard. Computer security incidents in the past have put CERN’s reputation at risk due to websites being defaced with negative messages about the Organization, hash files of passwords being extracted, restricted data exposed… And it all started with a little bit of negligence! If you check out the Top 10 web development blunders, you will see that the most prevalent mistakes are: Not filtering input, e.g. accepting “<“ or “>” in input fields even if only a number is expected. Not validating that input: you expect a birth date? So why accept letters? &...
Development of computer code in PNC, 8
International Nuclear Information System (INIS)
Ohhira, Mitsuru
1990-01-01
Private buildings applied base isolation system, are on the practical stage now. So, under Construction and Maintenance Management Office, we are doing an application study of base isolation system to nuclear fuel facilities. On the process of this study, we have developed Dynamic Analysis Program-Base Isolation System (DAP-BS) which is able to run a 32-bit personal computer. Using this program, we can analyze a 3-dimensional structure, and evaluate the various properties of base isolation parts that are divided into maximum 16 blocks. And from the results of some simulation analyses, we thought that DAP-BS had good reliability and marketability. So, we put DAP-BS on the market. (author)
A compendium of computer codes in fault tree analysis
International Nuclear Information System (INIS)
Lydell, B.
1981-03-01
In the past ten years principles and methods for a unified system reliability and safety analysis have been developed. Fault tree techniques serve as a central feature of unified system analysis, and there exists a specific discipline within system reliability concerned with the theoretical aspects of fault tree evaluation. Ever since the fault tree concept was established, computer codes have been developed for qualitative and quantitative analyses. In particular the presentation of the kinetic tree theory and the PREP-KITT code package has influenced the present use of fault trees and the development of new computer codes. This report is a compilation of some of the better known fault tree codes in use in system reliability. Numerous codes are available and new codes are continuously being developed. The report is designed to address the specific characteristics of each code listed. A review of the theoretical aspects of fault tree evaluation is presented in an introductory chapter, the purpose of which is to give a framework for the validity of the different codes. (Auth.)
International Nuclear Information System (INIS)
Duplex, B.
2011-01-01
The CEA develops and uses scientific software, called physical codes, in various physical disciplines to optimize installation and experimentation costs. During a study, several physical phenomena interact, so a code coupling and some data exchanges between different physical codes are required. Each physical code computes on a particular geometry, usually represented by a mesh composed of thousands to millions of elements. This PhD Thesis focuses on the geometrical modification transfer between specific meshes of each coupled physical code. First, it presents a physical code coupling method where deformations are computed by one of these codes. Next, it discusses the establishment of a model, common to different physical codes, grouping all the shared data. Finally, it covers the deformation transfers between meshes of the same geometry or adjacent geometries. Geometrical modifications are discrete data because they are based on a mesh. In order to permit every code to access deformations and to transfer them, a continuous representation is computed. Two functions are developed, one with a global support, and the other with a local support. Both functions combine a simplification method and a radial basis function network. A whole use case is dedicated to the Jules Horowitz reactor. The effect of differential dilatations on experimental device cooling is studied. (author) [fr
A three-dimensional magnetostatics computer code for insertion devices
International Nuclear Information System (INIS)
Chubar, O.; Elleaume, P.; Chavanne, J.
1998-01-01
RADIA is a three-dimensional magnetostatics computer code optimized for the design of undulators and wigglers. It solves boundary magnetostatics problems with magnetized and current-carrying volumes using the boundary integral approach. The magnetized volumes can be arbitrary polyhedrons with non-linear (iron) or linear anisotropic (permanent magnet) characteristics. The current-carrying elements can be straight or curved blocks with rectangular cross sections. Boundary conditions are simulated by the technique of mirroring. Analytical formulae used for the computation of the field produced by a magnetized volume of a polyhedron shape are detailed. The RADIA code is written in object-oriented C++ and interfaced to Mathematica (Mathematica is a registered trademark of Wolfram Research, Inc.). The code outperforms currently available finite-element packages with respect to the CPU time of the solver and accuracy of the field integral estimations. An application of the code to the case of a wedge-pole undulator is presented
Holonomic surface codes for fault-tolerant quantum computation
Zhang, Jiang; Devitt, Simon J.; You, J. Q.; Nori, Franco
2018-02-01
Surface codes can protect quantum information stored in qubits from local errors as long as the per-operation error rate is below a certain threshold. Here we propose holonomic surface codes by harnessing the quantum holonomy of the system. In our scheme, the holonomic gates are built via auxiliary qubits rather than the auxiliary levels in multilevel systems used in conventional holonomic quantum computation. The key advantage of our approach is that the auxiliary qubits are in their ground state before and after each gate operation, so they are not involved in the operation cycles of surface codes. This provides an advantageous way to implement surface codes for fault-tolerant quantum computation.
A restructuring of TF package for MIDAS computer code
International Nuclear Information System (INIS)
Park, S. H.; Song, Y. M.; Kim, D. H.
2002-01-01
TF package which defines some interpolation and extrapolation condition through user defined table has been restructured in MIDAS computer code. To do this, data transferring methods of current MELCOR code are modified and adopted into TF package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of the meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of TF package addressed in this paper does module development and subroutine modification, and treats MELGEN which is making restart file as well as MELCOR which is processing calculation. The validation has been done by comparing the results of the modified code with those from the existing code, and it is confirmed that the results are the same. It hints that the similar approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models
Computer codes for problems of isotope and radiation research
International Nuclear Information System (INIS)
Remer, M.
1986-12-01
A survey is given of computer codes for problems in isotope and radiation research. Altogether 44 codes are described as titles with abstracts. 17 of them are in the INIS scope and are processed individually. The subjects are indicated in the chapter headings: 1) analysis of tracer experiments, 2) spectrum calculations, 3) calculations of ion and electron trajectories, 4) evaluation of gamma irradiation plants, and 5) general software
Sample test cases using the environmental computer code NECTAR
International Nuclear Information System (INIS)
Ponting, A.C.
1984-06-01
This note demonstrates a few of the many different ways in which the environmental computer code NECTAR may be used. Four sample test cases are presented and described to show how NECTAR input data are structured. Edited output is also presented to illustrate the format of the results. Two test cases demonstrate how NECTAR may be used to study radio-isotopes not explicitly included in the code. (U.K.)
Computer code for calculating personnel doses due to tritium exposures
International Nuclear Information System (INIS)
Graham, C.L.; Parlagreco, J.R.
1977-01-01
This report describes a computer code written in LLL modified Fortran IV that can be used on a CDC 7600 for calculating personnel doses due to internal exposures to tritium. The code is capable of handling various exposure situations and is also capable of detecting a large variety of data input errors that would lead to errors in the dose assessment. The critical organ is the body water
RADTRAN: a computer code to analyze transportation of radioactive material
International Nuclear Information System (INIS)
Taylor, J.M.; Daniel, S.L.
1977-04-01
A computer code is presented which predicts the environmental impact of any specific scheme of radioactive material transportation. Results are presented in terms of annual latent cancer fatalities and annual early fatility probability resulting from exposure, during normal transportation or transport accidents. The code is developed in a generalized format to permit wide application including normal transportation analysis; consideration of alternatives; and detailed consideration of specific sectors of industry
COMPBRN III: a computer code for modeling compartment fires
International Nuclear Information System (INIS)
Ho, V.; Siu, N.; Apostolakis, G.; Flanagan, G.F.
1986-07-01
The computer code COMPBRN III deterministically models the behavior of compartment fires. This code is an improvement of the original COMPBRN codes. It employs a different air entrainment model and numerical scheme to estimate properties of the ceiling hot gas layer model. Moreover, COMPBRN III incorporates a number of improvements in shape factor calculations and error checking, which distinguish it from the COMPBRN II code. This report presents the ceiling hot gas layer model employed by COMPBRN III as well as several other modifications. Information necessary to run COMPBRN III, including descriptions of required input and resulting output, are also presented. Simulation of experiments and a sample problem are included to demonstrate the usage of the code. 37 figs., 46 refs
Survey of computer codes applicable to waste facility performance evaluations
International Nuclear Information System (INIS)
Alsharif, M.; Pung, D.L.; Rivera, A.L.; Dole, L.R.
1988-01-01
This study is an effort to review existing information that is useful to develop an integrated model for predicting the performance of a radioactive waste facility. A summary description of 162 computer codes is given. The identified computer programs address the performance of waste packages, waste transport and equilibrium geochemistry, hydrological processes in unsaturated and saturated zones, and general waste facility performance assessment. Some programs also deal with thermal analysis, structural analysis, and special purposes. A number of these computer programs are being used by the US Department of Energy, the US Nuclear Regulatory Commission, and their contractors to analyze various aspects of waste package performance. Fifty-five of these codes were identified as being potentially useful on the analysis of low-level radioactive waste facilities located above the water table. The code summaries include authors, identification data, model types, and pertinent references. 14 refs., 5 tabs
FLASH: A finite element computer code for variably saturated flow
International Nuclear Information System (INIS)
Baca, R.G.; Magnuson, S.O.
1992-05-01
A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A
CRACKEL: a computer code for CFR fuel management calculations
International Nuclear Information System (INIS)
Burstall, R.F.; Ball, M.A.; Thornton, D.E.J.
1975-12-01
The CRACKLE computer code is designed to perform rapid fuel management surveys of CFR systems. The code calculates overall features such as reactivity, power distributions and breeding gain, and also calculates for each sub-assembly plutonium content and power output. A number of alternative options are built into the code, in order to permit different fuel management strategies to be calculated, and to perform more detailed calculations when necessary. A brief description is given of the methods of calculation, and the input facilities of CRACKLE, with examples. (author)
Establishment of computer code system for nuclear reactor design - analysis
International Nuclear Information System (INIS)
Subki, I.R.; Santoso, B.; Syaukat, A.; Lee, S.M.
1996-01-01
Establishment of computer code system for nuclear reactor design analysis is given in this paper. This establishment is an effort to provide the capability in running various codes from nuclear data to reactor design and promote the capability for nuclear reactor design analysis particularly from neutronics and safety points. This establishment is also an effort to enhance the coordination of nuclear codes application and development existing in various research centre in Indonesia. Very prospective results have been obtained with the help of IAEA technical assistance. (author). 6 refs, 1 fig., 1 tab
Quality assurance aspects of the computer code CODAR2
International Nuclear Information System (INIS)
Maul, P.R.
1986-03-01
The computer code CODAR2 was developed originally for use in connection with the Sizewell Public Inquiry to evaluate the radiological impact of routine discharges to the sea from the proposed PWR. It has subsequently bee used to evaluate discharges from Heysham 2. The code was frozen in September 1983, and this note gives details of its verification, validation and evaluation. Areas where either improved modelling methods or more up-to-date information relevant to CODAR2 data bases have subsequently become available are indicated; these will be incorporated in any future versions of the code. (author)
Compendium of computer codes for the safety analysis of LMFBR's
International Nuclear Information System (INIS)
1975-06-01
A high level of mathematical sophistication is required in the safety analysis of LMFBR's to adequately meet the demands for realism and confidence in all areas of accident consequence evaluation. The numerical solution procedures associated with these analyses are generally so complex and time consuming as to necessitate their programming into computer codes. These computer codes have become extremely powerful tools for safety analysis, combining unique advantages in accuracy, speed and cost. The number, diversity and complexity of LMFBR safety codes in the U. S. has grown rapidly in recent years. It is estimated that over 100 such codes exist in various stages of development throughout the country. It is inevitable that such a large assortment of codes will require rigorous cataloguing and abstracting to aid individuals in identifying what is available. It is the purpose of this compendium to provide such a service through the compilation of code summaries which describe and clarify the status of domestic LMFBR safety codes. (U.S.)
User's manual for the NEFTRAN II computer code
International Nuclear Information System (INIS)
Olague, N.E.; Campbell, J.E.; Leigh, C.D.; Longsine, D.E.
1991-02-01
This document describes the NEFTRAN II (NEtwork Flow and TRANsport in Time-Dependent Velocity Fields) computer code and is intended to provide the reader with sufficient information to use the code. NEFTRAN II was developed as part of a performance assessment methodology for storage of high-level nuclear waste in unsaturated, welded tuff. NEFTRAN II is a successor to the NEFTRAN and NWFT/DVM computer codes and contains several new capabilities. These capabilities include: (1) the ability to input pore velocities directly to the transport model and bypass the network fluid flow model, (2) the ability to transport radionuclides in time-dependent velocity fields, (3) the ability to account for the effect of time-dependent saturation changes on the retardation factor, and (4) the ability to account for time-dependent flow rates through the source regime. In addition to these changes, the input to NEFTRAN II has been modified to be more convenient for the user. This document is divided into four main sections consisting of (1) a description of all the models contained in the code, (2) a description of the program and subprograms in the code, (3) a data input guide and (4) verification and sample problems. Although NEFTRAN II is the fourth generation code, this document is a complete description of the code and reference to past user's manuals should not be necessary. 19 refs., 33 figs., 25 tabs
Radiological impact assessment in Malaysia using RESRAD computer code
International Nuclear Information System (INIS)
Syed Hakimi Sakuma Syed Ahmad; Khairuddin Mohamad Kontol; Razali Hamzah
1999-01-01
Radiological Impact Assessment (RIA) can be conducted in Malaysia by using the RESRAD computer code developed by Argonne National Laboratory, U.S.A. The code can do analysis to derive site specific guidelines for allowable residual concentrations of radionuclides in soil. Concepts of the RIA in the context of waste management concern in Malaysia, some regulatory information and assess status of data collection are shown. Appropriate use scenarios and site specific parameters are used as much as possible so as to be realistic so that will reasonably ensure that individual dose limits and or constraints will be achieved. Case study have been conducted to fulfil Atomic Energy Licensing Board (AELB) requirements where for disposal purpose the operator must be required to carry out. a radiological impact assessment to all proposed disposals. This is to demonstrate that no member of public will be exposed to more than 1 mSv/year from all activities. Results obtained from analyses show the RESRAD computer code is able to calculate doses, risks, and guideline values. Sensitivity analysis by the computer code shows that the parameters used as input are justified so as to improve confidence to the public and the AELB the results of the analysis. The computer code can also be used as an initial assessment to conduct screening assessment in order to determine a proper disposal site. (Author)
Sensitivity and uncertainty studies of the CRAC2 computer code
International Nuclear Information System (INIS)
Kocher, D.C.; Ward, R.C.; Killough, G.G.; Dunning, D.E. Jr.; Hicks, B.B.; Hosker, R.P. Jr.; Ku, J.Y.; Rao, K.S.
1985-05-01
This report presents a study of the sensitivity of early fatalities, early injuries, latent cancer fatalities, and economic costs for hypothetical nuclear reactor accidents as predicted by the CRAC2 computer code (CRAC = Calculation of Reactor Accident Consequences) to uncertainties in selected models and parameters used in the code. The sources of uncertainty that were investigated in the CRAC2 sensitivity studies include (1) the model for plume rise, (2) the model for wet deposition, (3) the procedure for meteorological bin-sampling involving the selection of weather sequences that contain rain, (4) the dose conversion factors for inhalation as they are affected by uncertainties in the physical and chemical form of the released radionuclides, (5) the weathering half-time for external ground-surface exposure, and (6) the transfer coefficients for estimating exposures via terrestrial foodchain pathways. The sensitivity studies were performed for selected radionuclide releases, hourly meteorological data, land-use data, a fixed non-uniform population distribution, a single evacuation model, and various release heights and sensible heat rates. Two important general conclusions from the sensitivity and uncertainty studies are as follows: (1) The large effects on predicted early fatalities and early injuries that were observed in some of the sensitivity studies apparently are due in part to the presence of thresholds in the dose-response models. Thus, the observed sensitivities depend in part on the magnitude of the radionuclide releases. (2) Some of the effects on predicted early fatalities and early injuries that were observed in the sensitivity studies were comparable to effects that were due only to the selection of different sets of weather sequences in bin-sampling runs. 47 figs., 50 tabs
Energy Technology Data Exchange (ETDEWEB)
McGill, B.; Maskewitz, B.F.; Anthony, C.M.; Comolander, H.E.; Hendrickson, H.R.
1976-01-01
The term ''code package'' is used to describe a miscellaneous grouping of materials which, when interpreted in connection with a digital computer, enables the scientist--user to solve technical problems in the area for which the material was designed. In general, a ''code package'' consists of written material--reports, instructions, flow charts, listings of data, and other useful material and IBM card decks (or, more often, a reel of magnetic tape) on which the source decks, sample problem input (including libraries of data) and the BCD/EBCDIC output listing from the sample problem are written. In addition to the main code, and any available auxiliary routines are also included. The abstract format was chosen to give to a potential code user several criteria for deciding whether or not he wishes to request the code package. (RWR)
SURE: a system of computer codes for performing sensitivity/uncertainty analyses with the RELAP code
International Nuclear Information System (INIS)
Bjerke, M.A.
1983-02-01
A package of computer codes has been developed to perform a nonlinear uncertainty analysis on transient thermal-hydraulic systems which are modeled with the RELAP computer code. Using an uncertainty around the analyses of experiments in the PWR-BDHT Separate Effects Program at Oak Ridge National Laboratory. The use of FORTRAN programs running interactively on the PDP-10 computer has made the system very easy to use and provided great flexibility in the choice of processing paths. Several experiments simulating a loss-of-coolant accident in a nuclear reactor have been successfully analyzed. It has been shown that the system can be automated easily to further simplify its use and that the conversion of the entire system to a base code other than RELAP is possible
SWIMS: a small-angle multiple scattering computer code
International Nuclear Information System (INIS)
Sayer, R.O.
1976-07-01
SWIMS (Sigmund and WInterbon Multiple Scattering) is a computer code for calculation of the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media. The code uses the tabulated angular distributions of Sigmund and Winterbon for a Thomas-Fermi screened Coulomb potential. The fraction of the incident beam scattered into a cone defined by the polar angle α is computed as a function of α for reduced thicknesses over the range 0.01 less than or equal to tau less than or equal to 10.0. 1 figure, 2 tables
International Nuclear Information System (INIS)
Merle-Szeremeta, A.; Thomassin, A.
1999-01-01
The Institute of Protection and Nuclear Safety (I.P.S.N.) has developed a computer code, FOCON96 1.0 to calculate the dosimetric consequences of atmospheric radioactive releases from nuclear installations after several years of usual operation. This communication describes the principal characteristics of FOCON96 1.0 and its functionalities. The principal elements of a comparison between FOCON96 1.0 and PC-CREAM ( European computer code developed by the N.R.P.B. and answering the same criteria) are given here. (N.C.)
International Nuclear Information System (INIS)
Kolev, N.I.
1991-12-01
This report describes the input and output ov IVA3 computer code and the procedure how to compile, link, and run the code. The common blocs recorded for restarts files and post processing are described in detail as well as the IVA3 interface for thermodynamic and thermo physical properties. Some recommendations for the input preparation together with some detailed comments on some architectural and functional features of the code are given in order to give some insight of the caused actions by changing some control parameters. (orig.) [de
Computer code MLCOSP for multiple-correlation and spectrum analysis with a hybrid computer
International Nuclear Information System (INIS)
Oguma, Ritsuo; Fujii, Yoshio; Usui, Hozumi; Watanabe, Koichi
1975-10-01
Usage of the computer code MLCOSP(Multiple Correlation and Spectrum) developed is described for a hybrid computer installed in JAERI Functions of the hybrid computer and its terminal devices are utilized ingeniously in the code to reduce complexity of the data handling which occurrs in analysis of the multivariable experimental data and to perform the analysis in perspective. Features of the code are as follows; Experimental data can be fed to the digital computer through the analog part of the hybrid computer by connecting with a data recorder. The computed results are displayed in figures, and hardcopies are taken when necessary. Series-messages to the code are shown on the terminal, so man-machine communication is possible. And further the data can be put in through a keyboard, so case study according to the results of analysis is possible. (auth.)
Przybylla, Mareen; Romeike, Ralf
2014-01-01
Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…
Prodeto, a computer code for probabilistic fatigue design
Energy Technology Data Exchange (ETDEWEB)
Braam, H [ECN-Solar and Wind Energy, Petten (Netherlands); Christensen, C J; Thoegersen, M L [Risoe National Lab., Roskilde (Denmark); Ronold, K O [Det Norske Veritas, Hoevik (Norway)
1999-03-01
A computer code for structural relibility analyses of wind turbine rotor blades subjected to fatigue loading is presented. With pre-processors that can transform measured and theoretically predicted load series to load range distributions by rain-flow counting and with a family of generic distribution models for parametric representation of these distribution this computer program is available for carying through probabilistic fatigue analyses of rotor blades. (au)
VAMPIR - A two-group two-dimensional diffusion computer code for burnup calculation
International Nuclear Information System (INIS)
Zmijarevic, I.; Petrovic, I.
1985-01-01
VAMPIR is a computer code which simulates the burnup within a reactor coe. It computes the neutron flux, power distribution and burnup taking into account spatial variations of temperature and xenon poisoning. Its overall reactor calculation uses diffusion theory with finite differences approximation in X-Y or R-Z geometry. Two-group macroscopic cross section data are prepared by the lattice cell code WIMS-D4 and stored in the library form of multi entry tabulation against the various parameters that significantly affect the physical conditions in the reactor core. herein, the main features of the program are presented. (author)
Development of the computer code to monitor gamma radiation in the nuclear facility environment
International Nuclear Information System (INIS)
Akhmad, Y. R.; Pudjiyanto, M.S.
1998-01-01
Computer codes for gamma radiation monitoring in the vicinity of nuclear facility which have been developed could be introduced to the commercial potable gamma analyzer. The crucial stage of the first year activity was succeeded ; that is the codes have been tested to transfer data file (pulse high distribution) from Micro NOMAD gamma spectrometer (ORTEC product) and the convert them into dosimetry and physics quantities. Those computer codes are called as GABATAN (Gamma Analyzer of Batan) and NAGABAT (Natural Gamma Analyzer of Batan). GABATAN code can isable to used at various nuclear facilities for analyzing gamma field up to 9 MeV, while NAGABAT could be used for analyzing the contribution of natural gamma rays to the exposure rate in the certain location
Once-through CANDU reactor models for the ORIGEN2 computer code
International Nuclear Information System (INIS)
Croff, A.G.; Bjerke, M.A.
1980-11-01
Reactor physics calculations have led to the development of two CANDU reactor models for the ORIGEN2 computer code. The model CANDUs are based on (1) the existing once-through fuel cycle with feed comprised of natural uranium and (2) a projected slightly enriched (1.2 wt % 235 U) fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models, as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST, are given
Computer simulation of variform fuel assemblies using Dragon code
International Nuclear Information System (INIS)
Ju Haitao; Wu Hongchun; Yao Dong
2005-01-01
The DRAGON is a cell code that developed for the CANDU reactor by the Ecole Polytechnique de Montreal of CANADA. Although, the DRAGON is mainly used to simulate the CANDU super-cell fuel assembly, it has an ability to simulate other geometries of the fuel assembly. However, only NEACRP benchmark problem of the BWR lattice cell was analyzed until now except for the CANDU reactor. We also need to develop the code to simulate the variform fuel assemblies, especially, for design of the advanced reactor. We validated that the cell code DRAGON is useful for simulating various kinds of the fuel assembly by analyzing the rod-shape fuel assembly of the PWR and the MTR plate-shape fuel assembly. Some other kinds of geometry of geometry were computed. Computational results show that the DRAGON is able to analyze variform fuel assembly problems and the precision is high. (authors)
Plagiarism Detection Algorithm for Source Code in Computer Science Education
Liu, Xin; Xu, Chan; Ouyang, Boyu
2015-01-01
Nowadays, computer programming is getting more necessary in the course of program design in college education. However, the trick of plagiarizing plus a little modification exists among some students' home works. It's not easy for teachers to judge if there's plagiarizing in source code or not. Traditional detection algorithms cannot fit this…
Protect Heterogeneous Environment Distributed Computing from Malicious Code Assignment
Directory of Open Access Journals (Sweden)
V. S. Gorbatov
2011-09-01
Full Text Available The paper describes the practical implementation of the protection system of heterogeneous environment distributed computing from malicious code for the assignment. A choice of technologies, development of data structures, performance evaluation of the implemented system security are conducted.
Atmospheric dispersion of radioactive releases: Computer code DIASPORA
International Nuclear Information System (INIS)
Synodinou, B.M.; Bartzis, J.M.
1982-05-01
The computer code DIASPORA is presented. Air and ground concentrations of an airborne radioactive material released from an elevated continuous point source are calculated using Gaussian plume models. Dry and wet deposition as well as plume rise effects are taken into consideration. (author)
Method for quantitative assessment of nuclear safety computer codes
International Nuclear Information System (INIS)
Dearien, J.A.; Davis, C.B.; Matthews, L.J.
1979-01-01
A procedure has been developed for the quantitative assessment of nuclear safety computer codes and tested by comparison of RELAP4/MOD6 predictions with results from two Semiscale tests. This paper describes the developed procedure, the application of the procedure to the Semiscale tests, and the results obtained from the comparison
Computer code for double beta decay QRPA based calculations
Energy Technology Data Exchange (ETDEWEB)
Barbero, C. A.; Mariano, A. [Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina and Instituto de Física La Plata, CONICET, La Plata (Argentina); Krmpotić, F. [Instituto de Física La Plata, CONICET, La Plata, Argentina and Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo (Brazil); Samana, A. R.; Ferreira, V. dos Santos [Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, BA (Brazil); Bertulani, C. A. [Department of Physics, Texas A and M University-Commerce, Commerce, TX (United States)
2014-11-11
The computer code developed by our group some years ago for the evaluation of nuclear matrix elements, within the QRPA and PQRPA nuclear structure models, involved in neutrino-nucleus reactions, muon capture and β{sup ±} processes, is extended to include also the nuclear double beta decay.
Connecting Neural Coding to Number Cognition: A Computational Account
Prather, Richard W.
2012-01-01
The current study presents a series of computational simulations that demonstrate how the neural coding of numerical magnitude may influence number cognition and development. This includes behavioral phenomena cataloged in cognitive literature such as the development of numerical estimation and operational momentum. Though neural research has…
Users manual for CAFE-3D : a computational fluid dynamics fire code
International Nuclear Information System (INIS)
Khalil, Imane; Lopez, Carlos; Suo-Anttila, Ahti Jorma
2005-01-01
The Container Analysis Fire Environment (CAFE) computer code has been developed to model all relevant fire physics for predicting the thermal response of massive objects engulfed in large fires. It provides realistic fire thermal boundary conditions for use in design of radioactive material packages and in risk-based transportation studies. The CAFE code can be coupled to commercial finite-element codes such as MSC PATRAN/THERMAL and ANSYS. This coupled system of codes can be used to determine the internal thermal response of finite element models of packages to a range of fire environments. This document is a user manual describing how to use the three-dimensional version of CAFE, as well as a description of CAFE input and output parameters. Since this is a user manual, only a brief theoretical description of the equations and physical models is included
Methods and computer codes for probabilistic sensitivity and uncertainty analysis
International Nuclear Information System (INIS)
Vaurio, J.K.
1985-01-01
This paper describes the methods and applications experience with two computer codes that are now available from the National Energy Software Center at Argonne National Laboratory. The purpose of the SCREEN code is to identify a group of most important input variables of a code that has many (tens, hundreds) input variables with uncertainties, and do this without relying on judgment or exhaustive sensitivity studies. Purpose of the PROSA-2 code is to propagate uncertainties and calculate the distributions of interesting output variable(s) of a safety analysis code using response surface techniques, based on the same runs used for screening. Several applications are discussed, but the codes are generic, not tailored to any specific safety application code. They are compatible in terms of input/output requirements but also independent of each other, e.g., PROSA-2 can be used without first using SCREEN if a set of important input variables has first been selected by other methods. Also, although SCREEN can select cases to be run (by random sampling), a user can select cases by other methods if he so prefers, and still use the rest of SCREEN for identifying important input variables
PC as physics computer for LHC?
International Nuclear Information System (INIS)
Jarp, Sverre; Simmins, Antony; Tang, Hong
1996-01-01
In the last five years, we have seen RISC workstations take over the computing scene that was once controlled by mainframes and supercomputers. In this paper we will argue that the same phenomenon might happen again. A project, active since March this year in the Physics Data Processing group of CERN's CN division is described where ordinary desktop PCs running Windows (NT and 3.11) have been used for creating an environment for running large LHC batch jobs (initially the DICE simulation job of Atlas). The problems encountered in porting both the CERN library and the specific Atlas codes are described together with some encouraging benchmark results when comparing to existing to existing RISC workstation in use by the Atlas collaboration. The issues of establishing the batch environment (Batch monitor, staging software, etc) are also covered. Finally a quick extrapolation of commodity computing power available in the future is touched upon to indicate what kind of cost envelope could be sufficient for the simulation farms required by the LHC experiments. (author)
PC as physics computer for LHC?
Jarp, S; Simmins, A; Yaari, R; Jarp, Sverre; Tang, Hong; Simmins, Antony; Yaari, Refael
1995-01-01
In the last five years, we have seen RISC workstations take over the computing scene that was once controlled by mainframes and supercomputers. In this paper we will argue that the same phenomenon might happen again. A project, active since March this year in the Physics Data Processing group of CERN's CN division is described where ordinary desktop PCs running Windows (NT and 3.11) have been used for creating an environment for running large LHC batch jobs (initially the DICE simulation job of Atlas). The problems encountered in porting both the CERN library and the specific Atlas codes are described together with some encouraging benchmark results when comparing to existing RISC workstations in use by the Atlas collaboration. The issues of establishing the batch environment (Batch monitor, staging software, etc.) are also covered. Finally a quick extrapolation of commodity computing power available in the future is touched upon to indicate what kind of cost envelope could be sufficient for the simulation fa...
Pc as Physics Computer for Lhc ?
Jarp, Sverre; Simmins, Antony; Tang, Hong; Yaari, R.
In the last five years, we have seen RISC workstations take over the computing scene that was once controlled by mainframes and supercomputers. In this paper we will argue that the same phenomenon might happen again. A project, active since March this year in the Physics Data Processing group, of CERN's CN division is described where ordinary desktop PCs running Windows (NT and 3.11) have been used for creating an environment for running large LHC batch jobs (initially the DICE simulation job of Atlas). The problems encountered in porting both the CERN library and the specific Atlas codes are described together with some encouraging benchmark results when comparing to existing RISC workstations in use by the Atlas collaboration. The issues of establishing the batch environment (Batch monitor, staging software, etc.) are also covered. Finally a quick extrapolation of commodity computing power available in the future is touched upon to indicate what kind of cost envelope could be sufficient for the simulation farms required by the LHC experiments.
A proposed framework for computational fluid dynamics code calibration/validation
International Nuclear Information System (INIS)
Oberkampf, W.L.
1993-01-01
The paper reviews the terminology and methodology that have been introduced during the last several years for building confidence n the predictions from Computational Fluid Dynamics (CID) codes. Code validation terminology developed for nuclear reactor analyses and aerospace applications is reviewed and evaluated. Currently used terminology such as ''calibrated code,'' ''validated code,'' and a ''validation experiment'' is discussed along with the shortcomings and criticisms of these terms. A new framework is proposed for building confidence in CFD code predictions that overcomes some of the difficulties of past procedures and delineates the causes of uncertainty in CFD predictions. Building on previous work, new definitions of code verification and calibration are proposed. These definitions provide more specific requirements for the knowledge level of the flow physics involved and the solution accuracy of the given partial differential equations. As part of the proposed framework, categories are also proposed for flow physics research, flow modeling research, and the application of numerical predictions. The contributions of physical experiments, analytical solutions, and other numerical solutions are discussed, showing that each should be designed to achieve a distinctively separate purpose in building confidence in accuracy of CFD predictions. A number of examples are given for each approach to suggest methods for obtaining the highest value for CFD code quality assurance
Cooperation of experts' opinion, experiment and computer code development
International Nuclear Information System (INIS)
Wolfert, K.; Hicken, E.
The connection between code development, code assessment and confidence in the analysis of transients will be discussed. In this manner, the major sources of errors in the codes and errors in applications of the codes will be shown. Standard problem results emphasize that, in order to have confidence in licensing statements, the codes must be physically realistic and the code user must be qualified and experienced. We will discuss why there is disagreement between the licensing authority and vendor concerning assessment of the fullfillment of safety goal requirements. The answer to the question lies in the different confidence levels of the assessment of transient analysis. It is expected that a decrease in the disagreement will result from an increased confidence level. Strong efforts will be made to increase this confidence level through improvements in the codes, experiments and related organizational strcutures. Because of the low probability for loss-of-coolant-accidents in the nuclear industry, assessment must rely on analytical techniques and experimental investigations. (orig./HP) [de
FIRAC - a computer code to predict fire accident effects in nuclear facilities
International Nuclear Information System (INIS)
Bolstad, J.W.; Foster, R.D.; Gregory, W.S.
1983-01-01
FIRAC is a medium-sized computer code designed to predict fire-induced flows, temperatures, and material transport within the ventilating systems and other airflow pathways in nuclear-related facilities. The code is designed to analyze the behavior of interconnected networks of rooms and typical ventilation system components. This code is one in a family of computer codes that is designed to provide improved methods of safety analysis for the nuclear industry. The structure of this code closely follows that of the previously developed TVENT and EVENT codes. Because a lumped-parameter formulation is used, this code is particularly suitable for calculating the effects of fires in the far field (that is, in regions removed from the fire compartment), where the fire may be represented parametrically. However, a fire compartment model to simulate conditions in the enclosure is included. This model provides transport source terms to the ventilation system that can affect its operation and in turn affect the fire. A basic material transport capability that features the effects of convection, deposition, entrainment, and filtration of material is included. The interrelated effects of filter plugging, heat transfer, gas dynamics, and material transport are taken into account. In this paper the authors summarize the physical models used to describe the gas dynamics, material transport, and heat transfer processes. They also illustrate how a typical facility is modeled using the code
Development and application of computational aerothermodynamics flowfield computer codes
Venkatapathy, Ethiraj
1993-01-01
Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second-approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered. The cases are governed, respectively, by the following: vibrational relaxation; weak dissociation; strong dissociation; and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.
High energy physics computing in Japan
International Nuclear Information System (INIS)
Watase, Yoshiyuki
1989-01-01
A brief overview of the computing provision for high energy physics in Japan is presented. Most of the computing power for high energy physics is concentrated in KEK. Here there are two large scale systems: one providing a general computing service including vector processing and the other dedicated to TRISTAN experiments. Each university group has a smaller sized mainframe or VAX system to facilitate both their local computing needs and the remote use of the KEK computers through a network. The large computer system for the TRISTAN experiments is described. An overview of a prospective future large facility is also given. (orig.)
The extensive international use of commercial computational fluid dynamics (CFD) codes
International Nuclear Information System (INIS)
Hartmut Wider
2005-01-01
What are the main reasons for the extensive international success of commercial CFD codes? This is due to their ability to calculate the fine structures of the investigated processes due to their versatility, their numerical stability and that they can guarantee the proper solution in most cases. This was made possible by the constantly increasing computer power at an ever more affordable prize. Furthermore it is much more efficient to have researchers use a CFD code rather than to develop a similar code system due to the time consuming nature of this activity and the high probability of hidden coding errors. The centralized development and upgrading makes these reliable CFD codes possible and affordable. However, the CFD companies' developments are naturally concentrated on the most profitable areas, and thus, if one works in a 'non-priority' field one cannot use them. Moreover, the prize of renting CFD codes, applications to complex systems such as whole nuclear reactors and the need to teach students gives the development of self-made codes still plenty of room. But CFD codes can model detailed aspects of large systems and subroutines generated by users can be added. Since there are only a few heavily used CFD codes such as FLUENT, STAR-CD, ANSYS CFX, these are used in many countries. Also international training courses are given and the news bulletins of these codes help to spread the news on further developments. A larger number of international codes would increase the competition but would at the same time make it harder to select the most appropriate CFD code for a given problem. Examples will be presented of uses of CFD codes as more detailed system codes for the decay heat removal from reactors, the application to aerosol physics and the application to heavy metal fluids using different turbulence models. (author)
Computed radiography simulation using the Monte Carlo code MCNPX
International Nuclear Information System (INIS)
Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.
2009-01-01
Simulating x-ray images has been of great interest in recent years as it makes possible an analysis of how x-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data. (author)
Computed radiography simulation using the Monte Carlo code MCNPX
Energy Technology Data Exchange (ETDEWEB)
Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Centro Universitario Estadual da Zona Oeste (CCMAT)/UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, 23070-200, Rio de Janeiro, RJ (Brazil); Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.b [PEN/COPPE-DNC/Poli CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Cassiano, D.H. [Instituto de Radioprotecao e Dosimetria/CNEN Av. Salvador Allende, s/n, Recreio, 22780-160, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil)
2010-09-15
Simulating X-ray images has been of great interest in recent years as it makes possible an analysis of how X-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data.
Numerical computation of molecular integrals via optimized (vectorized) FORTRAN code
International Nuclear Information System (INIS)
Scott, T.C.; Grant, I.P.; Saunders, V.R.
1997-01-01
The calculation of molecular properties based on quantum mechanics is an area of fundamental research whose horizons have always been determined by the power of state-of-the-art computers. A computational bottleneck is the numerical calculation of the required molecular integrals to sufficient precision. Herein, we present a method for the rapid numerical evaluation of molecular integrals using optimized FORTRAN code generated by Maple. The method is based on the exploitation of common intermediates and the optimization can be adjusted to both serial and vectorized computations. (orig.)
KAMCCO, a reactor physics Monte Carlo neutron transport code
International Nuclear Information System (INIS)
Arnecke, G.; Borgwaldt, H.; Brandl, V.; Lalovic, M.
1976-06-01
KAMCCO is a 3-dimensional reactor Monte Carlo code for fast neutron physics problems. Two options are available for the solution of 1) the inhomogeneous time-dependent neutron transport equation (census time scheme), and 2) the homogeneous static neutron transport equation (generation cycle scheme). The user defines the desired output, e.g. estimates of reaction rates or neutron flux integrated over specified volumes in phase space and time intervals. Such primary quantities can be arbitrarily combined, also ratios of these quantities can be estimated with their errors. The Monte Carlo techniques are mostly analogue (exceptions: Importance sampling for collision processes, ELP/MELP, Russian roulette and splitting). Estimates are obtained from the collision and track length estimators. Elastic scattering takes into account first order anisotropy in the center of mass system. Inelastic scattering is processed via the evaporation model or via the excitation of discrete levels. For the calculation of cross sections, the energy is treated as a continuous variable. They are computed by a) linear interpolation, b) from optionally Doppler broadened single level Breit-Wigner resonances or c) from probability tables (in the region of statistically distributed resonances). (orig.) [de
The computer code system for reactor radiation shielding in design of nuclear power plant
International Nuclear Information System (INIS)
Li Chunhuai; Fu Shouxin; Liu Guilian
1995-01-01
The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities
A DOE Computer Code Toolbox: Issues and Opportunities
International Nuclear Information System (INIS)
Vincent, A.M. III
2001-01-01
The initial activities of a Department of Energy (DOE) Safety Analysis Software Group to establish a Safety Analysis Toolbox of computer models are discussed. The toolbox shall be a DOE Complex repository of verified and validated computer models that are configuration-controlled and made available for specific accident analysis applications. The toolbox concept was recommended by the Defense Nuclear Facilities Safety Board staff as a mechanism to partially address Software Quality Assurance issues. Toolbox candidate codes have been identified through review of a DOE Survey of Software practices and processes, and through consideration of earlier findings of the Accident Phenomenology and Consequence Evaluation program sponsored by the DOE National Nuclear Security Agency/Office of Defense Programs. Planning is described to collect these high-use codes, apply tailored SQA specific to the individual codes, and implement the software toolbox concept. While issues exist such as resource allocation and the interface among code developers, code users, and toolbox maintainers, significant benefits can be achieved through a centralized toolbox and subsequent standardized applications
Additional extensions to the NASCAP computer code, volume 3
Mandell, M. J.; Cooke, D. L.
1981-01-01
The ION computer code is designed to calculate charge exchange ion densities, electric potentials, plasma temperatures, and current densities external to a neutralized ion engine in R-Z geometry. The present version assumes the beam ion current and density to be known and specified, and the neutralizing electrons to originate from a hot-wire ring surrounding the beam orifice. The plasma is treated as being resistive, with an electron relaxation time comparable to the plasma frequency. Together with the thermal and electrical boundary conditions described below and other straightforward engine parameters, these assumptions suffice to determine the required quantities. The ION code, written in ASCII FORTRAN for UNIVAC 1100 series computers, is designed to be run interactively, although it can also be run in batch mode. The input is free-format, and the output is mainly graphical, using the machine-independent graphics developed for the NASCAP code. The executive routine calls the code's major subroutines in user-specified order, and the code allows great latitude for restart and parameter change.
COMPUTATION FORMAT computer codes X4TOC4 and PLOTC4. Implementing and Testing on a Personal Computer
International Nuclear Information System (INIS)
McLaughlin, P.K.
1987-05-01
This document describes the contents of the diskette containing the COMPUTATION FORMAT codes X4TOC4 and PLOTC4 by D.E. Cullen, and example data for use in implementing and testing these codes on a Personal Computer of the type IBM-PC/AT. Upon request the codes are available from the IAEA Nuclear Data Section, free of charge, on a single diskette. (author)
Integrated computer codes for nuclear power plant severe accident analysis
International Nuclear Information System (INIS)
Jordanov, I.; Khristov, Y.
1995-01-01
This overview contains a description of the Modular Accident Analysis Program (MAAP), ICARE computer code and Source Term Code Package (STCP). STCP is used to model TMLB sample problems for Zion Unit 1 and WWER-440/V-213 reactors. Comparison is made of STCP implementation on VAX and IBM systems. In order to improve accuracy, a double precision version of MARCH-3 component of STCP is created and the overall thermal hydraulics is modelled. Results of modelling the containment pressure, debris temperature, hydrogen mass are presented. 5 refs., 10 figs., 2 tabs
Integrated computer codes for nuclear power plant severe accident analysis
Energy Technology Data Exchange (ETDEWEB)
Jordanov, I; Khristov, Y [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika
1996-12-31
This overview contains a description of the Modular Accident Analysis Program (MAAP), ICARE computer code and Source Term Code Package (STCP). STCP is used to model TMLB sample problems for Zion Unit 1 and WWER-440/V-213 reactors. Comparison is made of STCP implementation on VAX and IBM systems. In order to improve accuracy, a double precision version of MARCH-3 component of STCP is created and the overall thermal hydraulics is modelled. Results of modelling the containment pressure, debris temperature, hydrogen mass are presented. 5 refs., 10 figs., 2 tabs.
RADTRAN 5: A computer code for transportation risk analysis
International Nuclear Information System (INIS)
Neuhauser, K.S.; Kanipe, F.L.
1991-01-01
RADTRAN 5 is a computer code developed at Sandia National Laboratories (SNL) in Albuquerque, NM, to estimate radiological and nonradiological risks of radioactive materials transportation. RADTRAN 5 is written in ANSI Standard FORTRAN 77 and contains significant advances in the methodology for route-specific analysis first developed by SNL for RADTRAN 4 (Neuhauser and Kanipe, 1992). Like the previous RADTRAN codes, RADTRAN 5 contains two major modules for incident-free and accident risk amlysis, respectively. All commercially important transportation modes may be analyzed with RADTRAN 5: highway by combination truck; highway by light-duty vehicle; rail; barge; ocean-going ship; cargo air; and passenger air
A computer code for fault tree calculations: PATREC
International Nuclear Information System (INIS)
Blin, A.; Carnino, A.; Koen, B.V.; Duchemin, B.; Lanore, J.M.; Kalli, H.
1978-01-01
A computer code for evaluating the reliability of complex system by fault tree is described in this paper. It uses pattern recognition approach and programming techniques from IBM PL1 language. It can take account of many of the present day problems: multi-dependencies treatment, dispersion in the reliability data parameters, influence of common mode failures. The code is running currently since two years now in Commissariat a l'Energie Atomique Saclay center and shall be used in a future extension for automatic fault trees construction
An improved thermal model for the computer code NAIAD
International Nuclear Information System (INIS)
Rainbow, M.T.
1982-12-01
An improved thermal model, based on the concept of heat slabs, has been incorporated as an option into the thermal hydraulic computer code NAIAD. The heat slabs are one-dimensional thermal conduction models with temperature independent thermal properties which may be internal and/or external to the fluid. Thermal energy may be added to or removed from the fluid via heat slabs and passed across the external boundary of external heat slabs at a rate which is a linear function of the external surface temperatures. The code input for the new option has been restructured to simplify data preparation. A full description of current input requirements is presented
Applying Physical-Layer Network Coding in Wireless Networks
Directory of Open Access Journals (Sweden)
Liew SoungChang
2010-01-01
Full Text Available A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes, simultaneously. Rather than a blessing, this feature is treated more as an interference-inducing nuisance in most wireless networks today (e.g., IEEE 802.11. This paper shows that the concept of network coding can be applied at the physical layer to turn the broadcast property into a capacity-boosting advantage in wireless ad hoc networks. Specifically, we propose a physical-layer network coding (PNC scheme to coordinate transmissions among nodes. In contrast to "straightforward" network coding which performs coding arithmetic on digital bit streams after they have been received, PNC makes use of the additive nature of simultaneously arriving electromagnetic (EM waves for equivalent coding operation. And in doing so, PNC can potentially achieve 100% and 50% throughput increases compared with traditional transmission and straightforward network coding, respectively, in 1D regular linear networks with multiple random flows. The throughput improvements are even larger in 2D regular networks: 200% and 100%, respectively.
Upgrade and benchmarking of the NIFS physics-engineering-cost code
International Nuclear Information System (INIS)
Dolan, T.J.; Yamazaki, K.
2004-07-01
The NIFS Physics-Engineering-Cost (PEC) code for helical and tokamak fusion reactors is upgraded by adding data from three blanket-shield designs, a new cost section based on the ARIES cost schedule, more recent unit costs, and improved algorithms for various computations. The PEC code is also benchmarked by modeling the ARIES-AT (advanced technology) tokamak and the ARIES-SPPS (stellarator power plant system). The PEC code succeeds in predicting many of the pertinent plasma parameters and reactor component masses within about 10%. There are cost differences greater than 10% for some fusion power core components, which may be attributed to differences of unit costs used by the codes. The COEs estimated by the PEC code differ from the COEs of the ARIES-AT and ARIES-SPPS studies by 5%. (author)
Compendium of computer codes for the researcher in magnetic fusion energy
International Nuclear Information System (INIS)
Porter, G.D.
1989-01-01
This is a compendium of computer codes, which are available to the fusion researcher. It is intended to be a document that permits a quick evaluation of the tools available to the experimenter who wants to both analyze his data, and compare the results of his analysis with the predictions of available theories. This document will be updated frequently to maintain its usefulness. I would appreciate receiving further information about codes not included here from anyone who has used them. The information required includes a brief description of the code (including any special features), a bibliography of the documentation available for the code and/or the underlying physics, a list of people to contact for help in running the code, instructions on how to access the code, and a description of the output from the code. Wherever possible, the code contacts should include people from each of the fusion facilities so that the novice can talk to someone ''down the hall'' when he first tries to use a code. I would also appreciate any comments about possible additions and improvements in the index. I encourage any additional criticism of this document. 137 refs
Modular ORIGEN-S for multi-physics code systems
International Nuclear Information System (INIS)
Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C.; Galloway, Jack
2011-01-01
The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including
Modular ORIGEN-S for multi-physics code systems
Energy Technology Data Exchange (ETDEWEB)
Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C., E-mail: yesilyurtg@ornl.gov, E-mail: clarnokt@ornl.gov, E-mail: gauldi@ornl.gov [Oak Ridge National Laboratory, TN (United States); Galloway, Jack, E-mail: jack@galloways.net [Los Alamos National Laboratory, Los Alamos, NM (United States)
2011-07-01
The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including
War of ontology worlds: mathematics, computer code, or Esperanto?
Rzhetsky, Andrey; Evans, James A
2011-09-01
The use of structured knowledge representations-ontologies and terminologies-has become standard in biomedicine. Definitions of ontologies vary widely, as do the values and philosophies that underlie them. In seeking to make these views explicit, we conducted and summarized interviews with a dozen leading ontologists. Their views clustered into three broad perspectives that we summarize as mathematics, computer code, and Esperanto. Ontology as mathematics puts the ultimate premium on rigor and logic, symmetry and consistency of representation across scientific subfields, and the inclusion of only established, non-contradictory knowledge. Ontology as computer code focuses on utility and cultivates diversity, fitting ontologies to their purpose. Like computer languages C++, Prolog, and HTML, the code perspective holds that diverse applications warrant custom designed ontologies. Ontology as Esperanto focuses on facilitating cross-disciplinary communication, knowledge cross-referencing, and computation across datasets from diverse communities. We show how these views align with classical divides in science and suggest how a synthesis of their concerns could strengthen the next generation of biomedical ontologies.
Physical-layer network coding in coherent optical OFDM systems.
Guan, Xun; Chan, Chun-Kit
2015-04-20
We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.
International Nuclear Information System (INIS)
Bartlett, D.V.
1983-06-01
The codes which have been developed for the analysis of electron cyclotron emission measurements in JET are described. Their principal function is to interpret the spectra measured by the diagnostic so as to give the spatial distribution of the electron temperature in the poloidal cross-section. Various systematic effects in the data are corrected using look-up tables generated by an elaborate simulation code. The part of this code responsible for the accurate calculation of single-pass emission and refraction has been written at CNR-Milan and is described in a separate report. The present report is divided into two parts. This first part describes the methods used for the simulation and interpretation of spectra, the physical/mathematical basis of the codes written at CEA-Fontenay and presents some illustrative results
Validation of the VTT's reactor physics code system
International Nuclear Information System (INIS)
Tanskanen, A.
1998-01-01
At VTT Energy several international reactor physics codes and nuclear data libraries are used in a variety of applications. The codes and libraries are under constant development and every now and then new updated versions are released, which are taken in use as soon as they have been validated at VTT Energy. The primary aim of the validation is to ensure that the code works properly, and that it can be used correctly. Moreover, the applicability of the codes and libraries are studied in order to establish their advantages and weak points. The capability of generating program-specific nuclear data for different reactor physics codes starting from the same evaluated data is sometimes of great benefit. VTT Energy has acquired a nuclear data processing system based on the NJOY-94.105 and TRANSX-2.15 processing codes. The validity of the processing system has been demonstrated by generating pointwise (MCNP) and groupwise (ANISN) temperature-dependent cross section sets for the benchmark calculations of the Doppler coefficient of reactivity. At VTT Energy the KENO-VI three-dimensional Monte Carlo code is used in criticality safety analyses. The KENO-VI code and the 44GROUPNDF5 data library have been validated at VTT Energy against the ZR-6 and LR-0 critical experiments. Burnup Credit refers to the reduction in reactivity of burned nuclear fuel due to the change in composition during irradiation. VTT Energy has participated in the calculational VVER-440 burnup credit benchmark in order to validate criticality safety calculation tools. (orig.)
Statistical and thermal physics with computer applications
Gould, Harvey
2010-01-01
This textbook carefully develops the main ideas and techniques of statistical and thermal physics and is intended for upper-level undergraduate courses. The authors each have more than thirty years' experience in teaching, curriculum development, and research in statistical and computational physics. Statistical and Thermal Physics begins with a qualitative discussion of the relation between the macroscopic and microscopic worlds and incorporates computer simulations throughout the book to provide concrete examples of important conceptual ideas. Unlike many contemporary texts on the
SCALE: A modular code system for performing standardized computer analyses for licensing evaluation
International Nuclear Information System (INIS)
1997-03-01
This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files
SCALE: A modular code system for performing standardized computer analyses for licensing evaluation
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-03-01
This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files.
Experience with the WIMS computer code at Skoda Plzen
International Nuclear Information System (INIS)
Vacek, J.; Mikolas, P.
1991-01-01
Validation of the program for neutronics analysis is described. Computational results are compared with results of experiments on critical assemblies and with results of other codes for different types of lattices. Included are the results for lattices containing Gd as burnable absorber. With minor exceptions, the results of benchmarking were quite satisfactory and justified the inclusion of WIMS in the production system of codes for WWER analysis. The first practical application was the adjustment of the WWER-440 few-group diffusion constants library of the three-dimensional diffusion code MOBY-DICK, which led to a remarkable improvement of results for operational states. Then a new library for the analysis of WWER-440 start-up was generated and tested and at present a new library for the analysis of WWER-440 operational states is being tested. Preparation of the library for WWER-1000 is in progress. (author). 19 refs
Extreme Physics and Informational/Computational Limits
Energy Technology Data Exchange (ETDEWEB)
Di Sia, Paolo, E-mail: paolo.disia@univr.it, E-mail: 10alla33@virgilio.it [Department of Computer Science, Faculty of Science, Verona University, Strada Le Grazie 15, I-37134 Verona (Italy) and Faculty of Computer Science, Free University of Bozen, Piazza Domenicani 3, I-39100 Bozen-Bolzano (Italy)
2011-07-08
A sector of the current theoretical physics, even called 'extreme physics', deals with topics concerning superstring theories, multiverse, quantum teleportation, negative energy, and more, that only few years ago were considered scientific imaginations or purely speculative physics. Present experimental lines of evidence and implications of cosmological observations seem on the contrary support such theories. These new physical developments lead to informational limits, as the quantity of information, that a physical system can record, and computational limits, resulting from considerations regarding black holes and space-time fluctuations. In this paper I consider important limits for information and computation resulting in particular from string theories and its foundations.
Extreme Physics and Informational/Computational Limits
International Nuclear Information System (INIS)
Di Sia, Paolo
2011-01-01
A sector of the current theoretical physics, even called 'extreme physics', deals with topics concerning superstring theories, multiverse, quantum teleportation, negative energy, and more, that only few years ago were considered scientific imaginations or purely speculative physics. Present experimental lines of evidence and implications of cosmological observations seem on the contrary support such theories. These new physical developments lead to informational limits, as the quantity of information, that a physical system can record, and computational limits, resulting from considerations regarding black holes and space-time fluctuations. In this paper I consider important limits for information and computation resulting in particular from string theories and its foundations.
Computer code TOBUNRAD for PWR fuel bundle heat-up calculations
International Nuclear Information System (INIS)
Shimooke, Takanori; Yoshida, Kazuo
1979-05-01
The computer code TOBUNRAD developed is for analysis of ''fuel-bundle'' heat-up phenomena in a loss-of-coolant accident of PWR. The fuel bundle consists of fuel pins in square lattice; its behavior is different from that of individual pins during heat-up. The code is based on the existing TOODEE2 code which analyzes heat-up phenomena of single fuel pins, so that the basic models of heat conduction and transfer and coolant flow are the same as the TOODEE2's. In addition to the TOODEE2 features, unheated rods are modeled and radiation heat loss is considered between fuel pins, a fuel pin and other heat sinks. The TOBUNRAD code is developed by a new FORTRAN technique which makes it possible to interrupt a flow of program controls wherever desired, thereby attaching several subprograms to the main code. Users' manual for TOBUNRAD is presented: The basic program-structure by interruption method, physical and computational model in each sub-code, usage of the code and sample problems. (author)
VARSKIN MOD 2 and SADDE MOD2: Computer codes for assessing skin dose from skin contamination
International Nuclear Information System (INIS)
Durham, J.S.
1992-12-01
The computer code VARSKIN has been modified to calculate dose to skin from three-dimensional sources, sources separated from the skin by layers of protective clothing, and gamma dose from certain radionuclides correction for backscatter has also been incorporated for certain geometries. This document describes the new code, VARSKIN Mod 2, including installation and operation instructions, provides detailed descriptions of the models used, and suggests methods for avoiding misuse of the code. The input data file for VARSKIN Mod 2 has been modified to reflect current physical data, to include the contribution to dose from internal conversion and Auger electrons, and to reflect a correction for low-energy electrons. In addition, the computer code SADDE: Scaled Absorbed Dose Distribution Evaluator has been modified to allow the generation of scaled absorbed dose distributions for mixtures of radionuclides and intereat conversion and Auger electrons. This new code, SADDE Mod 2, is also described in this document. Instructions for installation and operation of the code and detailed descriptions of the models used in the code are provided
Benchmarking of computer codes and approaches for modeling exposure scenarios
International Nuclear Information System (INIS)
Seitz, R.R.; Rittmann, P.D.; Wood, M.I.; Cook, J.R.
1994-08-01
The US Department of Energy Headquarters established a performance assessment task team (PATT) to integrate the activities of DOE sites that are preparing performance assessments for the disposal of newly generated low-level waste. The PATT chartered a subteam with the task of comparing computer codes and exposure scenarios used for dose calculations in performance assessments. This report documents the efforts of the subteam. Computer codes considered in the comparison include GENII, PATHRAE-EPA, MICROSHIELD, and ISOSHLD. Calculations were also conducted using spreadsheets to provide a comparison at the most fundamental level. Calculations and modeling approaches are compared for unit radionuclide concentrations in water and soil for the ingestion, inhalation, and external dose pathways. Over 30 tables comparing inputs and results are provided
Microdosimetry computation code of internal sources - MICRODOSE 1
International Nuclear Information System (INIS)
Li Weibo; Zheng Wenzhong; Ye Changqing
1995-01-01
This paper describes a microdosimetry computation code, MICRODOSE 1, on the basis of the following described methods: (1) the method of calculating f 1 (z) for charged particle in the unit density tissues; (2) the method of calculating f(z) for a point source; (3) the method of applying the Fourier transform theory to the calculation of the compound Poisson process; (4) the method of using fast Fourier transform technique to determine f(z) and, giving some computed examples based on the code, MICRODOSE 1, including alpha particles emitted from 239 Pu in the alveolar lung tissues and from radon progeny RaA and RAC in the human respiratory tract. (author). 13 refs., 6 figs
Nuclear Physics computer networking: Report of the Nuclear Physics Panel on Computer Networking
International Nuclear Information System (INIS)
Bemis, C.; Erskine, J.; Franey, M.; Greiner, D.; Hoehn, M.; Kaletka, M.; LeVine, M.; Roberson, R.; Welch, L.
1990-05-01
This paper discusses: the state of computer networking within nuclear physics program; network requirements for nuclear physics; management structure; and issues of special interest to the nuclear physics program office
Validation and testing of the VAM2D computer code
International Nuclear Information System (INIS)
Kool, J.B.; Wu, Y.S.
1991-10-01
This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, ''Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs
FRANTIC: a computer code for time dependent unavailability analysis
International Nuclear Information System (INIS)
Vesely, W.E.; Goldberg, F.F.
1977-03-01
The FRANTIC computer code evaluates the time dependent and average unavailability for any general system model. The code is written in FORTRAN IV for the IBM 370 computer. Non-repairable components, monitored components, and periodically tested components are handled. One unique feature of FRANTIC is the detailed, time dependent modeling of periodic testing which includes the effects of test downtimes, test overrides, detection inefficiencies, and test-caused failures. The exponential distribution is used for the component failure times and periodic equations are developed for the testing and repair contributions. Human errors and common mode failures can be included by assigning an appropriate constant probability for the contributors. The output from FRANTIC consists of tables and plots of the system unavailability along with a breakdown of the unavailability contributions. Sensitivity studies can be simply performed and a wide range of tables and plots can be obtained for reporting purposes. The FRANTIC code represents a first step in the development of an approach that can be of direct value in future system evaluations. Modifications resulting from use of the code, along with the development of reliability data based on operating reactor experience, can be expected to provide increased confidence in its use and potential application to the licensing process
User's manual for computer code RIBD-II, a fission product inventory code
International Nuclear Information System (INIS)
Marr, D.R.
1975-01-01
The computer code RIBD-II is used to calculate inventories, activities, decay powers, and energy releases for the fission products generated in a fuel irradiation. Changes from the earlier RIBD code are: the expansion to include up to 850 fission product isotopes, input in the user-oriented NAMELIST format, and run-time choice of fuels from an extensively enlarged library of nuclear data. The library that is included in the code package contains yield data for 818 fission product isotopes for each of fourteen different fissionable isotopes, together with fission product transmutation cross sections for fast and thermal systems. Calculational algorithms are little changed from those in RIBD. (U.S.)
Available computer codes and data for radiation transport analysis
International Nuclear Information System (INIS)
Trubey, D.K.; Maskewitz, B.F.; Roussin, R.W.
1975-01-01
The Radiation Shielding Information Center (RSIC), sponsored and supported by the Energy Research and Development Administration (ERDA) and the Defense Nuclear Agency (DNA), is a technical institute serving the radiation transport and shielding community. It acquires, selects, stores, retrieves, evaluates, analyzes, synthesizes, and disseminates information on shielding and ionizing radiation transport. The major activities include: (1) operating a computer-based information system and answering inquiries on radiation analysis, (2) collecting, checking out, packaging, and distributing large computer codes, and evaluated and processed data libraries. The data packages include multigroup coupled neutron-gamma-ray cross sections and kerma coefficients, other nuclear data, and radiation transport benchmark problem results
Computer code for qualitative analysis of gamma-ray spectra
International Nuclear Information System (INIS)
Yule, H.P.
1979-01-01
Computer code QLN1 provides complete analysis of gamma-ray spectra observed with Ge(Li) detectors and is used at both the National Bureau of Standards and the Environmental Protection Agency. It locates peaks, resolves multiplets, identifies component radioisotopes, and computes quantitative results. The qualitative-analysis (or component identification) algorithms feature thorough, self-correcting steps which provide accurate isotope identification in spite of errors in peak centroids, energy calibration, and other typical problems. The qualitative-analysis algorithm is described in this paper
Verification of structural analysis computer codes in nuclear engineering
International Nuclear Information System (INIS)
Zebeljan, Dj.; Cizelj, L.
1990-01-01
Sources of potential errors, which can take place during use of finite element method based computer programs, are described in the paper. The magnitude of errors was defined as acceptance criteria for those programs. Error sources are described as they are treated by 'National Agency for Finite Element Methods and Standards (NAFEMS)'. Specific verification examples are used from literature of Nuclear Regulatory Commission (NRC). Example of verification is made on PAFEC-FE computer code for seismic response analyses of piping systems by response spectrum method. (author)
A computer code package for electron transport Monte Carlo simulation
International Nuclear Information System (INIS)
Popescu, Lucretiu M.
1999-01-01
A computer code package was developed for solving various electron transport problems by Monte Carlo simulation. It is based on condensed history Monte Carlo algorithm. In order to get reliable results over wide ranges of electron energies and target atomic numbers, specific techniques of electron transport were implemented such as: Moliere multiscatter angular distributions, Blunck-Leisegang multiscatter energy distribution, sampling of electron-electron and Bremsstrahlung individual interactions. Path-length and lateral displacement corrections algorithms and the module for computing collision, radiative and total restricted stopping powers and ranges of electrons are also included. Comparisons of simulation results with experimental measurements are finally presented. (author)
Methods for the development of large computer codes under LTSS
International Nuclear Information System (INIS)
Sicilian, J.M.
1977-06-01
TRAC is a large computer code being developed by Group Q-6 for the analysis of the transient thermal hydraulic behavior of light-water nuclear reactors. A system designed to assist the development of TRAC is described. The system consists of a central HYDRA dataset, R6LIB, containing files used in the development of TRAC, and a file maintenance program, HORSE, which facilitates the use of this dataset
WAMCUT, a computer code for fault tree evaluation. Final report
International Nuclear Information System (INIS)
Erdmann, R.C.
1978-06-01
WAMCUT is a code in the WAM family which produces the minimum cut sets (MCS) for a given fault tree. The MCS are useful as they provide a qualitative evaluation of a system, as well as providing a means of determining the probability distribution function for the top of the tree. The program is very efficient and will produce all the MCS in a very short computer time span. 22 figures, 4 tables
Applications of the ARGUS code in accelerator physics
International Nuclear Information System (INIS)
Petillo, J.J.; Mankofsky, A.; Krueger, W.A.; Kostas, C.; Mondelli, A.A.; Drobot, A.T.
1993-01-01
ARGUS is a three-dimensional, electromagnetic, particle-in-cell (PIC) simulation code that is being distributed to U.S. accelerator laboratories in collaboration between SAIC and the Los Alamos Accelerator Code Group. It uses a modular architecture that allows multiple physics modules to share common utilities for grid and structure input., memory management, disk I/O, and diagnostics, Physics modules are in place for electrostatic and electromagnetic field solutions., frequency-domain (eigenvalue) solutions, time- dependent PIC, and steady-state PIC simulations. All of the modules are implemented with a domain-decomposition architecture that allows large problems to be broken up into pieces that fit in core and that facilitates the adaptation of ARGUS for parallel processing ARGUS operates on either Cray or workstation platforms, and MOTIF-based user interface is available for X-windows terminals. Applications of ARGUS in accelerator physics and design are described in this paper
Parallel computing by Monte Carlo codes MVP/GMVP
International Nuclear Information System (INIS)
Nagaya, Yasunobu; Nakagawa, Masayuki; Mori, Takamasa
2001-01-01
General-purpose Monte Carlo codes MVP/GMVP are well-vectorized and thus enable us to perform high-speed Monte Carlo calculations. In order to achieve more speedups, we parallelized the codes on the different types of parallel computing platforms or by using a standard parallelization library MPI. The platforms used for benchmark calculations are a distributed-memory vector-parallel computer Fujitsu VPP500, a distributed-memory massively parallel computer Intel paragon and a distributed-memory scalar-parallel computer Hitachi SR2201, IBM SP2. As mentioned generally, linear speedup could be obtained for large-scale problems but parallelization efficiency decreased as the batch size per a processing element(PE) was smaller. It was also found that the statistical uncertainty for assembly powers was less than 0.1% by the PWR full-core calculation with more than 10 million histories and it took about 1.5 hours by massively parallel computing. (author)
Computer codes for the operational control of the research reactors
International Nuclear Information System (INIS)
Kalker, K.J.; Nabbi, R.; Bormann, H.J.
1986-01-01
Four small computer codes developed by ZFR are presented, which have been used for several years during operation of the research reactors FRJ-1, FRJ-2, AVR (all in Juelich) and DR-2 (Riso, Denmark). Because of interest coming from the other reactor stations the codes are documented within the frame work of the IAEA Research Contract No. 3634/FG. The zero-dimensional burnup program CREMAT is used for reactor cores in which flux measurements at each individual fuel element are carried out during operation. The program yields burnup data for each fuel element and for the whole core. On the basis of these data, fuel reloading is prepared for the next operational period under consideration of the permitted minimum shut down reactivity of the system. The program BURNY calculates burnup for fuel elements inaccessible for flux measurements, but for which 'position weighting factors' have been measured/calculated during zero power operation of the core, and which are assumed to be constant in all operational situations. The code CURIAX calculates post-irradiation data for discharged fuel elements needed in their manipulation and transport. These three programs have been written for highly enriched fuel and take into account U-235 only. The modification of CREMAT for LEU Cores and its combiantion with ORIGEN is in preparation. KINIK is an inverse kinetic code and widely used for absorber rod calibration at the abovementioned research reactors. It includes a special polynomial subroutine which can easily be used in other codes. (orig.) [de
Use of computer codes to improve nuclear power plant operation
International Nuclear Information System (INIS)
Misak, J.; Polak, V.; Filo, J.; Gatas, J.
1985-01-01
For safety and economic reasons, the scope for carrying out experiments on operational nuclear power plants (NPPs) is very limited and any changes in technical equipment and operating parameters or conditions have to be supported by theoretical calculations. In the Nuclear Power Plant Scientific Research Institute (NIIAEhS), computer codes are systematically used to analyse actual operating events, assess safety aspects of changes in equipment and operating conditions, optimize the conditions, preparation and analysis of NPP startup trials and review and amend operating instructions. In addition, calculation codes are gradually being introduced into power plant computer systems to perform real time processing of the parameters being measured. The paper describes a number of specific examples of the use of calculation codes for the thermohydraulic analysis of operating and accident conditions aimed at improving the operation of WWER-440 units at the Jaslovske Bohunice V-1 and V-2 nuclear power plants. These examples confirm that computer calculations are an effective way of solving operating problems and of further increasing the level of safety and economic efficiency of NPP operation. (author)
ABINIT: a computer code for matter; Abinit: un code au service de la matiere
Energy Technology Data Exchange (ETDEWEB)
Amadon, B.; Bottin, F.; Bouchet, J.; Dewaele, A.; Jollet, F.; Jomard, G.; Loubeyre, P.; Mazevet, S.; Recoules, V.; Torrent, M.; Zerah, G. [CEA Bruyeres-le-Chatel, 91 (France)
2008-07-01
The PAW (Projector Augmented Wave) method has been implemented in the ABINIT Code that computes electronic structures in atoms. This method relies on the simultaneous use of a set of auxiliary functions (in plane waves) and a sphere around each atom. This method allows the computation of systems including many atoms and gives the expression of energy, forces, stress... in terms of the auxiliary function only. We have generated atomic data for iron at very high pressure (over 200 GPa). We get a bcc-hcp transition around 10 GPa and the magnetic order disappears around 50 GPa. This method has been validated on a series of metals. The development of the PAW method has required a great effort for the massive parallelization of the ABINIT code. (A.C.)
RAP-2A Computer code for transients analysis in fast reactors
International Nuclear Information System (INIS)
Iftode, I.; Popescu, C.; Turcu, I.; Biro, L.
1975-10-01
The RAP-2A computer code is designed for analyzing thermohydraulic transients and/or steady state problems for large LMFBR cores. Physical and mathematical models, main input-output data, the flow chart of the code and a sample problem are given. RAP-2A calculates the power and the thermoydraulic transients initiated by a flow or reactivity changes, from a normal operating state of the reactor up to core disassembly. In this analysis a representative fuel pin is considered: a one-group space-independent (point) kinetics model to describe the neutron kinetics and a one-dimensional model describing the heat transfer (radial in the fuel and axial in the coolant) are used. Mechanical deformations due to temperature gradient, pressure losses, fuel melting, etc., are also calculated. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer
A study on the nuclear computer code maintenance and management system
International Nuclear Information System (INIS)
Kim, Yeon Seung; Huh, Young Hwan; Lee, Jong Bok; Choi, Young Gil; Suh, Soong Hyok; Kang, Byong Heon; Kim, Hee Kyung; Kim, Ko Ryeo; Park, Soo Jin
1990-12-01
According to current software development and quality assurance trends. It is necessary to develop computer code management system for nuclear programs. For this reason, the project started in 1987. Main objectives of the project are to establish a nuclear computer code management system, to secure software reliability, and to develop nuclear computer code packages. Contents of performing the project in this year were to operate and maintain computer code information system of KAERI computer codes, to develop application tool, AUTO-i, for solving the 1st and 2nd moments of inertia on polygon or circle, and to research nuclear computer code conversion between different machines. For better supporting the nuclear code availability and reliability, assistance from users who are using codes is required. Lastly, for easy reference about the codes information, we presented list of code names and information on the codes which were introduced or developed during this year. (Author)
International Conference on Theoretical and Computational Physics
2016-01-01
Int'l Conference on Theoretical and Computational Physics (TCP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on Theoretical and Computational Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. TCP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of Theoretical and Computational Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.
Interface between computational fluid dynamics (CFD) and plant analysis computer codes
International Nuclear Information System (INIS)
Coffield, R.D.; Dunckhorst, F.F.; Tomlinson, E.T.; Welch, J.W.
1993-01-01
Computational fluid dynamics (CFD) can provide valuable input to the development of advanced plant analysis computer codes. The types of interfacing discussed in this paper will directly contribute to modeling and accuracy improvements throughout the plant system and should result in significant reduction of design conservatisms that have been applied to such analyses in the past
WSRC approach to validation of criticality safety computer codes
International Nuclear Information System (INIS)
Finch, D.R.; Mincey, J.F.
1991-01-01
Recent hardware and operating system changes at Westinghouse Savannah River Site (WSRC) have necessitated review of the validation for JOSHUA criticality safety computer codes. As part of the planning for this effort, a policy for validation of JOSHUA and other criticality safety codes has been developed. This policy will be illustrated with the steps being taken at WSRC. The objective in validating a specific computational method is to reliably correlate its calculated neutron multiplication factor (K eff ) with known values over a well-defined set of neutronic conditions. Said another way, such correlations should be: (1) repeatable; (2) demonstrated with defined confidence; and (3) identify the range of neutronic conditions (area of applicability) for which the correlations are valid. The general approach to validation of computational methods at WSRC must encompass a large number of diverse types of fissile material processes in different operations. Special problems are presented in validating computational methods when very few experiments are available (such as for enriched uranium systems with principal second isotope 236 U). To cover all process conditions at WSRC, a broad validation approach has been used. Broad validation is based upon calculation of many experiments to span all possible ranges of reflection, nuclide concentrations, moderation ratios, etc. Narrow validation, in comparison, relies on calculations of a few experiments very near anticipated worst-case process conditions. The methods and problems of broad validation are discussed
Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes
International Nuclear Information System (INIS)
Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.
2002-01-01
A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)
Computational Physics Program of the National MFE Computer Center
International Nuclear Information System (INIS)
Mirin, A.A.
1984-12-01
The principal objective of the computational physics group is to develop advanced numerical models for the investigation of plasma phenomena and the simulation of present and future magnetic confinement devices. A summary of the groups activities is presented, including computational studies in MHD equilibria and stability, plasma transport, Fokker-Planck, and efficient numerical and programming algorithms. References are included
Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix
2017-07-01
We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.
Directory of Open Access Journals (Sweden)
Daniel Litinski
2017-09-01
Full Text Available We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall–superconductor hybrids.
Computational Physics as a Path for Physics Education
Landau, Rubin H.
2008-04-01
Evidence and arguments will be presented that modifications in the undergraduate physics curriculum are necessary to maintain the long-term relevance of physics. Suggested will a balance of analytic, experimental, computational, and communication skills, that in many cases will require an increased inclusion of computation and its associated skill set into the undergraduate physics curriculum. The general arguments will be followed by a detailed enumeration of suggested subjects and student learning outcomes, many of which have already been adopted or advocated by the computational science community, and which permit high performance computing and communication. Several alternative models for how these computational topics can be incorporated into the undergraduate curriculum will be discussed. This includes enhanced topics in the standard existing courses, as well as stand-alone courses. Applications and demonstrations will be presented throughout the talk, as well as prototype video-based materials and electronic books.
Probabilistic evaluations for CANTUP computer code analysis improvement
International Nuclear Information System (INIS)
Florea, S.; Pavelescu, M.
2004-01-01
Structural analysis with finite element method is today an usual way to evaluate and predict the behavior of structural assemblies subject to hard conditions in order to ensure their safety and reliability during their operation. A CANDU 600 fuel channel is an example of an assembly working in hard conditions, in which, except the corrosive and thermal aggression, long time irradiation, with implicit consequences on material properties evolution, interferes. That leads inevitably to material time-dependent properties scattering, their dynamic evolution being subject to a great degree of uncertainness. These are the reasons for developing, in association with deterministic evaluations with computer codes, the probabilistic and statistical methods in order to predict the structural component response. This work initiates the possibility to extend the deterministic thermomechanical evaluation on fuel channel components to probabilistic structural mechanics approach starting with deterministic analysis performed with CANTUP computer code which is a code developed to predict the long term mechanical behavior of the pressure tube - calandria tube assembly. To this purpose the structure of deterministic calculus CANTUP computer code has been reviewed. The code has been adapted from LAHEY 77 platform to Microsoft Developer Studio - Fortran Power Station platform. In order to perform probabilistic evaluations, it was added a part to the deterministic code which, using a subroutine from IMSL library from Microsoft Developer Studio - Fortran Power Station platform, generates pseudo-random values of a specified value. It was simulated a normal distribution around the deterministic value and 5% standard deviation for Young modulus material property in order to verify the statistical calculus of the creep behavior. The tube deflection and effective stresses were the properties subject to probabilistic evaluation. All the values of these properties obtained for all the values for
Computing for Heavy Ion Physics
International Nuclear Information System (INIS)
Martinez, G.; Schiff, D.; Hristov, P.; Menaud, J.M.; Hrivnacova, I.; Poizat, P.; Chabratova, G.; Albin-Amiot, H.; Carminati, F.; Peters, A.; Schutz, Y.; Safarik, K.; Ollitrault, J.Y.; Hrivnacova, I.; Morsch, A.; Gheata, A.; Morsch, A.; Vande Vyvre, P.; Lauret, J.; Nief, J.Y.; Pereira, H.; Kaczmarek, O.; Conesa Del Valle, Z.; Guernane, R.; Stocco, D.; Gruwe, M.; Betev, L.; Baldisseri, A.; Vilakazi, Z.; Rapp, B.; Masoni, A.; Stoicea, G.; Brun, R.
2005-01-01
This workshop was devoted to the computational technologies needed for the heavy quarkonia and open flavor production study at LHC (large hadron collider) experiments. These requirements are huge: peta-bytes of data will be generated each year. Analysing this will require the equivalent of a few thousands of today's fastest PC processors. The new developments in terms of dedicated software has been addressed. This document gathers the transparencies that were presented at the workshop
Computing for Heavy Ion Physics
Energy Technology Data Exchange (ETDEWEB)
Martinez, G.; Schiff, D.; Hristov, P.; Menaud, J.M.; Hrivnacova, I.; Poizat, P.; Chabratova, G.; Albin-Amiot, H.; Carminati, F.; Peters, A.; Schutz, Y.; Safarik, K.; Ollitrault, J.Y.; Hrivnacova, I.; Morsch, A.; Gheata, A.; Morsch, A.; Vande Vyvre, P.; Lauret, J.; Nief, J.Y.; Pereira, H.; Kaczmarek, O.; Conesa Del Valle, Z.; Guernane, R.; Stocco, D.; Gruwe, M.; Betev, L.; Baldisseri, A.; Vilakazi, Z.; Rapp, B.; Masoni, A.; Stoicea, G.; Brun, R
2005-07-01
This workshop was devoted to the computational technologies needed for the heavy quarkonia and open flavor production study at LHC (large hadron collider) experiments. These requirements are huge: peta-bytes of data will be generated each year. Analysing this will require the equivalent of a few thousands of today's fastest PC processors. The new developments in terms of dedicated software has been addressed. This document gathers the transparencies that were presented at the workshop.
Computing for Heavy Ion Physics
Energy Technology Data Exchange (ETDEWEB)
Martinez, G; Schiff, D; Hristov, P; Menaud, J M; Hrivnacova, I; Poizat, P; Chabratova, G; Albin-Amiot, H; Carminati, F; Peters, A; Schutz, Y; Safarik, K; Ollitrault, J Y; Hrivnacova, I; Morsch, A; Gheata, A; Morsch, A; Vande Vyvre, P; Lauret, J; Nief, J Y; Pereira, H; Kaczmarek, O; Conesa Del Valle, Z; Guernane, R; Stocco, D; Gruwe, M; Betev, L; Baldisseri, A; Vilakazi, Z; Rapp, B; Masoni, A; Stoicea, G; Brun, R
2005-07-01
This workshop was devoted to the computational technologies needed for the heavy quarkonia and open flavor production study at LHC (large hadron collider) experiments. These requirements are huge: peta-bytes of data will be generated each year. Analysing this will require the equivalent of a few thousands of today's fastest PC processors. The new developments in terms of dedicated software has been addressed. This document gathers the transparencies that were presented at the workshop.
Validation of thermal hydraulic computer codes for advanced light water reactor
International Nuclear Information System (INIS)
Macek, J.
2001-01-01
The Czech Republic operates 4 WWER-440 units, two WWER-1000 units are being finalised (one of them is undergoing commissioning). Thermal-hydraulics Department of the Nuclear Research Institute Rez performs accident analyses for these plants using a number of computer codes. To model the primary and secondary circuits behaviour the system codes ATHLET, CATHARE, RELAP, TRAC are applied. Containment and pressure-suppressure system are modelled with RALOC and MELCOR codes, the reactor power calculations (point and space-neutron kinetics) are made with DYN3D, NESTLE and CDF codes (FLUENT, TRIO) are used for some specific problems. An integral part of the current Czech project 'New Energy Sources' is selection of a new nuclear source. Within this and the preceding projects financed by the Czech Ministry of Industry and Trade and the EU PHARE, the Department carries and has carried out the systematic validation of thermal-hydraulic and reactor physics computer codes applying data obtained on several experimental facilities as well as the real operational data. The paper provides a concise information on these activities of the NRI and its Thermal-hydraulics Department. A detailed example of the system code validation and the consequent utilisation of the results for a real NPP purposes is included. (author)
Improvement of level-1 PSA computer code package
Energy Technology Data Exchange (ETDEWEB)
Kim, Tae Woon; Park, C. K.; Kim, K. Y.; Han, S. H.; Jung, W. D.; Chang, S. C.; Yang, J. E.; Sung, T. Y.; Kang, D. I.; Park, J. H.; Lee, Y. H.; Kim, S. H.; Hwang, M. J.; Choi, S. Y.
1997-07-01
This year the fifth (final) year of the phase-I of the Government-sponsored Mid- and Long-term Nuclear Power Technology Development Project. The scope of this subproject titled on `The improvement of level-1 PSA Computer Codes` is divided into two main activities : (1) improvement of level-1 PSA methodology, (2) development of applications methodology of PSA techniques to operations and maintenance of nuclear power plant. Level-1 PSA code KIRAP is converted to PC-Windows environment. For the improvement of efficiency in performing PSA, the fast cutset generation algorithm and an analytical technique for handling logical loop in fault tree modeling are developed. Using about 30 foreign generic data sources, generic component reliability database (GDB) are developed considering dependency among source data. A computer program which handles dependency among data sources are also developed based on three stage bayesian updating technique. Common cause failure (CCF) analysis methods are reviewed and CCF database are established. Impact vectors can be estimated from this CCF database. A computer code, called MPRIDP, which handles CCF database are also developed. A CCF analysis reflecting plant-specific defensive strategy against CCF event is also performed. A risk monitor computer program, called Risk Monster, are being developed for the application to the operation and maintenance of nuclear power plant. The PSA application technique is applied to review the feasibility study of on-line maintenance and to the prioritization of in-service test (IST) of motor-operated valves (MOV). Finally, the root cause analysis (RCA) and reliability-centered maintenance (RCM) technologies are adopted and applied to the improvement of reliability of emergency diesel generators (EDG) of nuclear power plant. To help RCA and RCM analyses, two software programs are developed, which are EPIS and RAM Pro. (author). 129 refs., 20 tabs., 60 figs.
Improvement of level-1 PSA computer code package
International Nuclear Information System (INIS)
Kim, Tae Woon; Park, C. K.; Kim, K. Y.; Han, S. H.; Jung, W. D.; Chang, S. C.; Yang, J. E.; Sung, T. Y.; Kang, D. I.; Park, J. H.; Lee, Y. H.; Kim, S. H.; Hwang, M. J.; Choi, S. Y.
1997-07-01
This year the fifth (final) year of the phase-I of the Government-sponsored Mid- and Long-term Nuclear Power Technology Development Project. The scope of this subproject titled on 'The improvement of level-1 PSA Computer Codes' is divided into two main activities : 1) improvement of level-1 PSA methodology, 2) development of applications methodology of PSA techniques to operations and maintenance of nuclear power plant. Level-1 PSA code KIRAP is converted to PC-Windows environment. For the improvement of efficiency in performing PSA, the fast cutset generation algorithm and an analytical technique for handling logical loop in fault tree modeling are developed. Using about 30 foreign generic data sources, generic component reliability database (GDB) are developed considering dependency among source data. A computer program which handles dependency among data sources are also developed based on three stage bayesian updating technique. Common cause failure (CCF) analysis methods are reviewed and CCF database are established. Impact vectors can be estimated from this CCF database. A computer code, called MPRIDP, which handles CCF database are also developed. A CCF analysis reflecting plant-specific defensive strategy against CCF event is also performed. A risk monitor computer program, called Risk Monster, are being developed for the application to the operation and maintenance of nuclear power plant. The PSA application technique is applied to review the feasibility study of on-line maintenance and to the prioritization of in-service test (IST) of motor-operated valves (MOV). Finally, the root cause analysis (RCA) and reliability-centered maintenance (RCM) technologies are adopted and applied to the improvement of reliability of emergency diesel generators (EDG) of nuclear power plant. To help RCA and RCM analyses, two software programs are developed, which are EPIS and RAM Pro. (author). 129 refs., 20 tabs., 60 figs
Computer codes and methods for simulating accelerator driven systems
International Nuclear Information System (INIS)
Sartori, E.; Byung Chan Na
2003-01-01
A large set of computer codes and associated data libraries have been developed by nuclear research and industry over the past half century. A large number of them are in the public domain and can be obtained under agreed conditions from different Information Centres. The areas covered comprise: basic nuclear data and models, reactor spectra and cell calculations, static and dynamic reactor analysis, criticality, radiation shielding, dosimetry and material damage, fuel behaviour, safety and hazard analysis, heat conduction and fluid flow in reactor systems, spent fuel and waste management (handling, transportation, and storage), economics of fuel cycles, impact on the environment of nuclear activities etc. These codes and models have been developed mostly for critical systems used for research or power generation and other technological applications. Many of them have not been designed for accelerator driven systems (ADS), but with competent use, they can be used for studying such systems or can form the basis for adapting existing methods to the specific needs of ADS's. The present paper describes the types of methods, codes and associated data available and their role in the applications. It provides Web addresses for facilitating searches for such tools. Some indications are given on the effect of non appropriate or 'blind' use of existing tools to ADS. Reference is made to available experimental data that can be used for validating the methods use. Finally, some international activities linked to the different computational aspects are described briefly. (author)
MQRAD, a computer code for synchrotron radiation from quadrupole magnets
International Nuclear Information System (INIS)
Morimoto, Teruhisa.
1984-01-01
The computer code, MQRAD, is developed for the calculation of the synchrotron radiation from the particles passing through quadrupole magnets at the straight section of the electron-positron colliding machine. This code computes the distributions of photon numbers and photon energies at any given points on the beam orbit. In this code, elements such as the quadrupole magnets and the drift spaces can be divided into many sub-elements in order to obtain the results with good accuracy. The synchrotron radiation produced by inserted quadrupole magnets at the interaction region of the electron-positron collider is one of the main background sources to the detector. The masking system against the synchrotron radiation at TRISTAN is very important because of the relatively high beam energy and the long straight section, which are 30 GeV and 100 meters, respectively. MQRAD has been used to design the masking system of the TOPAZ detector and the result is presented here as an example. (author)
Development of improved methods for the LWR lattice physics code EPRI-CELL
International Nuclear Information System (INIS)
Williams, M.L.; Wright, R.Q.; Barhen, J.
1982-07-01
A number of improvements have been made by ORNL to the lattice physics code EPRI-CELL (E-C) which is widely used by utilities for analysis of power reactors. The code modifications were made mainly in the thermal and epithermal routines and resulted in improved reactor physics approximations and more efficient running times. The improvements in the thermal flux calculation included implementation of a group-dependent rebalance procedure to accelerate the iterative process and a more rigorous calculation of interval-to-interval collision probabilities. The epithermal resonance shielding methods used in the code have been extensively studied to determine its major approximations and to examine the sensitivity of computed results to these approximations. The study has resulted in several improvements in the original methodology
Monocrystal sputtering by the computer simulation code ACOCT
International Nuclear Information System (INIS)
Yamamura, Yasunori; Takeuchi, Wataru.
1987-09-01
A new computer code ACOCT has been developed in order to simulate the atomic collisions in the crystalline target within the binary collision approximation. The present code is more convenient as compared with the MARLOWE code, and takes the higher-order simultaneous collisions into account. To cheke the validity of the ACOCT program, we have calculated sputtering yields for various ion-target combinations and compared with the MARLOWE results. It is found that the calculated yields by the ACOCT program are in good agreements with those by the MARLOWE code. The ejection patterns of sputtered atoms were also calculated for the major surfaces of fcc, bcc, diamond and hcp structures, and we have got reasonable agreements with experimental results. In order to know the effects of the simultaneous collision in the slowing down process the sputtering yields and the projected ranges are calculated, changeing the parameter of the criterion for the simultaneous collision, and the effect of the simultaneous collision is found to depend on the crystal orientation. (author)
The Vulnerability Assessment Code for Physical Protection System
International Nuclear Information System (INIS)
Jang, Sung Soon; Yoo, Ho Sik
2007-01-01
To neutralize the increasing terror threats, nuclear facilities have strong physical protection system (PPS). PPS includes detectors, door locks, fences, regular guard patrols, and a hot line to a nearest military force. To design an efficient PPS and to fully operate it, vulnerability assessment process is required. Evaluating PPS of a nuclear facility is complicate process and, hence, several assessment codes have been developed. The estimation of adversary sequence interruption (EASI) code analyzes vulnerability along a single intrusion path. To evaluate many paths to a valuable asset in an actual facility, the systematic analysis of vulnerability to intrusion (SAVI) code was developed. KAERI improved SAVI and made the Korean analysis of vulnerability to intrusion (KAVI) code. Existing codes (SAVI and KAVI) have limitations in representing the distance of a facility because they use the simplified model of a PPS called adversary sequence diagram. In adversary sequence diagram the position of doors, sensors and fences is described just as the locating area. Thus, the distance between elements is inaccurate and we cannot reflect the range effect of sensors. In this abstract, we suggest accurate and intuitive vulnerability assessment based on raster map modeling of PPS. The raster map of PPS accurately represents the relative position of elements and, thus, the range effect of sensor can be easily incorporable. Most importantly, the raster map is easy to understand
Enhanced verification test suite for physics simulation codes
Energy Technology Data Exchange (ETDEWEB)
Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.; Cotrell, David L.; Johnson, Bryan; Knupp, Patrick; Rider, William J.; Trucano, Timothy G.; Weirs, V. Gregory
2008-09-01
This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.
Development of multi-physics code systems based on the reactor dynamics code DYN3D
Energy Technology Data Exchange (ETDEWEB)
Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)
2011-07-15
The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)
Development of multi-physics code systems based on the reactor dynamics code DYN3D
International Nuclear Information System (INIS)
Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich; Schuetze, Jochen; Frank, Thomas; Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo
2011-01-01
The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)
GPU-computing in econophysics and statistical physics
Preis, T.
2011-03-01
A recent trend in computer science and related fields is general purpose computing on graphics processing units (GPUs), which can yield impressive performance. With multiple cores connected by high memory bandwidth, today's GPUs offer resources for non-graphics parallel processing. This article provides a brief introduction into the field of GPU computing and includes examples. In particular computationally expensive analyses employed in financial market context are coded on a graphics card architecture which leads to a significant reduction of computing time. In order to demonstrate the wide range of possible applications, a standard model in statistical physics - the Ising model - is ported to a graphics card architecture as well, resulting in large speedup values.
STADIC: a computer code for combining probability distributions
International Nuclear Information System (INIS)
Cairns, J.J.; Fleming, K.N.
1977-03-01
The STADIC computer code uses a Monte Carlo simulation technique for combining probability distributions. The specific function for combination of the input distribution is defined by the user by introducing the appropriate FORTRAN statements to the appropriate subroutine. The code generates a Monte Carlo sampling from each of the input distributions and combines these according to the user-supplied function to provide, in essence, a random sampling of the combined distribution. When the desired number of samples is obtained, the output routine calculates the mean, standard deviation, and confidence limits for the resultant distribution. This method of combining probability distributions is particularly useful in cases where analytical approaches are either too difficult or undefined
RADTRAN 5 - A computer code for transportation risk analysis
International Nuclear Information System (INIS)
Neuhauser, K.S.; Kanipe, F.L.
1993-01-01
The RADTRAN 5 computer code has been developed to estimate radiological and nonradiological risks of radioactive materials transportation. RADTRAN 5 is written in ANSI standard FORTRAN 77; the code contains significant advances in the methodology first pioneered with the LINK option of RADTRAN 4. A major application of the LINK methodology is route-specific analysis. Another application is comparisons of attributes along the same route segments. Nonradiological risk factors have been incorporated to allow users to estimate nonradiological fatalities and injuries that might occur during the transportation event(s) being analyzed. These fatalities include prompt accidental fatalities from mechanical causes. Values of these risk factors for the United States have been made available in the code as optional defaults. Several new health effects models have been published in the wake of the Hiroshima-Nagasaki dosimetry reassessment, and this has emphasized the need for flexibility in the RADTRAN approach to health-effects calculations. Therefore, the basic set of health-effects conversion equations in RADTRAN have been made user-definable. All parameter values can be changed by the user, but a complete set of default values are available for both the new International Commission on Radiation Protection model (ICRP Publication 60) and the recent model of the U.S. National Research Council's Committee on the Biological Effects of Radiation (BEIR V). The meteorological input data tables have been modified to permit optional entry of maximum downwind distances for each dose isopleth. The expected dose to an individual in each isodose area is also calculated and printed automatically. Examples are given that illustrate the power and flexibility of the RADTRAN 5 computer code. (J.P.N.)
Compilation of the abstracts of nuclear computer codes available at CPD/IPEN
International Nuclear Information System (INIS)
Granzotto, A.; Gouveia, A.S. de; Lourencao, E.M.
1981-06-01
A compilation of all computer codes available at IPEN in S.Paulo are presented. These computer codes are classified according to Argonne National Laboratory - and Energy Nuclear Agency schedule. (E.G.) [pt
CARP: a computer code and albedo data library for use by BREESE, the MORSE albedo package
International Nuclear Information System (INIS)
Emmett, M.B.; Rhoades, W.A.
1978-10-01
The CARP computer code was written to allow processing of DOT angular flux tapes to produce albedo data for use in the MORSE computer code. An albedo data library was produced containing several materials. 3 tables
Nuclear model codes available at the Nuclear Energy Agency Computer Program Library (NEA-CPL)
International Nuclear Information System (INIS)
Sartori, E.; Garcia Viedma, L. de
1976-01-01
This paper briefly outlines the objectives of the NEA-CPL and its activities in the field of Nuclear Model Computer Codes. A short description of the computer codes available from the CPL in this field is also presented. (author)
Computational physics problem solving with Python
Landau, Rubin H; Bordeianu, Cristian C
2015-01-01
The use of computation and simulation has become an essential part of the scientific process. Being able to transform a theory into an algorithm requires significant theoretical insight, detailed physical and mathematical understanding, and a working level of competency in programming. This upper-division text provides an unusually broad survey of the topics of modern computational physics from a multidisciplinary, computational science point of view. Its philosophy is rooted in learning by doing (assisted by many model programs), with new scientific materials as well as with the Python progr
Wolpert, David H.; Koga, Dennis (Technical Monitor)
2000-01-01
In the first of this pair of papers, it was proven that there cannot be a physical computer to which one can properly pose any and all computational tasks concerning the physical universe. It was then further proven that no physical computer C can correctly carry out all computational tasks that can be posed to C. As a particular example, this result means that no physical computer that can, for any physical system external to that computer, take the specification of that external system's state as input and then correctly predict its future state before that future state actually occurs; one cannot build a physical computer that can be assured of correctly "processing information faster than the universe does". These results do not rely on systems that are infinite, and/or non-classical, and/or obey chaotic dynamics. They also hold even if one uses an infinitely fast, infinitely dense computer, with computational powers greater than that of a Turing Machine. This generality is a direct consequence of the fact that a novel definition of computation - "physical computation" - is needed to address the issues considered in these papers, which concern real physical computers. While this novel definition does not fit into the traditional Chomsky hierarchy, the mathematical structure and impossibility results associated with it have parallels in the mathematics of the Chomsky hierarchy. This second paper of the pair presents a preliminary exploration of some of this mathematical structure. Analogues of Chomskian results concerning universal Turing Machines and the Halting theorem are derived, as are results concerning the (im)possibility of certain kinds of error-correcting codes. In addition, an analogue of algorithmic information complexity, "prediction complexity", is elaborated. A task-independent bound is derived on how much the prediction complexity of a computational task can differ for two different reference universal physical computers used to solve that task
Computing in high-energy physics
International Nuclear Information System (INIS)
Mount, Richard P.
2016-01-01
I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software
Computing in high-energy physics
Mount, Richard P.
2016-04-01
I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.
Computer codes in nuclear safety, radiation transport and dosimetry
International Nuclear Information System (INIS)
Bordy, J.M.; Kodeli, I.; Menard, St.; Bouchet, J.L.; Renard, F.; Martin, E.; Blazy, L.; Voros, S.; Bochud, F.; Laedermann, J.P.; Beaugelin, K.; Makovicka, L.; Quiot, A.; Vermeersch, F.; Roche, H.; Perrin, M.C.; Laye, F.; Bardies, M.; Struelens, L.; Vanhavere, F.; Gschwind, R.; Fernandez, F.; Quesne, B.; Fritsch, P.; Lamart, St.; Crovisier, Ph.; Leservot, A.; Antoni, R.; Huet, Ch.; Thiam, Ch.; Donadille, L.; Monfort, M.; Diop, Ch.; Ricard, M.
2006-01-01
The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations
Development validation and use of computer codes for inelastic analysis
International Nuclear Information System (INIS)
Jobson, D.A.
1983-01-01
A finite element scheme is a system which provides routines so carry out the operations which are common to all finite element programs. The list of items that can be provided as standard by the finite element scheme is surprisingly large and the list provided by the UNCLE finite element scheme is unusually comprehensive. This presentation covers the following: construction of the program, setting up a finite element mesh, generation of coordinates, incorporating boundary and load conditions. Program validation was done by creep calculations performed using CAUSE code. Program use is illustrated by calculating a typical inelastic analysis problem. This includes computer model of the PFR intermediate heat exchanger
Utilization of Relap 5 computer code for analyzing thermohydraulic projects
International Nuclear Information System (INIS)
Silva Filho, E.
1987-01-01
This work deals with the design of a scaled test facility of a typical pressurized water reactor plant of the 1300 MW (electric) class. A station blackout has been choosen to investigate the thermohydraulic behaviour of the the test facility in comparison to the reactor plant. The computer code RELAPS/MOD1 has been utilized to simulate the blackout and to compare the test facility behaviour with the reactor plant one. The results demonstrate similar thermohydraulic behaviours of the two systems. (author) [pt
Computer code for the costing and sizing of TNS tokamaks
International Nuclear Information System (INIS)
Sink, D.A.; Iwinski, E.M.
1977-01-01
A FORTRAN code for the COsting And Sizing of Tokamaks (COAST) is described. The code was written to conduct detailed analyses on the engineering features of the next tokamak fusion device following TFTR. The ORNL/Westinghouse study of TNS (The Next Step) has involved the investigation of a number of device options, each over a wide range of plasma sizes. A generalized description of TNS is incorporated in the code and includes refined modeling of over forty systems and subsystems. Considerable detailed design and analyses have provided the basis for the thermal, electrical, mechanical, nuclear, chemical, vacuum, and facility engineering of the various subsystems. Currently, the code provides a tool for the systematic comparison of four toroidal field (TF) coil technologies allowing both D-shaped and circular coils. The coil technologies are: (1) copper (both room temperature and liquid-nitrogen cooled), (2) superconducting NbTi, (3) superconducting Nb 3 Sn, and (4) a Cu/NbTi/ hybrid. For the poloidal field (PF) coil systems copper conductors are assumed. The ohmic heating (OH) coils are located within the machine bore and have an air core, while the shaping field (SF) coils are located either within or outside the TF coils. The PF coil self and mutual inductances are calculated from the geometry, and the PF coil power supplies are modeled to account for time-dependent profiles for voltages and currents as governed by input data. Plasma heating is assumed to be by neutral beams, and impurity control is either passive or by a poloidal divertor system. The size modeling allows considerable freedom in specifying physics assumptions, operating scenarios, TF operating margin, and component geometric and performance parameters. Cost relationships have been developed for both plant and capital equipment and for annual utility and fuel expenses. The code has been used successfully to reproduce the sizing and costing of TFTR in order to calibrate the various models
Some neutronics and thermal-hydraulics codes for reactor analysis using personal computers
International Nuclear Information System (INIS)
Woodruff, W.L.
1990-01-01
Some neutronics and thermal-hydraulics codes formerly available only for main frame computers may now be run on personal computers. Brief descriptions of the codes are provided. Running times for some of the codes are compared for an assortment of personal and main frame computers. With some limitations in detail, personal computer versions of the codes can be used to solve many problems of interest in reactor analyses at very modest costs. 11 refs., 4 tabs
Development of Advanced Suite of Deterministic Codes for VHTR Physics Analysis
Energy Technology Data Exchange (ETDEWEB)
Kim, Kang Seog; Cho, J. Y.; Lee, K. H. (and others)
2007-07-15
Advanced Suites of deterministic codes for VHTR physics analysis has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. These code suites include the conventional 2-step procedure in which a few group constants are generated by a transport lattice calculation, and the reactor physics analysis is performed by a 3-dimensional diffusion calculation, and a whole core transport code that can model local heterogeneities directly at the core level. Particular modeling issues in physics analysis of the gas-cooled VHTRs were resolved, which include a double heterogeneity of the coated fuel particles, a neutron streaming in the coolant channels, a strong core-reflector interaction, and large spectrum shifts due to changes of the surrounding environment, temperature and burnup. And the geometry handling capability of the DeCART code were extended to deal with the hexagonal fuel elements of the VHTR core. The developed code suites were validated and verified by comparing the computational results with those of the Monte Carlo calculations for the benchmark problems.
Knowlton, Marie; Wetzel, Robin
2006-01-01
This study compared the length of text in English Braille American Edition, the Nemeth code, and the computer braille code with the Unified English Braille Code (UEBC)--also known as Unified English Braille (UEB). The findings indicate that differences in the length of text are dependent on the type of material that is transcribed and the grade…
Measurements by activation foils and comparative computations by MCNP code
International Nuclear Information System (INIS)
Kyncl, J.
2008-01-01
Systematic study of the radioactive waste minimisation problem is subject of the SPHINX project. Its idea is that burning or transmutation of the waste inventory problematic part will be realized in a nuclear reactor the fuel of which is in the form of liquid fluorides. In frame of the project, several experiments have been performed with so-called inserted experimental channel. The channel was filled up by the fluorides mixture, surrounded by six fuel assemblies with moderator and placed into LR-0 reactor vessel. This formation was brought to critical state and measurement with activation foil detectors were carried out at selected positions of the inserted channel. Main aim of the measurements was to determine reaction rates for the detectors mentioned. For experiment evaluation, comparative computations were accomplished by code MCNP4a. The results obtained show that very often, computed values of reaction rates differ substantially from the values that were obtained from the experiment. This contribution deals with analysis of the reasons of these differences from the point of view of computations by Monte Carlo method. The analysis of concrete cases shows that the inaccuracy of reaction rate computed is caused mostly by three circumstances:-space region that is occupied by detector is relatively very small;- microscopic effective cross-section R(E) of the reaction changes strongly with energy just in the energy interval that gives the greatest contribution to the reaction; - in the energy interval that gives the greatest contribution to reaction rate, the error of the computed neutron flux is great. These circumstances evoke that the computation of reaction rate with casual accuracy submits extreme demands on computing time. (Author)
International Nuclear Information System (INIS)
Breen, R.J.
1988-01-01
The Nuclear Reload Management Program of the Nuclear Power Division (NPD) of the Electric Power Research Institute (EPRI) has the responsibility for initiating and managing applied research in selected nuclear engineering analysis functions for nuclear utilities. The computer systems that result from the research projects consist of large FORTRAN programs containing elaborate computational algorithms used to access such areas as core physics, fuel performance, thermal hydraulics, and transient analysis. This paper summarizes a study of computing technology trends sponsored by the NPD. The approach taken was to interview hardware and software vendors, industry observers, and utility personnel focusing on expected changes that will occur in the computing industry over the next 3 to 5 yr. Particular emphasis was placed on how these changes will impact engineering/scientific computer code development, maintenance, and use. In addition to the interviews, a workshop was held with attendees from EPRI, Power Computing Company, industry, and utilities. The workshop provided a forum for discussing issues and providing input into EPRI's long-term computer code planning process
Computer code for shielding calculations of x-rays rooms
International Nuclear Information System (INIS)
Affonso, R.R.W.; Borges, D. da S.; Lava, D.D.; Moreira, M. de L.; Guimarães, A.C.F.
2015-01-01
The building an effective barrier against ionizing radiation present in radiographic rooms requires consideration of many variables. The methodology used for thickness specification of primary and secondary, barrier of a traditional radiographic room, considers the following factors: Use Factor, Occupational Factor, distance between the source and the wall, Workload, Kerma in the air and distance between the patient and the source. With these data it was possible to develop a computer code, which aims to identify and use variables in functions obtained through graphics regressions provided by NCRP-147 (Structural Shielding Design for Medical X-Ray Imaging Facilities) report, for shielding calculation of room walls, and the walls of the dark room and adjacent areas. With the implemented methodology, it was made a code validation by comparison of results with a study case provided by the report. The obtained values for thickness comprise different materials such as concrete, lead and glass. After validation it was made a case study of an arbitrary radiographic room.The development of the code resulted in a user-friendly tool for planning radiographic rooms to comply with the limits established by CNEN-NN-3:01 published in september/2011. (authors)
Comparison of computer code calculations with FEBA test data
International Nuclear Information System (INIS)
Zhu, Y.M.
1988-06-01
The FEBA forced feed reflood experiments included base line tests with unblocked geometry. The experiments consisted of separate effect tests on a full-length 5x5 rod bundle. Experimental cladding temperatures and heat transfer coefficients of FEBA test No. 216 are compared with the analytical data postcalculated utilizing the SSYST-3 computer code. The comparison indicates a satisfactory matching of the peak cladding temperatures, quench times and heat transfer coefficients for nearly all axial positions. This agreement was made possible by the use of an artificially adjusted value of the empirical code input parameter in the heat transfer for the dispersed flow regime. A limited comparison of test data and calculations using the RELAP4/MOD6 transient analysis code are also included. In this case the input data for the water entrainment fraction and the liquid weighting factor in the heat transfer for the dispersed flow regime were adjusted to match the experimental data. On the other hand, no fitting of the input parameters was made for the COBRA-TF calculations which are included in the data comparison. (orig.) [de
A user's guide to GENEX, SDR, and related computer codes
International Nuclear Information System (INIS)
Brissenden, R.J.; Durston, C.
1968-08-01
This series of codes will be of use in a variety of fields connected with reactor physics, examples of which are: (a) In evaluation of nuclear data in which the RESP-GENEX part of the system would be used to examine and produce a cross-section set based on the theories and experiments of the nuclear physicists. The approximations in GENEX must however be kept in mind, the chief one being the diagonal expansion approximation of the inverse level matrix originally due to Bethe which precludes a correct representation of strong interference effects (the Lynn effect). (b) In the calculation of Doppler effects or other resonance effects such as establishing equivalence relationships, approximate resonance treatments, etc. A given set of tapes generated by GENEX (or by some other means into the GENEX format) would be used to run the SDH code. The SDR code produces cross-sections and reaction rates over any group structure within its working range. In situations with complex geometries the spatial representation of SDR is liable to be inadequate and in these circumstances it is recommended that the reaction rates are not used directly but instead the cross-sections are used in a more accurate spatial calculation to produce revised reaction rates. (c) Finally the system may be used for a variety of special investigations such as an analysis of the variance of the Doppler coefficient in fast reactors or the accurate assessment of ideal integral measurements, (for instance the Aldermaston sphere experiment
Moon, Hongsik
What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the
Health physics source document for codes of practice
International Nuclear Information System (INIS)
Pearson, G.W.; Meggitt, G.C.
1989-05-01
Personnel preparing codes of practice often require basic Health Physics information or advice relating to radiological protection problems and this document is written primarily to supply such information. Certain technical terms used in the text are explained in the extensive glossary. Due to the pace of change in the field of radiological protection it is difficult to produce an up-to-date document. This document was compiled during 1988 however, and therefore contains the principle changes brought about by the introduction of the Ionising Radiations Regulations (1985). The paper covers the nature of ionising radiation, its biological effects and the principles of control. It is hoped that the document will provide a useful source of information for both codes of practice and wider areas and stimulate readers to study radiological protection issues in greater depth. (author)
V.S.O.P. (99/05) computer code system
International Nuclear Information System (INIS)
Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Scherer, W.
2005-11-01
V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to HTRs and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. V.S.O.P.(99 / 05) represents the further development of V.S.O.P. (99). Compared to its precursor, the code system has been improved in many details. Major improvements and extensions have been included concerning the neutron spectrum calculation, the 3-d neutron diffusion options, and the thermal hydraulic section with respect to 'multi-pass'-fuelled pebblebed cores. This latest code version was developed and tested under the WINDOWS-XP - operating system. The storage requirement for the executables and the basic libraries associated with the code amounts to about 15 MB. Another 5 MB are required - if desired - for storage of the source code (∼65000 Fortran statements). (orig.)
V.S.O.P. (99/05) computer code system
Energy Technology Data Exchange (ETDEWEB)
Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Scherer, W.
2005-11-01
V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to HTRs and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. V.S.O.P.(99 / 05) represents the further development of V.S.O.P. (99). Compared to its precursor, the code system has been improved in many details. Major improvements and extensions have been included concerning the neutron spectrum calculation, the 3-d neutron diffusion options, and the thermal hydraulic section with respect to 'multi-pass'-fuelled pebblebed cores. This latest code version was developed and tested under the WINDOWS-XP - operating system. The storage requirement for the executables and the basic libraries associated with the code amounts to about 15 MB. Another 5 MB are required - if desired - for storage of the source code ({approx}65000 Fortran statements). (orig.)
Revised uranium--plutonium cycle PWR and BWR models for the ORIGEN computer code
International Nuclear Information System (INIS)
Croff, A.G.; Bjerke, M.A.; Morrison, G.W.; Petrie, L.M.
1978-09-01
Reactor physics calculations and literature searches have been conducted, leading to the creation of revised enriched-uranium and enriched-uranium/mixed-oxide-fueled PWR and BWR reactor models for the ORIGEN computer code. These ORIGEN reactor models are based on cross sections that have been taken directly from the reactor physics codes and eliminate the need to make adjustments in uncorrected cross sections in order to obtain correct depletion results. Revised values of the ORIGEN flux parameters THERM, RES, and FAST were calculated along with new parameters related to the activation of fuel-assembly structural materials not located in the active fuel zone. Recommended fuel and structural material masses and compositions are presented. A summary of the new ORIGEN reactor models is given
International Nuclear Information System (INIS)
Yamada, Hiroyuki; Tsutsumi, Hideaki; Ebisawa, Katsumi; Suzuki, Masahide
2002-03-01
The SHEAT code developed at Japan Atomic Energy Research Institute is for probabilistic seismic hazard analysis which is one of the tasks needed for seismic Probabilistic Safety Assessment (PSA) of a nuclear power plant. At first, SHEAT was developed as the large sized computer version. In addition, a personal computer version was provided to improve operation efficiency and generality of this code in 2001. It is possible to perform the earthquake hazard analysis, display and the print functions with the Graphical User Interface. With the SHEAT for PC code, seismic hazard which is defined as an annual exceedance frequency of occurrence of earthquake ground motions at various levels of intensity at a given site is calculated by the following two steps as is done with the large sized computer. One is the modeling of earthquake generation around a site. Future earthquake generation (locations, magnitudes and frequencies of postulated earthquake) is modeled based on the historical earthquake records, active fault data and expert judgment. Another is the calculation of probabilistic seismic hazard at the site. An earthquake ground motion is calculated for each postulated earthquake using an attenuation model taking into account its standard deviation. Then the seismic hazard at the site is calculated by summing the frequencies of ground motions by all the earthquakes. This document is the user's manual of the SHEAT for PC code. It includes: (1) Outline of the code, which include overall concept, logical process, code structure, data file used and special characteristics of code, (2) Functions of subprogram and analytical models in them, (3) Guidance of input and output data, (4) Sample run result, and (5) Operational manual. (author)
A primer on physical-layer network coding
Liew, Soung Chang; Zhang, Shengli
2015-01-01
The concept of physical-layer network coding (PNC) was proposed in 2006 for application in wireless networks. Since then it has developed into a subfield of communications and networking with a wide following. This book is a primer on PNC. It is the outcome of a set of lecture notes for a course for beginning graduate students at The Chinese University of Hong Kong. The target audience is expected to have some prior background knowledge in communication theory and wireless communications, but not working knowledge at the research level. Indeed, a goal of this book/course is to allow the reader
Channel estimation for physical layer network coding systems
Gao, Feifei; Wang, Gongpu
2014-01-01
This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performa
The cosmic code quantum physics as the language of nature
Pagels, Heinz R
2012-01-01
""The Cosmic Code can be read by anyone. I heartily recommend it!"" - The New York Times Book Review""A reliable guide for the nonmathematical reader across the highest ridges of physical theory. Pagels is unfailingly lighthearted and confident."" - Scientific American""A sound, clear, vital work that deserves the attention of anyone who takes an interest in the relationship between material reality and the human mind."" - Science 82This is one of the most important books on quantum mechanics ever written for general readers. Heinz Pagels, an eminent physicist and science writer, discusses and
International Nuclear Information System (INIS)
Popescu, C.; Biro, L.; Iftode, I.; Turcu, I.
1975-10-01
The RAP-3A computer code is designed for calculating the main steady state thermo-hydraulic parameters of multirod fuel clusters with liquid metal cooling. The programme provides a double accuracy computation of temperatures and axial enthalpy distributions of pressure losses and axial heat flux distributions in fuel clusters before boiling conditions occur. Physical and mathematical models as well as a sample problem are presented. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer
GAM-HEAT -- a computer code to compute heat transfer in complex enclosures
International Nuclear Information System (INIS)
Cooper, R.E.; Taylor, J.R.; Kielpinski, A.L.; Steimke, J.L.
1991-02-01
The GAM-HEAT code was developed for heat transfer analyses associated with postulated Double Ended Guillotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re- radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices, and also accounts for convective, conductive, and advective heat exchanges. The code is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium. The GAM-HEAT code has been exercised extensively for computing transient temperatures in SRS reactors with specific charges and control components. Results from these computations have been used to establish the need for and to evaluate hardware modifications designed to mitigate results of postulated accident scenarios, and to assist in the specification of safe reactor operating power limits. The code utilizes temperature dependence on material properties. The efficiency of the code has been enhanced by the use of an iterative equation solver. Verification of the code to date consists of comparisons with parallel efforts at Los Alamos National Laboratory and with similar efforts at Westinghouse Science and Technology Center in Pittsburgh, PA, and benchmarked using problems with known analytical or iterated solutions. All comparisons and tests yield results that indicate the GAM-HEAT code performs as intended
Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code
International Nuclear Information System (INIS)
Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.
1988-12-01
An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs
Nanostructure symmetry: Relevance for physics and computing
International Nuclear Information System (INIS)
Dupertuis, Marc-André; Oberli, D. Y.; Karlsson, K. F.; Dalessi, S.; Gallinet, B.; Svendsen, G.
2014-01-01
We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented
Nanostructure symmetry: Relevance for physics and computing
Energy Technology Data Exchange (ETDEWEB)
Dupertuis, Marc-André; Oberli, D. Y. [Laboratory for Physics of Nanostructure, EPF Lausanne (Switzerland); Karlsson, K. F. [Department of Physics, Chemistry, and Biology (IFM), Linköping University (Sweden); Dalessi, S. [Computational Biology Group, Department of Medical Genetics, University of Lausanne (Switzerland); Gallinet, B. [Nanophotonics and Metrology Laboratory, EPF Lausanne (Switzerland); Svendsen, G. [Dept. of Electronics and Telecom., Norwegian University of Science and Technology, Trondheim (Norway)
2014-03-31
We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented.
Computational models in physics teaching: a framework
Directory of Open Access Journals (Sweden)
Marco Antonio Moreira
2012-08-01
Full Text Available The purpose of the present paper is to present a theoretical framework to promote and assist meaningful physics learning through computational models. Our proposal is based on the use of a tool, the AVM diagram, to design educational activities involving modeling and computer simulations. The idea is to provide a starting point for the construction and implementation of didactical approaches grounded in a coherent epistemological view about scientific modeling.
A computer code to simulate X-ray imaging techniques
International Nuclear Information System (INIS)
Duvauchelle, Philippe; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel
2000-01-01
A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests
A computer code to simulate X-ray imaging techniques
Energy Technology Data Exchange (ETDEWEB)
Duvauchelle, Philippe E-mail: philippe.duvauchelle@insa-lyon.fr; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel
2000-09-01
A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests.
The Physical Models and Statistical Procedures Used in the RACER Monte Carlo Code
International Nuclear Information System (INIS)
Sutton, T.M.; Brown, F.B.; Bischoff, F.G.; MacMillan, D.B.; Ellis, C.L.; Ward, J.T.; Ballinger, C.T.; Kelly, D.J.; Schindler, L.
1999-01-01
This report describes the MCV (Monte Carlo - Vectorized)Monte Carlo neutron transport code [Brown, 1982, 1983; Brown and Mendelson, 1984a]. MCV is a module in the RACER system of codes that is used for Monte Carlo reactor physics analysis. The MCV module contains all of the neutron transport and statistical analysis functions of the system, while other modules perform various input-related functions such as geometry description, material assignment, output edit specification, etc. MCV is very closely related to the 05R neutron Monte Carlo code [Irving et al., 1965] developed at Oak Ridge National Laboratory. 05R evolved into the 05RR module of the STEMB system, which was the forerunner of the RACER system. Much of the overall logic and physics treatment of 05RR has been retained and, indeed, the original verification of MCV was achieved through comparison with STEMB results. MCV has been designed to be very computationally efficient [Brown, 1981, Brown and Martin, 1984b; Brown, 1986]. It was originally programmed to make use of vector-computing architectures such as those of the CDC Cyber- 205 and Cray X-MP. MCV was the first full-scale production Monte Carlo code to effectively utilize vector-processing capabilities. Subsequently, MCV was modified to utilize both distributed-memory [Sutton and Brown, 1994] and shared memory parallelism. The code has been compiled and run on platforms ranging from 32-bit UNIX workstations to clusters of 64-bit vector-parallel supercomputers. The computational efficiency of the code allows the analyst to perform calculations using many more neutron histories than is practical with most other Monte Carlo codes, thereby yielding results with smaller statistical uncertainties. MCV also utilizes variance reduction techniques such as survival biasing, splitting, and rouletting to permit additional reduction in uncertainties. While a general-purpose neutron Monte Carlo code, MCV is optimized for reactor physics calculations. It has the
Extreme Scale Computing for First-Principles Plasma Physics Research
Energy Technology Data Exchange (ETDEWEB)
Chang, Choogn-Seock [Princeton University
2011-10-12
World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.
International Nuclear Information System (INIS)
Couto, R.T.
1987-01-01
The implementation of the CP1 computer code in the Honeywell Bull computer in Brazilian Nuclear Energy Comission is presented. CP1 is a computer code used to solve the equations of punctual kinetic with Doppler feed back from the system temperature variation based on the Newton refrigeration equation (E.G.) [pt
Quantum algorithms for computational nuclear physics
Directory of Open Access Journals (Sweden)
Višňák Jakub
2015-01-01
Full Text Available While quantum algorithms have been studied as an efficient tool for the stationary state energy determination in the case of molecular quantum systems, no similar study for analogical problems in computational nuclear physics (computation of energy levels of nuclei from empirical nucleon-nucleon or quark-quark potentials have been realized yet. Although the difference between the above mentioned studies might seem negligible, it will be examined. First steps towards a particular simulation (on classical computer of the Iterative Phase Estimation Algorithm for deuterium and tritium nuclei energy level computation will be carried out with the aim to prove algorithm feasibility (and extensibility to heavier nuclei for its possible practical realization on a real quantum computer.
Interface design of VSOP'94 computer code for safety analysis
International Nuclear Information System (INIS)
Natsir, Khairina; Andiwijayakusuma, D.; Wahanani, Nursinta Adi; Yazid, Putranto Ilham
2014-01-01
Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects
Interface design of VSOP'94 computer code for safety analysis
Natsir, Khairina; Yazid, Putranto Ilham; Andiwijayakusuma, D.; Wahanani, Nursinta Adi
2014-09-01
Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.
Computer codes for simulation of Angra 1 reactor steam generator
International Nuclear Information System (INIS)
Pinto, A.C.
1978-01-01
A digital computer code is developed for the simulation of the steady-state operation of a u-tube steam generator with natural recirculation used in Pressurized Water Reactors. The steam generator is simulated with two flow channel separated by a metallic wall, with a preheating section with counter flow and a vaporizing section with parallel flow. The program permits the changes in flow patterns and heat transfer correlations, in accordance with the local conditions along the vaporizing section. Various sub-routines are developed for the determination of steam and water properties and a mathematical model is established for the simulation of transients in the same steam generator. The steady state operating conditions in one of the steam generators of ANGRA 1 reactor are determined utilizing this programme. Global results obtained agree with published values [pt
Computer code for simulating pressurized water reactor core
International Nuclear Information System (INIS)
Serrano, A.M.B.
1978-01-01
A computer code was developed for the simulation of the steady-state and transient behaviour of the average channel of a Pressurizer Water Reactor core. Point kinetics equations were used with the reactivity calculated for average temperatures in the channel with the fuel and moderator temperature feedbacks. The radial heat conduction equation in the fuel was solved numerically. For calculating the thermodynamic properties of the coolant, the fundamental equations of conservation (mass, energy and momentum) were solved. The gap and clad were treated as a resistance added to the film coefficient. The fuel system equations were decoupled from the coolant equations. The program permitted the changes in the heat transfer correlations and the flow patterns along the coolant channel. Various test were performed to determine the steady-state and transient response employing the PWR core simulator developed, obtaining results with adequate precision. (author)
Application of the RESRAD computer code to VAMP scenario S
International Nuclear Information System (INIS)
Gnanapragasam, E.K.; Yu, C.
1997-03-01
The RESRAD computer code developed at Argonne National Laboratory was among 11 models from 11 countries participating in the international Scenario S validation of radiological assessment models with Chernobyl fallout data from southern Finland. The validation test was conducted by the Multiple Pathways Assessment Working Group of the Validation of Environmental Model Predictions (VAMP) program coordinated by the International Atomic Energy Agency. RESRAD was enhanced to provide an output of contaminant concentrations in environmental media and in food products to compare with measured data from southern Finland. Probability distributions for inputs that were judged to be most uncertain were obtained from the literature and from information provided in the scenario description prepared by the Finnish Centre for Radiation and Nuclear Safety. The deterministic version of RESRAD was run repeatedly to generate probability distributions for the required predictions. These predictions were used later to verify the probabilistic RESRAD code. The RESRAD predictions of radionuclide concentrations are compared with measured concentrations in selected food products. The radiological doses predicted by RESRAD are also compared with those estimated by the Finnish Centre for Radiation and Nuclear Safety
A computer code SPHINCS for sodium fire safety evaluation
International Nuclear Information System (INIS)
Yamaguchi, Akira
2000-01-01
A computer code SPHINCS solves coupled phenomena of thermal-hydraulics and sodium fire based on a multi-zone model. It deals with arbitrary number of rooms each of which is connected mutually by doorway and penetrations. With regard to the combustion phenomena, flame sheet model and liquid droplet combustion model are used for pool and spray fire, respectively, with the chemical equilibrium model using Gibbs free energy minimization method. The chemical reaction and mass and heat transfer are solved interactively. A specific feature of SPHINCS is detailed representation of thermal-hydraulics of a sodium pool and a steel liner, which is placed on the floor to prevent sodium-concrete contact. The author analyzed a series of pool combustion experiments, in which gas and liner temperatures are measured in detail. It has been found that good agreement is obtained and the SPHINCS has been validated with regard to the pool combustion phenomena. Further research needs are identified for the pool spreading modeling considering thermal deformation of liner and measurement of pool fluidity property of a mixture of liquid sodium and reaction products. SPHINCS code is to be used mainly in the safety evaluation of the consequence of sodium fire accident of liquid metal cooled fast reactor. (author)
Development Of The Computer Code For Comparative Neutron Activation Analysis
International Nuclear Information System (INIS)
Purwadi, Mohammad Dhandhang
2001-01-01
The qualitative and quantitative chemical analysis with Neutron Activation Analysis (NAA) is an importance utilization of a nuclear research reactor, and this should be accelerated and promoted in application and its development to raise the utilization of the reactor. The application of Comparative NAA technique in GA Siwabessy Multi Purpose Reactor (RSG-GAS) needs special (not commercially available yet) soft wares for analyzing the spectrum of multiple elements in the analysis at once. The application carried out using a single spectrum software analyzer, and comparing each result manually. This method really degrades the quality of the analysis significantly. To solve the problem, a computer code was designed and developed for comparative NAA. Spectrum analysis in the code is carried out using a non-linear fitting method. Before the spectrum analyzed, it was passed to the numerical filter which improves the signal to noise ratio to do the deconvolution operation. The software was developed using the G language and named as PASAN-K The testing result of the developed software was benchmark with the IAEA spectrum and well operated with less than 10 % deviation
Evaluation of the HTR-10 Reactor as a Benchmark for Physics Code QA
International Nuclear Information System (INIS)
William K. Terry; Soon Sam Kim; Leland M. Montierth; Joshua J. Cogliati; Abderrafi M. Ougouag
2006-01-01
The HTR-10 is a small (10 MWt) pebble-bed research reactor intended to develop pebble-bed reactor (PBR) technology in China. It will be used to test and develop fuel, verify PBR safety features, demonstrate combined electricity production and co-generation of heat, and provide experience in PBR design, operation, and construction. As the only currently operating PBR in the world, the HTR-10 can provide data of great interest to everyone involved in PBR technology. In particular, if it yields data of sufficient quality, it can be used as a benchmark for assessing the accuracy of computer codes proposed for use in PBR analysis. This paper summarizes the evaluation for the International Reactor Physics Experiment Evaluation Project (IRPhEP) of data obtained in measurements of the HTR-10's initial criticality experiment for use as benchmarks for reactor physics codes
Computer code for the thermal-hydraulic analysis of ITU TRIGA Mark-II reactor
International Nuclear Information System (INIS)
Ustun, G.; Durmayaz, A.
2002-01-01
Istanbul Technical University (ITU) TRIGA Mark-II reactor core consists of ninety vertical cylindrical elements located in five rings. Sixty-nine of them are fuel elements. The reactor is operated and cooled with natural convection by pool water, which is also cooled and purified in external coolant circuits by forced convection. This characteristic leads to consider both the natural and forced convection heat transfer in a 'porous-medium analysis'. The safety analysis of the reactor requires a thermal-hydraulic model of the reactor to determine the thermal-hydraulic parameters in each mode of operation. In this study, a computer code cooled TRIGA-PM (TRIGA - Porous Medium) for the thermal-hydraulic analysis of ITU is considered. TRIGA Mark-II reactor code has been developed to obtain velocity, pressure and temperature distributions in the reactor pool as a function of core design parameters and pool configuration. The code is a transient, thermal-hydraulic code and requires geometric and physical modelling parameters. In the model, although the reactor is considered as only porous medium, the other part of the reactor pool is considered partly as continuum and partly as porous medium. COMMIX-1C code is used for the benchmark purpose of TRIGA-PM code. For the normal operating conditions of the reactor, estimations of TRIGA-PM are in good agreement with those of COMMIX-1C. After some more improvements, this code will be employed for the estimation of LOCA scenario, which can not be analyses by COMMIX-1C and the other multi-purpose codes, considering a break at one of the beam tubes of the reactor
Issues in computational fluid dynamics code verification and validation
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, W.L.; Blottner, F.G.
1997-09-01
A broad range of mathematical modeling errors of fluid flow physics and numerical approximation errors are addressed in computational fluid dynamics (CFD). It is strongly believed that if CFD is to have a major impact on the design of engineering hardware and flight systems, the level of confidence in complex simulations must substantially improve. To better understand the present limitations of CFD simulations, a wide variety of physical modeling, discretization, and solution errors are identified and discussed. Here, discretization and solution errors refer to all errors caused by conversion of the original partial differential, or integral, conservation equations representing the physical process, to algebraic equations and their solution on a computer. The impact of boundary conditions on the solution of the partial differential equations and their discrete representation will also be discussed. Throughout the article, clear distinctions are made between the analytical mathematical models of fluid dynamics and the numerical models. Lax`s Equivalence Theorem and its frailties in practical CFD solutions are pointed out. Distinctions are also made between the existence and uniqueness of solutions to the partial differential equations as opposed to the discrete equations. Two techniques are briefly discussed for the detection and quantification of certain types of discretization and grid resolution errors.
Selection of Computer Codes for Shallow Land Waste Disposal in PPTA Serpong
International Nuclear Information System (INIS)
Syahrir
1996-01-01
Selection of Computer Codes for Shallow Land Waste Disposal in PPTA Serpong. Models and computer codes have been selected for safety assessment of near surface waste disposal facility. This paper provides a summary and overview of the methodology and codes selected. The methodology allows analyses of dose to individuals from offsite releases under normal conditions as well as on-site doses to inadvertent intruders. A demonstration in the case of shallow land waste disposal in Nuclear Research Establishment are in Serpong has been given for normal release scenario. The assessment includes infiltration of rainfall, source-term, ground water (well) and surface water transport, food-chain and dosimetry. The results show dose history of maximally exposed individuals. The codes used are VS2DT, PAGAN and GENII. The application of 1 m silt loam as a moisture barrier cover decreases flow in the disposal unit by a factor of 27. The selected radionuclides show variety of dose histories according to their chemical and physical characteristics and behavior in the environment
Computer code for the atomistic simulation of lattice defects and dynamics. [COMENT code
Energy Technology Data Exchange (ETDEWEB)
Schiffgens, J.O.; Graves, N.J.; Oster, C.A.
1980-04-01
This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability.
Users guide for NRC145-2 accident assessment computer code
International Nuclear Information System (INIS)
Pendergast, M.M.
1982-08-01
An accident assessment computer code has been developed for use at the Savannah River Plant. This computer code is based upon NRC Regulatory Guide 1.145 which provides guidence for accident assessements for power reactors. The code contains many options so that the user may utilize the code for many different assessments. For example the code can be used for non-nuclear assessments such as Sulpher Dioxide which may be required by the EPA. A discription of the code is contained in DP-1646. This document is a compilation of step-by-step instructions on how to use the code on the SRP IBM 3308 computer. This document consists of a number of tables which contain copies of computer listings. Some of the computer listings are copies of input; other listings give examples of computer output
Computer Algebra Recipes for Mathematical Physics
Enns, Richard H
2005-01-01
Over two hundred novel and innovative computer algebra worksheets or "recipes" will enable readers in engineering, physics, and mathematics to easily and rapidly solve and explore most problems they encounter in their mathematical physics studies. While the aim of this text is to illustrate applications, a brief synopsis of the fundamentals for each topic is presented, the topics being organized to correlate with those found in traditional mathematical physics texts. The recipes are presented in the form of stories and anecdotes, a pedagogical approach that makes a mathematically challenging subject easier and more fun to learn. Key features: * Uses the MAPLE computer algebra system to allow the reader to easily and quickly change the mathematical models and the parameters and then generate new answers * No prior knowledge of MAPLE is assumed; the relevant MAPLE commands are introduced on a need-to-know basis * All MAPLE commands are indexed for easy reference * A classroom-tested story/anecdote format is use...
A method of non-contact reading code based on computer vision
Zhang, Chunsen; Zong, Xiaoyu; Guo, Bingxuan
2018-03-01
With the purpose of guarantee the computer information exchange security between internal and external network (trusted network and un-trusted network), A non-contact Reading code method based on machine vision has been proposed. Which is different from the existing network physical isolation method. By using the computer monitors, camera and other equipment. Deal with the information which will be on exchanged, Include image coding ,Generate the standard image , Display and get the actual image , Calculate homography matrix, Image distort correction and decoding in calibration, To achieve the computer information security, Non-contact, One-way transmission between the internal and external network , The effectiveness of the proposed method is verified by experiments on real computer text data, The speed of data transfer can be achieved 24kb/s. The experiment shows that this algorithm has the characteristics of high security, fast velocity and less loss of information. Which can meet the daily needs of the confidentiality department to update the data effectively and reliably, Solved the difficulty of computer information exchange between Secret network and non-secret network, With distinctive originality, practicability, and practical research value.
FLICA-4 (version 1) a computer code for three dimensional thermal analysis of nuclear reactor cores
International Nuclear Information System (INIS)
Raymond, P.; Allaire, G.; Boudsocq, G.
1995-01-01
FLICA-4 is a thermal-hydraulic computer code developed at the French Energy Atomic Commission (CEA) for three dimensional steady state or transient two phase flow for design and safety thermal analysis of nuclear reactor cores. The two phase flow model of FLICA-4 is based on four balance equations for the fluid which includes: three balance equations for the mixture and a mass balance equation for the less concentrated phase which permits the calculation of non-equilibrium flows as sub cooled boiling and superheated steam. A drift velocity model takes into account the velocity disequilibrium between phases. The thermal behaviour of fuel elements can be computed by a one dimensional heat conduction equation in plane, cylindrical or spherical geometries and coupled to the fluid flow calculation. Convection and diffusion of solution products which are transported either by the liquid or by the gas, can be evaluated by solving specific mass conservation equations. A one dimensional two phase flow model can also be used to compute 1-D flow in pipes, guide tubes, BWR assemblies or RBMK channels. The FLICA-4 computer code uses fast running time steam-water functions. Phasic and saturation physical properties are computed by using bi-cubic spline functions. Polynomial coefficients are tabulated from 0.1 to 22 MPa and 0 to 800 degrees C. Specific modules can be utilised in order to generate the spline coefficients for any other fluid properties
Standardization of computer programs - basis of the Czechoslovak library of nuclear codes
International Nuclear Information System (INIS)
Gregor, M.
1987-01-01
A standardized form of computer code documentation has been established in the CSSR in the field of reactor safety. Structure and content of the documentation are described and codes already subject to this process are mentioned. The formation of a Czechoslovak nuclear code library and facilitated discussion of safety reports containing results of standardized codes are aimed at
Energy Technology Data Exchange (ETDEWEB)
Grebennikov, A.N.; Zhitnik, A.K.; Zvenigorodskaya, O.A. [and others
1995-12-31
In conformity with the protocol of the Workshop under Contract {open_quotes}Assessment of RBMK reactor safety using modern Western Codes{close_quotes} VNIIEF performed a neutronics computation series to compare western and VNIIEF codes and assess whether VNIIEF codes are suitable for RBMK type reactor safety assessment computation. The work was carried out in close collaboration with M.I. Rozhdestvensky and L.M. Podlazov, NIKIET employees. The effort involved: (1) cell computations with the WIMS, EKRAN codes (improved modification of the LOMA code) and the S-90 code (VNIIEF Monte Carlo). Cell, polycell, burnup computation; (2) 3D computation of static states with the KORAT-3D and NEU codes and comparison with results of computation with the NESTLE code (USA). The computations were performed in the geometry and using the neutron constants presented by the American party; (3) 3D computation of neutron kinetics with the KORAT-3D and NEU codes. These computations were performed in two formulations, both being developed in collaboration with NIKIET. Formulation of the first problem maximally possibly agrees with one of NESTLE problems and imitates gas bubble travel through a core. The second problem is a model of the RBMK as a whole with imitation of control and protection system controls (CPS) movement in a core.
International Nuclear Information System (INIS)
Glaeser, H.
2008-01-01
Internationally agreed Integral Test Facility (ITF) matrices for validation of realistic thermal hydraulic system computer codes were established. ITF development is mainly for Pressurised Water Reactors (PWRs) and Boiling Water Reactors (BWRs). A separate activity was for Russian Pressurised Water-cooled and Water-moderated Energy Reactors (WWER). Firstly, the main physical phenomena that occur during considered accidents are identified, test types are specified, and test facilities suitable for reproducing these aspects are selected. Secondly, a list of selected experiments carried out in these facilities has been set down. The criteria to achieve the objectives are outlined. In this paper some specific examples from the ITF matrices will also be provided. The matrices will be a guide for code validation, will be a basis for comparisons of code predictions performed with different system codes, and will contribute to the quantification of the uncertainty range of code model predictions. In addition to this objective, the construction of such a matrix is an attempt to record information which has been generated around the world over the last years, so that it is more accessible to present and future workers in that field than would otherwise be the case.
HYDRA-II: A hydrothermal analysis computer code: Volume 1, Equations and numerics
International Nuclear Information System (INIS)
McCann, R.A.
1987-04-01
HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite difference solution in Cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the Cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations for conservation of momentum are enhanced by the incorporation of directional porosities and permeabilities that aid in modeling solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits of modeling of orthotropic physical properties and film resistances. Several automated procedures are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. This volume, Volume I - Equations and Numerics, describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. Volume II - User's Manual contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a model problem. The final volume, Volume III - Verification/Validation Assessments, presents results of numerical simulations of single- and multiassembly storage systems and comparisons with experimental data. 4 refs
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-03-01
This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes.
International Nuclear Information System (INIS)
1997-03-01
This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with three of the functional modules in the code. Those are the Morse-SGC for the SCALE system, Heating 7.2, and KENO V.a. The manual describes the latest released versions of the codes
Grid computing in high energy physics
Avery, P
2004-01-01
Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software r...
"SMART": A Compact and Handy FORTRAN Code for the Physics of Stellar Atmospheres
Sapar, A.; Poolamäe, R.
2003-01-01
A new computer code SMART (Spectra from Model Atmospheres by Radiative Transfer) for computing the stellar spectra, forming in plane-parallel atmospheres, has been compiled by us and A. Aret. To guarantee wide compatibility of the code with shell environment, we chose FORTRAN-77 as programming language and tried to confine ourselves to common part of its numerous versions both in WINDOWS and LINUX. SMART can be used for studies of several processes in stellar atmospheres. The current version of the programme is undergoing rapid changes due to our goal to elaborate a simple, handy and compact code. Instead of linearisation (being a mathematical method of recurrent approximations) we propose to use the physical evolutionary changes or in other words relaxation of quantum state populations rates from LTE to NLTE has been studied using small number of NLTE states. This computational scheme is essentially simpler and more compact than the linearisation. This relaxation scheme enables using instead of the Λ-iteration procedure a physically changing emissivity (or the source function) which incorporates in itself changing Menzel coefficients for NLTE quantum state populations. However, the light scattering on free electrons is in the terms of Feynman graphs a real second-order quantum process and cannot be reduced to consequent processes of absorption and emission as in the case of radiative transfer in spectral lines. With duly chosen input parameters the code SMART enables computing radiative acceleration to the matter of stellar atmosphere in turbulence clumps. This also enables to connect the model atmosphere in more detail with the problem of the stellar wind triggering. Another problem, which has been incorporated into the computer code SMART, is diffusion of chemical elements and their isotopes in the atmospheres of chemically peculiar (CP) stars due to usual radiative acceleration and the essential additional acceleration generated by the light-induced drift. As
Final technical position on documentation of computer codes for high-level waste management
International Nuclear Information System (INIS)
Silling, S.A.
1983-06-01
Guidance is given for the content of documentation of computer codes which are used in support of a license application for high-level waste disposal. The guidelines cover theoretical basis, programming, and instructions for use of the code
RADTRAN II: revised computer code to analyze transportation of radioactive material
International Nuclear Information System (INIS)
Taylor, J.M.; Daniel, S.L.
1982-10-01
A revised and updated version of the RADTRAN computer code is presented. This code has the capability to predict the radiological impacts associated with specific schemes of radioactive material shipments and mode specific transport variables
GRID computing for experimental high energy physics
International Nuclear Information System (INIS)
Moloney, G.R.; Martin, L.; Seviour, E.; Taylor, G.N.; Moorhead, G.F.
2002-01-01
Full text: The Large Hadron Collider (LHC), to be completed at the CERN laboratory in 2006, will generate 11 petabytes of data per year. The processing of this large data stream requires a large, distributed computing infrastructure. A recent innovation in high performance distributed computing, the GRID, has been identified as an important tool in data analysis for the LHC. GRID computing has actual and potential application in many fields which require computationally intensive analysis of large, shared data sets. The Australian experimental High Energy Physics community has formed partnerships with the High Performance Computing community to establish a GRID node at the University of Melbourne. Through Australian membership of the ATLAS experiment at the LHC, Australian researchers have an opportunity to be involved in the European DataGRID project. This presentation will include an introduction to the GRID, and it's application to experimental High Energy Physics. We will present the results of our studies, including participation in the first LHC data challenge
CASKETSS: a computer code system for thermal and structural analysis of nuclear fuel shipping casks
International Nuclear Information System (INIS)
Ikushima, Takeshi
1989-02-01
A computer program CASKETSS has been developed for the purpose of thermal and structural analysis of nuclear fuel shipping casks. CASKETSS measn a modular code system for CASK Evaluation code system Thermal and Structural Safety. Main features of CASKETSS are as follow; (1) Thermal and structural analysis computer programs for one-, two-, three-dimensional geometries are contained in the code system. (2) Some of the computer programs in the code system has been programmed to provide near optimal speed on vector processing computers. (3) Data libralies fro thermal and structural analysis are provided in the code system. (4) Input data generator is provided in the code system. (5) Graphic computer program is provided in the code system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)
COMTA - a computer code for fuel mechanical and thermal analysis
International Nuclear Information System (INIS)
Basu, S.; Sawhney, S.S.; Anand, A.K.; Anantharaman, K.; Mehta, S.K.
1979-01-01
COMTA is a generalized computer code for integrity analysis of the free standing fuel cladding, with natural UO 2 or mixed oxide fuel pellets. Thermal and Mechanical analysis is done simultaneously for any power history of the fuel pin. For analysis, the fuel cladding is assumed to be axisymmetric and is subjected to axisymmetric load due to contact pressure, gas pressure, coolant pressure and thermal loads. Axial variation of load is neglected and creep and plasticity are assumed to occur at constant volume. The pellet is assumed to be made of concentric annuli. The fission gas release integral is dependent on the temperature and the power produced in each annulus. To calculate the temperature distribution in the fuel pin, the variation of bulk coolant temperature is given as an input to the code. Gap conductance is calculated at every time step, considering fuel densification, fuel relocation and gap closure, filler gas dilution by released fission gas, gap closure by expansion and irradiation swelling. Overall gap conductance is contributed by heat transfer due to the three modes; conduction convection and radiation as per modified Ross and Stoute model. Equilibrium equations, compatibility equations, stress strain relationships (including thermal strains and permanent strains due to creep and plasticity) are used to obtain triaxial stresses and strains. Thermal strain is assumed to be zero at hot zero power conditions. The boundary conditions are obtained for radial stresses at outside and inside surfaces by making these equal to coolant pressure and internal pressure respectively. A multi-mechanism creep model which accounts for thermal and irradiation creep is used to calculate the overall creep rate. Effective plastic strain is a function of effective stress and material constants. (orig.)
Benchmarking of epithermal methods in the lattice-physics code EPRI-CELL
International Nuclear Information System (INIS)
Williams, M.L.; Wright, R.Q.; Barhen, J.; Rothenstein, W.; Toney, B.
1982-01-01
The epithermal cross section shielding methods used in the lattice physics code EPRI-CELL (E-C) have been extensively studied to determine its major approximations and to examine the sensitivity of computed results to these approximations. The study has resulted in several improvements in the original methodology. These include: treatment of the external moderator source with intermediate resonance (IR) theory, development of a new Dancoff factor expression to account for clad interactions, development of a new method for treating resonance interference, and application of a generalized least squares method to compute best-estimate values for the Bell factor and group-dependent IR parameters. The modified E-C code with its new ENDF/B-V cross section library is tested for several numerical benchmark problems. Integral parameters computed by EC are compared with those obtained with point-cross section Monte Carlo calculations, and E-C fine group cross sections are benchmarked against point-cross section descrete ordinates calculations. It is found that the code modifications improve agreement between E-C and the more sophisticated methods. E-C shows excellent agreement on the integral parameters and usually agrees within a few percent on fine-group, shielded cross sections
Physical model and calculation code for fuel coolant interactions
International Nuclear Information System (INIS)
Goldammer, H.; Kottowski, H.
1976-01-01
A physical model is proposed to describe fuel coolant interactions in shock-tube geometry. According to the experimental results, an interaction model which divides each cycle into three phases is proposed. The first phase is the fuel-coolant-contact, the second one is the ejection and recently of the coolant, and the third phase is the impact and fragmentation. Physical background of these phases are illustrated in the first part of this paper. Mathematical expressions of the model are exposed in the second part. A principal feature of the computational method is the consistent application of the fourier-equation throughout the whole interaction process. The results of some calculations, performed for different conditions are compiled in attached figures. (Aoki, K.)
Quo vadis code optimization in high energy physics
International Nuclear Information System (INIS)
Jarp, S.
1994-01-01
Although performance tuning and optimization can be considered less critical than in the past, there are still many High Energy Physics (HEP) applications and application domains that can profit from such an undertaking. In CERN's CORE (Centrally Operated RISC Environment) where all major RISC vendors are present, this implies an understanding of the various computer architectures, instruction sets and performance analysis tools from each of these vendors. This paper discusses some initial observations after having evaluated the situation and makes some recommendations for further progress
Verification study of the FORE-2M nuclear/thermal-hydraulilc analysis computer code
International Nuclear Information System (INIS)
Coffield, R.D.; Tang, Y.S.; Markley, R.A.
1982-01-01
The verification of the LMFBR core transient performance code, FORE-2M, was performed in two steps. Different components of the computation (individual models) were verified by comparing with analytical solutions and with results obtained from other conventionally accepted computer codes (e.g., TRUMP, LIFE, etc.). For verification of the integral computation method of the code, experimental data in TREAT, SEFOR and natural circulation experiments in EBR-II were compared with the code calculations. Good agreement was obtained for both of these steps. Confirmation of the code verification for undercooling transients is provided by comparisons with the recent FFTF natural circulation experiments. (orig.)
Computer codes for shaping the magnetic field of the JINR phasotron
International Nuclear Information System (INIS)
Zaplatin, N.L.; Morozov, N.A.
1983-01-01
The computer codes providing for the shaping the magnetic field of the JINR high current phasotron are presented. Using these codes the control for the magnetic field mapping was realized in on- or off-line regimes. Then these field parameters were calculated and ferromagnetic correcting elements and trim coils setting were chosen. Some computer codes were realised for the magnetic field horizontal component measurements. The data are presented on some codes possibilities. The codes were used on the EC-1010 and the CDC-6500 computers
International Nuclear Information System (INIS)
McGrail, B.P.; Bacon, D.H.
1998-02-01
Planned performance assessments for the proposed disposal of low-activity waste (LAW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. The available computer codes with suitable capabilities at the time Revision 0 of this document was prepared were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical processes expected to affect LAW glass corrosion and the mobility of radionuclides. This analysis was repeated in this report but updated to include additional processes that have been found to be important since Revision 0 was issued and to include additional codes that have been released. The highest ranked computer code was found to be the STORM code developed at PNNL for the US Department of Energy for evaluation of arid land disposal sites
Current status of the reactor physics code WIMS and recent developments
International Nuclear Information System (INIS)
Lindley, B.A.; Hosking, J.G.; Smith, P.J.; Powney, D.J.; Tollit, B.S.; Newton, T.D.; Perry, R.; Ware, T.C.; Smith, P.N.
2017-01-01
Highlights: • The current status of the WIMS reactor physics code is presented. • Applications range from 2D lattice calculations up to 3D whole core geometries. • Gamma transport and thermal-hydraulic feedback models added. • Calculations methodologies described for several Gen II, III and IV reactor types. - Abstract: The WIMS modular reactor physics code has been under continuous development for over fifty years. This paper discusses the current status of WIMS and recent developments, in particular developments to the resonance shielding methodology and 3D transport solvers. Traditionally, WIMS is used to perform 2D lattice calculations, typically to generate homogenized reactor physics parameters for a whole core code such as PANTHER. However, with increasing computational resources there has been a growing trend for performing transport calculations on larger problems, up to and including 3D full core models. To this end, a number of the WIMS modules have been parallelised to allow efficient performance for whole core calculations, and WIMS includes a 3D method of characteristics solver with reflective and once-through tracking methods, which can be used to analyse problems of varying size and complexity. A time-dependent flux solver has been incorporated and thermal-hydraulic modelling capability is also being added to allow steady-state and transient coupled calculations to be performed. WIMS has been validated against a range of experimental data and other codes, in particular for water and graphite moderated thermal reactors. Future developments will include improved parallelization, enhancing the thermal-hydraulic feedback models and validating the WIMS/PANTHER code system for BWRs and fast reactors.
FISPIN - a computer code for nuclide inventory calculations
International Nuclear Information System (INIS)
Burstall, R.F.
1979-10-01
The code is used for assessment of three groups of nuclides, the actinides, the fission products, and structural materials. The methods of calculation are described, together with the input and output of the code and examples of both. Recommendations are given for the best use of the code. (author)
Internal radiation dose calculations with the INREM II computer code
International Nuclear Information System (INIS)
Dunning, D.E. Jr.; Killough, G.G.
1978-01-01
A computer code, INREM II, was developed to calculate the internal radiation dose equivalent to organs of man which results from the intake of a radionuclide by inhalation or ingestion. Deposition and removal of radioactivity from the respiratory tract is represented by the Internal Commission on Radiological Protection Task Group Lung Model. A four-segment catenary model of the gastrointestinal tract is used to estimate movement of radioactive material that is ingested, or swallowed after being cleared from the respiratory tract. Retention of radioactivity in other organs is specified by linear combinations of decaying exponential functions. The formation and decay of radioactive daughters is treated explicitly, with each radionuclide in the decay chain having its own uptake and retention parameters, as supplied by the user. The dose equivalent to a target organ is computed as the sum of contributions from each source organ in which radioactivity is assumed to be situated. This calculation utilizes a matrix of dosimetric S-factors (rem/μCi-day) supplied by the user for the particular choice of source and target organs. Output permits the evaluation of components of dose from cross-irradiations when penetrating radiations are present. INREM II has been utilized with current radioactive decay data and metabolic models to produce extensive tabulations of dose conversion factors for a reference adult for approximately 150 radionuclides of interest in environmental assessments of light-water-reactor fuel cycles. These dose conversion factors represent the 50-year dose commitment per microcurie intake of a given radionuclide for 22target organs including contributions from specified source organs and surplus activity in the rest of the body. These tabulations are particularly significant in their consistent use of contemporary models and data and in the detail of documentation
NAUA-Mod 3 - A computer code for the description of the aerosol behaviour in a condensing atmosphere
International Nuclear Information System (INIS)
Bunz, H.; Koyro, M.; Schoeck, W.
1981-09-01
This report gives a description of the computer code NAUA-Mod 3. Its purpose is to calculate the behaviour of a polydisperse aerosol system in the containment of a light water reactor after a postulated core meltdown accident as a function of the time. The most important effect being added to those already taken into account in comparable computer codes is the steam condensation onto the particles. In the report the equations taken as basis of the code are given and the physical processes they are derived from are explained. Another main objekt of the report is the description of the numerical methods used as well as the input and output of the code. (orig.) [de
Theory and application of the RAZOR two-dimensional continuous energy lattice physics code
International Nuclear Information System (INIS)
Zerkle, M.L.; Abu-Shumays, I.K.; Ott, M.W.; Winwood, J.P.
1997-01-01
The theory and application of the RAZOR two-dimensional, continuous energy lattice physics code are discussed. RAZOR solves the continuous energy neutron transport equation in one- and two-dimensional geometries, and calculates equivalent few-group diffusion theory constants that rigorously account for spatial and spectral self-shielding effects. A dual energy resolution slowing down algorithm is used to reduce computer memory and disk storage requirements for the slowing down calculation. Results are presented for a 2D BWR pin cell depletion benchmark problem
International Nuclear Information System (INIS)
Liles, D.R.; Mahaffy, J.H.
1984-01-01
The TRAC-P1 program was designed primarily for the analysis of large-break loss-of-coolant accidents (LOCAs) in pressurized water reactors (PWRs). Because of its versatility, however, it can be applied directly to many analyses ranging from blowdowns in simple pipes to integral LOCA tests in multiloop facilities. A refined version, called TRAC-P1A, was released to the National Energy Software Center (NESC) in March 1979. Although it still treats the same class of problems, TRAC-P1A is more efficient than TRAC-P1 and incorporates improved hydrodynamic and heat-transfer models. It also is easier to implement on various computers. TRAC-PD2 contains improved reflood and heat-transfer models and improvements in the numerical solution methods. Although a large LOCA code, it has been applied successfully to small-break problems and to the Three Mile Island incident. Distinguishing characteristics of the TRAC-PF1/MOD1 are summarized
MINIMARS interim report appendix halo model and computer code
International Nuclear Information System (INIS)
Santarius, J.F.; Barr, W.L.; Deng, B.Q.; Emmert, G.A.
1985-01-01
A tenuous, cool plasma called the halo shields the core plasma in a tandem mirror from neutral gas and impurities. The neutral particles are ionized and then pumped by the halo to the end tanks of the device, since flow of plasma along field lines is much faster than radial flow. Plasma reaching the end tank walls recombines, and the resulting neutral gas is vacuum pumped. The basic geometry of the MINIMARS halo is shown. For halo modeling purposes, the core plasma and cold gas regions may be treated as single radial zones leading to halo source and sink terms. The halo itself is differential into two major radial zones: halo scraper and halo dump. The halo scraper zone is defined by the radial distance required for the ion end plugging potential to drop to the central cell value, and thus have no effect on axial confinement; this distance is typically a sloshing plug ion Larmor diameter. The outer edge of the halo dump zone is defined by the last central cell flux tube to pass through the choke coil. This appendix will summarize the halo model that has been developed for MINIMARS and the methodology used in implementing that model as a computer code
Grid Computing in High Energy Physics
International Nuclear Information System (INIS)
Avery, Paul
2004-01-01
Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them.Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software resources, regardless of location); (4) collaboration (providing tools that allow members full and fair access to all collaboration resources and enable distributed teams to work effectively, irrespective of location); and (5) education, training and outreach (providing resources and mechanisms for training students and for communicating important information to the public).It is believed that computing infrastructures based on Data Grids and optical networks can meet these challenges and can offer data intensive enterprises in high energy physics and elsewhere a comprehensive, scalable framework for collaboration and resource sharing. A number of Data Grid projects have been underway since 1999. Interestingly, the most exciting and far ranging of these projects are led by collaborations of high energy physicists, computer scientists and scientists from other disciplines in support of experiments with massive, near-term data needs. I review progress in this
The TESS [Tandem Experiment Simulation Studies] computer code user's manual
International Nuclear Information System (INIS)
Procassini, R.J.
1990-01-01
TESS (Tandem Experiment Simulation Studies) is a one-dimensional, bounded particle-in-cell (PIC) simulation code designed to investigate the confinement and transport of plasma in a magnetic mirror device, including tandem mirror configurations. Mirror plasmas may be modeled in a system which includes an applied magnetic field and/or a self-consistent or applied electrostatic potential. The PIC code TESS is similar to the PIC code DIPSI (Direct Implicit Plasma Surface Interactions) which is designed to study plasma transport to and interaction with a solid surface. The codes TESS and DIPSI are direct descendants of the PIC code ES1 that was created by A. B. Langdon. This document provides the user with a brief description of the methods used in the code and a tutorial on the use of the code. 10 refs., 2 tabs
The modification and application of RAMS computer code. Final report
International Nuclear Information System (INIS)
McKee, T.B.
1995-01-01
The Regional Atmospheric Modeling System (RAMS) has been utilized in its most updated form, version 3a, to simulate a case night from the Atmospheric Studies in COmplex Terrain (ASCOT) experimental program. ASCOT held a wintertime observational campaign during February, 1991 to observe the often strong drainage flows which form on the Great Plains and in the canyons embedded within the slope from the Continental Divide to the Great Plains. A high resolution (500 m grid spacing) simulation of the 4-5 February 1991 case night using the more advanced turbulence closure now available in RAMS 3a allowed greater analysis of the physical processes governing the drainage flows. It is found that shear interaction above and within the drainage flow are important, and are overpredicted with the new scheme at small grid spacing (< ∼1000 m). The implication is that contaminants trapped in nighttime stable flows such as these, will be mixed too strongly in the vertical reducing predicted ground concentrations. The HYPACT code has been added to the capability at LANL, although due to the reduced scope of work, no simulations with HYPACT were performed
Integral transport computation of gamma detector response with the CPM2 code
International Nuclear Information System (INIS)
Jones, D.B.
1989-12-01
CPM-2 Version 3 is an enhanced version of the CPM-2 lattice physics computer code which supports the capabilities to (1) perform a two-dimensional gamma flux calculation and (2) perform Restart/Data file maintenance operations. The Gamma Calculation Module implemented in CPM-2 was first developed for EPRI in the CASMO-1 computer code by Studsvik Energiteknik under EPRI Agreement RP2352-01. The gamma transport calculation uses the CPM-HET code module to calculate the transport of gamma rays in two dimensions in a mixed cylindrical-rectangular geometry, where the basic fuel assembly and component regions are maintained in a rectangular geometry, but the fuel pins are represented as cylinders within a square pin cell mesh. Such a capability is needed to represent gamma transport in an essentially transparent medium containing spatially distributed ''black'' cylindrical pins. Under a subcontract to RP2352-01, RPI developed the gamma production and gamma interaction library used for gamma calculation. The CPM-2 gamma calculation was verified against reference results generated by Studsvik using the CASMO-1 program. The CPM-2 Restart/Data file maintenance capabilities provide the user with options to copy files between Restart/Data tapes and to purge files from the Restart/Data tapes
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-03-01
This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U. S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume is part of the manual related to the control modules for the newest updated version of this computational package.
Development of a dose assessment computer code for the NPP severe accident
International Nuclear Information System (INIS)
Cheong, Jae Hak
1993-02-01
A real-time emergency dose assessment computer code called KEDA (KAIST NPP Emergency Dose Assessment) has been developed for the NPP severe accident. A new mathematical model which can calculate cloud shine has been developed and implemented in the code. KEDA considers the specific Korean situations(complex topography, orientals' thyroid metabolism, continuous washout, etc.), and provides functions of dose-monitoring and automatic decision-making. To verify the code results, KEDA has been compared with an NRC officially certified code, RASCAL, for eight hypertical accident scenarios. Through the comparison, KEDA has been proved to provide reasonable results. Qualitative sensitivity analysis also the been performed for potentially important six input parameters, and the trends of the dose v.s. down-wind distance curve have been analyzed comparing with the physical phenomena occurred in the real atmosphere. The source term and meteorological conditions are turned out to be the most important input parameters. KEDA also has been applied to simulate Kori site and a hyperthetical accident with semi-real meteorological data has been simulated and analyzed
A study on the nuclear computer codes installation and management system
International Nuclear Information System (INIS)
Kim, Yeon Seung; Huh, Young Hwan; Kim, Hee Kyung; Kang, Byung Heon; Kim, Ko Ryeo; Suh, Soong Hyok; Choi, Young Gil; Lee, Jong Bok
1990-12-01
From 1987 a number of technical transfer related to nuclear power plant had been performed from C-E for YGN 3 and 4 construction. Among them, installation and management of the computer codes for YGN 3 and 4 fuel and nuclear steam supply system was one of the most important project. Main objectives of this project are to establish the nuclear computer code management system, to develop QA procedure for nuclear codes, to secure the nuclear code reliability and to extend techanical applicabilities including the user-oriented utility programs for nuclear codes. Contents of performing the project in this year was to produce 215 transmittal packages of nuclear codes installation including making backup magnetic tape and microfiche for software quality assurance. Lastly, for easy reference about the nuclear codes information we presented list of code names and information on the codes which were introduced from C-E. (Author)
Physical model of the nuclear fuel cycle simulation code SITON
International Nuclear Information System (INIS)
Brolly, Á.; Halász, M.; Szieberth, M.; Nagy, L.; Fehér, S.
2017-01-01
Finding answers to main challenges of nuclear energy, like resource utilisation or waste minimisation, calls for transient fuel cycle modelling. This motivation led to the development of SITON v2.0 a dynamic, discrete facilities/discrete materials and also discrete events fuel cycle simulation code. The physical model of the code includes the most important fuel cycle facilities. Facilities can be connected flexibly; their number is not limited. Material transfer between facilities is tracked by taking into account 52 nuclides. Composition of discharged fuel is determined using burnup tables except for the 2400 MW thermal power design of the Gas-Cooled Fast Reactor (GFR2400). For the GFR2400 the FITXS method is used, which fits one-group microscopic cross-sections as polynomial functions of the fuel composition. This method is accurate and fast enough to be used in fuel cycle simulations. Operation of the fuel cycle, i.e. material requests and transfers, is described by discrete events. In advance of the simulation reactors and plants formulate their requests as events; triggered requests are tracked. After that, the events are simulated, i.e. the requests are fulfilled and composition of the material flow between facilities is calculated. To demonstrate capabilities of SITON v2.0, a hypothetical transient fuel cycle is presented in which a 4-unit VVER-440 reactor park was replaced by one GFR2400 that recycled its own spent fuel. It is found that the GFR2400 can be started if the cooling time of its spent fuel is 2 years. However, if the cooling time is 5 years it needs an additional plutonium feed, which can be covered from the spent fuel of a Generation III light water reactor.
Further development of the computer code ATHLET-CD
International Nuclear Information System (INIS)
Weber, Sebastian; Austregesilo, Henrique; Bals, Christine; Band, Sebastian; Hollands, Thorsten; Koellein, Carsten; Lovasz, Liviusz; Pandazis, Peter; Schubert, Johann-Dietrich; Sonnenkalb, Martin
2016-10-01
In the framework of the reactor safety research program sponsored by the German Federal Ministry for Economic Affairs and Energy (BMWi), the computer code system ATHLET/ATHLET-CD has been further developed as an analysis tool for the simulation of accidents in nuclear power plants with pressurized and boiling water reactors as well as for the evaluation of accident management procedures. The main objective was to provide a mechanistic analysis tool for best estimate calculations of transients, accidents, and severe accidents with core degradation in light water reactors. With the continued development, the capability of the code system has been largely improved, allowing best estimate calculations of design and beyond design base accidents, and the simulation of advanced core degradation with enhanced model extent in a reasonable calculation time. ATHLET comprises inter alia a 6-equation model, models for the simulation of non-condensable gases and tracking of boron concentration, as well as additional component and process models for the complete system simulation. Among numerous model improvements, the code application has been extended to super critical pressures. The mechanistic description of the dynamic development of flow regimes on the basis of a transport equation for the interface area has been further developed. This ATHLET version is completely integrated in ATHLET-CD. ATHLET-CD further comprises dedicated models for the simulation of fuel and control assembly degradation for both pressurized and boiling water reactors, debris bed with melting in the core region, as well as fission product and aerosol release and transport in the cooling system, inclusive of decay of nuclide inventories and of chemical reactions in the gas phase. The continued development also concerned the modelling of absorber material release, of melting, melt relocation and freezing, and the interaction with the wall of the reactor pressure vessel. The following models were newly
Verification of MVP-II and SRAC2006 code to the core physics vera benchmark problem
International Nuclear Information System (INIS)
Jati Susilo
2014-01-01
In this research, verification calculation for VERA core physics benchmark on the Zero Power Physical Test (ZPPT) of the nuclear reactor Watts Bar 1. The reactor is a 1000 MWe class of PWR designed by. Westinghouse, arranged from 193 unit of 17 x 17 fuel assembly consisting 3 type enrichment of UO2 that are 2.1wt%, 2.619wt% and 3.1wt%. Core power factor distribution and k-eff calculation has been done for the first cycle operation of the core at beginning of cycle (BOC) and hot zero power (HZP). In this calculation, MVP-II and CITATION module of SRAC2006 computer code has been used with ENDF/B-VII.0. cross section data library. Calculation result showed that differences value of k-eff for the core at controlled and uncontrolled condition between reference with MVP-II (-0,07% and -0,014%) and SRAC2006 (0,92% and 0,99%) are very small or below 1%. Differences value of radial power peaking factor at controlled and uncontrolled of the core between reference value with MVP-II are 0,38% and 1,53%, even though with SRAC2006 are 1,13% and -2,45%. It can be said that the calculation result by both computer code showing suitability with reference value. In order to determinate of criticality of the core, the calculation result using MVP-II code is more conservative compare with SRAC2006 code. (author)
Assessment of the computer code COBRA/CFTL
International Nuclear Information System (INIS)
Baxi, C.B.; Burhop, C.J.
1981-07-01
The COBRA/CFTL code has been developed by Oak Ridge National Laboratory (ORNL) for thermal-hydraulic analysis of simulated gas-cooled fast breeder reactor (GCFR) core assemblies to be tested in the core flow test loop (CFTL). The COBRA/CFTL code was obtained by modifying the General Atomic code COBRA*GCFR. This report discusses these modifications, compares the two code results for three cases which represent conditions from fully rough turbulent flow to laminar flow. Case 1 represented fully rough turbulent flow in the bundle. Cases 2 and 3 represented laminar and transition flow regimes. The required input for the COBRA/CFTL code, a sample problem input/output and the code listing are included in the Appendices
International Nuclear Information System (INIS)
Chabard, J.P.; Viollet, P.L.
1991-08-01
Most of the computational fluid dynamics applications which are encountered at the Research and Development Division of EDF (RDD) are dealing with thermal exchanges. The development of numerical tools for the simulation of flows, devoted to this class of application, has been under way for 15 years. At the beginning this work was mainly concerned with a good simulation of the dynamics of the flow. Now these tools can be used to compute flows with thermal exchanges. The presentation will be limited to incompressible and one phase flows. First the softwares developed at RDD will be presented. Then some applications of these tools to flows with thermal exchanges will be discussed. To conclude, the paper will treat be general case of the CFD codes. The challenges for the next years will be detailed in order to make these tools available for users involved in complex physical modeling
Status of the CONTAIN computer code for LWR containment analysis
International Nuclear Information System (INIS)
Bergeron, K.D.; Murata, K.K.; Rexroth, P.E.; Clauser, M.J.; Senglaub, M.E.; Sciacca, F.W.; Trebilcock, W.
1983-01-01
The current status of the CONTAIN code for LWR safety analysis is reviewed. Three example calculations are discussed as illustrations of the code's capabilities: (1) a demonstration of the spray model in a realistic PWR problem, and a comparison with CONTEMPT results; (2) a comparison of CONTAIN results for a major aerosol experiment against experimental results and predictions of the HAARM aerosol code; and (3) an LWR sample problem, involving a TMLB' sequence for the Zion reactor containment
Status of the CONTAIN computer code for LWR containment analysis
International Nuclear Information System (INIS)
Bergeron, K.D.; Murata, K.K.; Rexroth, P.E.; Clauser, M.J.; Senglaub, M.E.; Sciacca, F.W.; Trebilcock, W.
1982-01-01
The current status of the CONTAIN code for LWR safety analysis is reviewed. Three example calculations are discussed as illustrations of the code's capabilities: (1) a demonstration of the spray model in a realistic PWR problem, and a comparison with CONTEMPT results; (2) a comparison of CONTAIN results for a major aerosol experiment against experimental results and predictions of the HAARM aerosol code; and (3) an LWR sample problem, involving a TMLB' sequence for the Zion reactor containment
A computer code to design liquid containers for vehicles
International Nuclear Information System (INIS)
Parizi, H.B.; Fard, M.P.; Dolatabadi, A.
2003-01-01
We are presenting the development of a modular code for the simulation of the fluid sloshing that occurs in the liquid containers in vehicles. Sloshing occurs when a partially filled container of liquid goes through transient or steady external forces. Under such conditions, the free surface of the liquid may move and the liquid may impact on the walls of the container, exchanging forces. These forces may cause numerous harmful and undesirable consequences in the operation of the vehicle, such as vehicle turn over. The fluid mechanic equations that describe the fluid sloshing in the container and the dynamic equations that describe the movement of the container are solved separately in two different codes. The codes are coupled weekly, such that the output of one code will be used as the input to the other code in the same time step. The outputs of the fluid code are the forces and torques that are applied to the body of the container due to sloshing, whereas the output of the dynamic code are the translational and rotational velocities and accelerations of the container. The proposed software can be used to test the performance of the designed container under various operating condition and allow effective improvements to the container design. The proposed code is different than the presently available codes, in that it will provide a true simulation of the coupled fluid and structure interaction. (author)
Grid computing in high-energy physics
International Nuclear Information System (INIS)
Bischof, R.; Kuhn, D.; Kneringer, E.
2003-01-01
Full text: The future high energy physics experiments are characterized by an enormous amount of data delivered by the large detectors presently under construction e.g. at the Large Hadron Collider and by a large number of scientists (several thousands) requiring simultaneous access to the resulting experimental data. Since it seems unrealistic to provide the necessary computing and storage resources at one single place, (e.g. CERN), the concept of grid computing i.e. the use of distributed resources, will be chosen. The DataGrid project (under the leadership of CERN) develops, based on the Globus toolkit, the software necessary for computation and analysis of shared large-scale databases in a grid structure. The high energy physics group Innsbruck participates with several resources in the DataGrid test bed. In this presentation our experience as grid users and resource provider is summarized. In cooperation with the local IT-center (ZID) we installed a flexible grid system which uses PCs (at the moment 162) in student's labs during nights, weekends and holidays, which is especially used to compare different systems (local resource managers, other grid software e.g. from the Nordugrid project) and to supply a test bed for the future Austrian Grid (AGrid). (author)
Computational physics: an introduction (second edition)
International Nuclear Information System (INIS)
Borcherds, Peter
2002-01-01
This book has much in common with many other books on Computational Physics texts, some of which are helpfully listed by the author as 'A subjective review on related texts'. The first five chapters are introductory, covering finite differences, linear algebra, stochastics and ordinary and partial differential equations. The final section of chapter 3 is entitled 'Stochastic Optimisation', and covers Simulated Annealing and Genetic Algorithms. Neither topic is adequately covered; an explicit example, with algorithms, in each case would have been helpful. However few other computational physics texts mention these topics at all. The chapters in the final part of the book are more advanced, and cover comprehensively Simulation and Statistical Mechanics, Quantum Mechanical Simulation and Hydrodynamics. These chapters include specialist material not in other texts, e.g. Alder vortices and the Nose--Hoover method. There is an extensive coverage of Ewald summation. The author is in the course of augmenting his book by web-resident sample programs, which should enhance the value of the book. This book should appeal to anyone working in the fields covered in the final section. It ought also to be in any physics library. (author)
User manual for PACTOLUS: a code for computing power costs
International Nuclear Information System (INIS)
Huber, H.D.; Bloomster, C.H.
1979-02-01
PACTOLUS is a computer code for calculating the cost of generating electricity. Through appropriate definition of the input data, PACTOLUS can calculate the cost of generating electricity from a wide variety of power plants, including nuclear, fossil, geothermal, solar, and other types of advanced energy systems. The purpose of PACTOLUS is to develop cash flows and calculate the unit busbar power cost (mills/kWh) over the entire life of a power plant. The cash flow information is calculated by two principal models: the Fuel Model and the Discounted Cash Flow Model. The Fuel Model is an engineering cost model which calculates the cash flow for the fuel cycle costs over the project lifetime based on input data defining the fuel material requirements, the unit costs of fuel materials and processes, the process lead and lag times, and the schedule of the capacity factor for the plant. For nuclear plants, the Fuel Model calculates the cash flow for the entire nuclear fuel cycle. For fossil plants, the Fuel Model calculates the cash flow for the fossil fuel purchases. The Discounted Cash Flow Model combines the fuel costs generated by the Fuel Model with input data on the capital costs, capital structure, licensing time, construction time, rates of return on capital, tax rates, operating costs, and depreciation method of the plant to calculate the cash flow for the entire lifetime of the project. The financial and tax structure for both investor-owned utilities and municipal utilities can be simulated through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. The Discounted Cash Flow Model uses the principal that the present worth of the revenues will be equal to the present worth of the expenses including the return on investment over the economic life of the project. This manual explains how to prepare the input data, execute cases, and interpret the output results with the updated version of PACTOLUS. 11 figures, 2 tables
User manual for PACTOLUS: a code for computing power costs.
Energy Technology Data Exchange (ETDEWEB)
Huber, H.D.; Bloomster, C.H.
1979-02-01
PACTOLUS is a computer code for calculating the cost of generating electricity. Through appropriate definition of the input data, PACTOLUS can calculate the cost of generating electricity from a wide variety of power plants, including nuclear, fossil, geothermal, solar, and other types of advanced energy systems. The purpose of PACTOLUS is to develop cash flows and calculate the unit busbar power cost (mills/kWh) over the entire life of a power plant. The cash flow information is calculated by two principal models: the Fuel Model and the Discounted Cash Flow Model. The Fuel Model is an engineering cost model which calculates the cash flow for the fuel cycle costs over the project lifetime based on input data defining the fuel material requirements, the unit costs of fuel materials and processes, the process lead and lag times, and the schedule of the capacity factor for the plant. For nuclear plants, the Fuel Model calculates the cash flow for the entire nuclear fuel cycle. For fossil plants, the Fuel Model calculates the cash flow for the fossil fuel purchases. The Discounted Cash Flow Model combines the fuel costs generated by the Fuel Model with input data on the capital costs, capital structure, licensing time, construction time, rates of return on capital, tax rates, operating costs, and depreciation method of the plant to calculate the cash flow for the entire lifetime of the project. The financial and tax structure for both investor-owned utilities and municipal utilities can be simulated through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. The Discounted Cash Flow Model uses the principal that the present worth of the revenues will be equal to the present worth of the expenses including the return on investment over the economic life of the project. This manual explains how to prepare the input data, execute cases, and interpret the output results. (RWR)
Waste Evaporator Accident Simulation Using RELAP5 Computer Code
International Nuclear Information System (INIS)
POLIZZI, L.M.
2004-01-01
An evaporator is used on liquid waste from processing facilities to reduce the volume of the waste through heating the waste and allowing some of the water to be separated from the waste through boiling. This separation process allows for more efficient processing and storage of liquid waste. Commonly, the liquid waste consists of an aqueous solution of chemicals that over time could induce corrosion, and in turn weaken the tubes in the steam tube bundle of the waste evaporator that are used to heat the waste. This chemically induced corrosion could escalate into a possible tube leakage and/or the severance of a tube(s) in the tube bundle. In this paper, analyses of a waste evaporator system for the processing of liquid waste containing corrosive chemicals are presented to assess the system response to this accident scenario. This accident scenario is evaluated since its consequences can propagate to a release of hazardous material to the outside environment. It is therefore important to ensure that the evaporator system component structural integrity is not compromised, i.e. the design pressure and temperature of the system is not exceeded during the accident transient. The computer code used for the accident simulation is RELAP5-MOD31. The accident scenario analyzed includes a double-ended guillotine break of a tube in the tube bundle of the evaporator. A mitigated scenario is presented to evaluate the excursion of the peak pressure and temperature in the various components of the evaporator system to assess whether the protective actions and controls available are adequate to ensure that the structural integrity of the evaporator system is maintained and that no atmospheric release occurs
Sensitivity and uncertainty studies of the CRAC2 computer code
International Nuclear Information System (INIS)
Kocher, D.C.; Ward, R.C.; Killough, G.G.; Dunning, D.E. Jr.; Hicks, B.B.; Hosker, R.P. Jr.; Ku, J.Y.; Rao, K.S.
1987-01-01
The authors have studied the sensitivity of health impacts from nuclear reactor accidents, as predicted by the CRAC2 computer code, to the following sources of uncertainty: (1) the model for plume rise, (2) the model for wet deposition, (3) the meteorological bin-sampling procedure for selecting weather sequences with rain, (4) the dose conversion factors for inhalation as affected by uncertainties in the particle size of the carrier aerosol and the clearance rates of radionuclides from the respiratory tract, (5) the weathering half-time for external ground-surface exposure, and (6) the transfer coefficients for terrestrial foodchain pathways. Predicted health impacts usually showed little sensitivity to use of an alternative plume-rise model or a modified rain-bin structure in bin-sampling. Health impacts often were quite sensitive to use of an alternative wet-deposition model in single-trial runs with rain during plume passage, but were less sensitive to the model in bin-sampling runs. Uncertainties in the inhalation dose conversion factors had important effects on early injuries in single-trial runs. Latent cancer fatalities were moderately sensitive to uncertainties in the weathering half-time for ground-surface exposures, but showed little sensitivity to the transfer coefficients for terrestrial foodchain pathways. Sensitivities of CRAC2 predictions to uncertainties in the models and parameters also depended on the magnitude of the source term, and some of the effects on early health effects were comparable to those that were due only to selection of different sets of weather sequences in bin-sampling
International Nuclear Information System (INIS)
Hanusik, V.; Kopcani, I.; Gedeon, M.
2000-01-01
This paper describes selection and adaptation of computer codes required to assess the effects of radionuclide release from Mochovce Radioactive Waste Disposal Facility. The paper also demonstrates how these codes can be integrated into performance assessment methodology. The considered codes include DUST-MS for source term release, MODFLOW for ground-water flow and BS for transport through biosphere and dose assessment. (author)
Three computer codes for safety and stability of large superconducting magnets
International Nuclear Information System (INIS)
Turner, L.R.
1985-01-01
For analyzing the safety and stability of large superconducting magnets, three computer codes TASS, SHORTURN, and SSICC have been developed, applicable to bath-cooled magnets, bath-cooled magnets with shorted turns, and magnets with internally cooled conductors respectively. The TASS code is described, and the use of the three codes is reviewed
Development of computing code system for level 3 PSA
International Nuclear Information System (INIS)
Jeong, Jong Tae; Yu, Dong Han; Kim, Seung Hwan.
1997-07-01
Among the various research areas of the level 3 PSA, the effect of terrain on the transport of radioactive material was investigated through wind tunnel experiment. These results will give a physical insight in the development of a new dispersion model. Because there are some discrepancies between the results from Gaussian plume model and those from field test, the effect of terrain on the atmospheric dispersion was investigated by using CTDMPLUS code. Through this study we find that the model which can treat terrain effect is essential in the atmospheric dispersion of radioactive materials and the CTDMPLUS model can be used as a useful tool. And it is suggested that modification of a model and experimental study should be made through the continuous effort. The health effect assessment near the Yonggwang site by using IPE (Individual plant examination) results and its site data was performed. The health effect assessment is an important part of consequence analysis of a nuclear power plant site. The MACCS was used in the assessment. Based on the calculation of CCDF for each risk measure, it is shown that CCDF has a slow slope and thus wide probability distribution in cases of early fatality, early injury, total early fatality risk, and total weighted early fatality risk. And in cases of cancer fatality and population dose within 48km and 80km, the CCDF curve have a steep slope and thus narrow probability distribution. The establishment of methodologies for necessary models for consequence analysis resulting form a server accident in the nuclear power plant was made and a program for consequence analysis was developed. The models include atmospheric transport and diffusion, calculation of exposure doses for various pathways, and assessment of health effects and associated risks. Finally, the economic impact resulting form an accident in a nuclear power plant was investigated. In this study, estimation models for each cost terms that considered in economic
Development of computing code system for level 3 PSA
Energy Technology Data Exchange (ETDEWEB)
Jeong, Jong Tae; Yu, Dong Han; Kim, Seung Hwan
1997-07-01
Among the various research areas of the level 3 PSA, the effect of terrain on the transport of radioactive material was investigated through wind tunnel experiment. These results will give a physical insight in the development of a new dispersion model. Because there are some discrepancies between the results from Gaussian plume model and those from field test, the effect of terrain on the atmospheric dispersion was investigated by using CTDMPLUS code. Through this study we find that the model which can treat terrain effect is essential in the atmospheric dispersion of radioactive materials and the CTDMPLUS model can be used as a useful tool. And it is suggested that modification of a model and experimental study should be made through the continuous effort. The health effect assessment near the Yonggwang site by using IPE (Individual plant examination) results and its site data was performed. The health effect assessment is an important part of consequence analysis of a nuclear power plant site. The MACCS was used in the assessment. Based on the calculation of CCDF for each risk measure, it is shown that CCDF has a slow slope and thus wide probability distribution in cases of early fatality, early injury, total early fatality risk, and total weighted early fatality risk. And in cases of cancer fatality and population dose within 48km and 80km, the CCDF curve have a steep slope and thus narrow probability distribution. The establishment of methodologies for necessary models for consequence analysis resulting form a server accident in the nuclear power plant was made and a program for consequence analysis was developed. The models include atmospheric transport and diffusion, calculation of exposure doses for various pathways, and assessment of health effects and associated risks. Finally, the economic impact resulting form an accident in a nuclear power plant was investigated. In this study, estimation models for each cost terms that considered in economic
International Nuclear Information System (INIS)
Sjoreen, A.L.; Kocher, D.C.; Killough, G.G.; Miller, C.W.
1984-11-01
This report is a user's manual for MLSOIL (Multiple Layer SOIL model) and DFSOIL (Dose Factors for MLSOIL) and a documentation of the computational methods used in those two computer codes. MLSOIL calculates an effective ground surface concentration to be used in computations of external doses. This effective ground surface concentration is equal to (the computed dose in air from the concentration in the soil layers)/(the dose factor for computing dose in air from a plane). MLSOIL implements a five compartment linear-transfer model to calculate the concentrations of radionuclides in the soil following deposition on the ground surface from the atmosphere. The model considers leaching through the soil as well as radioactive decay and buildup. The element-specific transfer coefficients used in this model are a function of the k/sub d/ and environmental parameters. DFSOIL calculates the dose in air per unit concentration at 1 m above the ground from each of the five soil layers used in MLSOIL and the dose per unit concentration from an infinite plane source. MLSOIL and DFSOIL have been written to be part of the Computerized Radiological Risk Investigation System (CRRIS) which is designed for assessments of the health effects of airborne releases of radionuclides. 31 references, 3 figures, 4 tables
The Los Alamos suite of relativistic atomic physics codes
International Nuclear Information System (INIS)
Fontes, C J; Zhang, H L; Jr, J Abdallah; Clark, R E H; Kilcrease, D P; Colgan, J; Cunningham, R T; Hakel, P; Magee, N H; Sherrill, M E
2015-01-01
The Los Alamos suite of relativistic atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suite can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions. (paper)
BLUES function method in computational physics
Indekeu, Joseph O.; Müller-Nedebock, Kristian K.
2018-04-01
We introduce a computational method in physics that goes ‘beyond linear use of equation superposition’ (BLUES). A BLUES function is defined as a solution of a nonlinear differential equation (DE) with a delta source that is at the same time a Green’s function for a related linear DE. For an arbitrary source, the BLUES function can be used to construct an exact solution to the nonlinear DE with a different, but related source. Alternatively, the BLUES function can be used to construct an approximate piecewise analytical solution to the nonlinear DE with an arbitrary source. For this alternative use the related linear DE need not be known. The method is illustrated in a few examples using analytical calculations and numerical computations. Areas for further applications are suggested.
Computational and Physical Analysis of Catalytic Compounds
Wu, Richard; Sohn, Jung Jae; Kyung, Richard
2015-03-01
Nanoparticles exhibit unique physical and chemical properties depending on their geometrical properties. For this reason, synthesis of nanoparticles with controlled shape and size is important to use their unique properties. Catalyst supports are usually made of high-surface-area porous oxides or carbon nanomaterials. These support materials stabilize metal catalysts against sintering at high reaction temperatures. Many studies have demonstrated large enhancements of catalytic behavior due to the role of the oxide-metal interface. In this paper, the catalyzing ability of supported nano metal oxides, such as silicon oxide and titanium oxide compounds as catalysts have been analyzed using computational chemistry method. Computational programs such as Gamess and Chemcraft has been used in an effort to compute the efficiencies of catalytic compounds, and bonding energy changes during the optimization convergence. The result illustrates how the metal oxides stabilize and the steps that it takes. The graph of the energy computation step(N) versus energy(kcal/mol) curve shows that the energy of the titania converges faster at the 7th iteration calculation, whereas the silica converges at the 9th iteration calculation.
PAPIRUS - a computer code for FBR fuel performance analysis
International Nuclear Information System (INIS)
Kobayashi, Y.; Tsuboi, Y.; Sogame, M.
1991-01-01
The FBR fuel performance analysis code PAPIRUS has been developed to design fuels for demonstration and future commercial reactors. A pellet structural model was developed to describe the generation, depletion and transport of vacancies and atomic elements in unified fashion. PAPIRUS results in comparison with the power - to - melt test data from HEDL showed validity of the code at the initial reactor startup. (author)
UCODE, a computer code for universal inverse modeling
Poeter, E.P.; Hill, M.C.
1999-01-01
This article presents the US Geological Survey computer program UCODE, which was developed in collaboration with the US Army Corps of Engineers Waterways Experiment Station and the International Ground Water Modeling Center of the Colorado School of Mines. UCODE performs inverse modeling, posed as a parameter-estimation problem, using nonlinear regression. Any application model or set of models can be used; the only requirement is that they have numerical (ASCII or text only) input and output files and that the numbers in these files have sufficient significant digits. Application models can include preprocessors and postprocessors as well as models related to the processes of interest (physical, chemical and so on), making UCODE extremely powerful for model calibration. Estimated parameters can be defined flexibly with user-specified functions. Observations to be matched in the regression can be any quantity for which a simulated equivalent value can be produced, thus simulated equivalent values are calculated using values that appear in the application model output files and can be manipulated with additive and multiplicative functions, if necessary. Prior, or direct, information on estimated parameters also can be included in the regression. The nonlinear regression problem is solved by minimizing a weighted least-squares objective function with respect to the parameter values using a modified Gauss-Newton method. Sensitivities needed for the method are calculated approximately by forward or central differences and problems and solutions related to this approximation are discussed. Statistics are calculated and printed for use in (1) diagnosing inadequate data or identifying parameters that probably cannot be estimated with the available data, (2) evaluating estimated parameter values, (3) evaluating the model representation of the actual processes and (4) quantifying the uncertainty of model simulated values. UCODE is intended for use on any computer operating
Electromagnetic Physics Models for Parallel Computing Architectures
International Nuclear Information System (INIS)
Amadio, G; Bianchini, C; Iope, R; Ananya, A; Apostolakis, J; Aurora, A; Bandieramonte, M; Brun, R; Carminati, F; Gheata, A; Gheata, M; Goulas, I; Nikitina, T; Bhattacharyya, A; Mohanty, A; Canal, P; Elvira, D; Jun, S Y; Lima, G; Duhem, L
2016-01-01
The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well. (paper)
Electromagnetic Physics Models for Parallel Computing Architectures
Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.
2016-10-01
The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.
Computational applications of DNA physical scales
DEFF Research Database (Denmark)
Baldi, Pierre; Chauvin, Yves; Brunak, Søren
1998-01-01
that these scales provide an alternative or complementary compact representation of DNA sequences. As an example we construct a strand invariant representation of DNA sequences. The scales can also be used to analyze and discover new DNA structural patterns, especially in combinations with hidden Markov models......The authors study from a computational standpoint several different physical scales associated with structural features of DNA sequences, including dinucleotide scales such as base stacking energy and propellor twist, and trinucleotide scales such as bendability and nucleosome positioning. We show...
Trends in supercomputers and computational physics
International Nuclear Information System (INIS)
Bloch, T.
1985-01-01
Today, scientists using numerical models explore the basic mechanisms of semiconductors, apply global circulation models to climatic and oceanographic problems, probe into the behaviour of galaxies and try to verify basic theories of matter, such as Quantum Chromo Dynamics by simulating the constitution of elementary particles. Chemists, crystallographers and molecular dynamics researchers develop models for chemical reactions, formation of crystals and try to deduce the chemical properties of molecules as a function of the shapes of their states. Chaotic systems are studied extensively in turbulence (combustion included) and the design of the next generation of controlled fusion devices relies heavily on computational physics. (orig./HSI)
Utilization of KENO-IV computer code with HANSEN-ROACH library
International Nuclear Information System (INIS)
Lima Barros, M. de; Vellozo, S.O.
1982-01-01
Several analysis with KENO-IV computer code, which is based in the Monte Carlo method, and the cross section library HANSEN-ROACH, were done, aiming to present the more convenient form to execute criticality calculations with this computer code and this cross sections. (E.G.) [pt
CAT: a computer code for the automated construction of fault trees
International Nuclear Information System (INIS)
Apostolakis, G.E.; Salem, S.L.; Wu, J.S.
1978-03-01
A computer code, CAT (Computer Automated Tree, is presented which applies decision table methods to model the behavior of components for systematic construction of fault trees. The decision tables for some commonly encountered mechanical and electrical components are developed; two nuclear subsystems, a Containment Spray Recirculation System and a Consequence Limiting Control System, are analyzed to demonstrate the applications of CAT code
Large Scale Computing and Storage Requirements for Nuclear Physics Research
Energy Technology Data Exchange (ETDEWEB)
Gerber, Richard A.; Wasserman, Harvey J.
2012-03-02
IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.
TRACMAB. A computer code to form part of the link between the codes TRAC and MABEL
International Nuclear Information System (INIS)
Newbon, S.
1982-05-01
This report describes the function of the link program TRACMAB and provides a guide for users. The program is required to convert the thermal disequilibrium data output by the transient code TRAC into equilibrium data in a format compatible with the input data required by the code CAIN which in turn produces input data for MABEL. (author)
Physics Computing '92: Proceedings of the 4th International Conference
de Groot, Robert A.; Nadrchal, Jaroslav
1993-04-01
* Ordered Particle Simulations for Serial and MIMD Parallel Computers * "NOLP" -- Program Package for Laser Plasma Nonlinear Optics * Algorithms to Solve Nonlinear Least Square Problems * Distribution of Hydrogen Atoms in Pd-H Computed by Molecular Dynamics * A Ray Tracing of Optical System for Protein Crystallography Beamline at Storage Ring-SIBERIA-2 * Vibrational Properties of a Pseudobinary Linear Chain with Correlated Substitutional Disorder * Application of the Software Package Mathematica in Generalized Master Equation Method * Linelist: An Interactive Program for Analysing Beam-foil Spectra * GROMACS: A Parallel Computer for Molecular Dynamics Simulations * GROMACS Method of Virial Calculation Using a Single Sum * The Interactive Program for the Solution of the Laplace Equation with the Elimination of Singularities for Boundary Functions * Random-Number Generators: Testing Procedures and Comparison of RNG Algorithms * Micro-TOPIC: A Tokamak Plasma Impurities Code * Rotational Molecular Scattering Calculations * Orthonormal Polynomial Method for Calibrating of Cryogenic Temperature Sensors * Frame-based System Representing Basis of Physics * The Role of Massively Data-parallel Computers in Large Scale Molecular Dynamics Simulations * Short-range Molecular Dynamics on a Network of Processors and Workstations * An Algorithm for Higher-order Perturbation Theory in Radiative Transfer Computations * Hydrostochastics: The Master Equation Formulation of Fluid Dynamics * HPP Lattice Gas on Transputers and Networked Workstations * Study on the Hysteresis Cycle Simulation Using Modeling with Different Functions on Intervals * Refined Pruning Techniques for Feed-forward Neural Networks * Random Walk Simulation of the Motion of Transient Charges in Photoconductors * The Optical Hysteresis in Hydrogenated Amorphous Silicon * Diffusion Monte Carlo Analysis of Modern Interatomic Potentials for He * A Parallel Strategy for Molecular Dynamics Simulations of Polar Liquids on
Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †
Directory of Open Access Journals (Sweden)
Muhammad Harist Murdani
2018-03-01
Full Text Available In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes (Ad-Hoc and neighborhood proximity (Top-K. Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space.
Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †.
Murdani, Muhammad Harist; Kwon, Joonho; Choi, Yoon-Ho; Hong, Bonghee
2018-03-24
In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes ( Ad-Hoc ) and neighborhood proximity ( Top-K ). Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space.
SWAAM-LT: The long-term, sodium/water reaction analysis method computer code
International Nuclear Information System (INIS)
Shin, Y.W.; Chung, H.H.; Wiedermann, A.H.; Tanabe, H.
1993-01-01
The SWAAM-LT Code, developed for analysis of long-term effects of sodium/water reactions, is discussed. The theoretical formulation of the code is described, including the introduction of system matrices for ease of computer programming as a general system code. Also, some typical results of the code predictions for available large scale tests are presented. Test data for the steam generator design with the cover-gas feature and without the cover-gas feature are available and analyzed. The capabilities and limitations of the code are then discussed in light of the comparison between the code prediction and the test data
Compendium of computer codes for the safety analysis of fast breeder reactors
International Nuclear Information System (INIS)
1977-10-01
The objective of the compendium is to provide the reader with a guide which briefly describes many of the computer codes used for liquid metal fast breeder reactor safety analyses, since it is for this system that most of the codes have been developed. The compendium is designed to address the following frequently asked questions from individuals in licensing and research and development activities: (1) What does the code do. (2) To what safety problems has it been applied. (3) What are the code's limitations. (4) What is being done to remove these limitations. (5) How does the code compare with experimental observations and other code predictions. (6) What reference documents are available