WorldWideScience

Sample records for computer based models

  1. An Emotional Agent Model Based on Granular Computing

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2012-01-01

    Full Text Available Affective computing has a very important significance for fulfilling intelligent information processing and harmonious communication between human being and computers. A new model for emotional agent is proposed in this paper to make agent have the ability of handling emotions, based on the granular computing theory and the traditional BDI agent model. Firstly, a new emotion knowledge base based on granular computing for emotion expression is presented in the model. Secondly, a new emotional reasoning algorithm based on granular computing is proposed. Thirdly, a new emotional agent model based on granular computing is presented. Finally, based on the model, an emotional agent for patient assistant in hospital is realized, experiment results show that it is efficient to handle simple emotions.

  2. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. Computer Based ... universities, and later did system analysis, ... sonal computers (PC) and low cost software packages and tools. They can serve as useful learning experience through student projects. Models are .... Let us consider a numerical example: to calculate the velocity of a trainer aircraft ...

  3. Modeling soft factors in computer-based wargames

    Science.gov (United States)

    Alexander, Steven M.; Ross, David O.; Vinarskai, Jonathan S.; Farr, Steven D.

    2002-07-01

    Computer-based wargames have seen much improvement in recent years due to rapid increases in computing power. Because these games have been developed for the entertainment industry, most of these advances have centered on the graphics, sound, and user interfaces integrated into these wargames with less attention paid to the game's fidelity. However, for a wargame to be useful to the military, it must closely approximate as many of the elements of war as possible. Among the elements that are typically not modeled or are poorly modeled in nearly all military computer-based wargames are systematic effects, command and control, intelligence, morale, training, and other human and political factors. These aspects of war, with the possible exception of systematic effects, are individually modeled quite well in many board-based commercial wargames. The work described in this paper focuses on incorporating these elements from the board-based games into a computer-based wargame. This paper will also address the modeling and simulation of the systemic paralysis of an adversary that is implied by the concept of Effects Based Operations (EBO). Combining the fidelity of current commercial board wargames with the speed, ease of use, and advanced visualization of the computer can significantly improve the effectiveness of military decision making and education. Once in place, the process of converting board wargames concepts to computer wargames will allow the infusion of soft factors into military training and planning.

  4. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Model-Based Knowing: How Do Students Ground Their Understanding About Climate Systems in Agent-Based Computer Models?

    Science.gov (United States)

    Markauskaite, Lina; Kelly, Nick; Jacobson, Michael J.

    2017-12-01

    This paper gives a grounded cognition account of model-based learning of complex scientific knowledge related to socio-scientific issues, such as climate change. It draws on the results from a study of high school students learning about the carbon cycle through computational agent-based models and investigates two questions: First, how do students ground their understanding about the phenomenon when they learn and solve problems with computer models? Second, what are common sources of mistakes in students' reasoning with computer models? Results show that students ground their understanding in computer models in five ways: direct observation, straight abstraction, generalisation, conceptualisation, and extension. Students also incorporate into their reasoning their knowledge and experiences that extend beyond phenomena represented in the models, such as attitudes about unsustainable carbon emission rates, human agency, external events, and the nature of computational models. The most common difficulties of the students relate to seeing the modelled scientific phenomenon and connecting results from the observations with other experiences and understandings about the phenomenon in the outside world. An important contribution of this study is the constructed coding scheme for establishing different ways of grounding, which helps to understand some challenges that students encounter when they learn about complex phenomena with agent-based computer models.

  6. Computer Profiling Based Model for Investigation

    OpenAIRE

    Neeraj Choudhary; Nikhil Kumar Singh; Parmalik Singh

    2011-01-01

    Computer profiling is used for computer forensic analysis, and proposes and elaborates on a novel model for use in computer profiling, the computer profiling object model. The computer profiling object model is an information model which models a computer as objects with various attributes and inter-relationships. These together provide the information necessary for a human investigator or an automated reasoning engine to make judgments as to the probable usage and evidentiary value of a comp...

  7. Computer-Based Molecular Modelling: Finnish School Teachers' Experiences and Views

    Science.gov (United States)

    Aksela, Maija; Lundell, Jan

    2008-01-01

    Modern computer-based molecular modelling opens up new possibilities for chemistry teaching at different levels. This article presents a case study seeking insight into Finnish school teachers' use of computer-based molecular modelling in teaching chemistry, into the different working and teaching methods used, and their opinions about necessary…

  8. Developing Computer Model-Based Assessment of Chemical Reasoning: A Feasibility Study

    Science.gov (United States)

    Liu, Xiufeng; Waight, Noemi; Gregorius, Roberto; Smith, Erica; Park, Mihwa

    2012-01-01

    This paper reports a feasibility study on developing computer model-based assessments of chemical reasoning at the high school level. Computer models are flash and NetLogo environments to make simultaneously available three domains in chemistry: macroscopic, submicroscopic, and symbolic. Students interact with computer models to answer assessment…

  9. Design Of Computer Based Test Using The Unified Modeling Language

    Science.gov (United States)

    Tedyyana, Agus; Danuri; Lidyawati

    2017-12-01

    The Admission selection of Politeknik Negeri Bengkalis through interest and talent search (PMDK), Joint Selection of admission test for state Polytechnics (SB-UMPN) and Independent (UM-Polbeng) were conducted by using paper-based Test (PBT). Paper Based Test model has some weaknesses. They are wasting too much paper, the leaking of the questios to the public, and data manipulation of the test result. This reasearch was Aimed to create a Computer-based Test (CBT) models by using Unified Modeling Language (UML) the which consists of Use Case diagrams, Activity diagram and sequence diagrams. During the designing process of the application, it is important to pay attention on the process of giving the password for the test questions before they were shown through encryption and description process. RSA cryptography algorithm was used in this process. Then, the questions shown in the questions banks were randomized by using the Fisher-Yates Shuffle method. The network architecture used in Computer Based test application was a client-server network models and Local Area Network (LAN). The result of the design was the Computer Based Test application for admission to the selection of Politeknik Negeri Bengkalis.

  10. Computational-Model-Based Analysis of Context Effects on Harmonic Expectancy.

    Science.gov (United States)

    Morimoto, Satoshi; Remijn, Gerard B; Nakajima, Yoshitaka

    2016-01-01

    Expectancy for an upcoming musical chord, harmonic expectancy, is supposedly based on automatic activation of tonal knowledge. Since previous studies implicitly relied on interpretations based on Western music theory, the underlying computational processes involved in harmonic expectancy and how it relates to tonality need further clarification. In particular, short chord sequences which cannot lead to unique keys are difficult to interpret in music theory. In this study, we examined effects of preceding chords on harmonic expectancy from a computational perspective, using stochastic modeling. We conducted a behavioral experiment, in which participants listened to short chord sequences and evaluated the subjective relatedness of the last chord to the preceding ones. Based on these judgments, we built stochastic models of the computational process underlying harmonic expectancy. Following this, we compared the explanatory power of the models. Our results imply that, even when listening to short chord sequences, internally constructed and updated tonal assumptions determine the expectancy of the upcoming chord.

  11. Towards Modeling False Memory With Computational Knowledge Bases.

    Science.gov (United States)

    Li, Justin; Kohanyi, Emma

    2017-01-01

    One challenge to creating realistic cognitive models of memory is the inability to account for the vast common-sense knowledge of human participants. Large computational knowledge bases such as WordNet and DBpedia may offer a solution to this problem but may pose other challenges. This paper explores some of these difficulties through a semantic network spreading activation model of the Deese-Roediger-McDermott false memory task. In three experiments, we show that these knowledge bases only capture a subset of human associations, while irrelevant information introduces noise and makes efficient modeling difficult. We conclude that the contents of these knowledge bases must be augmented and, more important, that the algorithms must be refined and optimized, before large knowledge bases can be widely used for cognitive modeling. Copyright © 2016 Cognitive Science Society, Inc.

  12. Using Computer Simulations for Promoting Model-based Reasoning. Epistemological and Educational Dimensions

    Science.gov (United States)

    Develaki, Maria

    2017-11-01

    Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students' ability to reason and evaluate in a scientific way. This paper aims (a) to contribute to an extended understanding of the nature and pedagogical importance of model-based reasoning and (b) to exemplify how using computer simulations can support students' model-based reasoning. We provide first a background for both scientific reasoning and computer simulations, based on the relevant philosophical views and the related educational discussion. This background suggests that the model-based framework provides an epistemologically valid and pedagogically appropriate basis for teaching scientific reasoning and for helping students develop sounder reasoning and decision-taking abilities and explains how using computer simulations can foster these abilities. We then provide some examples illustrating the use of computer simulations to support model-based reasoning and evaluation activities in the classroom. The examples reflect the procedure and criteria for evaluating models in science and demonstrate the educational advantages of their application in classroom reasoning activities.

  13. Image based Monte Carlo modeling for computational phantom

    International Nuclear Information System (INIS)

    Cheng, M.; Wang, W.; Zhao, K.; Fan, Y.; Long, P.; Wu, Y.

    2013-01-01

    Full text of the publication follows. The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verification of the models for Monte Carlo (MC) simulation are very tedious, error-prone and time-consuming. In addition, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling. The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients (Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection. (authors)

  14. Evaluating Emulation-based Models of Distributed Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Stephen T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Cyber Initiatives; Gabert, Kasimir G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Cyber Initiatives; Tarman, Thomas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Emulytics Initiatives

    2017-08-01

    Emulation-based models of distributed computing systems are collections of virtual ma- chines, virtual networks, and other emulation components configured to stand in for oper- ational systems when performing experimental science, training, analysis of design alterna- tives, test and evaluation, or idea generation. As with any tool, we should carefully evaluate whether our uses of emulation-based models are appropriate and justified. Otherwise, we run the risk of using a model incorrectly and creating meaningless results. The variety of uses of emulation-based models each have their own goals and deserve thoughtful evaluation. In this paper, we enumerate some of these uses and describe approaches that one can take to build an evidence-based case that a use of an emulation-based model is credible. Predictive uses of emulation-based models, where we expect a model to tell us something true about the real world, set the bar especially high and the principal evaluation method, called validation , is comensurately rigorous. We spend the majority of our time describing and demonstrating the validation of a simple predictive model using a well-established methodology inherited from decades of development in the compuational science and engineering community.

  15. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  16. Task-and-role-based access-control model for computational grid

    Institute of Scientific and Technical Information of China (English)

    LONG Tao; HONG Fan; WU Chi; SUN Ling-li

    2007-01-01

    Access control in a grid environment is a challenging issue because the heterogeneous nature and independent administration of geographically dispersed resources in grid require access control to use fine-grained policies. We established a task-and-role-based access-control model for computational grid (CG-TRBAC model), integrating the concepts of role-based access control (RBAC) and task-based access control (TBAC). In this model, condition restrictions are defined and concepts specifically tailored to Workflow Management System are simplified or omitted so that role assignment and security administration fit computational grid better than traditional models; permissions are mutable with the task status and system variables, and can be dynamically controlled. The CG-TRBAC model is proved flexible and extendible. It can implement different control policies. It embodies the security principle of least privilege and executes active dynamic authorization. A task attribute can be extended to satisfy different requirements in a real grid system.

  17. Traffic Flow Prediction Model for Large-Scale Road Network Based on Cloud Computing

    Directory of Open Access Journals (Sweden)

    Zhaosheng Yang

    2014-01-01

    Full Text Available To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface. The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.

  18. A Reputation-Based Identity Management Model for Cloud Computing

    Directory of Open Access Journals (Sweden)

    Lifa Wu

    2015-01-01

    Full Text Available In the field of cloud computing, most research on identity management has concentrated on protecting user data. However, users typically leave a trail when they access cloud services, and the resulting user traceability can potentially lead to the leakage of sensitive user information. Meanwhile, malicious users can do harm to cloud providers through the use of pseudonyms. To solve these problems, we introduce a reputation mechanism and design a reputation-based identity management model for cloud computing. In the model, pseudonyms are generated based on a reputation signature so as to guarantee the untraceability of pseudonyms, and a mechanism that calculates user reputation is proposed, which helps cloud service providers to identify malicious users. Analysis verifies that the model can ensure that users access cloud services anonymously and that cloud providers assess the credibility of users effectively without violating user privacy.

  19. Dopamine selectively remediates 'model-based' reward learning: a computational approach.

    Science.gov (United States)

    Sharp, Madeleine E; Foerde, Karin; Daw, Nathaniel D; Shohamy, Daphna

    2016-02-01

    Patients with loss of dopamine due to Parkinson's disease are impaired at learning from reward. However, it remains unknown precisely which aspect of learning is impaired. In particular, learning from reward, or reinforcement learning, can be driven by two distinct computational processes. One involves habitual stamping-in of stimulus-response associations, hypothesized to arise computationally from 'model-free' learning. The other, 'model-based' learning, involves learning a model of the world that is believed to support goal-directed behaviour. Much work has pointed to a role for dopamine in model-free learning. But recent work suggests model-based learning may also involve dopamine modulation, raising the possibility that model-based learning may contribute to the learning impairment in Parkinson's disease. To directly test this, we used a two-step reward-learning task which dissociates model-free versus model-based learning. We evaluated learning in patients with Parkinson's disease tested ON versus OFF their dopamine replacement medication and in healthy controls. Surprisingly, we found no effect of disease or medication on model-free learning. Instead, we found that patients tested OFF medication showed a marked impairment in model-based learning, and that this impairment was remediated by dopaminergic medication. Moreover, model-based learning was positively correlated with a separate measure of working memory performance, raising the possibility of common neural substrates. Our results suggest that some learning deficits in Parkinson's disease may be related to an inability to pursue reward based on complete representations of the environment. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. An agent-based computational model for tuberculosis spreading on age-structured populations

    Science.gov (United States)

    Graciani Rodrigues, C. C.; Espíndola, Aquino L.; Penna, T. J. P.

    2015-06-01

    In this work we present an agent-based computational model to study the spreading of the tuberculosis (TB) disease on age-structured populations. The model proposed is a merge of two previous models: an agent-based computational model for the spreading of tuberculosis and a bit-string model for biological aging. The combination of TB with the population aging, reproduces the coexistence of health states, as seen in real populations. In addition, the universal exponential behavior of mortalities curves is still preserved. Finally, the population distribution as function of age shows the prevalence of TB mostly in elders, for high efficacy treatments.

  1. The extended RBAC model based on grid computing

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-gang; WANG Ru-chuan; WANG Hai-yan

    2006-01-01

    This article proposes the extended role-based access control (RBAC) model for solving dynamic and multidomain problems in grid computing, The formulated description of the model has been provided. The introduction of context and the mapping relations of context-to-role and context-to-permission help the model adapt to dynamic property in grid environment.The multidomain role inheritance relation by the authorization agent service realizes the multidomain authorization amongst the autonomy domain. A function has been proposed for solving the role inheritance conflict during the establishment of the multidomain role inheritance relation.

  2. A novel polar-based human face recognition computational model

    Directory of Open Access Journals (Sweden)

    Y. Zana

    2009-07-01

    Full Text Available Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.

  3. A Cloud Theory-Based Trust Computing Model in Social Networks

    Directory of Open Access Journals (Sweden)

    Fengming Liu

    2016-12-01

    Full Text Available How to develop a trust management model and then to efficiently control and manage nodes is an important issue in the scope of social network security. In this paper, a trust management model based on a cloud model is proposed. The cloud model uses a specific computation operator to achieve the transformation from qualitative concepts to quantitative computation. Additionally, this can also be used to effectively express the fuzziness, randomness and the relationship between them of the subjective trust. The node trust is divided into reputation trust and transaction trust. In addition, evaluation methods are designed, respectively. Firstly, the two-dimension trust cloud evaluation model is designed based on node’s comprehensive and trading experience to determine the reputation trust. The expected value reflects the average trust status of nodes. Then, entropy and hyper-entropy are used to describe the uncertainty of trust. Secondly, the calculation methods of the proposed direct transaction trust and the recommendation transaction trust involve comprehensively computation of the transaction trust of each node. Then, the choosing strategies were designed for node to trade based on trust cloud. Finally, the results of a simulation experiment in P2P network file sharing on an experimental platform directly reflect the objectivity, accuracy and robustness of the proposed model, and could also effectively identify the malicious or unreliable service nodes in the system. In addition, this can be used to promote the service reliability of the nodes with high credibility, by which the stability of the whole network is improved.

  4. An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology.

    Science.gov (United States)

    Deodhar, Suruchi; Bisset, Keith R; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V

    2014-07-01

    We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity.

  5. Computer-Aided Modeling Framework

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    Models are playing important roles in design and analysis of chemicals based products and the processes that manufacture them. Computer-aided methods and tools have the potential to reduce the number of experiments, which can be expensive and time consuming, and there is a benefit of working...... development and application. The proposed work is a part of the project for development of methods and tools that will allow systematic generation, analysis and solution of models for various objectives. It will use the computer-aided modeling framework that is based on a modeling methodology, which combines....... In this contribution, the concept of template-based modeling is presented and application is highlighted for the specific case of catalytic membrane fixed bed models. The modeling template is integrated in a generic computer-aided modeling framework. Furthermore, modeling templates enable the idea of model reuse...

  6. Towards computer-based perception by modeling visual perception : A probalistic theory

    NARCIS (Netherlands)

    Ciftcioglu, O.; Bittermann, M.; Sariyildiz, S.

    2006-01-01

    Studies on computer-based perception by vision modelling are described. The visual perception is mathematically modelled where the model receives and interprets visual data from the environment. The perception is defined in probabilistic terms so that it is in the same way quantified. Human visual

  7. A Model-based Framework for Risk Assessment in Human-Computer Controlled Systems

    Science.gov (United States)

    Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems. This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions. Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  8. An u-Service Model Based on a Smart Phone for Urban Computing Environments

    Science.gov (United States)

    Cho, Yongyun; Yoe, Hyun

    In urban computing environments, all of services should be based on the interaction between humans and environments around them, which frequently and ordinarily in home and office. This paper propose an u-service model based on a smart phone for urban computing environments. The suggested service model includes a context-aware and personalized service scenario development environment that can instantly describe user's u-service demand or situation information with smart devices. To do this, the architecture of the suggested service model consists of a graphical service editing environment for smart devices, an u-service platform, and an infrastructure with sensors and WSN/USN. The graphic editor expresses contexts as execution conditions of a new service through a context model based on ontology. The service platform deals with the service scenario according to contexts. With the suggested service model, an user in urban computing environments can quickly and easily make u-service or new service using smart devices.

  9. A Dynamic Object Behavior Model and Implementation Based on Computational Reflection

    Institute of Scientific and Technical Information of China (English)

    HE Cheng-wan; HE Fei; HE Ke-qing

    2005-01-01

    A dynamic object behavior model based on computational reflection is proposed. This model consists of function level and meta level, the meta objects in meta level manage the base objects and behaviors in function level, including dynamic binding and unbinding of base object and behavior.We implement this model with RoleJava Language, which is our self linguistic extension of the Java Language. Meta Objects are generated automatically at compile-time, this makes the reflecton mechanism transparent to programmers. Finally an example applying this model to a banking system is presented.

  10. Computational Model-Based Design of Leadership Support Based on Situational Leadership Theory

    NARCIS (Netherlands)

    Bosse, T.; Duell, R.; Memon, Z.A.; Treur, J.; van der Wal, C.N.

    2017-01-01

    This paper introduces the design of an agent-based leadership support system exploiting a computational model for development of individuals or groups. It is to be used, for example, as a basis for systems to support a group leader in the development of individual group members or a group as a

  11. Genre-adaptive Semantic Computing and Audio-based Modelling for Music Mood Annotation

    DEFF Research Database (Denmark)

    Saari, Pasi; Fazekas, György; Eerola, Tuomas

    2016-01-01

    This study investigates whether taking genre into account is beneficial for automatic music mood annotation in terms of core affects valence, arousal, and tension, as well as several other mood scales. Novel techniques employing genre-adaptive semantic computing and audio-based modelling are prop......This study investigates whether taking genre into account is beneficial for automatic music mood annotation in terms of core affects valence, arousal, and tension, as well as several other mood scales. Novel techniques employing genre-adaptive semantic computing and audio-based modelling...... related to a set of 600 popular music tracks spanning multiple genres. The results show that ACTwg outperforms a semantic computing technique that does not exploit genre information, and ACTwg-SLPwg outperforms conventional techniques and other genre-adaptive alternatives. In particular, improvements......-based genre representation for genre-adaptive music mood analysis....

  12. Can Dictionary-based Computational Models Outperform the Best Linear Ones?

    Czech Academy of Sciences Publication Activity Database

    Gnecco, G.; Kůrková, Věra; Sanguineti, M.

    2011-01-01

    Roč. 24, č. 8 (2011), s. 881-887 ISSN 0893-6080 R&D Project s: GA MŠk OC10047 Grant - others:CNR - AV ČR project 2010-2012(XE) Complexity of Neural-Network and Kernel Computational Models Institutional research plan: CEZ:AV0Z10300504 Keywords : dictionary-based approximation * linear approximation * rates of approximation * worst-case error * Kolmogorov width * perceptron networks Subject RIV: IN - Informatics, Computer Science Impact factor: 2.182, year: 2011

  13. Learning-based computing techniques in geoid modeling for precise height transformation

    Science.gov (United States)

    Erol, B.; Erol, S.

    2013-03-01

    Precise determination of local geoid is of particular importance for establishing height control in geodetic GNSS applications, since the classical leveling technique is too laborious. A geoid model can be accurately obtained employing properly distributed benchmarks having GNSS and leveling observations using an appropriate computing algorithm. Besides the classical multivariable polynomial regression equations (MPRE), this study attempts an evaluation of learning based computing algorithms: artificial neural networks (ANNs), adaptive network-based fuzzy inference system (ANFIS) and especially the wavelet neural networks (WNNs) approach in geoid surface approximation. These algorithms were developed parallel to advances in computer technologies and recently have been used for solving complex nonlinear problems of many applications. However, they are rather new in dealing with precise modeling problem of the Earth gravity field. In the scope of the study, these methods were applied to Istanbul GPS Triangulation Network data. The performances of the methods were assessed considering the validation results of the geoid models at the observation points. In conclusion the ANFIS and WNN revealed higher prediction accuracies compared to ANN and MPRE methods. Beside the prediction capabilities, these methods were also compared and discussed from the practical point of view in conclusions.

  14. Analysis and Research on Spatial Data Storage Model Based on Cloud Computing Platform

    Science.gov (United States)

    Hu, Yong

    2017-12-01

    In this paper, the data processing and storage characteristics of cloud computing are analyzed and studied. On this basis, a cloud computing data storage model based on BP neural network is proposed. In this data storage model, it can carry out the choice of server cluster according to the different attributes of the data, so as to complete the spatial data storage model with load balancing function, and have certain feasibility and application advantages.

  15. Trust Models in Ubiquitous Computing

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Krukow, Karl; Sassone, Vladimiro

    2008-01-01

    We recapture some of the arguments for trust-based technologies in ubiquitous computing, followed by a brief survey of some of the models of trust that have been introduced in this respect. Based on this, we argue for the need of more formal and foundational trust models.......We recapture some of the arguments for trust-based technologies in ubiquitous computing, followed by a brief survey of some of the models of trust that have been introduced in this respect. Based on this, we argue for the need of more formal and foundational trust models....

  16. The CMS Computing Model

    International Nuclear Information System (INIS)

    Bonacorsi, D.

    2007-01-01

    The CMS experiment at LHC has developed a baseline Computing Model addressing the needs of a computing system capable to operate in the first years of LHC running. It is focused on a data model with heavy streaming at the raw data level based on trigger, and on the achievement of the maximum flexibility in the use of distributed computing resources. The CMS distributed Computing Model includes a Tier-0 centre at CERN, a CMS Analysis Facility at CERN, several Tier-1 centres located at large regional computing centres, and many Tier-2 centres worldwide. The workflows have been identified, along with a baseline architecture for the data management infrastructure. This model is also being tested in Grid Service Challenges of increasing complexity, coordinated with the Worldwide LHC Computing Grid community

  17. Impact of implementation choices on quantitative predictions of cell-based computational models

    Science.gov (United States)

    Kursawe, Jochen; Baker, Ruth E.; Fletcher, Alexander G.

    2017-09-01

    'Cell-based' models provide a powerful computational tool for studying the mechanisms underlying the growth and dynamics of biological tissues in health and disease. An increasing amount of quantitative data with cellular resolution has paved the way for the quantitative parameterisation and validation of such models. However, the numerical implementation of cell-based models remains challenging, and little work has been done to understand to what extent implementation choices may influence model predictions. Here, we consider the numerical implementation of a popular class of cell-based models called vertex models, which are often used to study epithelial tissues. In two-dimensional vertex models, a tissue is approximated as a tessellation of polygons and the vertices of these polygons move due to mechanical forces originating from the cells. Such models have been used extensively to study the mechanical regulation of tissue topology in the literature. Here, we analyse how the model predictions may be affected by numerical parameters, such as the size of the time step, and non-physical model parameters, such as length thresholds for cell rearrangement. We find that vertex positions and summary statistics are sensitive to several of these implementation parameters. For example, the predicted tissue size decreases with decreasing cell cycle durations, and cell rearrangement may be suppressed by large time steps. These findings are counter-intuitive and illustrate that model predictions need to be thoroughly analysed and implementation details carefully considered when applying cell-based computational models in a quantitative setting.

  18. Knowledge-based computer security advisor

    International Nuclear Information System (INIS)

    Hunteman, W.J.; Squire, M.B.

    1991-01-01

    The rapid expansion of computer security information and technology has included little support to help the security officer identify the safeguards needed to comply with a policy and to secure a computing system. This paper reports that Los Alamos is developing a knowledge-based computer security system to provide expert knowledge to the security officer. This system includes a model for expressing the complex requirements in computer security policy statements. The model is part of an expert system that allows a security officer to describe a computer system and then determine compliance with the policy. The model contains a generic representation that contains network relationships among the policy concepts to support inferencing based on information represented in the generic policy description

  19. A Model of Computation for Bit-Level Concurrent Computing and Programming: APEC

    Science.gov (United States)

    Ajiro, Takashi; Tsuchida, Kensei

    A concurrent model of computation and a language based on the model for bit-level operation are useful for developing asynchronous and concurrent programs compositionally, which frequently use bit-level operations. Some examples are programs for video games, hardware emulation (including virtual machines), and signal processing. However, few models and languages are optimized and oriented to bit-level concurrent computation. We previously developed a visual programming language called A-BITS for bit-level concurrent programming. The language is based on a dataflow-like model that computes using processes that provide serial bit-level operations and FIFO buffers connected to them. It can express bit-level computation naturally and develop compositionally. We then devised a concurrent computation model called APEC (Asynchronous Program Elements Connection) for bit-level concurrent computation. This model enables precise and formal expression of the process of computation, and a notion of primitive program elements for controlling and operating can be expressed synthetically. Specifically, the model is based on a notion of uniform primitive processes, called primitives, that have three terminals and four ordered rules at most, as well as on bidirectional communication using vehicles called carriers. A new notion is that a carrier moving between two terminals can briefly express some kinds of computation such as synchronization and bidirectional communication. The model's properties make it most applicable to bit-level computation compositionally, since the uniform computation elements are enough to develop components that have practical functionality. Through future application of the model, our research may enable further research on a base model of fine-grain parallel computer architecture, since the model is suitable for expressing massive concurrency by a network of primitives.

  20. A computer-aided framework for development, identification andmanagement of physiologically-based pharmacokinetic models

    DEFF Research Database (Denmark)

    Heitzig, Martina; Linninger, Andreas; Sin, Gürkan

    2014-01-01

    The objective of this work is the development of a generic computer-aided modelling framework to support the development of physiologically-based pharmacokinetic models thereby increasing the efficiency and quality of the modelling process. In particular, the framework systematizes the modelling...

  1. A border-ownership model based on computational electromagnetism.

    Science.gov (United States)

    Zainal, Zaem Arif; Satoh, Shunji

    2018-03-01

    The mathematical relation between a vector electric field and its corresponding scalar potential field is useful to formulate computational problems of lower/middle-order visual processing, specifically related to the assignment of borders to the side of the object: so-called border ownership (BO). BO coding is a key process for extracting the objects from the background, allowing one to organize a cluttered scene. We propose that the problem is solvable simultaneously by application of a theorem of electromagnetism, i.e., "conservative vector fields have zero rotation, or "curl." We hypothesize that (i) the BO signal is definable as a vector electric field with arrowheads pointing to the inner side of perceived objects, and (ii) its corresponding scalar field carries information related to perceived order in depth of occluding/occluded objects. A simple model was developed based on this computational theory. Model results qualitatively agree with object-side selectivity of BO-coding neurons, and with perceptions of object order. The model update rule can be reproduced as a plausible neural network that presents new interpretations of existing physiological results. Results of this study also suggest that T-junction detectors are unnecessary to calculate depth order. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Computational models of neuromodulation.

    Science.gov (United States)

    Fellous, J M; Linster, C

    1998-05-15

    Computational modeling of neural substrates provides an excellent theoretical framework for the understanding of the computational roles of neuromodulation. In this review, we illustrate, with a large number of modeling studies, the specific computations performed by neuromodulation in the context of various neural models of invertebrate and vertebrate preparations. We base our characterization of neuromodulations on their computational and functional roles rather than on anatomical or chemical criteria. We review the main framework in which neuromodulation has been studied theoretically (central pattern generation and oscillations, sensory processing, memory and information integration). Finally, we present a detailed mathematical overview of how neuromodulation has been implemented at the single cell and network levels in modeling studies. Overall, neuromodulation is found to increase and control computational complexity.

  3. Mechatronic Model Based Computed Torque Control of a Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2008-11-01

    Full Text Available With high speed and accuracy the parallel manipulators have wide application in the industry, but there still exist many difficulties in the actual control process because of the time-varying and coupling. Unfortunately, the present-day commercial controlles cannot provide satisfying performance for its single axis linear control only. Therefore, aimed at a novel 2-DOF (Degree of Freedom parallel manipulator called Diamond 600, a motor-mechanism coupling dynamic model based control scheme employing the computed torque control algorithm are presented in this paper. First, the integrated dynamic coupling model is deduced, according to equivalent torques between the mechanical structure and the PM (Permanent Magnetism servomotor. Second, computed torque controller is described in detail for the above proposed model. At last, a series of numerical simulations and experiments are carried out to test the effectiveness of the system, and the results verify the favourable tracking ability and robustness.

  4. Mechatronic Model Based Computed Torque Control of a Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2008-03-01

    Full Text Available With high speed and accuracy the parallel manipulators have wide application in the industry, but there still exist many difficulties in the actual control process because of the time-varying and coupling. Unfortunately, the present-day commercial controlles cannot provide satisfying performance for its single axis linear control only. Therefore, aimed at a novel 2-DOF (Degree of Freedom parallel manipulator called Diamond 600, a motor-mechanism coupling dynamic model based control scheme employing the computed torque control algorithm are presented in this paper. First, the integrated dynamic coupling model is deduced, according to equivalent torques between the mechanical structure and the PM (Permanent Magnetism servomotor. Second, computed torque controller is described in detail for the above proposed model. At last, a series of numerical simulations and experiments are carried out to test the effectiveness of the system, and the results verify the favourable tracking ability and robustness.

  5. Research on application of intelligent computation based LUCC model in urbanization process

    Science.gov (United States)

    Chen, Zemin

    2007-06-01

    Global change study is an interdisciplinary and comprehensive research activity with international cooperation, arising in 1980s, with the largest scopes. The interaction between land use and cover change, as a research field with the crossing of natural science and social science, has become one of core subjects of global change study as well as the front edge and hot point of it. It is necessary to develop research on land use and cover change in urbanization process and build an analog model of urbanization to carry out description, simulation and analysis on dynamic behaviors in urban development change as well as to understand basic characteristics and rules of urbanization process. This has positive practical and theoretical significance for formulating urban and regional sustainable development strategy. The effect of urbanization on land use and cover change is mainly embodied in the change of quantity structure and space structure of urban space, and LUCC model in urbanization process has been an important research subject of urban geography and urban planning. In this paper, based upon previous research achievements, the writer systematically analyzes the research on land use/cover change in urbanization process with the theories of complexity science research and intelligent computation; builds a model for simulating and forecasting dynamic evolution of urban land use and cover change, on the basis of cellular automation model of complexity science research method and multi-agent theory; expands Markov model, traditional CA model and Agent model, introduces complexity science research theory and intelligent computation theory into LUCC research model to build intelligent computation-based LUCC model for analog research on land use and cover change in urbanization research, and performs case research. The concrete contents are as follows: 1. Complexity of LUCC research in urbanization process. Analyze urbanization process in combination with the contents

  6. Improving Computational Efficiency of Prediction in Model-Based Prognostics Using the Unscented Transform

    Science.gov (United States)

    Daigle, Matthew John; Goebel, Kai Frank

    2010-01-01

    Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.

  7. A spread willingness computing-based information dissemination model.

    Science.gov (United States)

    Huang, Haojing; Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network.

  8. Model of Procedure Usage – Results from a Qualitative Study to Inform Design of Computer-Based Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Johanna H Oxstrand; Katya L Le Blanc

    2012-07-01

    The nuclear industry is constantly trying to find ways to decrease the human error rate, especially the human errors associated with procedure use. As a step toward the goal of improving procedure use performance, researchers, together with the nuclear industry, have been looking at replacing the current paper-based procedures with computer-based procedure systems. The concept of computer-based procedures is not new by any means; however most research has focused on procedures used in the main control room. Procedures reviewed in these efforts are mainly emergency operating procedures and normal operating procedures. Based on lessons learned for these previous efforts we are now exploring a more unknown application for computer based procedures - field procedures, i.e. procedures used by nuclear equipment operators and maintenance technicians. The Idaho National Laboratory, the Institute for Energy Technology, and participants from the U.S. commercial nuclear industry are collaborating in an applied research effort with the objective of developing requirements and specifications for a computer-based procedure system to be used by field operators. The goal is to identify the types of human errors that can be mitigated by using computer-based procedures and how to best design the computer-based procedures to do this. The underlying philosophy in the research effort is “Stop – Start – Continue”, i.e. what features from the use of paper-based procedures should we not incorporate (Stop), what should we keep (Continue), and what new features or work processes should be added (Start). One step in identifying the Stop – Start – Continue was to conduct a baseline study where affordances related to the current usage of paper-based procedures were identified. The purpose of the study was to develop a model of paper based procedure use which will help to identify desirable features for computer based procedure prototypes. Affordances such as note taking, markups

  9. Model-based computer-aided design for controlled release of pesticides

    DEFF Research Database (Denmark)

    Muro Sunè, Nuria; Gani, Rafiqul; Bell, G.

    2005-01-01

    In the field of controlled release technology for pesticides or active ingredients (AI), models that can predict its delivery during application are important for purposes of design and marketing of the pesticide product. Appropriate models for the controlled release of pesticides, if available, ...... extended models have been developed and implemented into a computer-aided system. The total model consisting of the property models embedded into the release models are then employed to study the release of different combinations of AIs and polymer-based microcapsules.......In the field of controlled release technology for pesticides or active ingredients (AI), models that can predict its delivery during application are important for purposes of design and marketing of the pesticide product. Appropriate models for the controlled release of pesticides, if available...

  10. A web-based, collaborative modeling, simulation, and parallel computing environment for electromechanical systems

    Directory of Open Access Journals (Sweden)

    Xiaoliang Yin

    2015-03-01

    Full Text Available Complex electromechanical system is usually composed of multiple components from different domains, including mechanical, electronic, hydraulic, control, and so on. Modeling and simulation for electromechanical system on a unified platform is one of the research hotspots in system engineering at present. It is also the development trend of the design for complex electromechanical system. The unified modeling techniques and tools based on Modelica language provide a satisfactory solution. To meet with the requirements of collaborative modeling, simulation, and parallel computing for complex electromechanical systems based on Modelica, a general web-based modeling and simulation prototype environment, namely, WebMWorks, is designed and implemented. Based on the rich Internet application technologies, an interactive graphic user interface for modeling and post-processing on web browser was implemented; with the collaborative design module, the environment supports top-down, concurrent modeling and team cooperation; additionally, service-oriented architecture–based architecture was applied to supply compiling and solving services which run on cloud-like servers, so the environment can manage and dispatch large-scale simulation tasks in parallel on multiple computing servers simultaneously. An engineering application about pure electric vehicle is tested on WebMWorks. The results of simulation and parametric experiment demonstrate that the tested web-based environment can effectively shorten the design cycle of the complex electromechanical system.

  11. Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models

    Science.gov (United States)

    Dickes, Amanda Catherine; Sengupta, Pratim

    2013-01-01

    In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…

  12. Agent-Based Computational Modeling of Cell Culture ...

    Science.gov (United States)

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assumed a “fried egg shape” but became increasingly cuboidal with increasing confluency. The surface area presented by each cell to the overlying medium varies from cell-to-cell and is a determinant of diffusional flux of toxicant from the medium into the cell. Thus, dose varies among cells for a given concentration of toxicant in the medium. Computer code describing diffusion of H2O2 from medium into each cell and clearance of H2O2 was calibrated against H2O2 time-course data (25, 50, or 75 uM H2O2 for 60 min) obtained with the Amplex Red assay for the medium and the H2O2-sensitive fluorescent reporter, HyPer, for cytosol. Cellular H2O2 concentrations peaked at about 5 min and were near baseline by 10 min. The model predicted a skewed distribution of surface areas, with between cell variation usually 2 fold or less. Predicted variability in cellular dose was in rough agreement with the variation in the HyPer data. These results are preliminary, as the model was not calibrated to the morphology of a specific cell type. Future work will involve morphology model calibration against human bronchial epithelial (BEAS-2B) cells. Our results show, however, the potential of agent-based modeling

  13. A Spread Willingness Computing-Based Information Dissemination Model

    Science.gov (United States)

    Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network. PMID:25110738

  14. A Spread Willingness Computing-Based Information Dissemination Model

    Directory of Open Access Journals (Sweden)

    Haojing Huang

    2014-01-01

    Full Text Available This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user’s spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network.

  15. Constructing a Computer Model of the Human Eye Based on Tissue Slice Images

    OpenAIRE

    Dai, Peishan; Wang, Boliang; Bao, Chunbo; Ju, Ying

    2010-01-01

    Computer simulation of the biomechanical and biological heat transfer in ophthalmology greatly relies on having a reliable computer model of the human eye. This paper proposes a novel method on the construction of a geometric model of the human eye based on tissue slice images. Slice images were obtained from an in vitro Chinese human eye through an embryo specimen processing methods. A level set algorithm was used to extract contour points of eye tissues while a principle component analysi...

  16. Multi-binding site model-based curve-fitting program for the computation of RIA data

    International Nuclear Information System (INIS)

    Malan, P.G.; Ekins, R.P.; Cox, M.G.; Long, E.M.R.

    1977-01-01

    In this paper, a comparison will be made of model-based and empirical curve-fitting procedures. The implementation of a multiple binding-site curve-fitting model which will successfully fit a wide range of assay data, and which can be run on a mini-computer is described. The latter sophisticated model also provides estimates of binding site concentrations and the values of the respective equilibrium constants present: the latter have been used for refining assay conditions using computer optimisation techniques. (orig./AJ) [de

  17. A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J. D. (Prostat, Mesa, AZ); Oberkampf, William Louis; Helton, Jon Craig (Arizona State University, Tempe, AZ); Storlie, Curtis B. (North Carolina State University, Raleigh, NC)

    2006-10-01

    Evidence theory provides an alternative to probability theory for the representation of epistemic uncertainty in model predictions that derives from epistemic uncertainty in model inputs, where the descriptor epistemic is used to indicate uncertainty that derives from a lack of knowledge with respect to the appropriate values to use for various inputs to the model. The potential benefit, and hence appeal, of evidence theory is that it allows a less restrictive specification of uncertainty than is possible within the axiomatic structure on which probability theory is based. Unfortunately, the propagation of an evidence theory representation for uncertainty through a model is more computationally demanding than the propagation of a probabilistic representation for uncertainty, with this difficulty constituting a serious obstacle to the use of evidence theory in the representation of uncertainty in predictions obtained from computationally intensive models. This presentation describes and illustrates a sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory. Preliminary trials indicate that the presented strategy can be used to propagate uncertainty representations based on evidence theory in analysis situations where naive sampling-based (i.e., unsophisticated Monte Carlo) procedures are impracticable due to computational cost.

  18. Identity-Based Authentication for Cloud Computing

    Science.gov (United States)

    Li, Hongwei; Dai, Yuanshun; Tian, Ling; Yang, Haomiao

    Cloud computing is a recently developed new technology for complex systems with massive-scale services sharing among numerous users. Therefore, authentication of both users and services is a significant issue for the trust and security of the cloud computing. SSL Authentication Protocol (SAP), once applied in cloud computing, will become so complicated that users will undergo a heavily loaded point both in computation and communication. This paper, based on the identity-based hierarchical model for cloud computing (IBHMCC) and its corresponding encryption and signature schemes, presented a new identity-based authentication protocol for cloud computing and services. Through simulation testing, it is shown that the authentication protocol is more lightweight and efficient than SAP, specially the more lightweight user side. Such merit of our model with great scalability is very suited to the massive-scale cloud.

  19. A Web-based Distributed Voluntary Computing Platform for Large Scale Hydrological Computations

    Science.gov (United States)

    Demir, I.; Agliamzanov, R.

    2014-12-01

    Distributed volunteer computing can enable researchers and scientist to form large parallel computing environments to utilize the computing power of the millions of computers on the Internet, and use them towards running large scale environmental simulations and models to serve the common good of local communities and the world. Recent developments in web technologies and standards allow client-side scripting languages to run at speeds close to native application, and utilize the power of Graphics Processing Units (GPU). Using a client-side scripting language like JavaScript, we have developed an open distributed computing framework that makes it easy for researchers to write their own hydrologic models, and run them on volunteer computers. Users will easily enable their websites for visitors to volunteer sharing their computer resources to contribute running advanced hydrological models and simulations. Using a web-based system allows users to start volunteering their computational resources within seconds without installing any software. The framework distributes the model simulation to thousands of nodes in small spatial and computational sizes. A relational database system is utilized for managing data connections and queue management for the distributed computing nodes. In this paper, we present a web-based distributed volunteer computing platform to enable large scale hydrological simulations and model runs in an open and integrated environment.

  20. A novel computer based expert decision making model for prostate cancer disease management.

    Science.gov (United States)

    Richman, Martin B; Forman, Ernest H; Bayazit, Yildirim; Einstein, Douglas B; Resnick, Martin I; Stovsky, Mark D

    2005-12-01

    We propose a strategic, computer based, prostate cancer decision making model based on the analytic hierarchy process. We developed a model that improves physician-patient joint decision making and enhances the treatment selection process by making this critical decision rational and evidence based. Two groups (patient and physician-expert) completed a clinical study comparing an initial disease management choice with the highest ranked option generated by the computer model. Participants made pairwise comparisons to derive priorities for the objectives and subobjectives related to the disease management decision. The weighted comparisons were then applied to treatment options to yield prioritized rank lists that reflect the likelihood that a given alternative will achieve the participant treatment goal. Aggregate data were evaluated by inconsistency ratio analysis and sensitivity analysis, which assessed the influence of individual objectives and subobjectives on the final rank list of treatment options. Inconsistency ratios less than 0.05 were reliably generated, indicating that judgments made within the model were mathematically rational. The aggregate prioritized list of treatment options was tabulated for the patient and physician groups with similar outcomes for the 2 groups. Analysis of the major defining objectives in the treatment selection decision demonstrated the same rank order for the patient and physician groups with cure, survival and quality of life being more important than controlling cancer, preventing major complications of treatment, preventing blood transfusion complications and limiting treatment cost. Analysis of subobjectives, including quality of life and sexual dysfunction, produced similar priority rankings for the patient and physician groups. Concordance between initial treatment choice and the highest weighted model option differed between the groups with the patient group having 59% concordance and the physician group having only 42

  1. Computer Support of Groups: Theory-Based Models for GDSS Research

    OpenAIRE

    V. Srinivasan Rao; Sirkka L. Jarvenpaa

    1991-01-01

    Empirical research in the area of computer support of groups is characterized by inconsistent results across studies. This paper attempts to reconcile the inconsistencies by linking the ad hoc reasoning in the studies to existing theories of communication, minority influence and human information processing. Contingency models are then presented based on the theories discussed. The paper concludes by discussing the linkages between the current work and other recently published integrations of...

  2. Full 3-D OCT-based pseudophakic custom computer eye model

    Science.gov (United States)

    Sun, M.; Pérez-Merino, P.; Martinez-Enriquez, E.; Velasco-Ocana, M.; Marcos, S.

    2016-01-01

    We compared measured wave aberrations in pseudophakic eyes implanted with aspheric intraocular lenses (IOLs) with simulated aberrations from numerical ray tracing on customized computer eye models, built using quantitative 3-D OCT-based patient-specific ocular geometry. Experimental and simulated aberrations show high correlation (R = 0.93; poptical geometrical and surgically-related factors to image quality, and are an excellent tool for characterizing and improving cataract surgery. PMID:27231608

  3. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  4. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

    Science.gov (United States)

    Lee, Young-Jin

    2017-01-01

    Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

  5. Computer - based modeling in extract sciences research -III ...

    African Journals Online (AJOL)

    Molecular modeling techniques have been of great applicability in the study of the biological sciences and other exact science fields like agriculture, mathematics, computer science and the like. In this write up, a list of computer programs for predicting, for instance, the structure of proteins has been provided. Discussions on ...

  6. Epistemic Gameplay and Discovery in Computational Model-Based Inquiry Activities

    Science.gov (United States)

    Wilkerson, Michelle Hoda; Shareff, Rebecca; Laina, Vasiliki; Gravel, Brian

    2018-01-01

    In computational modeling activities, learners are expected to discover the inner workings of scientific and mathematical systems: First elaborating their understandings of a given system through constructing a computer model, then "debugging" that knowledge by testing and refining the model. While such activities have been shown to…

  7. An agent-based computational model of the spread of tuberculosis

    International Nuclear Information System (INIS)

    De Espíndola, Aquino L; Bauch, Chris T; Troca Cabella, Brenno C; Martinez, Alexandre Souto

    2011-01-01

    In this work we propose an alternative model of the spread of tuberculosis (TB) and the emergence of drug resistance due to the treatment with antibiotics. We implement the simulations by an agent-based model computational approach where the spatial structure is taken into account. The spread of tuberculosis occurs according to probabilities defined by the interactions among individuals. The model was validated by reproducing results already known from the literature in which different treatment regimes yield the emergence of drug resistance. The different patterns of TB spread can be visualized at any time of the system evolution. The implementation details as well as some results of this alternative approach are discussed

  8. Computational electromagnetics and model-based inversion a modern paradigm for eddy-current nondestructive evaluation

    CERN Document Server

    Sabbagh, Harold A; Sabbagh, Elias H; Aldrin, John C; Knopp, Jeremy S

    2013-01-01

    Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy Current Nondestructive Evaluation describes the natural marriage of the computer to eddy-current NDE. Three distinct topics are emphasized in the book: (a) fundamental mathematical principles of volume-integral equations as a subset of computational electromagnetics, (b) mathematical algorithms applied to signal-processing and inverse scattering problems, and (c) applications of these two topics to problems in which real and model data are used. By showing how mathematics and the computer can solve problems more effectively than current analog practices, this book defines the modern technology of eddy-current NDE. This book will be useful to advanced students and practitioners in the fields of computational electromagnetics, electromagnetic inverse-scattering theory, nondestructive evaluation, materials evaluation and biomedical imaging. Users of eddy-current NDE technology in industries as varied as nuclear power, aerospace,...

  9. Generation of three-dimensional prototype models based on cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, J.T.; Berndt, D.C.; Zehnder, M. [University of Basel, Department of Oral Surgery, University Hospital for Oral Surgery, Oral Radiology and Oral Medicine, Basel (Switzerland); Schumacher, R. [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Medical and Analytical Technologies, Muttenz (Switzerland)

    2009-03-15

    The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)

  10. Generation of three-dimensional prototype models based on cone beam computed tomography

    International Nuclear Information System (INIS)

    Lambrecht, J.T.; Berndt, D.C.; Zehnder, M.; Schumacher, R.

    2009-01-01

    The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)

  11. A Trust-Based Model for Security Cooperating in Vehicular Cloud Computing

    Directory of Open Access Journals (Sweden)

    Zhipeng Tang

    2016-01-01

    Full Text Available VCC is a computing paradigm which consists of vehicles cooperating with each other to realize a lot of practical applications, such as delivering packages. Security cooperation is a fundamental research topic in Vehicular Cloud Computing (VCC. Because of the existence of malicious vehicles, the security cooperation has become a challenging issue in VCC. In this paper, a trust-based model for security cooperating, named DBTEC, is proposed to promote vehicles’ security cooperation in VCC. DBTEC combines the indirect trust estimation in Public board and the direct trust estimation in Private board to compute the trust value of vehicles when choosing cooperative partners; a trustworthy cooperation path generating scheme is proposed to ensure the safety of cooperation and increase the cooperation completion rates in VCC. Extensive experiments show that our scheme improves the overall cooperation completion rates by 6~7%.

  12. Process-Based Development of Competence Models to Computer Science Education

    Science.gov (United States)

    Zendler, Andreas; Seitz, Cornelia; Klaudt, Dieter

    2016-01-01

    A process model ("cpm.4.CSE") is introduced that allows the development of competence models in computer science education related to curricular requirements. It includes eight subprocesses: (a) determine competence concept, (b) determine competence areas, (c) identify computer science concepts, (d) assign competence dimensions to…

  13. DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maiden, Wendy M. [Washington State Univ., Pullman, WA (United States)

    2010-05-01

    Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.

  14. Programming Non-Trivial Algorithms in the Measurement Based Quantum Computation Model

    Energy Technology Data Exchange (ETDEWEB)

    Alsing, Paul [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Fanto, Michael [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Lott, Capt. Gordon [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Tison, Christoper C. [United States Air Force Research Laboratory, Wright-Patterson Air Force Base

    2014-01-01

    We provide a set of prescriptions for implementing a quantum circuit model algorithm as measurement based quantum computing (MBQC) algorithm1, 2 via a large cluster state. As means of illustration we draw upon our numerical modeling experience to describe a large graph state capable of searching a logical 8 element list (a non-trivial version of Grover's algorithm3 with feedforward). We develop several prescriptions based on analytic evaluation of cluster states and graph state equations which can be generalized into any circuit model operations. Such a resulting cluster state will be able to carry out the desired operation with appropriate measurements and feed forward error correction. We also discuss the physical implementation and the analysis of the principal 3-qubit entangling gate (Toffoli) required for a non-trivial feedforward realization of an 8-element Grover search algorithm.

  15. Computationally Modeling Interpersonal Trust

    Directory of Open Access Journals (Sweden)

    Jin Joo eLee

    2013-12-01

    Full Text Available We present a computational model capable of predicting—above human accuracy—the degree of trust a person has toward their novel partner by observing the trust-related nonverbal cues expressed in their social interaction. We summarize our prior work, in which we identify nonverbal cues that signal untrustworthy behavior and also demonstrate the human mind’s readiness to interpret those cues to assess the trustworthiness of a social robot. We demonstrate that domain knowledge gained from our prior work using human-subjects experiments, when incorporated into the feature engineering process, permits a computational model to outperform both human predictions and a baseline model built in naivete' of this domain knowledge. We then present the construction of hidden Markov models to incorporate temporal relationships among the trust-related nonverbal cues. By interpreting the resulting learned structure, we observe that models built to emulate different levels of trust exhibit different sequences of nonverbal cues. From this observation, we derived sequence-based temporal features that further improve the accuracy of our computational model. Our multi-step research process presented in this paper combines the strength of experimental manipulation and machine learning to not only design a computational trust model but also to further our understanding of the dynamics of interpersonal trust.

  16. Trust models in ubiquitous computing.

    Science.gov (United States)

    Krukow, Karl; Nielsen, Mogens; Sassone, Vladimiro

    2008-10-28

    We recapture some of the arguments for trust-based technologies in ubiquitous computing, followed by a brief survey of some of the models of trust that have been introduced in this respect. Based on this, we argue for the need of more formal and foundational trust models.

  17. Computational Modeling of Cobalt-based Water Oxidation: Current Status and Future Challenges

    Science.gov (United States)

    Schilling, Mauro; Luber, Sandra

    2018-04-01

    A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysis. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability towards real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.

  18. Computational Modeling of Cobalt-Based Water Oxidation: Current Status and Future Challenges

    Directory of Open Access Journals (Sweden)

    Mauro Schilling

    2018-04-01

    Full Text Available A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context, mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysts. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability toward real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.

  19. Novel Schemes for Measurement-Based Quantum Computation

    International Nuclear Information System (INIS)

    Gross, D.; Eisert, J.

    2007-01-01

    We establish a framework which allows one to construct novel schemes for measurement-based quantum computation. The technique develops tools from many-body physics--based on finitely correlated or projected entangled pair states--to go beyond the cluster-state based one-way computer. We identify resource states radically different from the cluster state, in that they exhibit nonvanishing correlations, can be prepared using nonmaximally entangling gates, or have very different local entanglement properties. In the computational models, randomness is compensated in a different manner. It is shown that there exist resource states which are locally arbitrarily close to a pure state. We comment on the possibility of tailoring computational models to specific physical systems

  20. Novel schemes for measurement-based quantum computation.

    Science.gov (United States)

    Gross, D; Eisert, J

    2007-06-01

    We establish a framework which allows one to construct novel schemes for measurement-based quantum computation. The technique develops tools from many-body physics-based on finitely correlated or projected entangled pair states-to go beyond the cluster-state based one-way computer. We identify resource states radically different from the cluster state, in that they exhibit nonvanishing correlations, can be prepared using nonmaximally entangling gates, or have very different local entanglement properties. In the computational models, randomness is compensated in a different manner. It is shown that there exist resource states which are locally arbitrarily close to a pure state. We comment on the possibility of tailoring computational models to specific physical systems.

  1. Modeling Computer Virus and Its Dynamics

    Directory of Open Access Journals (Sweden)

    Mei Peng

    2013-01-01

    Full Text Available Based on that the computer will be infected by infected computer and exposed computer, and some of the computers which are in suscepitible status and exposed status can get immunity by antivirus ability, a novel coumputer virus model is established. The dynamic behaviors of this model are investigated. First, the basic reproduction number R0, which is a threshold of the computer virus spreading in internet, is determined. Second, this model has a virus-free equilibrium P0, which means that the infected part of the computer disappears, and the virus dies out, and P0 is a globally asymptotically stable equilibrium if R01 then this model has only one viral equilibrium P*, which means that the computer persists at a constant endemic level, and P* is also globally asymptotically stable. Finally, some numerical examples are given to demonstrate the analytical results.

  2. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach.

    Directory of Open Access Journals (Sweden)

    Samreen Laghari

    Full Text Available Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT implies an inherent difficulty in modeling problems.It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS. The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC framework to model a Complex communication network problem.We use Exploratory Agent-based Modeling (EABM, as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy.The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.

  3. Modeling the Internet of Things, Self-Organizing and Other Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing Approach.

    Science.gov (United States)

    Laghari, Samreen; Niazi, Muaz A

    2016-01-01

    Computer Networks have a tendency to grow at an unprecedented scale. Modern networks involve not only computers but also a wide variety of other interconnected devices ranging from mobile phones to other household items fitted with sensors. This vision of the "Internet of Things" (IoT) implies an inherent difficulty in modeling problems. It is practically impossible to implement and test all scenarios for large-scale and complex adaptive communication networks as part of Complex Adaptive Communication Networks and Environments (CACOONS). The goal of this study is to explore the use of Agent-based Modeling as part of the Cognitive Agent-based Computing (CABC) framework to model a Complex communication network problem. We use Exploratory Agent-based Modeling (EABM), as part of the CABC framework, to develop an autonomous multi-agent architecture for managing carbon footprint in a corporate network. To evaluate the application of complexity in practical scenarios, we have also introduced a company-defined computer usage policy. The conducted experiments demonstrated two important results: Primarily CABC-based modeling approach such as using Agent-based Modeling can be an effective approach to modeling complex problems in the domain of IoT. Secondly, the specific problem of managing the Carbon footprint can be solved using a multiagent system approach.

  4. Applying a Global Sensitivity Analysis Workflow to Improve the Computational Efficiencies in Physiologically-Based Pharmacokinetic Modeling

    Directory of Open Access Journals (Sweden)

    Nan-Hung Hsieh

    2018-06-01

    Full Text Available Traditionally, the solution to reduce parameter dimensionality in a physiologically-based pharmacokinetic (PBPK model is through expert judgment. However, this approach may lead to bias in parameter estimates and model predictions if important parameters are fixed at uncertain or inappropriate values. The purpose of this study was to explore the application of global sensitivity analysis (GSA to ascertain which parameters in the PBPK model are non-influential, and therefore can be assigned fixed values in Bayesian parameter estimation with minimal bias. We compared the elementary effect-based Morris method and three variance-based Sobol indices in their ability to distinguish “influential” parameters to be estimated and “non-influential” parameters to be fixed. We illustrated this approach using a published human PBPK model for acetaminophen (APAP and its two primary metabolites APAP-glucuronide and APAP-sulfate. We first applied GSA to the original published model, comparing Bayesian model calibration results using all the 21 originally calibrated model parameters (OMP, determined by “expert judgment”-based approach vs. the subset of original influential parameters (OIP, determined by GSA from the OMP. We then applied GSA to all the PBPK parameters, including those fixed in the published model, comparing the model calibration results using this full set of 58 model parameters (FMP vs. the full set influential parameters (FIP, determined by GSA from FMP. We also examined the impact of different cut-off points to distinguish the influential and non-influential parameters. We found that Sobol indices calculated by eFAST provided the best combination of reliability (consistency with other variance-based methods and efficiency (lowest computational cost to achieve convergence in identifying influential parameters. We identified several originally calibrated parameters that were not influential, and could be fixed to improve computational

  5. Mapping the Most Significant Computer Hacking Events to a Temporal Computer Attack Model

    OpenAIRE

    Heerden , Renier ,; Pieterse , Heloise; Irwin , Barry

    2012-01-01

    Part 4: Section 3: ICT for Peace and War; International audience; This paper presents eight of the most significant computer hacking events (also known as computer attacks). These events were selected because of their unique impact, methodology, or other properties. A temporal computer attack model is presented that can be used to model computer based attacks. This model consists of the following stages: Target Identification, Reconnaissance, Attack, and Post-Attack Reconnaissance stages. The...

  6. Electromagnetic Computation and Visualization of Transmission Particle Model and Its Simulation Based on GPU

    Directory of Open Access Journals (Sweden)

    Yingnian Wu

    2014-01-01

    Full Text Available Electromagnetic calculation plays an important role in both military and civic fields. Some methods and models proposed for calculation of electromagnetic wave propagation in a large range bring heavy burden in CPU computation and also require huge amount of memory. Using the GPU to accelerate computation and visualization can reduce the computational burden on the CPU. Based on forward ray-tracing method, a transmission particle model (TPM for calculating electromagnetic field is presented to combine the particle method. The movement of a particle obeys the principle of the propagation of electromagnetic wave, and then the particle distribution density in space reflects the electromagnetic distribution status. The algorithm with particle transmission, movement, reflection, and diffraction is described in detail. Since the particles in TPM are completely independent, it is very suitable for the parallel computing based on GPU. Deduction verification of TPM with the electric dipole antenna as the transmission source is conducted to prove that the particle movement itself represents the variation of electromagnetic field intensity caused by diffusion. Finally, the simulation comparisons are made against the forward and backward ray-tracing methods. The simulation results verified the effectiveness of the proposed method.

  7. Sierra toolkit computational mesh conceptual model

    International Nuclear Information System (INIS)

    Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.

    2010-01-01

    The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.

  8. Evaluating Computer-Based Assessment in a Risk-Based Model

    Science.gov (United States)

    Zakrzewski, Stan; Steven, Christine; Ricketts, Chris

    2009-01-01

    There are three purposes for evaluation: evaluation for action to aid the decision making process, evaluation for understanding to further enhance enlightenment and evaluation for control to ensure compliance to standards. This article argues that the primary function of evaluation in the "Catherine Wheel" computer-based assessment (CBA)…

  9. A novel cost based model for energy consumption in cloud computing.

    Science.gov (United States)

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  10. Experimental and Computer Modelling Studies of Metastability of Amorphous Silicon Based Solar Cells

    NARCIS (Netherlands)

    Munyeme, Geoffrey

    2003-01-01

    We present a combination of experimental and computer modelling studies of the light induced degradation in the performance of amorphous silicon based single junction solar cells. Of particular interest in this study is the degradation kinetics of different types of amorphous silicon single junction

  11. Reliability Analysis Based on a Jump Diffusion Model with Two Wiener Processes for Cloud Computing with Big Data

    Directory of Open Access Journals (Sweden)

    Yoshinobu Tamura

    2015-06-01

    Full Text Available At present, many cloud services are managed by using open source software, such as OpenStack and Eucalyptus, because of the unification management of data, cost reduction, quick delivery and work savings. The operation phase of cloud computing has a unique feature, such as the provisioning processes, the network-based operation and the diversity of data, because the operation phase of cloud computing changes depending on many external factors. We propose a jump diffusion model with two-dimensional Wiener processes in order to consider the interesting aspects of the network traffic and big data on cloud computing. In particular, we assess the stability of cloud software by using the sample paths obtained from the jump diffusion model with two-dimensional Wiener processes. Moreover, we discuss the optimal maintenance problem based on the proposed jump diffusion model. Furthermore, we analyze actual data to show numerical examples of dependability optimization based on the software maintenance cost considering big data on cloud computing.

  12. Exploratory analysis regarding the domain definitions for computer based analytical models

    Science.gov (United States)

    Raicu, A.; Oanta, E.; Barhalescu, M.

    2017-08-01

    Our previous computer based studies dedicated to structural problems using analytical methods defined the composite cross section of a beam as a result of Boolean operations with so-called ‘simple’ shapes. Using generalisations, in the class of the ‘simple’ shapes were included areas bounded by curves approximated using spline functions and areas approximated as polygons. However, particular definitions lead to particular solutions. In order to ascend above the actual limitations, we conceived a general definition of the cross sections that are considered now calculus domains consisting of several subdomains. The according set of input data use complex parameterizations. This new vision allows us to naturally assign a general number of attributes to the subdomains. In this way there may be modelled new phenomena that use map-wise information, such as the metal alloys equilibrium diagrams. The hierarchy of the input data text files that use the comma-separated-value format and their structure are also presented and discussed in the paper. This new approach allows us to reuse the concepts and part of the data processing software instruments already developed. The according software to be subsequently developed will be modularised and generalised in order to be used in the upcoming projects that require rapid development of computer based models.

  13. A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation.

    Science.gov (United States)

    Edgar, Lowell T; Sibole, Scott C; Underwood, Clayton J; Guilkey, James E; Weiss, Jeffrey A

    2013-01-01

    Recent interest in the process of vascularisation within the biomedical community has motivated numerous new research efforts focusing on the process of angiogenesis. Although the role of chemical factors during angiogenesis has been well documented, the role of mechanical factors, such as the interaction between angiogenic vessels and the extracellular matrix, remains poorly understood. In vitro methods for studying angiogenesis exist; however, measurements available using such techniques often suffer from limited spatial and temporal resolutions. For this reason, computational models have been extensively employed to investigate various aspects of angiogenesis. This paper outlines the formulation and validation of a simple and robust computational model developed to accurately simulate angiogenesis based on length, branching and orientation morphometrics collected from vascularised tissue constructs. Microvessels were represented as a series of connected line segments. The morphology of the vessels was determined by a linear combination of the collagen fibre orientation, the vessel density gradient and a random walk component. Excellent agreement was observed between computational and experimental morphometric data over time. Computational predictions of microvessel orientation within an anisotropic matrix correlated well with experimental data. The accuracy of this modelling approach makes it a valuable platform for investigating the role of mechanical interactions during angiogenesis.

  14. Parallel computing in enterprise modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.; Vanderveen, Keith; Ray, Jaideep; Heath, Zach; Allan, Benjamin A.

    2008-08-01

    This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priori ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.

  15. Questioning the quantity equation using an agent-based computational model

    DEFF Research Database (Denmark)

    Bruun, Charlotte

    2000-01-01

    by Stutzel (1954), argues that the functional relationship may as well be negative. Even focusing the money needed to carry out transactions, there is no immediate answer to the question of the functional relationship between trade turnover and money demand. An agent-based computational model is used......In the literature we find two opposing hypotheses relating the volume of money to the volume of transactions or national income. The classic hypothesis, implicitly entailed in the quantity equation, argues that this relation must be positive, while an opposing hypothesis, most strongly presented...

  16. Spintronics-based computing

    CERN Document Server

    Prenat, Guillaume

    2015-01-01

    This book provides a comprehensive introduction to spintronics-based computing for the next generation of ultra-low power/highly reliable logic, which is widely considered a promising candidate to replace conventional, pure CMOS-based logic. It will cover aspects from device to system-level, including magnetic memory cells, device modeling, hybrid circuit structure, design methodology, CAD tools, and technological integration methods. This book is accessible to a variety of readers and little or no background in magnetism and spin electronics are required to understand its content.  The multidisciplinary team of expert authors from circuits, devices, computer architecture, CAD and system design reveal to readers the potential of spintronics nanodevices to reduce power consumption, improve reliability and enable new functionality.  .

  17. GRAVTool, a Package to Compute Geoid Model by Remove-Compute-Restore Technique

    Science.gov (United States)

    Marotta, G. S.; Blitzkow, D.; Vidotti, R. M.

    2015-12-01

    Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astro-geodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove-Compute-Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and global geopotential coefficients, respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and that adjust these models to one local vertical datum. This research presents a developed package called GRAVTool based on MATLAB software to compute local geoid models by RCR technique and its application in a study area. The studied area comprehends the federal district of Brazil, with ~6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show the local geoid model computed by the GRAVTool package (Figure), using 1377 terrestrial gravity data, SRTM data with 3 arc second of resolution, and geopotential coefficients of the EIGEN-6C4 model to degree 360. The accuracy of the computed model (σ = ± 0.071 m, RMS = 0.069 m, maximum = 0.178 m and minimum = -0.123 m) matches the uncertainty (σ =± 0.073) of 21 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.099 m, RMS = 0.208 m, maximum = 0.419 m and minimum = -0.040 m).

  18. A DNA Computing Model for the Graph Vertex Coloring Problem Based on a Probe Graph

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2018-02-01

    Full Text Available The biggest bottleneck in DNA computing is exponential explosion, in which the DNA molecules used as data in information processing grow exponentially with an increase of problem size. To overcome this bottleneck and improve the processing speed, we propose a DNA computing model to solve the graph vertex coloring problem. The main points of the model are as follows: ① The exponential explosion problem is solved by dividing subgraphs, reducing the vertex colors without losing the solutions, and ordering the vertices in subgraphs; and ② the bio-operation times are reduced considerably by a designed parallel polymerase chain reaction (PCR technology that dramatically improves the processing speed. In this article, a 3-colorable graph with 61 vertices is used to illustrate the capability of the DNA computing model. The experiment showed that not only are all the solutions of the graph found, but also more than 99% of false solutions are deleted when the initial solution space is constructed. The powerful computational capability of the model was based on specific reactions among the large number of nanoscale oligonucleotide strands. All these tiny strands are operated by DNA self-assembly and parallel PCR. After thousands of accurate PCR operations, the solutions were found by recognizing, splicing, and assembling. We also prove that the searching capability of this model is up to O(359. By means of an exhaustive search, it would take more than 896 000 years for an electronic computer (5 × 1014 s−1 to achieve this enormous task. This searching capability is the largest among both the electronic and non-electronic computers that have been developed since the DNA computing model was proposed by Adleman’s research group in 2002 (with a searching capability of O(220. Keywords: DNA computing, Graph vertex coloring problem, Polymerase chain reaction

  19. A response-modeling alternative to surrogate models for support in computational analyses

    International Nuclear Information System (INIS)

    Rutherford, Brian

    2006-01-01

    Often, the objectives in a computational analysis involve characterization of system performance based on some function of the computed response. In general, this characterization includes (at least) an estimate or prediction for some performance measure and an estimate of the associated uncertainty. Surrogate models can be used to approximate the response in regions where simulations were not performed. For most surrogate modeling approaches, however (1) estimates are based on smoothing of available data and (2) uncertainty in the response is specified in a point-wise (in the input space) fashion. These aspects of the surrogate model construction might limit their capabilities. One alternative is to construct a probability measure, G(r), for the computer response, r, based on available data. This 'response-modeling' approach will permit probability estimation for an arbitrary event, E(r), based on the computer response. In this general setting, event probabilities can be computed: prob(E)=∫ r I(E(r))dG(r) where I is the indicator function. Furthermore, one can use G(r) to calculate an induced distribution on a performance measure, pm. For prediction problems where the performance measure is a scalar, its distribution F pm is determined by: F pm (z)=∫ r I(pm(r)≤z)dG(r). We introduce response models for scalar computer output and then generalize the approach to more complicated responses that utilize multiple response models

  20. Data driven model generation based on computational intelligence

    Science.gov (United States)

    Gemmar, Peter; Gronz, Oliver; Faust, Christophe; Casper, Markus

    2010-05-01

    The simulation of discharges at a local gauge or the modeling of large scale river catchments are effectively involved in estimation and decision tasks of hydrological research and practical applications like flood prediction or water resource management. However, modeling such processes using analytical or conceptual approaches is made difficult by both complexity of process relations and heterogeneity of processes. It was shown manifold that unknown or assumed process relations can principally be described by computational methods, and that system models can automatically be derived from observed behavior or measured process data. This study describes the development of hydrological process models using computational methods including Fuzzy logic and artificial neural networks (ANN) in a comprehensive and automated manner. Methods We consider a closed concept for data driven development of hydrological models based on measured (experimental) data. The concept is centered on a Fuzzy system using rules of Takagi-Sugeno-Kang type which formulate the input-output relation in a generic structure like Ri : IFq(t) = lowAND...THENq(t+Δt) = ai0 +ai1q(t)+ai2p(t-Δti1)+ai3p(t+Δti2)+.... The rule's premise part (IF) describes process states involving available process information, e.g. actual outlet q(t) is low where low is one of several Fuzzy sets defined over variable q(t). The rule's conclusion (THEN) estimates expected outlet q(t + Δt) by a linear function over selected system variables, e.g. actual outlet q(t), previous and/or forecasted precipitation p(t ?Δtik). In case of river catchment modeling we use head gauges, tributary and upriver gauges in the conclusion part as well. In addition, we consider temperature and temporal (season) information in the premise part. By creating a set of rules R = {Ri|(i = 1,...,N)} the space of process states can be covered as concise as necessary. Model adaptation is achieved by finding on optimal set A = (aij) of conclusion

  1. Transitions in the computational power of thermal states for measurement-based quantum computation

    International Nuclear Information System (INIS)

    Barrett, Sean D.; Bartlett, Stephen D.; Jennings, David; Doherty, Andrew C.; Rudolph, Terry

    2009-01-01

    We show that the usefulness of the thermal state of a specific spin-lattice model for measurement-based quantum computing exhibits a transition between two distinct 'phases' - one in which every state is a universal resource for quantum computation, and another in which any local measurement sequence can be simulated efficiently on a classical computer. Remarkably, this transition in computational power does not coincide with any phase transition, classical, or quantum in the underlying spin-lattice model.

  2. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region

    Science.gov (United States)

    Goel, Narendra S.; Rozehnal, Ivan; Thompson, Richard L.

    1991-01-01

    A computer-graphics-based model, named DIANA, is presented for generation of objects of arbitrary shape and for calculating bidirectional reflectances and scattering from them, in the visible and infrared region. The computer generation is based on a modified Lindenmayer system approach which makes it possible to generate objects of arbitrary shapes and to simulate their growth, dynamics, and movement. Rendering techniques are used to display an object on a computer screen with appropriate shading and shadowing and to calculate the scattering and reflectance from the object. The technique is illustrated with scattering from canopies of simulated corn plants.

  3. Category-theoretic models of algebraic computer systems

    Science.gov (United States)

    Kovalyov, S. P.

    2016-01-01

    A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.

  4. Quantum vertex model for reversible classical computing.

    Science.gov (United States)

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  5. Computational aeroelasticity using a pressure-based solver

    Science.gov (United States)

    Kamakoti, Ramji

    A computational methodology for performing fluid-structure interaction computations for three-dimensional elastic wing geometries is presented. The flow solver used is based on an unsteady Reynolds-Averaged Navier-Stokes (RANS) model. A well validated k-ε turbulence model with wall function treatment for near wall region was used to perform turbulent flow calculations. Relative merits of alternative flow solvers were investigated. The predictor-corrector-based Pressure Implicit Splitting of Operators (PISO) algorithm was found to be computationally economic for unsteady flow computations. Wing structure was modeled using Bernoulli-Euler beam theory. A fully implicit time-marching scheme (using the Newmark integration method) was used to integrate the equations of motion for structure. Bilinear interpolation and linear extrapolation techniques were used to transfer necessary information between fluid and structure solvers. Geometry deformation was accounted for by using a moving boundary module. The moving grid capability was based on a master/slave concept and transfinite interpolation techniques. Since computations were performed on a moving mesh system, the geometric conservation law must be preserved. This is achieved by appropriately evaluating the Jacobian values associated with each cell. Accurate computation of contravariant velocities for unsteady flows using the momentum interpolation method on collocated, curvilinear grids was also addressed. Flutter computations were performed for the AGARD 445.6 wing at subsonic, transonic and supersonic Mach numbers. Unsteady computations were performed at various dynamic pressures to predict the flutter boundary. Results showed favorable agreement of experiment and previous numerical results. The computational methodology exhibited capabilities to predict both qualitative and quantitative features of aeroelasticity.

  6. Paper-Based and Computer-Based Concept Mappings: The Effects on Computer Achievement, Computer Anxiety and Computer Attitude

    Science.gov (United States)

    Erdogan, Yavuz

    2009-01-01

    The purpose of this paper is to compare the effects of paper-based and computer-based concept mappings on computer hardware achievement, computer anxiety and computer attitude of the eight grade secondary school students. The students were randomly allocated to three groups and were given instruction on computer hardware. The teaching methods used…

  7. A measurement-based X-ray source model characterization for CT dosimetry computations.

    Science.gov (United States)

    Sommerville, Mitchell; Poirier, Yannick; Tambasco, Mauro

    2015-11-08

    within the experimental uncertainties associated with measurement reproducibility and chamber volume effects for the PMMA phantom. The agreement between calculation and measurement was within experimental uncertainty for 19 out of 20 simulation conditions at five points of interest in the anthropomorphic thorax phantom for the four beam energies modeled. The source model and characterization technique based on HVL measurements and nominal kVp can be used to accurately compute CT dose. This accuracy provides experimental validation of kVDoseCalc for computing CT dose.

  8. Model-based Computer Aided Framework for Design of Process Monitoring and Analysis Systems

    DEFF Research Database (Denmark)

    Singh, Ravendra; Gernaey, Krist; Gani, Rafiqul

    2009-01-01

    In the manufacturing industry, for example, the pharmaceutical industry, a thorough understanding of the process is necessary in addition to a properly designed monitoring and analysis system (PAT system) to consistently obtain the desired end-product properties. A model-based computer....... The knowledge base provides the necessary information/data during the design of the PAT system while the model library generates additional or missing data needed for design and analysis. Optimization of the PAT system design is achieved in terms of product data analysis time and/or cost of monitoring equipment......-aided framework including the methods and tools through which the design of monitoring and analysis systems for product quality control can be generated, analyzed and/or validated, has been developed. Two important supporting tools developed as part of the framework are a knowledge base and a model library...

  9. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences

    Science.gov (United States)

    Rudd, Michael E.

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4. PMID:25202253

  10. A Cortical Edge-integration Model of Object-Based Lightness Computation that Explains Effects of Spatial Context and Individual Differences

    Directory of Open Access Journals (Sweden)

    Michael E Rudd

    2014-08-01

    Full Text Available Previous work demonstrated that perceived surface reflectance (lightness can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatial integrates these steps along paths through the image to compute lightness (Rudd & Zemach, 2004, 2005, 2007. This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013 suggests that the human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010 further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer’s interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd & Zemach, 2005. Here, I show how the separate influences of grouping and attention on lightness can be together modeled by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013, and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  11. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences.

    Science.gov (United States)

    Rudd, Michael E

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  12. Evaluation of kriging based surrogate models constructed from mesoscale computations of shock interaction with particles

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Oishik, E-mail: oishik-sen@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Gaul, Nicholas J., E-mail: nicholas-gaul@ramdosolutions.com [RAMDO Solutions, LLC, Iowa City, IA 52240 (United States); Choi, K.K., E-mail: kyung-choi@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Jacobs, Gustaaf, E-mail: gjacobs@sdsu.edu [Aerospace Engineering, San Diego State University, San Diego, CA 92115 (United States); Udaykumar, H.S., E-mail: hs-kumar@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2017-05-01

    Macro-scale computations of shocked particulate flows require closure laws that model the exchange of momentum/energy between the fluid and particle phases. Closure laws are constructed in this work in the form of surrogate models derived from highly resolved mesoscale computations of shock-particle interactions. The mesoscale computations are performed to calculate the drag force on a cluster of particles for different values of Mach Number and particle volume fraction. Two Kriging-based methods, viz. the Dynamic Kriging Method (DKG) and the Modified Bayesian Kriging Method (MBKG) are evaluated for their ability to construct surrogate models with sparse data; i.e. using the least number of mesoscale simulations. It is shown that if the input data is noise-free, the DKG method converges monotonically; convergence is less robust in the presence of noise. The MBKG method converges monotonically even with noisy input data and is therefore more suitable for surrogate model construction from numerical experiments. This work is the first step towards a full multiscale modeling of interaction of shocked particle laden flows.

  13. Ranked retrieval of Computational Biology models.

    Science.gov (United States)

    Henkel, Ron; Endler, Lukas; Peters, Andre; Le Novère, Nicolas; Waltemath, Dagmar

    2010-08-11

    The study of biological systems demands computational support. If targeting a biological problem, the reuse of existing computational models can save time and effort. Deciding for potentially suitable models, however, becomes more challenging with the increasing number of computational models available, and even more when considering the models' growing complexity. Firstly, among a set of potential model candidates it is difficult to decide for the model that best suits ones needs. Secondly, it is hard to grasp the nature of an unknown model listed in a search result set, and to judge how well it fits for the particular problem one has in mind. Here we present an improved search approach for computational models of biological processes. It is based on existing retrieval and ranking methods from Information Retrieval. The approach incorporates annotations suggested by MIRIAM, and additional meta-information. It is now part of the search engine of BioModels Database, a standard repository for computational models. The introduced concept and implementation are, to our knowledge, the first application of Information Retrieval techniques on model search in Computational Systems Biology. Using the example of BioModels Database, it was shown that the approach is feasible and extends the current possibilities to search for relevant models. The advantages of our system over existing solutions are that we incorporate a rich set of meta-information, and that we provide the user with a relevance ranking of the models found for a query. Better search capabilities in model databases are expected to have a positive effect on the reuse of existing models.

  14. Deterministic sensitivity and uncertainty analysis for large-scale computer models

    International Nuclear Information System (INIS)

    Worley, B.A.; Pin, F.G.; Oblow, E.M.; Maerker, R.E.; Horwedel, J.E.; Wright, R.Q.

    1988-01-01

    This paper presents a comprehensive approach to sensitivity and uncertainty analysis of large-scale computer models that is analytic (deterministic) in principle and that is firmly based on the model equations. The theory and application of two systems based upon computer calculus, GRESS and ADGEN, are discussed relative to their role in calculating model derivatives and sensitivities without a prohibitive initial manpower investment. Storage and computational requirements for these two systems are compared for a gradient-enhanced version of the PRESTO-II computer model. A Deterministic Uncertainty Analysis (DUA) method that retains the characteristics of analytically computing result uncertainties based upon parameter probability distributions is then introduced and results from recent studies are shown. 29 refs., 4 figs., 1 tab

  15. Modelling computer networks

    International Nuclear Information System (INIS)

    Max, G

    2011-01-01

    Traffic models in computer networks can be described as a complicated system. These systems show non-linear features and to simulate behaviours of these systems are also difficult. Before implementing network equipments users wants to know capability of their computer network. They do not want the servers to be overloaded during temporary traffic peaks when more requests arrive than the server is designed for. As a starting point for our study a non-linear system model of network traffic is established to exam behaviour of the network planned. The paper presents setting up a non-linear simulation model that helps us to observe dataflow problems of the networks. This simple model captures the relationship between the competing traffic and the input and output dataflow. In this paper, we also focus on measuring the bottleneck of the network, which was defined as the difference between the link capacity and the competing traffic volume on the link that limits end-to-end throughput. We validate the model using measurements on a working network. The results show that the initial model estimates well main behaviours and critical parameters of the network. Based on this study, we propose to develop a new algorithm, which experimentally determines and predict the available parameters of the network modelled.

  16. Towards The Deep Model : Understanding Visual Recognition Through Computational Models

    OpenAIRE

    Wang, Panqu

    2017-01-01

    Understanding how visual recognition is achieved in the human brain is one of the most fundamental questions in vision research. In this thesis I seek to tackle this problem from a neurocomputational modeling perspective. More specifically, I build machine learning-based models to simulate and explain cognitive phenomena related to human visual recognition, and I improve computational models using brain-inspired principles to excel at computer vision tasks.I first describe how a neurocomputat...

  17. Computer - based modeling in extract sciences research -I ...

    African Journals Online (AJOL)

    Specifically, in the discipline of chemistry, it has been of great utility. Its use dates back to the 17th Century and includes such wide areas as computational chemistry, chemoinformatics, molecular mechanics, chemical dynamics, molecular dynamics, molecular graphics and algorithms. Modeling has been employed ...

  18. Computational neurogenetic modeling

    CERN Document Server

    Benuskova, Lubica

    2010-01-01

    Computational Neurogenetic Modeling is a student text, introducing the scope and problems of a new scientific discipline - Computational Neurogenetic Modeling (CNGM). CNGM is concerned with the study and development of dynamic neuronal models for modeling brain functions with respect to genes and dynamic interactions between genes. These include neural network models and their integration with gene network models. This new area brings together knowledge from various scientific disciplines, such as computer and information science, neuroscience and cognitive science, genetics and molecular biol

  19. Applications of computer modeling to fusion research

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1989-01-01

    Progress achieved during this report period is presented on the following topics: Development and application of gyrokinetic particle codes to tokamak transport, development of techniques to take advantage of parallel computers; model dynamo and bootstrap current drive; and in general maintain our broad-based program in basic plasma physics and computer modeling

  20. A System Computational Model of Implicit Emotional Learning.

    Science.gov (United States)

    Puviani, Luca; Rama, Sidita

    2016-01-01

    Nowadays, the experimental study of emotional learning is commonly based on classical conditioning paradigms and models, which have been thoroughly investigated in the last century. Unluckily, models based on classical conditioning are unable to explain or predict important psychophysiological phenomena, such as the failure of the extinction of emotional responses in certain circumstances (for instance, those observed in evaluative conditioning, in post-traumatic stress disorders and in panic attacks). In this manuscript, starting from the experimental results available from the literature, a computational model of implicit emotional learning based both on prediction errors computation and on statistical inference is developed. The model quantitatively predicts (a) the occurrence of evaluative conditioning, (b) the dynamics and the resistance-to-extinction of the traumatic emotional responses, (c) the mathematical relation between classical conditioning and unconditioned stimulus revaluation. Moreover, we discuss how the derived computational model can lead to the development of new animal models for resistant-to-extinction emotional reactions and novel methodologies of emotions modulation.

  1. Agent-Based Computing: Promise and Perils

    OpenAIRE

    Jennings, N. R.

    1999-01-01

    Agent-based computing represents an exciting new synthesis both for Artificial Intelligence (AI) and, more genrally, Computer Science. It has the potential to significantly improve the theory and practice of modelling, designing and implementing complex systems. Yet, to date, there has been little systematic analysis of what makes an agent such an appealing and powerful conceptual model. Moreover, even less effort has been devoted to exploring the inherent disadvantages that stem from adoptin...

  2. From Levy to Brownian: a computational model based on biological fluctuation.

    Directory of Open Access Journals (Sweden)

    Surya G Nurzaman

    Full Text Available BACKGROUND: Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. METHODOLOGY/PRINCIPAL FINDINGS: We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. CONCLUSIONS/SIGNIFICANCE: Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.

  3. Computer-Based Procedures for Field Workers in Nuclear Power Plants: Development of a Model of Procedure Usage and Identification of Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Katya Le Blanc; Johanna Oxstrand

    2012-04-01

    The nuclear industry is constantly trying to find ways to decrease the human error rate, especially the human errors associated with procedure use. As a step toward the goal of improving procedure use performance, researchers, together with the nuclear industry, have been looking at replacing the current paper-based procedures with computer-based procedure systems. The concept of computer-based procedures is not new by any means; however most research has focused on procedures used in the main control room. Procedures reviewed in these efforts are mainly emergency operating procedures and normal operating procedures. Based on lessons learned for these previous efforts we are now exploring a more unknown application for computer based procedures - field procedures, i.e. procedures used by nuclear equipment operators and maintenance technicians. The Idaho National Laboratory and participants from the U.S. commercial nuclear industry are collaborating in an applied research effort with the objective of developing requirements and specifications for a computer-based procedure system to be used by field workers. The goal is to identify the types of human errors that can be mitigated by using computer-based procedures and how to best design the computer-based procedures to do so. This paper describes the development of a Model of Procedure Use and the qualitative study on which the model is based. The study was conducted in collaboration with four nuclear utilities and five research institutes. During the qualitative study and the model development requirements and for computer-based procedures were identified.

  4. Computer-aided modeling framework for efficient model development, analysis and identification

    DEFF Research Database (Denmark)

    Heitzig, Martina; Sin, Gürkan; Sales Cruz, Mauricio

    2011-01-01

    Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy, and water. This trend is set to continue due to the substantial benefits computer-aided...... methods introduce. The key prerequisite of computer-aided product-process engineering is however the availability of models of different types, forms, and application modes. The development of the models required for the systems under investigation tends to be a challenging and time-consuming task....... The methodology has been implemented into a computer-aided modeling framework, which combines expert skills, tools, and database connections that are required for the different steps of the model development work-flow with the goal to increase the efficiency of the modeling process. The framework has two main...

  5. Some Comparisons of Complexity in Dictionary-Based and Linear Computational Models

    Czech Academy of Sciences Publication Activity Database

    Gnecco, G.; Kůrková, Věra; Sanguineti, M.

    2011-01-01

    Roč. 24, č. 2 (2011), s. 171-182 ISSN 0893-6080 R&D Project s: GA ČR GA201/08/1744 Grant - others:CNR - AV ČR project 2010-2012(XE) Complexity of Neural-Network and Kernel Computational Models Institutional research plan: CEZ:AV0Z10300504 Keywords : linear approximation schemes * variable-basis approximation schemes * model complexity * worst-case errors * neural networks * kernel models Subject RIV: IN - Informatics, Computer Science Impact factor: 2.182, year: 2011

  6. Modeling inputs to computer models used in risk assessment

    International Nuclear Information System (INIS)

    Iman, R.L.

    1987-01-01

    Computer models for various risk assessment applications are closely scrutinized both from the standpoint of questioning the correctness of the underlying mathematical model with respect to the process it is attempting to model and from the standpoint of verifying that the computer model correctly implements the underlying mathematical model. A process that receives less scrutiny, but is nonetheless of equal importance, concerns the individual and joint modeling of the inputs. This modeling effort clearly has a great impact on the credibility of results. Model characteristics are reviewed in this paper that have a direct bearing on the model input process and reasons are given for using probabilities-based modeling with the inputs. The authors also present ways to model distributions for individual inputs and multivariate input structures when dependence and other constraints may be present

  7. Computer-based Creativity Enhanced Conceptual Design Model for Non-routine Design of Mechanical Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yutong; WANG Yuxin; DUFFY Alex H B

    2014-01-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  8. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    Science.gov (United States)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  9. Computational Modeling | Bioenergy | NREL

    Science.gov (United States)

    cell walls and are the source of biofuels and biomaterials. Our modeling investigates their properties . Quantum Mechanical Models NREL studies chemical and electronic properties and processes to reduce barriers Computational Modeling Computational Modeling NREL uses computational modeling to increase the

  10. 3D CFD computations of trasitional flows using DES and a correlation based transition model

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Bechmann, Andreas; Zahle, Frederik

    2011-01-01

    a circular cylinder from Re = 10 to 1 × 106 reproducing the cylinder drag crisis. The computations show good quantitative and qualitative agreement with the behaviour seen in experiments. This case shows that the methodology performs smoothly from the laminar cases at low Re to the turbulent cases at high Re......The present article describes the application of the correlation based transition model of Menter et al. in combination with the Detached Eddy Simulation (DES) methodology to two cases with large degree of flow separation typically considered difficult to compute. Firstly, the flow is computed over...

  11. Models of parallel computation :a survey and classification

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yunquan; CHEN Guoliang; SUN Guangzhong; MIAO Qiankun

    2007-01-01

    In this paper,the state-of-the-art parallel computational model research is reviewed.We will introduce various models that were developed during the past decades.According to their targeting architecture features,especially memory organization,we classify these parallel computational models into three generations.These models and their characteristics are discussed based on three generations classification.We believe that with the ever increasing speed gap between the CPU and memory systems,incorporating non-uniform memory hierarchy into computational models will become unavoidable.With the emergence of multi-core CPUs,the parallelism hierarchy of current computing platforms becomes more and more complicated.Describing this complicated parallelism hierarchy in future computational models becomes more and more important.A semi-automatic toolkit that can extract model parameters and their values on real computers can reduce the model analysis complexity,thus allowing more complicated models with more parameters to be adopted.Hierarchical memory and hierarchical parallelism will be two very important features that should be considered in future model design and research.

  12. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined

  13. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined.

  14. Computational Intelligence, Cyber Security and Computational Models

    CERN Document Server

    Anitha, R; Lekshmi, R; Kumar, M; Bonato, Anthony; Graña, Manuel

    2014-01-01

    This book contains cutting-edge research material presented by researchers, engineers, developers, and practitioners from academia and industry at the International Conference on Computational Intelligence, Cyber Security and Computational Models (ICC3) organized by PSG College of Technology, Coimbatore, India during December 19–21, 2013. The materials in the book include theory and applications for design, analysis, and modeling of computational intelligence and security. The book will be useful material for students, researchers, professionals, and academicians. It will help in understanding current research trends and findings and future scope of research in computational intelligence, cyber security, and computational models.

  15. Computational models in physics teaching: a framework

    Directory of Open Access Journals (Sweden)

    Marco Antonio Moreira

    2012-08-01

    Full Text Available The purpose of the present paper is to present a theoretical framework to promote and assist meaningful physics learning through computational models. Our proposal is based on the use of a tool, the AVM diagram, to design educational activities involving modeling and computer simulations. The idea is to provide a starting point for the construction and implementation of didactical approaches grounded in a coherent epistemological view about scientific modeling.

  16. Computer-Aided Model Based Analysis for Design and Operation of a Copolymerization Process

    DEFF Research Database (Denmark)

    Lopez-Arenas, Maria Teresa; Sales-Cruz, Alfonso Mauricio; Gani, Rafiqul

    2006-01-01

    . This will allow analysis of the process behaviour, contribute to a better understanding of the polymerization process, help to avoid unsafe conditions of operation, and to develop operational and optimizing control strategies. In this work, through a computer-aided modeling system ICAS-MoT, two first......The advances in computer science and computational algorithms for process modelling, process simulation, numerical methods and design/synthesis algorithms, makes it advantageous and helpful to employ computer-aided modelling systems and tools for integrated process analysis. This is illustrated......-principles models have been investigated with respect to design and operational issues for solution copolymerization reactors in general, and for the methyl methacrylate/vinyl acetate system in particular. The Model 1 is taken from literature and is commonly used for low conversion region, while the Model 2 has...

  17. Computer Aided Continuous Time Stochastic Process Modelling

    DEFF Research Database (Denmark)

    Kristensen, N.R.; Madsen, Henrik; Jørgensen, Sten Bay

    2001-01-01

    A grey-box approach to process modelling that combines deterministic and stochastic modelling is advocated for identification of models for model-based control of batch and semi-batch processes. A computer-aided tool designed for supporting decision-making within the corresponding modelling cycle...

  18. From Lévy to Brownian: a computational model based on biological fluctuation.

    Science.gov (United States)

    Nurzaman, Surya G; Matsumoto, Yoshio; Nakamura, Yutaka; Shirai, Kazumichi; Koizumi, Satoshi; Ishiguro, Hiroshi

    2011-02-03

    Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.

  19. Reciprocity in computer-human interaction: source-based, norm-based, and affect-based explanations.

    Science.gov (United States)

    Lee, Seungcheol Austin; Liang, Yuhua Jake

    2015-04-01

    Individuals often apply social rules when they interact with computers, and this is known as the Computers Are Social Actors (CASA) effect. Following previous work, one approach to understand the mechanism responsible for CASA is to utilize computer agents and have the agents attempt to gain human compliance (e.g., completing a pattern recognition task). The current study focuses on three key factors frequently cited to influence traditional notions of compliance: evaluations toward the source (competence and warmth), normative influence (reciprocity), and affective influence (mood). Structural equation modeling assessed the effects of these factors on human compliance with computer request. The final model shows that norm-based influence (reciprocity) increased the likelihood of compliance, while evaluations toward the computer agent did not significantly influence compliance.

  20. Pengembangan Model Pembelajaran Project Based Learning pada Mata Kuliah Computer Aided Design

    Directory of Open Access Journals (Sweden)

    Satoto Endar Nayono

    2013-09-01

    Full Text Available One of the key competencies of graduates majoring in Civil Engineering and Planning Education, Faculty of Engineering, Yogyakarta State University (YSU is able to plan buildings. CAD courses aim to train students to be able to pour the planning concepts into the picture. One of the obstacles faced in the course are concepts and pictures that created by the students often do not correspond to the standards used in the field. This study aims to develop a model of project-based learning so that the students’ pictures are more in line with the actual conditions in the field. This study was carried out through the stages as follows: (1 Pre test, (2 Planning of learning, (3 Implementation of the learning model of project-based learning, (4 monitoring and evaluation (5 Reflection and revision, (6 Implementation of learning in the next cycle, and (7 Evaluation of the learning outcomes. This study was conducted for four months in 2012 in the Department of Civil Engineering and Planning Education, Faculty of Engineering, YSU. The subjects of this study are the students who took the course of Computer Aided Design. The analysis of the data used descriptive qualitative and descriptive statistics. The results of this study were: (1 The implementation of project based learning model was proven to increase the learning process and the learning outcomes of students in the subject of CAD through the provision of buildings planning pictures tasks of school buildings based on the real conditions in the field. The task was delivered in every meeting and improved based on the feedback from their lecturers, (2 the learning model of project based learning will be easier to be implemented if it is accompanied by the model of peer tutoring and the learning model of PAIKEM.

  1. Computational Model-Based Prediction of Human Episodic Memory Performance Based on Eye Movements

    Science.gov (United States)

    Sato, Naoyuki; Yamaguchi, Yoko

    Subjects' episodic memory performance is not simply reflected by eye movements. We use a ‘theta phase coding’ model of the hippocampus to predict subjects' memory performance from their eye movements. Results demonstrate the ability of the model to predict subjects' memory performance. These studies provide a novel approach to computational modeling in the human-machine interface.

  2. Mathematical modeling and computational intelligence in engineering applications

    CERN Document Server

    Silva Neto, Antônio José da; Silva, Geraldo Nunes

    2016-01-01

    This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.

  3. Computer Based Test Untuk Seleksi Masuk Politeknik Negeri Bengkalis

    Directory of Open Access Journals (Sweden)

    Agus Tedyyana

    2017-11-01

    Full Text Available AbstrakPenyeleksian calon mahasiswa baru dapat dilakukan dengan aplikasi Computer Based Test (CBT. Metode yang digunakan meliputi teknik pengumpulan data, analisis sistem, model perancangan, implementasi dan pengujian. Penelitian ini menghasilkan aplikasi CBT dimana soal yang dimunculkan dari bank soal melalui proses pengacakan dengan tidak akan memunculkan soal yang sama dengan menggunakan metoda Fisher-Yates Shuffle. Dalam proses pengamanan informasi soal saat terhubung ke jaringan maka diperlukan teknik untuk penyandian pesan agar soal tersebut sebeum dimunculkan melewati proses enkripsi dan deskripsi data terlebih dahulu maka digunakan algoritma kriptografi  RSA. Metode perancangan perangkat lunak menggunakan model waterfall, perancangan database menggunakan entity relationship diagram, perancangan antarmuka menggunakan hypertext markup language (HTML Cascading Style Sheet (CSS dan jQuery serta diimplementasikan berbasis web dengan menggunakan bahasa pemrograman PHP dan database MySQL, Arsitektur jaringan yang digunakan aplikasi Computer Based Test adalah model jaringan client-server dengan jaringan Local Area Network (LAN. Kata kunci: Computer Based Test, Fisher-Yates Shuffle, Criptography, Local Area Network AbstractSelection of new student candidates can be done with Computer Based Test (CBT application. The methods used include data collection techniques, system analysis, design model, implementation and testing. This study produces a CBT application where the questions raised from the question bank through randomization process will not bring up the same problem using the Fisher-Yates Shuffle method. In the process of securing information about the problem when connected to the network it is necessary techniques for encoding the message so that the problem before appear through the process of encryption and description of data first then used RSA cryptography algorithm. Software design method using waterfall model, database design

  4. Quantum Vertex Model for Reversible Classical Computing

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng

    We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.

  5. Physics Model-Based Scatter Correction in Multi-Source Interior Computed Tomography.

    Science.gov (United States)

    Gong, Hao; Li, Bin; Jia, Xun; Cao, Guohua

    2018-02-01

    Multi-source interior computed tomography (CT) has a great potential to provide ultra-fast and organ-oriented imaging at low radiation dose. However, X-ray cross scattering from multiple simultaneously activated X-ray imaging chains compromises imaging quality. Previously, we published two hardware-based scatter correction methods for multi-source interior CT. Here, we propose a software-based scatter correction method, with the benefit of no need for hardware modifications. The new method is based on a physics model and an iterative framework. The physics model was derived analytically, and was used to calculate X-ray scattering signals in both forward direction and cross directions in multi-source interior CT. The physics model was integrated to an iterative scatter correction framework to reduce scatter artifacts. The method was applied to phantom data from both Monte Carlo simulations and physical experimentation that were designed to emulate the image acquisition in a multi-source interior CT architecture recently proposed by our team. The proposed scatter correction method reduced scatter artifacts significantly, even with only one iteration. Within a few iterations, the reconstructed images fast converged toward the "scatter-free" reference images. After applying the scatter correction method, the maximum CT number error at the region-of-interests (ROIs) was reduced to 46 HU in numerical phantom dataset and 48 HU in physical phantom dataset respectively, and the contrast-noise-ratio at those ROIs increased by up to 44.3% and up to 19.7%, respectively. The proposed physics model-based iterative scatter correction method could be useful for scatter correction in dual-source or multi-source CT.

  6. Computational model for dosimetric purposes in dental procedures

    International Nuclear Information System (INIS)

    Kawamoto, Renato H.; Campos, Tarcisio R.

    2013-01-01

    This study aims to develop a computational model for dosimetric purposes the oral region, based on computational tools SISCODES and MCNP-5, to predict deterministic effects and minimize stochastic effects caused by ionizing radiation by radiodiagnosis. Based on a set of digital information provided by computed tomography, three-dimensional voxel model was created, and its tissues represented. The model was exported to the MCNP code. In association with SICODES, we used the Monte Carlo N-Particle Transport Code (MCNP-5) method to play the corresponding interaction of nuclear particles with human tissues statistical process. The study will serve as a source of data for dosimetric studies in the oral region, providing deterministic effect and minimize the stochastic effect of ionizing radiation

  7. Model-based image reconstruction in X-ray computed tomography

    NARCIS (Netherlands)

    Zbijewski, Wojciech Bartosz

    2006-01-01

    The thesis investigates the applications of iterative, statistical reconstruction (SR) algorithms in X-ray Computed Tomography. Emphasis is put on various aspects of system modeling in statistical reconstruction. Fundamental issues such as effects of object discretization and algorithm

  8. Efficiency using computer simulation of Reverse Threshold Model Theory on assessing a “One Laptop Per Child” computer versus desktop computer

    Directory of Open Access Journals (Sweden)

    Supat Faarungsang

    2017-04-01

    Full Text Available The Reverse Threshold Model Theory (RTMT model was introduced based on limiting factor concepts, but its efficiency compared to the Conventional Model (CM has not been published. This investigation assessed the efficiency of RTMT compared to CM using computer simulation on the “One Laptop Per Child” computer and a desktop computer. Based on probability values, it was found that RTMT was more efficient than CM among eight treatment combinations and an earlier study verified that RTMT gives complete elimination of random error. Furthermore, RTMT has several advantages over CM and is therefore proposed to be applied to most research data.

  9. Reduced order methods for modeling and computational reduction

    CERN Document Server

    Rozza, Gianluigi

    2014-01-01

    This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics.  Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This...

  10. Airfoil Computations using the γ - Reθ Model

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    computations. Based on this, an estimate of the error in the computations is determined to be approximately one percent in the attached region. Following the verification of the implemented model, the model is applied to four airfoils, NACA64- 018, NACA64-218, NACA64-418 and NACA64-618 and the results...

  11. A Computational Model Based on Multi-Regional Calcium Imaging Represents the Spatio-Temporal Dynamics in a Caenorhabditis elegans Sensory Neuron.

    Directory of Open Access Journals (Sweden)

    Masahiro Kuramochi

    Full Text Available Due to the huge number of neuronal cells in the brain and their complex circuit formation, computer simulation of neuronal activity is indispensable to understanding whole brain dynamics. Recently, various computational models have been developed based on whole-brain calcium imaging data. However, these analyses monitor only the activity of neuronal cell bodies and treat the cells as point unit. This point-neuron model is inexpensive in computational costs, but the model is unrealistically simplistic at representing intact neural activities in the brain. Here, we describe a novel three-unit Ordinary Differential Equation (ODE model based on the neuronal responses derived from a Caenorhabditis elegans salt-sensing neuron. We recorded calcium responses in three regions of the ASER neuron using a simple downstep of NaCl concentration. Our simple ODE model generated from a single recording can adequately reproduce and predict the temporal responses of each part of the neuron to various types of NaCl concentration changes. Our strategy which combines a simple recording data and an ODE mathematical model may be extended to realistically understand whole brain dynamics by computational simulation.

  12. On the usage of ultrasound computational models for decision making under ambiguity

    Science.gov (United States)

    Dib, Gerges; Sexton, Samuel; Prowant, Matthew; Crawford, Susan; Diaz, Aaron

    2018-04-01

    Computer modeling and simulation is becoming pervasive within the non-destructive evaluation (NDE) industry as a convenient tool for designing and assessing inspection techniques. This raises a pressing need for developing quantitative techniques for demonstrating the validity and applicability of the computational models. Computational models provide deterministic results based on deterministic and well-defined input, or stochastic results based on inputs defined by probability distributions. However, computational models cannot account for the effects of personnel, procedures, and equipment, resulting in ambiguity about the efficacy of inspections based on guidance from computational models only. In addition, ambiguity arises when model inputs, such as the representation of realistic cracks, cannot be defined deterministically, probabilistically, or by intervals. In this work, Pacific Northwest National Laboratory demonstrates the ability of computational models to represent field measurements under known variabilities, and quantify the differences using maximum amplitude and power spectrum density metrics. Sensitivity studies are also conducted to quantify the effects of different input parameters on the simulation results.

  13. Towards a Computational Model of the Self-attribution of Agency

    NARCIS (Netherlands)

    Hindriks, K.V.; Wiggers, P.; Jonker, C.M.; Haselager, W.F.G.; Mehrotra, K.G.; Mohan, C.K.; Oh, J.C.; Varshney, P.K.; Ali, M.

    2011-01-01

    In this paper, a first step towards a computational model of the self-attribution of agency is presented, based on Wegner’s theory of apparent mental causation. A model to compute a feeling of doing based on first-order Bayesian network theory is introduced that incorporates the main contributing

  14. Towards a computational model of the self-attribution of agency

    NARCIS (Netherlands)

    Hindriks, K.V.; Wiggers, P.; Jonker, C.M.; Haselager, W.F.G.; Olivier, P.; Kray, C.

    2007-01-01

    In this paper, a first step towards a computational model of the self-attribution of agency is presented, based on Wegner’s theory of apparent mental causation. A model to compute a feeling of doing based on first-order Bayesian network theory is introduced that incorporates the main contributing

  15. Scaling predictive modeling in drug development with cloud computing.

    Science.gov (United States)

    Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola

    2015-01-26

    Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.

  16. Notions of similarity for computational biology models

    KAUST Repository

    Waltemath, Dagmar

    2016-03-21

    Computational models used in biology are rapidly increasing in complexity, size, and numbers. To build such large models, researchers need to rely on software tools for model retrieval, model combination, and version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of similarity may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here, we introduce a general notion of quantitative model similarities, survey the use of existing model comparison methods in model building and management, and discuss potential applications of model comparison. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on different model aspects. Potentially relevant aspects of a model comprise its references to biological entities, network structure, mathematical equations and parameters, and dynamic behaviour. Future similarity measures could combine these model aspects in flexible, problem-specific ways in order to mimic users\\' intuition about model similarity, and to support complex model searches in databases.

  17. Notions of similarity for computational biology models

    KAUST Repository

    Waltemath, Dagmar; Henkel, Ron; Hoehndorf, Robert; Kacprowski, Tim; Knuepfer, Christian; Liebermeister, Wolfram

    2016-01-01

    Computational models used in biology are rapidly increasing in complexity, size, and numbers. To build such large models, researchers need to rely on software tools for model retrieval, model combination, and version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of similarity may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here, we introduce a general notion of quantitative model similarities, survey the use of existing model comparison methods in model building and management, and discuss potential applications of model comparison. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on different model aspects. Potentially relevant aspects of a model comprise its references to biological entities, network structure, mathematical equations and parameters, and dynamic behaviour. Future similarity measures could combine these model aspects in flexible, problem-specific ways in order to mimic users' intuition about model similarity, and to support complex model searches in databases.

  18. A Contrast-Based Computational Model of Surprise and Its Applications.

    Science.gov (United States)

    Macedo, Luis; Cardoso, Amílcar

    2017-11-19

    We review our work on a contrast-based computational model of surprise and its applications. The review is contextualized within related research from psychology, philosophy, and particularly artificial intelligence. Influenced by psychological theories of surprise, the model assumes that surprise-eliciting events initiate a series of cognitive processes that begin with the appraisal of the event as unexpected, continue with the interruption of ongoing activity and the focusing of attention on the unexpected event, and culminate in the analysis and evaluation of the event and the revision of beliefs. It is assumed that the intensity of surprise elicited by an event is a nonlinear function of the difference or contrast between the subjective probability of the event and that of the most probable alternative event (which is usually the expected event); and that the agent's behavior is partly controlled by actual and anticipated surprise. We describe applications of artificial agents that incorporate the proposed surprise model in three domains: the exploration of unknown environments, creativity, and intelligent transportation systems. These applications demonstrate the importance of surprise for decision making, active learning, creative reasoning, and selective attention. Copyright © 2017 Cognitive Science Society, Inc.

  19. Handbook of nature-inspired and innovative computing integrating classical models with emerging technologies

    CERN Document Server

    2006-01-01

    As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. This handbook explores the connection between nature-inspired and traditional computational paradigms. It presents computing paradigms and models based on natural phenomena.

  20. Security Management Model in Cloud Computing Environment

    OpenAIRE

    Ahmadpanah, Seyed Hossein

    2016-01-01

    In the cloud computing environment, cloud virtual machine (VM) will be more and more the number of virtual machine security and management faced giant Challenge. In order to address security issues cloud computing virtualization environment, this paper presents a virtual machine based on efficient and dynamic deployment VM security management model state migration and scheduling, study of which virtual machine security architecture, based on AHP (Analytic Hierarchy Process) virtual machine de...

  1. On turbulence models for rod bundle flow computations

    International Nuclear Information System (INIS)

    Hazi, Gabor

    2005-01-01

    In commercial computational fluid dynamics codes there is more than one turbulence model built in. It is the user responsibility to choose one of those models, suitable for the problem studied. In the last decade, several computations were presented using computational fluid dynamics for the simulation of various problems of the nuclear industry. A common feature in a number of those simulations is that they were performed using the standard k-ε turbulence model without justifying the choice of the model. The simulation results were rarely satisfactory. In this paper, we shall consider the flow in a fuel rod bundle as a case study and discuss why the application of the standard k-ε model fails to give reasonable results in this situation. We also show that a turbulence model based on the Reynolds stress transport equations can provide qualitatively correct results. Generally, our aim is pedagogical, we would like to call the readers attention to the fact that turbulence models have to be selected based on theoretical considerations and/or adequate information obtained from measurements

  2. Computational Methods for Modeling Aptamers and Designing Riboswitches

    Directory of Open Access Journals (Sweden)

    Sha Gong

    2017-11-01

    Full Text Available Riboswitches, which are located within certain noncoding RNA region perform functions as genetic “switches”, regulating when and where genes are expressed in response to certain ligands. Understanding the numerous functions of riboswitches requires computation models to predict structures and structural changes of the aptamer domains. Although aptamers often form a complex structure, computational approaches, such as RNAComposer and Rosetta, have already been applied to model the tertiary (three-dimensional (3D structure for several aptamers. As structural changes in aptamers must be achieved within the certain time window for effective regulation, kinetics is another key point for understanding aptamer function in riboswitch-mediated gene regulation. The coarse-grained self-organized polymer (SOP model using Langevin dynamics simulation has been successfully developed to investigate folding kinetics of aptamers, while their co-transcriptional folding kinetics can be modeled by the helix-based computational method and BarMap approach. Based on the known aptamers, the web server Riboswitch Calculator and other theoretical methods provide a new tool to design synthetic riboswitches. This review will represent an overview of these computational methods for modeling structure and kinetics of riboswitch aptamers and for designing riboswitches.

  3. Rough – Granular Computing knowledge discovery models

    Directory of Open Access Journals (Sweden)

    Mohammed M. Eissa

    2016-11-01

    Full Text Available Medical domain has become one of the most important areas of research in order to richness huge amounts of medical information about the symptoms of diseases and how to distinguish between them to diagnose it correctly. Knowledge discovery models play vital role in refinement and mining of medical indicators to help medical experts to settle treatment decisions. This paper introduces four hybrid Rough – Granular Computing knowledge discovery models based on Rough Sets Theory, Artificial Neural Networks, Genetic Algorithm and Rough Mereology Theory. A comparative analysis of various knowledge discovery models that use different knowledge discovery techniques for data pre-processing, reduction, and data mining supports medical experts to extract the main medical indicators, to reduce the misdiagnosis rates and to improve decision-making for medical diagnosis and treatment. The proposed models utilized two medical datasets: Coronary Heart Disease dataset and Hepatitis C Virus dataset. The main purpose of this paper was to explore and evaluate the proposed models based on Granular Computing methodology for knowledge extraction according to different evaluation criteria for classification of medical datasets. Another purpose is to make enhancement in the frame of KDD processes for supervised learning using Granular Computing methodology.

  4. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    Science.gov (United States)

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2018-02-01

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  5. Inversion based on computational simulations

    International Nuclear Information System (INIS)

    Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.

    1998-01-01

    A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal

  6. Cloud computing models and their application in LTE based cellular systems

    NARCIS (Netherlands)

    Staring, A.J.; Karagiannis, Georgios

    2013-01-01

    As cloud computing emerges as the next novel concept in computer science, it becomes clear that the model applied in large data storage systems used to resolve issues coming forth from an increasing demand, could also be used to resolve the very high bandwidth requirements on access network, core

  7. Self-guaranteed measurement-based quantum computation

    Science.gov (United States)

    Hayashi, Masahito; Hajdušek, Michal

    2018-05-01

    In order to guarantee the output of a quantum computation, we usually assume that the component devices are trusted. However, when the total computation process is large, it is not easy to guarantee the whole system when we have scaling effects, unexpected noise, or unaccounted for correlations between several subsystems. If we do not trust the measurement basis or the prepared entangled state, we do need to be worried about such uncertainties. To this end, we propose a self-guaranteed protocol for verification of quantum computation under the scheme of measurement-based quantum computation where no prior-trusted devices (measurement basis or entangled state) are needed. The approach we present enables the implementation of verifiable quantum computation using the measurement-based model in the context of a particular instance of delegated quantum computation where the server prepares the initial computational resource and sends it to the client, who drives the computation by single-qubit measurements. Applying self-testing procedures, we are able to verify the initial resource as well as the operation of the quantum devices and hence the computation itself. The overhead of our protocol scales with the size of the initial resource state to the power of 4 times the natural logarithm of the initial state's size.

  8. Computational neuroanatomy: ontology-based representation of neural components and connectivity.

    Science.gov (United States)

    Rubin, Daniel L; Talos, Ion-Florin; Halle, Michael; Musen, Mark A; Kikinis, Ron

    2009-02-05

    A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future.

  9. Archetype-Based Modeling of Persona for Comprehensive Personality Computing from Personal Big Data

    Science.gov (United States)

    Ma, Jianhua

    2018-01-01

    A model describing the wide variety of human behaviours called personality, is becoming increasingly popular among researchers due to the widespread availability of personal big data generated from the use of prevalent digital devices, e.g., smartphones and wearables. Such an approach can be used to model an individual and even digitally clone a person, e.g., a Cyber-I (cyber individual). This work is aimed at establishing a unique and comprehensive description for an individual to mesh with various personalized services and applications. An extensive research literature on or related to psychological modelling exists, i.e., into automatic personality computing. However, the integrity and accuracy of the results from current automatic personality computing is insufficient for the elaborate modeling in Cyber-I due to an insufficient number of data sources. To reach a comprehensive psychological description of a person, it is critical to bring in heterogeneous data sources that could provide plenty of personal data, i.e., the physiological data, and the Internet data. In addition, instead of calculating personality traits from personal data directly, an approach to a personality model derived from the theories of Carl Gustav Jung is used to measure a human subject’s persona. Therefore, this research is focused on designing an archetype-based modeling of persona covering an individual’s facets in different situations to approach a comprehensive personality model. Using personal big data to measure a specific persona in a certain scenario, our research is designed to ensure the accuracy and integrity of the generated personality model. PMID:29495343

  10. Archetype-Based Modeling of Persona for Comprehensive Personality Computing from Personal Big Data

    Directory of Open Access Journals (Sweden)

    Ao Guo

    2018-02-01

    Full Text Available A model describing the wide variety of human behaviours called personality, is becoming increasingly popular among researchers due to the widespread availability of personal big data generated from the use of prevalent digital devices, e.g., smartphones and wearables. Such an approach can be used to model an individual and even digitally clone a person, e.g., a Cyber-I (cyber individual. This work is aimed at establishing a unique and comprehensive description for an individual to mesh with various personalized services and applications. An extensive research literature on or related to psychological modelling exists, i.e., into automatic personality computing. However, the integrity and accuracy of the results from current automatic personality computing is insufficient for the elaborate modeling in Cyber-I due to an insufficient number of data sources. To reach a comprehensive psychological description of a person, it is critical to bring in heterogeneous data sources that could provide plenty of personal data, i.e., the physiological data, and the Internet data. In addition, instead of calculating personality traits from personal data directly, an approach to a personality model derived from the theories of Carl Gustav Jung is used to measure a human subject’s persona. Therefore, this research is focused on designing an archetype-based modeling of persona covering an individual’s facets in different situations to approach a comprehensive personality model. Using personal big data to measure a specific persona in a certain scenario, our research is designed to ensure the accuracy and integrity of the generated personality model.

  11. Archetype-Based Modeling of Persona for Comprehensive Personality Computing from Personal Big Data.

    Science.gov (United States)

    Guo, Ao; Ma, Jianhua

    2018-02-25

    A model describing the wide variety of human behaviours called personality, is becoming increasingly popular among researchers due to the widespread availability of personal big data generated from the use of prevalent digital devices, e.g., smartphones and wearables. Such an approach can be used to model an individual and even digitally clone a person, e.g., a Cyber-I (cyber individual). This work is aimed at establishing a unique and comprehensive description for an individual to mesh with various personalized services and applications. An extensive research literature on or related to psychological modelling exists, i.e., into automatic personality computing. However, the integrity and accuracy of the results from current automatic personality computing is insufficient for the elaborate modeling in Cyber-I due to an insufficient number of data sources. To reach a comprehensive psychological description of a person, it is critical to bring in heterogeneous data sources that could provide plenty of personal data, i.e., the physiological data, and the Internet data. In addition, instead of calculating personality traits from personal data directly, an approach to a personality model derived from the theories of Carl Gustav Jung is used to measure a human subject's persona. Therefore, this research is focused on designing an archetype-based modeling of persona covering an individual's facets in different situations to approach a comprehensive personality model. Using personal big data to measure a specific persona in a certain scenario, our research is designed to ensure the accuracy and integrity of the generated personality model.

  12. Individualized computer-aided education in mammography based on user modeling: concept and preliminary experiments.

    Science.gov (United States)

    Mazurowski, Maciej A; Baker, Jay A; Barnhart, Huiman X; Tourassi, Georgia D

    2010-03-01

    The authors propose the framework for an individualized adaptive computer-aided educational system in mammography that is based on user modeling. The underlying hypothesis is that user models can be developed to capture the individual error making patterns of radiologists-in-training. In this pilot study, the authors test the above hypothesis for the task of breast cancer diagnosis in mammograms. The concept of a user model was formalized as the function that relates image features to the likelihood/extent of the diagnostic error made by a radiologist-in-training and therefore to the level of difficulty that a case will pose to the radiologist-in-training (or "user"). Then, machine learning algorithms were implemented to build such user models. Specifically, the authors explored k-nearest neighbor, artificial neural networks, and multiple regression for the task of building the model using observer data collected from ten Radiology residents at Duke University Medical Center for the problem of breast mass diagnosis in mammograms. For each resident, a user-specific model was constructed that predicts the user's expected level of difficulty for each presented case based on two BI-RADS image features. In the experiments, leave-one-out data handling scheme was applied to assign each case to a low-predicted-difficulty or a high-predicted-difficulty group for each resident based on each of the three user models. To evaluate whether the user model is useful in predicting difficulty, the authors performed statistical tests using the generalized estimating equations approach to determine whether the mean actual error is the same or not between the low-predicted-difficulty group and the high-predicted-difficulty group. When the results for all observers were pulled together, the actual errors made by residents were statistically significantly higher for cases in the high-predicted-difficulty group than for cases in the low-predicted-difficulty group for all modeling

  13. Computational modelling of the impact of AIDS on business.

    Science.gov (United States)

    Matthews, Alan P

    2007-07-01

    An overview of computational modelling of the impact of AIDS on business in South Africa, with a detailed description of the AIDS Projection Model (APM) for companies, developed by the author, and suggestions for further work. Computational modelling of the impact of AIDS on business in South Africa requires modelling of the epidemic as a whole, and of its impact on a company. This paper gives an overview of epidemiological modelling, with an introduction to the Actuarial Society of South Africa (ASSA) model, the most widely used such model for South Africa. The APM produces projections of HIV prevalence, new infections, and AIDS mortality on a company, based on the anonymous HIV testing of company employees, and projections from the ASSA model. A smoothed statistical model of the prevalence test data is computed, and then the ASSA model projection for each category of employees is adjusted so that it matches the measured prevalence in the year of testing. FURTHER WORK: Further techniques that could be developed are microsimulation (representing individuals in the computer), scenario planning for testing strategies, and models for the business environment, such as models of entire sectors, and mapping of HIV prevalence in time and space, based on workplace and community data.

  14. Image analysis and modeling in medical image computing. Recent developments and advances.

    Science.gov (United States)

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body

  15. A Research Roadmap for Computation-Based Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  16. A Research Roadmap for Computation-Based Human Reliability Analysis

    International Nuclear Information System (INIS)

    Boring, Ronald; Mandelli, Diego; Joe, Jeffrey; Smith, Curtis; Groth, Katrina

    2015-01-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  17. Predicting Motivation: Computational Models of PFC Can Explain Neural Coding of Motivation and Effort-based Decision-making in Health and Disease.

    Science.gov (United States)

    Vassena, Eliana; Deraeve, James; Alexander, William H

    2017-10-01

    Human behavior is strongly driven by the pursuit of rewards. In daily life, however, benefits mostly come at a cost, often requiring that effort be exerted to obtain potential benefits. Medial PFC (MPFC) and dorsolateral PFC (DLPFC) are frequently implicated in the expectation of effortful control, showing increased activity as a function of predicted task difficulty. Such activity partially overlaps with expectation of reward and has been observed both during decision-making and during task preparation. Recently, novel computational frameworks have been developed to explain activity in these regions during cognitive control, based on the principle of prediction and prediction error (predicted response-outcome [PRO] model [Alexander, W. H., & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338-1344, 2011], hierarchical error representation [HER] model [Alexander, W. H., & Brown, J. W. Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27, 2354-2410, 2015]). Despite the broad explanatory power of these models, it is not clear whether they can also accommodate effects related to the expectation of effort observed in MPFC and DLPFC. Here, we propose a translation of these computational frameworks to the domain of effort-based behavior. First, we discuss how the PRO model, based on prediction error, can explain effort-related activity in MPFC, by reframing effort-based behavior in a predictive context. We propose that MPFC activity reflects monitoring of motivationally relevant variables (such as effort and reward), by coding expectations and discrepancies from such expectations. Moreover, we derive behavioral and neural model-based predictions for healthy controls and clinical populations with impairments of motivation. Second, we illustrate the possible translation to effort-based behavior of the HER model, an extended version of PRO

  18. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Airfoil computations using the gamma-Retheta model; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Niels N.

    2009-05-15

    The present work addresses the validation of the implementation of the Menter, Langtry et al. gamma-theta correlation based transition model [1, 2, 3] in the EllipSys2D code. Firstly the 2. order of accuracy of the code is verified using a grid refinement study for laminar, turbulent and transitional computations. Based on this, an estimate of the error in the computations is determined to be approximately one percent in the attached region. Following the verification of the implemented model, the model is applied to four airfoils, NACA64-018, NACA64-218, NACA64-418 and NACA64-618 and the results are compared to measurements [4] and computations using the Xfoil code by Drela et al. [5]. In the linear pre stall region good agreement is observed both for lift and drag, while differences to both measurements and Xfoil computations are observed in stalled conditions. (au)

  20. Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain

    Science.gov (United States)

    Dai, Yonghui; Han, Dongmei; Dai, Weihui

    2014-01-01

    The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market. PMID:24782659

  1. Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain

    Directory of Open Access Journals (Sweden)

    Yonghui Dai

    2014-01-01

    Full Text Available The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market.

  2. A Sensitivity Analysis of a Computer Model-Based Leak Detection System for Oil Pipelines

    OpenAIRE

    Zhe Lu; Yuntong She; Mark Loewen

    2017-01-01

    Improving leak detection capability to eliminate undetected releases is an area of focus for the energy pipeline industry, and the pipeline companies are working to improve existing methods for monitoring their pipelines. Computer model-based leak detection methods that detect leaks by analyzing the pipeline hydraulic state have been widely employed in the industry, but their effectiveness in practical applications is often challenged by real-world uncertainties. This study quantitatively ass...

  3. An introduction to statistical computing a simulation-based approach

    CERN Document Server

    Voss, Jochen

    2014-01-01

    A comprehensive introduction to sampling-based methods in statistical computing The use of computers in mathematics and statistics has opened up a wide range of techniques for studying otherwise intractable problems.  Sampling-based simulation techniques are now an invaluable tool for exploring statistical models.  This book gives a comprehensive introduction to the exciting area of sampling-based methods. An Introduction to Statistical Computing introduces the classical topics of random number generation and Monte Carlo methods.  It also includes some advanced met

  4. Computational neurorehabilitation: modeling plasticity and learning to predict recovery.

    Science.gov (United States)

    Reinkensmeyer, David J; Burdet, Etienne; Casadio, Maura; Krakauer, John W; Kwakkel, Gert; Lang, Catherine E; Swinnen, Stephan P; Ward, Nick S; Schweighofer, Nicolas

    2016-04-30

    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling - regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity.

  5. Computational modelling of thermo-mechanical and transport properties of carbon nanotubes

    International Nuclear Information System (INIS)

    Rafii-Tabar, H.

    2004-01-01

    Over the recent years, numerical modelling and computer-based simulation of the properties of carbon nanotubes have become the focal points of research in computational nano-science and its associated fields of computational condensed matter physics and materials modelling. Modelling of the mechanical, thermal and transport properties of nanotubes via numerical simulations forms the central part of this research, concerned with the nano-scale mechanics and nano-scale thermodynamics of nanotubes, and nano-scale adsorption, storage and flow properties in nanotubes. A review of these properties, obtained via computational modelling studies, is presented here. We first introduce the physics of carbon nanotubes, and then present the computational simulation tools that are appropriate for conducting a modelling study at the nano-scales. These include the molecular dynamics (MD), the Monte Carlo (MC), and the ab initio MD simulation methods. A complete range of inter-atomic potentials, of two-body and many-body varieties, that underlie all the modelling studies considered in this review is also given. Mechanical models from continuum-based elasticity theory that have been extensively employed in computing the energetics of nanotubes, or interpret the results from atomistic modelling, are presented and discussed. These include models based on the continuum theory of curved plates, shells, vibrating rods and bending beams. The validity of these continuum-based models has also been examined and the conditions under which they are applicable to nanotube modelling have been listed. Pertinent concepts from continuum theories of stress analysis are included, and the relevant methods for conducting the computation of the stress tensor, elastic constants and elastic modulii at the atomic level are also given. We then survey a comprehensive range of modelling studies concerned with the adsorption and storage of gases, and flow of fluids, in carbon nanotubes of various types. This

  6. Computational modelling of thermo-mechanical and transport properties of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rafii-Tabar, H

    2004-02-01

    Over the recent years, numerical modelling and computer-based simulation of the properties of carbon nanotubes have become the focal points of research in computational nano-science and its associated fields of computational condensed matter physics and materials modelling. Modelling of the mechanical, thermal and transport properties of nanotubes via numerical simulations forms the central part of this research, concerned with the nano-scale mechanics and nano-scale thermodynamics of nanotubes, and nano-scale adsorption, storage and flow properties in nanotubes. A review of these properties, obtained via computational modelling studies, is presented here. We first introduce the physics of carbon nanotubes, and then present the computational simulation tools that are appropriate for conducting a modelling study at the nano-scales. These include the molecular dynamics (MD), the Monte Carlo (MC), and the ab initio MD simulation methods. A complete range of inter-atomic potentials, of two-body and many-body varieties, that underlie all the modelling studies considered in this review is also given. Mechanical models from continuum-based elasticity theory that have been extensively employed in computing the energetics of nanotubes, or interpret the results from atomistic modelling, are presented and discussed. These include models based on the continuum theory of curved plates, shells, vibrating rods and bending beams. The validity of these continuum-based models has also been examined and the conditions under which they are applicable to nanotube modelling have been listed. Pertinent concepts from continuum theories of stress analysis are included, and the relevant methods for conducting the computation of the stress tensor, elastic constants and elastic modulii at the atomic level are also given. We then survey a comprehensive range of modelling studies concerned with the adsorption and storage of gases, and flow of fluids, in carbon nanotubes of various types. This

  7. Concept of development of integrated computer - based control system for 'Ukryttia' object

    International Nuclear Information System (INIS)

    Buyal'skij, V.M.; Maslov, V.P.

    2003-01-01

    The structural concept of Chernobyl NPP 'Ukryttia' Object's integrated computer - based control system development is presented on the basis of general concept of integrated Computer - based Control System (CCS) design process for organizing and technical management subjects.The concept is aimed at state-of-the-art architectural design technique application and allows using modern computer-aided facilities for functional model,information (logical and physical) models development,as well as for system object model under design

  8. Python for Scientific Computing Education: Modeling of Queueing Systems

    Directory of Open Access Journals (Sweden)

    Vladimiras Dolgopolovas

    2014-01-01

    Full Text Available In this paper, we present the methodology for the introduction to scientific computing based on model-centered learning. We propose multiphase queueing systems as a basis for learning objects. We use Python and parallel programming for implementing the models and present the computer code and results of stochastic simulations.

  9. Plasticity: modeling & computation

    National Research Council Canada - National Science Library

    Borja, Ronaldo Israel

    2013-01-01

    .... "Plasticity Modeling & Computation" is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids...

  10. Flow-based model of computer hackers' motivation.

    Science.gov (United States)

    Voiskounsky, Alexander E; Smyslova, Olga V

    2003-04-01

    Hackers' psychology, widely discussed in the media, is almost entirely unexplored by psychologists. In this study, hackers' motivation is investigated, using the flow paradigm. Flow is likely to motivate hackers, according to views expressed by researchers and by hackers themselves. Taken as granted that hackers experience flow, it was hypothesized that flow increases with the increase of hackers' competence in IT use. Self-selected subjects were recruited on specialized web sources; 457 hackers filled out a web questionnaire. Competence in IT use, specific flow experience, and demographic data were questioned. An on-line research was administered within the Russian-speaking community (though one third of Ss are non-residents of Russian Federation); since hacking seems to be international, the belief is expressed that the results are universal. The hypothesis is not confirmed: flow motivation characterizes the least and the most competent hackers, and the members of an intermediate group, that is, averagely competent Ss report the "flow crisis"-no (or less) flow experience. Two differing strategies of task choice were self-reported by Ss: a step-by-step increase of the difficulty of choices leads to a match of challenges and skills (and to preserving the flow experience); putting choices irrespective of the likelihood of solution leads to a "flow crisis." The findings give productive hints on processes of hackers' motivational development. The flow-based model of computer hackers' motivation was developed. It combines both empirically confirmed and theoretically possible ways of hackers' "professional" growth.

  11. A computer simulation model to compute the radiation transfer of mountainous regions

    Science.gov (United States)

    Li, Yuguang; Zhao, Feng; Song, Rui

    2011-11-01

    In mountainous regions, the radiometric signal recorded at the sensor depends on a number of factors such as sun angle, atmospheric conditions, surface cover type, and topography. In this paper, a computer simulation model of radiation transfer is designed and evaluated. This model implements the Monte Carlo ray-tracing techniques and is specifically dedicated to the study of light propagation in mountainous regions. The radiative processes between sun light and the objects within the mountainous region are realized by using forward Monte Carlo ray-tracing methods. The performance of the model is evaluated through detailed comparisons with the well-established 3D computer simulation model: RGM (Radiosity-Graphics combined Model) based on the same scenes and identical spectral parameters, which shows good agreements between these two models' results. By using the newly developed computer model, series of typical mountainous scenes are generated to analyze the physical mechanism of mountainous radiation transfer. The results show that the effects of the adjacent slopes are important for deep valleys and they particularly affect shadowed pixels, and the topographic effect needs to be considered in mountainous terrain before accurate inferences from remotely sensed data can be made.

  12. Bayesian Multi-Energy Computed Tomography reconstruction approaches based on decomposition models

    International Nuclear Information System (INIS)

    Cai, Caifang

    2013-01-01

    Multi-Energy Computed Tomography (MECT) makes it possible to get multiple fractions of basis materials without segmentation. In medical application, one is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical MECT measurements are usually obtained with polychromatic X-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam poly-chromaticity fail to estimate the correct decomposition fractions and result in Beam-Hardening Artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log pre-processing and the water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on non-linear forward models counting the beam poly-chromaticity show great potential for giving accurate fraction images.This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint Maximum A Posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a non-quadratic cost function. To solve it, the use of a monotone Conjugate Gradient (CG) algorithm with suboptimal descent steps is proposed.The performances of the proposed approach are analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also

  13. Global sensitivity analysis of computer models with functional inputs

    International Nuclear Information System (INIS)

    Iooss, Bertrand; Ribatet, Mathieu

    2009-01-01

    Global sensitivity analysis is used to quantify the influence of uncertain model inputs on the response variability of a numerical model. The common quantitative methods are appropriate with computer codes having scalar model inputs. This paper aims at illustrating different variance-based sensitivity analysis techniques, based on the so-called Sobol's indices, when some model inputs are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary metamodeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked generalized linear models (GLMs) or generalized additive models (GAMs). The 'mean model' allows to estimate the sensitivity indices of each scalar model inputs, while the 'dispersion model' allows to derive the total sensitivity index of the functional model inputs. The proposed approach is compared to some classical sensitivity analysis methodologies on an analytical function. Lastly, the new methodology is applied to an industrial computer code that simulates the nuclear fuel irradiation.

  14. LMFBR models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; McAdoo, J.W.; Bjerke, M.A.

    1981-10-01

    Reactor physics calculations have led to the development of nine liquid-metal fast breeder reactor (LMFBR) models for the ORIGEN2 computer code. Four of the models are based on the U-Pu fuel cycle, two are based on the Th-U-Pu fuel cycle, and three are based on the Th- 238 U fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST are given

  15. An Agent-Based Computational Model for China’s Stock Market and Stock Index Futures Market

    Directory of Open Access Journals (Sweden)

    Hai-Chuan Xu

    2014-01-01

    Full Text Available This study presents an agent-based computational cross market model for Chinese equity market structure, which includes both stocks and CSI 300 index futures. In this model, we design several stocks and one index future to simulate this structure. This model allows heterogeneous investors to make investment decisions with restrictions including wealth, market trading mechanism, and risk management. Investors’ demands and order submissions are endogenously determined. Our model successfully reproduces several key features of the Chinese financial markets including spot-futures basis distribution, bid-ask spread distribution, volatility clustering, and long memory in absolute returns. Our model can be applied in cross market risk control, market mechanism design, and arbitrage strategies analysis.

  16. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L; Lee, Choonik; Bolch, Wesley E

    2007-01-01

    Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images-the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid

  17. Development of a Sampling-Based Global Sensitivity Analysis Workflow for Multiscale Computational Cancer Models

    Science.gov (United States)

    Wang, Zhihui; Deisboeck, Thomas S.; Cristini, Vittorio

    2014-01-01

    There are two challenges that researchers face when performing global sensitivity analysis (GSA) on multiscale in silico cancer models. The first is increased computational intensity, since a multiscale cancer model generally takes longer to run than does a scale-specific model. The second problem is the lack of a best GSA method that fits all types of models, which implies that multiple methods and their sequence need to be taken into account. In this article, we therefore propose a sampling-based GSA workflow consisting of three phases – pre-analysis, analysis, and post-analysis – by integrating Monte Carlo and resampling methods with the repeated use of analysis of variance (ANOVA); we then exemplify this workflow using a two-dimensional multiscale lung cancer model. By accounting for all parameter rankings produced by multiple GSA methods, a summarized ranking is created at the end of the workflow based on the weighted mean of the rankings for each input parameter. For the cancer model investigated here, this analysis reveals that ERK, a downstream molecule of the EGFR signaling pathway, has the most important impact on regulating both the tumor volume and expansion rate in the algorithm used. PMID:25257020

  18. Essential Means for Urban Computing: Specification of Web-Based Computing Platforms for Urban Planning, a Hitchhiker’s Guide

    Directory of Open Access Journals (Sweden)

    Pirouz Nourian

    2018-03-01

    Full Text Available This article provides an overview of the specifications of web-based computing platforms for urban data analytics and computational urban planning practice. There are currently a variety of tools and platforms that can be used in urban computing practices, including scientific computing languages, interactive web languages, data sharing platforms and still many desktop computing environments, e.g., GIS software applications. We have reviewed a list of technologies considering their potential and applicability in urban planning and urban data analytics. This review is not only based on the technical factors such as capabilities of the programming languages but also the ease of developing and sharing complex data processing workflows. The arena of web-based computing platforms is currently under rapid development and is too volatile to be predictable; therefore, in this article we focus on the specification of the requirements and potentials from an urban planning point of view rather than speculating about the fate of computing platforms or programming languages. The article presents a list of promising computing technologies, a technical specification of the essential data models and operators for geo-spatial data processing, and mathematical models for an ideal urban computing platform.

  19. Surface Modeling, Solid Modeling and Finite Element Modeling. Analysis Capabilities of Computer-Assisted Design and Manufacturing Systems.

    Science.gov (United States)

    Nee, John G.; Kare, Audhut P.

    1987-01-01

    Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)

  20. A distributed computing model for telemetry data processing

    Science.gov (United States)

    Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.

    1994-05-01

    We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.

  1. A distributed computing model for telemetry data processing

    Science.gov (United States)

    Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.

    1994-01-01

    We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.

  2. Internet messenger based smart virtual class learning using ubiquitous computing

    Science.gov (United States)

    Umam, K.; Mardi, S. N. S.; Hariadi, M.

    2017-06-01

    Internet messenger (IM) has become an important educational technology component in college education, IM makes it possible for students to engage in learning and collaborating at smart virtual class learning (SVCL) using ubiquitous computing. However, the model of IM-based smart virtual class learning using ubiquitous computing and empirical evidence that would favor a broad application to improve engagement and behavior are still limited. In addition, the expectation that IM based SVCL using ubiquitous computing could improve engagement and behavior on smart class cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present the model of IM-based SVCL using ubiquitous computing and showing learners’ experiences in improved engagement and behavior for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous computing and realize the impressions of learners and lecturers about engagement and behavior aspect and its contribution to learning

  3. A Perspective on Computational Human Performance Models as Design Tools

    Science.gov (United States)

    Jones, Patricia M.

    2010-01-01

    The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.

  4. Assessment of weld thickness loss in offshore pipelines using computed radiography and computational modeling

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Oliveira, D.F.; Silva, A.X.; Lopes, R.T.; Marinho, C.; Camerini, C.S.

    2009-01-01

    In order to guarantee the structural integrity of oil plants it is crucial to monitor the amount of weld thickness loss in offshore pipelines. However, in spite of its relevance, this parameter is very difficult to determine, due to both the large diameter of most pipes and the complexity of the multi-variable system involved. In this study, a computational modeling based on Monte Carlo MCNPX code is combined with computed radiography to estimate the weld thickness loss in large-diameter offshore pipelines. Results show that computational modeling is a powerful tool to estimate intensity variations in radiographic images generated by weld thickness variations, and it can be combined with computed radiography to assess weld thickness loss in offshore and subsea pipelines.

  5. Real Time Animation of Trees Based on BBSC in Computer Games

    Directory of Open Access Journals (Sweden)

    Xuefeng Ao

    2009-01-01

    Full Text Available That researchers in the field of computer games usually find it is difficult to simulate the motion of actual 3D model trees lies in the fact that the tree model itself has very complicated structure, and many sophisticated factors need to be considered during the simulation. Though there are some works on simulating 3D tree and its motion, few of them are used in computer games due to the high demand for real-time in computer games. In this paper, an approach of animating trees in computer games based on a novel tree model representation—Ball B-Spline Curves (BBSCs are proposed. By taking advantage of the good features of the BBSC-based model, physical simulation of the motion of leafless trees with wind blowing becomes easier and more efficient. The method can generate realistic 3D tree animation in real-time, which meets the high requirement for real time in computer games.

  6. Models of optical quantum computing

    Directory of Open Access Journals (Sweden)

    Krovi Hari

    2017-03-01

    Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  7. Computer-aided modelling template: Concept and application

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2015-01-01

    decomposition technique which identifies generic steps and workflow involved, the computer-aided template concept has been developed. This concept is implemented as a software tool, which provides a user-friendly interface for following the workflow steps and guidance through the steps providing additional......Modelling is an important enabling technology in modern chemical engineering applications. A template-based approach is presented in this work to facilitate the construction and documentation of the models and enable their maintenance for reuse in a wider application range. Based on a model...

  8. Computer-Aided Template for Model Reuse, Development and Maintenance

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2014-01-01

    A template-based approach for model development is presented in this work. Based on a model decomposition technique, the computer-aided template concept has been developed. This concept is implemented as a software tool , which provides a user-friendly interface for following the workflow steps...

  9. Computer-Aided Modeling of Lipid Processing Technology

    DEFF Research Database (Denmark)

    Diaz Tovar, Carlos Axel

    2011-01-01

    increase along with growing interest in biofuels, the oleochemical industry faces in the upcoming years major challenges in terms of design and development of better products and more sustainable processes to make them. Computer-aided methods and tools for process synthesis, modeling and simulation...... are widely used for design, analysis, and optimization of processes in the chemical and petrochemical industries. These computer-aided tools have helped the chemical industry to evolve beyond commodities toward specialty chemicals and ‘consumer oriented chemicals based products’. Unfortunately...... to develop systematic computer-aided methods (property models) and tools (database) related to the prediction of the necessary physical properties suitable for design and analysis of processes employing lipid technologies. The methods and tools include: the development of a lipid-database (CAPEC...

  10. Computational disease modeling – fact or fiction?

    Directory of Open Access Journals (Sweden)

    Stephan Klaas

    2009-06-01

    Full Text Available Abstract Background Biomedical research is changing due to the rapid accumulation of experimental data at an unprecedented scale, revealing increasing degrees of complexity of biological processes. Life Sciences are facing a transition from a descriptive to a mechanistic approach that reveals principles of cells, cellular networks, organs, and their interactions across several spatial and temporal scales. There are two conceptual traditions in biological computational-modeling. The bottom-up approach emphasizes complex intracellular molecular models and is well represented within the systems biology community. On the other hand, the physics-inspired top-down modeling strategy identifies and selects features of (presumably essential relevance to the phenomena of interest and combines available data in models of modest complexity. Results The workshop, "ESF Exploratory Workshop on Computational disease Modeling", examined the challenges that computational modeling faces in contributing to the understanding and treatment of complex multi-factorial diseases. Participants at the meeting agreed on two general conclusions. First, we identified the critical importance of developing analytical tools for dealing with model and parameter uncertainty. Second, the development of predictive hierarchical models spanning several scales beyond intracellular molecular networks was identified as a major objective. This contrasts with the current focus within the systems biology community on complex molecular modeling. Conclusion During the workshop it became obvious that diverse scientific modeling cultures (from computational neuroscience, theory, data-driven machine-learning approaches, agent-based modeling, network modeling and stochastic-molecular simulations would benefit from intense cross-talk on shared theoretical issues in order to make progress on clinically relevant problems.

  11. Teacher Conceptions and Approaches Associated with an Immersive Instructional Implementation of Computer-Based Models and Assessment in a Secondary Chemistry Classroom

    Science.gov (United States)

    Waight, Noemi; Liu, Xiufeng; Gregorius, Roberto Ma.; Smith, Erica; Park, Mihwa

    2014-01-01

    This paper reports on a case study of an immersive and integrated multi-instructional approach (namely computer-based model introduction and connection with content; facilitation of individual student exploration guided by exploratory worksheet; use of associated differentiated labs and use of model-based assessments) in the implementation of…

  12. Capability-based computer systems

    CERN Document Server

    Levy, Henry M

    2014-01-01

    Capability-Based Computer Systems focuses on computer programs and their capabilities. The text first elaborates capability- and object-based system concepts, including capability-based systems, object-based approach, and summary. The book then describes early descriptor architectures and explains the Burroughs B5000, Rice University Computer, and Basic Language Machine. The text also focuses on early capability architectures. Dennis and Van Horn's Supervisor; CAL-TSS System; MIT PDP-1 Timesharing System; and Chicago Magic Number Machine are discussed. The book then describes Plessey System 25

  13. A Novel UDT-Based Transfer Speed-Up Protocol for Fog Computing

    Directory of Open Access Journals (Sweden)

    Zhijie Han

    2018-01-01

    Full Text Available Fog computing is a distributed computing model as the middle layer between the cloud data center and the IoT device/sensor. It provides computing, network, and storage devices so that cloud based services can be closer to IOT devices and sensors. Cloud computing requires a lot of bandwidth, and the bandwidth of the wireless network is limited. In contrast, the amount of bandwidth required for “fog computing” is much less. In this paper, we improved a new protocol Peer Assistant UDT-Based Data Transfer Protocol (PaUDT, applied to Iot-Cloud computing. Furthermore, we compared the efficiency of the congestion control algorithm of UDT with the Adobe’s Secure Real-Time Media Flow Protocol (RTMFP, based on UDP completely at the transport layer. At last, we built an evaluation model of UDT in RTT and bit error ratio which describes the performance. The theoretical analysis and experiment result have shown that UDT has good performance in IoT-Cloud computing.

  14. The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs-Thomson coefficient of aluminum based alloys

    International Nuclear Information System (INIS)

    Jacome, Paulo A.D.; Landim, Mariana C.; Garcia, Amauri; Furtado, Alexandre F.; Ferreira, Ivaldo L.

    2011-01-01

    Highlights: → Surface tension and the Gibbs-Thomson coefficient are computed for Al-based alloys. → Butler's scheme and ThermoCalc are used to compute the thermophysical properties. → Predictive cell/dendrite growth models depend on accurate thermophysical properties. → Mechanical properties can be related to the microstructural cell/dendrite spacing. - Abstract: In this paper, a solution for Butler's formulation is presented permitting the surface tension and the Gibbs-Thomson coefficient of Al-based binary alloys to be determined. The importance of Gibbs-Thomson coefficient for binary alloys is related to the reliability of predictions furnished by predictive cellular and dendritic growth models and of numerical computations of solidification thermal variables, which will be strongly dependent on the thermophysical properties assumed for the calculations. A numerical model based on Powell hybrid algorithm and a finite difference Jacobian approximation was coupled to a specific interface of a computational thermodynamics software in order to assess the excess Gibbs energy of the liquid phase, permitting the surface tension and Gibbs-Thomson coefficient for Al-Fe, Al-Ni, Al-Cu and Al-Si hypoeutectic alloys to be calculated. The computed results are presented as a function of the alloy composition.

  15. PENGEMBANGAN MODEL COMPUTER-BASED E-LEARNING UNTUK MENINGKATKAN KEMAMPUAN HIGH ORDER MATHEMATICAL THINKING SISWA SMA

    OpenAIRE

    Jarnawi Afgani Dahlan; Yaya Sukjaya Kusumah; Mr Heri Sutarno

    2011-01-01

    The focus of this research is on the development of mathematics teaching and learning activity which is based on the application of computer software. The aim of research is as follows : 1) to identify some mathematics topics which feasible to be presented by computer-based e-learning, 2) design, develop, and implement computer-based e-learning on mathematics, and 3) analyze the impact of computer-based e-learning in the enhancement of SMA students’ high order mathematical thinking. All activ...

  16. Computing derivative-based global sensitivity measures using polynomial chaos expansions

    International Nuclear Information System (INIS)

    Sudret, B.; Mai, C.V.

    2015-01-01

    In the field of computer experiments sensitivity analysis aims at quantifying the relative importance of each input parameter (or combinations thereof) of a computational model with respect to the model output uncertainty. Variance decomposition methods leading to the well-known Sobol' indices are recognized as accurate techniques, at a rather high computational cost though. The use of polynomial chaos expansions (PCE) to compute Sobol' indices has allowed to alleviate the computational burden though. However, when dealing with large dimensional input vectors, it is good practice to first use screening methods in order to discard unimportant variables. The derivative-based global sensitivity measures (DGSMs) have been developed recently in this respect. In this paper we show how polynomial chaos expansions may be used to compute analytically DGSMs as a mere post-processing. This requires the analytical derivation of derivatives of the orthonormal polynomials which enter PC expansions. Closed-form expressions for Hermite, Legendre and Laguerre polynomial expansions are given. The efficiency of the approach is illustrated on two well-known benchmark problems in sensitivity analysis. - Highlights: • Derivative-based global sensitivity measures (DGSM) have been developed for screening purpose. • Polynomial chaos expansions (PC) are used as a surrogate model of the original computational model. • From a PC expansion the DGSM can be computed analytically. • The paper provides the derivatives of Hermite, Legendre and Laguerre polynomials for this purpose

  17. Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling.

    Science.gov (United States)

    Daly, Keith R; Tracy, Saoirse R; Crout, Neil M J; Mairhofer, Stefan; Pridmore, Tony P; Mooney, Sacha J; Roose, Tiina

    2018-01-01

    Spatially averaged models of root-soil interactions are often used to calculate plant water uptake. Using a combination of X-ray computed tomography (CT) and image-based modelling, we tested the accuracy of this spatial averaging by directly calculating plant water uptake for young wheat plants in two soil types. The root system was imaged using X-ray CT at 2, 4, 6, 8 and 12 d after transplanting. The roots were segmented using semi-automated root tracking for speed and reproducibility. The segmented geometries were converted to a mesh suitable for the numerical solution of Richards' equation. Richards' equation was parameterized using existing pore scale studies of soil hydraulic properties in the rhizosphere of wheat plants. Image-based modelling allows the spatial distribution of water around the root to be visualized and the fluxes into the root to be calculated. By comparing the results obtained through image-based modelling to spatially averaged models, the impact of root architecture and geometry in water uptake was quantified. We observed that the spatially averaged models performed well in comparison to the image-based models with <2% difference in uptake. However, the spatial averaging loses important information regarding the spatial distribution of water near the root system. © 2017 John Wiley & Sons Ltd.

  18. A collaborative computer auditing system under SOA-based conceptual model

    Science.gov (United States)

    Cong, Qiushi; Huang, Zuoming; Hu, Jibing

    2013-03-01

    Some of the current challenges of computer auditing are the obstacles to retrieving, converting and translating data from different database schema. During the last few years, there are many data exchange standards under continuous development such as Extensible Business Reporting Language (XBRL). These XML document standards can be used for data exchange among companies, financial institutions, and audit firms. However, for many companies, it is still expensive and time-consuming to translate and provide XML messages with commercial application packages, because it is complicated and laborious to search and transform data from thousands of tables in the ERP databases. How to transfer transaction documents for supporting continuous auditing or real time auditing between audit firms and their client companies is a important topic. In this paper, a collaborative computer auditing system under SOA-based conceptual model is proposed. By utilizing the widely used XML document standards and existing data transformation applications developed by different companies and software venders, we can wrap these application as commercial web services that will be easy implemented under the forthcoming application environments: service-oriented architecture (SOA). Under the SOA environments, the multiagency mechanism will help the maturity and popularity of data assurance service over the Internet. By the wrapping of data transformation components with heterogeneous databases or platforms, it will create new component markets composed by many software vendors and assurance service companies to provide data assurance services for audit firms, regulators or third parties.

  19. Computed tomography depiction of small pediatric vessels with model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Gonca; Courtier, Jesse L.; Phelps, Andrew; Marcovici, Peter A.; MacKenzie, John D. [UCSF Benioff Children' s Hospital, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2014-07-15

    Computed tomography (CT) is extremely important in characterizing blood vessel anatomy and vascular lesions in children. Recent advances in CT reconstruction technology hold promise for improved image quality and also reductions in radiation dose. This report evaluates potential improvements in image quality for the depiction of small pediatric vessels with model-based iterative reconstruction (Veo trademark), a technique developed to improve image quality and reduce noise. To evaluate Veo trademark as an improved method when compared to adaptive statistical iterative reconstruction (ASIR trademark) for the depiction of small vessels on pediatric CT. Seventeen patients (mean age: 3.4 years, range: 2 days to 10.0 years; 6 girls, 11 boys) underwent contrast-enhanced CT examinations of the chest and abdomen in this HIPAA compliant and institutional review board approved study. Raw data were reconstructed into separate image datasets using Veo trademark and ASIR trademark algorithms (GE Medical Systems, Milwaukee, WI). Four blinded radiologists subjectively evaluated image quality. The pulmonary, hepatic, splenic and renal arteries were evaluated for the length and number of branches depicted. Datasets were compared with parametric and non-parametric statistical tests. Readers stated a preference for Veo trademark over ASIR trademark images when subjectively evaluating image quality criteria for vessel definition, image noise and resolution of small anatomical structures. The mean image noise in the aorta and fat was significantly less for Veo trademark vs. ASIR trademark reconstructed images. Quantitative measurements of mean vessel lengths and number of branches vessels delineated were significantly different for Veo trademark and ASIR trademark images. Veo trademark consistently showed more of the vessel anatomy: longer vessel length and more branching vessels. When compared to the more established adaptive statistical iterative reconstruction algorithm, model-based

  20. Computed tomography depiction of small pediatric vessels with model-based iterative reconstruction

    International Nuclear Information System (INIS)

    Koc, Gonca; Courtier, Jesse L.; Phelps, Andrew; Marcovici, Peter A.; MacKenzie, John D.

    2014-01-01

    Computed tomography (CT) is extremely important in characterizing blood vessel anatomy and vascular lesions in children. Recent advances in CT reconstruction technology hold promise for improved image quality and also reductions in radiation dose. This report evaluates potential improvements in image quality for the depiction of small pediatric vessels with model-based iterative reconstruction (Veo trademark), a technique developed to improve image quality and reduce noise. To evaluate Veo trademark as an improved method when compared to adaptive statistical iterative reconstruction (ASIR trademark) for the depiction of small vessels on pediatric CT. Seventeen patients (mean age: 3.4 years, range: 2 days to 10.0 years; 6 girls, 11 boys) underwent contrast-enhanced CT examinations of the chest and abdomen in this HIPAA compliant and institutional review board approved study. Raw data were reconstructed into separate image datasets using Veo trademark and ASIR trademark algorithms (GE Medical Systems, Milwaukee, WI). Four blinded radiologists subjectively evaluated image quality. The pulmonary, hepatic, splenic and renal arteries were evaluated for the length and number of branches depicted. Datasets were compared with parametric and non-parametric statistical tests. Readers stated a preference for Veo trademark over ASIR trademark images when subjectively evaluating image quality criteria for vessel definition, image noise and resolution of small anatomical structures. The mean image noise in the aorta and fat was significantly less for Veo trademark vs. ASIR trademark reconstructed images. Quantitative measurements of mean vessel lengths and number of branches vessels delineated were significantly different for Veo trademark and ASIR trademark images. Veo trademark consistently showed more of the vessel anatomy: longer vessel length and more branching vessels. When compared to the more established adaptive statistical iterative reconstruction algorithm, model-based

  1. Overhead Crane Computer Model

    Science.gov (United States)

    Enin, S. S.; Omelchenko, E. Y.; Fomin, N. V.; Beliy, A. V.

    2018-03-01

    The paper has a description of a computer model of an overhead crane system. The designed overhead crane system consists of hoisting, trolley and crane mechanisms as well as a payload two-axis system. With the help of the differential equation of specified mechanisms movement derived through Lagrange equation of the II kind, it is possible to build an overhead crane computer model. The computer model was obtained using Matlab software. Transients of coordinate, linear speed and motor torque of trolley and crane mechanism systems were simulated. In addition, transients of payload swaying were obtained with respect to the vertical axis. A trajectory of the trolley mechanism with simultaneous operation with the crane mechanism is represented in the paper as well as a two-axis trajectory of payload. The designed computer model of an overhead crane is a great means for studying positioning control and anti-sway control systems.

  2. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    where x increases from zero to N, the saturation value. Box 1. Matrix Meth- ... such as Laplace transforms and non-linear differential equa- tions with .... atomic bomb project in the. US in the early ... his work on game theory and computers.

  3. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors

    Science.gov (United States)

    Cenek, Martin; Dahl, Spencer K.

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  4. Computer-aided modeling for efficient and innovative product-process engineering

    DEFF Research Database (Denmark)

    Heitzig, Martina

    Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy and water. This trend is set to continue due to the substantial benefits computer...... in chemical and biochemical engineering have been solved to illustrate the application of the generic modelling methodology, the computeraided modelling framework and the developed software tool.......-aided methods provide. The key prerequisite of computer-aided productprocess engineering is however the availability of models of different types, forms and application modes. The development of the models required for the systems under investigation tends to be a challenging, time-consuming and therefore cost...

  5. Computer-Based Linguistic Analysis.

    Science.gov (United States)

    Wright, James R.

    Noam Chomsky's transformational-generative grammar model may effectively be translated into an equivalent computer model. Phrase-structure rules and transformations are tested as to their validity and ordering by the computer via the process of random lexical substitution. Errors appearing in the grammar are detected and rectified, and formal…

  6. Biomedical Imaging and Computational Modeling in Biomechanics

    CERN Document Server

    Iacoviello, Daniela

    2013-01-01

    This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and iomedical imaging and computational modeling in cardiovascular disease.   The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis.

  7. Assessing the performance of a computer-based policy model of HIV and AIDS.

    Science.gov (United States)

    Rydzak, Chara E; Cotich, Kara L; Sax, Paul E; Hsu, Heather E; Wang, Bingxia; Losina, Elena; Freedberg, Kenneth A; Weinstein, Milton C; Goldie, Sue J

    2010-09-09

    Model-based analyses, conducted within a decision analytic framework, provide a systematic way to combine information about the natural history of disease and effectiveness of clinical management strategies with demographic and epidemiological characteristics of the population. Among the challenges with disease-specific modeling include the need to identify influential assumptions and to assess the face validity and internal consistency of the model. We describe a series of exercises involved in adapting a computer-based simulation model of HIV disease to the Women's Interagency HIV Study (WIHS) cohort and assess model performance as we re-parameterized the model to address policy questions in the U.S. relevant to HIV-infected women using data from the WIHS. Empiric calibration targets included 24-month survival curves stratified by treatment status and CD4 cell count. The most influential assumptions in untreated women included chronic HIV-associated mortality following an opportunistic infection, and in treated women, the 'clinical effectiveness' of HAART and the ability of HAART to prevent HIV complications independent of virologic suppression. Good-fitting parameter sets required reductions in the clinical effectiveness of 1st and 2nd line HAART and improvements in 3rd and 4th line regimens. Projected rates of treatment regimen switching using the calibrated cohort-specific model closely approximated independent analyses published using data from the WIHS. The model demonstrated good internal consistency and face validity, and supported cohort heterogeneities that have been reported in the literature. Iterative assessment of model performance can provide information about the relative influence of uncertain assumptions and provide insight into heterogeneities within and between cohorts. Description of calibration exercises can enhance the transparency of disease-specific models.

  8. Assessing the performance of a computer-based policy model of HIV and AIDS.

    Directory of Open Access Journals (Sweden)

    Chara E Rydzak

    2010-09-01

    Full Text Available Model-based analyses, conducted within a decision analytic framework, provide a systematic way to combine information about the natural history of disease and effectiveness of clinical management strategies with demographic and epidemiological characteristics of the population. Among the challenges with disease-specific modeling include the need to identify influential assumptions and to assess the face validity and internal consistency of the model.We describe a series of exercises involved in adapting a computer-based simulation model of HIV disease to the Women's Interagency HIV Study (WIHS cohort and assess model performance as we re-parameterized the model to address policy questions in the U.S. relevant to HIV-infected women using data from the WIHS. Empiric calibration targets included 24-month survival curves stratified by treatment status and CD4 cell count. The most influential assumptions in untreated women included chronic HIV-associated mortality following an opportunistic infection, and in treated women, the 'clinical effectiveness' of HAART and the ability of HAART to prevent HIV complications independent of virologic suppression. Good-fitting parameter sets required reductions in the clinical effectiveness of 1st and 2nd line HAART and improvements in 3rd and 4th line regimens. Projected rates of treatment regimen switching using the calibrated cohort-specific model closely approximated independent analyses published using data from the WIHS.The model demonstrated good internal consistency and face validity, and supported cohort heterogeneities that have been reported in the literature. Iterative assessment of model performance can provide information about the relative influence of uncertain assumptions and provide insight into heterogeneities within and between cohorts. Description of calibration exercises can enhance the transparency of disease-specific models.

  9. A Resource Service Model in the Industrial IoT System Based on Transparent Computing.

    Science.gov (United States)

    Li, Weimin; Wang, Bin; Sheng, Jinfang; Dong, Ke; Li, Zitong; Hu, Yixiang

    2018-03-26

    The Internet of Things (IoT) has received a lot of attention, especially in industrial scenarios. One of the typical applications is the intelligent mine, which actually constructs the Six-Hedge underground systems with IoT platforms. Based on a case study of the Six Systems in the underground metal mine, this paper summarizes the main challenges of industrial IoT from the aspects of heterogeneity in devices and resources, security, reliability, deployment and maintenance costs. Then, a novel resource service model for the industrial IoT applications based on Transparent Computing (TC) is presented, which supports centralized management of all resources including operating system (OS), programs and data on the server-side for the IoT devices, thus offering an effective, reliable, secure and cross-OS IoT service and reducing the costs of IoT system deployment and maintenance. The model has five layers: sensing layer, aggregation layer, network layer, service and storage layer and interface and management layer. We also present a detailed analysis on the system architecture and key technologies of the model. Finally, the efficiency of the model is shown by an experiment prototype system.

  10. Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data.

    Science.gov (United States)

    Szigeti, Krisztián; Szabó, Tibor; Korom, Csaba; Czibak, Ilona; Horváth, Ildikó; Veres, Dániel S; Gyöngyi, Zoltán; Karlinger, Kinga; Bergmann, Ralf; Pócsik, Márta; Budán, Ferenc; Máthé, Domokos

    2016-02-11

    Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was performed to model early stages of disease and establish differential diagnosis. To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated fractal dimension, then abstracted by the fractal dimension -- cut-off range mathematical function. Nonparametric Kruskal-Wallis (KW) and Mann-Whitney post hoc (MWph) tests were used. Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable within the three exposure groups. A new radiomics evaluation method was established based on analysis of the fractal dimension of chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, tuberculosis or lung carcinomas.

  11. Computer-Aided Multiscale Modelling for Chemical Process Engineering

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Gani, Rafiqul

    2007-01-01

    Chemical processes are generally modeled through monoscale approaches, which, while not adequate, satisfy a useful role in product-process design. In this case, use of a multi-dimensional and multi-scale model-based approach has importance in product-process development. A computer-aided framework...

  12. ZIVIS: A City Computing Platform Based on Volunteer Computing

    International Nuclear Information System (INIS)

    Antoli, B.; Castejon, F.; Giner, A.; Losilla, G.; Reynolds, J. M.; Rivero, A.; Sangiao, S.; Serrano, F.; Tarancon, A.; Valles, R.; Velasco, J. L.

    2007-01-01

    Abstract Volunteer computing has come up as a new form of distributed computing. Unlike other computing paradigms like Grids, which use to be based on complex architectures, volunteer computing has demonstrated a great ability to integrate dispersed, heterogeneous computing resources with ease. This article presents ZIVIS, a project which aims to deploy a city-wide computing platform in Zaragoza (Spain). ZIVIS is based on BOINC (Berkeley Open Infrastructure for Network Computing), a popular open source framework to deploy volunteer and desktop grid computing systems. A scientific code which simulates the trajectories of particles moving inside a stellarator fusion device, has been chosen as the pilot application of the project. In this paper we describe the approach followed to port the code to the BOINC framework as well as some novel techniques, based on standard Grid protocols, we have used to access the output data present in the BOINC server from a remote visualizer. (Author)

  13. Computational-Model-Based Analysis of Context Effects on Harmonic Expectancy

    OpenAIRE

    Morimoto, Satoshi; Remijn, Gerard B.; Nakajima, Yoshitaka

    2016-01-01

    Expectancy for an upcoming musical chord, harmonic expectancy, is supposedly based on automatic activation of tonal knowledge. Since previous studies implicitly relied on interpretations based on Western music theory, the underlying computational processes involved in harmonic expectancy and how it relates to tonality need further clarification. In particular, short chord sequences which cannot lead to unique keys are difficult to interpret in music theory. In this study, we examined effects ...

  14. Computational Modeling of Space Physiology

    Science.gov (United States)

    Lewandowski, Beth E.; Griffin, Devon W.

    2016-01-01

    The Digital Astronaut Project (DAP), within NASAs Human Research Program, develops and implements computational modeling for use in the mitigation of human health and performance risks associated with long duration spaceflight. Over the past decade, DAP developed models to provide insights into space flight related changes to the central nervous system, cardiovascular system and the musculoskeletal system. Examples of the models and their applications include biomechanical models applied to advanced exercise device development, bone fracture risk quantification for mission planning, accident investigation, bone health standards development, and occupant protection. The International Space Station (ISS), in its role as a testing ground for long duration spaceflight, has been an important platform for obtaining human spaceflight data. DAP has used preflight, in-flight and post-flight data from short and long duration astronauts for computational model development and validation. Examples include preflight and post-flight bone mineral density data, muscle cross-sectional area, and muscle strength measurements. Results from computational modeling supplement space physiology research by informing experimental design. Using these computational models, DAP personnel can easily identify both important factors associated with a phenomenon and areas where data are lacking. This presentation will provide examples of DAP computational models, the data used in model development and validation, and applications of the model.

  15. Initial draft of CSE-UCLA evaluation model based on weighted product in order to optimize digital library services in computer college in Bali

    Science.gov (United States)

    Divayana, D. G. H.; Adiarta, A.; Abadi, I. B. G. S.

    2018-01-01

    The aim of this research was to create initial design of CSE-UCLA evaluation model modified with Weighted Product in evaluating digital library service at Computer College in Bali. The method used in this research was developmental research method and developed by Borg and Gall model design. The results obtained from the research that conducted earlier this month was a rough sketch of Weighted Product based CSE-UCLA evaluation model that the design had been able to provide a general overview of the stages of weighted product based CSE-UCLA evaluation model used in order to optimize the digital library services at the Computer Colleges in Bali.

  16. Minimal models of multidimensional computations.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Fitzgerald

    2011-03-01

    Full Text Available The multidimensional computations performed by many biological systems are often characterized with limited information about the correlations between inputs and outputs. Given this limitation, our approach is to construct the maximum noise entropy response function of the system, leading to a closed-form and minimally biased model consistent with a given set of constraints on the input/output moments; the result is equivalent to conditional random field models from machine learning. For systems with binary outputs, such as neurons encoding sensory stimuli, the maximum noise entropy models are logistic functions whose arguments depend on the constraints. A constraint on the average output turns the binary maximum noise entropy models into minimum mutual information models, allowing for the calculation of the information content of the constraints and an information theoretic characterization of the system's computations. We use this approach to analyze the nonlinear input/output functions in macaque retina and thalamus; although these systems have been previously shown to be responsive to two input dimensions, the functional form of the response function in this reduced space had not been unambiguously identified. A second order model based on the logistic function is found to be both necessary and sufficient to accurately describe the neural responses to naturalistic stimuli, accounting for an average of 93% of the mutual information with a small number of parameters. Thus, despite the fact that the stimulus is highly non-Gaussian, the vast majority of the information in the neural responses is related to first and second order correlations. Our results suggest a principled and unbiased way to model multidimensional computations and determine the statistics of the inputs that are being encoded in the outputs.

  17. Computational models of the pulmonary circulation: Insights and the move towards clinically directed studies

    Science.gov (United States)

    Tawhai, Merryn H.; Clark, Alys R.; Burrowes, Kelly S.

    2011-01-01

    Biophysically-based computational models provide a tool for integrating and explaining experimental data, observations, and hypotheses. Computational models of the pulmonary circulation have evolved from minimal and efficient constructs that have been used to study individual mechanisms that contribute to lung perfusion, to sophisticated multi-scale and -physics structure-based models that predict integrated structure-function relationships within a heterogeneous organ. This review considers the utility of computational models in providing new insights into the function of the pulmonary circulation, and their application in clinically motivated studies. We review mathematical and computational models of the pulmonary circulation based on their application; we begin with models that seek to answer questions in basic science and physiology and progress to models that aim to have clinical application. In looking forward, we discuss the relative merits and clinical relevance of computational models: what important features are still lacking; and how these models may ultimately be applied to further increasing our understanding of the mechanisms occurring in disease of the pulmonary circulation. PMID:22034608

  18. Computational Modelling of Piston Ring Dynamics in 3D

    Directory of Open Access Journals (Sweden)

    Dlugoš Jozef

    2014-12-01

    Full Text Available Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody system (MBS. The MBS model is compared to the finite element method (FEM solution.

  19. Computer-based theory of strategies

    Energy Technology Data Exchange (ETDEWEB)

    Findler, N V

    1983-01-01

    Some of the objectives and working tools of a new area of study, tentatively called theory of strategies, are described. It is based on the methodology of artificial intelligence, decision theory, operations research and digital gaming. The latter refers to computing activity that incorporates model building, simulation and learning programs in conflict situations. Three long-term projects which aim at automatically analyzing and synthesizing strategies are discussed. 27 references.

  20. The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs-Thomson coefficient of aluminum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jacome, Paulo A.D.; Landim, Mariana C. [Department of Mechanical Engineering, Fluminense Federal University, Av. dos Trabalhadores, 420-27255-125 Volta Redonda, RJ (Brazil); Garcia, Amauri, E-mail: amaurig@fem.unicamp.br [Department of Materials Engineering, University of Campinas, UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil); Furtado, Alexandre F.; Ferreira, Ivaldo L. [Department of Mechanical Engineering, Fluminense Federal University, Av. dos Trabalhadores, 420-27255-125 Volta Redonda, RJ (Brazil)

    2011-08-20

    Highlights: {yields} Surface tension and the Gibbs-Thomson coefficient are computed for Al-based alloys. {yields} Butler's scheme and ThermoCalc are used to compute the thermophysical properties. {yields} Predictive cell/dendrite growth models depend on accurate thermophysical properties. {yields} Mechanical properties can be related to the microstructural cell/dendrite spacing. - Abstract: In this paper, a solution for Butler's formulation is presented permitting the surface tension and the Gibbs-Thomson coefficient of Al-based binary alloys to be determined. The importance of Gibbs-Thomson coefficient for binary alloys is related to the reliability of predictions furnished by predictive cellular and dendritic growth models and of numerical computations of solidification thermal variables, which will be strongly dependent on the thermophysical properties assumed for the calculations. A numerical model based on Powell hybrid algorithm and a finite difference Jacobian approximation was coupled to a specific interface of a computational thermodynamics software in order to assess the excess Gibbs energy of the liquid phase, permitting the surface tension and Gibbs-Thomson coefficient for Al-Fe, Al-Ni, Al-Cu and Al-Si hypoeutectic alloys to be calculated. The computed results are presented as a function of the alloy composition.

  1. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  2. Integrating interactive computational modeling in biology curricula.

    Science.gov (United States)

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  3. Depth-Averaged Non-Hydrostatic Hydrodynamic Model Using a New Multithreading Parallel Computing Method

    Directory of Open Access Journals (Sweden)

    Ling Kang

    2017-03-01

    Full Text Available Compared to the hydrostatic hydrodynamic model, the non-hydrostatic hydrodynamic model can accurately simulate flows that feature vertical accelerations. The model’s low computational efficiency severely restricts its wider application. This paper proposes a non-hydrostatic hydrodynamic model based on a multithreading parallel computing method. The horizontal momentum equation is obtained by integrating the Navier–Stokes equations from the bottom to the free surface. The vertical momentum equation is approximated by the Keller-box scheme. A two-step method is used to solve the model equations. A parallel strategy based on block decomposition computation is utilized. The original computational domain is subdivided into two subdomains that are physically connected via a virtual boundary technique. Two sub-threads are created and tasked with the computation of the two subdomains. The producer–consumer model and the thread lock technique are used to achieve synchronous communication between sub-threads. The validity of the model was verified by solitary wave propagation experiments over a flat bottom and slope, followed by two sinusoidal wave propagation experiments over submerged breakwater. The parallel computing method proposed here was found to effectively enhance computational efficiency and save 20%–40% computation time compared to serial computing. The parallel acceleration rate and acceleration efficiency are approximately 1.45% and 72%, respectively. The parallel computing method makes a contribution to the popularization of non-hydrostatic models.

  4. Patient-Specific Computational Modeling

    CERN Document Server

    Peña, Estefanía

    2012-01-01

    This book addresses patient-specific modeling. It integrates computational modeling, experimental procedures, imagine clinical segmentation and mesh generation with the finite element method (FEM) to solve problems in computational biomedicine and bioengineering. Specific areas of interest include cardiovascular problems, ocular and muscular systems and soft tissue modeling. Patient-specific modeling has been the subject of serious research over the last seven years and interest in the area is continually growing and this area is expected to further develop in the near future.

  5. Computer models for optimizing radiation therapy

    International Nuclear Information System (INIS)

    Duechting, W.

    1998-01-01

    The aim of this contribution is to outline how methods of system analysis, control therapy and modelling can be applied to simulate normal and malignant cell growth and to optimize cancer treatment as for instance radiation therapy. Based on biological observations and cell kinetic data, several types of models have been developed describing the growth of tumor spheroids and the cell renewal of normal tissue. The irradiation model is represented by the so-called linear-quadratic model describing the survival fraction as a function of the dose. Based thereon, numerous simulation runs for different treatment schemes can be performed. Thus, it is possible to study the radiation effect on tumor and normal tissue separately. Finally, this method enables a computer-assisted recommendation for an optimal patient-specific treatment schedule prior to clinical therapy. (orig.) [de

  6. Modelling of data uncertainties on hybrid computers

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Anke (ed.)

    2016-06-15

    The codes d{sup 3}f and r{sup 3}t are well established for modelling density-driven flow and nuclide transport in the far field of repositories for hazardous material in deep geological formations. They are applicable in porous media as well as in fractured rock or mudstone, for modelling salt- and heat transport as well as a free groundwater surface. Development of the basic framework of d{sup 3}f and r{sup 3}t had begun more than 20 years ago. Since that time significant advancements took place in the requirements for safety assessment as well as for computer hardware development. The period of safety assessment for a repository of high-level radioactive waste was extended to 1 million years, and the complexity of the models is steadily growing. Concurrently, the demands on accuracy increase. Additionally, model and parameter uncertainties become more and more important for an increased understanding of prediction reliability. All this leads to a growing demand for computational power that requires a considerable software speed-up. An effective way to achieve this is the use of modern, hybrid computer architectures which requires basically the set-up of new data structures and a corresponding code revision but offers a potential speed-up by several orders of magnitude. The original codes d{sup 3}f and r{sup 3}t were applications of the software platform UG /BAS 94/ whose development had begun in the early nineteennineties. However, UG had recently been advanced to the C++ based, substantially revised version UG4 /VOG 13/. To benefit also in the future from state-of-the-art numerical algorithms and to use hybrid computer architectures, the codes d{sup 3}f and r{sup 3}t were transferred to this new code platform. Making use of the fact that coupling between different sets of equations is natively supported in UG4, d{sup 3}f and r{sup 3}t were combined to one conjoint code d{sup 3}f++. A direct estimation of uncertainties for complex groundwater flow models with the

  7. Computational model of precision grip in Parkinson’s disease: A Utility based approach

    Directory of Open Access Journals (Sweden)

    Ankur eGupta

    2013-12-01

    Full Text Available We propose a computational model of Precision Grip (PG performance in normal subjects and Parkinson’s Disease (PD patients. Prior studies on grip force generation in PD patients show an increase in grip force during ON medication and an increase in the variability of the grip force during OFF medication (Fellows et al 1998; Ingvarsson et al 1997. Changes in grip force generation in dopamine-deficient PD conditions strongly suggest contribution of the Basal Ganglia, a deep brain system having a crucial role in translating dopamine signals to decision making. The present approach is to treat the problem of modeling grip force generation as a problem of action selection, which is one of the key functions of the Basal Ganglia. The model consists of two components: 1 the sensory-motor loop component, and 2 the Basal Ganglia component. The sensory-motor loop component converts a reference position and a reference grip force, into lift force and grip force profiles, respectively. These two forces cooperate in grip-lifting a load. The sensory-motor loop component also includes a plant model that represents the interaction between two fingers involved in PG, and the object to be lifted. The Basal Ganglia component is modeled using Reinforcement Learning with the significant difference that the action selection is performed using utility distribution instead of using purely Value-based distribution, thereby incorporating risk-based decision making. The proposed model is able to account for the precision grip results from normal and PD patients accurately (Fellows et. al. 1998; Ingvarsson et. al. 1997. To our knowledge the model is the first model of precision grip in PD conditions.

  8. Computationally efficient dynamic modeling of robot manipulators with multiple flexible-links using acceleration-based discrete time transfer matrix method

    DEFF Research Database (Denmark)

    Zhang, Xuping; Sørensen, Rasmus; RahbekIversen, Mathias

    2018-01-01

    This paper presents a novel and computationally efficient modeling method for the dynamics of flexible-link robot manipulators. In this method, a robot manipulator is decomposed into components/elements. The component/element dynamics is established using Newton–Euler equations, and then is linea......This paper presents a novel and computationally efficient modeling method for the dynamics of flexible-link robot manipulators. In this method, a robot manipulator is decomposed into components/elements. The component/element dynamics is established using Newton–Euler equations......, and then is linearized based on the acceleration-based state vector. The transfer matrices for each type of components/elements are developed, and used to establish the system equations of a flexible robot manipulator by concatenating the state vector from the base to the end-effector. With this strategy, the size...... manipulators, and only involves calculating and transferring component/element dynamic equations that have small size. The numerical simulations and experimental testing of flexible-link manipulators are conducted to validate the proposed methodologies....

  9. GPU-accelerated 3-D model-based tracking

    International Nuclear Information System (INIS)

    Brown, J Anthony; Capson, David W

    2010-01-01

    Model-based approaches to tracking the pose of a 3-D object in video are effective but computationally demanding. While statistical estimation techniques, such as the particle filter, are often employed to minimize the search space, real-time performance remains unachievable on current generation CPUs. Recent advances in graphics processing units (GPUs) have brought massively parallel computational power to the desktop environment and powerful developer tools, such as NVIDIA Compute Unified Device Architecture (CUDA), have provided programmers with a mechanism to exploit it. NVIDIA GPUs' single-instruction multiple-thread (SIMT) programming model is well-suited to many computer vision tasks, particularly model-based tracking, which requires several hundred 3-D model poses to be dynamically configured, rendered, and evaluated against each frame in the video sequence. Using 6 degree-of-freedom (DOF) rigid hand tracking as an example application, this work harnesses consumer-grade GPUs to achieve real-time, 3-D model-based, markerless object tracking in monocular video.

  10. Computer Based Road Accident Reconstruction Experiences

    Directory of Open Access Journals (Sweden)

    Milan Batista

    2005-03-01

    Full Text Available Since road accident analyses and reconstructions are increasinglybased on specific computer software for simulationof vehicle d1iving dynamics and collision dynamics, and forsimulation of a set of trial runs from which the model that bestdescribes a real event can be selected, the paper presents anoverview of some computer software and methods available toaccident reconstruction experts. Besides being time-saving,when properly used such computer software can provide moreauthentic and more trustworthy accident reconstruction, thereforepractical experiences while using computer software toolsfor road accident reconstruction obtained in the TransportSafety Laboratory at the Faculty for Maritime Studies andTransport of the University of Ljubljana are presented and discussed.This paper addresses also software technology for extractingmaximum information from the accident photo-documentationto support accident reconstruction based on the simulationsoftware, as well as the field work of reconstruction expertsor police on the road accident scene defined by this technology.

  11. Structure, function, and behaviour of computational models in systems biology.

    Science.gov (United States)

    Knüpfer, Christian; Beckstein, Clemens; Dittrich, Peter; Le Novère, Nicolas

    2013-05-31

    Systems Biology develops computational models in order to understand biological phenomena. The increasing number and complexity of such "bio-models" necessitate computer support for the overall modelling task. Computer-aided modelling has to be based on a formal semantic description of bio-models. But, even if computational bio-models themselves are represented precisely in terms of mathematical expressions their full meaning is not yet formally specified and only described in natural language. We present a conceptual framework - the meaning facets - which can be used to rigorously specify the semantics of bio-models. A bio-model has a dual interpretation: On the one hand it is a mathematical expression which can be used in computational simulations (intrinsic meaning). On the other hand the model is related to the biological reality (extrinsic meaning). We show that in both cases this interpretation should be performed from three perspectives: the meaning of the model's components (structure), the meaning of the model's intended use (function), and the meaning of the model's dynamics (behaviour). In order to demonstrate the strengths of the meaning facets framework we apply it to two semantically related models of the cell cycle. Thereby, we make use of existing approaches for computer representation of bio-models as much as possible and sketch the missing pieces. The meaning facets framework provides a systematic in-depth approach to the semantics of bio-models. It can serve two important purposes: First, it specifies and structures the information which biologists have to take into account if they build, use and exchange models. Secondly, because it can be formalised, the framework is a solid foundation for any sort of computer support in bio-modelling. The proposed conceptual framework establishes a new methodology for modelling in Systems Biology and constitutes a basis for computer-aided collaborative research.

  12. Is Model-Based Development a Favorable Approach for Complex and Safety-Critical Computer Systems on Commercial Aircraft?

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2014-01-01

    A system is safety-critical if its failure can endanger human life or cause significant damage to property or the environment. State-of-the-art computer systems on commercial aircraft are highly complex, software-intensive, functionally integrated, and network-centric systems of systems. Ensuring that such systems are safe and comply with existing safety regulations is costly and time-consuming as the level of rigor in the development process, especially the validation and verification activities, is determined by considerations of system complexity and safety criticality. A significant degree of care and deep insight into the operational principles of these systems is required to ensure adequate coverage of all design implications relevant to system safety. Model-based development methodologies, methods, tools, and techniques facilitate collaboration and enable the use of common design artifacts among groups dealing with different aspects of the development of a system. This paper examines the application of model-based development to complex and safety-critical aircraft computer systems. Benefits and detriments are identified and an overall assessment of the approach is given.

  13. Mathematical modeling and computational prediction of cancer drug resistance.

    Science.gov (United States)

    Sun, Xiaoqiang; Hu, Bin

    2017-06-23

    Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of

  14. Computational studies of physical properties of Nb-Si based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Lizhi [Middle Tennessee State Univ., Murfreesboro, TN (United States)

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered lattices including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.

  15. Knowledge-Based Environmental Context Modeling

    Science.gov (United States)

    Pukite, P. R.; Challou, D. J.

    2017-12-01

    As we move from the oil-age to an energy infrastructure based on renewables, the need arises for new educational tools to support the analysis of geophysical phenomena and their behavior and properties. Our objective is to present models of these phenomena to make them amenable for incorporation into more comprehensive analysis contexts. Starting at the level of a college-level computer science course, the intent is to keep the models tractable and therefore practical for student use. Based on research performed via an open-source investigation managed by DARPA and funded by the Department of Interior [1], we have adapted a variety of physics-based environmental models for a computer-science curriculum. The original research described a semantic web architecture based on patterns and logical archetypal building-blocks (see figure) well suited for a comprehensive environmental modeling framework. The patterns span a range of features that cover specific land, atmospheric and aquatic domains intended for engineering modeling within a virtual environment. The modeling engine contained within the server relied on knowledge-based inferencing capable of supporting formal terminology (through NASA JPL's Semantic Web for Earth and Environmental Technology (SWEET) ontology and a domain-specific language) and levels of abstraction via integrated reasoning modules. One of the key goals of the research was to simplify models that were ordinarily computationally intensive to keep them lightweight enough for interactive or virtual environment contexts. The breadth of the elements incorporated is well-suited for learning as the trend toward ontologies and applying semantic information is vital for advancing an open knowledge infrastructure. As examples of modeling, we have covered such geophysics topics as fossil-fuel depletion, wind statistics, tidal analysis, and terrain modeling, among others. Techniques from the world of computer science will be necessary to promote efficient

  16. Secure Data Access Control for Fog Computing Based on Multi-Authority Attribute-Based Signcryption with Computation Outsourcing and Attribute Revocation.

    Science.gov (United States)

    Xu, Qian; Tan, Chengxiang; Fan, Zhijie; Zhu, Wenye; Xiao, Ya; Cheng, Fujia

    2018-05-17

    Nowadays, fog computing provides computation, storage, and application services to end users in the Internet of Things. One of the major concerns in fog computing systems is how fine-grained access control can be imposed. As a logical combination of attribute-based encryption and attribute-based signature, Attribute-based Signcryption (ABSC) can provide confidentiality and anonymous authentication for sensitive data and is more efficient than traditional "encrypt-then-sign" or "sign-then-encrypt" strategy. Thus, ABSC is suitable for fine-grained access control in a semi-trusted cloud environment and is gaining more and more attention recently. However, in many existing ABSC systems, the computation cost required for the end users in signcryption and designcryption is linear with the complexity of signing and encryption access policy. Moreover, only a single authority that is responsible for attribute management and key generation exists in the previous proposed ABSC schemes, whereas in reality, mostly, different authorities monitor different attributes of the user. In this paper, we propose OMDAC-ABSC, a novel data access control scheme based on Ciphertext-Policy ABSC, to provide data confidentiality, fine-grained control, and anonymous authentication in a multi-authority fog computing system. The signcryption and designcryption overhead for the user is significantly reduced by outsourcing the undesirable computation operations to fog nodes. The proposed scheme is proven to be secure in the standard model and can provide attribute revocation and public verifiability. The security analysis, asymptotic complexity comparison, and implementation results indicate that our construction can balance the security goals with practical efficiency in computation.

  17. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2018-05-01

    Full Text Available Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal computer, a Graphics Processing Unit (GPU-based, high-performance computing method using the OpenACC application was adopted to parallelize the shallow water model. An unstructured data management method was presented to control the data transportation between the GPU and CPU (Central Processing Unit with minimum overhead, and then both computation and data were offloaded from the CPU to the GPU, which exploited the computational capability of the GPU as much as possible. The parallel model was validated using various benchmarks and real-world case studies. The results demonstrate that speed-ups of up to one order of magnitude can be achieved in comparison with the serial model. The proposed parallel model provides a fast and reliable tool with which to quickly assess flood hazards in large-scale areas and, thus, has a bright application prospect for dynamic inundation risk identification and disaster assessment.

  18. Optimal Sequential Rules for Computer-Based Instruction.

    Science.gov (United States)

    Vos, Hans J.

    1998-01-01

    Formulates sequential rules for adapting the appropriate amount of instruction to learning needs in the context of computer-based instruction. Topics include Bayesian decision theory, threshold and linear-utility structure, psychometric model, optimal sequential number of test questions, and an empirical example of sequential instructional…

  19. Dynamical Trust and Reputation Computation Model for B2C E-Commerce

    Directory of Open Access Journals (Sweden)

    Bo Tian

    2015-10-01

    Full Text Available Trust is one of the most important factors that influence the successful application of network service environments, such as e-commerce, wireless sensor networks, and online social networks. Computation models associated with trust and reputation have been paid special attention in both computer societies and service science in recent years. In this paper, a dynamical computation model of reputation for B2C e-commerce is proposed. Firstly, conceptions associated with trust and reputation are introduced, and the mathematical formula of trust for B2C e-commerce is given. Then a dynamical computation model of reputation is further proposed based on the conception of trust and the relationship between trust and reputation. In the proposed model, classical varying processes of reputation of B2C e-commerce are discussed. Furthermore, the iterative trust and reputation computation models are formulated via a set of difference equations based on the closed-loop feedback mechanism. Finally, a group of numerical simulation experiments are performed to illustrate the proposed model of trust and reputation. Experimental results show that the proposed model is effective in simulating the dynamical processes of trust and reputation for B2C e-commerce.

  20. Advanced computer-based training

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H D; Martin, H D

    1987-05-01

    The paper presents new techniques of computer-based training for personnel of nuclear power plants. Training on full-scope simulators is further increased by use of dedicated computer-based equipment. An interactive communication system runs on a personal computer linked to a video disc; a part-task simulator runs on 32 bit process computers and shows two versions: as functional trainer or as on-line predictor with an interactive learning system (OPAL), which may be well-tailored to a specific nuclear power plant. The common goal of both develoments is the optimization of the cost-benefit ratio for training and equipment.

  1. Advanced computer-based training

    International Nuclear Information System (INIS)

    Fischer, H.D.; Martin, H.D.

    1987-01-01

    The paper presents new techniques of computer-based training for personnel of nuclear power plants. Training on full-scope simulators is further increased by use of dedicated computer-based equipment. An interactive communication system runs on a personal computer linked to a video disc; a part-task simulator runs on 32 bit process computers and shows two versions: as functional trainer or as on-line predictor with an interactive learning system (OPAL), which may be well-tailored to a specific nuclear power plant. The common goal of both develoments is the optimization of the cost-benefit ratio for training and equipment. (orig.) [de

  2. Model-free and model-based reward prediction errors in EEG.

    Science.gov (United States)

    Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy

    2018-05-24

    Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. International Conference on Computational Intelligence, Cyber Security, and Computational Models

    CERN Document Server

    Ramasamy, Vijayalakshmi; Sheen, Shina; Veeramani, C; Bonato, Anthony; Batten, Lynn

    2016-01-01

    This book aims at promoting high-quality research by researchers and practitioners from academia and industry at the International Conference on Computational Intelligence, Cyber Security, and Computational Models ICC3 2015 organized by PSG College of Technology, Coimbatore, India during December 17 – 19, 2015. This book enriches with innovations in broad areas of research like computational modeling, computational intelligence and cyber security. These emerging inter disciplinary research areas have helped to solve multifaceted problems and gained lot of attention in recent years. This encompasses theory and applications, to provide design, analysis and modeling of the aforementioned key areas.

  4. Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data

    International Nuclear Information System (INIS)

    Szigeti, Krisztián; Szabó, Tibor; Korom, Csaba; Czibak, Ilona; Horváth, Ildikó; Veres, Dániel S.; Gyöngyi, Zoltán; Karlinger, Kinga; Bergmann, Ralf; Pócsik, Márta; Budán, Ferenc; Máthé, Domokos

    2016-01-01

    Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was performed to model early stages of disease and establish differential diagnosis. To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated fractal dimension, then abstracted by the fractal dimension -- cut-off range mathematical function. Nonparametric Kruskal-Wallis (KW) and Mann–Whitney post hoc (MWph) tests were used. Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable within the three exposure groups. A new radiomics evaluation method was established based on analysis of the fractal dimension of chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, tuberculosis or lung carcinomas. The online version of this article (doi:10.1186/s12880-016-0118-z) contains supplementary material, which is available to authorized users

  5. 3D CFD computations of transitional flows using DES and a correlation based transition model; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Niels N.

    2009-07-15

    The report describes the application of the correlation based transition model of Menter et. al. [1, 2] to the cylinder drag crisis and the stalled flow over an DU-96-W-351 airfoil using the DES methodology. When predicting the flow over airfoils and rotors, the laminar-turbulent transition process can be important for the aerodynamic performance. Today, the most widespread approach is to use fully turbulent computations, where the transitional process is ignored and the entire boundary layer on the wings or airfoils is handled by the turbulence model. The correlation based transition model has lately shown promising results, and the present paper describes the application of the model to predict the drag and shedding frequency for flow around a cylinder from sub to super-critical Reynolds numbers. Additionally, the model is applied to the flow around the DU-96 airfoil, at high angles of attack. (au)

  6. Cosmic logic: a computational model

    International Nuclear Information System (INIS)

    Vanchurin, Vitaly

    2016-01-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps

  7. Computer-based modelling and optimization in transportation

    CERN Document Server

    Rossi, Riccardo

    2014-01-01

    This volume brings together works resulting from research carried out by members of the EURO Working Group on Transportation (EWGT) and presented during meetings and workshops organized by the Group under the patronage of the Association of European Operational Research Societies in 2012 and 2013. The main targets of the EWGT include providing a forum to share research information and experience, encouraging joint research and the development of both theoretical methods and applications, and promoting cooperation among the many institutions and organizations which are leaders at national level in the field of transportation and logistics. The primary fields of interest concern operational research methods, mathematical models and computation algorithms, to solve and sustain solutions to problems mainly faced by public administrations, city authorities, public transport companies, service providers and logistic operators. Related areas of interest are: land use and transportation planning, traffic control and ...

  8. A Quantitative Exploration of Preservice Teachers' Intent to Use Computer-based Technology

    Science.gov (United States)

    Kim, Kioh; Jain, Sachin; Westhoff, Guy; Rezabek, Landra

    2008-01-01

    Based on Bandura's (1977) social learning theory, the purpose of this study is to identify the relationship of preservice teachers' perceptions of faculty modeling of computer-based technology and preservice teachers' intent of using computer-based technology in educational settings. There were 92 participants in this study; they were enrolled in…

  9. Computational Fragment-Based Drug Design: Current Trends, Strategies, and Applications.

    Science.gov (United States)

    Bian, Yuemin; Xie, Xiang-Qun Sean

    2018-04-09

    Fragment-based drug design (FBDD) has become an effective methodology for drug development for decades. Successful applications of this strategy brought both opportunities and challenges to the field of Pharmaceutical Science. Recent progress in the computational fragment-based drug design provide an additional approach for future research in a time- and labor-efficient manner. Combining multiple in silico methodologies, computational FBDD possesses flexibilities on fragment library selection, protein model generation, and fragments/compounds docking mode prediction. These characteristics provide computational FBDD superiority in designing novel and potential compounds for a certain target. The purpose of this review is to discuss the latest advances, ranging from commonly used strategies to novel concepts and technologies in computational fragment-based drug design. Particularly, in this review, specifications and advantages are compared between experimental and computational FBDD, and additionally, limitations and future prospective are discussed and emphasized.

  10. Dynamical Models for Computer Viruses Propagation

    Directory of Open Access Journals (Sweden)

    José R. C. Piqueira

    2008-01-01

    Full Text Available Nowadays, digital computer systems and networks are the main engineering tools, being used in planning, design, operation, and control of all sizes of building, transportation, machinery, business, and life maintaining devices. Consequently, computer viruses became one of the most important sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus programs have been developed, but they are limited to detecting and removing infections, based on previous knowledge of the virus code. In spite of having good adaptation capability, these programs work just as vaccines against diseases and are not able to prevent new infections based on the network state. Here, a trial on modeling computer viruses propagation dynamics relates it to other notable events occurring in the network permitting to establish preventive policies in the network management. Data from three different viruses are collected in the Internet and two different identification techniques, autoregressive and Fourier analyses, are applied showing that it is possible to forecast the dynamics of a new virus propagation by using the data collected from other viruses that formerly infected the network.

  11. Computational social dynamic modeling of group recruitment.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Nina M.; Lee, Marinna; Pickett, Marc; Turnley, Jessica Glicken (Sandia National Laboratories, Albuquerque, NM); Smrcka, Julianne D. (Sandia National Laboratories, Albuquerque, NM); Ko, Teresa H.; Moy, Timothy David (Sandia National Laboratories, Albuquerque, NM); Wu, Benjamin C.

    2004-01-01

    The Seldon software toolkit combines concepts from agent-based modeling and social science to create a computationally social dynamic model for group recruitment. The underlying recruitment model is based on a unique three-level hybrid agent-based architecture that contains simple agents (level one), abstract agents (level two), and cognitive agents (level three). This uniqueness of this architecture begins with abstract agents that permit the model to include social concepts (gang) or institutional concepts (school) into a typical software simulation environment. The future addition of cognitive agents to the recruitment model will provide a unique entity that does not exist in any agent-based modeling toolkits to date. We use social networks to provide an integrated mesh within and between the different levels. This Java based toolkit is used to analyze different social concepts based on initialization input from the user. The input alters a set of parameters used to influence the values associated with the simple agents, abstract agents, and the interactions (simple agent-simple agent or simple agent-abstract agent) between these entities. The results of phase-1 Seldon toolkit provide insight into how certain social concepts apply to different scenario development for inner city gang recruitment.

  12. A novel low-parameter computational model to aid in-silico glycoengineering

    DEFF Research Database (Denmark)

    Spahn, Philipp N.; Hansen, Anders Holmgaard; Hansen, Henning Gram

    2015-01-01

    benefit from computational models that would better meet the requirements for industrial utilization. Here, we introduce a novel approach combining constraints-based and stochastic techniques to derive a computational model that can predict the effects of gene knockouts on protein glycoprofiles while...... it does not follow any direct equivalent of a genetic code. Instead, its complex biogenesis in the Golgi apparatus (Figure 1A) integrates a variety of influencing factors most of which are only incompletely understood. Various attempts have been undertaken so far to computationally model the process...

  13. Application of computer-aided multi-scale modelling framework – Aerosol case study

    DEFF Research Database (Denmark)

    Heitzig, Martina; Sin, Gürkan; Glarborg, Peter

    2011-01-01

    Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy and water. This trend is set to continue due to the substantial benefits computer-aided...... methods provide. The key prerequisite of computer-aided product-process engineering is however the availability of models of different types, forms and application modes. The development of the models required for the systems under investigation tends to be a challenging and time-consuming task involving...... numerous steps, expert skills and different modelling tools. This motivates the development of a computer-aided modelling framework that supports the user during model development, documentation, analysis, identification, application and re-use with the goal to increase the efficiency of the modelling...

  14. A novel patient-specific model to compute coronary fractional flow reserve.

    Science.gov (United States)

    Kwon, Soon-Sung; Chung, Eui-Chul; Park, Jin-Seo; Kim, Gook-Tae; Kim, Jun-Woo; Kim, Keun-Hong; Shin, Eun-Seok; Shim, Eun Bo

    2014-09-01

    The fractional flow reserve (FFR) is a widely used clinical index to evaluate the functional severity of coronary stenosis. A computer simulation method based on patients' computed tomography (CT) data is a plausible non-invasive approach for computing the FFR. This method can provide a detailed solution for the stenosed coronary hemodynamics by coupling computational fluid dynamics (CFD) with the lumped parameter model (LPM) of the cardiovascular system. In this work, we have implemented a simple computational method to compute the FFR. As this method uses only coronary arteries for the CFD model and includes only the LPM of the coronary vascular system, it provides simpler boundary conditions for the coronary geometry and is computationally more efficient than existing approaches. To test the efficacy of this method, we simulated a three-dimensional straight vessel using CFD coupled with the LPM. The computed results were compared with those of the LPM. To validate this method in terms of clinically realistic geometry, a patient-specific model of stenosed coronary arteries was constructed from CT images, and the computed FFR was compared with clinically measured results. We evaluated the effect of a model aorta on the computed FFR and compared this with a model without the aorta. Computationally, the model without the aorta was more efficient than that with the aorta, reducing the CPU time required for computing a cardiac cycle to 43.4%. Copyright © 2014. Published by Elsevier Ltd.

  15. A computational fluid dynamics model for designing heat exchangers based on natural convection

    NARCIS (Netherlands)

    Dirkse, M.H.; Loon, van W.K.P.; Walle, van der T.; Speetjens, S.L.; Bot, G.P.A.

    2006-01-01

    A computational fluid dynamics model was created for the design of a natural convection shell-and-tube heat exchanger with baffles. The flow regime proved to be turbulent and this was modelled using the k¿¿ turbulence model. The features of the complex geometry were simplified considerably resulting

  16. Computer-based irrigation scheduling for cotton crop

    International Nuclear Information System (INIS)

    Laghari, K.Q.; Memon, H.M.

    2008-01-01

    In this study a real time irrigation schedule for cotton crop has been tested using mehran model, a computer-based DDS (Decision Support System). The irrigation schedule was set on selected MAD (Management Allowable Depletion) and the current root depth position. The total 451 mm irrigation water applied to the crop field. The seasonal computed crop ET (Evapotranspiration) was estimated 421.32 mm and actual (ET/sub ca/) observed was 413 mm. The model over-estimated seasonal ET by only 1.94. WUE (Water Use Efficiency) for seed-cotton achieved 6.59 Kg (ha mm)/sup -1/. The statistical analysis (R/sup 2/=0.96, ARE%=2.00, T-1.17 and F=550.57) showed good performance of the model in simulated and observed ET values. The designed Mehran model is designed quite versatile for irrigation scheduling and can be successfully used as irrigation DSS tool for various crop types. (author)

  17. Glider-based computing in reaction-diffusion hexagonal cellular automata

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; Wuensche, Andrew; De Lacy Costello, Benjamin

    2006-01-01

    A three-state hexagonal cellular automaton, discovered in [Wuensche A. Glider dynamics in 3-value hexagonal cellular automata: the beehive rule. Int J Unconvention Comput, in press], presents a conceptual discrete model of a reaction-diffusion system with inhibitor and activator reagents. The automaton model of reaction-diffusion exhibits mobile localized patterns (gliders) in its space-time dynamics. We show how to implement the basic computational operations with these mobile localizations, and thus demonstrate collision-based logical universality of the hexagonal reaction-diffusion cellular automaton

  18. Shadow Replication: An Energy-Aware, Fault-Tolerant Computational Model for Green Cloud Computing

    Directory of Open Access Journals (Sweden)

    Xiaolong Cui

    2014-08-01

    Full Text Available As the demand for cloud computing continues to increase, cloud service providers face the daunting challenge to meet the negotiated SLA agreement, in terms of reliability and timely performance, while achieving cost-effectiveness. This challenge is increasingly compounded by the increasing likelihood of failure in large-scale clouds and the rising impact of energy consumption and CO2 emission on the environment. This paper proposes Shadow Replication, a novel fault-tolerance model for cloud computing, which seamlessly addresses failure at scale, while minimizing energy consumption and reducing its impact on the environment. The basic tenet of the model is to associate a suite of shadow processes to execute concurrently with the main process, but initially at a much reduced execution speed, to overcome failures as they occur. Two computationally-feasible schemes are proposed to achieve Shadow Replication. A performance evaluation framework is developed to analyze these schemes and compare their performance to traditional replication-based fault tolerance methods, focusing on the inherent tradeoff between fault tolerance, the specified SLA and profit maximization. The results show that Shadow Replication leads to significant energy reduction, and is better suited for compute-intensive execution models, where up to 30% more profit increase can be achieved due to reduced energy consumption.

  19. Computer-based multi-channel analyzer based on internet

    International Nuclear Information System (INIS)

    Zhou Xinzhi; Ning Jiaoxian

    2001-01-01

    Combined the technology of Internet with computer-based multi-channel analyzer, a new kind of computer-based multi-channel analyzer system which is based on browser is presented. Its framework and principle as well as its implementation are discussed

  20. A Framework for Understanding Physics Students' Computational Modeling Practices

    Science.gov (United States)

    Lunk, Brandon Robert

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a Matter & Interactions: Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by

  1. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.

    Science.gov (United States)

    Zsuga, Judit; Biro, Klara; Papp, Csaba; Tajti, Gabor; Gesztelyi, Rudolf

    2016-02-01

    Reinforcement learning (RL) is a powerful concept underlying forms of associative learning governed by the use of a scalar reward signal, with learning taking place if expectations are violated. RL may be assessed using model-based and model-free approaches. Model-based reinforcement learning involves the amygdala, the hippocampus, and the orbitofrontal cortex (OFC). The model-free system involves the pedunculopontine-tegmental nucleus (PPTgN), the ventral tegmental area (VTA) and the ventral striatum (VS). Based on the functional connectivity of VS, model-free and model based RL systems center on the VS that by integrating model-free signals (received as reward prediction error) and model-based reward related input computes value. Using the concept of reinforcement learning agent we propose that the VS serves as the value function component of the RL agent. Regarding the model utilized for model-based computations we turned to the proactive brain concept, which offers an ubiquitous function for the default network based on its great functional overlap with contextual associative areas. Hence, by means of the default network the brain continuously organizes its environment into context frames enabling the formulation of analogy-based association that are turned into predictions of what to expect. The OFC integrates reward-related information into context frames upon computing reward expectation by compiling stimulus-reward and context-reward information offered by the amygdala and hippocampus, respectively. Furthermore we suggest that the integration of model-based expectations regarding reward into the value signal is further supported by the efferent of the OFC that reach structures canonical for model-free learning (e.g., the PPTgN, VTA, and VS). (c) 2016 APA, all rights reserved).

  2. COMPUTATIONAL MODELS FOR SUSTAINABLE DEVELOPMENT

    OpenAIRE

    Monendra Grover; Rajesh Kumar; Tapan Kumar Mondal; S. Rajkumar

    2011-01-01

    Genetic erosion is a serious problem and computational models have been developed to prevent it. The computational modeling in this field not only includes (terrestrial) reserve design, but also decision modeling for related problems such as habitat restoration, marine reserve design, and nonreserve approaches to conservation management. Models have been formulated for evaluating tradeoffs between socioeconomic, biophysical, and spatial criteria in establishing marine reserves. The percolatio...

  3. Applied modelling and computing in social science

    CERN Document Server

    Povh, Janez

    2015-01-01

    In social science outstanding results are yielded by advanced simulation methods, based on state of the art software technologies and an appropriate combination of qualitative and quantitative methods. This book presents examples of successful applications of modelling and computing in social science: business and logistic process simulation and optimization, deeper knowledge extractions from big data, better understanding and predicting of social behaviour and modelling health and environment changes.

  4. An E-learning System based on Affective Computing

    Science.gov (United States)

    Duo, Sun; Song, Lu Xue

    In recent years, e-learning as a learning system is very popular. But the current e-learning systems cannot instruct students effectively since they do not consider the emotional state in the context of instruction. The emergence of the theory about "Affective computing" can solve this question. It can make the computer's intelligence no longer be a pure cognitive one. In this paper, we construct an emotional intelligent e-learning system based on "Affective computing". A dimensional model is put forward to recognize and analyze the student's emotion state and a virtual teacher's avatar is offered to regulate student's learning psychology with consideration of teaching style based on his personality trait. A "man-to-man" learning environment is built to simulate the traditional classroom's pedagogy in the system.

  5. Visual and Computational Modelling of Minority Games

    Directory of Open Access Journals (Sweden)

    Robertas Damaševičius

    2017-02-01

    Full Text Available The paper analyses the Minority Game and focuses on analysis and computational modelling of several variants (variable payoff, coalition-based and ternary voting of Minority Game using UAREI (User-Action-Rule-Entities-Interface model. UAREI is a model for formal specification of software gamification, and the UAREI visual modelling language is a language used for graphical representation of game mechanics. The URAEI model also provides the embedded executable modelling framework to evaluate how the rules of the game will work for the players in practice. We demonstrate flexibility of UAREI model for modelling different variants of Minority Game rules for game design.

  6. Tutorial: Parallel Computing of Simulation Models for Risk Analysis.

    Science.gov (United States)

    Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D

    2016-10-01

    Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.

  7. Model-based segmentation in orbital volume measurement with cone beam computed tomography and evaluation against current concepts.

    Science.gov (United States)

    Wagner, Maximilian E H; Gellrich, Nils-Claudius; Friese, Karl-Ingo; Becker, Matthias; Wolter, Franz-Erich; Lichtenstein, Juergen T; Stoetzer, Marcus; Rana, Majeed; Essig, Harald

    2016-01-01

    Objective determination of the orbital volume is important in the diagnostic process and in evaluating the efficacy of medical and/or surgical treatment of orbital diseases. Tools designed to measure orbital volume with computed tomography (CT) often cannot be used with cone beam CT (CBCT) because of inferior tissue representation, although CBCT has the benefit of greater availability and lower patient radiation exposure. Therefore, a model-based segmentation technique is presented as a new method for measuring orbital volume and compared to alternative techniques. Both eyes from thirty subjects with no known orbital pathology who had undergone CBCT as a part of routine care were evaluated (n = 60 eyes). Orbital volume was measured with manual, atlas-based, and model-based segmentation methods. Volume measurements, volume determination time, and usability were compared between the three methods. Differences in means were tested for statistical significance using two-tailed Student's t tests. Neither atlas-based (26.63 ± 3.15 mm(3)) nor model-based (26.87 ± 2.99 mm(3)) measurements were significantly different from manual volume measurements (26.65 ± 4.0 mm(3)). However, the time required to determine orbital volume was significantly longer for manual measurements (10.24 ± 1.21 min) than for atlas-based (6.96 ± 2.62 min, p < 0.001) or model-based (5.73 ± 1.12 min, p < 0.001) measurements. All three orbital volume measurement methods examined can accurately measure orbital volume, although atlas-based and model-based methods seem to be more user-friendly and less time-consuming. The new model-based technique achieves fully automated segmentation results, whereas all atlas-based segmentations at least required manipulations to the anterior closing. Additionally, model-based segmentation can provide reliable orbital volume measurements when CT image quality is poor.

  8. Dataflow-Based Mapping of Computer Vision Algorithms onto FPGAs

    Directory of Open Access Journals (Sweden)

    Ivan Corretjer

    2007-01-01

    Full Text Available We develop a design methodology for mapping computer vision algorithms onto an FPGA through the use of coarse-grain reconfigurable dataflow graphs as a representation to guide the designer. We first describe a new dataflow modeling technique called homogeneous parameterized dataflow (HPDF, which effectively captures the structure of an important class of computer vision applications. This form of dynamic dataflow takes advantage of the property that in a large number of image processing applications, data production and consumption rates can vary, but are equal across dataflow graph edges for any particular application iteration. After motivating and defining the HPDF model of computation, we develop an HPDF-based design methodology that offers useful properties in terms of verifying correctness and exposing performance-enhancing transformations; we discuss and address various challenges in efficiently mapping an HPDF-based application representation into target-specific HDL code; and we present experimental results pertaining to the mapping of a gesture recognition application onto the Xilinx Virtex II FPGA.

  9. Complex system modelling and control through intelligent soft computations

    CERN Document Server

    Azar, Ahmad

    2015-01-01

    The book offers a snapshot of the theories and applications of soft computing in the area of complex systems modeling and control. It presents the most important findings discussed during the 5th International Conference on Modelling, Identification and Control, held in Cairo, from August 31-September 2, 2013. The book consists of twenty-nine selected contributions, which have been thoroughly reviewed and extended before their inclusion in the volume. The different chapters, written by active researchers in the field, report on both current theories and important applications of soft-computing. Besides providing the readers with soft-computing fundamentals, and soft-computing based inductive methodologies/algorithms, the book also discusses key industrial soft-computing applications, as well as multidisciplinary solutions developed for a variety of purposes, like windup control, waste management, security issues, biomedical applications and many others. It is a perfect reference guide for graduate students, r...

  10. Impact of changing computer technology on hydrologic and water resource modeling

    OpenAIRE

    Loucks, D.P.; Fedra, K.

    1987-01-01

    The increasing availability of substantial computer power at relatively low costs and the increasing ease of using computer graphics, of communicating with other computers and data bases, and of programming using high-level problem-oriented computer languages, is providing new opportunities and challenges for those developing and using hydrologic and water resources models. This paper reviews some of the progress made towards the development and application of computer support systems designe...

  11. Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory

    Science.gov (United States)

    Westera, Wim

    2018-01-01

    This paper presents a computational model for simulating how people learn from serious games. While avoiding the combinatorial explosion of a games micro-states, the model offers a meso-level pathfinding approach, which is guided by cognitive flow theory and various concepts from learning sciences. It extends a basic, existing model by exposing…

  12. Using Model Replication to Improve the Reliability of Agent-Based Models

    Science.gov (United States)

    Zhong, Wei; Kim, Yushim

    The basic presupposition of model replication activities for a computational model such as an agent-based model (ABM) is that, as a robust and reliable tool, it must be replicable in other computing settings. This assumption has recently gained attention in the community of artificial society and simulation due to the challenges of model verification and validation. Illustrating the replication of an ABM representing fraudulent behavior in a public service delivery system originally developed in the Java-based MASON toolkit for NetLogo by a different author, this paper exemplifies how model replication exercises provide unique opportunities for model verification and validation process. At the same time, it helps accumulate best practices and patterns of model replication and contributes to the agenda of developing a standard methodological protocol for agent-based social simulation.

  13. Advances in Intelligent Modelling and Simulation Artificial Intelligence-Based Models and Techniques in Scalable Computing

    CERN Document Server

    Khan, Samee; Burczy´nski, Tadeusz

    2012-01-01

    One of the most challenging issues in today’s large-scale computational modeling and design is to effectively manage the complex distributed environments, such as computational clouds, grids, ad hoc, and P2P networks operating under  various  types of users with evolving relationships fraught with  uncertainties. In this context, the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. Moreover, uncertainties are presented to the system at hand in various forms of information that are incomplete, imprecise, fragmentary, or overloading, which hinders in the full and precise resolve of the evaluation criteria, subsequencing and selection, and the assignment scores. Intelligent scalable systems enable the flexible routing and charging, advanced user interactions and the aggregation and sharing of geographically-distributed resources in modern large-scale systems.   This book presents new ideas, theories, models...

  14. CMS computing model evolution

    International Nuclear Information System (INIS)

    Grandi, C; Bonacorsi, D; Colling, D; Fisk, I; Girone, M

    2014-01-01

    The CMS Computing Model was developed and documented in 2004. Since then the model has evolved to be more flexible and to take advantage of new techniques, but many of the original concepts remain and are in active use. In this presentation we will discuss the changes planned for the restart of the LHC program in 2015. We will discuss the changes planning in the use and definition of the computing tiers that were defined with the MONARC project. We will present how we intend to use new services and infrastructure to provide more efficient and transparent access to the data. We will discuss the computing plans to make better use of the computing capacity by scheduling more of the processor nodes, making better use of the disk storage, and more intelligent use of the networking.

  15. Computational biomechanics for medicine imaging, modeling and computing

    CERN Document Server

    Doyle, Barry; Wittek, Adam; Nielsen, Poul; Miller, Karol

    2016-01-01

    The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This volume comprises eighteen of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, UK, Switzerland, Scotland, France and Russia. Some of the interesting topics discussed are: tailored computational models; traumatic brain injury; soft-tissue mechanics; medical image analysis; and clinically-relevant simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.

  16. First experiences with model based iterative reconstructions influence on quantitative plaque volume and intensity measurements in coronary computed tomography angiography

    DEFF Research Database (Denmark)

    Precht, Helle; Kitslaar, Pieter H.; Broersen, Alexander

    2017-01-01

    Purpose: Investigate the influence of adaptive statistical iterative reconstruction (ASIR) and the model- based IR (Veo) reconstruction algorithm in coronary computed tomography angiography (CCTA) im- ages on quantitative measurements in coronary arteries for plaque volumes and intensities. Methods...

  17. Quantum computing with photons: introduction to the circuit model, the one-way quantum computer, and the fundamental principles of photonic experiments

    International Nuclear Information System (INIS)

    Barz, Stefanie

    2015-01-01

    Quantum physics has revolutionized our understanding of information processing and enables computational speed-ups that are unattainable using classical computers. This tutorial reviews the fundamental tools of photonic quantum information processing. The basics of theoretical quantum computing are presented and the quantum circuit model as well as measurement-based models of quantum computing are introduced. Furthermore, it is shown how these concepts can be implemented experimentally using photonic qubits, where information is encoded in the photons’ polarization. (tutorial)

  18. Some computer simulations based on the linear relative risk model

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1991-10-01

    This report presents the results of computer simulations designed to evaluate and compare the performance of the likelihood ratio statistic and the score statistic for making inferences about the linear relative risk mode. The work was motivated by data on workers exposed to low doses of radiation, and the report includes illustration of several procedures for obtaining confidence limits for the excess relative risk coefficient based on data from three studies of nuclear workers. The computer simulations indicate that with small sample sizes and highly skewed dose distributions, asymptotic approximations to the score statistic or to the likelihood ratio statistic may not be adequate. For testing the null hypothesis that the excess relative risk is equal to zero, the asymptotic approximation to the likelihood ratio statistic was adequate, but use of the asymptotic approximation to the score statistic rejected the null hypothesis too often. Frequently the likelihood was maximized at the lower constraint, and when this occurred, the asymptotic approximations for the likelihood ratio and score statistics did not perform well in obtaining upper confidence limits. The score statistic and likelihood ratio statistics were found to perform comparably in terms of power and width of the confidence limits. It is recommended that with modest sample sizes, confidence limits be obtained using computer simulations based on the score statistic. Although nuclear worker studies are emphasized in this report, its results are relevant for any study investigating linear dose-response functions with highly skewed exposure distributions. 22 refs., 14 tabs

  19. A Generative Computer Model for Preliminary Design of Mass Housing

    Directory of Open Access Journals (Sweden)

    Ahmet Emre DİNÇER

    2014-05-01

    Full Text Available Today, we live in what we call the “Information Age”, an age in which information technologies are constantly being renewed and developed. Out of this has emerged a new approach called “Computational Design” or “Digital Design”. In addition to significantly influencing all fields of engineering, this approach has come to play a similar role in all stages of the design process in the architectural field. In providing solutions for analytical problems in design such as cost estimate, circulation systems evaluation and environmental effects, which are similar to engineering problems, this approach is being used in the evaluation, representation and presentation of traditionally designed buildings. With developments in software and hardware technology, it has evolved as the studies based on design of architectural products and production implementations with digital tools used for preliminary design stages. This paper presents a digital model which may be used in the preliminary stage of mass housing design with Cellular Automata, one of generative design systems based on computational design approaches. This computational model, developed by scripts of 3Ds Max software, has been implemented on a site plan design of mass housing, floor plan organizations made by user preferences and facade designs. By using the developed computer model, many alternative housing types could be rapidly produced. The interactive design tool of this computational model allows the user to transfer dimensional and functional housing preferences by means of the interface prepared for model. The results of the study are discussed in the light of innovative architectural approaches.

  20. The IceCube Computing Infrastructure Model

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Besides the big LHC experiments a number of mid-size experiments is coming online which need to define new computing models to meet the demands on processing and storage requirements of those experiments. We present the hybrid computing model of IceCube which leverages GRID models with a more flexible direct user model as an example of a possible solution. In IceCube a central datacenter at UW-Madison servers as Tier-0 with a single Tier-1 datacenter at DESY Zeuthen. We describe the setup of the IceCube computing infrastructure and report on our experience in successfully provisioning the IceCube computing needs.

  1. Methodical Approaches to Teaching of Computer Modeling in Computer Science Course

    Science.gov (United States)

    Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina

    2015-01-01

    The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…

  2. Motivation and performance within a collaborative computer-based modeling task: Relations between student's achievement goal orientation, self-efficiacy, cognitive processing and achievement.

    NARCIS (Netherlands)

    Sins, Patrick H.M.; van Joolingen, Wouter; Savelsbergh, Elwin R.; van Hout-Wolters, Bernadette

    2008-01-01

    Purpose of the present study was to test a conceptual model of relations among achievement goal orientation, self-efficacy, cognitive processing, and achievement of students working within a particular collaborative task context. The task involved a collaborative computer-based modeling task. In

  3. Motivation and performance within a collaborative computer-based modeling task: Relations between students' achievement goal orientation, self-efficacy, cognitive processing and achievement

    NARCIS (Netherlands)

    Sins, P.H.M.; van Joolingen, W.R.; Savelsbergh, E.R.; van Hout-Wolters, B.H.A.M.

    2008-01-01

    Purpose of the present study was to test a conceptual model of relations among achievement goal orientation, self-efficacy, cognitive processing, and achievement of students working within a particular collaborative task context. The task involved a collaborative computer-based modeling task. In

  4. A survey on computational intelligence approaches for predictive modeling in prostate cancer

    OpenAIRE

    Cosma, G; Brown, D; Archer, M; Khan, M; Pockley, AG

    2017-01-01

    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty an...

  5. Basic definitions for discrete modeling of computer worms epidemics

    Directory of Open Access Journals (Sweden)

    Pedro Guevara López

    2015-01-01

    Full Text Available The information technologies have evolved in such a way that communication between computers or hosts has become common, so much that the worldwide organization (governments and corporations depends on it; what could happen if these computers stop working for a long time is catastrophic. Unfortunately, networks are attacked by malware such as viruses and worms that could collapse the system. This has served as motivation for the formal study of computer worms and epidemics to develop strategies for prevention and protection; this is why in this paper, before analyzing epidemiological models, a set of formal definitions based on set theory and functions is proposed for describing 21 concepts used in the study of worms. These definitions provide a basis for future qualitative research on the behavior of computer worms, and quantitative for the study of their epidemiological models.

  6. Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields

    Science.gov (United States)

    Daines, Russell L.; Merkle, Charles L.

    1994-01-01

    Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.

  7. Acorn: A grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface

    Directory of Open Access Journals (Sweden)

    Bushell Michael E

    2011-05-01

    Full Text Available Abstract Background Constraint-based approaches facilitate the prediction of cellular metabolic capabilities, based, in turn on predictions of the repertoire of enzymes encoded in the genome. Recently, genome annotations have been used to reconstruct genome scale metabolic reaction networks for numerous species, including Homo sapiens, which allow simulations that provide valuable insights into topics, including predictions of gene essentiality of pathogens, interpretation of genetic polymorphism in metabolic disease syndromes and suggestions for novel approaches to microbial metabolic engineering. These constraint-based simulations are being integrated with the functional genomics portals, an activity that requires efficient implementation of the constraint-based simulations in the web-based environment. Results Here, we present Acorn, an open source (GNU GPL grid computing system for constraint-based simulations of genome scale metabolic reaction networks within an interactive web environment. The grid-based architecture allows efficient execution of computationally intensive, iterative protocols such as Flux Variability Analysis, which can be readily scaled up as the numbers of models (and users increase. The web interface uses AJAX, which facilitates efficient model browsing and other search functions, and intuitive implementation of appropriate simulation conditions. Research groups can install Acorn locally and create user accounts. Users can also import models in the familiar SBML format and link reaction formulas to major functional genomics portals of choice. Selected models and simulation results can be shared between different users and made publically available. Users can construct pathway map layouts and import them into the server using a desktop editor integrated within the system. Pathway maps are then used to visualise numerical results within the web environment. To illustrate these features we have deployed Acorn and created a

  8. Computer models for fading channels with applications to digital transmission

    Science.gov (United States)

    Loo, Chun; Secord, Norman

    1991-11-01

    The authors describe computer models for Rayleigh, Rician, log-normal, and land-mobile-satellite fading channels. All computer models for the fading channels are based on the manipulation of a white Gaussian random process. This process is approximated by a sum of sinusoids with random phase angle. These models compare very well with analytical models in terms of their probability distribution of envelope and phase of the fading signal. For the land mobile satellite fading channel, results of level crossing rate and average fade duration are given. These results show that the computer models can provide a good coarse estimate of the time statistic of the faded signal. Also, for the land-mobile-satellite fading channel, the results show that a 3-pole Butterworth shaping filter should be used with the model. An example of the application of the land-mobile-satellite fading-channel model to predict the performance of a differential phase-shift keying signal is described.

  9. Computer-aided and predictive models for design of controlled release of pesticides

    DEFF Research Database (Denmark)

    Suné, Nuria Muro; Gani, Rafiqul

    2004-01-01

    In the field of pesticide controlled release technology, a computer based model that can predict the delivery of the Active Ingredient (AI) from fabricated units is important for purposes of product design and marketing. A model for the release of an M from a microcapsule device is presented...... in this paper, together with a specific case study application to highlight its scope and significance. The paper also addresses the need for predictive models and proposes a computer aided modelling framework for achieving it through the development and introduction of reliable and predictive constitutive...... models. A group-contribution based model for one of the constitutive variables (AI solubility in polymers) is presented together with examples of application and validation....

  10. Development of a materials data base for modeling

    International Nuclear Information System (INIS)

    Iwata, S.; Ashino, T.; Ishino, S.

    1988-01-01

    Materials selection for fusion reactors requires a materials data base and a set of methods to estimate material properties in a ''virtual'' fusion reactor. This estimation process, namely, modeling, is analyzed as compromising of design requirements, available data bases and methods of estimation, and a concept of an ideal computer system to support this modeling process is proposed. The limitations of a commercial DBMS (Data Base Management System) to handle sophisticated materials data are described in accordance with our experiences. Secondly, ways to manipulate analytical expressions are discussed as the next step for computer assisted modeling. Finally, an advanced method is presented which is able to manage models and data in the same manner without paying attention to annoying rules compelled by constraints of using computers. (orig.)

  11. Computer-based personality judgments are more accurate than those made by humans.

    Science.gov (United States)

    Youyou, Wu; Kosinski, Michal; Stillwell, David

    2015-01-27

    Judging others' personalities is an essential skill in successful social living, as personality is a key driver behind people's interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants' Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy.

  12. Exploring the Feasibility of a DNA Computer: Design of an ALU Using Sticker-Based DNA Model.

    Science.gov (United States)

    Sarkar, Mayukh; Ghosal, Prasun; Mohanty, Saraju P

    2017-09-01

    Since its inception, DNA computing has advanced to offer an extremely powerful, energy-efficient emerging technology for solving hard computational problems with its inherent massive parallelism and extremely high data density. This would be much more powerful and general purpose when combined with other existing well-known algorithmic solutions that exist for conventional computing architectures using a suitable ALU. Thus, a specifically designed DNA Arithmetic and Logic Unit (ALU) that can address operations suitable for both domains can mitigate the gap between these two. An ALU must be able to perform all possible logic operations, including NOT, OR, AND, XOR, NOR, NAND, and XNOR; compare, shift etc., integer and floating point arithmetic operations (addition, subtraction, multiplication, and division). In this paper, design of an ALU has been proposed using sticker-based DNA model with experimental feasibility analysis. Novelties of this paper may be in manifold. First, the integer arithmetic operations performed here are 2s complement arithmetic, and the floating point operations follow the IEEE 754 floating point format, resembling closely to a conventional ALU. Also, the output of each operation can be reused for any next operation. So any algorithm or program logic that users can think of can be implemented directly on the DNA computer without any modification. Second, once the basic operations of sticker model can be automated, the implementations proposed in this paper become highly suitable to design a fully automated ALU. Third, proposed approaches are easy to implement. Finally, these approaches can work on sufficiently large binary numbers.

  13. Development of risk-based computer models for deriving criteria on residual radioactivity and recycling

    International Nuclear Information System (INIS)

    Chen, S.Y.

    1994-01-01

    Argonne National Laboratory (ANL) is developing multimedia environmental pathway and health risk computer models to assess radiological risks to human health and to derive cleanup guidelines for environmental restoration, decommissioning, and recycling activities. These models are based on the existing RESRAD code, although each has a separate design and serves different objectives. Two such codes are RESRAD-BUILD and RESRAD-PROBABILISTIC. The RESRAD code was originally developed to implement the US Department of Energy's (DOE's) residual radioactive materials guidelines for contaminated soils. RESRAD has been successfully used by DOE and its contractors to assess health risks and develop cleanup criteria for several sites selected for cleanup or restoration programs. RESRAD-BUILD analyzes human health risks from radioactive releases during decommissioning or rehabilitation of contaminated buildings. Risks to workers are assessed for dismantling activities; risks to the public are assessed for occupancy. RESRAD-BUILD is based on a room compartmental model analyzing the effects on room air quality of contaminant emission and resuspension (as well as radon emanation), the external radiation pathway, and other exposure pathways. RESRAD-PROBABILISTIC, currently under development, is intended to perform uncertainty analysis for RESRAD by using the Monte Carlo approach based on the Latin-Hypercube sampling scheme. The codes being developed at ANL are tailored to meet a specific objective of human health risk assessment and require specific parameter definition and data gathering. The combined capabilities of these codes satisfy various risk assessment requirements in environmental restoration and remediation activities

  14. Development of risk-based computer models for deriving criteria on residual radioactivity and recycling

    International Nuclear Information System (INIS)

    Chen, Shih-Yew

    1995-01-01

    Argonne National Laboratory (ANL) is developing multimedia environmental pathway and health risk computer models to assess radiological risks to human health and to derive cleanup guidelines for environmental restoration, decommissioning, and recycling activities. These models are based on the existing RESRAD code, although each has a separate design and serves different objectives. Two such codes are RESRAD-BUILD and RESRAD-PROBABILISTIC. The RESRAD code was originally developed to implement the U.S. Department of Energy's (DOE's) residual radioactive materials guidelines for contaminated soils. RESRAD has been successfully used by DOE and its contractors to assess health risks and develop cleanup criteria for several sites selected for cleanup or restoration programs. RESRAD-BUILD analyzes human health risks from radioactive releases during decommissioning or rehabilitation of contaminated buildings. Risks to workers are assessed for dismantling activities; risks to the public are assessed for occupancy. RESRAD-BUILD is based on a room compartmental model analyzing the effects on room air quality of contaminant emission and resuspension (as well as radon emanation), the external radiation pathway, and other exposure pathways. RESRAD-PROBABILISTIC, currently under development, is intended to perform uncertainty analysis for RESRAD by using the Monte Carlo approach based on the Latin-Hypercube sampling scheme. The codes being developed at ANL are tailored to meet a specific objective of human health risk assessment and require specific parameter definition and data gathering. The combined capabilities of these codes satisfy various risk assessment requirements in environmental restoration and remediation activities. (author)

  15. A Model of an Expanded-Frame Hypermedia Knowledge-Base for Instruction.

    Science.gov (United States)

    Lacy, Mark J.; Wood, R. Kent

    1993-01-01

    Argues that current computer-based instruction does not exploit the instructional possibilities of computers. Critiques current models of computer-based instruction: behaviorist as too linear and constructivist as too unstructured. Offers a design model of Expanded-frame Hypermedia Knowledge-bases as an instructional approach allowing hypermedia…

  16. [Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network].

    Science.gov (United States)

    Wang, Yuanyuan; Zhou, Tao; Lu, Huiling; Wu, Cuiying; Yang, Pengfei

    2017-08-01

    The convolutional neural network (CNN) could be used on computer-aided diagnosis of lung tumor with positron emission tomography (PET)/computed tomography (CT), which can provide accurate quantitative analysis to compensate for visual inertia and defects in gray-scale sensitivity, and help doctors diagnose accurately. Firstly, parameter migration method is used to build three CNNs (CT-CNN, PET-CNN, and PET/CT-CNN) for lung tumor recognition in CT, PET, and PET/CT image, respectively. Then, we aimed at CT-CNN to obtain the appropriate model parameters for CNN training through analysis the influence of model parameters such as epochs, batchsize and image scale on recognition rate and training time. Finally, three single CNNs are used to construct ensemble CNN, and then lung tumor PET/CT recognition was completed through relative majority vote method and the performance between ensemble CNN and single CNN was compared. The experiment results show that the ensemble CNN is better than single CNN on computer-aided diagnosis of lung tumor.

  17. Computationally-optimized bone mechanical modeling from high-resolution structural images.

    Directory of Open Access Journals (Sweden)

    Jeremy F Magland

    Full Text Available Image-based mechanical modeling of the complex micro-structure of human bone has shown promise as a non-invasive method for characterizing bone strength and fracture risk in vivo. In particular, elastic moduli obtained from image-derived micro-finite element (μFE simulations have been shown to correlate well with results obtained by mechanical testing of cadaveric bone. However, most existing large-scale finite-element simulation programs require significant computing resources, which hamper their use in common laboratory and clinical environments. In this work, we theoretically derive and computationally evaluate the resources needed to perform such simulations (in terms of computer memory and computation time, which are dependent on the number of finite elements in the image-derived bone model. A detailed description of our approach is provided, which is specifically optimized for μFE modeling of the complex three-dimensional architecture of trabecular bone. Our implementation includes domain decomposition for parallel computing, a novel stopping criterion, and a system for speeding up convergence by pre-iterating on coarser grids. The performance of the system is demonstrated on a dual quad-core Xeon 3.16 GHz CPUs equipped with 40 GB of RAM. Models of distal tibia derived from 3D in-vivo MR images in a patient comprising 200,000 elements required less than 30 seconds to converge (and 40 MB RAM. To illustrate the system's potential for large-scale μFE simulations, axial stiffness was estimated from high-resolution micro-CT images of a voxel array of 90 million elements comprising the human proximal femur in seven hours CPU time. In conclusion, the system described should enable image-based finite-element bone simulations in practical computation times on high-end desktop computers with applications to laboratory studies and clinical imaging.

  18. Towards minimal resources of measurement-based quantum computation

    International Nuclear Information System (INIS)

    Perdrix, Simon

    2007-01-01

    We improve the upper bound on the minimal resources required for measurement-only quantum computation (M A Nielsen 2003 Phys. Rev. A 308 96-100; D W Leung 2004 Int. J. Quantum Inform. 2 33; S Perdrix 2005 Int. J. Quantum Inform. 3 219-23). Minimizing the resources required for this model is a key issue for experimental realization of a quantum computer based on projective measurements. This new upper bound also allows one to reply in the negative to the open question presented by Perdrix (2004 Proc. Quantum Communication Measurement and Computing) about the existence of a trade-off between observable and ancillary qubits in measurement-only QC

  19. Visual Attention Modeling for Stereoscopic Video: A Benchmark and Computational Model.

    Science.gov (United States)

    Fang, Yuming; Zhang, Chi; Li, Jing; Lei, Jianjun; Perreira Da Silva, Matthieu; Le Callet, Patrick

    2017-10-01

    In this paper, we investigate the visual attention modeling for stereoscopic video from the following two aspects. First, we build one large-scale eye tracking database as the benchmark of visual attention modeling for stereoscopic video. The database includes 47 video sequences and their corresponding eye fixation data. Second, we propose a novel computational model of visual attention for stereoscopic video based on Gestalt theory. In the proposed model, we extract the low-level features, including luminance, color, texture, and depth, from discrete cosine transform coefficients, which are used to calculate feature contrast for the spatial saliency computation. The temporal saliency is calculated by the motion contrast from the planar and depth motion features in the stereoscopic video sequences. The final saliency is estimated by fusing the spatial and temporal saliency with uncertainty weighting, which is estimated by the laws of proximity, continuity, and common fate in Gestalt theory. Experimental results show that the proposed method outperforms the state-of-the-art stereoscopic video saliency detection models on our built large-scale eye tracking database and one other database (DML-ITRACK-3D).

  20. Two-parametric model of electron beam in computational dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Lazurik, V.M.; Lazurik, V.T.; Popov, G.; Zimek, Z.

    2016-01-01

    Computer simulation of irradiation process of various materials with electron beam (EB) can be applied to correct and control the performances of radiation processing installations. Electron beam energy measurements methods are described in the international standards. The obtained results of measurements can be extended by implementation computational dosimetry. Authors have developed the computational method for determination of EB energy on the base of two-parametric fitting of semi-empirical model for the depth dose distribution initiated by mono-energetic electron beam. The analysis of number experiments show that described method can effectively consider random displacements arising from the use of aluminum wedge with a continuous strip of dosimetric film and minimize the magnitude uncertainty value of the electron energy evaluation, calculated from the experimental data. Two-parametric fitting method is proposed for determination of the electron beam model parameters. These model parameters are as follow: E 0 – energy mono-energetic and mono-directional electron source, X 0 – the thickness of the aluminum layer, located in front of irradiated object. That allows obtain baseline data related to the characteristic of the electron beam, which can be later on applied for computer modeling of the irradiation process. Model parameters which are defined in the international standards (like E p – the most probably energy and R p – practical range) can be linked with characteristics of two-parametric model (E 0 , X 0 ), which allows to simulate the electron irradiation process. The obtained data from semi-empirical model were checked together with the set of experimental results. The proposed two-parametric model for electron beam energy evaluation and estimation of accuracy for computational dosimetry methods on the base of developed model are discussed. - Highlights: • Experimental and computational methods of electron energy evaluation. • Development

  1. Microstructure-Based Computational Modeling of Mechanical Behavior of Polymer Micro/Nano Composites

    Science.gov (United States)

    2013-12-01

    automotive, defense, sport, civil, aerospace, health , etc.). Here, a combination of non-linear thermo-viscoelastic (Schapery’s non-linear...2001. Three-dimensional computational micro-mechanical model for woven fabric composites. Composite Structures 54, 489-496. Jacob, G.C., Starbuck

  2. Computational modeling of geometry dependent phonon transport in silicon nanostructures

    Science.gov (United States)

    Cheney, Drew A.

    Recent experiments have demonstrated that thermal properties of semiconductor nanostructures depend on nanostructure boundary geometry. Phonons are quantized mechanical vibrations that are the dominant carrier of heat in semiconductor materials and their aggregate behavior determine a nanostructure's thermal performance. Phonon-geometry scattering processes as well as waveguiding effects which result from coherent phonon interference are responsible for the shape dependence of thermal transport in these systems. Nanoscale phonon-geometry interactions provide a mechanism by which nanostructure geometry may be used to create materials with targeted thermal properties. However, the ability to manipulate material thermal properties via controlling nanostructure geometry is contingent upon first obtaining increased theoretical understanding of fundamental geometry induced phonon scattering processes and having robust analytical and computational models capable of exploring the nanostructure design space, simulating the phonon scattering events, and linking the behavior of individual phonon modes to overall thermal behavior. The overall goal of this research is to predict and analyze the effect of nanostructure geometry on thermal transport. To this end, a harmonic lattice-dynamics based atomistic computational modeling tool was created to calculate phonon spectra and modal phonon transmission coefficients in geometrically irregular nanostructures. The computational tool is used to evaluate the accuracy and regimes of applicability of alternative computational techniques based upon continuum elastic wave theory. The model is also used to investigate phonon transmission and thermal conductance in diameter modulated silicon nanowires. Motivated by the complexity of the transmission results, a simplified model based upon long wavelength beam theory was derived and helps explain geometry induced phonon scattering of low frequency nanowire phonon modes.

  3. ADAM: analysis of discrete models of biological systems using computer algebra.

    Science.gov (United States)

    Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard

    2011-07-20

    Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based

  4. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud) for Mobile Cloud Computing Applications.

    Science.gov (United States)

    Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon

    2017-03-01

    This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model.

  5. Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation.

    Science.gov (United States)

    Dayan, Peter; Berridge, Kent C

    2014-06-01

    Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations, and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response, and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation.

  6. An approximate fractional Gaussian noise model with computational cost

    KAUST Repository

    Sørbye, Sigrunn H.

    2017-09-18

    Fractional Gaussian noise (fGn) is a stationary time series model with long memory properties applied in various fields like econometrics, hydrology and climatology. The computational cost in fitting an fGn model of length $n$ using a likelihood-based approach is ${\\\\mathcal O}(n^{2})$, exploiting the Toeplitz structure of the covariance matrix. In most realistic cases, we do not observe the fGn process directly but only through indirect Gaussian observations, so the Toeplitz structure is easily lost and the computational cost increases to ${\\\\mathcal O}(n^{3})$. This paper presents an approximate fGn model of ${\\\\mathcal O}(n)$ computational cost, both with direct or indirect Gaussian observations, with or without conditioning. This is achieved by approximating fGn with a weighted sum of independent first-order autoregressive processes, fitting the parameters of the approximation to match the autocorrelation function of the fGn model. The resulting approximation is stationary despite being Markov and gives a remarkably accurate fit using only four components. The performance of the approximate fGn model is demonstrated in simulations and two real data examples.

  7. Mathematical Modeling and Computational Thinking

    Science.gov (United States)

    Sanford, John F.; Naidu, Jaideep T.

    2017-01-01

    The paper argues that mathematical modeling is the essence of computational thinking. Learning a computer language is a valuable assistance in learning logical thinking but of less assistance when learning problem-solving skills. The paper is third in a series and presents some examples of mathematical modeling using spreadsheets at an advanced…

  8. A computational model for knowledge-driven monitoring of nuclear power plant operators based on information theory

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Seong, Poong Hyun

    2006-01-01

    To develop operator behavior models such as IDAC, quantitative models for the cognitive activities of nuclear power plant (NPP) operators in abnormal situations are essential. Among them, only few quantitative models for the monitoring and detection have been developed. In this paper, we propose a computational model for the knowledge-driven monitoring, which is also known as model-driven monitoring, of NPP operators in abnormal situations, based on the information theory. The basic assumption of the proposed model is that the probability that an operator shifts his or her attention to an information source is proportional to the expected information from the information source. A small experiment performed to evaluate the feasibility of the proposed model shows that the predictions made by the proposed model have high correlations with the experimental results. Even though it has been argued that heuristics might play an important role on human reasoning, we believe that the proposed model can provide part of the mathematical basis for developing quantitative models for knowledge-driven monitoring of NPP operators when NPP operators are assumed to behave very logically

  9. Computational cardiology: the bidomain based modified Hill model incorporating viscous effects for cardiac defibrillation

    Science.gov (United States)

    Cansız, Barış; Dal, Hüsnü; Kaliske, Michael

    2017-10-01

    Working mechanisms of the cardiac defibrillation are still in debate due to the limited experimental facilities and one-third of patients even do not respond to cardiac resynchronization therapy. With an aim to develop a milestone towards reaching the unrevealed mechanisms of the defibrillation phenomenon, we propose a bidomain based finite element formulation of cardiac electromechanics by taking into account the viscous effects that are disregarded by many researchers. To do so, the material is deemed as an electro-visco-active material and described by the modified Hill model (Cansız et al. in Comput Methods Appl Mech Eng 315:434-466, 2017). On the numerical side, we utilize a staggered solution method, where the elliptic and parabolic part of the bidomain equations and the mechanical field are solved sequentially. The comparative simulations designate that the viscoelastic and elastic formulations lead to remarkably different outcomes upon an externally applied electric field to the myocardial tissue. Besides, the achieved framework requires significantly less computational time and memory compared to monolithic schemes without loss of stability for the presented examples.

  10. Model Selection in Historical Research Using Approximate Bayesian Computation

    Science.gov (United States)

    Rubio-Campillo, Xavier

    2016-01-01

    Formal Models and History Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to re-evaluate hypotheses formulated decades ago and still subject to debate due to the lack of an adequate quantitative framework. The initiative has the potential to transform the discipline if it solves the challenges posed by the study of historical dynamics. These difficulties are based on the complexities of modelling social interaction, and the methodological issues raised by the evaluation of formal models against data with low sample size, high variance and strong fragmentation. Case Study This work examines an alternate approach to this evaluation based on a Bayesian-inspired model selection method. The validity of the classical Lanchester’s laws of combat is examined against a dataset comprising over a thousand battles spanning 300 years. Four variations of the basic equations are discussed, including the three most common formulations (linear, squared, and logarithmic) and a new variant introducing fatigue. Approximate Bayesian Computation is then used to infer both parameter values and model selection via Bayes Factors. Impact Results indicate decisive evidence favouring the new fatigue model. The interpretation of both parameter estimations and model selection provides new insights into the factors guiding the evolution of warfare. At a methodological level, the case study shows how model selection methods can be used to guide historical research through the comparison between existing hypotheses and empirical evidence. PMID:26730953

  11. A PC-based computer program for simulation of containment pressurization

    International Nuclear Information System (INIS)

    Seifaee, F.

    1990-01-01

    This paper reports that a PC-based computer program has been developed to simulate a pressurized water reactor (PWR) containment during various transients. This containment model is capable of determining pressure and temperature history of a PWR containment in the event of a loss of coolant accident, as well as main steam line breaks inside the containment. Conservation of mass and energy equations are applied to the containment model. Development of the program is based on minimization of input specified information and user friendliness. Maximization of calculation efficiency is obtained by superseding the traditional trial and error procedure for determination of the state variables and implementation of an explicit solution for pressure. The program includes simplified models for active heat removal systems. The results are in close agreement between the present model and CONTEMPT-MOD5 computer code for pressure and temperature inside the containment

  12. Building confidence and credibility amid growing model and computing complexity

    Science.gov (United States)

    Evans, K. J.; Mahajan, S.; Veneziani, C.; Kennedy, J. H.

    2017-12-01

    As global Earth system models are developed to answer an ever-wider range of science questions, software products that provide robust verification, validation, and evaluation must evolve in tandem. Measuring the degree to which these new models capture past behavior, predict the future, and provide the certainty of predictions is becoming ever more challenging for reasons that are generally well known, yet are still challenging to address. Two specific and divergent needs for analysis of the Accelerated Climate Model for Energy (ACME) model - but with a similar software philosophy - are presented to show how a model developer-based focus can address analysis needs during expansive model changes to provide greater fidelity and execute on multi-petascale computing facilities. A-PRIME is a python script-based quick-look overview of a fully-coupled global model configuration to determine quickly if it captures specific behavior before significant computer time and expense is invested. EVE is an ensemble-based software framework that focuses on verification of performance-based ACME model development, such as compiler or machine settings, to determine the equivalence of relevant climate statistics. The challenges and solutions for analysis of multi-petabyte output data are highlighted from the aspect of the scientist using the software, with the aim of fostering discussion and further input from the community about improving developer confidence and community credibility.

  13. Teachers and Students' Conceptions of Computer-Based Models in the Context of High School Chemistry: Elicitations at the Pre-intervention Stage

    Science.gov (United States)

    Waight, Noemi; Gillmeister, Kristina

    2014-04-01

    This study examined teachers' and students' initial conceptions of computer-based models—Flash and NetLogo models—and documented how teachers and students reconciled notions of multiple representations featuring macroscopic, submicroscopic and symbolic representations prior to actual intervention in eight high school chemistry classrooms. Individual in-depth interviews were conducted with 32 students and 6 teachers. Findings revealed an interplay of complex factors that functioned as opportunities and obstacles in the implementation of technologies in science classrooms. Students revealed preferences for the Flash models as opposed to the open-ended NetLogo models. Altogether, due to lack of content and modeling background knowledge, students experienced difficulties articulating coherent and blended understandings of multiple representations. Concurrently, while the aesthetic and interactive features of the models were of great value, they did not sustain students' initial curiosity and opportunities to improve understandings about chemistry phenomena. Most teachers recognized direct alignment of the Flash model with their existing curriculum; however, the benefits were relegated to existing procedural and passive classroom practices. The findings have implications for pedagogical approaches that address the implementation of computer-based models, function of models, models as multiple representations and the role of background knowledge and cognitive load, and the role of teacher vision and classroom practices.

  14. NURBS-based 3-d anthropomorphic computational phantoms for radiation dosimetry applications

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Lee, Choonik; Bolch, Wesley E.

    2007-01-01

    Computational anthropomorphic phantoms are computer models used in the evaluation of absorbed dose distributions within the human body. Currently, two classes of the computational phantoms have been developed and widely utilised for dosimetry calculation: (1) stylized (equation-based) and (2) voxel (image-based) phantoms describing human anatomy through the use of mathematical surface equations and 3-D voxel matrices, respectively. However, stylized phantoms have limitations in defining realistic organ contours and positioning as compared to voxel phantoms, which are themselves based on medical images of human subjects. In turn, voxel phantoms that have been developed through medical image segmentation have limitations in describing organs that are presented in low contrast within either magnetic resonance or computed tomography image. The present paper reviews the advantages and disadvantages of these existing classes of computational phantoms and introduces a hybrid approach to a computational phantom construction based on non-uniform rational B-Spline (NURBS) surface animation technology that takes advantage of the most desirable features of the former two phantom types. (authors)

  15. Human performance models for computer-aided engineering

    Science.gov (United States)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  16. A framework for different levels of integration of computational models into web-based virtual patients.

    Science.gov (United States)

    Kononowicz, Andrzej A; Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil

    2014-01-23

    Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients' interactivity by enriching them with computational models of physiological and pathological processes. The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the

  17. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.

    Directory of Open Access Journals (Sweden)

    Takuto Sakamoto

    Full Text Available Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.

  18. Acoustic and Perceptual Effects of Left-Right Laryngeal Asymmetries Based on Computational Modeling

    Science.gov (United States)

    Samlan, Robin A.; Story, Brad H.; Lotto, Andrew J.; Bunton, Kate

    2014-01-01

    Purpose: Computational modeling was used to examine the consequences of 5 different laryngeal asymmetries on acoustic and perceptual measures of vocal function. Method: A kinematic vocal fold model was used to impose 5 laryngeal asymmetries: adduction, edge bulging, nodal point ratio, amplitude of vibration, and starting phase. Thirty /a/ and /?/…

  19. Computational Modeling of Ablation on an Irradiated Target

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva

    2017-11-01

    Computational modeling of pulsed nanosecond laser interaction with an irradiated metallic target is presented. The model formulation involves ablation of the metallic target irradiated by pulsed high intensity laser at normal atmospheric conditions. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented along with its relevance for the development of protective shields. In this context, the available results for a representative irradiation from 1064 nm laser pulse is used to analyze various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.

  20. LHCb computing model

    CERN Document Server

    Frank, M; Pacheco, Andreu

    1998-01-01

    This document is a first attempt to describe the LHCb computing model. The CPU power needed to process data for the event filter and reconstruction is estimated to be 2.2 \\Theta 106 MIPS. This will be installed at the experiment and will be reused during non data-taking periods for reprocessing. The maximal I/O of these activities is estimated to be around 40 MB/s.We have studied three basic models concerning the placement of the CPU resources for the other computing activities, Monte Carlo-simulation (1:4 \\Theta 106 MIPS) and physics analysis (0:5 \\Theta 106 MIPS): CPU resources may either be located at the physicist's homelab, national computer centres (Regional Centres) or at CERN.The CPU resources foreseen for analysis are sufficient to allow 100 concurrent analyses. It is assumed that physicists will work in physics groups that produce analysis data at an average rate of 4.2 MB/s or 11 TB per month. However, producing these group analysis data requires reading capabilities of 660 MB/s. It is further assu...

  1. Blinded prospective evaluation of computer-based mechanistic schizophrenia disease model for predicting drug response.

    Directory of Open Access Journals (Sweden)

    Hugo Geerts

    Full Text Available The tremendous advances in understanding the neurobiological circuits involved in schizophrenia have not translated into more effective treatments. An alternative strategy is to use a recently published 'Quantitative Systems Pharmacology' computer-based mechanistic disease model of cortical/subcortical and striatal circuits based upon preclinical physiology, human pathology and pharmacology. The physiology of 27 relevant dopamine, serotonin, acetylcholine, norepinephrine, gamma-aminobutyric acid (GABA and glutamate-mediated targets is calibrated using retrospective clinical data on 24 different antipsychotics. The model was challenged to predict quantitatively the clinical outcome in a blinded fashion of two experimental antipsychotic drugs; JNJ37822681, a highly selective low-affinity dopamine D(2 antagonist and ocaperidone, a very high affinity dopamine D(2 antagonist, using only pharmacology and human positron emission tomography (PET imaging data. The model correctly predicted the lower performance of JNJ37822681 on the positive and negative syndrome scale (PANSS total score and the higher extra-pyramidal symptom (EPS liability compared to olanzapine and the relative performance of ocaperidone against olanzapine, but did not predict the absolute PANSS total score outcome and EPS liability for ocaperidone, possibly due to placebo responses and EPS assessment methods. Because of its virtual nature, this modeling approach can support central nervous system research and development by accounting for unique human drug properties, such as human metabolites, exposure, genotypes and off-target effects and can be a helpful tool for drug discovery and development.

  2. Practice Makes Perfect: Using a Computer-Based Business Simulation in Entrepreneurship Education

    Science.gov (United States)

    Armer, Gina R. M.

    2011-01-01

    This article explains the use of a specific computer-based simulation program as a successful experiential learning model and as a way to increase student motivation while augmenting conventional methods of business instruction. This model is based on established adult learning principles.

  3. Analog computing for a new nuclear reactor dynamic model based on a time-dependent second order form of the neutron transport equation

    International Nuclear Information System (INIS)

    Pirouzmand, Ahmad; Hadad, Kamal; Suh, Kune Y.

    2011-01-01

    This paper considers the concept of analog computing based on a cellular neural network (CNN) paradigm to simulate nuclear reactor dynamics using a time-dependent second order form of the neutron transport equation. Instead of solving nuclear reactor dynamic equations numerically, which is time-consuming and suffers from such weaknesses as vulnerability to transient phenomena, accumulation of round-off errors and floating-point overflows, use is made of a new method based on a cellular neural network. The state-of-the-art shows the CNN as being an alternative solution to the conventional numerical computation method. Indeed CNN is an analog computing paradigm that performs ultra-fast calculations and provides accurate results. In this study use is made of the CNN model to simulate the space-time response of scalar flux distribution in steady state and transient conditions. The CNN model also is used to simulate step perturbation in the core. The accuracy and capability of the CNN model are examined in 2D Cartesian geometry for two fixed source problems, a mini-BWR assembly, and a TWIGL Seed/Blanket problem. We also use the CNN model concurrently for a typical small PWR assembly to simulate the effect of temperature feedback, poisons, and control rods on the scalar flux distribution

  4. 40 CFR 194.23 - Models and computer codes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  5. A method of computer modelling the lithium-ion batteries aging process based on the experimental characteristics

    Science.gov (United States)

    Czerepicki, A.; Koniak, M.

    2017-06-01

    The paper presents a method of modelling the processes of aging lithium-ion batteries, its implementation as a computer application and results for battery state estimation. Authors use previously developed behavioural battery model, which was built using battery operating characteristics obtained from the experiment. This model was implemented in the form of a computer program using a database to store battery characteristics. Batteries aging process is a new extended functionality of the model. Algorithm of computer simulation uses a real measurements of battery capacity as a function of the battery charge and discharge cycles number. Simulation allows to take into account the incomplete cycles of charge or discharge battery, which are characteristic for transport powered by electricity. The developed model was used to simulate the battery state estimation for different load profiles, obtained by measuring the movement of the selected means of transport.

  6. Modeling ground-based timber harvesting systems using computer simulation

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux

    2001-01-01

    Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...

  7. Glossiness of Colored Papers based on Computer Graphics Model and Its Measuring Method

    Science.gov (United States)

    Aida, Teizo

    In the case of colored papers, the color of surface effects strongly upon the gloss of its paper. The new glossiness for such a colored paper is suggested in this paper. First, using the Achromatic and Chromatic Munsell colored chips, the author obtained experimental equation which represents the relation between lightness V ( or V and saturation C ) and psychological glossiness Gph of these chips. Then, the author defined a new glossiness G for the colored papers, based on the above mentioned experimental equations Gph and Cook-Torrance's reflection model which are widely used in the filed of Computer Graphics. This new glossiness is shown to be nearly proportional to the psychological glossiness Gph. The measuring system for the new glossiness G is furthermore descrived. The measuring time for one specimen is within 1 minute.

  8. Introducing Seismic Tomography with Computational Modeling

    Science.gov (United States)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  9. Computer models for economic and silvicultural decisions

    Science.gov (United States)

    Rosalie J. Ingram

    1989-01-01

    Computer systems can help simplify decisionmaking to manage forest ecosystems. We now have computer models to help make forest management decisions by predicting changes associated with a particular management action. Models also help you evaluate alternatives. To be effective, the computer models must be reliable and appropriate for your situation.

  10. Computational Modeling of Oxygen Transport in the Microcirculation: From an Experiment-Based Model to Theoretical Analyses

    OpenAIRE

    Lücker, Adrien

    2017-01-01

    Oxygen supply to cells by the cardiovascular system involves multiple physical and chemical processes that aim to satisfy fluctuating metabolic demand. Regulation mechanisms range from increased heart rate to minute adaptations in the microvasculature. The challenges and limitations of experimental studies in vivo make computational models an invaluable complement. In this thesis, oxygen transport from capillaries to tissue is investigated using a new numerical model that is tailored for vali...

  11. Computer-based personality judgments are more accurate than those made by humans

    Science.gov (United States)

    Youyou, Wu; Kosinski, Michal; Stillwell, David

    2015-01-01

    Judging others’ personalities is an essential skill in successful social living, as personality is a key driver behind people’s interactions, behaviors, and emotions. Although accurate personality judgments stem from social-cognitive skills, developments in machine learning show that computer models can also make valid judgments. This study compares the accuracy of human and computer-based personality judgments, using a sample of 86,220 volunteers who completed a 100-item personality questionnaire. We show that (i) computer predictions based on a generic digital footprint (Facebook Likes) are more accurate (r = 0.56) than those made by the participants’ Facebook friends using a personality questionnaire (r = 0.49); (ii) computer models show higher interjudge agreement; and (iii) computer personality judgments have higher external validity when predicting life outcomes such as substance use, political attitudes, and physical health; for some outcomes, they even outperform the self-rated personality scores. Computers outpacing humans in personality judgment presents significant opportunities and challenges in the areas of psychological assessment, marketing, and privacy. PMID:25583507

  12. Cloud Computing Platform for an Online Model Library System

    Directory of Open Access Journals (Sweden)

    Mingang Chen

    2013-01-01

    Full Text Available The rapid developing of digital content industry calls for online model libraries. For the efficiency, user experience, and reliability merits of the model library, this paper designs a Web 3D model library system based on a cloud computing platform. Taking into account complex models, which cause difficulties in real-time 3D interaction, we adopt the model simplification and size adaptive adjustment methods to make the system with more efficient interaction. Meanwhile, a cloud-based architecture is developed to ensure the reliability and scalability of the system. The 3D model library system is intended to be accessible by online users with good interactive experiences. The feasibility of the solution has been tested by experiments.

  13. Coupling of EIT with computational lung modeling for predicting patient-specific ventilatory responses.

    Science.gov (United States)

    Roth, Christian J; Becher, Tobias; Frerichs, Inéz; Weiler, Norbert; Wall, Wolfgang A

    2017-04-01

    Providing optimal personalized mechanical ventilation for patients with acute or chronic respiratory failure is still a challenge within a clinical setting for each case anew. In this article, we integrate electrical impedance tomography (EIT) monitoring into a powerful patient-specific computational lung model to create an approach for personalizing protective ventilatory treatment. The underlying computational lung model is based on a single computed tomography scan and able to predict global airflow quantities, as well as local tissue aeration and strains for any ventilation maneuver. For validation, a novel "virtual EIT" module is added to our computational lung model, allowing to simulate EIT images based on the patient's thorax geometry and the results of our numerically predicted tissue aeration. Clinically measured EIT images are not used to calibrate the computational model. Thus they provide an independent method to validate the computational predictions at high temporal resolution. The performance of this coupling approach has been tested in an example patient with acute respiratory distress syndrome. The method shows good agreement between computationally predicted and clinically measured airflow data and EIT images. These results imply that the proposed framework can be used for numerical prediction of patient-specific responses to certain therapeutic measures before applying them to an actual patient. In the long run, definition of patient-specific optimal ventilation protocols might be assisted by computational modeling. NEW & NOTEWORTHY In this work, we present a patient-specific computational lung model that is able to predict global and local ventilatory quantities for a given patient and any selected ventilation protocol. For the first time, such a predictive lung model is equipped with a virtual electrical impedance tomography module allowing real-time validation of the computed results with the patient measurements. First promising results

  14. Fibre recruitment and shape changes of knee ligaments during motion: as revealed by a computer graphics-based model.

    Science.gov (United States)

    Lu, T W; O'Connor, J J

    1996-01-01

    A computer graphics-based model of the knee ligaments in the sagittal plane was developed for the simulation and visualization of the shape changes and fibre recruitment process of the ligaments during motion under unloaded and loaded conditions. The cruciate and collateral ligaments were modelled as ordered arrays of fibres which link attachment areas on the tibia and femur. Fibres slacken and tighten as the ligament attachment areas on the bones rotate and translate relative to each other. A four-bar linkage, composed of the femur, tibia and selected isometric fibres of the two cruciates, was used to determine the motion of the femur relative to the tibia during passive (unloaded) movement. Fibres were assumed to slacken in a Euler buckling mode when the distances between their attachments are less than chosen reference lengths. The ligament shape changes and buckling patterns are demonstrated with computer graphics. When the tibia is translated anteriorly or posteriorly relative to the femur by muscle forces and external loads, some ligament fibres tighten and are recruited progressively to transmit increasing shear forces. The shape changes and fibre recruitment patterns predicted by the model compare well qualitatively with experimental results reported in the literature. The computer graphics approach provides insight into the micro behaviour of the knee ligaments. It may help to explain ligament injury mechanisms and provide useful information to guide the design of ligament replacements.

  15. Automated differentiation of computer models for sensitivity analysis

    International Nuclear Information System (INIS)

    Worley, B.A.

    1990-01-01

    Sensitivity analysis of reactor physics computer models is an established discipline after more than twenty years of active development of generalized perturbations theory based on direct and adjoint methods. Many reactor physics models have been enhanced to solve for sensitivities of model results to model data. The calculated sensitivities are usually normalized first derivatives although some codes are capable of solving for higher-order sensitivities. The purpose of this paper is to report on the development and application of the GRESS system for automating the implementation of the direct and adjoint techniques into existing FORTRAN computer codes. The GRESS system was developed at ORNL to eliminate the costly man-power intensive effort required to implement the direct and adjoint techniques into already-existing FORTRAN codes. GRESS has been successfully tested for a number of codes over a wide range of applications and presently operates on VAX machines under both VMS and UNIX operating systems

  16. Automated differentiation of computer models for sensitivity analysis

    International Nuclear Information System (INIS)

    Worley, B.A.

    1991-01-01

    Sensitivity analysis of reactor physics computer models is an established discipline after more than twenty years of active development of generalized perturbations theory based on direct and adjoint methods. Many reactor physics models have been enhanced to solve for sensitivities of model results to model data. The calculated sensitivities are usually normalized first derivatives, although some codes are capable of solving for higher-order sensitivities. The purpose of this paper is to report on the development and application of the GRESS system for automating the implementation of the direct and adjoint techniques into existing FORTRAN computer codes. The GRESS system was developed at ORNL to eliminate the costly man-power intensive effort required to implement the direct and adjoint techniques into already-existing FORTRAN codes. GRESS has been successfully tested for a number of codes over a wide range of applications and presently operates on VAX machines under both VMS and UNIX operating systems. (author). 9 refs, 1 tab

  17. Improvements in fast-response flood modeling: desktop parallel computing and domain tracking

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David R [Los Alamos National Laboratory; Mcpherson, Timothy N [Los Alamos National Laboratory; Burian, Steven J [UNIV. OF UTAH

    2009-01-01

    It is becoming increasingly important to have the ability to accurately forecast flooding, as flooding accounts for the most losses due to natural disasters in the world and the United States. Flood inundation modeling has been dominated by one-dimensional approaches. These models are computationally efficient and are considered by many engineers to produce reasonably accurate water surface profiles. However, because the profiles estimated in these models must be superimposed on digital elevation data to create a two-dimensional map, the result may be sensitive to the ability of the elevation data to capture relevant features (e.g. dikes/levees, roads, walls, etc...). Moreover, one-dimensional models do not explicitly represent the complex flow processes present in floodplains and urban environments and because two-dimensional models based on the shallow water equations have significantly greater ability to determine flow velocity and direction, the National Research Council (NRC) has recommended that two-dimensional models be used over one-dimensional models for flood inundation studies. This paper has shown that two-dimensional flood modeling computational time can be greatly reduced through the use of Java multithreading on multi-core computers which effectively provides a means for parallel computing on a desktop computer. In addition, this paper has shown that when desktop parallel computing is coupled with a domain tracking algorithm, significant computation time can be eliminated when computations are completed only on inundated cells. The drastic reduction in computational time shown here enhances the ability of two-dimensional flood inundation models to be used as a near-real time flood forecasting tool, engineering, design tool, or planning tool. Perhaps even of greater significance, the reduction in computation time makes the incorporation of risk and uncertainty/ensemble forecasting more feasible for flood inundation modeling (NRC 2000; Sayers et al

  18. Principle for the Validation of a Driving Support using a Computer Vision-Based Driver Modelization on a Simulator

    Directory of Open Access Journals (Sweden)

    Baptiste Rouzier

    2015-07-01

    Full Text Available This paper presents a new structure for a driving support designed to compensate for the problems caused by the behaviour of the driver without causing a feeling of unease. This assistance is based on a shared control between the human and an automatic support that computes and applies an assisting torque on the steering wheel. This torque is computed from a representation of the hazards encountered on the road by virtual potentials. However, the equilibrium between the relative influences of the human and the support on the steering wheel are difficult to find and depend upon the situation. This is why this driving support includes a modelization of the driver based on an analysis of several face features using a computer vision algorithm. The goal is to determine whether the driver is drowsy or whether he is paying attention to some specific points in order to adapt the strength of the support. The accuracy of the measurements made on the face features is estimated, and the interest of the proposal as well as the concepts raised by such assistance are studied through simulations.

  19. Computational Modeling of Teaching and Learning through Application of Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Richard Lamb

    2015-09-01

    Full Text Available Within the mind, there are a myriad of ideas that make sense within the bounds of everyday experience, but are not reflective of how the world actually exists; this is particularly true in the domain of science. Classroom learning with teacher explanation are a bridge through which these naive understandings can be brought in line with scientific reality. The purpose of this paper is to examine how the application of a Multiobjective Evolutionary Algorithm (MOEA can work in concert with an existing computational-model to effectively model critical-thinking in the science classroom. An evolutionary algorithm is an algorithm that iteratively optimizes machine learning based computational models. The research question is, does the application of an evolutionary algorithm provide a means to optimize the Student Task and Cognition Model (STAC-M and does the optimized model sufficiently represent and predict teaching and learning outcomes in the science classroom? Within this computational study, the authors outline and simulate the effect of teaching on the ability of a “virtual” student to solve a Piagetian task. Using the Student Task and Cognition Model (STAC-M a computational model of student cognitive processing in science class developed in 2013, the authors complete a computational experiment which examines the role of cognitive retraining on student learning. Comparison of the STAC-M and the STAC-M with inclusion of the Multiobjective Evolutionary Algorithm shows greater success in solving the Piagetian science-tasks post cognitive retraining with the Multiobjective Evolutionary Algorithm. This illustrates the potential uses of cognitive and neuropsychological computational modeling in educational research. The authors also outline the limitations and assumptions of computational modeling.

  20. Accuracy and reproducibility of voxel based superimposition of cone beam computed tomography models on the anterior cranial base and the zygomatic arches.

    Science.gov (United States)

    Nada, Rania M; Maal, Thomas J J; Breuning, K Hero; Bergé, Stefaan J; Mostafa, Yehya A; Kuijpers-Jagtman, Anne Marie

    2011-02-09

    Superimposition of serial Cone Beam Computed Tomography (CBCT) scans has become a valuable tool for three dimensional (3D) assessment of treatment effects and stability. Voxel based image registration is a newly developed semi-automated technique for superimposition and comparison of two CBCT scans. The accuracy and reproducibility of CBCT superimposition on the anterior cranial base or the zygomatic arches using voxel based image registration was tested in this study. 16 pairs of 3D CBCT models were constructed from pre and post treatment CBCT scans of 16 adult dysgnathic patients. Each pair was registered on the anterior cranial base three times and on the left zygomatic arch twice. Following each superimposition, the mean absolute distances between the 2 models were calculated at 4 regions: anterior cranial base, forehead, left and right zygomatic arches. The mean distances between the models ranged from 0.2 to 0.37 mm (SD 0.08-0.16) for the anterior cranial base registration and from 0.2 to 0.45 mm (SD 0.09-0.27) for the zygomatic arch registration. The mean differences between the two registration zones ranged between 0.12 to 0.19 mm at the 4 regions. Voxel based image registration on both zones could be considered as an accurate and a reproducible method for CBCT superimposition. The left zygomatic arch could be used as a stable structure for the superimposition of smaller field of view CBCT scans where the anterior cranial base is not visible.

  1. Computational Models for Calcium-Mediated Astrocyte Functions

    Directory of Open Access Journals (Sweden)

    Tiina Manninen

    2018-04-01

    Full Text Available The computational neuroscience field has heavily concentrated on the modeling of neuronal functions, largely ignoring other brain cells, including one type of glial cell, the astrocytes. Despite the short history of modeling astrocytic functions, we were delighted about the hundreds of models developed so far to study the role of astrocytes, most often in calcium dynamics, synchronization, information transfer, and plasticity in vitro, but also in vascular events, hyperexcitability, and homeostasis. Our goal here is to present the state-of-the-art in computational modeling of astrocytes in order to facilitate better understanding of the functions and dynamics of astrocytes in the brain. Due to the large number of models, we concentrated on a hundred models that include biophysical descriptions for calcium signaling and dynamics in astrocytes. We categorized the models into four groups: single astrocyte models, astrocyte network models, neuron-astrocyte synapse models, and neuron-astrocyte network models to ease their use in future modeling projects. We characterized the models based on which earlier models were used for building the models and which type of biological entities were described in the astrocyte models. Features of the models were compared and contrasted so that similarities and differences were more readily apparent. We discovered that most of the models were basically generated from a small set of previously published models with small variations. However, neither citations to all the previous models with similar core structure nor explanations of what was built on top of the previous models were provided, which made it possible, in some cases, to have the same models published several times without an explicit intention to make new predictions about the roles of astrocytes in brain functions. Furthermore, only a few of the models are available online which makes it difficult to reproduce the simulation results and further develop

  2. Computational Models for Calcium-Mediated Astrocyte Functions.

    Science.gov (United States)

    Manninen, Tiina; Havela, Riikka; Linne, Marja-Leena

    2018-01-01

    The computational neuroscience field has heavily concentrated on the modeling of neuronal functions, largely ignoring other brain cells, including one type of glial cell, the astrocytes. Despite the short history of modeling astrocytic functions, we were delighted about the hundreds of models developed so far to study the role of astrocytes, most often in calcium dynamics, synchronization, information transfer, and plasticity in vitro , but also in vascular events, hyperexcitability, and homeostasis. Our goal here is to present the state-of-the-art in computational modeling of astrocytes in order to facilitate better understanding of the functions and dynamics of astrocytes in the brain. Due to the large number of models, we concentrated on a hundred models that include biophysical descriptions for calcium signaling and dynamics in astrocytes. We categorized the models into four groups: single astrocyte models, astrocyte network models, neuron-astrocyte synapse models, and neuron-astrocyte network models to ease their use in future modeling projects. We characterized the models based on which earlier models were used for building the models and which type of biological entities were described in the astrocyte models. Features of the models were compared and contrasted so that similarities and differences were more readily apparent. We discovered that most of the models were basically generated from a small set of previously published models with small variations. However, neither citations to all the previous models with similar core structure nor explanations of what was built on top of the previous models were provided, which made it possible, in some cases, to have the same models published several times without an explicit intention to make new predictions about the roles of astrocytes in brain functions. Furthermore, only a few of the models are available online which makes it difficult to reproduce the simulation results and further develop the models. Thus

  3. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud for Mobile Cloud Computing Applications

    Directory of Open Access Journals (Sweden)

    Thanh Dinh

    2017-03-01

    Full Text Available This paper presents a location-based interactive model of Internet of Things (IoT and cloud integration (IoT-cloud for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model.

  4. Improved object optimal synthetic description, modeling, learning, and discrimination by GEOGINE computational kernel

    Science.gov (United States)

    Fiorini, Rodolfo A.; Dacquino, Gianfranco

    2005-03-01

    GEOGINE (GEOmetrical enGINE), a state-of-the-art OMG (Ontological Model Generator) based on n-D Tensor Invariants for n-Dimensional shape/texture optimal synthetic representation, description and learning, was presented in previous conferences elsewhere recently. Improved computational algorithms based on the computational invariant theory of finite groups in Euclidean space and a demo application is presented. Progressive model automatic generation is discussed. GEOGINE can be used as an efficient computational kernel for fast reliable application development and delivery in advanced biomedical engineering, biometric, intelligent computing, target recognition, content image retrieval, data mining technological areas mainly. Ontology can be regarded as a logical theory accounting for the intended meaning of a formal dictionary, i.e., its ontological commitment to a particular conceptualization of the world object. According to this approach, "n-D Tensor Calculus" can be considered a "Formal Language" to reliably compute optimized "n-Dimensional Tensor Invariants" as specific object "invariant parameter and attribute words" for automated n-Dimensional shape/texture optimal synthetic object description by incremental model generation. The class of those "invariant parameter and attribute words" can be thought as a specific "Formal Vocabulary" learned from a "Generalized Formal Dictionary" of the "Computational Tensor Invariants" language. Even object chromatic attributes can be effectively and reliably computed from object geometric parameters into robust colour shape invariant characteristics. As a matter of fact, any highly sophisticated application needing effective, robust object geometric/colour invariant attribute capture and parameterization features, for reliable automated object learning and discrimination can deeply benefit from GEOGINE progressive automated model generation computational kernel performance. Main operational advantages over previous

  5. Automatic Model Generation Framework for Computational Simulation of Cochlear Implantation

    DEFF Research Database (Denmark)

    Mangado Lopez, Nerea; Ceresa, Mario; Duchateau, Nicolas

    2016-01-01

    . To address such a challenge, we propose an automatic framework for the generation of patient-specific meshes for finite element modeling of the implanted cochlea. First, a statistical shape model is constructed from high-resolution anatomical μCT images. Then, by fitting the statistical model to a patient......'s CT image, an accurate model of the patient-specific cochlea anatomy is obtained. An algorithm based on the parallel transport frame is employed to perform the virtual insertion of the cochlear implant. Our automatic framework also incorporates the surrounding bone and nerve fibers and assigns......Recent developments in computational modeling of cochlear implantation are promising to study in silico the performance of the implant before surgery. However, creating a complete computational model of the patient's anatomy while including an external device geometry remains challenging...

  6. Development of computer-based function to estimate radioactive source term by coupling atmospheric model with monitoring data

    International Nuclear Information System (INIS)

    Akiko, Furuno; Hideyuki, Kitabata

    2003-01-01

    Full text: The importance of computer-based decision support systems for local and regional scale accidents has been recognized by many countries with the experiences of accidental atmospheric releases of radionuclides at Chernobyl in 1986 in the former Soviet Union. The recent increase of nuclear power plants in the Asian region also necessitates an emergency response system for Japan to predict the long-range atmospheric dispersion of radionuclides due to overseas accident. On the basis of these backgrounds, WSPEEDI (Worldwide version of System for Prediction of Environmental Emergency Dose Information) at Japan Atomic Energy Research Institute is developed to forecast long-range atmospheric dispersions of radionuclides during nuclear emergency. Although the source condition is critical parameter for accurate prediction, it is rarely that the condition can be acquired in the early stage of overseas accident. Thus, we have been developing a computer-based function to estimate radioactive source term, e.g. the release point, time and amount, as a part of WSPEEDI. This function consists of atmospheric transport simulations and statistical analysis for the prediction and monitoring of air dose rates. Atmospheric transport simulations are carried out for the matrix of possible release points in Eastern Asia and possible release times. The simulation results of air dose rates are compared with monitoring data and the best fitted release condition is defined as source term. This paper describes the source term estimation method and the application to Eastern Asia. The latest version of WSPEEDI accommodates following two models: an atmospheric meteorological model MM5 and a particle random walk model GEARN. MM5 is a non-hydrostatic meteorological model developed by the Pennsylvania State University and the National Center for Atmospheric Research (NCAR). MM5 physically calculates more than 40 meteorological parameters with high resolution in time and space based an

  7. Computer-animated model of accommodation and presbyopia.

    Science.gov (United States)

    Goldberg, Daniel B

    2015-02-01

    To understand, demonstrate, and further research the mechanisms of accommodation and presbyopia. Private practice, Little Silver, New Jersey, USA. Experimental study. The CAMA 2.0 computer-animated model of accommodation and presbyopia was produced in collaboration with an experienced medical animator using Autodesk Maya animation software and Adobe After Effects. The computer-animated model demonstrates the configuration and synchronous movements of all accommodative elements. A new classification of the zonular apparatus based on structure and function is proposed. There are 3 divisions of zonular fibers; that is, anterior, crossing, and posterior. The crossing zonular fibers form a scaffolding to support the lens; the anterior and posterior zonular fibers work reciprocally to achieve focused vision. The model demonstrates the important support function of Weiger ligament. Dynamic movement of the ora serrata demonstrates that the forces of ciliary muscle contraction store energy for disaccommodation in the elastic choroid. The flow of aqueous and vitreous provides strong evidence for our understanding of the hydrodynamic interactions during the accommodative cycle. The interaction may result from the elastic stretch in the choroid transmitted to the vitreous rather than from vitreous pressue. The model supports the concept that presbyopia results from loss of elasticity and increasing ocular rigidity in both the lenticular and extralenticular structures. The computer-animated model demonstrates the structures of accommodation moving in synchrony and might enhance understanding of the mechanisms of accommodation and presbyopia. Dr. Goldberg is a consultant to Acevision, Inc., and Bausch & Lomb. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  8. Mathematical model of accelerator output characteristics and their calculation on a computer

    International Nuclear Information System (INIS)

    Mishulina, O.A.; Ul'yanina, M.N.; Kornilova, T.V.

    1975-01-01

    A mathematical model is described of output characteristics of a linear accelerator. The model is a system of differential equations. Presence of phase limitations is a specific feature of setting the problem which makes it possible to ensure higher simulation accuracy and determine a capture coefficient. An algorithm is elaborated of computing output characteristics based upon the mathematical model suggested. A capture coefficient, coordinate expectation characterizing an average phase value of the beam particles, coordinate expectation characterizing an average value of the reverse relative velocity of the beam particles as well as dispersion of these coordinates are output characteristics of the accelerator. Calculation methods of the accelerator output characteristics are described in detail. The computations have been performed on the BESM-6 computer, the characteristics computing time being 2 min 20 sec. Relative error of parameter computation averages 10 -2

  9. Approach to Computer Implementation of Mathematical Model of 3-Phase Induction Motor

    Science.gov (United States)

    Pustovetov, M. Yu

    2018-03-01

    This article discusses the development of the computer model of an induction motor based on the mathematical model in a three-phase stator reference frame. It uses an approach that allows combining during preparation of the computer model dual methods: means of visual programming circuitry (in the form of electrical schematics) and logical one (in the form of block diagrams). The approach enables easy integration of the model of an induction motor as part of more complex models of electrical complexes and systems. The developed computer model gives the user access to the beginning and the end of a winding of each of the three phases of the stator and rotor. This property is particularly important when considering the asymmetric modes of operation or when powered by the special circuitry of semiconductor converters.

  10. Computational fluid dynamic modelling of cavitation

    Science.gov (United States)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.

  11. An Accurate and Dynamic Computer Graphics Muscle Model

    Science.gov (United States)

    Levine, David Asher

    1997-01-01

    A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.

  12. Effect of Inquiry-Based Computer Simulation Modeling on Pre-Service Teachers' Understanding of Homeostasis and Their Perceptions of Design Features

    Science.gov (United States)

    Chabalengula, Vivien; Fateen, Rasheta; Mumba, Frackson; Ochs, Laura Kathryn

    2016-01-01

    This study investigated the effect of an inquiry-based computer simulation modeling (ICoSM) instructional approach on pre-service science teachers' understanding of homeostasis and its related concepts, and their perceived design features of the ICoSM and simulation that enhanced their conceptual understanding of these concepts. Fifty pre-service…

  13. EPR-based material modelling of soils

    Science.gov (United States)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  14. Undergraduate students’ challenges with computational modelling in physics

    Directory of Open Access Journals (Sweden)

    Simen A. Sørby

    2012-12-01

    Full Text Available In later years, computational perspectives have become essential parts in several of the University of Oslo’s natural science studies. In this paper we discuss some main findings from a qualitative study of the computational perspectives’ impact on the students’ work with their first course in physics– mechanics – and their learning and meaning making of its contents. Discussions of the students’ learning of physics are based on sociocultural theory, which originates in Vygotsky and Bakhtin, and subsequent physics education research. Results imply that the greatest challenge for students when working with computational assignments is to combine knowledge from previously known, but separate contexts. Integrating knowledge of informatics, numerical and analytical mathematics and conceptual understanding of physics appears as a clear challenge for the students. We also observe alack of awareness concerning the limitations of physical modelling. The students need help with identifying the appropriate knowledge system or “tool set”, for the different tasks at hand; they need helpto create a plan for their modelling and to become aware of its limits. In light of this, we propose thatan instructive and dialogic text as basis for the exercises, in which the emphasis is on specification, clarification and elaboration, would be of potential great aid for students who are new to computational modelling.

  15. Dependence of Computational Models on Input Dimension: Tractability of Approximation and Optimization Tasks

    Czech Academy of Sciences Publication Activity Database

    Kainen, P.C.; Kůrková, Věra; Sanguineti, M.

    2012-01-01

    Roč. 58, č. 2 (2012), s. 1203-1214 ISSN 0018-9448 R&D Projects: GA MŠk(CZ) ME10023; GA ČR GA201/08/1744; GA ČR GAP202/11/1368 Grant - others:CNR-AV ČR(CZ-IT) Project 2010–2012 Complexity of Neural -Network and Kernel Computational Models Institutional research plan: CEZ:AV0Z10300504 Keywords : dictionary-based computational models * high-dimensional approximation and optimization * model complexity * polynomial upper bounds Subject RIV: IN - Informatics, Computer Science Impact factor: 2.621, year: 2012

  16. A Computer-Based Simulation of an Acid-Base Titration

    Science.gov (United States)

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  17. Proof-of-Concept Demonstrations for Computation-Based Human Reliability Analysis. Modeling Operator Performance During Flooding Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald Laurids [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herberger, Sarah Elizabeth Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program has the overall objective to help sustain the existing commercial nuclear power plants (NPPs). To accomplish this program objective, there are multiple LWRS “pathways,” or research and development (R&D) focus areas. One LWRS focus area is called the Risk-Informed Safety Margin and Characterization (RISMC) pathway. Initial efforts under this pathway to combine probabilistic and plant multi-physics models to quantify safety margins and support business decisions also included HRA, but in a somewhat simplified manner. HRA experts at Idaho National Laboratory (INL) have been collaborating with other experts to develop a computational HRA approach, called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), for inclusion into the RISMC framework. The basic premise of this research is to leverage applicable computational techniques, namely simulation and modeling, to develop and then, using RAVEN as a controller, seamlessly integrate virtual operator models (HUNTER) with 1) the dynamic computational MOOSE runtime environment that includes a full-scope plant model, and 2) the RISMC framework PRA models already in use. The HUNTER computational HRA approach is a hybrid approach that leverages past work from cognitive psychology, human performance modeling, and HRA, but it is also a significant departure from existing static and even dynamic HRA methods. This report is divided into five chapters that cover the development of an external flooding event test case and associated statistical modeling considerations.

  18. Proof-of-Concept Demonstrations for Computation-Based Human Reliability Analysis. Modeling Operator Performance During Flooding Scenarios

    International Nuclear Information System (INIS)

    Joe, Jeffrey Clark; Boring, Ronald Laurids; Herberger, Sarah Elizabeth Marie; Mandelli, Diego; Smith, Curtis Lee

    2015-01-01

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program has the overall objective to help sustain the existing commercial nuclear power plants (NPPs). To accomplish this program objective, there are multiple LWRS 'pathways,' or research and development (R&D) focus areas. One LWRS focus area is called the Risk-Informed Safety Margin and Characterization (RISMC) pathway. Initial efforts under this pathway to combine probabilistic and plant multi-physics models to quantify safety margins and support business decisions also included HRA, but in a somewhat simplified manner. HRA experts at Idaho National Laboratory (INL) have been collaborating with other experts to develop a computational HRA approach, called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), for inclusion into the RISMC framework. The basic premise of this research is to leverage applicable computational techniques, namely simulation and modeling, to develop and then, using RAVEN as a controller, seamlessly integrate virtual operator models (HUNTER) with 1) the dynamic computational MOOSE runtime environment that includes a full-scope plant model, and 2) the RISMC framework PRA models already in use. The HUNTER computational HRA approach is a hybrid approach that leverages past work from cognitive psychology, human performance modeling, and HRA, but it is also a significant departure from existing static and even dynamic HRA methods. This report is divided into five chapters that cover the development of an external flooding event test case and associated statistical modeling considerations.

  19. Blood leakage detection during dialysis therapy based on fog computing with array photocell sensors and heteroassociative memory model.

    Science.gov (United States)

    Wu, Jian-Xing; Huang, Ping-Tzan; Lin, Chia-Hung; Li, Chien-Ming

    2018-02-01

    Blood leakage and blood loss are serious life-threatening complications occurring during dialysis therapy. These events have been of concerns to both healthcare givers and patients. More than 40% of adult blood volume can be lost in just a few minutes, resulting in morbidities and mortality. The authors intend to propose the design of a warning tool for the detection of blood leakage/blood loss during dialysis therapy based on fog computing with an array of photocell sensors and heteroassociative memory (HAM) model. Photocell sensors are arranged in an array on a flexible substrate to detect blood leakage via the resistance changes with illumination in the visible spectrum of 500-700 nm. The HAM model is implemented to design a virtual alarm unit using electricity changes in an embedded system. The proposed warning tool can indicate the risk level in both end-sensing units and remote monitor devices via a wireless network and fog/cloud computing. The animal experimental results (pig blood) will demonstrate the feasibility.

  20. Importance of Computer Model Validation in Pyroprocessing Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. E.; Li, Hui; Yim, M. S. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    In this research, we developed a plan for experimental validation of one of the computer models developed for ER process modeling, i. e., the ERAD code. Several candidate surrogate materials are selected for the experiment considering the chemical and physical properties. Molten salt-based pyroprocessing technology is being examined internationally as an alternative to treat spent nuclear fuel over aqueous technology. The central process in pyroprocessing is electrorefining(ER) which separates uranium from transuranic elements and fission products present in spent nuclear fuel. ER is a widely used process in the minerals industry to purify impure metals. Studies of ER by using actual spent nuclear fuel materials are problematic for both technical and political reasons. Therefore, the initial effort for ER process optimization is made by using computer models. A number of models have been developed for this purpose. But as validation of these models is incomplete and often times problematic, the simulation results from these models are inherently uncertain.

  1. From Occasional Choices to Inevitable Musts: A Computational Model of Nicotine Addiction

    Directory of Open Access Journals (Sweden)

    Selin Metin

    2012-01-01

    Full Text Available Although, there are considerable works on the neural mechanisms of reward-based learning and decision making, and most of them mention that addiction can be explained by malfunctioning in these cognitive processes, there are very few computational models. This paper focuses on nicotine addiction, and a computational model for nicotine addiction is proposed based on the neurophysiological basis of addiction. The model compromises different levels ranging from molecular basis to systems level, and it demonstrates three different possible behavioral patterns which are addict, nonaddict, and indecisive. The dynamical behavior of the proposed model is investigated with tools used in analyzing nonlinear dynamical systems, and the relation between the behavioral patterns and the dynamics of the system is discussed.

  2. SU-F-J-178: A Computer Simulation Model Observer for Task-Based Image Quality Assessment in Radiation Therapy

    International Nuclear Information System (INIS)

    Dolly, S; Mutic, S; Anastasio, M; Li, H; Yu, L

    2016-01-01

    Purpose: Traditionally, image quality in radiation therapy is assessed subjectively or by utilizing physically-based metrics. Some model observers exist for task-based medical image quality assessment, but almost exclusively for diagnostic imaging tasks. As opposed to disease diagnosis, the task for image observers in radiation therapy is to utilize the available images to design and deliver a radiation dose which maximizes patient disease control while minimizing normal tissue damage. The purpose of this study was to design and implement a new computer simulation model observer to enable task-based image quality assessment in radiation therapy. Methods: A modular computer simulation framework was developed to resemble the radiotherapy observer by simulating an end-to-end radiation therapy treatment. Given images and the ground-truth organ boundaries from a numerical phantom as inputs, the framework simulates an external beam radiation therapy treatment and quantifies patient treatment outcomes using the previously defined therapeutic operating characteristic (TOC) curve. As a preliminary demonstration, TOC curves were calculated for various CT acquisition and reconstruction parameters, with the goal of assessing and optimizing simulation CT image quality for radiation therapy. Sources of randomness and bias within the system were analyzed. Results: The relationship between CT imaging dose and patient treatment outcome was objectively quantified in terms of a singular value, the area under the TOC (AUTOC) curve. The AUTOC decreases more rapidly for low-dose imaging protocols. AUTOC variation introduced by the dose optimization algorithm was approximately 0.02%, at the 95% confidence interval. Conclusion: A model observer has been developed and implemented to assess image quality based on radiation therapy treatment efficacy. It enables objective determination of appropriate imaging parameter values (e.g. imaging dose). Framework flexibility allows for incorporation

  3. Terramechanics based wheel-soil model in a computer game enviroment

    OpenAIRE

    Knutsson, Viktor

    2016-01-01

    This thesis aimed to develop deformable a virtual terrain which a vehicle can move in and interact with in a realistic manner. The theory used to calculate how the terrain influences the vehicle is based on terramechanics. The terrain is divided into two separate parts, one for visualization and one for physical collisions. Deformations of the graphical layer is calculated on the GPU using compute shader programming. The result of the thesis include a tech demo with a small landscape where an...

  4. A Sensitivity Analysis of a Computer Model-Based Leak Detection System for Oil Pipelines

    Directory of Open Access Journals (Sweden)

    Zhe Lu

    2017-08-01

    Full Text Available Improving leak detection capability to eliminate undetected releases is an area of focus for the energy pipeline industry, and the pipeline companies are working to improve existing methods for monitoring their pipelines. Computer model-based leak detection methods that detect leaks by analyzing the pipeline hydraulic state have been widely employed in the industry, but their effectiveness in practical applications is often challenged by real-world uncertainties. This study quantitatively assessed the effects of uncertainties on leak detectability of a commonly used real-time transient model-based leak detection system. Uncertainties in fluid properties, field sensors, and the data acquisition system were evaluated. Errors were introduced into the input variables of the leak detection system individually and collectively, and the changes in leak detectability caused by the uncertainties were quantified using simulated leaks. This study provides valuable quantitative results contributing towards a better understanding of how real-world uncertainties affect leak detection. A general ranking of the importance of the uncertainty sources was obtained: from high to low it is time skew, bulk modulus error, viscosity error, and polling time. It was also shown that inertia-dominated pipeline systems were less sensitive to uncertainties compared to friction-dominated systems.

  5. Computationally efficient and flexible modular modelling approach for river and urban drainage systems based on surrogate conceptual models

    Science.gov (United States)

    Wolfs, Vincent; Willems, Patrick

    2015-04-01

    Water managers rely increasingly on mathematical simulation models that represent individual parts of the water system, such as the river, sewer system or waste water treatment plant. The current evolution towards integral water management requires the integration of these distinct components, leading to an increased model scale and scope. Besides this growing model complexity, certain applications gained interest and importance, such as uncertainty and sensitivity analyses, auto-calibration of models and real time control. All these applications share the need for models with a very limited calculation time, either for performing a large number of simulations, or a long term simulation followed by a statistical post-processing of the results. The use of the commonly applied detailed models that solve (part of) the de Saint-Venant equations is infeasible for these applications or such integrated modelling due to several reasons, of which a too long simulation time and the inability to couple submodels made in different software environments are the main ones. Instead, practitioners must use simplified models for these purposes. These models are characterized by empirical relationships and sacrifice model detail and accuracy for increased computational efficiency. The presented research discusses the development of a flexible integral modelling platform that complies with the following three key requirements: (1) Include a modelling approach for water quantity predictions for rivers, floodplains, sewer systems and rainfall runoff routing that require a minimal calculation time; (2) A fast and semi-automatic model configuration, thereby making maximum use of data of existing detailed models and measurements; (3) Have a calculation scheme based on open source code to allow for future extensions or the coupling with other models. First, a novel and flexible modular modelling approach based on the storage cell concept was developed. This approach divides each

  6. Design of Intelligent Robot as A Tool for Teaching Media Based on Computer Interactive Learning and Computer Assisted Learning to Improve the Skill of University Student

    Science.gov (United States)

    Zuhrie, M. S.; Basuki, I.; Asto B, I. G. P.; Anifah, L.

    2018-01-01

    The focus of the research is the teaching module which incorporates manufacturing, planning mechanical designing, controlling system through microprocessor technology and maneuverability of the robot. Computer interactive and computer-assisted learning is strategies that emphasize the use of computers and learning aids (computer assisted learning) in teaching and learning activity. This research applied the 4-D model research and development. The model is suggested by Thiagarajan, et.al (1974). 4-D Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with an objective to produce a tool of learning in the form of intelligent robot modules and kit based on Computer Interactive Learning and Computer Assisted Learning. From the data of the Indonesia Robot Contest during the period of 2009-2015, it can be seen that the modules that have been developed confirm the fourth stage of the research methods of development; disseminate method. The modules which have been developed for students guide students to produce Intelligent Robot Tool for Teaching Based on Computer Interactive Learning and Computer Assisted Learning. Results of students’ responses also showed a positive feedback to relate to the module of robotics and computer-based interactive learning.

  7. Automatic procedure for realistic 3D finite element modelling of human brain for bioelectromagnetic computations

    International Nuclear Information System (INIS)

    Aristovich, K Y; Khan, S H

    2010-01-01

    Realistic computer modelling of biological objects requires building of very accurate and realistic computer models based on geometric and material data, type, and accuracy of numerical analyses. This paper presents some of the automatic tools and algorithms that were used to build accurate and realistic 3D finite element (FE) model of whole-brain. These models were used to solve the forward problem in magnetic field tomography (MFT) based on Magnetoencephalography (MEG). The forward problem involves modelling and computation of magnetic fields produced by human brain during cognitive processing. The geometric parameters of the model were obtained from accurate Magnetic Resonance Imaging (MRI) data and the material properties - from those obtained from Diffusion Tensor MRI (DTMRI). The 3D FE models of the brain built using this approach has been shown to be very accurate in terms of both geometric and material properties. The model is stored on the computer in Computer-Aided Parametrical Design (CAD) format. This allows the model to be used in a wide a range of methods of analysis, such as finite element method (FEM), Boundary Element Method (BEM), Monte-Carlo Simulations, etc. The generic model building approach presented here could be used for accurate and realistic modelling of human brain and many other biological objects.

  8. Computer model for ductile fracture

    International Nuclear Information System (INIS)

    Moran, B.; Reaugh, J. E.

    1979-01-01

    A computer model is described for predicting ductile fracture initiation and propagation. The computer fracture model is calibrated by simple and notched round-bar tension tests and a precracked compact tension test. The model is used to predict fracture initiation and propagation in a Charpy specimen and compare the results with experiments. The calibrated model provides a correlation between Charpy V-notch (CVN) fracture energy and any measure of fracture toughness, such as J/sub Ic/. A second simpler empirical correlation was obtained using the energy to initiate fracture in the Charpy specimen rather than total energy CVN, and compared the results with the empirical correlation of Rolfe and Novak

  9. The Fermilab central computing facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-01-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front-end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS cluster interactive front-end, an Amdahl VM Computing engine, ACP farms, and (primarily) VMS workstations. This paper will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. (orig.)

  10. The Fermilab Central Computing Facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-05-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS Cluster interactive front end, an Amdahl VM computing engine, ACP farms, and (primarily) VMS workstations. This presentation will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. 2 figs

  11. Opportunity for Realizing Ideal Computing System using Cloud Computing Model

    OpenAIRE

    Sreeramana Aithal; Vaikunth Pai T

    2017-01-01

    An ideal computing system is a computing system with ideal characteristics. The major components and their performance characteristics of such hypothetical system can be studied as a model with predicted input, output, system and environmental characteristics using the identified objectives of computing which can be used in any platform, any type of computing system, and for application automation, without making modifications in the form of structure, hardware, and software coding by an exte...

  12. A physicist's model of computation

    International Nuclear Information System (INIS)

    Fredkin, E.

    1991-01-01

    An attempt is presented to make a statement about what a computer is and how it works from the perspective of physics. The single observation that computation can be a reversible process allows for the same kind of insight into computing as was obtained by Carnot's discovery that heat engines could be modelled as reversible processes. It allows us to bring computation into the realm of physics, where the power of physics allows us to ask and answer questions that seemed intractable from the viewpoint of computer science. Strangely enough, this effort makes it clear why computers get cheaper every year. (author) 14 refs., 4 figs

  13. A PHYSIOLOGICALLY BASED COMPUTATIONAL MODEL OF THE BPG AXIS IN FATHEAD MINNOWS: PREDICTING EFFECTS OF ENDOCRINE DISRUPTING CHEMICAL EXPOSURE ON REPRODUCTIVE ENDPOINTS

    Science.gov (United States)

    This presentation describes development and application of a physiologically-based computational model that simulates the brain-pituitary-gonadal (BPG) axis and other endpoints important in reproduction such as concentrations of sex steroid hormones, 17-estradiol, testosterone, a...

  14. Modelling, abstraction, and computation in systems biology: A view from computer science.

    Science.gov (United States)

    Melham, Tom

    2013-04-01

    Systems biology is centrally engaged with computational modelling across multiple scales and at many levels of abstraction. Formal modelling, precise and formalised abstraction relationships, and computation also lie at the heart of computer science--and over the past decade a growing number of computer scientists have been bringing their discipline's core intellectual and computational tools to bear on biology in fascinating new ways. This paper explores some of the apparent points of contact between the two fields, in the context of a multi-disciplinary discussion on conceptual foundations of systems biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.

    Science.gov (United States)

    Vulović, Aleksandra; Šušteršič, Tijana; Cvijić, Sandra; Ibrić, Svetlana; Filipović, Nenad

    2018-02-15

    One of the critical components of the respiratory drug delivery is the manner in which the inhaled aerosol is deposited in respiratory tract compartments. Depending on formulation properties, device characteristics and breathing pattern, only a certain fraction of the dose will reach the target site in the lungs, while the rest of the drug will deposit in the inhalation device or in the mouth-throat region. The aim of this study was to link the Computational fluid dynamics (CFD) with physiologically-based pharmacokinetic (PBPK) modelling in order to predict aerolisolization of different dry powder formulations, and estimate concomitant in vivo deposition and absorption of amiloride hydrochloride. Drug physicochemical properties were experimentally determined and used as inputs for the CFD simulations of particle flow in the generated 3D geometric model of Aerolizer® dry powder inhaler (DPI). CFD simulations were used to simulate air flow through Aerolizer® inhaler and Discrete Phase Method (DPM) was used to simulate aerosol particles deposition within the fluid domain. The simulated values for the percent emitted dose were comparable to the values obtained using Andersen cascade impactor (ACI). However, CFD predictions indicated that aerosolized DPI have smaller particle size and narrower size distribution than assumed based on ACI measurements. Comparison with the literature in vivo data revealed that the constructed drug-specific PBPK model was able to capture amiloride absorption pattern following oral and inhalation administration. The PBPK simulation results, based on the CFD generated particle distribution data as input, illustrated the influence of formulation properties on the expected drug plasma concentration profiles. The model also predicted the influence of potential changes in physiological parameters on the extent of inhaled amiloride absorption. Overall, this study demonstrated the potential of the combined CFD-PBPK approach to model inhaled drug

  16. Computational Methods to Assess the Production Potential of Bio-Based Chemicals.

    Science.gov (United States)

    Campodonico, Miguel A; Sukumara, Sumesh; Feist, Adam M; Herrgård, Markus J

    2018-01-01

    Elevated costs and long implementation times of bio-based processes for producing chemicals represent a bottleneck for moving to a bio-based economy. A prospective analysis able to elucidate economically and technically feasible product targets at early research phases is mandatory. Computational tools can be implemented to explore the biological and technical spectrum of feasibility, while constraining the operational space for desired chemicals. In this chapter, two different computational tools for assessing potential for bio-based production of chemicals from different perspectives are described in detail. The first tool is GEM-Path: an algorithm to compute all structurally possible pathways from one target molecule to the host metabolome. The second tool is a framework for Modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes, and economic impact assessment. Integrating GEM-Path and MuSIC will play a vital role in supporting early phases of research efforts and guide the policy makers with decisions, as we progress toward planning a sustainable chemical industry.

  17. An ODP computational model of a cooperative binding object

    Science.gov (United States)

    Logé, Christophe; Najm, Elie; Chen, Ken

    1997-12-01

    A next generation of systems that should appear will have to manage simultaneously several geographically distributed users. These systems belong to the class of computer-supported cooperative work systems (CSCW). The development of such complex systems requires rigorous development methods and flexible open architectures. Open distributed processing (ODP) is a standardization effort that aims at providing such architectures. ODP features appropriate abstraction levels and a clear articulation between requirements, programming and infrastructure support. ODP advocates the use of formal methods for the specification of systems and components. The computational model, an object-based model, one of the abstraction levels identified within ODP, plays a central role in the global architecture. In this model, basic objects can be composed with communication and distribution abstractions (called binding objects) to form a computational specification of distributed systems, or applications. Computational specifications can then be mapped (in a mechanism akin to compilation) onto an engineering solution. We use an ODP-inspired method to computationally specify a cooperative system. We start from a general purpose component that we progressively refine into a collection of basic and binding objects. We focus on two issues of a co-authoring application, namely, dynamic reconfiguration and multiview synchronization. We discuss solutions for these issues and formalize them using the MT-LOTOS specification language that is currently studied in the ISO standardization formal description techniques group.

  18. Computer models of dipole magnets of a series 'VULCAN' for the ALICE experiment

    International Nuclear Information System (INIS)

    Vodop'yanov, A.S.; Shishov, Yu.A.; Yuldasheva, M.B.; Yuldashev, O.I.

    1998-01-01

    The paper is devoted to a construction of computer models for three magnets of the 'VULCAN' series in the framework of a differential approach for two scalar potentials. The distinctive property of these magnets is that they are 'warm' and their coils are of conic saddle shape. The algorithm of creating a computer model for the coils is suggested. The coil field is computed by Biot-Savart law and a part of the integrals is calculated with the help of analytical formulas. To compute three-dimensional magnetic fields by the finite element method with a local accuracy control, two new algorithms are suggested. The former is based on a comparison of the fields computed by means of linear and quadratic shape functions. The latter is based on a comparison of the field computed with the help of linear shape functions and a local classical solution. The distributions of the local accuracy control characteristics within a working part of the third magnet and the other results of the computations are presented

  19. GPU-based high-performance computing for radiation therapy

    International Nuclear Information System (INIS)

    Jia, Xun; Jiang, Steve B; Ziegenhein, Peter

    2014-01-01

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. The graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of study has been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this paper, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented. (topical review)

  20. Computing elastic‐rebound‐motivated rarthquake probabilities in unsegmented fault models: a new methodology supported by physics‐based simulators

    Science.gov (United States)

    Field, Edward H.

    2015-01-01

    A methodology is presented for computing elastic‐rebound‐based probabilities in an unsegmented fault or fault system, which involves computing along‐fault averages of renewal‐model parameters. The approach is less biased and more self‐consistent than a logical extension of that applied most recently for multisegment ruptures in California. It also enables the application of magnitude‐dependent aperiodicity values, which the previous approach does not. Monte Carlo simulations are used to analyze long‐term system behavior, which is generally found to be consistent with that of physics‐based earthquake simulators. Results cast doubt that recurrence‐interval distributions at points on faults look anything like traditionally applied renewal models, a fact that should be considered when interpreting paleoseismic data. We avoid such assumptions by changing the "probability of what" question (from offset at a point to the occurrence of a rupture, assuming it is the next event to occur). The new methodology is simple, although not perfect in terms of recovering long‐term rates in Monte Carlo simulations. It represents a reasonable, improved way to represent first‐order elastic‐rebound predictability, assuming it is there in the first place, and for a system that clearly exhibits other unmodeled complexities, such as aftershock triggering.

  1. A probabilistic graphical model based stochastic input model construction

    International Nuclear Information System (INIS)

    Wan, Jiang; Zabaras, Nicholas

    2014-01-01

    Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media

  2. A COMPARISON BETWEEN THREE PREDICTIVE MODELS OF COMPUTATIONAL INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    DUMITRU CIOBANU

    2013-12-01

    Full Text Available Time series prediction is an open problem and many researchers are trying to find new predictive methods and improvements for the existing ones. Lately methods based on neural networks are used extensively for time series prediction. Also, support vector machines have solved some of the problems faced by neural networks and they began to be widely used for time series prediction. The main drawback of those two methods is that they are global models and in the case of a chaotic time series it is unlikely to find such model. In this paper it is presented a comparison between three predictive from computational intelligence field one based on neural networks one based on support vector machine and another based on chaos theory. We show that the model based on chaos theory is an alternative to the other two methods.

  3. Motivation and performance within a collaborative computer-based modeling task: Relations between students' achievement goal orientation, self-efficacy, cognitive processing and achievement

    OpenAIRE

    Sins, P.H.M.; van Joolingen, W.R.; Savelsbergh, E.R.; van Hout-Wolters, B.H.A.M.

    2008-01-01

    Purpose of the present study was to test a conceptual model of relations among achievement goal orientation, self-efficacy, cognitive processing, and achievement of students working within a particular collaborative task context. The task involved a collaborative computer-based modeling task. In order to test the model, group measures of mastery-approach goal orientation, performance-avoidance goal orientation, self-efficacy, and achievement were employed. Students’ cognitive processing was a...

  4. Computational chemistry and metal-based radiopharmaceuticals

    International Nuclear Information System (INIS)

    Neves, M.; Fausto, R.

    1998-01-01

    Computer-assisted techniques have found extensive use in the design of organic pharmaceuticals but have not been widely applied on metal complexes, particularly on radiopharmaceuticals. Some examples of computer generated structures of complexes of In, Ga and Tc with N, S, O and P donor ligands are referred. Besides parameters directly related with molecular geometries, molecular properties of the predicted structures, as ionic charges or dipole moments, are considered to be related with biodistribution studies. The structure of a series of oxo neutral Tc-biguanide complexes are predicted by molecular mechanics calculations, and their interactions with water molecules or peptide chains correlated with experimental data of partition coefficients and percentage of human protein binding. The results stress the interest of using molecular modelling to predict molecular properties of metal-based radiopharmaceuticals, which can be successfully correlated with results of in vitro studies. (author)

  5. Developing a computationally efficient dynamic multilevel hybrid optimization scheme using multifidelity model interactions.

    Energy Technology Data Exchange (ETDEWEB)

    Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA); Castro, Joseph Pete Jr. (; .); Giunta, Anthony Andrew

    2006-01-01

    Many engineering application problems use optimization algorithms in conjunction with numerical simulators to search for solutions. The formulation of relevant objective functions and constraints dictate possible optimization algorithms. Often, a gradient based approach is not possible since objective functions and constraints can be nonlinear, nonconvex, non-differentiable, or even discontinuous and the simulations involved can be computationally expensive. Moreover, computational efficiency and accuracy are desirable and also influence the choice of solution method. With the advent and increasing availability of massively parallel computers, computational speed has increased tremendously. Unfortunately, the numerical and model complexities of many problems still demand significant computational resources. Moreover, in optimization, these expenses can be a limiting factor since obtaining solutions often requires the completion of numerous computationally intensive simulations. Therefore, we propose a multifidelity optimization algorithm (MFO) designed to improve the computational efficiency of an optimization method for a wide range of applications. In developing the MFO algorithm, we take advantage of the interactions between multi fidelity models to develop a dynamic and computational time saving optimization algorithm. First, a direct search method is applied to the high fidelity model over a reduced design space. In conjunction with this search, a specialized oracle is employed to map the design space of this high fidelity model to that of a computationally cheaper low fidelity model using space mapping techniques. Then, in the low fidelity space, an optimum is obtained using gradient or non-gradient based optimization, and it is mapped back to the high fidelity space. In this paper, we describe the theory and implementation details of our MFO algorithm. We also demonstrate our MFO method on some example problems and on two applications: earth penetrators and

  6. Agent-Based Modeling of Consumer Decision making Process Based on Power Distance and Personality

    NARCIS (Netherlands)

    Roozmand, O.; Ghasem-Aghaee, N.; Hofstede, G.J.; Nematbakhsh, M.A.; Baraani, A.; Verwaart, T.

    2011-01-01

    Simulating consumer decision making processes involves different disciplines such as: sociology, social psychology, marketing, and computer science. In this paper, we propose an agent-based conceptual and computational model of consumer decision-making based on culture, personality and human needs.

  7. Accuracy and reproducibility of voxel based superimposition of cone beam computed tomography models on the anterior cranial base and the zygomatic arches.

    Directory of Open Access Journals (Sweden)

    Rania M Nada

    Full Text Available Superimposition of serial Cone Beam Computed Tomography (CBCT scans has become a valuable tool for three dimensional (3D assessment of treatment effects and stability. Voxel based image registration is a newly developed semi-automated technique for superimposition and comparison of two CBCT scans. The accuracy and reproducibility of CBCT superimposition on the anterior cranial base or the zygomatic arches using voxel based image registration was tested in this study. 16 pairs of 3D CBCT models were constructed from pre and post treatment CBCT scans of 16 adult dysgnathic patients. Each pair was registered on the anterior cranial base three times and on the left zygomatic arch twice. Following each superimposition, the mean absolute distances between the 2 models were calculated at 4 regions: anterior cranial base, forehead, left and right zygomatic arches. The mean distances between the models ranged from 0.2 to 0.37 mm (SD 0.08-0.16 for the anterior cranial base registration and from 0.2 to 0.45 mm (SD 0.09-0.27 for the zygomatic arch registration. The mean differences between the two registration zones ranged between 0.12 to 0.19 mm at the 4 regions. Voxel based image registration on both zones could be considered as an accurate and a reproducible method for CBCT superimposition. The left zygomatic arch could be used as a stable structure for the superimposition of smaller field of view CBCT scans where the anterior cranial base is not visible.

  8. Elements of matrix modeling and computing with Matlab

    CERN Document Server

    White, Robert E

    2006-01-01

    As discrete models and computing have become more common, there is a need to study matrix computation and numerical linear algebra. Encompassing a diverse mathematical core, Elements of Matrix Modeling and Computing with MATLAB examines a variety of applications and their modeling processes, showing you how to develop matrix models and solve algebraic systems. Emphasizing practical skills, it creates a bridge from problems with two and three variables to more realistic problems that have additional variables. Elements of Matrix Modeling and Computing with MATLAB focuses on seven basic applicat

  9. Vehicle - Bridge interaction, comparison of two computing models

    Science.gov (United States)

    Melcer, Jozef; Kuchárová, Daniela

    2017-07-01

    The paper presents the calculation of the bridge response on the effect of moving vehicle moves along the bridge with various velocities. The multi-body plane computing model of vehicle is adopted. The bridge computing models are created in two variants. One computing model represents the bridge as the Bernoulli-Euler beam with continuously distributed mass and the second one represents the bridge as the lumped mass model with 1 degrees of freedom. The mid-span bridge dynamic deflections are calculated for both computing models. The results are mutually compared and quantitative evaluated.

  10. HMM-based Trust Model

    DEFF Research Database (Denmark)

    ElSalamouny, Ehab; Nielsen, Mogens; Sassone, Vladimiro

    2010-01-01

    Probabilistic trust has been adopted as an approach to taking security sensitive decisions in modern global computing environments. Existing probabilistic trust frameworks either assume fixed behaviour for the principals or incorporate the notion of ‘decay' as an ad hoc approach to cope...... with their dynamic behaviour. Using Hidden Markov Models (HMMs) for both modelling and approximating the behaviours of principals, we introduce the HMM-based trust model as a new approach to evaluating trust in systems exhibiting dynamic behaviour. This model avoids the fixed behaviour assumption which is considered...... the major limitation of existing Beta trust model. We show the consistency of the HMM-based trust model and contrast it against the well known Beta trust model with the decay principle in terms of the estimation precision....

  11. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.

    Science.gov (United States)

    Rolls, Edmund T

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  12. Computer modelling of superconductive fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.A.; Campbell, A.M.; Coombs, T.A.; Cardwell, D.A.; Storey, R.J. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Hancox, J. [Rolls Royce, Applied Science Division, Derby (United Kingdom)

    1998-05-01

    Investigations are being carried out on the use of superconductors for fault current limiting applications. A number of computer programs are being developed to predict the behavior of different `resistive` fault current limiter designs under a variety of fault conditions. The programs achieve solution by iterative methods based around real measured data rather than theoretical models in order to achieve accuracy at high current densities. (orig.) 5 refs.

  13. Computational models of complex systems

    CERN Document Server

    Dabbaghian, Vahid

    2014-01-01

    Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the reader...

  14. Computer-modeling codes to improve exploration nuclear-logging methods. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Wilson, R.D.; Price, R.K.; Kosanke, K.L.

    1983-03-01

    As part of the Department of Energy's National Uranium Resource Evaluation (NURE) project's Technology Development effort, a number of computer codes and accompanying data bases were assembled for use in modeling responses of nuclear borehole logging Sondes. The logging methods include fission neutron, active and passive gamma-ray, and gamma-gamma. These CDC-compatible computer codes and data bases are available on magnetic tape from the DOE Technical Library at its Grand Junction Area Office. Some of the computer codes are standard radiation-transport programs that have been available to the radiation shielding community for several years. Other codes were specifically written to model the response of borehole radiation detectors or are specialized borehole modeling versions of existing Monte Carlo transport programs. Results from several radiation modeling studies are available as two large data bases (neutron and gamma-ray). These data bases are accompanied by appropriate processing programs that permit the user to model a wide range of borehole and formation-parameter combinations for fission-neutron, neutron-, activation and gamma-gamma logs. The first part of this report consists of a brief abstract for each code or data base. The abstract gives the code name and title, short description, auxiliary requirements, typical running time (CDC 6600), and a list of references. The next section gives format specifications and/or directory for the tapes. The final section of the report presents listings for programs used to convert data bases between machine floating-point and EBCDIC

  15. Creation of 'Ukrytie' objects computer model

    International Nuclear Information System (INIS)

    Mazur, A.B.; Kotlyarov, V.T.; Ermolenko, A.I.; Podbereznyj, S.S.; Postil, S.D.; Shaptala, D.V.

    1999-01-01

    A partial computer model of the 'Ukrytie' object was created with the use of geoinformation technologies. The computer model makes it possible to carry out information support of the works related to the 'Ukrytie' object stabilization and its conversion into ecologically safe system for analyzing, forecasting and controlling the processes occurring in the 'Ukrytie' object. Elements and structures of the 'Ukryttia' object were designed and input into the model

  16. Computer-based and web-based radiation safety training

    Energy Technology Data Exchange (ETDEWEB)

    Owen, C., LLNL

    1998-03-01

    The traditional approach to delivering radiation safety training has been to provide a stand-up lecture of the topic, with the possible aid of video, and to repeat the same material periodically. New approaches to meeting training requirements are needed to address the advent of flexible work hours and telecommuting, and to better accommodate individuals learning at their own pace. Computer- based and web-based radiation safety training can provide this alternative. Computer-based and web- based training is an interactive form of learning that the student controls, resulting in enhanced and focused learning at a time most often chosen by the student.

  17. Evaluation of computer-based computer tomography stratification against outcome models in connective tissue disease-related interstitial lung disease: a patient outcome study.

    Science.gov (United States)

    Jacob, Joseph; Bartholmai, Brian J; Rajagopalan, Srinivasan; Brun, Anne Laure; Egashira, Ryoko; Karwoski, Ronald; Kokosi, Maria; Wells, Athol U; Hansell, David M

    2016-11-23

    To evaluate computer-based computer tomography (CT) analysis (CALIPER) against visual CT scoring and pulmonary function tests (PFTs) when predicting mortality in patients with connective tissue disease-related interstitial lung disease (CTD-ILD). To identify outcome differences between distinct CTD-ILD groups derived following automated stratification of CALIPER variables. A total of 203 consecutive patients with assorted CTD-ILDs had CT parenchymal patterns evaluated by CALIPER and visual CT scoring: honeycombing, reticular pattern, ground glass opacities, pulmonary vessel volume, emphysema, and traction bronchiectasis. CT scores were evaluated against pulmonary function tests: forced vital capacity, diffusing capacity for carbon monoxide, carbon monoxide transfer coefficient, and composite physiologic index for mortality analysis. Automated stratification of CALIPER-CT variables was evaluated in place of and alongside forced vital capacity and diffusing capacity for carbon monoxide in the ILD gender, age physiology (ILD-GAP) model using receiver operating characteristic curve analysis. Cox regression analyses identified four independent predictors of mortality: patient age (P < 0.0001), smoking history (P = 0.0003), carbon monoxide transfer coefficient (P = 0.003), and pulmonary vessel volume (P < 0.0001). Automated stratification of CALIPER variables identified three morphologically distinct groups which were stronger predictors of mortality than all CT and functional indices. The Stratified-CT model substituted automated stratified groups for functional indices in the ILD-GAP model and maintained model strength (area under curve (AUC) = 0.74, P < 0.0001), ILD-GAP (AUC = 0.72, P < 0.0001). Combining automated stratified groups with the ILD-GAP model (stratified CT-GAP model) strengthened predictions of 1- and 2-year mortality: ILD-GAP (AUC = 0.87 and 0.86, respectively); stratified CT-GAP (AUC = 0.89 and 0.88, respectively

  18. Benchmarking gate-based quantum computers

    Science.gov (United States)

    Michielsen, Kristel; Nocon, Madita; Willsch, Dennis; Jin, Fengping; Lippert, Thomas; De Raedt, Hans

    2017-11-01

    With the advent of public access to small gate-based quantum processors, it becomes necessary to develop a benchmarking methodology such that independent researchers can validate the operation of these processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-based quantum computing devices and show that circuits performing identity operations are very simple, scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for gate-based quantum computing.

  19. GPGPU-based explicit finite element computations for applications in biomechanics: the performance of material models, element technologies, and hardware generations.

    Science.gov (United States)

    Strbac, V; Pierce, D M; Vander Sloten, J; Famaey, N

    2017-12-01

    Finite element (FE) simulations are increasingly valuable in assessing and improving the performance of biomedical devices and procedures. Due to high computational demands such simulations may become difficult or even infeasible, especially when considering nearly incompressible and anisotropic material models prevalent in analyses of soft tissues. Implementations of GPGPU-based explicit FEs predominantly cover isotropic materials, e.g. the neo-Hookean model. To elucidate the computational expense of anisotropic materials, we implement the Gasser-Ogden-Holzapfel dispersed, fiber-reinforced model and compare solution times against the neo-Hookean model. Implementations of GPGPU-based explicit FEs conventionally rely on single-point (under) integration. To elucidate the expense of full and selective-reduced integration (more reliable) we implement both and compare corresponding solution times against those generated using underintegration. To better understand the advancement of hardware, we compare results generated using representative Nvidia GPGPUs from three recent generations: Fermi (C2075), Kepler (K20c), and Maxwell (GTX980). We explore scaling by solving the same boundary value problem (an extension-inflation test on a segment of human aorta) with progressively larger FE meshes. Our results demonstrate substantial improvements in simulation speeds relative to two benchmark FE codes (up to 300[Formula: see text] while maintaining accuracy), and thus open many avenues to novel applications in biomechanics and medicine.

  20. Computer modeling of liquid crystals

    International Nuclear Information System (INIS)

    Al-Barwani, M.S.

    1999-01-01

    In this thesis, we investigate several aspects of the behaviour of liquid crystal molecules near interfaces using computer simulation. We briefly discuss experiment, theoretical and computer simulation studies of some of the liquid crystal interfaces. We then describe three essentially independent research topics. The first of these concerns extensive simulations of a liquid crystal formed by long flexible molecules. We examined the bulk behaviour of the model and its structure. Studies of a film of smectic liquid crystal surrounded by vapour were also carried out. Extensive simulations were also done for a long-molecule/short-molecule mixture, studies were then carried out to investigate the liquid-vapour interface of the mixture. Next, we report the results of large scale simulations of soft-spherocylinders of two different lengths. We examined the bulk coexistence of the nematic and isotropic phases of the model. Once the bulk coexistence behaviour was known, properties of the nematic-isotropic interface were investigated. This was done by fitting order parameter and density profiles to appropriate mathematical functions and calculating the biaxial order parameter. We briefly discuss the ordering at the interfaces and make attempts to calculate the surface tension. Finally, in our third project, we study the effects of different surface topographies on creating bistable nematic liquid crystal devices. This was carried out using a model based on the discretisation of the free energy on a lattice. We use simulation to find the lowest energy states and investigate if they are degenerate in energy. We also test our model by studying the Frederiks transition and comparing with analytical and other simulation results. (author)

  1. Once-through CANDU reactor models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; Bjerke, M.A.

    1980-11-01

    Reactor physics calculations have led to the development of two CANDU reactor models for the ORIGEN2 computer code. The model CANDUs are based on (1) the existing once-through fuel cycle with feed comprised of natural uranium and (2) a projected slightly enriched (1.2 wt % 235 U) fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models, as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST, are given

  2. Overview of Risk Mitigation for Safety-Critical Computer-Based Systems

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report presents a high-level overview of a general strategy to mitigate the risks from threats to safety-critical computer-based systems. In this context, a safety threat is a process or phenomenon that can cause operational safety hazards in the form of computational system failures. This report is intended to provide insight into the safety-risk mitigation problem and the characteristics of potential solutions. The limitations of the general risk mitigation strategy are discussed and some options to overcome these limitations are provided. This work is part of an ongoing effort to enable well-founded assurance of safety-related properties of complex safety-critical computer-based aircraft systems by developing an effective capability to model and reason about the safety implications of system requirements and design.

  3. Superior model for fault tolerance computation in designing nano-sized circuit systems

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. S. S., E-mail: narinderjit@petronas.com.my; Muthuvalu, M. S., E-mail: msmuthuvalu@gmail.com [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia); Asirvadam, V. S., E-mail: vijanth-sagayan@petronas.com.my [Electrical and Electronics Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalization of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.

  4. Superior model for fault tolerance computation in designing nano-sized circuit systems

    International Nuclear Information System (INIS)

    Singh, N. S. S.; Muthuvalu, M. S.; Asirvadam, V. S.

    2014-01-01

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalization of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines

  5. Soil Erosion Estimation Using Grid-based Computation

    Directory of Open Access Journals (Sweden)

    Josef Vlasák

    2005-06-01

    Full Text Available Soil erosion estimation is an important part of a land consolidation process. Universal soil loss equation (USLE was presented by Wischmeier and Smith. USLE computation uses several factors, namely R – rainfall factor, K – soil erodability, L – slope length factor, S – slope gradient factor, C – cropping management factor, and P – erosion control management factor. L and S factors are usually combined to one LS factor – Topographic factor. The single factors are determined from several sources, such as DTM (Digital Terrain Model, BPEJ – soil type map, aerial and satellite images, etc. A conventional approach to the USLE computation, which is widely used in the Czech Republic, is based on the selection of characteristic profiles for which all above-mentioned factors must be determined. The result (G – annual soil loss of such computation is then applied for a whole area (slope of interest. Another approach to the USLE computation uses grids as a main data-structure. A prerequisite for a grid-based USLE computation is that each of the above-mentioned factors exists as a separate grid layer. The crucial step in this computation is a selection of appropriate grid resolution (grid cell size. A large cell size can cause an undesirable precision degradation. Too small cell size can noticeably slow down the whole computation. Provided that the cell size is derived from the source’s precision, the appropriate cell size for the Czech Republic varies from 30m to 50m. In some cases, especially when new surveying was done, grid computations can be performed with higher accuracy, i.e. with a smaller grid cell size. In such case, we have proposed a new method using the two-step computation. The first step computation uses a bigger cell size and is designed to identify higher erosion spots. The second step then uses a smaller cell size but it make the computation only the area identified in the previous step. This decomposition allows a

  6. Detecting Soft Errors in Stencil based Computations

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V. [Univ. of Utah, Salt Lake City, UT (United States); Gopalkrishnan, G. [Univ. of Utah, Salt Lake City, UT (United States); Bronevetsky, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    Given the growing emphasis on system resilience, it is important to develop software-level error detectors that help trap hardware-level faults with reasonable accuracy while minimizing false alarms as well as the performance overhead introduced. We present a technique that approaches this idea by taking stencil computations as our target, and synthesizing detectors based on machine learning. In particular, we employ linear regression to generate computationally inexpensive models which form the basis for error detection. Our technique has been incorporated into a new open-source library called SORREL. In addition to reporting encouraging experimental results, we demonstrate techniques that help reduce the size of training data. We also discuss the efficacy of various detectors synthesized, as well as our future plans.

  7. An efficient hysteresis modeling methodology and its implementation in field computation applications

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A., E-mail: adlyamr@gmail.com [Electrical Power and Machines Dept., Faculty of Engineering, Cairo University, Giza 12613 (Egypt); Abd-El-Hafiz, S.K. [Engineering Mathematics Department, Faculty of Engineering, Cairo University, Giza 12613 (Egypt)

    2017-07-15

    Highlights: • An approach to simulate hysteresis while taking shape anisotropy into consideration. • Utilizing the ensemble of triangular sub-regions hysteresis models in field computation. • A novel tool capable of carrying out field computation while keeping track of hysteresis losses. • The approach may be extended for 3D tetra-hedra sub-volumes. - Abstract: Field computation in media exhibiting hysteresis is crucial to a variety of applications such as magnetic recording processes and accurate determination of core losses in power devices. Recently, Hopfield neural networks (HNN) have been successfully configured to construct scalar and vector hysteresis models. This paper presents an efficient hysteresis modeling methodology and its implementation in field computation applications. The methodology is based on the application of the integral equation approach on discretized triangular magnetic sub-regions. Within every triangular sub-region, hysteresis properties are realized using a 3-node HNN. Details of the approach and sample computation results are given in the paper.

  8. Defining epidemics in computer simulation models: How do definitions influence conclusions?

    Directory of Open Access Journals (Sweden)

    Carolyn Orbann

    2017-06-01

    Full Text Available Computer models have proven to be useful tools in studying epidemic disease in human populations. Such models are being used by a broader base of researchers, and it has become more important to ensure that descriptions of model construction and data analyses are clear and communicate important features of model structure. Papers describing computer models of infectious disease often lack a clear description of how the data are aggregated and whether or not non-epidemic runs are excluded from analyses. Given that there is no concrete quantitative definition of what constitutes an epidemic within the public health literature, each modeler must decide on a strategy for identifying epidemics during simulation runs. Here, an SEIR model was used to test the effects of how varying the cutoff for considering a run an epidemic changes potential interpretations of simulation outcomes. Varying the cutoff from 0% to 15% of the model population ever infected with the illness generated significant differences in numbers of dead and timing variables. These results are important for those who use models to form public health policy, in which questions of timing or implementation of interventions might be answered using findings from computer simulation models.

  9. Computational modelling in fluid mechanics

    International Nuclear Information System (INIS)

    Hauguel, A.

    1985-01-01

    The modelling of the greatest part of environmental or industrial flow problems gives very similar types of equations. The considerable increase in computing capacity over the last ten years consequently allowed numerical models of growing complexity to be processed. The varied group of computer codes presented are now a complementary tool of experimental facilities to achieve studies in the field of fluid mechanics. Several codes applied in the nuclear field (reactors, cooling towers, exchangers, plumes...) are presented among others [fr

  10. Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models

    Science.gov (United States)

    Hadjidoukas, P. E.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.

    2015-03-01

    We present Π4U, an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.

  11. Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models

    International Nuclear Information System (INIS)

    Hadjidoukas, P.E.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.

    2015-01-01

    We present Π4U, 1 an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow

  12. A Location-Based Interactive Model of Internet of Things and Cloud (IoT-Cloud) for Mobile Cloud Computing Applications †

    Science.gov (United States)

    Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon

    2017-01-01

    This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model. PMID:28257067

  13. Model-based expert systems for linac computer controls

    International Nuclear Information System (INIS)

    Lee, M.J.

    1988-09-01

    The use of machine modeling and beam simulation programs for the control of accelerator operation has become standard practice. The success of a model-based control operation depends on how the parameter to be controlled is measured, how the measured data is analyzed, how the result of the analysis is interpreted, and how a solution is implemented. There is considerable interest in applying expert systems technology that can automate all of these processes. The design of an expert system to control the beam trajectory in linear accelerators will be discussed as an illustration of this approach. 4 figs., 1 tab

  14. A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain-Computer Interface.

    Science.gov (United States)

    Jiao, Yong; Zhang, Yu; Wang, Yu; Wang, Bei; Jin, Jing; Wang, Xingyu

    2018-05-01

    Multiset canonical correlation analysis (MsetCCA) has been successfully applied to optimize the reference signals by extracting common features from multiple sets of electroencephalogram (EEG) for steady-state visual evoked potential (SSVEP) recognition in brain-computer interface application. To avoid extracting the possible noise components as common features, this study proposes a sophisticated extension of MsetCCA, called multilayer correlation maximization (MCM) model for further improving SSVEP recognition accuracy. MCM combines advantages of both CCA and MsetCCA by carrying out three layers of correlation maximization processes. The first layer is to extract the stimulus frequency-related information in using CCA between EEG samples and sine-cosine reference signals. The second layer is to learn reference signals by extracting the common features with MsetCCA. The third layer is to re-optimize the reference signals set in using CCA with sine-cosine reference signals again. Experimental study is implemented to validate effectiveness of the proposed MCM model in comparison with the standard CCA and MsetCCA algorithms. Superior performance of MCM demonstrates its promising potential for the development of an improved SSVEP-based brain-computer interface.

  15. Cardioplegia heat exchanger design modelling using computational fluid dynamics.

    Science.gov (United States)

    van Driel, M R

    2000-11-01

    A new cardioplegia heat exchanger has been developed by Sorin Biomedica. A three-dimensional computer-aided design (CAD) model was optimized using computational fluid dynamics (CFD) modelling. CFD optimization techniques have commonly been applied to velocity flow field analysis, but CFD analysis was also used in this study to predict the heat exchange performance of the design before prototype fabrication. The iterative results of the optimization and the actual heat exchange performance of the final configuration are presented in this paper. Based on the behaviour of this model, both the water and blood fluid flow paths of the heat exchanger were optimized. The simulation predicted superior heat exchange performance using an optimal amount of energy exchange surface area, reducing the total contact surface area, the device priming volume and the material costs. Experimental results confirm the empirical results predicted by the CFD analysis.

  16. Computer model for large-scale offshore wind-power systems

    Energy Technology Data Exchange (ETDEWEB)

    Dambolena, I G [Bucknell Univ., Lewisburg, PA; Rikkers, R F; Kaminsky, F C

    1977-01-01

    A computer-based planning model has been developed to evaluate the cost and simulate the performance of offshore wind-power systems. In these systems, the electricity produced by wind generators either satisfies directly demand or produces hydrogen by water electrolysis. The hydrogen is stored and later used to produce electricity in fuel cells. Using as inputs basic characteristics of the system and historical or computer-generated time series for wind speed and electricity demand, the model simulates system performance over time. A history of the energy produced and the discounted annual cost of the system are used to evaluate alternatives. The output also contains information which is useful in pointing towards more favorable design alternatives. Use of the model to analyze a specific wind-power system for New England indicates that electric energy could perhaps be generated at a competitive cost.

  17. How people learn while playing serious games: A computational modelling approach

    NARCIS (Netherlands)

    Westera, Wim

    2017-01-01

    This paper proposes a computational modelling approach for investigating the interplay of learning and playing in serious games. A formal model is introduced that allows for studying the details of playing a serious game under diverse conditions. The dynamics of player action and motivation is based

  18. A new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon

    International Nuclear Information System (INIS)

    Klein, K.M.; Park, C.; Yang, S.; Morris, S.; Do, V.; Tasch, F.

    1992-01-01

    We have developed a new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon. This paper reports that this new model is based on the dual Pearson semi-empirical implant depth profile model and the UT-MARLOWE Monte Carlo boron ion implantation model. This new model can predict with very high computational efficiency two-dimensional as-implanted boron profiles as a function of energy, dose, tilt angle, rotation angle, masking edge orientation, and masking edge thickness

  19. Novel approach for dam break flow modeling using computational intelligence

    Science.gov (United States)

    Seyedashraf, Omid; Mehrabi, Mohammad; Akhtari, Ali Akbar

    2018-04-01

    A new methodology based on the computational intelligence (CI) system is proposed and tested for modeling the classic 1D dam-break flow problem. The reason to seek for a new solution lies in the shortcomings of the existing analytical and numerical models. This includes the difficulty of using the exact solutions and the unwanted fluctuations, which arise in the numerical results. In this research, the application of the radial-basis-function (RBF) and multi-layer-perceptron (MLP) systems is detailed for the solution of twenty-nine dam-break scenarios. The models are developed using seven variables, i.e. the length of the channel, the depths of the up-and downstream sections, time, and distance as the inputs. Moreover, the depths and velocities of each computational node in the flow domain are considered as the model outputs. The models are validated against the analytical, and Lax-Wendroff and MacCormack FDM schemes. The findings indicate that the employed CI models are able to replicate the overall shape of the shock- and rarefaction-waves. Furthermore, the MLP system outperforms RBF and the tested numerical schemes. A new monolithic equation is proposed based on the best fitting model, which can be used as an efficient alternative to the existing piecewise analytic equations.

  20. Phenomenological optical potentials and optical model computer codes

    International Nuclear Information System (INIS)

    Prince, A.

    1980-01-01

    An introduction to the Optical Model is presented. Starting with the purpose and nature of the physical problems to be analyzed, a general formulation and the various phenomenological methods of solution are discussed. This includes the calculation of observables based on assumed potentials such as local and non-local and their forms, e.g. Woods-Saxon, folded model etc. Also discussed are the various calculational methods and model codes employed to describe nuclear reactions in the spherical and deformed regions (e.g. coupled-channel analysis). An examination of the numerical solutions and minimization techniques associated with the various codes, is briefly touched upon. Several computer programs are described for carrying out the calculations. The preparation of input, (formats and options), determination of model parameters and analysis of output are described. The class is given a series of problems to carry out using the available computer. Interpretation and evaluation of the samples includes the effect of varying parameters, and comparison of calculations with the experimental data. Also included is an intercomparison of the results from the various model codes, along with their advantages and limitations. (author)

  1. A Review of Models for Computer-Based Testing. Research Report 2011-12

    Science.gov (United States)

    Luecht, Richard M.; Sireci, Stephen G.

    2011-01-01

    Over the past four decades, there has been incremental growth in computer-based testing (CBT) as a viable alternative to paper-and-pencil testing. However, the transition to CBT is neither easy nor inexpensive. As Drasgow, Luecht, and Bennett (2006) noted, many design engineering, test development, operations/logistics, and psychometric changes…

  2. A Bayesian approach for parameter estimation and prediction using a computationally intensive model

    International Nuclear Information System (INIS)

    Higdon, Dave; McDonnell, Jordan D; Schunck, Nicolas; Sarich, Jason; Wild, Stefan M

    2015-01-01

    Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based model η(θ), where θ denotes the uncertain, best input setting. Hence the statistical model is of the form y=η(θ)+ϵ, where ϵ accounts for measurement, and possibly other, error sources. When nonlinearity is present in η(⋅), the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model η(⋅). This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. We also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory. (paper)

  3. Confidential benchmarking based on multiparty computation

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Damgård, Kasper Lyneborg; Nielsen, Kurt

    We report on the design and implementation of a system that uses multiparty computation to enable banks to benchmark their customers' confidential performance data against a large representative set of confidential performance data from a consultancy house. The system ensures that both the banks......' and the consultancy house's data stays confidential, the banks as clients learn nothing but the computed benchmarking score. In the concrete business application, the developed prototype help Danish banks to find the most efficient customers among a large and challenging group of agricultural customers with too much...... debt. We propose a model based on linear programming for doing the benchmarking and implement it using the SPDZ protocol by Damgård et al., which we modify using a new idea that allows clients to supply data and get output without having to participate in the preprocessing phase and without keeping...

  4. The numerical computation of seismic fragility of base-isolated Nuclear Power Plants buildings

    International Nuclear Information System (INIS)

    Perotti, Federico; Domaneschi, Marco; De Grandis, Silvia

    2013-01-01

    Highlights: • Seismic fragility of structural components in base isolated NPP is computed. • Dynamic integration, Response Surface, FORM and Monte Carlo Simulation are adopted. • Refined approach for modeling the non-linearities behavior of isolators is proposed. • Beyond-design conditions are addressed. • The preliminary design of the isolated IRIS is the application of the procedure. -- Abstract: The research work here described is devoted to the development of a numerical procedure for the computation of seismic fragilities for equipment and structural components in Nuclear Power Plants; in particular, reference is made, in the present paper, to the case of isolated buildings. The proposed procedure for fragility computation makes use of the Response Surface Methodology to model the influence of the random variables on the dynamic response. To account for stochastic loading, the latter is computed by means of a simulation procedure. Given the Response Surface, the Monte Carlo method is used to compute the failure probability. The procedure is here applied to the preliminary design of the Nuclear Power Plant reactor building within the International Reactor Innovative and Secure international project; the building is equipped with a base isolation system based on the introduction of High Damping Rubber Bearing elements showing a markedly non linear mechanical behavior. The fragility analysis is performed assuming that the isolation devices become the critical elements in terms of seismic risk and that, once base-isolation is introduced, the dynamic behavior of the building can be captured by low-dimensional numerical models

  5. A computational model predicting disruption of blood vessel development.

    Directory of Open Access Journals (Sweden)

    Nicole Kleinstreuer

    2013-04-01

    Full Text Available Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis and remodeling (angiogenesis come from a variety of biological pathways linked to endothelial cell (EC behavior, extracellular matrix (ECM remodeling and the local generation of chemokines and growth factors. Simulating these interactions at a systems level requires sufficient biological detail about the relevant molecular pathways and associated cellular behaviors, and tractable computational models that offset mathematical and biological complexity. Here, we describe a novel multicellular agent-based model of vasculogenesis using the CompuCell3D (http://www.compucell3d.org/ modeling environment supplemented with semi-automatic knowledgebase creation. The model incorporates vascular endothelial growth factor signals, pro- and anti-angiogenic inflammatory chemokine signals, and the plasminogen activating system of enzymes and proteases linked to ECM interactions, to simulate nascent EC organization, growth and remodeling. The model was shown to recapitulate stereotypical capillary plexus formation and structural emergence of non-coded cellular behaviors, such as a heterologous bridging phenomenon linking endothelial tip cells together during formation of polygonal endothelial cords. Molecular targets in the computational model were mapped to signatures of vascular disruption derived from in vitro chemical profiling using the EPA's ToxCast high-throughput screening (HTS dataset. Simulating the HTS data with the cell-agent based model of vascular development predicted adverse effects of a reference anti-angiogenic thalidomide analog, 5HPP-33, on in vitro angiogenesis with respect to both concentration-response and morphological consequences. These findings support the utility of cell agent-based models for simulating a

  6. A Computational Model of Cellular Engraftment on Lung Scaffolds.

    Science.gov (United States)

    Pothen, Joshua J; Rajendran, Vignesh; Wagner, Darcy; Weiss, Daniel J; Smith, Bradford J; Ma, Baoshun; Bates, Jason H T

    2016-01-01

    The possibility that stem cells might be used to regenerate tissue is now being investigated for a variety of organs, but these investigations are still essentially exploratory and have few predictive tools available to guide experimentation. We propose, in this study, that the field of lung tissue regeneration might be better served by predictive tools that treat stem cells as agents that obey certain rules of behavior governed by both their phenotype and their environment. Sufficient knowledge of these rules of behavior would then, in principle, allow lung tissue development to be simulated computationally. Toward this end, we developed a simple agent-based computational model to simulate geographic patterns of cells seeded onto a lung scaffold. Comparison of the simulated patterns to those observed experimentally supports the hypothesis that mesenchymal stem cells proliferate preferentially toward the scaffold boundary, whereas alveolar epithelial cells do not. This demonstrates that a computational model of this type has the potential to assist in the discovery of rules of cellular behavior.

  7. Use of declarative statements in creating and maintaining computer-interpretable knowledge bases for guideline-based care.

    Science.gov (United States)

    Tu, Samson W; Hrabak, Karen M; Campbell, James R; Glasgow, Julie; Nyman, Mark A; McClure, Robert; McClay, James; Abarbanel, Robert; Mansfield, James G; Martins, Susana M; Goldstein, Mary K; Musen, Mark A

    2006-01-01

    Developing computer-interpretable clinical practice guidelines (CPGs) to provide decision support for guideline-based care is an extremely labor-intensive task. In the EON/ATHENA and SAGE projects, we formulated substantial portions of CPGs as computable statements that express declarative relationships between patient conditions and possible interventions. We developed query and expression languages that allow a decision-support system (DSS) to evaluate these statements in specific patient situations. A DSS can use these guideline statements in multiple ways, including: (1) as inputs for determining preferred alternatives in decision-making, and (2) as a way to provide targeted commentaries in the clinical information system. The use of these declarative statements significantly reduces the modeling expertise and effort required to create and maintain computer-interpretable knowledge bases for decision-support purpose. We discuss possible implications for sharing of such knowledge bases.

  8. Developing a project-based computational physics course grounded in expert practice

    Science.gov (United States)

    Burke, Christopher J.; Atherton, Timothy J.

    2017-04-01

    We describe a project-based computational physics course developed using a backwards course design approach. From an initial competency-based model of problem solving in computational physics, we interviewed faculty who use these tools in their own research to determine indicators of expert practice. From these, a rubric was formulated that enabled us to design a course intended to allow students to learn these skills. We also report an initial implementation of the course and, by having the interviewees regrade student work, show that students acquired many of the expert practices identified.

  9. Blood leakage detection during dialysis therapy based on fog computing with array photocell sensors and heteroassociative memory model

    Science.gov (United States)

    Wu, Jian-Xing; Huang, Ping-Tzan; Li, Chien-Ming

    2018-01-01

    Blood leakage and blood loss are serious life-threatening complications occurring during dialysis therapy. These events have been of concerns to both healthcare givers and patients. More than 40% of adult blood volume can be lost in just a few minutes, resulting in morbidities and mortality. The authors intend to propose the design of a warning tool for the detection of blood leakage/blood loss during dialysis therapy based on fog computing with an array of photocell sensors and heteroassociative memory (HAM) model. Photocell sensors are arranged in an array on a flexible substrate to detect blood leakage via the resistance changes with illumination in the visible spectrum of 500–700 nm. The HAM model is implemented to design a virtual alarm unit using electricity changes in an embedded system. The proposed warning tool can indicate the risk level in both end-sensing units and remote monitor devices via a wireless network and fog/cloud computing. The animal experimental results (pig blood) will demonstrate the feasibility. PMID:29515815

  10. Quantitative Assessment of Optical Coherence Tomography Imaging Performance with Phantom-Based Test Methods And Computational Modeling

    Science.gov (United States)

    Agrawal, Anant

    Optical coherence tomography (OCT) is a powerful medical imaging modality that uniquely produces high-resolution cross-sectional images of tissue using low energy light. Its clinical applications and technological capabilities have grown substantially since its invention about twenty years ago, but efforts have been limited to develop tools to assess performance of OCT devices with respect to the quality and content of acquired images. Such tools are important to ensure information derived from OCT signals and images is accurate and consistent, in order to support further technology development, promote standardization, and benefit public health. The research in this dissertation investigates new physical and computational models which can provide unique insights into specific performance characteristics of OCT devices. Physical models, known as phantoms, are fabricated and evaluated in the interest of establishing standardized test methods to measure several important quantities relevant to image quality. (1) Spatial resolution is measured with a nanoparticle-embedded phantom and model eye which together yield the point spread function under conditions where OCT is commonly used. (2) A multi-layered phantom is constructed to measure the contrast transfer function along the axis of light propagation, relevant for cross-sectional imaging capabilities. (3) Existing and new methods to determine device sensitivity are examined and compared, to better understand the detection limits of OCT. A novel computational model based on the finite-difference time-domain (FDTD) method, which simulates the physics of light behavior at the sub-microscopic level within complex, heterogeneous media, is developed to probe device and tissue characteristics influencing the information content of an OCT image. This model is first tested in simple geometric configurations to understand its accuracy and limitations, then a highly realistic representation of a biological cell, the retinal

  11. Computational Fluid Dynamics Modeling of Bacillus anthracis ...

    Science.gov (United States)

    Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict

  12. Computational multiscale modeling of intergranular cracking

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2011-01-01

    A novel computational approach for simulation of intergranular cracks in a polycrystalline aggregate is proposed in this paper. The computational model includes a topological model of the experimentally determined microstructure of a 400 μm diameter stainless steel wire and automatic finite element discretization of the grains and grain boundaries. The microstructure was spatially characterized by X-ray diffraction contrast tomography and contains 362 grains and some 1600 grain boundaries. Available constitutive models currently include isotropic elasticity for the grain interior and cohesive behavior with damage for the grain boundaries. The experimentally determined lattice orientations are employed to distinguish between resistant low energy and susceptible high energy grain boundaries in the model. The feasibility and performance of the proposed computational approach is demonstrated by simulating the onset and propagation of intergranular cracking. The preliminary numerical results are outlined and discussed.

  13. Memristor-based nanoelectronic computing circuits and architectures

    CERN Document Server

    Vourkas, Ioannis

    2016-01-01

    This book considers the design and development of nanoelectronic computing circuits, systems and architectures focusing particularly on memristors, which represent one of today’s latest technology breakthroughs in nanoelectronics. The book studies, explores, and addresses the related challenges and proposes solutions for the smooth transition from conventional circuit technologies to emerging computing memristive nanotechnologies. Its content spans from fundamental device modeling to emerging storage system architectures and novel circuit design methodologies, targeting advanced non-conventional analog/digital massively parallel computational structures. Several new results on memristor modeling, memristive interconnections, logic circuit design, memory circuit architectures, computer arithmetic systems, simulation software tools, and applications of memristors in computing are presented. High-density memristive data storage combined with memristive circuit-design paradigms and computational tools applied t...

  14. GPU-based acceleration of computations in nonlinear finite element deformation analysis.

    Science.gov (United States)

    Mafi, Ramin; Sirouspour, Shahin

    2014-03-01

    The physics of deformation for biological soft-tissue is best described by nonlinear continuum mechanics-based models, which then can be discretized by the FEM for a numerical solution. However, computational complexity of such models have limited their use in applications requiring real-time or fast response. In this work, we propose a graphic processing unit-based implementation of the FEM using implicit time integration for dynamic nonlinear deformation analysis. This is the most general formulation of the deformation analysis. It is valid for large deformations and strains and can account for material nonlinearities. The data-parallel nature and the intense arithmetic computations of nonlinear FEM equations make it particularly suitable for implementation on a parallel computing platform such as graphic processing unit. In this work, we present and compare two different designs based on the matrix-free and conventional preconditioned conjugate gradients algorithms for solving the FEM equations arising in deformation analysis. The speedup achieved with the proposed parallel implementations of the algorithms will be instrumental in the development of advanced surgical simulators and medical image registration methods involving soft-tissue deformation. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Multi-objective reverse logistics model for integrated computer waste management.

    Science.gov (United States)

    Ahluwalia, Poonam Khanijo; Nema, Arvind K

    2006-12-01

    This study aimed to address the issues involved in the planning and design of a computer waste management system in an integrated manner. A decision-support tool is presented for selecting an optimum configuration of computer waste management facilities (segregation, storage, treatment/processing, reuse/recycle and disposal) and allocation of waste to these facilities. The model is based on an integer linear programming method with the objectives of minimizing environmental risk as well as cost. The issue of uncertainty in the estimated waste quantities from multiple sources is addressed using the Monte Carlo simulation technique. An illustrated example of computer waste management in Delhi, India is presented to demonstrate the usefulness of the proposed model and to study tradeoffs between cost and risk. The results of the example problem show that it is possible to reduce the environmental risk significantly by a marginal increase in the available cost. The proposed model can serve as a powerful tool to address the environmental problems associated with exponentially growing quantities of computer waste which are presently being managed using rudimentary methods of reuse, recovery and disposal by various small-scale vendors.

  16. The evolution of process-based hydrologic models

    NARCIS (Netherlands)

    Clark, Martyn P.; Bierkens, Marc F.P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R.N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.

    2017-01-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this

  17. ARAC: a computer-based emergency dose-assessment service

    International Nuclear Information System (INIS)

    Sullivan, T.J.

    1990-01-01

    Over the past 15 years, the Lawrence Livermore National Laboratory's Atmospheric Release Advisory Capability (ARAC) has developed and evolved a computer-based, real-time, radiological-dose-assessment service for the United States Departments of Energy and Defense. This service is built on the integrated components of real-time computer-acquired meteorological data, extensive computer databases, numerical atmospheric-dispersion models, graphical displays, and operational-assessment-staff expertise. The focus of ARAC is the off-site problem where regional meteorology and topography are dominant influences on transport and dispersion. Through application to numerous radiological accidents/releases on scales from small accidental ventings to the Chernobyl reactor disaster, ARAC has developed methods to provide emergency dose assessments from the local to the hemispheric scale. As the power of computers has evolved inversely with respect to cost and size, ARAC has expanded its service and reduced the response time from hours to minutes for an accident within the United States. Concurrently the quality of the assessments has improved as more advanced models have been developed and incorporated into the ARAC system. Over the past six years, the number of directly connected facilities has increased from 6 to 73. All major U.S. Federal agencies now have access to ARAC via the Department of Energy. This assures a level of consistency as well as experience. ARAC maintains its real-time skills by participation in approximately 150 exercises per year; ARAC also continuously validates its modeling systems by application to all available tracer experiments and data sets

  18. Integration of Simulink Models with Component-based Software Models

    Directory of Open Access Journals (Sweden)

    MARIAN, N.

    2008-06-01

    Full Text Available Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical constructs and process flow, then software code is generated. A Simulink model is a representation of the design or implementation of a physical system that satisfies a set of requirements. A software component-based system aims to organize system architecture and behavior as a means of computation, communication and constraints, using computational blocks and aggregates for both discrete and continuous behavior, different interconnection and execution disciplines for event-based and time-based controllers, and so on, to encompass the demands to more functionality, at even lower prices, and with opposite constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI, University of Southern Denmark. Once specified, the software model has to be analyzed. One way of doing that is to integrate in wrapper files the model back into Simulink S-functions, and use its extensive simulation features, thus allowing an early exploration of the possible design choices over multiple disciplines. The paper describes a safe translation of a restricted set of MATLAB/Simulink blocks to COMDES software components, both for continuous and discrete behavior, and the transformation of the software system into the S

  19. Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems

    International Nuclear Information System (INIS)

    Kim, K. R.; Lee, H. S.; Hwang, I. S.

    2010-12-01

    The objective of this project is to develop multi-dimensional computational models in order to improve the operation of uranium electrorefiners currently used in pyroprocessing technology. These 2-D (US) and 3-D (ROK) mathematical models are based on the fundamental physical and chemical properties of the electrorefiner processes. The validated models by compiled and evaluated experimental data could provide better information for developing advanced electrorefiners for uranium recovery. The research results in this period are as follows: - Successfully assessed a common computational platform for the modeling work and identify spatial characterization requirements. - Successfully developed a 3-D electro-fluid dynamic electrorefiner model. - Successfully validated and benchmarked the two multi-dimensional models with compiled experimental data sets

  20. Analysis of a Model for Computer Virus Transmission

    Directory of Open Access Journals (Sweden)

    Peng Qin

    2015-01-01

    Full Text Available Computer viruses remain a significant threat to computer networks. In this paper, the incorporation of new computers to the network and the removing of old computers from the network are considered. Meanwhile, the computers are equipped with antivirus software on the computer network. The computer virus model is established. Through the analysis of the model, disease-free and endemic equilibrium points are calculated. The stability conditions of the equilibria are derived. To illustrate our theoretical analysis, some numerical simulations are also included. The results provide a theoretical basis to control the spread of computer virus.

  1. Sepsis reconsidered: Identifying novel metrics for behavioral landscape characterization with a high-performance computing implementation of an agent-based model.

    Science.gov (United States)

    Cockrell, Chase; An, Gary

    2017-10-07

    Sepsis affects nearly 1 million people in the United States per year, has a mortality rate of 28-50% and requires more than $20 billion a year in hospital costs. Over a quarter century of research has not yielded a single reliable diagnostic test or a directed therapeutic agent for sepsis. Central to this insufficiency is the fact that sepsis remains a clinical/physiological diagnosis representing a multitude of molecularly heterogeneous pathological trajectories. Advances in computational capabilities offered by High Performance Computing (HPC) platforms call for an evolution in the investigation of sepsis to attempt to define the boundaries of traditional research (bench, clinical and computational) through the use of computational proxy models. We present a novel investigatory and analytical approach, derived from how HPC resources and simulation are used in the physical sciences, to identify the epistemic boundary conditions of the study of clinical sepsis via the use of a proxy agent-based model of systemic inflammation. Current predictive models for sepsis use correlative methods that are limited by patient heterogeneity and data sparseness. We address this issue by using an HPC version of a system-level validated agent-based model of sepsis, the Innate Immune Response ABM (IIRBM), as a proxy system in order to identify boundary conditions for the possible behavioral space for sepsis. We then apply advanced analysis derived from the study of Random Dynamical Systems (RDS) to identify novel means for characterizing system behavior and providing insight into the tractability of traditional investigatory methods. The behavior space of the IIRABM was examined by simulating over 70 million sepsis patients for up to 90 days in a sweep across the following parameters: cardio-respiratory-metabolic resilience; microbial invasiveness; microbial toxigenesis; and degree of nosocomial exposure. In addition to using established methods for describing parameter space, we

  2. Challenges in Soft Computing: Case Study with Louisville MSD CSO Modeling

    Science.gov (United States)

    Ormsbee, L.; Tufail, M.

    2005-12-01

    The principal constituents of soft computing include fuzzy logic, neural computing, evolutionary computation, machine learning, and probabilistic reasoning. There are numerous applications of these constituents (both individually and combination of two or more) in the area of water resources and environmental systems. These range from development of data driven models to optimal control strategies to assist in more informed and intelligent decision making process. Availability of data is critical to such applications and having scarce data may lead to models that do not represent the response function over the entire domain. At the same time, too much data has a tendency to lead to over-constraining of the problem. This paper will describe the application of a subset of these soft computing techniques (neural computing and genetic algorithms) to the Beargrass Creek watershed in Louisville, Kentucky. The application include development of inductive models as substitutes for more complex process-based models to predict water quality of key constituents (such as dissolved oxygen) and use them in an optimization framework for optimal load reductions. Such a process will facilitate the development of total maximum daily loads for the impaired water bodies in the watershed. Some of the challenges faced in this application include 1) uncertainty in data sets, 2) model application, and 3) development of cause-and-effect relationships between water quality constituents and watershed parameters through use of inductive models. The paper will discuss these challenges and how they affect the desired goals of the project.

  3. A new computational account of cognitive control over reinforcement-based decision-making: Modeling of a probabilistic learning task.

    Science.gov (United States)

    Zendehrouh, Sareh

    2015-11-01

    Recent work on decision-making field offers an account of dual-system theory for decision-making process. This theory holds that this process is conducted by two main controllers: a goal-directed system and a habitual system. In the reinforcement learning (RL) domain, the habitual behaviors are connected with model-free methods, in which appropriate actions are learned through trial-and-error experiences. However, goal-directed behaviors are associated with model-based methods of RL, in which actions are selected using a model of the environment. Studies on cognitive control also suggest that during processes like decision-making, some cortical and subcortical structures work in concert to monitor the consequences of decisions and to adjust control according to current task demands. Here a computational model is presented based on dual system theory and cognitive control perspective of decision-making. The proposed model is used to simulate human performance on a variant of probabilistic learning task. The basic proposal is that the brain implements a dual controller, while an accompanying monitoring system detects some kinds of conflict including a hypothetical cost-conflict one. The simulation results address existing theories about two event-related potentials, namely error related negativity (ERN) and feedback related negativity (FRN), and explore the best account of them. Based on the results, some testable predictions are also presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Smart learning services based on smart cloud computing.

    Science.gov (United States)

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user's behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)--smart pull, smart prospect, smart content, and smart push--concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users' needs by collecting and analyzing users' behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users' behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.

  5. Smart Learning Services Based on Smart Cloud Computing

    Directory of Open Access Journals (Sweden)

    Yong-Ik Yoon

    2011-08-01

    Full Text Available Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user’s behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S—smart pull, smart prospect, smart content, and smart push—concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users’ needs by collecting and analyzing users’ behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users’ behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.

  6. Improving science and mathematics education with computational modelling in interactive engagement environments

    Science.gov (United States)

    Neves, Rui Gomes; Teodoro, Vítor Duarte

    2012-09-01

    A teaching approach aiming at an epistemologically balanced integration of computational modelling in science and mathematics education is presented. The approach is based on interactive engagement learning activities built around computational modelling experiments that span the range of different kinds of modelling from explorative to expressive modelling. The activities are designed to make a progressive introduction to scientific computation without requiring prior development of a working knowledge of programming, generate and foster the resolution of cognitive conflicts in the understanding of scientific and mathematical concepts and promote performative competency in the manipulation of different and complementary representations of mathematical models. The activities are supported by interactive PDF documents which explain the fundamental concepts, methods and reasoning processes using text, images and embedded movies, and include free space for multimedia enriched student modelling reports and teacher feedback. To illustrate, an example from physics implemented in the Modellus environment and tested in undergraduate university general physics and biophysics courses is discussed.

  7. Pervasive Computing Support for Hospitals: An Overview of the Activity-Based Computing Project

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Bardram, Jakob E

    2007-01-01

    The activity-based computing project researched pervasive computing support for clinical hospital work. Such technologies have potential for supporting the mobile, collaborative, and disruptive use of heterogeneous embedded devices in a hospital......The activity-based computing project researched pervasive computing support for clinical hospital work. Such technologies have potential for supporting the mobile, collaborative, and disruptive use of heterogeneous embedded devices in a hospital...

  8. Reheating breakfast: Age and multitasking on a computer-based and a non-computer-based task

    OpenAIRE

    Feinkohl, I.; Cress, U.; Kimmerle, J.

    2016-01-01

    Computer-based assessments are popular means to measure individual differences, including age differences, in cognitive ability, but are rarely tested for the extent to which they correspond to more realistic behavior. In the present study, we explored the extent to which performance on an existing computer-based task of multitasking ('cooking breakfast') may be generalizable by comparing it with a newly developed version of the same task that required interaction with physical objects. Twent...

  9. The European computer model for optronic system performance prediction (ECOMOS)

    Science.gov (United States)

    Keßler, Stefan; Bijl, Piet; Labarre, Luc; Repasi, Endre; Wittenstein, Wolfgang; Bürsing, Helge

    2017-10-01

    ECOMOS is a multinational effort within the framework of an EDA Project Arrangement. Its aim is to provide a generally accepted and harmonized European computer model for computing nominal Target Acquisition (TA) ranges of optronic imagers operating in the Visible or thermal Infrared (IR). The project involves close co-operation of defence and security industry and public research institutes from France, Germany, Italy, The Netherlands and Sweden. ECOMOS uses and combines well-accepted existing European tools to build up a strong competitive position. This includes two TA models: the analytical TRM4 model and the image-based TOD model. In addition, it uses the atmosphere model MATISSE. In this paper, the central idea of ECOMOS is exposed. The overall software structure and the underlying models are shown and elucidated. The status of the project development is given as well as a short discussion of validation tests and an outlook on the future potential of simulation for sensor assessment.

  10. A systematic investigation of computation models for predicting Adverse Drug Reactions (ADRs).

    Science.gov (United States)

    Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong

    2014-01-01

    Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms.

  11. A Hybrid Autonomic Computing-Based Approach to Distributed Constraint Satisfaction Problems

    Directory of Open Access Journals (Sweden)

    Abhishek Bhatia

    2015-03-01

    Full Text Available Distributed constraint satisfaction problems (DisCSPs are among the widely endeavored problems using agent-based simulation. Fernandez et al. formulated sensor and mobile tracking problem as a DisCSP, known as SensorDCSP In this paper, we adopt a customized ERE (environment, reactive rules and entities algorithm for the SensorDCSP, which is otherwise proven as a computationally intractable problem. An amalgamation of the autonomy-oriented computing (AOC-based algorithm (ERE and genetic algorithm (GA provides an early solution of the modeled DisCSP. Incorporation of GA into ERE facilitates auto-tuning of the simulation parameters, thereby leading to an early solution of constraint satisfaction. This study further contributes towards a model, built up in the NetLogo simulation environment, to infer the efficacy of the proposed approach.

  12. Using the Superpopulation Model for Imputations and Variance Computation in Survey Sampling

    Directory of Open Access Journals (Sweden)

    Petr Novák

    2012-03-01

    Full Text Available This study is aimed at variance computation techniques for estimates of population characteristics based on survey sampling and imputation. We use the superpopulation regression model, which means that the target variable values for each statistical unit are treated as random realizations of a linear regression model with weighted variance. We focus on regression models with one auxiliary variable and no intercept, which have many applications and straightforward interpretation in business statistics. Furthermore, we deal with caseswhere the estimates are not independent and thus the covariance must be computed. We also consider chained regression models with auxiliary variables as random variables instead of constants.

  13. Uncertainty in biology a computational modeling approach

    CERN Document Server

    Gomez-Cabrero, David

    2016-01-01

    Computational modeling of biomedical processes is gaining more and more weight in the current research into the etiology of biomedical problems and potential treatment strategies.  Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process.  This book wants to address four main issues related to the building and validation of computational models of biomedical processes: Modeling establishment under uncertainty Model selection and parameter fitting Sensitivity analysis and model adaptation Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples.  This book is intended for graduate stude...

  14. Computational models of airway branching morphogenesis.

    Science.gov (United States)

    Varner, Victor D; Nelson, Celeste M

    2017-07-01

    The bronchial network of the mammalian lung consists of millions of dichotomous branches arranged in a highly complex, space-filling tree. Recent computational models of branching morphogenesis in the lung have helped uncover the biological mechanisms that construct this ramified architecture. In this review, we focus on three different theoretical approaches - geometric modeling, reaction-diffusion modeling, and continuum mechanical modeling - and discuss how, taken together, these models have identified the geometric principles necessary to build an efficient bronchial network, as well as the patterning mechanisms that specify airway geometry in the developing embryo. We emphasize models that are integrated with biological experiments and suggest how recent progress in computational modeling has advanced our understanding of airway branching morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Model to Implement Virtual Computing Labs via Cloud Computing Services

    Directory of Open Access Journals (Sweden)

    Washington Luna Encalada

    2017-07-01

    Full Text Available In recent years, we have seen a significant number of new technological ideas appearing in literature discussing the future of education. For example, E-learning, cloud computing, social networking, virtual laboratories, virtual realities, virtual worlds, massive open online courses (MOOCs, and bring your own device (BYOD are all new concepts of immersive and global education that have emerged in educational literature. One of the greatest challenges presented to e-learning solutions is the reproduction of the benefits of an educational institution’s physical laboratory. For a university without a computing lab, to obtain hands-on IT training with software, operating systems, networks, servers, storage, and cloud computing similar to that which could be received on a university campus computing lab, it is necessary to use a combination of technological tools. Such teaching tools must promote the transmission of knowledge, encourage interaction and collaboration, and ensure students obtain valuable hands-on experience. That, in turn, allows the universities to focus more on teaching and research activities than on the implementation and configuration of complex physical systems. In this article, we present a model for implementing ecosystems which allow universities to teach practical Information Technology (IT skills. The model utilizes what is called a “social cloud”, which utilizes all cloud computing services, such as Software as a Service (SaaS, Platform as a Service (PaaS, and Infrastructure as a Service (IaaS. Additionally, it integrates the cloud learning aspects of a MOOC and several aspects of social networking and support. Social clouds have striking benefits such as centrality, ease of use, scalability, and ubiquity, providing a superior learning environment when compared to that of a simple physical lab. The proposed model allows students to foster all the educational pillars such as learning to know, learning to be, learning

  16. Simulation-Based Planning of Optimal Conditions for Industrial Computed Tomography

    DEFF Research Database (Denmark)

    Reisinger, S.; Kasperl, S.; Franz, M.

    2011-01-01

    We present a method to optimise conditions for industrial computed tomography (CT). This optimisation is based on a deterministic simulation. Our algorithm finds task-specific CT equipment settings to achieve optimal exposure parameters by means of an STL-model of the specimen and a raytracing...

  17. Algebraic computability and enumeration models recursion theory and descriptive complexity

    CERN Document Server

    Nourani, Cyrus F

    2016-01-01

    This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples for languages. Functorial models for Peano arithmetic are described toward important computational complexity areas on a Hilbert program, leading to computability with initial models. Infinite language categories are also introduced to explain descriptive complexity with recursive computability with admissible sets and urelements. Algebraic and categorical realizability is staged on several levels, addressing new computability questions with omitting types realizably. Further applications to computing with ultrafilters on sets and Turing degree computability are examined. Functorial models computability is presented with algebraic trees realizing intuitionistic type...

  18. Do's and Don'ts of Computer Models for Planning

    Science.gov (United States)

    Hammond, John S., III

    1974-01-01

    Concentrates on the managerial issues involved in computer planning models. Describes what computer planning models are and the process by which managers can increase the likelihood of computer planning models being successful in their organizations. (Author/DN)

  19. COMPUTER MODEL AND SIMULATION OF A GLOVE BOX PROCESS

    International Nuclear Information System (INIS)

    Foster, C.

    2001-01-01

    most glove box operations and demonstrates the ability and advantages of advance computer based modeling. The three-dimensional model also enables better comprehension of problems to non-technical staff. There are many barriers to the seamless integration between the initial design specifications and a computer simulation. Problems include the lack of a standard model and inexact manufacturing of components used in the glove box. The benefits and drawbacks are discussed; however, the results are useful

  20. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  1. Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle

    International Nuclear Information System (INIS)

    He Yizhu; Ding Hanlin; Liu Liufa; Shin, Keesam

    2006-01-01

    The morphology, topology and kinetics of normal grain growth in two-dimension were studied by computer simulation using a cellular automata (Canada) model based on the lowest energy principle. The thermodynamic energy that follows Maxwell-Boltzmann statistics has been introduced into this model for the calculation of energy change. The transition that can reduce the system energy to the lowest level is chosen to occur when there is more than one possible transition direction. The simulation results show that the kinetics of normal grain growth follows the Burke equation with the growth exponent m = 2. The analysis of topology further indicates that normal grain growth can be simulated fairly well by the present CA model. The vanishing of grains with different number of sides is discussed in the simulation

  2. Mesh influence on the fire computer modeling in nuclear power plants

    Directory of Open Access Journals (Sweden)

    D. Lázaro

    2018-04-01

    Full Text Available Fire computer models allow to study real fire scenarios consequences. Its use in nuclear power plants has increased with the new regulations to apply risk informed performance-based methods for the analysis and design of fire safety solutions. The selection of the cell side factor is very important in these kinds of models. The mesh must establish a compromise between the geometry adjustment, the resolution of the equations and the computation times. This paper aims to study the impact of several cell sizes, using the fire computer model FDS, to evaluate the relative affectation in the final simulation results. In order to validate that, we have employed several scenarios of interest for nuclear power plants. Conclusions offer relevant data for users and show some cell sizes that can be selected to guarantee the quality of the simulations and reduce the results uncertainty.

  3. SCS-CN based time-distributed sediment yield model

    Science.gov (United States)

    Tyagi, J. V.; Mishra, S. K.; Singh, Ranvir; Singh, V. P.

    2008-05-01

    SummaryA sediment yield model is developed to estimate the temporal rates of sediment yield from rainfall events on natural watersheds. The model utilizes the SCS-CN based infiltration model for computation of rainfall-excess rate, and the SCS-CN-inspired proportionality concept for computation of sediment-excess. For computation of sedimentographs, the sediment-excess is routed to the watershed outlet using a single linear reservoir technique. Analytical development of the model shows the ratio of the potential maximum erosion (A) to the potential maximum retention (S) of the SCS-CN method is constant for a watershed. The model is calibrated and validated on a number of events using the data of seven watersheds from India and the USA. Representative values of the A/S ratio computed for the watersheds from calibration are used for the validation of the model. The encouraging results of the proposed simple four parameter model exhibit its potential in field application.

  4. A Knowledge-Based Model of Audit Risk

    OpenAIRE

    Dhar, Vasant; Lewis, Barry; Peters, James

    1988-01-01

    Within the academic and professional auditing communities, there has been growing concern about how to accurately assess the various risks associated with performing an audit. These risks are difficult to conceptualize in terms of numeric estimates. This article discusses the development of a prototype computational model (computer program) that assesses one of the major audit risks -- inherent risk. This program bases most of its inferencing activities on a qualitative model of a typical bus...

  5. Evaluation of computer-based ultrasonic inservice inspection systems

    International Nuclear Information System (INIS)

    Harris, R.V. Jr.; Angel, L.J.; Doctor, S.R.; Park, W.R.; Schuster, G.J.; Taylor, T.T.

    1994-03-01

    This report presents the principles, practices, terminology, and technology of computer-based ultrasonic testing for inservice inspection (UT/ISI) of nuclear power plants, with extensive use of drawings, diagrams, and LTT images. The presentation is technical but assumes limited specific knowledge of ultrasonics or computers. The report is divided into 9 sections covering conventional LTT, computer-based LTT, and evaluation methodology. Conventional LTT topics include coordinate axes, scanning, instrument operation, RF and video signals, and A-, B-, and C-scans. Computer-based topics include sampling, digitization, signal analysis, image presentation, SAFI, ultrasonic holography, transducer arrays, and data interpretation. An evaluation methodology for computer-based LTT/ISI systems is presented, including questions, detailed procedures, and test block designs. Brief evaluations of several computer-based LTT/ISI systems are given; supplementary volumes will provide detailed evaluations of selected systems

  6. Computer-Aided Construction of Chemical Kinetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Green, William H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-12-31

    The combustion chemistry of even simple fuels can be extremely complex, involving hundreds or thousands of kinetically significant species. The most reasonable way to deal with this complexity is to use a computer not only to numerically solve the kinetic model, but also to construct the kinetic model in the first place. Because these large models contain so many numerical parameters (e.g. rate coefficients, thermochemistry) one never has sufficient data to uniquely determine them all experimentally. Instead one must work in “predictive” mode, using theoretical rather than experimental values for many of the numbers in the model, and as appropriate refining the most sensitive numbers through experiments. Predictive chemical kinetics is exactly what is needed for computer-aided design of combustion systems based on proposed alternative fuels, particularly for early assessment of the value and viability of proposed new fuels before those fuels are commercially available. This project was aimed at making accurate predictive chemical kinetics practical; this is a challenging goal which requires a range of science advances. The project spanned a wide range from quantum chemical calculations on individual molecules and elementary-step reactions, through the development of improved rate/thermo calculation procedures, the creation of algorithms and software for constructing and solving kinetic simulations, the invention of methods for model-reduction while maintaining error control, and finally comparisons with experiment. Many of the parameters in the models were derived from quantum chemistry calculations, and the models were compared with experimental data measured in our lab or in collaboration with others.

  7. Efficacy of computer technology-based HIV prevention interventions: a meta-analysis.

    Science.gov (United States)

    Noar, Seth M; Black, Hulda G; Pierce, Larson B

    2009-01-02

    To conduct a meta-analysis of computer technology-based HIV prevention behavioral interventions aimed at increasing condom use among a variety of at-risk populations. Systematic review and meta-analysis of existing published and unpublished studies testing computer-based interventions. Meta-analytic techniques were used to compute and aggregate effect sizes for 12 randomized controlled trials that met inclusion criteria. Variables that had the potential to moderate intervention efficacy were also tested. The overall mean weighted effect size for condom use was d = 0.259 (95% confidence interval = 0.201, 0.317; Z = 8.74, P partners, and incident sexually transmitted diseases. In addition, interventions were significantly more efficacious when they were directed at men or women (versus mixed sex groups), utilized individualized tailoring, used a Stages of Change model, and had more intervention sessions. Computer technology-based HIV prevention interventions have similar efficacy to more traditional human-delivered interventions. Given their low cost to deliver, ability to customize intervention content, and flexible dissemination channels, they hold much promise for the future of HIV prevention.

  8. A computer model for dispersed fluid-solid turbulent flows

    International Nuclear Information System (INIS)

    Liu, C.H.; Tulig, T.J.

    1985-01-01

    A computer model is being developed to simulate two-phase turbulent flow phenomena in fluids containing finely dispersed solids. The model is based on a dual-continuum picture of the individual phases and an extension of a two-equation turbulence closure theory. The resulting set of nonlinear partial differential equations are solved using a finite difference procedure with special treatment to promote convergence. The model has been checked against a number of idealized flow problems with known solutions. The authors are currently comparing model predictions with measurements to determine a proper set of turbulence parameters needed for simulating two-phase turbulent flows

  9. Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models

    Energy Technology Data Exchange (ETDEWEB)

    Hadjidoukas, P.E.; Angelikopoulos, P. [Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 (Switzerland); Papadimitriou, C. [Department of Mechanical Engineering, University of Thessaly, GR-38334 Volos (Greece); Koumoutsakos, P., E-mail: petros@ethz.ch [Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 (Switzerland)

    2015-03-01

    We present Π4U,{sup 1} an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.

  10. Physics-based Entry, Descent and Landing Risk Model

    Science.gov (United States)

    Gee, Ken; Huynh, Loc C.; Manning, Ted

    2014-01-01

    A physics-based risk model was developed to assess the risk associated with thermal protection system failures during the entry, descent and landing phase of a manned spacecraft mission. In the model, entry trajectories were computed using a three-degree-of-freedom trajectory tool, the aerothermodynamic heating environment was computed using an engineering-level computational tool and the thermal response of the TPS material was modeled using a one-dimensional thermal response tool. The model was capable of modeling the effect of micrometeoroid and orbital debris impact damage on the TPS thermal response. A Monte Carlo analysis was used to determine the effects of uncertainties in the vehicle state at Entry Interface, aerothermodynamic heating and material properties on the performance of the TPS design. The failure criterion was set as a temperature limit at the bondline between the TPS and the underlying structure. Both direct computation and response surface approaches were used to compute the risk. The model was applied to a generic manned space capsule design. The effect of material property uncertainty and MMOD damage on risk of failure were analyzed. A comparison of the direct computation and response surface approach was undertaken.

  11. International Nuclear Model personal computer (PCINM): Model documentation

    International Nuclear Information System (INIS)

    1992-08-01

    The International Nuclear Model (INM) was developed to assist the Energy Information Administration (EIA), U.S. Department of Energy (DOE) in producing worldwide projections of electricity generation, fuel cycle requirements, capacities, and spent fuel discharges from commercial nuclear reactors. The original INM was developed, maintained, and operated on a mainframe computer system. In spring 1992, a streamlined version of INM was created for use on a microcomputer utilizing CLIPPER and PCSAS software. This new version is known as PCINM. This documentation is based on the new PCINM version. This document is designed to satisfy the requirements of several categories of users of the PCINM system including technical analysts, theoretical modelers, and industry observers. This document assumes the reader is familiar with the nuclear fuel cycle and each of its components. This model documentation contains four chapters and seven appendices. Chapter Two presents the model overview containing the PCINM structure and process flow, the areas for which projections are made, and input data and output reports. Chapter Three presents the model technical specifications showing all model equations, algorithms, and units of measure. Chapter Four presents an overview of all parameters, variables, and assumptions used in PCINM. The appendices present the following detailed information: variable and parameter listings, variable and equation cross reference tables, source code listings, file layouts, sample report outputs, and model run procedures. 2 figs

  12. Property-Based Anonymous Attestation in Trusted Cloud Computing

    Directory of Open Access Journals (Sweden)

    Zhen-Hu Ning

    2014-01-01

    Full Text Available In the remote attestation on Trusted Computer (TC computing mode TCCP, the trusted computer TC has an excessive burden, and anonymity and platform configuration information security of computing nodes cannot be guaranteed. To overcome these defects, based on the research on and analysis of current schemes, we propose an anonymous proof protocol based on property certificate. The platform configuration information is converted by the matrix algorithm into the property certificate, and the remote attestation is implemented by trusted ring signature scheme based on Strong RSA Assumption. By the trusted ring signature scheme based on property certificate, we achieve the anonymity of computing nodes and prevent the leakage of platform configuration information. By simulation, we obtain the computational efficiency of the scheme. We also expand the protocol and obtain the anonymous attestation based on ECC. By scenario comparison, we obtain the trusted ring signature scheme based on RSA, which has advantages with the growth of the ring numbers.

  13. Computational Strategy for Quantifying Human Pesticide Exposure based upon a Saliva Measurement

    Directory of Open Access Journals (Sweden)

    Charles eTimchalk

    2015-05-01

    Full Text Available Quantitative exposure data is important for evaluating toxicity risk and biomonitoring is a critical tool for evaluating human exposure. Direct personal monitoring provides the most accurate estimation of a subject’s true dose, and non-invasive methods are advocated for quantifying exposure to xenobiotics. In this regard, there is a need to identify chemicals that are cleared in saliva at concentrations that can be quantified to support the implementation of this approach. This manuscript reviews the computational modeling approaches that are coupled to in vivo and in vitro experiments to predict salivary uptake and clearance of xenobiotics and provides additional insight on species-dependent differences in partitioning that are of key importance for extrapolation. The primary mechanism by which xenobiotics leave the blood and enter saliva involves paracellular transport, passive transcellular diffusion, or trancellular active transport with the majority of xenobiotics transferred by passive diffusion. The transcellular or paracellular diffusion of unbound chemicals in plasma to saliva has been computationally modeled using compartmental and physiologically based approaches. Of key importance for determining the plasma:saliva partitioning was the utilization of the Schmitt algorithm that calculates partitioning based upon the tissue composition, pH, chemical pKa and plasma protein-binding. Sensitivity analysis identified that both protein-binding and pKa (for weak acids and bases have significant impact on determining partitioning and species dependent differences based upon physiological variance. Future strategies are focused on an in vitro salivary acinar cell based system to experimentally determine and computationally predict salivary gland uptake and clearance for xenobiotics. It is envisioned that a combination of salivary biomonitoring and computational modeling will enable the non-invasive measurement of chemical exposures in human

  14. Computational model of collagen turnover in carotid arteries during hypertension.

    Science.gov (United States)

    Sáez, P; Peña, E; Tarbell, J M; Martínez, M A

    2015-02-01

    It is well known that biological tissues adapt their properties because of different mechanical and chemical stimuli. The goal of this work is to study the collagen turnover in the arterial tissue of hypertensive patients through a coupled computational mechano-chemical model. Although it has been widely studied experimentally, computational models dealing with the mechano-chemical approach are not. The present approach can be extended easily to study other aspects of bone remodeling or collagen degradation in heart diseases. The model can be divided into three different stages. First, we study the smooth muscle cell synthesis of different biological substances due to over-stretching during hypertension. Next, we study the mass-transport of these substances along the arterial wall. The last step is to compute the turnover of collagen based on the amount of these substances in the arterial wall which interact with each other to modify the turnover rate of collagen. We simulate this process in a finite element model of a real human carotid artery. The final results show the well-known stiffening of the arterial wall due to the increase in the collagen content. Copyright © 2015 John Wiley & Sons, Ltd.

  15. GRAVTool, Advances on the Package to Compute Geoid Model path by the Remove-Compute-Restore Technique, Following Helmert's Condensation Method

    Science.gov (United States)

    Marotta, G. S.

    2017-12-01

    Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astrogeodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove Compute Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and Global Geopotential Model (GGM), respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and adjust these models to one local vertical datum. This research presents the advances on the package called GRAVTool to compute geoid models path by the RCR, following Helmert's condensation method, and its application in a study area. The studied area comprehends the federal district of Brazil, with 6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show a geoid model computed by the GRAVTool package, after analysis of the density, DTM and GGM values, more adequate to the reference values used on the study area. The accuracy of the computed model (σ = ± 0.058 m, RMS = 0.067 m, maximum = 0.124 m and minimum = -0.155 m), using density value of 2.702 g/cm³ ±0.024 g/cm³, DTM SRTM Void Filled 3 arc-second and GGM EIGEN-6C4 up to degree and order 250, matches the uncertainty (σ =± 0.073) of 26 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.076 m, RMS = 0.098 m, maximum = 0.320 m and minimum = -0.061 m).

  16. An Overview of Computer-Based Natural Language Processing.

    Science.gov (United States)

    Gevarter, William B.

    Computer-based Natural Language Processing (NLP) is the key to enabling humans and their computer-based creations to interact with machines using natural languages (English, Japanese, German, etc.) rather than formal computer languages. NLP is a major research area in the fields of artificial intelligence and computational linguistics. Commercial…

  17. Morphodynamic Modeling Using The SToRM Computational System

    Science.gov (United States)

    Simoes, F.

    2016-12-01

    The framework of the work presented here is the open source SToRM (System for Transport and River Modeling) eco-hydraulics modeling system, which is one of the models released with the iRIC hydraulic modeling graphical software package (http://i-ric.org/). SToRM has been applied to the simulation of various complex environmental problems, including natural waterways, steep channels with regime transition, and rapidly varying flood flows with wetting and drying fronts. In its previous version, however, channel bed was treated as static and the ability of simulating sediment transport rates or bed deformation was not included. The work presented here reports SToRM's newly developed extensions to expand the system's capability to calculate morphological changes in alluvial river systems. The sediment transport module of SToRM has been developed based on the general recognition that meaningful advances depend on physically solid formulations and robust and accurate numerical solution methods. The basic concepts of mass and momentum conservation are used, where the feedback mechanisms between the flow of water, the sediment in transport, and the bed changes are directly incorporated in the governing equations used in the mathematical model. This is accomplished via a non-capacity transport formulation based on the work of Cao et al. [Z. Cao et al., "Non-capacity or capacity model for fluvial sediment transport," Water Management, 165(WM4):193-211, 2012], where the governing equations are augmented with source/sink terms due to water-sediment interaction. The same unsteady, shock-capturing numerical schemes originally used in SToRM were adapted to the new physics, using a control volume formulation over unstructured computational grids. The presentation will include a brief overview of these methodologies, and the result of applications of the model to a number of relevant physical test cases with movable bed, where computational results are compared to experimental data.

  18. Contributions of computational chemistry and biophysical techniques to fragment-based drug discovery.

    Science.gov (United States)

    Gozalbes, Rafael; Carbajo, Rodrigo J; Pineda-Lucena, Antonio

    2010-01-01

    In the last decade, fragment-based drug discovery (FBDD) has evolved from a novel approach in the search of new hits to a valuable alternative to the high-throughput screening (HTS) campaigns of many pharmaceutical companies. The increasing relevance of FBDD in the drug discovery universe has been concomitant with an implementation of the biophysical techniques used for the detection of weak inhibitors, e.g. NMR, X-ray crystallography or surface plasmon resonance (SPR). At the same time, computational approaches have also been progressively incorporated into the FBDD process and nowadays several computational tools are available. These stretch from the filtering of huge chemical databases in order to build fragment-focused libraries comprising compounds with adequate physicochemical properties, to more evolved models based on different in silico methods such as docking, pharmacophore modelling, QSAR and virtual screening. In this paper we will review the parallel evolution and complementarities of biophysical techniques and computational methods, providing some representative examples of drug discovery success stories by using FBDD.

  19. Disciplines, models, and computers: the path to computational quantum chemistry.

    Science.gov (United States)

    Lenhard, Johannes

    2014-12-01

    Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.

  20. Assessing the impact of the Lebanese National Polio Immunization Campaign using a population-based computational model.

    Science.gov (United States)

    Alawieh, Ali; Sabra, Zahraa; Langley, E Farris; Bizri, Abdul Rahman; Hamadeh, Randa; Zaraket, Fadi A

    2017-11-25

    After the re-introduction of poliovirus to Syria in 2013, Lebanon was considered at high transmission risk due to its proximity to Syria and the high number of Syrian refugees. However, after a large-scale national immunization initiative, Lebanon was able to prevent a potential outbreak of polio among nationals and refugees. In this work, we used a computational individual-simulation model to assess the risk of poliovirus threat to Lebanon prior and after the immunization campaign and to quantitatively assess the healthcare impact of the campaign and the required standards that need to be maintained nationally to prevent a future outbreak. Acute poliomyelitis surveillance in Lebanon was along with the design and coverage rate of the recent national polio immunization campaign were reviewed from the records of the Lebanese Ministry of Public Health. Lebanese population demographics including Syrian and Palestinian refugees were reviewed to design individual-based models that predicts the consequences of polio spread to Lebanon and evaluate the outcome of immunization campaigns. The model takes into account geographic, demographic and health-related features. Our simulations confirmed the high risk of polio outbreaks in Lebanon within 10 days of case introduction prior to the immunization campaign, and showed that the current immunization campaign significantly reduced the speed of the infection in the event poliomyelitis cases enter the country. A minimum of 90% national immunization coverage was found to be required to prevent exponential propagation of potential transmission. Both surveillance and immunization efforts should be maintained at high standards in Lebanon and other countries in the area to detect and limit any potential outbreak. The use of computational population simulation models can provide a quantitative approach to assess the impact of immunization campaigns and the burden of infectious diseases even in the context of population migration.