WorldWideScience

Sample records for computer algebra systems

  1. Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Kostov, N.A.

    1989-01-01

    In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs

  2. Category-theoretic models of algebraic computer systems

    Science.gov (United States)

    Kovalyov, S. P.

    2016-01-01

    A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.

  3. Computer Algebra Systems in Undergraduate Instruction.

    Science.gov (United States)

    Small, Don; And Others

    1986-01-01

    Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)

  4. Algebraic computing

    International Nuclear Information System (INIS)

    MacCallum, M.A.H.

    1990-01-01

    The implementation of a new computer algebra system is time consuming: designers of general purpose algebra systems usually say it takes about 50 man-years to create a mature and fully functional system. Hence the range of available systems and their capabilities changes little between one general relativity meeting and the next, despite which there have been significant changes in the period since the last report. The introductory remarks aim to give a brief survey of capabilities of the principal available systems and highlight one or two trends. The reference to the most recent full survey of computer algebra in relativity and brief descriptions of the Maple, REDUCE and SHEEP and other applications are given. (author)

  5. SD-CAS: Spin Dynamics by Computer Algebra System.

    Science.gov (United States)

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Computer algebra applications

    International Nuclear Information System (INIS)

    Calmet, J.

    1982-01-01

    A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)

  7. ASYS: a computer algebra package for analysis of nonlinear algebraic equations systems

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Khutornoj, N.V.

    1992-01-01

    A program package ASYS for analysis of nonlinear algebraic equations based on the Groebner basis technique is described. The package is written in REDUCE computer algebra language. It has special facilities to treat polynomial ideals of positive dimension, corresponding to algebraic systems with infinitely many solutions. Such systems can be transformed to an equivalent set of subsystems with reduced number of variables in completely automatic way. It often allows to construct the explicit form of a solution set in many problems of practical importance. Some examples and results of comparison with the standard Reduce package GROEBNER and special-purpose systems FELIX and A1PI are given. 21 refs.; 2 tabs

  8. Waterloo Workshop on Computer Algebra

    CERN Document Server

    Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday

    2018-01-01

    This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016.   This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.

  9. Lie algebra in quantum physics by means of computer algebra

    OpenAIRE

    Kikuchi, Ichio; Kikuchi, Akihito

    2017-01-01

    This article explains how to apply the computer algebra package GAP (www.gap-system.org) in the computation of the problems in quantum physics, in which the application of Lie algebra is necessary. The article contains several exemplary computations which readers would follow in the desktop PC: such as, the brief review of elementary ideas of Lie algebra, the angular momentum in quantum mechanics, the quark eight-fold way model, and the usage of Weyl character formula (in order to construct w...

  10. Computer algebra and operators

    Science.gov (United States)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  11. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    Science.gov (United States)

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  12. Microeconomic theory and computation applying the maxima open-source computer algebra system

    CERN Document Server

    Hammock, Michael R

    2014-01-01

    This book provides a step-by-step tutorial for using Maxima, an open-source multi-platform computer algebra system, to examine the economic relationships that form the core of microeconomics in a way that complements traditional modeling techniques.

  13. Computational linear and commutative algebra

    CERN Document Server

    Kreuzer, Martin

    2016-01-01

    This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...

  14. Computations in finite-dimensional Lie algebras

    Directory of Open Access Journals (Sweden)

    A. M. Cohen

    1997-12-01

    Full Text Available This paper describes progress made in context with the construction of a general library of Lie algebra algorithms, called ELIAS (Eindhoven Lie Algebra System, within the computer algebra package GAP. A first sketch of the package can be found in Cohen and de Graaf[1]. Since then, in a collaborative effort with G. Ivanyos, the authors have continued to develop algorithms which were implemented in ELIAS by the second author. These activities are part of a bigger project, called ACELA and financed by STW, the Dutch Technology Foundation, which aims at an interactive book on Lie algebras (cf. Cohen and Meertens [2]. This paper gives a global description of the main ways in which to present Lie algebras on a computer. We focus on the transition from a Lie algebra abstractly given by an array of structure constants to a Lie algebra presented as a subalgebra of the Lie algebra of n×n matrices. We describe an algorithm typical of the structure analysis of a finite-dimensional Lie algebra: finding a Levi subalgebra of a Lie algebra.

  15. Linking Computer Algebra Systems and Paper-and-Pencil Techniques To Support the Teaching of Mathematics.

    Science.gov (United States)

    van Herwaarden, Onno A.; Gielen, Joseph L. W.

    2002-01-01

    Focuses on students showing a lack of conceptual insight while using computer algebra systems (CAS) in the setting of an elementary calculus and linear algebra course for first year university students in social sciences. The use of a computer algebra environment has been incorporated into a more traditional course but with special attention on…

  16. Computing one of Victor Moll's irresistible integrals with computer algebra

    Directory of Open Access Journals (Sweden)

    Christoph Koutschan

    2008-04-01

    Full Text Available We investigate a certain quartic integral from V. Moll's book “Irresistible Integrals” and demonstrate how it can be solved by computer algebra methods, namely by using non-commutative Gröbner bases. We present recent implementations in the computer algebra systems SINGULAR and MATHEMATICA.

  17. Applications of Computer Algebra Conference

    CERN Document Server

    Martínez-Moro, Edgar

    2017-01-01

    The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.

  18. Computational aspects of algebraic curves

    CERN Document Server

    Shaska, Tanush

    2005-01-01

    The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove

  19. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  20. Maple (Computer Algebra System) in Teaching Pre-Calculus: Example of Absolute Value Function

    Science.gov (United States)

    Tuluk, Güler

    2014-01-01

    Modules in Computer Algebra Systems (CAS) make Mathematics interesting and easy to understand. The present study focused on the implementation of the algebraic, tabular (numerical), and graphical approaches used for the construction of the concept of absolute value function in teaching mathematical content knowledge along with Maple 9. The study…

  1. ADAM: analysis of discrete models of biological systems using computer algebra.

    Science.gov (United States)

    Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard

    2011-07-20

    Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web

  2. Computers in nonassociative rings and algebras

    CERN Document Server

    Beck, Robert E

    1977-01-01

    Computers in Nonassociative Rings and Algebras provides information pertinent to the computational aspects of nonassociative rings and algebras. This book describes the algorithmic approaches for solving problems using a computer.Organized into 10 chapters, this book begins with an overview of the concept of a symmetrized power of a group representation. This text then presents data structures and other computational methods that may be useful in the field of computational algebra. Other chapters consider several mathematical ideas, including identity processing in nonassociative algebras, str

  3. Computer algebra as a research tool in physics

    International Nuclear Information System (INIS)

    Drouffe, J.M.

    1985-04-01

    The progress of computer algebra observed during these last years has had certainly an impact in physics. I want to precise the role of these new techniques in this application domain and to analyze their present limitations. In Section 1, I describe briefly the use of algebraic manipulation programs at the elementary level. The numerical and symbolic solutions of problems are compared in Section 2. Section 3 is devoted to a prospective about the use of computer algebra at the highest level, as an ''intelligent'' system. I recall in Section 4 what is required from a system to be used in physics

  4. IV International Conference on Computer Algebra in Physical Research. Collection of abstracts

    International Nuclear Information System (INIS)

    Rostovtsev, V.A.

    1990-01-01

    The abstracts of the reports made on IV International conference on computer algebra in physical research are presented. The capabilities of application of computers for algebraic computations in high energy physics and quantum field theory are discussed. Particular attention is paid to a software for the REDUCE computer algebra system

  5. Using CAMAL for algebraic computations in general relativity

    International Nuclear Information System (INIS)

    Fitch, J.P.

    1979-01-01

    CAMAL is a collection of computer algebra systems developed in Cambridge, England for use mainly in theoretical physics. One of these was designed originally for general relativity calculations, although it is often used in other fields. In a recent paper Cohen, Leringe, and Sundblad compared six systems for algebraic computations applied to general relativity available in Stockholm. Here similar information for CAMAL is given and by using the same tests CAMAL is added to the comparison. (author)

  6. Applications of computer algebra

    CERN Document Server

    1985-01-01

    Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in­ creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa­ tion and obtains a closed for...

  7. Introduction to computational linear algebra

    CERN Document Server

    Nassif, Nabil; Erhel, Jocelyne

    2015-01-01

    Introduction to Computational Linear Algebra introduces the reader with a background in basic mathematics and computer programming to the fundamentals of dense and sparse matrix computations with illustrating examples. The textbook is a synthesis of conceptual and practical topics in ""Matrix Computations."" The book's learning outcomes are twofold: to understand state-of-the-art computational tools to solve matrix computations problems (BLAS primitives, MATLAB® programming) as well as essential mathematical concepts needed to master the topics of numerical linear algebra. It is suitable for s

  8. Implementing Computer Algebra Enabled Questions for the Assessment and Learning of Mathematics

    Science.gov (United States)

    Sangwin, Christopher J.; Naismith, Laura

    2008-01-01

    We present principles for the design of an online system to support computer algebra enabled questions for use within the teaching and learning of mathematics in higher education. The introduction of a computer algebra system (CAS) into a computer aided assessment (CAA) system affords sophisticated response processing of student provided answers.…

  9. Algebraic computing in general relativity

    International Nuclear Information System (INIS)

    D'Inverno, R.A.

    1975-01-01

    The purpose of this paper is to bring to the attention of potential users the existence of algebraic computing systems, and to illustrate their use by reviewing a number of problems for which such a system has been successfully used in General Relativity. In addition, some remarks are included which may be of help in the future design of these systems. (author)

  10. Computational algebraic geometry of epidemic models

    Science.gov (United States)

    Rodríguez Vega, Martín.

    2014-06-01

    Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.

  11. Some Applications of Algebraic System Solving

    Science.gov (United States)

    Roanes-Lozano, Eugenio

    2011-01-01

    Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…

  12. Development process of in-service training intended for teachers to perform teaching of mathematics with computer algebra systems

    Science.gov (United States)

    Ardıç, Mehmet Alper; Işleyen, Tevfik

    2018-01-01

    In this study, we deal with the development process of in-service training activities designed in order for mathematics teachers of secondary education to realize teaching of mathematics, utilizing computer algebra systems. In addition, the results obtained from the researches carried out during and after the in-service training were summarized. Last section focuses on suggestions any teacher can use to carry out activities aimed at using computer algebra systems in teaching environments.

  13. Exploring Students' Understanding of Ordinary Differential Equations Using Computer Algebraic System (CAS)

    Science.gov (United States)

    Maat, Siti Mistima; Zakaria, Effandi

    2011-01-01

    Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…

  14. Inequalities, Assessment and Computer Algebra

    Science.gov (United States)

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary…

  15. Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra

    CERN Document Server

    Cox, David A; O'Shea, Donal

    2015-01-01

    This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry—the elimination theorem, the extension theorem, the closure theorem, and the Nullstellensatz—this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and, with some supplementation perhaps, for beginning graduate level courses in algebraic geom...

  16. Applications of symbolic algebraic computation

    International Nuclear Information System (INIS)

    Brown, W.S.; Hearn, A.C.

    1979-01-01

    This paper is a survey of applications of systems for symbomic algebraic computation. In most successful applications, calculations that can be taken to a given order by hand are then extended one or two more orders by computer. Furthermore, with a few notable exceptins, these applications also involve numerical computation in some way. Therefore the authors emphasize the interface between symbolic and numerical computation, including: 1. Computations with both symbolic and numerical phases. 2. Data involving both the unpredictible size and shape that typify symbolic computation and the (usually inexact) numerical values that characterize numerical computation. 3. Applications of one field to the other. It is concluded that the fields of symbolic and numerical computation can advance most fruitfully in harmony rather than in competition. (Auth.)

  17. Elementary Business Calculus with Computer Algebra.

    Science.gov (United States)

    Judson, Phoebe T.

    1990-01-01

    Described are various ways that a computer algebra system (MAPLE) was used to facilitate the resequencing of skills and applications within an elementary college-level business calculus course. Experimental results confirmed earlier findings that skills acquisition is not a prerequisite to conceptual understanding or problem-solving ability. (JJK)

  18. Classical versus Computer Algebra Methods in Elementary Geometry

    Science.gov (United States)

    Pech, Pavel

    2005-01-01

    Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…

  19. Algebraic computability and enumeration models recursion theory and descriptive complexity

    CERN Document Server

    Nourani, Cyrus F

    2016-01-01

    This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples for languages. Functorial models for Peano arithmetic are described toward important computational complexity areas on a Hilbert program, leading to computability with initial models. Infinite language categories are also introduced to explain descriptive complexity with recursive computability with admissible sets and urelements. Algebraic and categorical realizability is staged on several levels, addressing new computability questions with omitting types realizably. Further applications to computing with ultrafilters on sets and Turing degree computability are examined. Functorial models computability is presented with algebraic trees realizing intuitionistic type...

  20. CENTER CONDITIONS AND CYCLICITY FOR A FAMILY OF CUBIC SYSTEMS: COMPUTER ALGEBRA APPROACH.

    Science.gov (United States)

    Ferčec, Brigita; Mahdi, Adam

    2013-01-01

    Using methods of computational algebra we obtain an upper bound for the cyclicity of a family of cubic systems. We overcame the problem of nonradicality of the associated Bautin ideal by moving from the ring of polynomials to a coordinate ring. Finally, we determine the number of limit cycles bifurcating from each component of the center variety.

  1. Algebraic Modeling of Topological and Computational Structures and Applications

    CERN Document Server

    Theodorou, Doros; Stefaneas, Petros; Kauffman, Louis

    2017-01-01

    This interdisciplinary book covers a wide range of subjects, from pure mathematics (knots, braids, homotopy theory, number theory) to more applied mathematics (cryptography, algebraic specification of algorithms, dynamical systems) and concrete applications (modeling of polymers and ionic liquids, video, music and medical imaging). The main mathematical focus throughout the book is on algebraic modeling with particular emphasis on braid groups. The research methods include algebraic modeling using topological structures, such as knots, 3-manifolds, classical homotopy groups, and braid groups. The applications address the simulation of polymer chains and ionic liquids, as well as the modeling of natural phenomena via topological surgery. The treatment of computational structures, including finite fields and cryptography, focuses on the development of novel techniques. These techniques can be applied to the design of algebraic specifications for systems modeling and verification. This book is the outcome of a w...

  2. A Study of the Use of a Handheld Computer Algebra System in Discrete Mathematics

    Science.gov (United States)

    Powers, Robert A.; Allison, Dean E.; Grassl, Richard M.

    2005-01-01

    This study investigated the impact of the TI-92 handheld Computer Algebra System (CAS) on student achievement in a discrete mathematics course. Specifically, the researchers examined the differences between a CAS section and a control section of discrete mathematics on students' in-class examinations. Additionally, they analysed student approaches…

  3. Computer Algebra Recipes for Mathematical Physics

    CERN Document Server

    Enns, Richard H

    2005-01-01

    Over two hundred novel and innovative computer algebra worksheets or "recipes" will enable readers in engineering, physics, and mathematics to easily and rapidly solve and explore most problems they encounter in their mathematical physics studies. While the aim of this text is to illustrate applications, a brief synopsis of the fundamentals for each topic is presented, the topics being organized to correlate with those found in traditional mathematical physics texts. The recipes are presented in the form of stories and anecdotes, a pedagogical approach that makes a mathematically challenging subject easier and more fun to learn. Key features: * Uses the MAPLE computer algebra system to allow the reader to easily and quickly change the mathematical models and the parameters and then generate new answers * No prior knowledge of MAPLE is assumed; the relevant MAPLE commands are introduced on a need-to-know basis * All MAPLE commands are indexed for easy reference * A classroom-tested story/anecdote format is use...

  4. Using Computer Symbolic Algebra to Solve Differential Equations.

    Science.gov (United States)

    Mathews, John H.

    1989-01-01

    This article illustrates that mathematical theory can be incorporated into the process to solve differential equations by a computer algebra system, muMATH. After an introduction to functions of muMATH, several short programs for enhancing the capabilities of the system are discussed. Listed are six references. (YP)

  5. Computer-Aided College Algebra: Learning Components that Students Find Beneficial

    Science.gov (United States)

    Aichele, Douglas B.; Francisco, Cynthia; Utley, Juliana; Wescoatt, Benjamin

    2011-01-01

    A mixed-method study was conducted during the Fall 2008 semester to better understand the experiences of students participating in computer-aided instruction of College Algebra using the software MyMathLab. The learning environment included a computer learning system for the majority of the instruction, a support system via focus groups (weekly…

  6. Geometric Algebra Computing

    CERN Document Server

    Corrochano, Eduardo Bayro

    2010-01-01

    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  7. The Simulation of an Oxidation-Reduction Titration Curve with Computer Algebra

    Science.gov (United States)

    Whiteley, Richard V., Jr.

    2015-01-01

    Although the simulation of an oxidation/reduction titration curve is an important exercise in an undergraduate course in quantitative analysis, that exercise is frequently simplified to accommodate computational limitations. With the use of readily available computer algebra systems, however, such curves for complicated systems can be generated…

  8. Solving algebraic computational problems in geodesy and geoinformatics the answer to modern challenges

    CERN Document Server

    Awange, Joseph L

    2004-01-01

    While preparing and teaching 'Introduction to Geodesy I and II' to - dergraduate students at Stuttgart University, we noticed a gap which motivated the writing of the present book: Almost every topic that we taughtrequiredsomeskillsinalgebra,andinparticular,computeral- bra! From positioning to transformation problems inherent in geodesy and geoinformatics, knowledge of algebra and application of computer algebra software were required. In preparing this book therefore, we haveattemptedtoputtogetherbasicconceptsofabstractalgebra which underpin the techniques for solving algebraic problems. Algebraic c- putational algorithms useful for solving problems which require exact solutions to nonlinear systems of equations are presented and tested on various problems. Though the present book focuses mainly on the two ?elds,theconceptsand techniquespresented hereinarenonetheless- plicable to other ?elds where algebraic computational problems might be encountered. In Engineering for example, network densi?cation and robo...

  9. Exploring Interactive and Dynamic Simulations Using a Computer Algebra System in an Advanced Placement Chemistry Course

    Science.gov (United States)

    Matsumoto, Paul S.

    2014-01-01

    The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…

  10. Computational commutative and non-commutative algebraic geometry

    CERN Document Server

    Cojocaru, S; Ufnarovski, V

    2005-01-01

    This publication gives a good insight in the interplay between commutative and non-commutative algebraic geometry. The theoretical and computational aspects are the central theme in this study. The topic is looked at from different perspectives in over 20 lecture reports. It emphasizes the current trends in commutative and non-commutative algebraic geometry and algebra. The contributors to this publication present the most recent and state-of-the-art progresses which reflect the topic discussed in this publication. Both researchers and graduate students will find this book a good source of information on commutative and non-commutative algebraic geometry.

  11. Affine.m—Mathematica package for computations in representation theory of finite-dimensional and affine Lie algebras

    Science.gov (United States)

    Nazarov, Anton

    2012-11-01

    In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent

  12. Clifford algebras, noncommutative tori and universal quantum computers

    OpenAIRE

    Vlasov, Alexander Yu.

    2001-01-01

    Recently author suggested [quant-ph/0010071] an application of Clifford algebras for construction of a "compiler" for universal binary quantum computer together with later development [quant-ph/0012009] of the similar idea for a non-binary base. The non-binary case is related with application of some extension of idea of Clifford algebras. It is noncommutative torus defined by polynomial algebraic relations of order l. For l=2 it coincides with definition of Clifford algebra. Here is presente...

  13. Homogeneous Buchberger algorithms and Sullivant's computational commutative algebra challenge

    DEFF Research Database (Denmark)

    Lauritzen, Niels

    2005-01-01

    We give a variant of the homogeneous Buchberger algorithm for positively graded lattice ideals. Using this algorithm we solve the Sullivant computational commutative algebra challenge.......We give a variant of the homogeneous Buchberger algorithm for positively graded lattice ideals. Using this algorithm we solve the Sullivant computational commutative algebra challenge....

  14. Computational triadic algebras of signs

    Energy Technology Data Exchange (ETDEWEB)

    Zadrozny, W. [T.J. Watson Research Center, Yorktown Heights, NY (United States)

    1996-12-31

    We present a finite model of Peirce`s ten classes of signs. We briefly describe Peirce`s taxonomy of signs; we prove that any finite collection of signs can be extended to a finite algebra of signs in which all interpretants are themselves being interpreted; and we argue that Peirce`s ten classes of signs can be defined using constraints on algebras of signs. The paper opens the possibility of defining multimodal cognitive agents using Peirce`s classes of signs, and is a first step towards building a computational logic of signs based on Peirce`s taxonomies.

  15. On the Integration of Computer Algebra Systems (CAS) by Canadian Mathematicians: Results of a National Survey

    Science.gov (United States)

    Buteau, Chantal; Jarvis, Daniel H.; Lavicza, Zsolt

    2014-01-01

    In this article, we outline the findings of a Canadian survey study (N = 302) that focused on the extent of computer algebra systems (CAS)-based technology use in postsecondary mathematics instruction. Results suggest that a considerable number of Canadian mathematicians use CAS in research and teaching. CAS use in research was found to be the…

  16. Singularities and computer algebra festschrift for Gert-Martin Greuel on the occasion of his 70th birthday

    CERN Document Server

    Pfister, Gerhard; Schulze, Mathias

    2017-01-01

    This book arose from a conference on “Singularities and Computer Algebra” which was held at the Pfalz-Akademie Lambrecht in June 2015 in honor of Gert-Martin Greuel’s 70th birthday. This unique volume presents a collection of recent original research by some of the leading figures in singularity theory on a broad range of topics including topological and algebraic aspects, classification problems, deformation theory and resolution of singularities. At the same time, the articles highlight a variety of techniques, ranging from theoretical methods to practical tools from computer algebra. Greuel himself made major contributions to the development of both singularity theory and computer algebra. With Gerhard Pfister and Hans Schönemann, he developed the computer algebra system SINGULAR, which has since become the computational tool of choice for many singularity theorists. The book addresses researchers whose work involves singularity theory and computer algebra from the PhD to expert level.

  17. Principles of linear algebra with Mathematica

    CERN Document Server

    Shiskowski, Kenneth M

    2013-01-01

    A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings,

  18. Instructional Supports for Representational Fluency in Solving Linear Equations with Computer Algebra Systems and Paper-and-Pencil

    Science.gov (United States)

    Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou

    2018-01-01

    This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…

  19. 2nd EACA International School on Computer Algebra and its Applications

    CERN Document Server

    Gimenez, Philippe; Sáenz-de-Cabezón, Eduardo

    2017-01-01

    Featuring up-to-date coverage of three topics lying at the intersection of combinatorics and commutative algebra, namely Koszul algebras, primary decompositions and subdivision operations in simplicial complexes, this book has its focus on computations. "Computations and combinatorics in commutative algebra" has been written by experts in both theoretical and computational aspects of these three subjects and is aimed at a broad audience, from experienced researchers who want to have an easy but deep review of the topics covered to postgraduate students who need a quick introduction to the techniques. The computational treatment of the material, including plenty of examples and code, will be useful for a wide range of professionals interested in the connections between commutative algebra and combinatorics.

  20. A comparison of equality in computer algebra and correctness in mathematical pedagogy (II)

    OpenAIRE

    Bradford, Russell; Davenport, James H; Sangwin, C

    2010-01-01

    A perennial problem in computer-aided assessment is that “a right answer”, pedagogically speaking, is not the same thing as “a mathematically correct expression”, as verified by a computer algebra system, or indeed other techniques such as random evaluation. Paper I in this series considered the difference in cases where there was “the right answer”, typically calculus questions. Here we look at some other cases, notably in linear algebra, where there can be many “right answers”, but still th...

  1. Assessing Elementary Algebra with STACK

    Science.gov (United States)

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  2. INdAM Meeting on Homological and Computational Methods in Commutative Algebra

    CERN Document Server

    Gubeladze, Joseph; Römer, Tim

    2017-01-01

    This volume collects contributions by leading experts in the area of commutative algebra related to the  INdAM meeting “Homological and Computational Methods in Commutative Algebra” held in Cortona (Italy) from May 30 to  June 3, 2016 . The conference and this volume are dedicated to Winfried Bruns on the occasion of his 70th birthday. In particular, the topics of this book strongly reflect the variety of Winfried Bruns’ research interests and his great impact on commutative algebra as well as its applications to related fields. The authors discuss recent and relevant developments in algebraic geometry, commutative algebra, computational algebra, discrete geometry and homological algebra. The book offers a unique resource, both for young and more experienced researchers seeking comprehensive overviews and extensive bibliographic references.

  3. Computer algebra simulation - what can it do?; Was leistet Computer-Algebra-Simulation?

    Energy Technology Data Exchange (ETDEWEB)

    Braun, S. [Visual Analysis AG, Muenchen (Germany)

    2001-07-01

    Shortened development times require new and improved calculation methods. Numeric methods have long become state of the art. However, although numeric simulations provide a better understanding of process parameters, they do not give a feast overview of the interdependences between parameters. Numeric simulations are effective only if all physical parameters are sufficiently known; otherwise, the efficiency will decrease due to the large number of variant calculations required. Computer algebra simulation closes this gap and provides a deeper understanding of the physical fundamentals of technical processes. [German] Neue und verbesserte Berechnungsmethoden sind notwendig, um die staendige Verkuerzung der Entwicklungszyklen zu ermoeglichen. Herkoemmliche Methoden, die auf einem rein numerischen Ansatz basieren, haben sich in vielen Anwendungsbereichen laengst zum Standard entwickelt. Aber nicht nur die staendig kuerzer werdenden Entwicklungszyklen, sondern auch die weiterwachsende Komplexitaet machen es notwendig, ein besseres Verstaendnis der beteiligten Prozessparameter zu gewinnen. Die numerische Simulation besticht zwar durch Detailloesungen, selbst bei komplexen Strukturen und Prozessen, allerdings liefert sie keine schnelle Abschaetzung ueber die Zusammenhaenge zwischen den einzelnen Parametern. Die numerische Simulation ist nur dann effektiv, wenn alle physikalischen Parameter hinreichend bekannt sind; andernfalls sinkt die Effizienz durch die notwendige Anzahl von notwendigen Variantenrechnungen sehr stark. Die Computer-Algebra-Simulation schliesst diese Luecke in dem sie es erlaubt, sich einen tieferen Einblick in die physikalische Funktionsweise technischer Prozesse zu verschaffen. (orig.)

  4. Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra

    Science.gov (United States)

    Knight, D. G.

    2006-01-01

    This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…

  5. Q-systems as cluster algebras

    International Nuclear Information System (INIS)

    Kedem, Rinat

    2008-01-01

    Q-systems first appeared in the analysis of the Bethe equations for the XXX model and generalized Heisenberg spin chains (Kirillov and Reshetikhin 1987 Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Steklov. 160 211-21, 301). Such systems are known to exist for any simple Lie algebra and many other Kac-Moody algebras. We formulate the Q-system associated with any simple, simply-laced Lie algebras g in the language of cluster algebras (Fomin and Zelevinsky 2002 J. Am. Math. Soc. 15 497-529), and discuss the relation of the polynomiality property of the solutions of the Q-system in the initial variables, which follows from the representation-theoretical interpretation, to the Laurent phenomenon in cluster algebras (Fomin and Zelevinsky 2002 Adv. Appl. Math. 28 119-44)

  6. Aberration studies and computer algebra

    International Nuclear Information System (INIS)

    Hawkes, P.W.

    1981-01-01

    The labour of calculating expressions for aberration coefficients is considerably lightened if a computer algebra language is used to perform the various substitutions and expansions involved. After a brief discussion of matrix representations of aberration coefficients, a particular language, which has shown itself to be well adapted to particle optics, is described and applied to the study of high frequency cavity lenses. (orig.)

  7. A Comparison of Success and Failure Rates between Computer-Assisted and Traditional College Algebra Sections

    Science.gov (United States)

    Herron, Sherry; Gandy, Rex; Ye, Ningjun; Syed, Nasser

    2012-01-01

    A unique aspect of the implementation of a computer algebra system (CAS) at a comprehensive university in the U.S. allowed us to compare the student success and failure rates to the traditional method of teaching college algebra. Due to space limitations, the university offered sections of both CAS and traditional simultaneously and, upon…

  8. Using computer algebra and SMT-solvers to analyze a mathematical model of cholera propagation

    Science.gov (United States)

    Trujillo Arredondo, Mariana

    2014-06-01

    We analyze a mathematical model for the transmission of cholera. The model is already defined and involves variables such as the pathogen agent, which in this case is the bacterium Vibrio cholera, and the human population. The human population is divided into three classes: susceptible, infectious and removed. Using Computer Algebra, specifically Maple we obtain two equilibrium states: the disease free state and the endemic state. Using Maple it is possible to prove that the disease free state is locally asymptotically stable if and only if R0 1. Using the package Red-Log of the Computer algebra system Reduce and the SMT-Solver Z3Py it is possible to obtain numerical conditions for the model. The formula for the basic reproductive number makes a synthesis with all epidemic parameters in the model. Also it is possible to make numerical simulations which are very illustrative about the epidemic patters that are expected to be observed in real situations. We claim that these kinds of software are very useful in the analysis of epidemic models given that the symbolic computation provides algebraic formulas for the basic reproductive number and such algebraic formulas are very useful to derive control measures. For other side, computer algebra software is a powerful tool to make the stability analysis for epidemic models given that the all steps in the stability analysis can be made automatically: finding the equilibrium points, computing the jacobian, computing the characteristic polynomial for the jacobian, and applying the Routh-Hurwitz theorem to the characteristic polynomial. Finally, using SMT-Solvers is possible to make automatically checks of satisfiability, validity and quantifiers elimination being these computations very useful to analyse complicated epidemic models.

  9. Study on time of flight property of electron optical systems by differential algebraic method

    International Nuclear Information System (INIS)

    Cheng Min; Tang Tiantong; Yao Zhenhua

    2002-01-01

    Differential algebraic method is a powerful and promising technique in computer numerical analysis. When applied to nonlinear dynamics systems, the arbitrary high-order transfer properties of the systems can be computed directly with high precision. In this paper, the principle of differential algebra is applied to study on the time of flight (TOF) property of electron optical systems and their arbitrary order TOF transfer properties can be numerically calculated out. As an example, TOF transfer properties of a uniform magnetic sector field analyzer have been studied by differential algebraic method. Relative errors of the first-order and second-order TOF transfer coefficients of the magnetic sector field analyzer are of the order 10 -11 or smaller compared with the analytic solutions. It is proved that differential algebraic TOF method is of high accuracy and very helpful for high-order TOF transfer property analysis of electron optical systems. (author)

  10. Application of Computer Graphics to Graphing in Algebra and Trigonometry. Final Report.

    Science.gov (United States)

    Morris, J. Richard

    This project was designed to improve the graphing competency of students in elementary algebra, intermediate algebra, and trigonometry courses at Virginia Commonwealth University. Computer graphics programs were designed using an Apple II Plus computer and implemented using Pascal. The software package is interactive and gives students control…

  11. Algebraic computing program for studying the gauge theory

    International Nuclear Information System (INIS)

    Zet, G.

    2005-01-01

    An algebraic computing program running on Maple V platform is presented. The program is devoted to the study of the gauge theory with an internal Lie group as local symmetry. The physical quantities (gauge potentials, strength tensors, dual tensors etc.) are introduced either as equations in terms of previous defined quantities (tensors), or by manual entry of the component values. The components of the strength tensor and of its dual are obtained with respect to a given metric of the space-time used for describing the gauge theory. We choose a Minkowski space-time endowed with spherical symmetry and give some example of algebraic computing that are adequate for studying electroweak or gravitational interactions. The field equations are also obtained and their solutions are determined using the DEtools facilities of the Maple V computing program. (author)

  12. Templates for Linear Algebra Problems

    NARCIS (Netherlands)

    Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der

    1995-01-01

    The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and

  13. A Comparison of Equality in Computer Algebra and Correctness in Mathematical Pedagogy (II)

    Science.gov (United States)

    Bradford, Russell; Davenport, James H.; Sangwin, Chris

    2010-01-01

    A perennial problem in computer-aided assessment is that "a right answer", pedagogically speaking, is not the same thing as "a mathematically correct expression", as verified by a computer algebra system, or indeed other techniques such as random evaluation. Paper I in this series considered the difference in cases where there was "the right…

  14. Multilinear Computing and Multilinear Algebraic Geometry

    Science.gov (United States)

    2016-08-10

    algebra : linear systems, least squares, eigevalue problems, singular value problems, determinant evaluation, low-rank approximations, etc — problems...intractability to move beyond linear algebra , substantiating what the PI had proposed. High-resolution MRI with tensors: In another piece of work... applications . One reason is that we found out that many statistical estimation problems ( linear regression, errors-in-variables regression, principal components

  15. Computing with impure numbers - Automatic consistency checking and units conversion using computer algebra

    Science.gov (United States)

    Stoutemyer, D. R.

    1977-01-01

    The computer algebra language MACSYMA enables the programmer to include symbolic physical units in computer calculations, and features automatic detection of dimensionally-inhomogeneous formulas and conversion of inconsistent units in a dimensionally homogeneous formula. Some examples illustrate these features.

  16. Algebraic Systems and Pushdown Automata

    Science.gov (United States)

    Petre, Ion; Salomaa, Arto

    We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.

  17. The lie-algebraic structures and integrability of differential and differential-difference nonlinear dynamical systems

    International Nuclear Information System (INIS)

    Prykarpatsky, A.K.; Blackmore, D.L.; Bogolubov, N.N. Jr.

    2007-05-01

    The infinite-dimensional operator Lie algebras of the related integrable nonlocal differential-difference dynamical systems are treated as their hidden symmetries. As a result of their dimerization the Lax type representations for both local differential-difference equations and nonlocal ones are obtained. An alternative approach to the Lie-algebraic interpretation of the integrable local differential-difference systems is also proposed. The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the centrally extended Lie algebra of integro-differential operators with matrix-valued coefficients coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems is obtained by means of a specially constructed Baecklund transformation. The Hamiltonian description for the corresponding set of additional symmetry hierarchies is represented. The relation of these hierarchies with Lax type integrable (3+1)-dimensional nonlinear dynamical systems and their triple Lax type linearizations is analyzed. The Lie-algebraic structures, related with centrally extended current operator Lie algebras are discussed with respect to constructing new nonlinear integrable dynamical systems on functional manifolds and super-manifolds. Special Poisson structures and related with them factorized integrable operator dynamical systems having interesting applications in modern mathematical physics, quantum computing mathematics and other fields are constructed. The previous purely computational results are explained within the approach developed. (author)

  18. Edix: A Software for Editing Algebraic Expressions.

    OpenAIRE

    Bouhineau , Denis; Nicaud , Jean-François; Pavard , X.

    2001-01-01

    International audience; The paper presents a computer software, called Edix, devoted to the edition of algebraic expressions in their usual 2D representation. At present, many systems display fine algebraic expressions, but the edition of such expressions is weak. Systems like Word and FrameMaker place sub-expressions in too many boxes so that many editing actions are not simple, while usual CAS (computer algebra systems) just use a 1D representation for the edition. Furthermore, Edix allows ...

  19. Computer methods in general relativity: algebraic computing

    CERN Document Server

    Araujo, M E; Skea, J E F; Koutras, A; Krasinski, A; Hobill, D; McLenaghan, R G; Christensen, S M

    1993-01-01

    Karlhede & MacCallum [1] gave a procedure for determining the Lie algebra of the isometry group of an arbitrary pseudo-Riemannian manifold, which they intended to im- plement using the symbolic manipulation package SHEEP but never did. We have recently finished making this procedure explicit by giving an algorithm suitable for implemen- tation on a computer [2]. Specifically, we have written an algorithm for determining the isometry group of a spacetime (in four dimensions), and partially implemented this algorithm using the symbolic manipulation package CLASSI, which is an extension of SHEEP.

  20. Analytical SN solutions in heterogeneous slabs using symbolic algebra computer programs

    International Nuclear Information System (INIS)

    Warsa, J.S.

    2002-01-01

    A modern symbolic algebra computer program, MAPLE, is used to compute solutions to the well-known analytical discrete ordinates, or S N , solutions in one-dimensional, slab geometry. Symbolic algebra programs compute the solutions with arbitrary precision and are free of spatial discretization error so they can be used to investigate new discretizations for one-dimensional slab, geometry S N methods. Pointwise scalar flux solutions are computed for several sample calculations of interest. Sample MAPLE command scripts are provided to illustrate how easily the theory can be translated into a working solution and serve as a complete tool capable of computing analytical S N solutions for mono-energetic, one-dimensional transport problems

  1. Inequalities, assessment and computer algebra

    Science.gov (United States)

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary curricula. We consider the formal mathematical processes by which such inequalities are solved, and we consider the notation and syntax through which solutions are expressed. We review the extent to which current CAS can accurately solve these inequalities, and the form given to the solutions by the designers of this software. Finally, we discuss the functionality needed to deal with students' answers, i.e. to establish equivalence (or otherwise) of expressions representing unions of intervals. We find that while contemporary CAS accurately solve inequalities there is a wide variety of notation used.

  2. On the economical solution method for a system of linear algebraic equations

    Directory of Open Access Journals (Sweden)

    Jan Awrejcewicz

    2004-01-01

    Full Text Available The present work proposes a novel optimal and exact method of solving large systems of linear algebraic equations. In the approach under consideration, the solution of a system of algebraic linear equations is found as a point of intersection of hyperplanes, which needs a minimal amount of computer operating storage. Two examples are given. In the first example, the boundary value problem for a three-dimensional stationary heat transfer equation in a parallelepiped in ℝ3 is considered, where boundary value problems of first, second, or third order, or their combinations, are taken into account. The governing differential equations are reduced to algebraic ones with the help of the finite element and boundary element methods for different meshes applied. The obtained results are compared with known analytical solutions. The second example concerns computation of a nonhomogeneous shallow physically and geometrically nonlinear shell subject to transversal uniformly distributed load. The partial differential equations are reduced to a system of nonlinear algebraic equations with the error of O(hx12+hx22. The linearization process is realized through either Newton method or differentiation with respect to a parameter. In consequence, the relations of the boundary condition variations along the shell side and the conditions for the solution matching are reported.

  3. Calculation of heat-kernel coefficients and usage of computer algebra

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Lanev, A.V.; Schaale, A.

    1995-01-01

    The calculation of heat-kernel coefficients with the classical De Witt algorithm has been discussed. We present the explicit form of the coefficients up to h 5 in the general case and up to h 7 min for the minimal parts. The results are compared with the expressions in other papers. A method to optimize the usage of memory for working with large expressions on universal computer algebra systems has been proposed. 20 refs

  4. A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry

    Science.gov (United States)

    Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew

    2012-01-01

    In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…

  5. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...

  6. Global identifiability of linear compartmental models--a computer algebra algorithm.

    Science.gov (United States)

    Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C

    1998-01-01

    A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.

  7. The combinatorics computation for Casimir operators of the symplectic Lie algebra and the application for determining the center of the enveloping algebra of a semidirect product

    International Nuclear Information System (INIS)

    Le Van Hop.

    1989-12-01

    The combinatorics computation is used to describe the Casimir operators of the symplectic Lie Algebra. This result is applied for determining the Center of the enveloping Algebra of the semidirect Product of the Heisenberg Lie Algebra and the symplectic Lie Algebra. (author). 10 refs

  8. Dynamical systems and linear algebra

    OpenAIRE

    Colonius, Fritz (Prof.)

    2007-01-01

    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  9. Polynomial algebra of discrete models in systems biology.

    Science.gov (United States)

    Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard

    2010-07-01

    An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.

  10. The algebraic manipulation program DIRAC on IBM personal computers

    International Nuclear Information System (INIS)

    Grozin, A.G.; Perlt, H.

    1989-01-01

    The version DIRAC (2.2) for IBM compatible personal computers is described. It is designed to manipulate algebraically with polynomials and tensors. After a short introduction concerning implementation and usage on personal computers an example program is given. It contains a detailed user's guide to DIRAC (2.2) and, additionally some useful applications. 4 refs

  11. Lukasiewicz-Moisil Many-Valued Logic Algebra of Highly-Complex Systems

    Directory of Open Access Journals (Sweden)

    James F. Glazebrook

    2010-06-01

    Full Text Available The fundamentals of Lukasiewicz-Moisil logic algebras and their applications to complex genetic network dynamics and highly complex systems are presented in the context of a categorical ontology theory of levels, Medical Bioinformatics and self-organizing, highly complex systems. Quantum Automata were defined in refs.[2] and [3] as generalized, probabilistic automata with quantum state spaces [1]. Their next-state functions operate through transitions between quantum states defined by the quantum equations of motions in the SchrÄodinger representation, with both initial and boundary conditions in space-time. A new theorem is proven which states that the category of quantum automata and automata-homomorphisms has both limits and colimits. Therefore, both categories of quantum automata and classical automata (sequential machines are bicomplete. A second new theorem establishes that the standard automata category is a subcategory of the quantum automata category. The quantum automata category has a faithful representation in the category of Generalized (M,R-Systems which are open, dynamic biosystem networks [4] with de¯ned biological relations that represent physiological functions of primordial(s, single cells and the simpler organisms. A new category of quantum computers is also defined in terms of reversible quantum automata with quantum state spaces represented by topological groupoids that admit a local characterization through unique, quantum Lie algebroids. On the other hand, the category of n-Lukasiewicz algebras has a subcategory of centered n-Lukasiewicz algebras (as proven in ref. [2] which can be employed to design and construct subcategories of quantum automata based on n-Lukasiewicz diagrams of existing VLSI. Furthermore, as shown in ref. [2] the category of centered n-Lukasiewicz algebras and the category of Boolean algebras are naturally equivalent. A `no-go' conjecture is also proposed which states that Generalized (M,R-Systems

  12. Changes in Pre-Service Teachers' Algebraic Misconceptions by Using Computer-Assisted Instruction

    Science.gov (United States)

    Lin, ByCheng-Yao; Ko, Yi-Yin; Kuo, Yu-Chun

    2014-01-01

    In order to carry out current reforms regarding algebra and technology in elementary school mathematics successfully, pre-service elementary mathematics teachers must be equipped with adequate understandings of algebraic concepts and self-confidence in using computers for their future teaching. This paper examines the differences in preservice…

  13. Image reconstruction of computed tomograms using functional algebra

    International Nuclear Information System (INIS)

    Bradaczek, M.; Bradaczek, H.

    1997-01-01

    A detailed presentation of the process for calculating computed tomograms from the measured data by means of functional algebra is given and an attempt is made to demonstrate the relationships to those inexperienced in mathematics. Suggestions are also made to the manufacturers for improving tomography software although the authors cannot exclude the possibility that some of the recommendations may have already been realized. An interpolation in Fourier space to right-angled coordinates was not employed so that additional computer time and errors resulting from the interpolation are avoided. The savings in calculation time can only be estimated but should amount to about 25%. The error-correction calculation is merely a suggestion since it depends considerably on the apparatus used. Functional algebra is introduced here because it is not so well known but does provide appreciable simplifications in comparison to an explicit presentation. Didactic reasons as well as the possibility for reducing calculation time provided the foundation for this work. (orig.) [de

  14. Kronecker Algebra-based Deadlock Analysis for Railway Systems

    Directory of Open Access Journals (Sweden)

    Robert Mittermayr

    2012-09-01

    Full Text Available Deadlock analysis for railway systems differs in several aspects from deadlock analysis in computer science. While the problem of deadlock analysis for standard computer systems is well-understood, multi-threaded embedded computer systems pose new challenges. A novel approach in this area can easily be applied to deadlock analysis in the domain of railway systems. The approach is based on Kronecker algebra. A lazy implementation of the matrix operations even allows analysing exponentially sized systems in a very efficient manner. The running time of the algorithm does not depend on the problem size but on the size of the solution. While other approaches suffer from the fact that additional constraints make the problem and its solution harder, our approach delivers its results faster if constraints are added. In addition, our approach is complete and sound for railway systems, i.e., it generates neither false positives nor false negatives.

  15. Study on Differential Algebraic Method of Aberrations up to Arbitrary Order for Combined Electromagnetic Focusing Systems

    Institute of Scientific and Technical Information of China (English)

    CHENG Min; TANG Tiantong; YAO Zhenhua; ZHU Jingping

    2001-01-01

    Differential algebraic method is apowerful technique in computer numerical analysisbased on nonstandard analysis and formal series the-ory. It can compute arbitrary high order derivativeswith excellent accuracy. The principle of differentialalgebraic method is applied to calculate high orderaberrations of combined electromagnetic focusing sys-tems. As an example, third-order geometric aberra-tion coefficients of an actual combined electromagneticfocusing system were calculated. The arbitrary highorder aberrations are conveniently calculated by dif-ferential algebraic method and the fifth-order aberra-tion diagrams are given.

  16. Matrix algebra theory, computations and applications in statistics

    CERN Document Server

    Gentle, James E

    2017-01-01

    This textbook for graduate and advanced undergraduate students presents the theory of matrix algebra for statistical applications, explores various types of matrices encountered in statistics, and covers numerical linear algebra. Matrix algebra is one of the most important areas of mathematics in data science and in statistical theory, and the second edition of this very popular textbook provides essential updates and comprehensive coverage on critical topics in mathematics in data science and in statistical theory. Part I offers a self-contained description of relevant aspects of the theory of matrix algebra for applications in statistics. It begins with fundamental concepts of vectors and vector spaces; covers basic algebraic properties of matrices and analytic properties of vectors and matrices in multivariate calculus; and concludes with a discussion on operations on matrices in solutions of linear systems and in eigenanalysis. Part II considers various types of matrices encountered in statistics, such as...

  17. Donaldson invariants in algebraic geometry

    International Nuclear Information System (INIS)

    Goettsche, L.

    2000-01-01

    In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)

  18. An algorithm to construct the basic algebra of a skew group algebra

    NARCIS (Netherlands)

    Horobeţ, E.

    2016-01-01

    We give an algorithm for the computation of the basic algebra Morita equivalent to a skew group algebra of a path algebra by obtaining formulas for the number of vertices and arrows of the new quiver Qb. We apply this algorithm to compute the basic algebra corresponding to all simple quaternion

  19. Symmetric linear systems - An application of algebraic systems theory

    Science.gov (United States)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  20. High-Speed Computation of the Kleene Star in Max-Plus Algebraic System Using a Cell Broadband Engine

    Science.gov (United States)

    Goto, Hiroyuki

    This research addresses a high-speed computation method for the Kleene star of the weighted adjacency matrix in a max-plus algebraic system. We focus on systems whose precedence constraints are represented by a directed acyclic graph and implement it on a Cell Broadband Engine™ (CBE) processor. Since the resulting matrix gives the longest travel times between two adjacent nodes, it is often utilized in scheduling problem solvers for a class of discrete event systems. This research, in particular, attempts to achieve a speedup by using two approaches: parallelization and SIMDization (Single Instruction, Multiple Data), both of which can be accomplished by a CBE processor. The former refers to a parallel computation using multiple cores, while the latter is a method whereby multiple elements are computed by a single instruction. Using the implementation on a Sony PlayStation 3™ equipped with a CBE processor, we found that the SIMDization is effective regardless of the system's size and the number of processor cores used. We also found that the scalability of using multiple cores is remarkable especially for systems with a large number of nodes. In a numerical experiment where the number of nodes is 2000, we achieved a speedup of 20 times compared with the method without the above techniques.

  1. The Automation of Stochastization Algorithm with Use of SymPy Computer Algebra Library

    Science.gov (United States)

    Demidova, Anastasya; Gevorkyan, Migran; Kulyabov, Dmitry; Korolkova, Anna; Sevastianov, Leonid

    2018-02-01

    SymPy computer algebra library is used for automatic generation of ordinary and stochastic systems of differential equations from the schemes of kinetic interaction. Schemes of this type are used not only in chemical kinetics but also in biological, ecological and technical models. This paper describes the automatic generation algorithm with an emphasis on application details.

  2. Computer programs for the solution of systems of linear algebraic equations

    Science.gov (United States)

    Sequi, W. T.

    1973-01-01

    FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.

  3. Resolution of First- and Second-Order Linear Differential Equations with Periodic Inputs by a Computer Algebra System

    Directory of Open Access Journals (Sweden)

    M. Legua

    2008-01-01

    Full Text Available In signal processing, a pulse means a rapid change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value. A square wave function may be viewed as a pulse that repeats its occurrence periodically but the return to the baseline value takes some time to happen. When these periodic functions act as inputs in dynamic systems, the standard tool commonly used to solve the associated initial value problem (IVP is Laplace transform and its inverse. We show how a computer algebra system may also provide the solution of these IVP straight forwardly by adequately introducing the periodic input.

  4. Discrete event systems in dioid algebra and conventional algebra

    CERN Document Server

    Declerck, Philippe

    2013-01-01

    This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which i

  5. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  6. Gauss Elimination: Workhorse of Linear Algebra.

    Science.gov (United States)

    1995-08-05

    linear algebra computation for solving systems, computing determinants and determining the rank of matrix. All of these are discussed in varying contexts. These include different arithmetic or algebraic setting such as integer arithmetic or polynomial rings as well as conventional real (floating-point) arithmetic. These have effects on both accuracy and complexity analyses of the algorithm. These, too, are covered here. The impact of modern parallel computer architecture on GE is also

  7. The Cuntz algebra Q_N and C*-algebras of product systems

    DEFF Research Database (Denmark)

    Hong, Jeong Hee; Larsen, Nadia S.; Szymanski, Wojciech

    2011-01-01

    We consider a product system over the multiplicative group semigroup N^x of Hilbert bimodules which is implicit in work of S. Yamashita and of the second named author. We prove directly, using universal properties, that the associated Nica-Toeplitz algebra is an extension of the C*-algebra Q...

  8. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear partial differential evolution equations of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.

  9. INPUT-OUTPUT STRUCTURE OF LINEAR-DIFFERENTIAL ALGEBRAIC SYSTEMS

    NARCIS (Netherlands)

    KUIJPER, M; SCHUMACHER, JM

    Systems of linear differential and algebraic equations occur in various ways, for instance, as a result of automated modeling procedures and in problems involving algebraic constraints, such as zero dynamics and exact model matching. Differential/algebraic systems may represent an input-output

  10. Computer-aided tool for the teaching of relational algebra in data base courses

    Directory of Open Access Journals (Sweden)

    Johnny Villalobos Murillo

    2016-03-01

    Full Text Available This article describes the design and implementation of computer-aided tool called Relational Algebra Translator (RAT in data base courses, for the teaching of relational algebra. There was a problem when introducing the relational algebra topic in the course EIF 211 Design and Implementation of Databases, which belongs to the career of Engineering in Information Systems of the National University of Costa Rica, because students attending this course were lacking profound mathematical knowledge, which led to a learning problem, being this an important subject to understand what the data bases search and request do RAT comes along to enhance the teaching-learning process. It introduces the architectural and design principles required for its implementation, such as: the language symbol table, the gramatical rules and the basic algorithms that RAT uses to translate from relational algebra to SQL language. This tool has been used for one periods and has demonstrated to be effective in the learning-teaching process.  This urged investigators to publish it in the web site: www.slinfo.una.ac.cr in order for this tool to be used in other university courses.

  11. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  12. Monomial algebras

    CERN Document Server

    Villarreal, Rafael

    2015-01-01

    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  13. Rosen's (M,R) system in process algebra.

    Science.gov (United States)

    Gatherer, Derek; Galpin, Vashti

    2013-11-17

    Robert Rosen's Metabolism-Replacement, or (M,R), system can be represented as a compact network structure with a single source and three products derived from that source in three consecutive reactions. (M,R) has been claimed to be non-reducible to its components and algorithmically non-computable, in the sense of not being evaluable as a function by a Turing machine. If (M,R)-like structures are present in real biological networks, this suggests that many biological networks will be non-computable, with implications for those branches of systems biology that rely on in silico modelling for predictive purposes. We instantiate (M,R) using the process algebra Bio-PEPA, and discuss the extent to which our model represents a true realization of (M,R). We observe that under some starting conditions and parameter values, stable states can be achieved. Although formal demonstration of algorithmic computability remains elusive for (M,R), we discuss the extent to which our Bio-PEPA representation of (M,R) allows us to sidestep Rosen's fundamental objections to computational systems biology. We argue that the behaviour of (M,R) in Bio-PEPA shows life-like properties.

  14. Algebraic limit cycles in polynomial systems of differential equations

    International Nuclear Information System (INIS)

    Llibre, Jaume; Zhao Yulin

    2007-01-01

    Using elementary tools we construct cubic polynomial systems of differential equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct a cubic polynomial system of differential equations having an algebraic homoclinic loop of degree 3. Moreover, we show that there are polynomial systems of differential equations of arbitrary degree that have algebraic limit cycles of degree 3, as well as give an example of a cubic polynomial system of differential equations with two algebraic limit cycles of degree 4

  15. Coexistence of algebraic and non-algebraic limit cycles for quintic polynomial differential systems

    Directory of Open Access Journals (Sweden)

    Ahmed Bendjeddou

    2017-03-01

    Full Text Available In the work by Gine and Grau [11], a planar differential system of degree nine admitting a nested configuration formed by an algebraic and a non-algebraic limit cycles explicitly given was presented. As an improvement, we obtain by a new method a similar result for a family of quintic polynomial differential systems.

  16. Introduction to relation algebras relation algebras

    CERN Document Server

    Givant, Steven

    2017-01-01

    The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...

  17. Generalized Heisenberg algebra and algebraic method: The example of an infinite square-well potential

    International Nuclear Information System (INIS)

    Curado, E.M.F.; Hassouni, Y.; Rego-Monteiro, M.A.; Rodrigues, Ligia M.C.S.

    2008-01-01

    We discuss the role of generalized Heisenberg algebras (GHA) in obtaining an algebraic method to describe physical systems. The method consists in finding the GHA associated to a physical system and the relations between its generators and the physical observables. We choose as an example the infinite square-well potential for which we discuss the representations of the corresponding GHA. We suggest a way of constructing a physical realization of the generators of some GHA and apply it to the square-well potential. An expression for the position operator x in terms of the generators of the algebra is given and we compute its matrix elements

  18. Numerical linear algebra theory and applications

    CERN Document Server

    Beilina, Larisa; Karchevskii, Mikhail

    2017-01-01

    This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigen problems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.

  19. Hom-Novikov algebras

    International Nuclear Information System (INIS)

    Yau, Donald

    2011-01-01

    We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.

  20. Algebraic Functions, Computer Programming, and the Challenge of Transfer

    Science.gov (United States)

    Schanzer, Emmanuel Tanenbaum

    2015-01-01

    Students' struggles with algebra are well documented. Prior to the introduction of functions, mathematics is typically focused on applying a set of arithmetic operations to compute an answer. The introduction of functions, however, marks the point at which mathematics begins to focus on building up abstractions as a way to solve complex problems.…

  1. Construction Example for Algebra System Using Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    FangAn Deng

    2015-01-01

    Full Text Available The construction example of algebra system is to verify the existence of a complex algebra system, and it is a NP-hard problem. In this paper, to solve this kind of problems, firstly, a mathematical optimization model for construction example of algebra system is established. Secondly, an improved harmony search algorithm based on NGHS algorithm (INGHS is proposed to find as more solutions as possible for the optimization model; in the proposed INGHS algorithm, to achieve the balance between exploration power and exploitation power in the search process, a global best strategy and parameters dynamic adjustment method are present. Finally, nine construction examples of algebra system are used to evaluate the optimization model and performance of INGHS. The experimental results show that the proposed algorithm has strong performance for solving complex construction example problems of algebra system.

  2. Remarks on second-order quadratic systems in algebras

    Directory of Open Access Journals (Sweden)

    Art Sagle

    2017-10-01

    Full Text Available This paper is an addendum to our earlier paper [8], where a systematic study of quadratic systems of second order ordinary differential equations defined in commutative algebras was presented. Here we concentrate on special solutions and energy considerations of some quadratic systems defined in algebras which need not be commutative, however, we shall throughout assume the algebra to be associative. We here also give a positive answer to an open question, concerning periodic motions of such systems, posed in our earlier paper.

  3. Algebraic quantization of systems with a gauge degeneracy

    International Nuclear Information System (INIS)

    Grundling, H.B.G.S.; Hurst, C.A.

    1985-01-01

    Systems with a gauge degeneracy are characterized either by supplementary conditions, or by a set of generators of gauge transformations, or by a set of constraints deriving from Dirac's canonical constraint method. These constraints can be expressed either as conditions on the field algebra F, or on the states on F. In a Csup(*)-algebra framework, we show that the state conditions give rise to a factor algebra of a subalgebra of the field algebra F. This factor algebra R, is free of state conditions. In this formulation we show also that the algebraic conditions can be treated in the same way as the state conditions. The connection between states on F and states on R is investigated further within this framework, as is also the set of transformations which are compatible with the set of constraints. It is also shown that not every set of constraints can give rise to a nontrivial system. Finally as an example, the abstract theory is applied to the electromagnetic field, and this treatment can be generalized to all systems of bosons with linear constraints. The question of dynamics is not discussed. (orig.)

  4. Quartic Poisson algebras and quartic associative algebras and realizations as deformed oscillator algebras

    International Nuclear Information System (INIS)

    Marquette, Ian

    2013-01-01

    We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently

  5. Multicore Performance of Block Algebraic Iterative Reconstruction Methods

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik B.; Hansen, Per Christian

    2014-01-01

    Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely on semiconv......Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely...... on semiconvergence. Block versions of these methods, based on a partitioning of the linear system, are able to combine the fast semiconvergence of ART with the better multicore properties of SIRT. These block methods separate into two classes: those that, in each iteration, access the blocks in a sequential manner...... a fixed relaxation parameter in each method, namely, the one that leads to the fastest semiconvergence. Computational results show that for multicore computers, the sequential approach is preferable....

  6. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  7. Quadratic algebra approach to relativistic quantum Smorodinsky-Winternitz systems

    International Nuclear Information System (INIS)

    Marquette, Ian

    2011-01-01

    There exists a relation between the Klein-Gordon and the Dirac equations with scalar and vector potentials of equal magnitude and the Schroedinger equation. We obtain the relativistic energy spectrum for the four relativistic quantum Smorodinsky-Winternitz systems from their quasi-Hamiltonian and the quadratic algebras studied by Daskaloyannis in the nonrelativistic context. We also apply the quadratic algebra approach directly to the initial Dirac equation for these four systems and show that the quadratic algebras obtained are the same than those obtained from the quasi-Hamiltonians. We point out how results obtained in context of quantum superintegrable systems and their polynomial algebras can be applied to the quantum relativistic case.

  8. Vertex algebras and algebraic curves

    CERN Document Server

    Frenkel, Edward

    2004-01-01

    Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...

  9. Exact distributions of two-sample rank statistics and block rank statistics using computer algebra

    NARCIS (Netherlands)

    Wiel, van de M.A.

    1998-01-01

    We derive generating functions for various rank statistics and we use computer algebra to compute the exact null distribution of these statistics. We present various techniques for reducing time and memory space used by the computations. We use the results to write Mathematica notebooks for

  10. Algebra

    CERN Document Server

    Flanders, Harley

    1975-01-01

    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  11. KMS states on Nica-Toeplitz algebras of product systems

    DEFF Research Database (Denmark)

    Hong, Jeong Hee; Larsen, Nadia S.; Szymanski, Wojciech

    2012-01-01

    We investigate KMS states of Fowler's Nica-Toeplitz algebra NT(X) associated to a compactly aligned product system X over a semigroup P of Hilbert bimodules. This analysis relies on restrictions of these states to the core algebra which satisfy appropriate scaling conditions. The concept of product...... system of finite type is introduced. If (G, P) is a lattice ordered group and X is a product system of finite type over P satisfying certain coherence properties, we construct KMS_beta states of NT(X) associated to a scalar dynamics from traces on the coefficient algebra of the product system. Our...... results were motivated by, and generalize some of the results of Laca and Raeburn obtained for the Toeplitz algebra of the affine semigroup over the natural numbers....

  12. Discrete integrable systems and deformations of associative algebras

    International Nuclear Information System (INIS)

    Konopelchenko, B G

    2009-01-01

    Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. Theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the deformation driving algebra and governed by the central system of equations. It is demonstrated that many discrete equations such as discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful. An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.

  13. Analytical solution using computer algebra of a biosensor for detecting toxic substances in water

    Science.gov (United States)

    Rúa Taborda, María. Isabel

    2014-05-01

    In a relatively recent paper an electrochemical biosensor for water toxicity detection based on a bio-chip as a whole cell was proposed and numerically solved and analyzed. In such paper the kinetic processes in a miniaturized electrochemical biosensor system was described using the equations for specific enzymatic reaction and the diffusion equation. The numerical solution shown excellent agreement with the measured data but such numerical solution is not enough to design efficiently the corresponding bio-chip. For this reason an analytical solution is demanded. The object of the present work is to provide such analytical solution and then to give algebraic guides to design the bio-sensor. The analytical solution is obtained using computer algebra software, specifically Maple. The method of solution is the Laplace transform, with Bromwich integral and residue theorem. The final solution is given as a series of Bessel functions and the effective time for the bio-sensor is computed. It is claimed that the analytical solutions that were obtained will be very useful to predict further current variations in similar systems with different geometries, materials and biological components. Beside of this the analytical solution that we provide is very useful to investigate the relationship between different chamber parameters such as cell radius and height; and electrode radius.

  14. Algebraic Verification Method for SEREs Properties via Groebner Bases Approaches

    Directory of Open Access Journals (Sweden)

    Ning Zhou

    2013-01-01

    Full Text Available This work presents an efficient solution using computer algebra system to perform linear temporal properties verification for synchronous digital systems. The method is essentially based on both Groebner bases approaches and symbolic simulation. A mechanism for constructing canonical polynomial set based symbolic representations for both circuit descriptions and assertions is studied. We then present a complete checking algorithm framework based on these algebraic representations by using Groebner bases. The computational experience result in this work shows that the algebraic approach is a quite competitive checking method and will be a useful supplement to the existent verification methods based on simulation.

  15. Identification of control targets in Boolean molecular network models via computational algebra.

    Science.gov (United States)

    Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Laubenbacher, Reinhard

    2016-09-23

    Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg . This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.

  16. Asymptotic identity in min-plus algebra: a report on CPNS.

    Science.gov (United States)

    Li, Ming; Zhao, Wei

    2012-01-01

    Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions.

  17. Semi-infinite Weil complex and the Virasoro algebra

    International Nuclear Information System (INIS)

    Feigin, B.; Frenkel, E.

    1991-01-01

    We define a semi-infinite analogue of the Weil algebra associated with an infinite-dimensional Lie algebra. It can be used for the definition of semi-infinite characteristic classes by analogy with the Chern-Weil construction. The second term of a spectral sequence of this Weil complex consists of the semi-infinite cohomology of the Lie algebra with coefficients in its 'adjoint semi-infinite symmetric powers'. We compute this cohomology for the Virasoro algebra. This is just the BRST cohomology of the bosonic βγ-system with the central charge 26. We give a complete description of the Fock representations of this bosonic system as modules over the Virasoro algebra, using Friedan-Martinec-Shenker bosonization. We derive a combinatorial identity from this result. (orig.)

  18. Rationality problem for algebraic tori

    CERN Document Server

    Hoshi, Akinari

    2017-01-01

    The authors give the complete stably rational classification of algebraic tori of dimensions 4 and 5 over a field k. In particular, the stably rational classification of norm one tori whose Chevalley modules are of rank 4 and 5 is given. The authors show that there exist exactly 487 (resp. 7, resp. 216) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 4, and there exist exactly 3051 (resp. 25, resp. 3003) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 5. The authors make a procedure to compute a flabby resolution of a G-lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a G-lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby G-lattices of rank up to 6 and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for G-...

  19. Robust algebraic image enhancement for intelligent control systems

    Science.gov (United States)

    Lerner, Bao-Ting; Morrelli, Michael

    1993-01-01

    Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.

  20. Commutative algebra with a view toward algebraic geometry

    CERN Document Server

    Eisenbud, David

    1995-01-01

    Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

  1. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear ordinary differential equations

    Institute of Scientific and Technical Information of China (English)

    WANG; Shunjin; ZHANG; Hua

    2006-01-01

    The problem of preserving fidelity in numerical computation of nonlinear ordinary differential equations is studied in terms of preserving local differential structure and approximating global integration structure of the dynamical system.The ordinary differential equations are lifted to the corresponding partial differential equations in the framework of algebraic dynamics,and a new algorithm-algebraic dynamics algorithm is proposed based on the exact analytical solutions of the ordinary differential equations by the algebraic dynamics method.In the new algorithm,the time evolution of the ordinary differential system is described locally by the time translation operator and globally by the time evolution operator.The exact analytical piece-like solution of the ordinary differential equations is expressd in terms of Taylor series with a local convergent radius,and its finite order truncation leads to the new numerical algorithm with a controllable precision better than Runge Kutta Algorithm and Symplectic Geometric Algorithm.

  2. Prime factorization using quantum annealing and computational algebraic geometry

    Science.gov (United States)

    Dridi, Raouf; Alghassi, Hedayat

    2017-02-01

    We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians.

  3. Prime factorization using quantum annealing and computational algebraic geometry

    OpenAIRE

    Dridi, Raouf; Alghassi, Hedayat

    2017-01-01

    We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gr?bner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gr?bner bases can be used to reduce the degree of Hamiltonians.

  4. Asymptotic Identity in Min-Plus Algebra: A Report on CPNS

    Science.gov (United States)

    Li, Ming; Zhao, Wei

    2012-01-01

    Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions. PMID:21822446

  5. Lukasiewicz-Moisil algebras

    CERN Document Server

    Boicescu, V; Georgescu, G; Rudeanu, S

    1991-01-01

    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  6. How to Produce S-Tense Operators on Lattice Effect Algebras

    Science.gov (United States)

    Chajda, Ivan; Janda, Jiří; Paseka, Jan

    2014-07-01

    Tense operators in effect algebras play a key role for the representation of the dynamics of formally described physical systems. For this, it is important to know how to construct them on a given effect algebra and how to compute all possible pairs of tense operators on . However, we firstly need to derive a time frame which enables these constructions and computations. Hence, we usually apply a suitable set of states of the effect algebra in question. To approximate physical reality in quantum mechanics, we use only the so-called Jauch-Piron states on in our paper. To realize our constructions, we are restricted on lattice effect algebras only.

  7. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  8. Algebras of Random Operators Associated to Delone Dynamical Systems

    International Nuclear Information System (INIS)

    Lenz, Daniel; Stollmann, Peter

    2003-01-01

    We carry out a careful study of operator algebras associated with Delone dynamical systems. A von Neumann algebra is defined using noncommutative integration theory. Features of these algebras and the operators they contain are discussed. We restrict our attention to a certain C*-subalgebra to discuss a Shubin trace formula

  9. The C*-algebra of a vector bundle and fields of Cuntz algebras

    OpenAIRE

    Vasselli, Ezio

    2004-01-01

    We study the Pimsner algebra associated with the module of continuous sections of a Hilbert bundle, and prove that it is a continuous bundle of Cuntz algebras. We discuss the role of such Pimsner algebras w.r.t. the notion of inner endomorphism. Furthermore, we study bundles of Cuntz algebras carrying a global circle action, and assign to them a class in the representable KK-group of the zero-grade bundle. We compute such class for the Pimsner algebra of a vector bundle.

  10. Computer programs for nonlinear algebraic equations

    International Nuclear Information System (INIS)

    Asaoka, Takumi

    1977-10-01

    We have provided principal computer subroutines for obtaining numerical solutions of nonlinear algebraic equations through a review of the various methods. Benchmark tests were performed on these subroutines to grasp the characteristics of them compared to the existing subroutines. As computer programs based on the secant method, subroutines of the Muller's method using the Chambers' algorithm were newly developed, in addition to the equipment of subroutines of the Muller's method itself. The programs based on the Muller-Chambers' method are useful especially for low-order polynomials with complex coefficients except for the case of finding the triple roots, three close roots etc. In addition, we have equipped subroutines based on the Madsen's algorithm, a variant of the Newton's method. The subroutines have revealed themselves very useful as standard programs because all the roots are found accurately for every case though they take longer computing time than other subroutines for low-order polynomials. It is shown also that an existing subroutine of the Bairstow's method gives the fastest algorithm for polynomials with complex coefficients, except for the case of finding the triple roots etc. We have provided also subroutines to estimate error bounds for all the roots produced with the various algorithms. (auth.)

  11. Dynamical systems of algebraic origin

    CERN Document Server

    Schmidt, Klaus

    1995-01-01

    Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting...

  12. Integrable N dimensional systems on the Hopf algebra and q deformations

    International Nuclear Information System (INIS)

    Lisitsyn, Ya.V.; Shapovalov, A.V.

    2000-01-01

    The class of integrable classic and quantum systems on the Hopf algebra, describing the n of interacting particles, is plotted. The general structure of the integrable Hamiltonian system for the Hopf algebra A(g) of the Lee simple algebra g is obtained, wherefrom it follows, that motion integrals depend on the linear combinations k of the phase space coordinates. The q-deformation standard procedure is carried out and the corresponding integrable system is obtained. The general scheme is illustrated by the examples of the sl(2), sl(3) and o(3, 1) algebras. The exact solution is achieved for the N-dimensional Hamiltonian system quantum analog on the Hopf algebra A (sl(2)) through the method of noncommutative integration of linear differential equations [ru

  13. Algorithmic algebraic geometry and flux vacua

    International Nuclear Information System (INIS)

    Gray, James; He Yanghui; Lukas, Andre

    2006-01-01

    We develop a new and efficient method to systematically analyse four dimensional effective supergravities which descend from flux compactifications. The issue of finding vacua of such systems, both supersymmetric and non-supersymmetric, is mapped into a problem in computational algebraic geometry. Using recent developments in computer algebra, the problem can then be rapidly dealt with in a completely algorithmic fashion. Two main results are (1) a procedure for calculating constraints which the flux parameters must satisfy in these models if any given type of vacuum is to exist; (2) a stepwise process for finding all of the isolated vacua of such systems and their physical properties. We illustrate our discussion with several concrete examples, some of which have eluded conventional methods so far

  14. Non-commutative multiple-valued logic algebras

    CERN Document Server

    Ciungu, Lavinia Corina

    2014-01-01

    This monograph provides a self-contained and easy-to-read introduction to non-commutative multiple-valued logic algebras; a subject which has attracted much interest in the past few years because of its impact on information science, artificial intelligence and other subjects.   A study of the newest results in the field, the monograph includes treatment of pseudo-BCK algebras, pseudo-hoops, residuated lattices, bounded divisible residuated lattices, pseudo-MTL algebras, pseudo-BL algebras and pseudo-MV algebras. It provides a fresh perspective on new trends in logic and algebras in that algebraic structures can be developed into fuzzy logics which connect quantum mechanics, mathematical logic, probability theory, algebra and soft computing.   Written in a clear, concise and direct manner, Non-Commutative Multiple-Valued Logic Algebras will be of interest to masters and PhD students, as well as researchers in mathematical logic and theoretical computer science.

  15. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    Science.gov (United States)

    Downie, John D.; Goodman, Joseph W.

    1989-10-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  16. Computation of focal values and stability analysis of 4-dimensional systems

    Directory of Open Access Journals (Sweden)

    Bo Sang

    2015-08-01

    Full Text Available This article presents a recursive formula for computing the n-th singular point values of a class of 4-dimensional autonomous systems, and establishes the algebraic equivalence between focal values and singular point values. The formula is linear and then avoids complicated integrating operations, therefore the calculation can be carried out by computer algebra system such as Maple. As an application of the formula, bifurcation analysis is made for a quadratic system with a Hopf equilibrium, which can have three small limit cycles around an equilibrium point. The theory and methodology developed in this paper can be used for higher-dimensional systems.

  17. Bicovariant quantum algebras and quantum Lie algebras

    International Nuclear Information System (INIS)

    Schupp, P.; Watts, P.; Zumino, B.

    1993-01-01

    A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)

  18. ACE - an algebraic compiler and encoder for the Chalk River datatron computer

    International Nuclear Information System (INIS)

    Kennedy, J.M.; Okazaki, E.A.; Millican, M.

    1960-03-01

    ACE is a program written for the Chalk River Datatron (Burroughs 205) Computer to enable the machine to compile a program for solving a problem from instructions supplied by the user in a notation related much more closely to algebra than to the machine's own code. (author)

  19. Algorithms in Algebraic Geometry

    CERN Document Server

    Dickenstein, Alicia; Sommese, Andrew J

    2008-01-01

    In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

  20. Numerical algebra, matrix theory, differential-algebraic equations and control theory festschrift in honor of Volker Mehrmann

    CERN Document Server

    Bollhöfer, Matthias; Kressner, Daniel; Mehl, Christian; Stykel, Tatjana

    2015-01-01

    This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on ...

  1. Computer algebra in quantum field theory integration, summation and special functions

    CERN Document Server

    Schneider, Carsten

    2013-01-01

    The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including

  2. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    OpenAIRE

    Shomron, Noam; Parlett, Beresford N.

    2008-01-01

    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  3. Algebraic methods in system theory

    Science.gov (United States)

    Brockett, R. W.; Willems, J. C.; Willsky, A. S.

    1975-01-01

    Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.

  4. Basic linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  5. Algebraic mesh generation for large scale viscous-compressible aerodynamic simulation

    International Nuclear Information System (INIS)

    Smith, R.E.

    1984-01-01

    Viscous-compressible aerodynamic simulation is the numerical solution of the compressible Navier-Stokes equations and associated boundary conditions. Boundary-fitted coordinate systems are well suited for the application of finite difference techniques to the Navier-Stokes equations. An algebraic approach to boundary-fitted coordinate systems is one where an explicit functional relation describes a mesh on which a solution is obtained. This approach has the advantage of rapid-precise mesh control. The basic mathematical structure of three algebraic mesh generation techniques is described. They are transfinite interpolation, the multi-surface method, and the two-boundary technique. The Navier-Stokes equations are transformed to a computational coordinate system where boundary-fitted coordinates can be applied. Large-scale computation implies that there is a large number of mesh points in the coordinate system. Computation of viscous compressible flow using boundary-fitted coordinate systems and the application of this computational philosophy on a vector computer are presented

  6. The classical limit of W-algebras

    International Nuclear Information System (INIS)

    Figueroa-O'Farrill, J.M.; Ramos, E.

    1992-01-01

    We define and compute explicitly the classical limit of the realizations of W n appearing as hamiltonian structures of generalized KdV hierarchies. The classical limit is obtained by taking the commutative limit of the ring of pseudodifferential operators. These algebras - denoted w n - have free field realizations in which the generators are given by the elementary symmetric polynomials in the free fields. We compute the algebras explicitly and we show that they are all reductions of a new algebra w KP , which is proposed as the universal classical W-algebra for the w n series. As a deformation of this algebra we also obtain w 1+∞ , the classical limit of W 1+∞ . (orig.)

  7. Software Applications on the Peregrine System | High-Performance Computing

    Science.gov (United States)

    Algebraic Modeling System (GAMS) Statistics and analysis High-level modeling system for mathematical reactivity. Gurobi Optimizer Statistics and analysis Solver for mathematical programming LAMMPS Chemistry and , reactivities, and vibrational, electronic and NMR spectra. R Statistical Computing Environment Statistics and

  8. The algebraic collective model

    International Nuclear Information System (INIS)

    Rowe, D.J.; Turner, P.S.

    2005-01-01

    A recently proposed computationally tractable version of the Bohr collective model is developed to the extent that we are now justified in describing it as an algebraic collective model. The model has an SU(1,1)xSO(5) algebraic structure and a continuous set of exactly solvable limits. Moreover, it provides bases for mixed symmetry collective model calculations. However, unlike the standard realization of SU(1,1), used for computing beta wave functions and their matrix elements in a spherical basis, the algebraic collective model makes use of an SU(1,1) algebra that generates wave functions appropriate for deformed nuclei with intrinsic quadrupole moments ranging from zero to any large value. A previous paper focused on the SO(5) wave functions, as SO(5) (hyper-)spherical harmonics, and computation of their matrix elements. This paper gives analytical expressions for the beta matrix elements needed in applications of the model and illustrative results to show the remarkable gain in efficiency that is achieved by using such a basis in collective model calculations for deformed nuclei

  9. Adaptive algebraic reconstruction technique

    International Nuclear Information System (INIS)

    Lu Wenkai; Yin Fangfang

    2004-01-01

    Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency

  10. Model Checking Process Algebra of Communicating Resources for Real-time Systems

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand

    2014-01-01

    This paper presents a new process algebra, called PACOR, for real-time systems which deals with resource constrained timed behavior as an improved version of the ACSR algebra. We define PACOR as a Process Algebra of Communicating Resources which allows to express preemptiveness, urgent ness...

  11. Mastering algebra retrains the visual system to perceive hierarchical structure in equations.

    Science.gov (United States)

    Marghetis, Tyler; Landy, David; Goldstone, Robert L

    2016-01-01

    Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.

  12. Simple relation algebras

    CERN Document Server

    Givant, Steven

    2017-01-01

    This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...

  13. Deformations of classical Lie algebras with homogeneous root system in characteristic two. I

    International Nuclear Information System (INIS)

    Chebochko, N G

    2005-01-01

    Spaces of local deformations of classical Lie algebras with a homogeneous root system over a field K of characteristic 2 are studied. By a classical Lie algebra over a field K we mean the Lie algebra of a simple algebraic Lie group or its quotient algebra by the centre. The description of deformations of Lie algebras is interesting in connection with the classification of the simple Lie algebras.

  14. Algebraic and structural automata theory

    CERN Document Server

    Mikolajczak, B

    1991-01-01

    Automata Theory is part of computability theory which covers problems in computer systems, software, activity of nervous systems (neural networks), and processes of live organisms development.The result of over ten years of research, this book presents work in the following areas of Automata Theory: automata morphisms, time-varying automata, automata realizations and relationships between automata and semigroups.Aimed at those working in discrete mathematics and computer science, parts of the book are suitable for use in graduate courses in computer science, electronics, telecommunications, and control engineering. It is assumed that the reader is familiar with the basic concepts of algebra and graph theory.

  15. Model checking process algebra of communicating resources for real-time systems

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand

    2014-01-01

    This paper presents a new process algebra, called PACoR, for real-time systems which deals with resource- constrained timed behavior as an improved version of the ACSR algebra. We define PACoR as a Process Algebra of Communicating Resources which allows to explicitly express preemptiveness...

  16. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  17. Entropic and algebraic K-systems: A comparison

    International Nuclear Information System (INIS)

    Benatti, F.

    1990-01-01

    In the quantum, i.e. non-commutative case, algebraic K-systems and entropic K-systems must be distinguished. The similarities and differences between them are considered, especially with regard to clustering- and mixing properties. 14 refs

  18. Continuous analog of multiplicative algebraic reconstruction technique for computed tomography

    Science.gov (United States)

    Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya

    2016-03-01

    We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.

  19. The algebraic criteria for the stability of control systems

    Science.gov (United States)

    Cremer, H.; Effertz, F. H.

    1986-01-01

    This paper critically examines the standard algebraic criteria for the stability of linear control systems and their proofs, reveals important previously unnoticed connections, and presents new representations. Algebraic stability criteria have also acquired significance for stability studies of non-linear differential equation systems by the Krylov-Bogoljubov-Magnus Method, and allow realization conditions to be determined for classes of broken rational functions as frequency characteristics of electrical network.

  20. Numerical linear algebra with applications using Matlab

    CERN Document Server

    Ford, William

    2014-01-01

    Designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, Numerical Linear Algebra with Applications contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. It provides necessary mathematical background information for

  1. Applied linear algebra and matrix analysis

    CERN Document Server

    Shores, Thomas S

    2018-01-01

    In its second edition, this textbook offers a fresh approach to matrix and linear algebra. Its blend of theory, computational exercises, and analytical writing projects is designed to highlight the interplay between these aspects of an application. This approach places special emphasis on linear algebra as an experimental science that provides tools for solving concrete problems. The second edition’s revised text discusses applications of linear algebra like graph theory and network modeling methods used in Google’s PageRank algorithm. Other new materials include modeling examples of diffusive processes, linear programming, image processing, digital signal processing, and Fourier analysis. These topics are woven into the core material of Gaussian elimination and other matrix operations; eigenvalues, eigenvectors, and discrete dynamical systems; and the geometrical aspects of vector spaces. Intended for a one-semester undergraduate course without a strict calculus prerequisite, Applied Linear Algebra and M...

  2. Two Types of Expanding Lie Algebra and New Expanding Integrable Systems

    International Nuclear Information System (INIS)

    Dong Huanhe; Yang Jiming; Wang Hui

    2010-01-01

    From a new Lie algebra proposed by Zhang, two expanding Lie algebras and its corresponding loop algebras are obtained. Two expanding integrable systems are produced with the help of the generalized zero curvature equation. One of them has complex Hamiltion structure with the help of generalized Tu formula (GTM). (general)

  3. On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations

    International Nuclear Information System (INIS)

    Zhang Yu-Feng; Tam, Honwah

    2016-01-01

    In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A_1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz–Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A_1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. (paper)

  4. GPU TECHNOLOGIES EMBODIED IN PARALLEL SOLVERS OF LINEAR ALGEBRAIC EQUATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Sidorov Alexander Vladimirovich

    2012-10-01

    Full Text Available The author reviews existing shareware solvers that are operated by graphical computer devices. The purpose of this review is to explore the opportunities and limitations of the above parallel solvers applicable for resolution of linear algebraic problems that arise at Research and Educational Centre of Computer Modeling at MSUCE, and Research and Engineering Centre STADYO. The author has explored new applications of the GPU in the PETSc suite and compared them with the results generated absent of the GPU. The research is performed within the CUSP library developed to resolve the problems of linear algebra through the application of GPU. The author has also reviewed the new MAGMA project which is analogous to LAPACK for the GPU.

  5. Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates.

    Science.gov (United States)

    Dovlo, Edem; Baddour, Natalie

    2015-01-01

    The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: •The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms.•The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform.•The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time.

  6. On W1+∞ 3-algebra and integrable system

    Directory of Open Access Journals (Sweden)

    Min-Ru Chen

    2015-02-01

    Full Text Available We construct the W1+∞ 3-algebra and investigate its connection with the integrable systems. Since the W1+∞ 3-algebra with a fixed generator W00 in the operator Nambu 3-bracket recovers the W1+∞ algebra, it is intrinsically related to the KP hierarchy. For the general case of the W1+∞ 3-algebra, we directly derive the KP and KdV equations from the Nambu–Poisson evolution equation with the different Hamiltonian pairs of the KP hierarchy. Due to the Nambu–Poisson evolution equation involves two Hamiltonians, the deep relationship between the Hamiltonian pairs of KP hierarchy is revealed. Furthermore we give a realization of the W1+∞ 3-algebra in terms of a complex bosonic field. Based on the Nambu 3-brackets of the complex bosonic field, we derive the (generalized nonlinear Schrödinger equation and give an application in optical soliton.

  7. Non-freely generated W-algebras and construction of N=2 super W-algebras

    International Nuclear Information System (INIS)

    Blumenhagen, R.

    1994-07-01

    Firstly, we investigate the origin of the bosonic W-algebras W(2, 3, 4, 5), W(2, 4, 6) and W(2, 4, 6) found earlier by direct construction. We present a coset construction for all three examples leading to a new type of finitely, non-freely generated quantum W-algebras, which we call unifying W-algebras. Secondly, we develop a manifest covariant formalism to construct N = 2 super W-algebras explicitly on a computer. Applying this algorithm enables us to construct the first four examples of N = 2 super W-algebras with two generators and the N = 2 super W 4 algebra involving three generators. The representation theory of the former ones shows that all examples could be divided into four classes, the largest one containing the N = 2 special type of spectral flow algebras. Besides the W-algebra of the CP(3) Kazama-Suzuki coset model, the latter example with three generators discloses a second solution which could also be explained as a unifying W-algebra for the CP(n) models. (orig.)

  8. Cohomology of Effect Algebras

    Directory of Open Access Journals (Sweden)

    Frank Roumen

    2017-01-01

    Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.

  9. Conformal algebras of two-dimensional disordered systems

    International Nuclear Information System (INIS)

    Gurarie, Victor; Ludwig, Andreas W.W.

    2002-01-01

    We discuss the structure of two-dimensional conformal field theories at a central charge c=0 describing critical disordered systems, polymers and percolation. We construct a novel extension of the c=0 Virasoro algebra, characterized by a number b measuring the effective number of massless degrees of freedom, and by a logarithmic partner of the stress tensor. It is argued to be present at a generic random critical point, lacking super Kac-Moody, or other higher symmetries, and is a tool to describe and classify such theories. Interestingly, this algebra is not only consistent with, but indeed naturally accommodates in general an underlying global supersymmetry. Polymers and percolation realize this algebra. Unexpectedly, we find that the c=0 Kac table of the degenerate fields contains two distinct theories with b=5/6 and b=-5/8 which we conjecture to correspond to percolation and polymers, respectively. A given Kac-table field can be degenerate only in one of them. Remarkably, we also find this algebra, and thereby an ensuing hidden supersymmetry, realized at general replica-averaged critical points, for which we derive an explicit formula for b. (author). Letter-to-the-editor

  10. Some experience in applying the REDUCE algebraic system to the calculation of scattering processes in QED and QCD

    International Nuclear Information System (INIS)

    Mohring, H.J.; Schiller, A.

    1980-01-01

    The problems arising in the use of the REDUCE algebraic system for calculating traces of the Dirac matrix products describing scattering processes in quantum electrodynamics (QED) and quantum chromodynamics (QCD) are considered. Application of the REDUCE system for describing two-photon processes in e + e - reactions is discussed. An example of using the REDUCE system for calculating matrix elements of elementary processes of hard scattering is described. The calculations were performed by means of the REDUCE2 version on an EC1040 computer. The computations take almost 10 minutes of machine time and computer storage capacity of abo t 800 kiuobites

  11. Infinite dimension algebra and conformal symmetry

    International Nuclear Information System (INIS)

    Ragoucy-Aubezon, E.

    1991-04-01

    A generalisation of Kac-Moody algebras (current algebras defined on a circle) to algebras defined on a compact supermanifold of any dimension and with any number of supersymmetries is presented. For such a purpose, we compute all the central extensions of loop algebras defined on this supermanifold, i.e. all the cohomology classes of these loop algebras. Then, we try to extend the relation (i.e. semi-direct sum) that exists between the two dimensional conformal algebras (called Virasoro algebra) and the usual Kac-Moody algebras, by considering the derivation algebra of our extended Kac-Moody algebras. The case of superconformal algebras (used in superstrings theories) is treated, as well as the cases of area-preserving diffeomorphisms (used in membranes theories), and Krichever-Novikov algebras (used for interacting strings). Finally, we present some generalizations of the Sugawara construction to the cases of extended Kac-Moody algebras, and Kac-Moody of superalgebras. These constructions allow us to get new realizations of the Virasoro, and Ramond, Neveu-Schwarz algebras

  12. Extended Kac-Moody algebras and applications

    International Nuclear Information System (INIS)

    Ragoucy, E.; Sorba, P.

    1991-04-01

    The notion of a Kac-Moody algebra defined on the S 1 circle is extended to super Kac-Moody algebras defined on MxG N , M being a smooth closed compact manifold of dimension greater than one, and G N the Grassman algebra with N generators. All the central extensions of these algebras are computed. Then, for each such algebra the derivation algebra constructed from the MxG N diffeomorphism is determined. The twists of such super Kac-Moody algebras as well as the generalization to non-compact surfaces are partially studied. Finally, the general construction is applied to the study of conformal and superconformal algebras, as well as area-preserving diffeomorphisms algebra and its supersymmetric extension. (author) 65 refs

  13. Topos-Based Logic for Quantum Systems and Bi-Heyting Algebras

    OpenAIRE

    Doering, Andreas

    2012-01-01

    Comment: 22 pages, no figures; v2: improved presentation, minor correction, all main results unchanged, added example. Accepted for publication in Logic & Algebra in Quantum Computing, Lecture Notes in Logic, published by the Association for Symbolic Logic in conjunction with Cambridge University Press

  14. Stability of Linear Equations--Algebraic Approach

    Science.gov (United States)

    Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.

    2012-01-01

    This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…

  15. Parallel algorithms for numerical linear algebra

    CERN Document Server

    van der Vorst, H

    1990-01-01

    This is the first in a new series of books presenting research results and developments concerning the theory and applications of parallel computers, including vector, pipeline, array, fifth/future generation computers, and neural computers.All aspects of high-speed computing fall within the scope of the series, e.g. algorithm design, applications, software engineering, networking, taxonomy, models and architectural trends, performance, peripheral devices.Papers in Volume One cover the main streams of parallel linear algebra: systolic array algorithms, message-passing systems, algorithms for p

  16. Hopf algebras in noncommutative geometry

    International Nuclear Information System (INIS)

    Varilly, Joseph C.

    2001-10-01

    We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)

  17. Second-Order Systems of ODEs Admitting Three-Dimensional Lie Algebras and Integrability

    Directory of Open Access Journals (Sweden)

    Muhammad Ayub

    2013-01-01

    the case of k≥3. We discuss the singular invariant representations of canonical forms for systems of two second-order ODEs admitting three-dimensional Lie algebras. Furthermore, we give an integration procedure for canonical forms for systems of two second-order ODEs admitting three-dimensional Lie algebras which comprises of two approaches, namely, division into four types I, II, III, and IV and that of integrability of the invariant representations. We prove that if a system of two second-order ODEs has a three-dimensional solvable Lie algebra, then, its general solution can be obtained from a partially linear, partially coupled or reduced invariantly represented system of equations. A natural extension of this result is provided for a system of two kth-order (k≥3 ODEs. We present illustrative examples of familiar integrable physical systems which admit three-dimensional Lie algebras such as the classical Kepler problem and the generalized Ermakov systems that give rise to closed trajectories.

  18. A brief history of process algebra

    NARCIS (Netherlands)

    Baeten, J.C.M.

    2005-01-01

    This note addresses the history of process algebra as an area of research in concurrency theory, the theory of parallel and distributed systems in computer science. Origins are traced back to the early seventies of the twentieth century, and developments since that time are sketched. The author

  19. A brief history of process algebra

    NARCIS (Netherlands)

    Baeten, J.C.M.

    2004-01-01

    Abstract. This note addresses the history of process algebra as an area of research in concurrency theory, the theory of parallel and distributed systems in computer science. Origins are traced back to the early seventies of the twentieth century, and developments since that time are sketched. The

  20. Communication Avoiding and Overlapping for Numerical Linear Algebra

    Science.gov (United States)

    2012-05-08

    future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve scalability by reducing...linear algebra problems to future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve...will continue to grow relative to the cost of computation. With exascale computing as the long-term goal, the community needs to develop techniques

  1. Topics in quaternion linear algebra

    CERN Document Server

    Rodman, Leiba

    2014-01-01

    Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses...

  2. Notes on algebraic invariants for non-commutative dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Longo, R [Rome Univ. (Italy). Istituto di Matematica

    1979-11-01

    We consider an algebraic invariant for non-commutative dynamical systems naturally arising as the spectrum of the modular operator associated to an invariant state, provided certain conditions of mixing type are present. This invariant turns out to be exactly the annihilator of the invariant T of Connes. Further comments are included, in particular on the type of certain algebras of local observables

  3. Introduction to applied algebraic systems

    CERN Document Server

    Reilly, Norman R

    2009-01-01

    This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as

  4. Understanding geometric algebra Hamilton, Grassmann, and Clifford for computer vision and graphics

    CERN Document Server

    Kanatani, Kenichi

    2015-01-01

    Introduction PURPOSE OF THIS BOOK ORGANIZATION OF THIS BOOK OTHER FEATURES 3D Euclidean Geometry VECTORS BASIS AND COMPONENTS INNER PRODUCT AND NORM VECTOR PRODUCTS SCALAR TRIPLE PRODUCT PROJECTION, REJECTION, AND REFLECTION ROTATION PLANES LINES PLANES AND LINES Oblique Coordinate Systems RECIPROCAL BASIS RECIPROCAL COMPONENTS INNER, VECTOR, AND SCALAR TRIPLE PRODUCTS METRIC TENSOR RECIPROCITY OF EXPRESSIONS COORDINATE TRANSFORMATIONSHamilton's Quaternion Algebra QUATERNIONS ALGEBRA OF QUATERNIONS CONJUGATE, NORM, AND INVERSE REPRESENTATION OF ROTATION BY QUATERNION Grassmann's Outer Product

  5. An algebraic substructuring using multiple shifts for eigenvalue computations

    International Nuclear Information System (INIS)

    Ko, Jin Hwan; Jung, Sung Nam; Byun, Do Young; Bai, Zhaojun

    2008-01-01

    Algebraic substructuring (AS) is a state-of-the-art method in eigenvalue computations, especially for large-sized problems, but originally it was designed to calculate only the smallest eigenvalues. Recently, an updated version of AS has been introduced to calculate the interior eigenvalues over a specified range by using a shift concept that is referred to as the shifted AS. In this work, we propose a combined method of both AS and the shifted AS by using multiple shifts for solving a considerable number of eigensolutions in a large-sized problem, which is an emerging computational issue of noise or vibration analysis in vehicle design. In addition, we investigated the accuracy of the shifted AS by presenting an error criterion. The proposed method has been applied to the FE model of an automobile body. The combined method yielded a higher efficiency without loss of accuracy in comparison to the original AS

  6. On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra

    Science.gov (United States)

    Ndogmo, J. C.

    2017-06-01

    Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.

  7. Searching dependency between algebraic equations: An algorithm applied to automated reasoning

    International Nuclear Information System (INIS)

    Yang Lu; Zhang Jingzhong

    1990-01-01

    An efficient computer algorithm is given to decide how many branches of the solution to a system of algebraic also solve another equation. As one of the applications, this can be used in practice to verify a conjecture with hypotheses and conclusion expressed by algebraic equations, despite the variety of reducible or irreducible. (author). 10 refs

  8. Refined algebraic quantisation in a system with nonconstant gauge invariant structure functions

    International Nuclear Information System (INIS)

    Martínez-Pascual, Eric

    2013-01-01

    In a previous work [J. Louko and E. Martínez-Pascual, “Constraint rescaling in refined algebraic quantisation: Momentum constraint,” J. Math. Phys. 52, 123504 (2011)], refined algebraic quantisation (RAQ) within a family of classically equivalent constrained Hamiltonian systems that are related to each other by rescaling one momentum-type constraint was investigated. In the present work, the first steps to generalise this analysis to cases where more constraints occur are developed. The system under consideration contains two momentum-type constraints, originally abelian, where rescalings of these constraints by a non-vanishing function of the coordinates are allowed. These rescalings induce structure functions at the level of the gauge algebra. Providing a specific parametrised family of real-valued scaling functions, the implementation of the corresponding rescaled quantum momentum-type constraints is performed using RAQ when the gauge algebra: (i) remains abelian and (ii) undergoes into an algebra of a nonunimodular group with nonconstant gauge invariant structure functions. Case (ii) becomes the first example known to the author where an open algebra is handled in refined algebraic quantisation. Challenging issues that arise in the presence of non-gauge invariant structure functions are also addressed

  9. Toda lattice field theories, discrete W algebras, Toda lattice hierarchies and quantum groups

    International Nuclear Information System (INIS)

    Bonora, L.; Colatto, L.P.; Constantinidis, C.P.

    1996-05-01

    In analogy with the Liouville case, we study the sl 3 Toda theory on the lattice and define the relevant quadratic algebra and out of it we recover the discrete W 3 algebra. We define an integrable system with respect to the latter and establish the relation with the Toda lattice hierarchy. We compute the relevant continuum limits. Finally we find the quantum version of the quadratic algebra. (author). 16 refs

  10. The bubble algebra: structure of a two-colour Temperley-Lieb Algebra

    International Nuclear Information System (INIS)

    Grimm, Uwe; Martin, Paul P

    2003-01-01

    We define new diagram algebras providing a sequence of multiparameter generalizations of the Temperley-Lieb algebra, suitable for the modelling of dilute lattice systems of two-dimensional statistical mechanics. These algebras give a rigorous foundation to the various 'multi-colour algebras' of Grimm, Pearce and others. We determine the generic representation theory of the simplest of these algebras, and locate the nongeneric cases (at roots of unity of the corresponding parameters). We show by this example how the method used (Martin's general procedure for diagram algebras) may be applied to a wide variety of such algebras occurring in statistical mechanics. We demonstrate how these algebras may be used to solve the Yang-Baxter equations

  11. Process algebras for hybrid systems : comparison and development

    NARCIS (Netherlands)

    Khadim, U.

    2008-01-01

    Our research is about formal speci¯cation and analysis of hybrid systems. The formalism used is process algebra. Hybrid systems are systems that exhibit both discrete and continuous behaviour. An example of a hybrid system is a digital controller controlling a physical device such as present in

  12. Canonical formulation of the self-dual Yang-Mills system: Algebras and hierarchies

    International Nuclear Information System (INIS)

    Chau, L.; Yamanaka, I.

    1992-01-01

    We construct a canonical formulation of the self-dual Yang-Mills system formulated in the gauge-invariant group-valued J fields and derive their Hamiltonian and the quadratic algebras of the fundamental Dirac brackets. We also show that the quadratic algebras satisfy Jacobi identities and their structure matrices satisfy modified Yang-Baxter equations. From these quadratic algebras, we construct Kac-Moody-like and Virasoro-like algebras. We also discuss their related symmetries, involutive conserved quantities, and hierarchies of nonlinear and linear equations

  13. Chiral algebras for trinion theories

    International Nuclear Information System (INIS)

    Lemos, Madalena; Peelaers, Wolfger

    2015-01-01

    It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.

  14. Crossed product algebras associated with topological dynamical systems

    NARCIS (Netherlands)

    Svensson, Pär Christian

    2009-01-01

    We study connections between topological dynamical systems and associated algebras of crossed product type. We derive equivalences between structural properties of a crossed product and dynamical properties of the associated system and furthermore derive qualitative results concerning the crossed

  15. On Numerical Stability in Large Scale Linear Algebraic Computations

    Czech Academy of Sciences Publication Activity Database

    Strakoš, Zdeněk; Liesen, J.

    2005-01-01

    Roč. 85, č. 5 (2005), s. 307-325 ISSN 0044-2267 R&D Projects: GA AV ČR 1ET400300415 Institutional research plan: CEZ:AV0Z10300504 Keywords : linear algebraic systems * eigenvalue problems * convergence * numerical stability * backward error * accuracy * Lanczos method * conjugate gradient method * GMRES method Subject RIV: BA - General Mathematics Impact factor: 0.351, year: 2005

  16. Lie Algebras and Integrable Systems

    International Nuclear Information System (INIS)

    Zhang Yufeng; Mei Jianqin

    2012-01-01

    A 3 × 3 matrix Lie algebra is first introduced, its subalgebras and the generated Lie algebras are obtained, respectively. Applications of a few Lie subalgebras give rise to two integrable nonlinear hierarchies of evolution equations from their reductions we obtain the nonlinear Schrödinger equations, the mKdV equations, the Broer-Kaup (BK) equation and its generalized equation, etc. The linear and nonlinear integrable couplings of one integrable hierarchy presented in the paper are worked out by casting a 3 × 3 Lie subalgebra into a 2 × 2 matrix Lie algebra. Finally, we discuss the elliptic variable solutions of a generalized BK equation. (general)

  17. Priority in Process Algebras

    Science.gov (United States)

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  18. Study of solving a Toda dynamic system with loop algebra

    International Nuclear Information System (INIS)

    Zhu Qiao; Yang Zhanying; Shi Kangjie; Wen Junqing

    2006-01-01

    The authors construct a Toda system with Loop algebra, and prove that the Lax equation L=[L,M] can be solved by means of solving a regular Riemann-Hilbert problem. In our system, M in Lax pair is an antisymmetrical matrix, while L=L + + M, and L + is a quasi-upper triangular matrix of loop algebra. In order to check our result, the authors exactly solve an R-H problem under a given initial condition as an example. (authors)

  19. Recurrence approach and higher order polynomial algebras for superintegrable monopole systems

    Science.gov (United States)

    Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong

    2018-05-01

    We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.

  20. Term Satisfiability in FLew-Algebras

    Czech Academy of Sciences Publication Activity Database

    Haniková, Zuzana; Savický, Petr

    2016-01-01

    Roč. 631, 6 June (2016), s. 1-15 ISSN 0304-3975 R&D Projects: GA ČR GBP202/12/G061 Institutional support: RVO:67985807 Keywords : substructural logic * FLew-algebra * MV-algebra * satisfiability * computational complexity Subject RIV: BA - General Mathematics Impact factor: 0.698, year: 2016

  1. Partially ordered algebraic systems

    CERN Document Server

    Fuchs, Laszlo

    2011-01-01

    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  2. An algebraic approach to linear-optical schemes for deterministic quantum computing

    International Nuclear Information System (INIS)

    Aniello, Paolo; Cagli, Ruben Coen

    2005-01-01

    Linear-optical passive (LOP) devices and photon counters are sufficient to implement universal quantum computation with single photons, and particular schemes have already been proposed. In this paper we discuss the link between the algebraic structure of LOP transformations and quantum computing. We first show how to decompose the Fock space of N optical modes in finite-dimensional subspaces that are suitable for encoding strings of qubits and invariant under LOP transformations (these subspaces are related to the spaces of irreducible unitary representations of U (N). Next we show how to design in algorithmic fashion LOP circuits which implement any quantum circuit deterministically. We also present some simple examples, such as the circuits implementing a cNOT gate and a Bell state generator/analyser

  3. Cubic and quartic planar differential systems with exact algebraic limit cycles

    Directory of Open Access Journals (Sweden)

    Ahmed Bendjeddou

    2011-01-01

    Full Text Available We construct cubic and quartic polynomial planar differential systems with exact limit cycles that are ovals of algebraic real curves of degree four. The result obtained for the cubic case generalizes a proposition of [9]. For the quartic case, we deduce for the first time a class of systems with four algebraic limit cycles and another for which nested configurations of limit cycles occur.

  4. On the algebraic reconstruction of the Duffing's mechanical system

    International Nuclear Information System (INIS)

    Aguilar-Ibanez, Carlos; Sanchez H, Jorge; Suarez C, Miguel S.; Martinez C, Juan

    2008-01-01

    The identification of the unknown parameters of the Duffing's mechanical system, based on an algebraic approach, is presented. This approach is fast, accurate, and simple to numerically implement. Also, the method, combined with a suitable invariant filter, can became robust against high frequency output measurement noises. Our method uses the availability of one measurable output and produces an exact formula for the unknown parameters, which may be realized in terms of iterated convolutions. First, we show that the Duffing's system parameters are linearly identifiable with respect to the position variable, then we obtain a linear system where the unknowns are the unavailable parameters. Suitable algebraic operations on the output differential equations makes the identification schema independent of the unavailable initial conditions of the underlying nonlinear dynamical system

  5. Fundamentals of algebraic graph transformation

    CERN Document Server

    Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele

    2006-01-01

    Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...

  6. Algebraic topological entropy

    International Nuclear Information System (INIS)

    Hudetz, T.

    1989-01-01

    As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)

  7. Developing ontological model of computational linear algebra - preliminary considerations

    Science.gov (United States)

    Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Lirkov, I.

    2013-10-01

    The aim of this paper is to propose a method for application of ontologically represented domain knowledge to support Grid users. The work is presented in the context provided by the Agents in Grid system, which aims at development of an agent-semantic infrastructure for efficient resource management in the Grid. Decision support within the system should provide functionality beyond the existing Grid middleware, specifically, help the user to choose optimal algorithm and/or resource to solve a problem from a given domain. The system assists the user in at least two situations. First, for users without in-depth knowledge about the domain, it should help them to select the method and the resource that (together) would best fit the problem to be solved (and match the available resources). Second, if the user explicitly indicates the method and the resource configuration, it should "verify" if her choice is consistent with the expert recommendations (encapsulated in the knowledge base). Furthermore, one of the goals is to simplify the use of the selected resource to execute the job; i.e., provide a user-friendly method of submitting jobs, without required technical knowledge about the Grid middleware. To achieve the mentioned goals, an adaptable method of expert knowledge representation for the decision support system has to be implemented. The selected approach is to utilize ontologies and semantic data processing, supported by multicriterial decision making. As a starting point, an area of computational linear algebra was selected to be modeled, however, the paper presents a general approach that shall be easily extendable to other domains.

  8. Categorical Algebra and its Applications

    CERN Document Server

    1988-01-01

    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  9. Introduction to algebra and trigonometry

    CERN Document Server

    Kolman, Bernard

    1981-01-01

    Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are

  10. Fast computation of the Maslov index for hyperbolic linear systems with periodic coefficients

    International Nuclear Information System (INIS)

    Chardard, F; Dias, F; Bridges, T J

    2006-01-01

    The Maslov index is a topological property of periodic orbits of finite-dimensional Hamiltonian systems that is widely used in semiclassical quantization, quantum chaology, stability of waves and classical mechanics. The Maslov index is determined from the analysis of a linear Hamiltonian system with periodic coefficients. In this paper, a numerical scheme is devised to compute the Maslov index for hyperbolic linear systems when the phase space has a low dimension. The idea is to compute on the exterior algebra of the ambient vector space, where the Lagrangian subspace representing the unstable subspace is reduced to a line. When the exterior algebra is projectified the Lagrangian subspace always forms a closed loop. The idea is illustrated by application to Hamiltonian systems on a phase space of dimension 4. The theory is used to compute the Maslov index for the spectral problem associated with periodic solutions of the fifth-order Korteweg de Vries equation

  11. Algebraic calculations for spectrum of superintegrable system from exceptional orthogonal polynomials

    Science.gov (United States)

    Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong

    2018-04-01

    We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.

  12. Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy

    Science.gov (United States)

    Mehrpooya, Adel; Ebrahimi, Mohammad; Davvaz, Bijan

    2017-09-01

    Measuring the flow of information that is related to the evolution of a system which is modeled by applying a mathematical structure is of capital significance for science and usually for mathematics itself. Regarding this fact, a major issue in concern with hyperstructures is their dynamics and the complexity of the varied possible dynamics that exist over them. Notably, the dynamics and uncertainty of hyper MV -algebras which are hyperstructures and extensions of a central tool in infinite-valued Lukasiewicz propositional calculus that models many valued logics are of primary concern. Tackling this problem, in this paper we focus on the subject of dynamical systems on hyper MV -algebras and their entropy. In this respect, we adopt two varied approaches. One is the set-based approach in which hyper MV -algebra dynamical systems are developed by employing set functions and set partitions. By the other method that is based on points and point partitions, we establish the concept of hyper injective dynamical systems on hyper MV -algebras. Next, we study the notion of entropy for both kinds of systems. Furthermore, we consider essential ergodic characteristics of those systems and their entropy. In particular, we introduce the concept of isomorphic hyper injective and hyper MV -algebra dynamical systems, and we demonstrate that isomorphic systems have the same entropy. We present a couple of theorems in order to help calculate entropy. In particular, we prove a contemporary version of addition and Kolmogorov-Sinai Theorems. Furthermore, we provide a comparison between the indispensable properties of hyper injective and semi-independent dynamical systems. Specifically, we present and prove theorems that draw comparisons between the entropies of such systems. Lastly, we discuss some possible relationships between the theories of hyper MV -algebra and MV -algebra dynamical systems.

  13. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  14. An algebraic approach to the scattering equations

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Rijun; Rao, Junjie [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Feng, Bo [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Center of Mathematical Science, Zhejiang University,Hangzhou, 310027 (China); He, Yang-Hui [School of Physics, NanKai University,Tianjin, 300071 (China); Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); Merton College, University of Oxford,Oxford, OX14JD (United Kingdom)

    2015-12-10

    We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

  15. An algebraic approach to the scattering equations

    International Nuclear Information System (INIS)

    Huang, Rijun; Rao, Junjie; Feng, Bo; He, Yang-Hui

    2015-01-01

    We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

  16. Algebraic partial Boolean algebras

    International Nuclear Information System (INIS)

    Smith, Derek

    2003-01-01

    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8

  17. Thermodiffusion in Multicomponent Mixtures Thermodynamic, Algebraic, and Neuro-Computing Models

    CERN Document Server

    Srinivasan, Seshasai

    2013-01-01

    Thermodiffusion in Multicomponent Mixtures presents the computational approaches that are employed in the study of thermodiffusion in various types of mixtures, namely, hydrocarbons, polymers, water-alcohol, molten metals, and so forth. We present a detailed formalism of these methods that are based on non-equilibrium thermodynamics or algebraic correlations or principles of the artificial neural network. The book will serve as single complete reference to understand the theoretical derivations of thermodiffusion models and its application to different types of multi-component mixtures. An exhaustive discussion of these is used to give a complete perspective of the principles and the key factors that govern the thermodiffusion process.

  18. Algebraic features of some generalizations of the Lotka-Volterra system

    Science.gov (United States)

    Bibik, Yu. V.; Sarancha, D. A.

    2010-10-01

    For generalizations of the Lotka-Volterra system, an integration method is proposed based on the nontrivial algebraic structure of these generalizations. The method makes use of an auxiliary first-order differential equation derived from the phase curve equation with the help of this algebraic structure. Based on this equation, a Hamiltonian approach can be developed and canonical variables (moreover, action-angle variables) can be constructed.

  19. The development of an algebraic multigrid algorithm for symmetric positive definite linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Vanek, P.; Mandel, J.; Brezina, M. [Univ. of Colorado, Denver, CO (United States)

    1996-12-31

    An algebraic multigrid algorithm for symmetric, positive definite linear systems is developed based on the concept of prolongation by smoothed aggregation. Coarse levels are generated automatically. We present a set of requirements motivated heuristically by a convergence theory. The algorithm then attempts to satisfy the requirements. Input to the method are the coefficient matrix and zero energy modes, which are determined from nodal coordinates and knowledge of the differential equation. Efficiency of the resulting algorithm is demonstrated by computational results on real world problems from solid elasticity, plate blending, and shells.

  20. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.

    Science.gov (United States)

    Benhammouda, Brahim

    2016-01-01

    Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.

  1. Algorithmic and experimental methods in algebra, geometry, and number theory

    CERN Document Server

    Decker, Wolfram; Malle, Gunter

    2017-01-01

    This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 “Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory”, which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved.  The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It off...

  2. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  3. Linear Algebra and Image Processing

    Science.gov (United States)

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  4. Solution of systems of linear algebraic equations by the method of summation of divergent series

    International Nuclear Information System (INIS)

    Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.

    2015-01-01

    A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru

  5. An algebraic approach to modeling in software engineering

    International Nuclear Information System (INIS)

    Loegel, C.J.; Ravishankar, C.V.

    1993-09-01

    Our work couples the formalism of universal algebras with the engineering techniques of mathematical modeling to develop a new approach to the software engineering process. Our purpose in using this combination is twofold. First, abstract data types and their specification using universal algebras can be considered a common point between the practical requirements of software engineering and the formal specification of software systems. Second, mathematical modeling principles provide us with a means for effectively analyzing real-world systems. We first use modeling techniques to analyze a system and then represent the analysis using universal algebras. The rest of the software engineering process exploits properties of universal algebras that preserve the structure of our original model. This paper describes our software engineering process and our experience using it on both research and commercial systems. We need a new approach because current software engineering practices often deliver software that is difficult to develop and maintain. Formal software engineering approaches use universal algebras to describe ''computer science'' objects like abstract data types, but in practice software errors are often caused because ''real-world'' objects are improperly modeled. There is a large semantic gap between the customer's objects and abstract data types. In contrast, mathematical modeling uses engineering techniques to construct valid models for real-world systems, but these models are often implemented in an ad hoc manner. A combination of the best features of both approaches would enable software engineering to formally specify and develop software systems that better model real systems. Software engineering, like mathematical modeling, should concern itself first and foremost with understanding a real system and its behavior under given circumstances, and then with expressing this knowledge in an executable form

  6. Schwarz maps of algebraic linear ordinary differential equations

    Science.gov (United States)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  7. Simple skew category algebras associated with minimal partially defined dynamical systems

    DEFF Research Database (Denmark)

    Nystedt, Patrik; Öinert, Per Johan

    2013-01-01

    In this article, we continue our study of category dynamical systems, that is functors s from a category G to Topop, and their corresponding skew category algebras. Suppose that the spaces s(e), for e∈ob(G), are compact Hausdorff. We show that if (i) the skew category algebra is simple, then (ii) G...

  8. Yang-Baxter algebra - Integrable systems - Conformal quantum field theories

    International Nuclear Information System (INIS)

    Karowski, M.

    1989-01-01

    This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)

  9. Algebraic and computational aspects of real tensor ranks

    CERN Document Server

    Sakata, Toshio; Miyazaki, Mitsuhiro

    2016-01-01

    This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through...

  10. Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra

    International Nuclear Information System (INIS)

    Ablinger, J.; Schneider, C.; Manteuffel, A. von

    2015-09-01

    Three loop ladder and V-topology diagrams contributing to the massive operator matrix element A Qg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.

  11. Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra

    Science.gov (United States)

    Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.

    2016-05-01

    Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.

  12. Hecke algebraic properties of dynamical R-matrices. Application to related quantum matrix algebras

    International Nuclear Information System (INIS)

    Khadzhiivanov, L.K.; Todorov, I.T.; Isaev, A.P.; Pyatov, P.N.; Ogievetskij, O.V.

    1998-01-01

    The quantum dynamical Yang-Baxter (or Gervais-Neveu-Felder) equation defines an R-matrix R cap (p), where p stands for a set of mutually commuting variables. A family of SL (n)-type solutions of this equation provides a new realization of the Hecke algebra. We define quantum antisymmetrizers, introduce the notion of quantum determinant and compute the inverse quantum matrix for matrix algebras of the type R cap (p) a 1 a 2 = a 1 a 2 R cap. It is pointed out that such a quantum matrix algebra arises in the operator realization of the chiral zero modes of the WZNW model

  13. Teaching the "Diagonalization Concept" in Linear Algebra with Technology: A Case Study at Galatasaray University

    Science.gov (United States)

    Yildiz Ulus, Aysegul

    2013-01-01

    This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…

  14. The $K$-theory of real graph $C*$-algebras

    OpenAIRE

    Boersema, Jeffrey L.

    2014-01-01

    In this paper, we will introduce real graph algebras and develop the theory to the point of being able to calculate the $K$-theory of such algebras. The $K$-theory situation is significantly more complicated than in the case for complex graph algebras. To develop the long exact sequence to compute the $K$-theory of a real graph algebra, we need to develop a generalized theory of crossed products for real C*-algebras for groups with involution. We also need to deal with the additional algebrai...

  15. Applied algebra codes, ciphers and discrete algorithms

    CERN Document Server

    Hardy, Darel W; Walker, Carol L

    2009-01-01

    This book attempts to show the power of algebra in a relatively simple setting.-Mathematical Reviews, 2010… The book supports learning by doing. In each section we can find many examples which clarify the mathematics introduced in the section and each section is followed by a series of exercises of which approximately half are solved in the end of the book. Additional the book comes with a CD-ROM containing an interactive version of the book powered by the computer algebra system Scientific Notebook. … the mathematics in the book are developed as needed and the focus of the book lies clearly o

  16. Identification of dynamical Lie algebras for finite-level quantum control systems

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, S.G.; Pullen, I.C.H.; Solomon, A.I. [Quantum Processes Group and Department of Applied Maths, Open University, Milton Keynes (United Kingdom)]. E-mails: S.G.Schirmer@open.ac.uk; I.C.H.Pullen@open.ac.uk; A.I.Solomon@open.ac.uk

    2002-03-08

    The problem of identifying the dynamical Lie algebras of finite-level quantum systems subject to external control is considered, with special emphasis on systems that are not completely controllable. In particular, it is shown that the dynamical Lie algebra for an N-level system with symmetrically coupled transitions, such as a system with equally spaced energy levels and uniform transition dipole moments, is a subalgebra of so(N) if N=2l+1, and a subalgebra of sp(l) if N=2l. General criteria for obtaining either so(2l+1) or sp(l) are established. (author)

  17. An automatic formulation of inverse free second moment method for algebraic systems

    International Nuclear Information System (INIS)

    Shakshuki, Elhadi; Ponnambalam, Kumaraswamy

    2002-01-01

    In systems with probabilistic uncertainties, an estimation of reliability requires at least the first two moments. In this paper, we focus on probabilistic analysis of linear systems. The important tasks in this analysis are the formulation and the automation of the moment equations. The main objective of the formulation is to provide at least means and variances of the output variables with at least a second-order accuracy. The objective of the automation is to reduce the storage and computational complexities required for implementing (automating) those formulations. This paper extends the recent work done to calculate the first two moments of a set of random algebraic linear equations by developing a stamping procedure to facilitate its automation. The new method has an additional advantage of being able to solve problems when the mean matrix of a system is singular. Lastly, from storage and computational complexities and accuracy point of view, a comparison between the new method and another recently developed first order second moment method is made with numerical examples

  18. Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra

    International Nuclear Information System (INIS)

    Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah

    2014-01-01

    We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean–Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices. -- Highlights: •Different PT-symmetries lead to qualitatively different systems. •Construction of non-perturbative Dyson maps and isospectral Hermitian counterparts. •Numerical discussion of the eigenvalue spectra for one of the E(2)-systems. •Established link to systems studied in the context of optical lattices. •Setup for the E(3)-algebra is provided

  19. Classification and identification of Lie algebras

    CERN Document Server

    Snobl, Libor

    2014-01-01

    The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra completely. The authors provide a representative list of all Lie algebras of dimension less or equal to 6 together with their important properties, including their Casimir invariants. The list is ordered in a way to make identification easy, using only basis independent properties of the Lie algebras. They also describe certain cl...

  20. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...

  1. Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras

    International Nuclear Information System (INIS)

    Gebert, R.W.

    1993-09-01

    The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)

  2. Helmholtz algebraic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  3. Helmholtz algebraic solitons

    International Nuclear Information System (INIS)

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2010-01-01

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  4. Dynamics of number systems computation with arbitrary precision

    CERN Document Server

    Kurka, Petr

    2016-01-01

    This book is a source of valuable and useful information on the topics of dynamics of number systems and scientific computation with arbitrary precision. It is addressed to scholars, scientists and engineers, and graduate students. The treatment is elementary and self-contained with relevance both for theory and applications. The basic prerequisite of the book is linear algebra and matrix calculus. .

  5. On squares of representations of compact Lie algebras

    International Nuclear Information System (INIS)

    Zeier, Robert; Zimborás, Zoltán

    2015-01-01

    We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the sum of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems

  6. On squares of representations of compact Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Zeier, Robert, E-mail: robert.zeier@ch.tum.de [Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching (Germany); Zimborás, Zoltán, E-mail: zimboras@gmail.com [Department of Computer Science, University College London, Gower St., London WC1E 6BT (United Kingdom)

    2015-08-15

    We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the sum of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.

  7. Titration Calculations with Computer Algebra Software

    Science.gov (United States)

    Lachance, Russ; Biaglow, Andrew

    2012-01-01

    This article examines the symbolic algebraic solution of the titration equations for a diprotic acid, as obtained using "Mathematica," "Maple," and "Mathcad." The equilibrium and conservation equations are solved symbolically by the programs to eliminate the approximations that normally would be performed by the student. Of the three programs,…

  8. College algebra

    CERN Document Server

    Kolman, Bernard

    1985-01-01

    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  9. Guide to Geometric Algebra in Practice

    CERN Document Server

    Dorst, Leo

    2011-01-01

    This highly practical "Guide to Geometric Algebra in Practice" reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. This title: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the d

  10. PRELIMINARY STUDY ON APPLICATION OF MAX PLUS ALGEBRA IN DISTRIBUTED STORAGE SYSTEM THROUGH NETWORK CODING

    Directory of Open Access Journals (Sweden)

    Agus Maman Abadi

    2016-04-01

    Full Text Available The increasing need in techniques of storing big data presents a new challenge. One way to address this challenge is the use of distributed storage systems. One strategy that implemented in distributed data storage systems is the use of Erasure Code which applied to network coding. The code used in this technique is based on the algebraic structure which is called as vector space. Some studies have also been carried out to create code that is based on other algebraic structures such as module.  In this study, we are going to try to set up a code based on the algebraic structure which is a generalization of the module that is semimodule by utilizing the max operations and sum operations at max plus algebra. The results of this study indicate that the max operation and the addition operation on max plus algebra cannot be used to establish a semimodule code, but by modifying the operation "+" as "min", we get a code based on semimodule. Keywords:   code, distributed storage systems, network coding, semimodule, max plus algebra

  11. Alternative algebraic approaches in quantum chemistry

    International Nuclear Information System (INIS)

    Mezey, Paul G.

    2015-01-01

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed

  12. Alternative algebraic approaches in quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mezey, Paul G., E-mail: paul.mezey@gmail.com [Canada Research Chair in Scientific Modeling and Simulation, Department of Chemistry and Department of Physics and Physical Oceanography, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John' s, NL A1B 3X7 (Canada)

    2015-01-22

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.

  13. Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems

    Science.gov (United States)

    Demina, Maria V.

    2018-05-01

    The general structure of irreducible invariant algebraic curves for a polynomial dynamical system in C2 is found. Necessary conditions for existence of exponential factors related to an invariant algebraic curve are derived. As a consequence, all the cases when the classical force-free Duffing and Duffing-van der Pol oscillators possess Liouvillian first integrals are obtained. New exact solutions for the force-free Duffing-van der Pol system are constructed.

  14. Possibility of Engineering Education That Makes Use of Algebraic Calculators by Various Scenes

    Science.gov (United States)

    Umeno, Yoshio

    Algebraic calculators are graphing calculators with a feature of computer algebra system. It can be said that we can solve mathematics only by pushing some keys of these calculators in technical colleges or universities. They also possess another feature, so we can make extensive use in engineering education. For example, we can use them for a basic education, a programming education, English education, and creative thinking tools for excellent students. In this paper, we will introduce the summary of algebraic calculators, then, consider how we utilize them in engineer education.

  15. A brief history of process algebra

    OpenAIRE

    Baeten, J.C.M.

    2005-01-01

    This note addresses the history of process algebra as an area of research in concurrency theory, the theory of parallel and distributed systems in computer science. Origins are traced back to the early seventies of the twentieth century, and developments since that time are sketched. The author gives his personal views on these matters. He also considers the present situation, and states some challenges for the future.

  16. Solution of the Schrodinger Equation for a Diatomic Oscillator Using Linear Algebra: An Undergraduate Computational Experiment

    Science.gov (United States)

    Gasyna, Zbigniew L.

    2008-01-01

    Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)

  17. On the topology of real algebraic plane curves

    DEFF Research Database (Denmark)

    Cheng, Jinsan; Lazard, Sylvain; Peñaranda, Luis

    2010-01-01

    We revisit the problem of computing the topology and geometry of a real algebraic plane curve. The topology is of prime interest but geometric information, such as the position of singular and critical points, is also relevant. A challenge is to compute efficiently this information for the given...... and isolation with rational univariate representations. This has the advantage of avoiding computations with polynomials with algebraic coefficients, even in non-generic positions. Our algorithm isolates critical points in boxes and computes a decomposition of the plane by rectangular boxes. This decomposition...

  18. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1993-07-01

    We obtain the exact Dirac algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. The non-linear terms are computed in closed form. In each Dirac bracket we only find highest order terms (as explained in the paper), defining a saturated algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, containing now a calculable correction of order one unit lower. (author). 22 refs, 5 figs

  19. Lie-Algebras. Pt. 1

    International Nuclear Information System (INIS)

    Baeuerle, G.G.A.; Kerf, E.A. de

    1990-01-01

    The structure of the laws in physics is largely based on symmetries. This book is on Lie algebras, the mathematics of symmetry. It gives a thorough mathematical treatment of finite dimensional Lie algebras and Kac-Moody algebras. Concepts such as Cartan matrix, root system, Serre's construction are carefully introduced. Although the book can be read by an undergraduate with only an elementary knowledge of linear algebra, the book will also be of use to the experienced researcher. Experience has shown that students who followed the lectures are well-prepared to take on research in the realms of string-theory, conformal field-theory and integrable systems. 48 refs.; 66 figs.; 3 tabs

  20. Supersymmetry algebra cohomology. I. Definition and general structure

    International Nuclear Information System (INIS)

    Brandt, Friedemann

    2010-01-01

    This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding 'primitive elements' are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.

  1. Quantum W-algebras and elliptic algebras

    International Nuclear Information System (INIS)

    Feigin, B.; Kyoto Univ.; Frenkel, E.

    1996-01-01

    We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)

  2. Multidimensional analysis algebras and systems for science and engineering

    CERN Document Server

    Hart, George W

    1995-01-01

    This book deals with the mathematical properties of dimensioned quantities, such as length, mass, voltage, and viscosity. Beginning with a careful examination of how one expresses the numerical results of a measurement and uses these results in subsequent manipulations, the author rigorously constructs the notion of dimensioned numbers and discusses their algebraic structure. The result is a unification of linear algebra and traditional dimensional analysis that can be extended from the scalars to which the traditional analysis is perforce restricted to multidimensional vectors of the sort frequently encountered in engineering, systems theory, economics, and other applications.

  3. Principles of algebraic geometry

    CERN Document Server

    Griffiths, Phillip A

    1994-01-01

    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  4. An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers

    Science.gov (United States)

    Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin

    2011-01-01

    This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…

  5. Relational Algebra in Spatial Decision Support Systems Ontologies.

    Science.gov (United States)

    Diomidous, Marianna; Chardalias, Kostis; Koutonias, Panagiotis; Magnita, Adrianna; Andrianopoulos, Charalampos; Zimeras, Stelios; Mechili, Enkeleint Aggelos

    2017-01-01

    Decision Support Systems (DSS) is a powerful tool, for facilitates researchers to choose the correct decision based on their final results. Especially in medical cases where doctors could use these systems, to overcome the problem with the clinical misunderstanding. Based on these systems, queries must be constructed based on the particular questions that doctors must answer. In this work, combination between questions and queries would be presented via relational algebra.

  6. Continuum analogues of contragredient Lie algebras

    International Nuclear Information System (INIS)

    Saveliev, M.V.; Vershik, A.M.

    1989-03-01

    We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs

  7. Parallel Programming Application to Matrix Algebra in the Spectral Method for Control Systems Analysis, Synthesis and Identification

    Directory of Open Access Journals (Sweden)

    V. Yu. Kleshnin

    2016-01-01

    Full Text Available The article describes the matrix algebra libraries based on the modern technologies of parallel programming for the Spectrum software, which can use a spectral method (in the spectral form of mathematical description to analyse, synthesise and identify deterministic and stochastic dynamical systems. The developed matrix algebra libraries use the following technologies for the GPUs: OmniThreadLibrary, OpenMP, Intel Threading Building Blocks, Intel Cilk Plus for CPUs nVidia CUDA, OpenCL, and Microsoft Accelerated Massive Parallelism.The developed libraries support matrices with real elements (single and double precision. The matrix dimensions are limited by 32-bit or 64-bit memory model and computer configuration. These libraries are general-purpose and can be used not only for the Spectrum software. They can also find application in the other projects where there is a need to perform operations with large matrices.The article provides a comparative analysis of the libraries developed for various matrix operations (addition, subtraction, scalar multiplication, multiplication, powers of matrices, tensor multiplication, transpose, inverse matrix, finding a solution of the system of linear equations through the numerical experiments using different CPU and GPU. The article contains sample programs and performance test results for matrix multiplication, which requires most of all computational resources in regard to the other operations.

  8. Recoupling Lie algebra and universal ω-algebra

    International Nuclear Information System (INIS)

    Joyce, William P.

    2004-01-01

    We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure

  9. Practical algebraic renormalization

    International Nuclear Information System (INIS)

    Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias

    2001-01-01

    A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ

  10. Exponentiation and deformations of Lie-admissible algebras

    International Nuclear Information System (INIS)

    Myung, H.C.

    1982-01-01

    The exponential function is defined for a finite-dimensional real power-associative algebra with unit element. The application of the exponential function is focused on the power-associative (p,q)-mutation of a real or complex associative algebra. Explicit formulas are computed for the (p,q)-mutation of the real envelope of the spin 1 algebra and the Lie algebra so(3) of the rotation group, in light of earlier investigations of the spin 1/2. A slight variant of the mutated exponential is interpreted as a continuous function of the Lie algebra into some isotope of the corresponding linear Lie group. The second part of this paper is concerned with the representation and deformation of a Lie-admissible algebra. The second cohomology group of a Lie-admissible algebra is introduced as a generalization of those of associative and Lie algebras in the Hochschild and Chevalley-Eilenberg theory. Some elementary theory of algebraic deformation of Lie-admissible algebras is discussed in view of generalization of that of associative and Lie algebras. Lie-admissible deformations are also suggested by the representation of Lie-admissible algebras. Some explicit examples of Lie-admissible deformation are given in terms of the (p,q)-mutation of associative deformation of an associative algebra. Finally, we discuss Lie-admissible deformations of order one

  11. A brief history of process algebra

    OpenAIRE

    Baeten, J.C.M.

    2004-01-01

    Abstract. This note addresses the history of process algebra as an area of research in concurrency theory, the theory of parallel and distributed systems in computer science. Origins are traced back to the early seventies of the twentieth century, and developments since that time are sketched. The author gives his personal views on these matters. He also considers the present situation, and states some challenges for the future.

  12. A Simple and Practical Linear Algebra Library Interface with Static Size Checking

    Directory of Open Access Journals (Sweden)

    Akinori Abe

    2015-12-01

    Full Text Available Linear algebra is a major field of numerical computation and is widely applied. Most linear algebra libraries (in most programming languages do not statically guarantee consistency of the dimensions of vectors and matrices, causing runtime errors. While advanced type systems—specifically, dependent types on natural numbers—can ensure consistency among the sizes of collections such as lists and arrays, such type systems generally require non-trivial changes to existing languages and application programs, or tricky type-level programming. We have developed a linear algebra library interface that verifies the consistency (with respect to dimensions of matrix operations by means of generative phantom types, implemented via fairly standard ML types and module system. To evaluate its usability, we ported to it a practical machine learning library from a traditional linear algebra library. We found that most of the changes required for the porting could be made mechanically, and changes that needed human thought are minor.

  13. Finding the radical of an algebra of linear transformations

    NARCIS (Netherlands)

    Cohen, A.M.; Ivanyos, G.; Wales, D.B.

    1997-01-01

    We present a method that reduces the problem of computing the radical of a matrix algebra over an arbitrary field to solving systems of semilinear equations. The complexity of the algorithm, measured in the number of arithmetic operations and the total number of the coefficients passed to an oracle

  14. Fixed point algebras for easy quantum groups

    DEFF Research Database (Denmark)

    Gabriel, Olivier; Weber, Moritz

    2016-01-01

    Compact matrix quantum groups act naturally on Cuntz algebras. The first author isolated certain conditions under which the fixed point algebras under this action are Kirchberg algebras. Hence they are completely determined by their K-groups. Building on prior work by the second author,we prove...... that free easy quantum groups satisfy these conditions and we compute the K-groups of their fixed point algebras in a general form. We then turn to examples such as the quantum permutation group S+ n,the free orthogonal quantum group O+ n and the quantum reflection groups Hs+ n. Our fixed point......-algebra construction provides concrete examples of free actions of free orthogonal easy quantum groups,which are related to Hopf-Galois extensions....

  15. The 6th International Conference on Computer Science and Computational Mathematics (ICCSCM 2017)

    Science.gov (United States)

    2017-09-01

    The ICCSCM 2017 (The 6th International Conference on Computer Science and Computational Mathematics) has aimed to provide a platform to discuss computer science and mathematics related issues including Algebraic Geometry, Algebraic Topology, Approximation Theory, Calculus of Variations, Category Theory; Homological Algebra, Coding Theory, Combinatorics, Control Theory, Cryptology, Geometry, Difference and Functional Equations, Discrete Mathematics, Dynamical Systems and Ergodic Theory, Field Theory and Polynomials, Fluid Mechanics and Solid Mechanics, Fourier Analysis, Functional Analysis, Functions of a Complex Variable, Fuzzy Mathematics, Game Theory, General Algebraic Systems, Graph Theory, Group Theory and Generalizations, Image Processing, Signal Processing and Tomography, Information Fusion, Integral Equations, Lattices, Algebraic Structures, Linear and Multilinear Algebra; Matrix Theory, Mathematical Biology and Other Natural Sciences, Mathematical Economics and Financial Mathematics, Mathematical Physics, Measure Theory and Integration, Neutrosophic Mathematics, Number Theory, Numerical Analysis, Operations Research, Optimization, Operator Theory, Ordinary and Partial Differential Equations, Potential Theory, Real Functions, Rings and Algebras, Statistical Mechanics, Structure Of Matter, Topological Groups, Wavelets and Wavelet Transforms, 3G/4G Network Evolutions, Ad-Hoc, Mobile, Wireless Networks and Mobile Computing, Agent Computing & Multi-Agents Systems, All topics related Image/Signal Processing, Any topics related Computer Networks, Any topics related ISO SC-27 and SC- 17 standards, Any topics related PKI(Public Key Intrastructures), Artifial Intelligences(A.I.) & Pattern/Image Recognitions, Authentication/Authorization Issues, Biometric authentication and algorithms, CDMA/GSM Communication Protocols, Combinatorics, Graph Theory, and Analysis of Algorithms, Cryptography and Foundation of Computer Security, Data Base(D.B.) Management & Information

  16. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    NARCIS (Netherlands)

    N.W. van den Hijligenberg; R. Martini

    1995-01-01

    textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra

  17. Head First Algebra A Learner's Guide to Algebra I

    CERN Document Server

    Pilone, Tracey

    2008-01-01

    Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i

  18. Solving differential–algebraic equation systems by means of index reduction methodology

    DEFF Research Database (Denmark)

    Sørensen, Kim; Houbak, Niels; Condra, Thomas

    2006-01-01

    of a number of differential equations and algebraic equations — a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODEs and index 1 DAEs by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of ordinary differential equations — ODEs....

  19. The Yoneda algebra of a K2 algebra need not be another K2 algebra

    OpenAIRE

    Cassidy, T.; Phan, C.; Shelton, B.

    2010-01-01

    The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

  20. GRG computer algebra system in gravitation and general relativity theory

    International Nuclear Information System (INIS)

    Zhitnikov, V.V.; Obukhova, I.G.

    1985-01-01

    The main concepts and capabilities of the GRG specialized computer agebra system intended for performing calculations in the gravitation theory are described. The GRG system is written in the STANDARD LISP language. The program consists of two parts: the first one - for setting initial data, the second one - for specifying a consequence of calculations. The system can function in three formalisms: a coordinate, a tetradic with the Lorentz basis and a spinor ones. The major capabilities of the GRG system are the following: calculation of connectivity and curvature according to the specified metrics, tetrad and torsion; metric type determination according to Petrov; calculation of the Bianchi indentities; operation with an electromagnetic field; tetradic rotations; coordinate conversions

  1. Topological conformal algebra and BRST algebra in non-critical string theories

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo; Suzuki, Hiroshi.

    1991-03-01

    The operator algebra in non-critical string theories is studied by treating the cosmological term as a perturbation. The algebra of covariantly regularized BRST and related currents contains a twisted N = 2 superconformal algebra only at d = -2 in bosonic strings, and a twisted N = 3 superconformal algebra only at d = ±∞ in spinning strings. The bosonic string at d = -2 is examined by replacing the string coordinate by a fermionic matter with c = -2. The resulting bc-βγ system accommodates various forms of BRST cohomology, and the ghost number assignment and BRST cohomology are different in the c = -2 string theory and two-dimensional topological gravity. (author)

  2. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    Science.gov (United States)

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  3. Amenable crossed product Banach algebras associated with a class of C*-dynamical systems

    NARCIS (Netherlands)

    Jeu, de M.F.E.; Elharti, R.; Pinto, P.R.

    2017-01-01

    We prove that the crossed product Banach algebra ℓ1(G,A;α) that is associated with a C∗-dynamical system (A,G,α) is amenable if G is a discrete amenable group and A is a commutative or finite dimensional C∗-algebra. Perspectives for further developments are indicated.

  4. Handbook of linear algebra

    CERN Document Server

    Hogben, Leslie

    2013-01-01

    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  5. Integrable finite-dimensional systems related to Lie algebras

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1979-01-01

    Some solvable finite-dimensional classical and quantum systems related to the Lie algebras are considered. The dynamics of these systems is closely related to free motion on symmetric spaces. In specific cases the systems considered describe the one-dimensional n-body problem recently considered by many authors. The review represents from general and universal point of view the results obtained during the last few years. Besides, it contains some results both of physical and mathematical type

  6. Application of Computer Algebra Systems to the Construction of the Collocations and Least Residuals Method for Solving the 3D Navier–Stokes Equations

    Directory of Open Access Journals (Sweden)

    V. P. Shapeev

    2014-01-01

    Full Text Available The method of collocations and least residuals (CLR, which was proposed previously for the numerical solution of two-dimensional Navier–Stokes equations governing the stationary flows of a viscous incompressible fluid, is extended here for the three-dimensional case. The solution is sought in the implemented version of the method in the form of an expansion in the basis solenoidal functions. At all stages of the CLR method construction, a computer algebra system (CAS is applied for the derivation and verification of the formulas of the method and for their translation into arithmetic operators of the Fortran language. For accelerating the convergence of iterations a sufficiently universal algorithm is proposed, which is simple in its implementation and is based on the use of the Krylov’s subspaces. The obtained computational formulas of the CLR method were verified on the exact analytic solution of a test problem. Comparisons with the published numerical results of solving the benchmark problem of the 3D driven cubic cavity flow show that the accuracy of the results obtained by the CLR method corresponds to the known high-accuracy solutions.

  7. Algebraic K-theory of generalized schemes

    DEFF Research Database (Denmark)

    Anevski, Stella Victoria Desiree

    and geometry over the field with one element. It also permits the construction of important Arakelov theoretical objects, such as the completion \\Spec Z of Spec Z. In this thesis, we prove a projective bundle theorem for the eld with one element and compute the Chow rings of the generalized schemes Sp\\ec ZN......Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry......, appearing in the construction of \\Spec Z....

  8. Individual differences in algebraic cognition: Relation to the approximate number and semantic memory systems.

    Science.gov (United States)

    Geary, David C; Hoard, Mary K; Nugent, Lara; Rouder, Jeffrey N

    2015-12-01

    The relation between performance on measures of algebraic cognition and acuity of the approximate number system (ANS) and memory for addition facts was assessed for 171 ninth graders (92 girls) while controlling for parental education, sex, reading achievement, speed of numeral processing, fluency of symbolic number processing, intelligence, and the central executive component of working memory. The algebraic tasks assessed accuracy in placing x,y pairs in the coordinate plane, speed and accuracy of expression evaluation, and schema memory for algebra equations. ANS acuity was related to accuracy of placements in the coordinate plane and expression evaluation but not to schema memory. Frequency of fact retrieval errors was related to schema memory but not to coordinate plane or expression evaluation accuracy. The results suggest that the ANS may contribute to or be influenced by spatial-numerical and numerical-only quantity judgments in algebraic contexts, whereas difficulties in committing addition facts to long-term memory may presage slow formation of memories for the basic structure of algebra equations. More generally, the results suggest that different brain and cognitive systems are engaged during the learning of different components of algebraic competence while controlling for demographic and domain general abilities. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  10. An algebraic interpretation of PSP composition.

    Science.gov (United States)

    Vaucher, G

    1998-01-01

    The introduction of time in artificial neurons is a delicate problem on which many groups are working. Our approach combines some properties of biological models and the algebraic properties of McCulloch and Pitts artificial neuron (AN) (McCulloch and Pitts, 1943) to produce a new model which links both characteristics. In this extended artificial neuron, postsynaptic potentials (PSPs) are considered as numerical elements, having two degrees of freedom, on which the neuron computes operations. Modelled in this manner, a group of neurons can be seen as a computer with an asynchronous architecture. To formalize the functioning of this computer, we propose an algebra of impulses. This approach might also be interesting in the modelling of the passive electrical properties in some biological neurons.

  11. Solving differential-algebraic equation systems by means of index reduction methodology

    DEFF Research Database (Denmark)

    Sørensen, Kim; Houbak, Niels; Condra, Thomas Joseph

    2006-01-01

    of a number of differential equations and algebraic equations - a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODE’s and index 1 DAE’s by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of Ordinary- Differential-Equations - ODE’s....

  12. Clifford algebras, spinors, spin groups and covering groups

    International Nuclear Information System (INIS)

    Magneville, C.; Pansart, J.P.

    1991-03-01

    The Dirac equation uses matrices named Υ matrices which are representations of general algebraic structures associated with a metric space. These algebras are the Clifford algebras. In the first past, these algebras are studied. Then the notion of spinor is developed. It is shown that Majorana and Weyl spinors only exist for some particular metric space. In the second part, Clifford and spinor groups are studied. They may be interpreted as the extension of the notion of orthogonal group for Clifford algebras and their spaces for representation. The rotation of a spinor is computed. In the last part, the connexion between the spinor groups and the Universal Covering Groups is presented [fr

  13. Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)

    Science.gov (United States)

    Leigh-Lancaster, David; Les, Magdalena; Evans, Michael

    2010-01-01

    2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…

  14. On Elementary and Algebraic Cellular Automata

    Science.gov (United States)

    Gulak, Yuriy

    In this paper we study elementary cellular automata from an algebraic viewpoint. The goal is to relate the emergent complex behavior observed in such systems with the properties of corresponding algebraic structures. We introduce algebraic cellular automata as a natural generalization of elementary ones and discuss their applications as generic models of complex systems.

  15. Ada Linear-Algebra Program

    Science.gov (United States)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  16. Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra

    NARCIS (Netherlands)

    van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of

  17. A type of loop algebra and the associated loop algebras

    International Nuclear Information System (INIS)

    Tam Honwah; Zhang Yufeng

    2008-01-01

    A higher-dimensional twisted loop algebra is constructed. As its application, a new Lax pair is presented, whose compatibility gives rise to a Liouville integrable hierarchy of evolution equations by making use of Tu scheme. One of the reduction cases of the hierarchy is an analogous of the well-known AKNS system. Next, the twisted loop algebra, furthermore, is extended to another higher dimensional loop algebra, from which a hierarchy of evolution equations with 11-potential component functions is obtained, whose reduction is just standard AKNS system. Especially, we prove that an arbitrary linear combination of the four Hamiltonian operators directly obtained from the recurrence relations is still a Hamiltonian operator. Therefore, the hierarchy with 11-potential functions possesses 4-Hamiltonian structures. Finally, an integrable coupling of the hierarchy is worked out

  18. Satake diagrams of affine Kac-Moody algebras

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, L K [S B R Government Womens' College, Berhampur, Orissa 760 001 (India); Pati, K C [Department of Physics, Khallikote College, Berhampur, Orissa 760 001 (India)

    2006-02-10

    Satake diagrams of affine Kac-Moody algebras (untwisted and twisted) are obtained from their Dynkin diagrams. These diagrams give a classification of restricted root systems associated with these algebras. In the case of simple Lie algebras, these root systems and Satake diagrams correspond to symmetric spaces which have recently found many physical applications in quantum integrable systems, quantum transport problems, random matrix theories etc. We hope these types of root systems may have similar applications in theoretical physics in future and may correspond to symmetric spaces analogue of affine Kac-Moody algebras if they exist.

  19. SAGA advances in ShApes, Geometry, and Algebra : results from the Marie Curie initial training network

    CERN Document Server

    Muntingh, Georg

    2014-01-01

    This book summarizes research carried out in workshops of the SAGA project, an Initial Training Network exploring the interplay of Shapes, Algebra, Geometry and Algorithms. Written by a combination of young and experienced researchers, the book introduces new ideas in an established context. Among the central topics are approximate and sparse implicitization and surface parametrization; algebraic tools for geometric computing; algebraic geometry for computer aided design applications and problems with industrial applications. Readers will encounter new methods for the (approximate) transition between the implicit and parametric representation; new algebraic tools for geometric computing; new applications of isogeometric analysis, and will gain insight into the emerging research field situated between algebraic geometry and computer aided geometric design.

  20. An LISP interpreter for a PDP-15 computer system

    International Nuclear Information System (INIS)

    Gonzalez Navidad, R.

    1974-01-01

    LISP processor for a PDP-15 computer system. The object of this work is to use the LISP language as an integral part of a PDP-15 computer system. LISP is a programming language designed for processing lists, and from this it gets its name (LIST-PROCESSING). The most important aspects of LISP are as follows: (1) It is a formal mathematical language based on the theory of recursive functions; (2) It is geared to processing symbolic rather than numerical data; (3) Programs written in LISP are themselves lists. The techniques employed for this application were based on the characteristics and capabilities of the PDP-15 system. It offers a basic minimum system of LISP functions with which more complex functions can be constructed. A detailed description of each of the units comprising the interpreter provides the reader with a useful introduction to the LISP language. Among the results that have been obtained with this interpreter we can quote the following: construction of a set of auxiliary functions for the system and simulation of a Turing machine based on this set of auxiliary functions written in LISP, with which a beginning has been made in setting up a function library, utilizing the capacity of LISP as a self-generating function language. Hence the LISP processor can be used to resolve problems of algebraic manipulation, system simulation, group theory, modern algebra, data classification and processing, and other common logical problems. (author)

  1. Efficient Adjoint Computation of Hybrid Systems of Differential Algebraic Equations with Applications in Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Abhyankar, Shrirang [Argonne National Lab. (ANL), Argonne, IL (United States); Anitescu, Mihai [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil [Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Hong [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-31

    Sensitivity analysis is an important tool to describe power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this work, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating trajectory sensitivities of larger systems and is consistent, within machine precision, with the function whose sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as DC exciters, by deriving and implementing the adjoint jump conditions that arise from state and time-dependent discontinuities. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach.

  2. Tensor spaces and exterior algebra

    CERN Document Server

    Yokonuma, Takeo

    1992-01-01

    This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.

  3. Improved Linear Algebra Methods for Redshift Computation from Limited Spectrum Data - II

    Science.gov (United States)

    Foster, Leslie; Waagen, Alex; Aijaz, Nabella; Hurley, Michael; Luis, Apolo; Rinsky, Joel; Satyavolu, Chandrika; Gazis, Paul; Srivastava, Ashok; Way, Michael

    2008-01-01

    Given photometric broadband measurements of a galaxy, Gaussian processes may be used with a training set to solve the regression problem of approximating the redshift of this galaxy. However, in practice solving the traditional Gaussian processes equation is too slow and requires too much memory. We employed several methods to avoid this difficulty using algebraic manipulation and low-rank approximation, and were able to quickly approximate the redshifts in our testing data within 17 percent of the known true values using limited computational resources. The accuracy of one method, the V Formulation, is comparable to the accuracy of the best methods currently used for this problem.

  4. Fast Bitwise Implementation of the Algebraic Normal Form Transform

    OpenAIRE

    Bakoev, Valentin

    2017-01-01

    The representation of Boolean functions by their algebraic normal forms (ANFs) is very important for cryptography, coding theory and other scientific areas. The ANFs are used in computing the algebraic degree of S-boxes, some other cryptographic criteria and parameters of errorcorrecting codes. Their applications require these criteria and parameters to be computed by fast algorithms. Hence the corresponding ANFs should also be obtained by fast algorithms. Here we continue o...

  5. The current algebra on the circle as a germ of local field theories

    International Nuclear Information System (INIS)

    Buchholz, D.; Mack, G.; Todorov, I.; Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika)

    1988-01-01

    Methods of algebraic quantum field theory are used to classify all field- and observable algebras, whose common germ is the U(1)-current algebra. An elementary way is described to compute characters of such algebras. It exploits the Kubo-Martin-Schwinger condition for Gibbs states. (orig.)

  6. From Rota-Baxter algebras to pre-Lie algebras

    International Nuclear Information System (INIS)

    An Huihui; Ba, Chengming

    2008-01-01

    Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras

  7. Parallelism in matrix computations

    CERN Document Server

    Gallopoulos, Efstratios; Sameh, Ahmed H

    2016-01-01

    This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...

  8. Algebraic Methods to Design Signals

    Science.gov (United States)

    2015-08-27

    to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory

  9. An algorithm for analysis of the structure of finitely presented Lie algebras

    Directory of Open Access Journals (Sweden)

    Vladimir P. Gerdt

    1997-12-01

    Full Text Available We consider the following problem: what is the most general Lie algebra satisfying a given set of Lie polynomial equations? The presentation of Lie algebras by a finite set of generators and defining relations is one of the most general mathematical and algorithmic schemes of their analysis. That problem is of great practical importance, covering applications ranging from mathematical physics to combinatorial algebra. Some particular applications are constructionof prolongation algebras in the Wahlquist-Estabrook method for integrability analysis of nonlinear partial differential equations and investigation of Lie algebras arising in different physical models. The finite presentations also indicate a way to q-quantize Lie algebras. To solve this problem, one should perform a large volume of algebraic transformations which is sharply increased with growth of the number of generators and relations. For this reason, in practice one needs to use a computer algebra tool. We describe here an algorithm for constructing the basis of a finitely presented Lie algebra and its commutator table, and its implementation in the C language. Some computer results illustrating our algorithmand its actual implementation are also presented.

  10. Algebraic Varieties and System Design

    DEFF Research Database (Denmark)

    Aabrandt, Andreas

    of cover ideals of hypergraphs, the topological ranking demonstrates the non-trivial decisions that needs to be considered in system design. All the methods developed here have an underlying common structure, namely that they all appear at solution sets for systems of polynomials. These solution sets......Design and analysis of networks have many applications in the engineering sciences. This dissertation seeks to contribute to the methods used in the analysis of networks with a view towards assisting decision making processes. Networks are initially considered as objects in the category of graphs...... and later as objects in the category of hypergraphs. The connection with the category of simplicial pairs become apparent when the topology is analyzed using homological algebra. A topological ranking is developed that measures the ability of the network to stay path-connected. Combined with the analysis...

  11. Quantum ergodicity and a quantum measure algebra

    International Nuclear Information System (INIS)

    Stechel, E.B.

    1985-01-01

    A quantum ergodic theory for finite systems (such as isolated molecules) is developed by introducing the concept of a quantum measure algebra. The basic concept in classical ergodic theory is that of a measure space. A measure space is a set M, together with a specified sigma algebra of subsets in M and a measure defined on that algebra. A sigma algebra is closed under the formation of intersections and symmetric differences. A measure is a nonnegative and countably additive set function. For this to be further classified as a dynamical system, a measurable transformation is introduced. A measurable transformation is a mapping from a measure space into a measure space, such that the inverse image of every measurable set is measurable. In conservative dynamical systems, a measurable transformation is measure preserving, which is to say that the inverse image of every measurable set has the same measure as the original set. Once the measure space and the measurable transformation are defined, ergodic theory can be investigated on three levels: describable as analytic, geometric and algebraic. The analytic level studies linear operators induced by a transformation. The geometric level is concerned directly with transformations on a measure space and the algebraic treatments substitute a measure algebra for the measure space and basically equate sets that differ only by sets of measure zero. It is this latter approach that is most directly paralleled here. A measure algebra for a quantum dynamical system is defined within which stochastic concepts in quantum mechanics can be investigated. The quantum measure algebra differs from a normal measure algebra only in that multiplication is noncommutative and addition is nonassociative. Nonetheless, the quantum measure algebra preserves the essence of a normal measure algebra

  12. Yoneda algebras of almost Koszul algebras

    Indian Academy of Sciences (India)

    Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...

  13. Ready, Set, Algebra?

    Science.gov (United States)

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…

  14. Diagnosing students' misconceptions in algebra: results from an experimental pilot study.

    Science.gov (United States)

    Russell, Michael; O'Dwyer, Laura M; Miranda, Helena

    2009-05-01

    Computer-based diagnostic assessment systems hold potential to help teachers identify sources of poor performance and to connect teachers and students to learning activities designed to help advance students' conceptual understandings. The present article presents findings from a study that examined how students' performance in algebra and their overcoming of common algebraic misconceptions were affected by the use of a diagnostic assessment system that focused on important algebra concepts. This study used a four-group randomized cluster trial design in which teachers were assigned randomly to one of four groups: a "business as usual" control group, a partial intervention group that was provided with access to diagnostic tests results, a partial intervention group that was provided with access to the learning activities, and a full intervention group that was given access to the test results and learning activities. Data were collected from 905 students (6th-12th grade) nested within 44 teachers. We used hierarchical linear modeling techniques to compare the effects of full, partial, and no (control) intervention on students' algebraic ability and misconceptions. The analyses indicate that full intervention had a net positive effect on ability and misconception measures.

  15. Quantum cluster algebras and quantum nilpotent algebras

    Science.gov (United States)

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  16. An introduction to algebraic geometry and algebraic groups

    CERN Document Server

    Geck, Meinolf

    2003-01-01

    An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups

  17. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco

    2015-01-01

    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  18. Quantum complexity of graph and algebraic problems

    International Nuclear Information System (INIS)

    Doern, Sebastian

    2008-01-01

    This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)

  19. Quantum complexity of graph and algebraic problems

    Energy Technology Data Exchange (ETDEWEB)

    Doern, Sebastian

    2008-02-04

    This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)

  20. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  1. On Split Lie Algebras with Symmetric Root Systems

    Indian Academy of Sciences (India)

    ... and any I j a well described ideal of , satisfying [ I j , I k ] = 0 if j ≠ k . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected.

  2. On split Lie algebras with symmetric root systems

    Indian Academy of Sciences (India)

    ideal of L, satisfying [Ij ,Ik] = 0 if j = k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected. Keywords. Infinite dimensional Lie ...

  3. Located actions in process algebra with timing

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We propose a process algebra obtained by adapting the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, 2002, Chap. 4] to spatially located actions. This process algebra makes it possible to deal with the behaviour of systems with a

  4. Zeta functional equation on Jordan algebras of type II

    International Nuclear Information System (INIS)

    Kayoya, J.B.

    2003-10-01

    Using the Jordan algebras method, specially the properties of Peirce decomposition and the Frobenius transformation, we compute the coefficients of the zeta functional equation, in the case of Jordan algebras of Type II. As particular cases of our result, we can cite the case of V M (n, R) studied by Gelbart and Godement-Jacquet, and the case of V Herm(3, O s ) studied by Muro. Let us also mention, that recently, Bopp and Rubenthaler have obtained a more general result on the zeta functional equation by using methods based on the algebraic properties of regular graded algebras which are in one to one correspondence with simple Jordan algebras. The method used in this paper is a direct application of specific properties of Jordan algebras of Type H. (author)

  5. Application of symbolic and algebraic manipulation software in solving applied mechanics problems

    Science.gov (United States)

    Tsai, Wen-Lang; Kikuchi, Noboru

    1993-01-01

    As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role.

  6. Function algebras on finite sets basic course on many-valued logic and clone theory

    CERN Document Server

    Lau, Dietlinde

    2006-01-01

    Gives an introduction to the theory of function algebras. This book gives the general concepts of the Universal Algebra in order to familiarize the reader from the beginning on with the algebraic side of function algebras. It is a source on function algebras for students and researchers in mathematical logic and theoretical computer science.

  7. Constructing canonical bases of quantized enveloping algebras

    OpenAIRE

    Graaf, W.A. de

    2001-01-01

    An algorithm for computing the elements of a given weight of the canonical basis of a quantized enveloping algebra is described. Subsequently, a similar algorithm is presented for computing the canonical basis of a finite-dimensional module.

  8. Equivalency of two-dimensional algebras

    International Nuclear Information System (INIS)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.

    2011-01-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  9. Topological insulators and C*-algebras: Theory and numerical practice

    International Nuclear Information System (INIS)

    Hastings, Matthew B.; Loring, Terry A.

    2011-01-01

    Research highlights: → We classify topological insulators using C* algebras. → We present new K-theory invariants. → We develop efficient numerical algorithms based on this technique. → We observe unexpected quantum phase transitions using our algorithm. - Abstract: We apply ideas from C*-algebra to the study of disordered topological insulators. We extract certain almost commuting matrices from the free Fermi Hamiltonian, describing band projected coordinate matrices. By considering topological obstructions to approximating these matrices by exactly commuting matrices, we are able to compute invariants quantifying different topological phases. We generalize previous two dimensional results to higher dimensions; we give a general expression for the topological invariants for arbitrary dimension and several symmetry classes, including chiral symmetry classes, and we present a detailed K-theory treatment of this expression for time reversal invariant three dimensional systems. We can use these results to show non-existence of localized Wannier functions for these systems. We use this approach to calculate the index for time-reversal invariant systems with spin-orbit scattering in three dimensions, on sizes up to 12 3 , averaging over a large number of samples. The results show an interesting separation between the localization transition and the point at which the average index (which can be viewed as an 'order parameter' for the topological insulator) begins to fluctuate from sample to sample, implying the existence of an unsuspected quantum phase transition separating two different delocalized phases in this system. One of the particular advantages of the C*-algebraic technique that we present is that it is significantly faster in practice than other methods of computing the index, allowing the study of larger systems. In this paper, we present a detailed discussion of numerical implementation of our method.

  10. Real-Time Algebraic Derivative Estimations Using a Novel Low-Cost Architecture Based on Reconfigurable Logic

    Science.gov (United States)

    Morales, Rafael; Rincón, Fernando; Gazzano, Julio Dondo; López, Juan Carlos

    2014-01-01

    Time derivative estimation of signals plays a very important role in several fields, such as signal processing and control engineering, just to name a few of them. For that purpose, a non-asymptotic algebraic procedure for the approximate estimation of the system states is used in this work. The method is based on results from differential algebra and furnishes some general formulae for the time derivatives of a measurable signal in which two algebraic derivative estimators run simultaneously, but in an overlapping fashion. The algebraic derivative algorithm presented in this paper is computed online and in real-time, offering high robustness properties with regard to corrupting noises, versatility and ease of implementation. Besides, in this work, we introduce a novel architecture to accelerate this algebraic derivative estimator using reconfigurable logic. The core of the algorithm is implemented in an FPGA, improving the speed of the system and achieving real-time performance. Finally, this work proposes a low-cost platform for the integration of hardware in the loop in MATLAB. PMID:24859033

  11. THE CONCEPT OF THE EDUCATIONAL COMPUTER MATHEMATICS SYSTEM AND EXAMPLES OF ITS IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    M. Lvov

    2014-11-01

    Full Text Available The article deals with the educational computer mathematics system, based in Kherson State University and resulted in more than 8 software tools to orders of the Ministry of Education, Science, Youth and Sports of Ukraine. The exact and natural sciences are notable among all disciplines both in secondary schools and universities. They form the fundamental scientific knowledge, based on precise mathematical models and methods. The educational process for these courses should include not only lectures and seminars, but active forms of studying as well: practical classes, laboratory work, practical training, etc. The enumerated peculiarities determine specific intellectual and architectural properties of information technologies, developed to be used in the educational process of these disciplines. Whereas, in terms of technologies used in the implementation of the functionality of software, they are actually the educational computer algebra system. Thus the algebraic programming system APS developed in the Institute of Cybernetics of the National Academy of Sciences of Ukraine led by Academician O.A. Letychevskyi in the 80 years of the twentieth century is especially important for their development.

  12. Automorphic Lie algebras with dihedral symmetry

    International Nuclear Information System (INIS)

    Knibbeler, V; Lombardo, S; A Sanders, J

    2014-01-01

    The concept of automorphic Lie algebras arises in the context of reduction groups introduced in the early 1980s in the field of integrable systems. automorphic Lie algebras are obtained by imposing a discrete group symmetry on a current algebra of Krichever–Novikov type. Past work shows remarkable uniformity between algebras associated to different reduction groups. For example, if the base Lie algebra is sl 2 (C) and the poles of the automorphic Lie algebra are restricted to an exceptional orbit of the symmetry group, changing the reduction group does not affect the Lie algebra structure. In this research we fix the reduction group to be the dihedral group and vary the orbit of poles as well as the group action on the base Lie algebra. We find a uniform description of automorphic Lie algebras with dihedral symmetry, valid for poles at exceptional and generic orbits. (paper)

  13. Upper bound for the length of commutative algebras

    International Nuclear Information System (INIS)

    Markova, Ol'ga V

    2009-01-01

    By the length of a finite system of generators for a finite-dimensional associative algebra over an arbitrary field one means the least positive integer k such that the words of length not exceeding k span this algebra (as a vector space). The maximum length for the systems of generators of an algebra is referred to as the length of the algebra. In the present paper, an upper bound for the length of a commutative algebra in terms of a function of two invariants of the algebra, the dimension and the maximal degree of the minimal polynomial for the elements of the algebra, is obtained. As a corollary, a formula for the length of the algebra of diagonal matrices over an arbitrary field is obtained. Bibliography: 8 titles.

  14. Advances in Statistical Control, Algebraic Systems Theory, and Dynamic Systems Characteristics A Tribute to Michael K Sain

    CERN Document Server

    Won, Chang-Hee; Michel, Anthony N

    2008-01-01

    This volume - dedicated to Michael K. Sain on the occasion of his seventieth birthday - is a collection of chapters covering recent advances in stochastic optimal control theory and algebraic systems theory. Written by experts in their respective fields, the chapters are thematically organized into four parts: Part I focuses on statistical control theory, where the cost function is viewed as a random variable and performance is shaped through cost cumulants. In this respect, statistical control generalizes linear-quadratic-Gaussian and H-infinity control. Part II addresses algebraic systems th

  15. Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra

    NARCIS (Netherlands)

    van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud

    1995-01-01

    We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).

  16. Algebraic K-theory of crystallographic groups the three-dimensional splitting case

    CERN Document Server

    Farley, Daniel Scott

    2014-01-01

    The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field.

  17. An Ada Linear-Algebra Software Package Modeled After HAL/S

    Science.gov (United States)

    Klumpp, Allan R.; Lawson, Charles L.

    1990-01-01

    New avionics software written more easily. Software package extends Ada programming language to include linear-algebra capabilities similar to those of HAL/S programming language. Designed for such avionics applications as Space Station flight software. In addition to built-in functions of HAL/S, package incorporates quaternion functions used in Space Shuttle and Galileo projects and routines from LINPAK solving systems of equations involving general square matrices. Contains two generic programs: one for floating-point computations and one for integer computations. Written on IBM/AT personal computer running under PC DOS, v.3.1.

  18. The relation between quantum W algebras and Lie algebras

    International Nuclear Information System (INIS)

    Boer, J. de; Tjin, T.

    1994-01-01

    By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)

  19. Geometric algebra with applications in science and engineering

    CERN Document Server

    Sobczyk, Garret

    2001-01-01

    The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer­ ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar­ ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math­ ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling ...

  20. 2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras

    International Nuclear Information System (INIS)

    Ayupov, Shavkat; Kudaybergenov, Karimbergen

    2016-01-01

    The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2 n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation. (paper)

  1. Evolution algebras generated by Gibbs measures

    International Nuclear Information System (INIS)

    Rozikov, Utkir A.; Tian, Jianjun Paul

    2009-03-01

    In this article we study algebraic structures of function spaces defined by graphs and state spaces equipped with Gibbs measures by associating evolution algebras. We give a constructive description of associating evolution algebras to the function spaces (cell spaces) defined by graphs and state spaces and Gibbs measure μ. For finite graphs we find some evolution subalgebras and other useful properties of the algebras. We obtain a structure theorem for evolution algebras when graphs are finite and connected. We prove that for a fixed finite graph, the function spaces have a unique algebraic structure since all evolution algebras are isomorphic to each other for whichever Gibbs measures are assigned. When graphs are infinite graphs then our construction allows a natural introduction of thermodynamics in studying of several systems of biology, physics and mathematics by theory of evolution algebras. (author)

  2. Quantum cluster algebra structures on quantum nilpotent algebras

    CERN Document Server

    Goodearl, K R

    2017-01-01

    All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.

  3. Computing algebraic transfer entropy and coupling directions via transcripts

    Science.gov (United States)

    Amigó, José M.; Monetti, Roberto; Graff, Beata; Graff, Grzegorz

    2016-11-01

    Most random processes studied in nonlinear time series analysis take values on sets endowed with a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate with each pair of group elements a third element, called their transcript, which is defined as the product of the second element in the pair times the first one. The transfer entropy of two such processes is called algebraic transfer entropy. It measures the information transferred between two coupled processes whose values belong to a group. In this paper, we show that, subject to one constraint, the algebraic transfer entropy matches the (in general, conditional) mutual information of certain transcripts with one variable less. This property has interesting practical applications, especially to the analysis of short time series. We also derive weak conditions for the 3-dimensional algebraic transfer entropy to yield the same coupling direction as the corresponding mutual information of transcripts. A related issue concerns the use of mutual information of transcripts to determine coupling directions in cases where the conditions just mentioned are not fulfilled. We checked the latter possibility in the lowest dimensional case with numerical simulations and cardiovascular data, and obtained positive results.

  4. Real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1993-01-01

    The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication

  5. Learning Activity Package, Algebra.

    Science.gov (United States)

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

  6. Fredholm Modules over Graph C-Algebras

    DEFF Research Database (Denmark)

    Crisp, Tyrone

    2015-01-01

    We present two applications of explicit formulas, due to Cuntz and Krieger, for computations in K-homology of graph C∗-algebras. We prove that every K-homology class for such an algebra is represented by a Fredholm module having finite-rank commutators, and we exhibit generating Fredholm modules...

  7. On the Use of an Algebraic Signature Analyzer for Mixed-Signal Systems Testing

    Directory of Open Access Journals (Sweden)

    Vadim Geurkov

    2014-01-01

    Full Text Available We propose an approach to design of an algebraic signature analyzer that can be used for mixed-signal systems testing. The analyzer does not contain carry propagating circuitry, which improves its performance as well as fault tolerance. The common design technique of a signature analyzer for mixed-signal systems is based on the rules of an arithmetic finite field. The application of this technique to the systems with an arbitrary radix is a challenging task and the devices designed possess high hardware complexity. The proposed technique is simple and applicable to systems of any size and radix. The hardware complexity is low. The technique can also be used in arithmetic/algebraic coding and cryptography.

  8. On the classification of quantum W-algebras

    International Nuclear Information System (INIS)

    Bowcock, P.; Watts, G.T.M.

    1992-01-01

    In this paper we consider the structure of general quantum W-algebras. We introduce the notions of deformability, positive-definiteness, and reductivity of a W-algebra. We show that one can associate a reductive finite Lie algebra to each reductive W-algebra. The finite Lie algebra is also endowed with a preferred sl(2) subalgebra, which gives the conformal weights of the W-algebra. We extend this to cover W-algebras containing both bosonic and fermionic fields, and illustrate our ideas with the Poisson bracket algebras of generalised Drinfeld-Sokolov hamiltonian systems. We then discuss the possibilities of classifying deformable W-algebras which fall outside this class in the context of automorphisms of Lie algebras. In conclusion we list the cases in which the W-algebra has no weight-one fields, and further, those in which it has only one weight-two field. (orig.)

  9. Quadratic algebras

    CERN Document Server

    Polishchuk, Alexander

    2005-01-01

    Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

  10. Regularity of C*-algebras and central sequence algebras

    DEFF Research Database (Denmark)

    Christensen, Martin S.

    The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...

  11. Dynamical systems and algebra associated with seperated graphs

    DEFF Research Database (Denmark)

    Lolk, Matias

    In this thesis, we study partial dynamical systems and graph algebras arising from nitely separated graphs. The thesis consists of an introduction followed by three papers, the rst of which is joint work with Pere Ara. In Article [A], we introduce convex subshifts, an abstract generalisation...... of the partial dynamical systems associated with nite separated graphs. We dene notions of a nite and innite type convex subshift and show that all such dynamical systems arise from a nite bipartite separated graph up to a suitable type of equivalence. We then study various aspects of the ideal structure...

  12. Evolution of perturbed dynamical systems: analytical computation with time independent accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Gurzadyan, A.V. [Russian-Armenian (Slavonic) University, Department of Mathematics and Mathematical Modelling, Yerevan (Armenia); Kocharyan, A.A. [Monash University, School of Physics and Astronomy, Clayton (Australia)

    2016-12-15

    An analytical method for investigation of the evolution of dynamical systems with independent on time accuracy is developed for perturbed Hamiltonian systems. The error-free estimation using of computer algebra enables the application of the method to complex multi-dimensional Hamiltonian and dissipative systems. It also opens principal opportunities for the qualitative study of chaotic trajectories. The performance of the method is demonstrated on perturbed two-oscillator systems. It can be applied to various non-linear physical and astrophysical systems, e.g. to long-term planetary dynamics. (orig.)

  13. Real division algebras and other algebras motivated by physics

    International Nuclear Information System (INIS)

    Benkart, G.; Osborn, J.M.

    1981-01-01

    In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations

  14. Matrix Operations for Engineers and Scientists An Essential Guide in Linear Algebra

    CERN Document Server

    Jeffrey, Alan

    2010-01-01

    Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designe...

  15. Finite automata, their algebras and grammars towards a theory of formal expressions

    CERN Document Server

    Büchi, J Richard

    1989-01-01

    The author, who died in 1984, is well-known both as a person and through his research in mathematical logic and theoretical computer science. In the first part of the book he presents the new classical theory of finite automata as unary algebras which he himself invented about 30 years ago. Many results, like his work on structure lattices or his characterization of regular sets by generalized regular rules, are unknown to a wider audience. In the second part of the book he extends the theory to general (non-unary, many-sorted) algebras, term rewriting systems, tree automata, and pushdown automata. Essentially Büchi worked independent of other rersearch, following a novel and stimulating approach. He aimed for a mathematical theory of terms, but could not finish the book. Many of the results are known by now, but to work further along this line presents a challenging research program on the borderline between universal algebra, term rewriting systems, and automata theory. For the whole book and aga...

  16. Comments on two-loop Kac-Moody algebras

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, L A; Gomes, J F; Zimerman, A H [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Schwimmer, A [Istituto Nazionale di Fisica Nucleare, Trieste (Italy)

    1991-10-01

    It is shown that the two-loop Kac-Moody algebra is equivalent to a two variable loop algebra and a decouple {beta}-{gamma} system. Similarly WZNW and CSW models having as algebraic structure the Kac-Moody algebra are equivalent to an infinity to versions of the corresponding ordinary models and decoupled Abelian fields. (author). 15 refs.

  17. Generalized Lotka—Volterra systems connected with simple Lie algebras

    International Nuclear Information System (INIS)

    Charalambides, Stelios A; Damianou, Pantelis A; Evripidou, Charalambos A

    2015-01-01

    We devise a new method for producing Hamiltonian systems by constructing the corresponding Lax pairs. This is achieved by considering a larger subset of the positive roots than the simple roots of the root system of a simple Lie algebra. We classify all subsets of the positive roots of the root system of type A n for which the corresponding Hamiltonian systems are transformed, via a simple change of variables, to Lotka-Volterra systems. For some special cases of subsets of the positive roots of the root system of type A n , we produce new integrable Hamiltonian systems. (paper)

  18. Generalized Lotka—Volterra systems connected with simple Lie algebras

    Science.gov (United States)

    Charalambides, Stelios A.; Damianou, Pantelis A.; Evripidou, Charalambos A.

    2015-06-01

    We devise a new method for producing Hamiltonian systems by constructing the corresponding Lax pairs. This is achieved by considering a larger subset of the positive roots than the simple roots of the root system of a simple Lie algebra. We classify all subsets of the positive roots of the root system of type An for which the corresponding Hamiltonian systems are transformed, via a simple change of variables, to Lotka-Volterra systems. For some special cases of subsets of the positive roots of the root system of type An, we produce new integrable Hamiltonian systems.

  19. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  20. Finite W-algebras and intermediate statistics

    International Nuclear Information System (INIS)

    Barbarin, F.; Ragoucy, E.; Sorba, P.

    1995-01-01

    New realizations of finite W-algebras are constructed by relaxing the usual constraint conditions. Then finite W-algebras are recognized in the Heisenberg quantization recently proposed by Leinaas and Myrheim, for a system of two identical particles in d dimensions. As the anyonic parameter is directly associated to the W-algebra involved in the d=1 case, it is natural to consider that the W-algebra framework is well adapted for a possible generalization of the anyon statistics. ((orig.))

  1. Methods of algebraic geometry in control theory

    CERN Document Server

    Falb, Peter

    1999-01-01

    "Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of this book is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory" .* The development which culminated with this volume began over twenty-five years ago with a series of lectures at the control group of the Lund Institute of Technology in Sweden. I have sought throughout to strive for clarity, often using constructive methods and giving several proofs of a particular result as well as many examples. The first volume dealt with the simplest control systems (i.e., single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i.e., affine algebraic geometry). While this is qui...

  2. Kac-Moody algebras and controlled chaos

    International Nuclear Information System (INIS)

    Wesley, Daniel H

    2007-01-01

    Compactification can control chaotic Mixmaster behaviour in gravitational systems with p-form matter: we consider this in light of the connection between supergravity models and Kac-Moody algebras. We show that different compactifications define 'mutations' of the algebras associated with the noncompact theories. We list the algebras obtained in this way, and find novel examples of wall systems determined by Lorentzian (but not hyperbolic) algebras. Cosmological models with a smooth pre-big bang phase require that chaos is absent: we show that compactification alone cannot eliminate chaos in the simplest compactifications of the heterotic string on a Calabi-Yau, or M theory on a manifold of G 2 holonomy. (fast track communication)

  3. Surface defects and chiral algebras

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States); Gaiotto, Davide [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Shao, Shu-Heng [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States)

    2017-05-26

    We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.

  4. Algebraic and adaptive learning in neural control systems

    Science.gov (United States)

    Ferrari, Silvia

    A systematic approach is developed for designing adaptive and reconfigurable nonlinear control systems that are applicable to plants modeled by ordinary differential equations. The nonlinear controller comprising a network of neural networks is taught using a two-phase learning procedure realized through novel techniques for initialization, on-line training, and adaptive critic design. A critical observation is that the gradients of the functions defined by the neural networks must equal corresponding linear gain matrices at chosen operating points. On-line training is based on a dual heuristic adaptive critic architecture that improves control for large, coupled motions by accounting for actual plant dynamics and nonlinear effects. An action network computes the optimal control law; a critic network predicts the derivative of the cost-to-go with respect to the state. Both networks are algebraically initialized based on prior knowledge of satisfactory pointwise linear controllers and continue to adapt on line during full-scale simulations of the plant. On-line training takes place sequentially over discrete periods of time and involves several numerical procedures. A backpropagating algorithm called Resilient Backpropagation is modified and successfully implemented to meet these objectives, without excessive computational expense. This adaptive controller is as conservative as the linear designs and as effective as a global nonlinear controller. The method is successfully implemented for the full-envelope control of a six-degree-of-freedom aircraft simulation. The results show that the on-line adaptation brings about improved performance with respect to the initialization phase during aircraft maneuvers that involve large-angle and coupled dynamics, and parameter variations.

  5. Algebraic classification of the conformal tensor

    International Nuclear Information System (INIS)

    Ares de Parga, Gonzalo; Chavoya, O.; Lopez B, J.L.; Ovando Z, Gerardo

    1989-01-01

    Starting from the Petrov matrix method, we deduce a new algorithm (adaptable to computers), within the Newman-Penrose formalism, to obtain the algebraic type of the Weyl tensor in general relativity. (author)

  6. Quantization and representation theory of finite W algebras

    International Nuclear Information System (INIS)

    Boer, J. de; Tjin, T.

    1993-01-01

    In this paper we study the finitely generated algebras underlying W algebras. These so called 'finite W algebras' are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings of sl 2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finite W algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finite W symmetry. In the second part we BRST quantize the finite W algebras. The BRST cohomoloy is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finite W algebras in one stroke. Examples are given. In the last part of the paper we study the representation theory of finite W algebras. It is shown, using a quantum inversion of the generalized Miura transformation, that the representations of finite W algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finite W algebras. (orig.)

  7. Finite W-algebras and intermediate statistics

    International Nuclear Information System (INIS)

    Barbarin, F.; Ragoucy, E.; Sorba, P.

    1994-09-01

    New realizations of finite W-algebras are constructed by relaxing the usual conditions. Then finite W-algebras are recognized in the Heisenberg quantization recently proposed by Leinaas and Myrheim, for a system of two identical particles in d dimensions. As the anyonic parameter is directly associated to the W-algebra involved in the d=1 case, it is natural to consider that the W-algebra framework is well adapted for a possible generalization of the anyon statistics. (author). 13 refs

  8. ADART: an adaptive algebraic reconstruction algorithm for discrete tomography.

    Science.gov (United States)

    Maestre-Deusto, F Javier; Scavello, Giovanni; Pizarro, Joaquín; Galindo, Pedro L

    2011-08-01

    In this paper we suggest an algorithm based on the Discrete Algebraic Reconstruction Technique (DART) which is capable of computing high quality reconstructions from substantially fewer projections than required for conventional continuous tomography. Adaptive DART (ADART) goes a step further than DART on the reduction of the number of unknowns of the associated linear system achieving a significant reduction in the pixel error rate of reconstructed objects. The proposed methodology automatically adapts the border definition criterion at each iteration, resulting in a reduction of the number of pixels belonging to the border, and consequently of the number of unknowns in the general algebraic reconstruction linear system to be solved, being this reduction specially important at the final stage of the iterative process. Experimental results show that reconstruction errors are considerably reduced using ADART when compared to original DART, both in clean and noisy environments.

  9. Universal algebra

    CERN Document Server

    Grätzer, George

    1979-01-01

    Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

  10. Fractal Shapes Description with Parametric L-systems and Turtle Algebra

    OpenAIRE

    Ikbal Zammouri; Béchir Ayeb

    2007-01-01

    In this paper, we propose a new method to describe fractal shapes using parametric l-systems. First we introduce scaling factors in the production rules of the parametric l-systems grammars. Then we decorticate these grammars with scaling factors using turtle algebra to show the mathematical relation between l-systems and iterated function systems (IFS). We demonstrate that with specific values of the scaling factors, we find the exact relationship established by Prusinkiewicz and Hammel betw...

  11. A program for constructing finitely presented Lie algebras and superalgebras

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Kornyak, V.V.

    1997-01-01

    The purpose of this paper is to describe a C program FPLSA for investigating finitely presented Lie algebras and superalgebras. The underlying algorithm is based on constructing the complete set of relations called also standard basis or Groebner basis of ideal of free Lie (super) algebra generated by the input set of relations. The program may be used, in particular, to compute the Lie (super)algebra basis elements and its structure constants, to classify the finitely presented algebras depending on the values of parameters in the relations, and to construct the Hilbert series. These problems are illustrated by examples. (orig.)

  12. Extended Virasoro algebra and algebra of area preserving diffeomorphisms

    International Nuclear Information System (INIS)

    Arakelyan, T.A.

    1990-01-01

    The algebra of area preserving diffeomorphism plays an important role in the theory of relativistic membranes. It is pointed out that the relation between this algebra and the extended Virasoro algebra associated with the generalized Kac-Moody algebras G(T 2 ). The highest weight representation of these infinite-dimensional algebras as well as of their subalgebras is studied. 5 refs

  13. Parts of the Whole: An Algebra Lesson

    Directory of Open Access Journals (Sweden)

    Dorothy Wallace

    2011-07-01

    Full Text Available This column draws on research of Eon Harper to demonstrate how an understanding of his proposed stages of algebra acquisition would inform a systemic overhaul of algebra education. Harper's stages also explain why students may pass a series of algebra courses yet still be unable to make sense of calculus, as well as offering insight on what aspects of algebra support quantitative literacy.

  14. Algebraic structure of a generalized coupled dispersionless system

    International Nuclear Information System (INIS)

    Victor, Kuetche Kamgang; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin

    2006-01-01

    We study a physical model of the O(3)-invariant coupled integrable dispersionless equations that describes the dynamic of a focused system within the background of a plane gravitational field. The investigation is carried out both numerically and analytically, and realized beneath some assumptions superseding the structure constant with the structure function implemented in Lie algebra and quasigroup theory, respectively. The energy density and topological structures such as loop soliton are examined

  15. Geometric optimization and sums of algebraic functions

    KAUST Repository

    Vigneron, Antoine E.

    2014-01-01

    We present a new optimization technique that yields the first FPTAS for several geometric problems. These problems reduce to optimizing a sum of nonnegative, constant description complexity algebraic functions. We first give an FPTAS for optimizing such a sum of algebraic functions, and then we apply it to several geometric optimization problems. We obtain the first FPTAS for two fundamental geometric shape-matching problems in fixed dimension: maximizing the volume of overlap of two polyhedra under rigid motions and minimizing their symmetric difference. We obtain the first FPTAS for other problems in fixed dimension, such as computing an optimal ray in a weighted subdivision, finding the largest axially symmetric subset of a polyhedron, and computing minimum-area hulls.

  16. IDEALS GENERATED BY LINEAR FORMS AND SYMMETRIC ALGEBRAS

    Directory of Open Access Journals (Sweden)

    Gaetana Restuccia

    2016-01-01

    Full Text Available We consider ideals generated by linear forms in the variables X1 : : : ;Xn in the polynomial ring R[X1; : : : ;Xn], being R a commutative, Noetherian ring with identity. We investigate when a sequence a1; a2; : : : ; am of linear forms is an ssequence, in order to compute algebraic invariants of the symmetric algebra of the ideal I = (a1; a2; : : : ; am.

  17. An application of the division algebras, Jordan algebras and split composition algebras

    International Nuclear Information System (INIS)

    Foot, R.; Joshi, G.C.

    1992-01-01

    It has been established that the covering group of the Lorentz group in D = 3, 4, 6, 10 can be expressed in a unified way, based on the four composition division algebras R, C, Q and O. In this paper, the authors discuss, in this framework, the role of the complex numbers of quantum mechanics. A unified treatment of quantum-mechanical spinors is given. The authors provide an explicit demonstration that the vector and spinor transformations recently constructed from a subgroup of the reduced structure group of the Jordan algebras M n 3 are indeed the Lorentz transformations. The authors also show that if the division algebras in the construction of the covering groups of the Lorentz groups in D = 3, 4, 6, 10 are replaced by the split composition algebras, then the sequence of groups SO(2, 2), SO(3, 3) and SO(5, 5) result. The analysis is presumed to be self-contained as the relevant aspects of the division algebras and Jordan algebras are reviewed. Some applications to physical theory are indicated

  18. Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra

    CERN Document Server

    Pitsch, Wolfgang; Zarzuela, Santiago

    2016-01-01

    This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...

  19. Krichever-Novikov type algebras theory and applications

    CERN Document Server

    Schlichenmaier, Martin

    2014-01-01

    Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are

  20. Basic matrix algebra and transistor circuits

    CERN Document Server

    Zelinger, G

    1963-01-01

    Basic Matrix Algebra and Transistor Circuits deals with mastering the techniques of matrix algebra for application in transistors. This book attempts to unify fundamental subjects, such as matrix algebra, four-terminal network theory, transistor equivalent circuits, and pertinent design matters. Part I of this book focuses on basic matrix algebra of four-terminal networks, with descriptions of the different systems of matrices. This part also discusses both simple and complex network configurations and their associated transmission. This discussion is followed by the alternative methods of de

  1. The Usage of Programming Software “The Library of Electronic Visual Aids “Algebra 7-9” During Algebra Learning in 7-9 Forms.

    Directory of Open Access Journals (Sweden)

    V.A. Kreknin

    2008-06-01

    Full Text Available The Programming software “The Library of Electronic Visual Aids “Algebra 7-9” for secondary institutions was developed for the computer support of algebra classes in 7-9 forms of secondary school. The present article describes the data about its basic characteristics features and possibilities.

  2. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    Science.gov (United States)

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  3. Structural analysis and design of multivariable control systems: An algebraic approach

    Science.gov (United States)

    Tsay, Yih Tsong; Shieh, Leang-San; Barnett, Stephen

    1988-01-01

    The application of algebraic system theory to the design of controllers for multivariable (MV) systems is explored analytically using an approach based on state-space representations and matrix-fraction descriptions. Chapters are devoted to characteristic lambda matrices and canonical descriptions of MIMO systems; spectral analysis, divisors, and spectral factors of nonsingular lambda matrices; feedback control of MV systems; and structural decomposition theories and their application to MV control systems.

  4. Algebra

    CERN Document Server

    Tabak, John

    2004-01-01

    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  5. Iwahori-Hecke algebras and Schur algebras of the symmetric group

    CERN Document Server

    Mathas, Andrew

    1999-01-01

    This volume presents a fully self-contained introduction to the modular representation theory of the Iwahori-Hecke algebras of the symmetric groups and of the q-Schur algebras. The study of these algebras was pioneered by Dipper and James in a series of landmark papers. The primary goal of the book is to classify the blocks and the simple modules of both algebras. The final chapter contains a survey of recent advances and open problems. The main results are proved by showing that the Iwahori-Hecke algebras and q-Schur algebras are cellular algebras (in the sense of Graham and Lehrer). This is proved by exhibiting natural bases of both algebras which are indexed by pairs of standard and semistandard tableaux respectively. Using the machinery of cellular algebras, which is developed in Chapter 2, this results in a clean and elegant classification of the irreducible representations of both algebras. The block theory is approached by first proving an analogue of the Jantzen sum formula for the q-Schur algebras. T...

  6. Representations of Lie algebras and partial differential equations

    CERN Document Server

    Xu, Xiaoping

    2017-01-01

    This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students.  Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...

  7. Mathematical Model for Dengue Epidemics with Differential Susceptibility and Asymptomatic Patients Using Computer Algebra

    Science.gov (United States)

    Saldarriaga Vargas, Clarita

    When there are diseases affecting large populations where the social, economic and cultural diversity is significant within the same region, the biological parameters that determine the behavior of the dispersion disease analysis are affected by the selection of different individuals. Therefore and because of the variety and magnitude of the communities at risk of contracting dengue disease around all over the world, suggest defining differentiated populations with individual contributions in the results of the dispersion dengue disease analysis. In this paper those conditions were taken in account when several epidemiologic models were analyzed. Initially a stability analysis was done for a SEIR mathematical model of Dengue disease without differential susceptibility. Both free disease and endemic equilibrium states were found in terms of the basic reproduction number and were defined in the Theorem (3.1). Then a DSEIR model was solved when a new susceptible group was introduced to consider the effects of important biological parameters of non-homogeneous populations in the spreading analysis. The results were compiled in the Theorem (3.2). Finally Theorems (3.3) and (3.4) resumed the basic reproduction numbers for three and n different susceptible groups respectively, giving an idea of how differential susceptibility affects the equilibrium states. The computations were done using an algorithmic method implemented in Maple 11, a general-purpose computer algebra system.

  8. Algebra of pseudo-differential operators over C*-algebra

    International Nuclear Information System (INIS)

    Mohammad, N.

    1982-08-01

    Algebras of pseudo-differential operators over C*-algebras are studied for the special case when in Hormander class Ssub(rho,delta)sup(m)(Ω) Ω = Rsup(n); rho = 1, delta = 0, m any real number, and the C*-algebra is infinite dimensional non-commutative. The space B, i.e. the set of A-valued C*-functions in Rsup(n) (or Rsup(n) x Rsup(n)) whose derivatives are all bounded, plays an important role. A denotes C*-algebra. First the operator class Ssub(phi,0)sup(m) is defined, and through it, the class Lsub(1,0)sup(m) of pseudo-differential operators. Then the basic asymptotic expansion theorems concerning adjoint and product of operators of class Ssub(1,0)sup(m) are stated. Finally, proofs are given of L 2 -continuity theorem and the main theorem, which states that algebra of all pseudo-differential operators over C*-algebras is itself C*-algebra

  9. Geometric Algebra Techniques in Flux Compactifications

    International Nuclear Information System (INIS)

    Coman, Ioana Alexandra; Lazaroiu, Calin Iuliu; Babalic, Elena Mirela

    2016-01-01

    We study “constrained generalized Killing (s)pinors,” which characterize supersymmetric flux compactifications of supergravity theories. Using geometric algebra techniques, we give conceptually clear and computationally effective methods for translating supersymmetry conditions into differential and algebraic constraints on collections of differential forms. In particular, we give a synthetic description of Fierz identities, which are an important ingredient of such problems. As an application, we show how our approach can be used to efficiently treat N=1 compactification of M-theory on eight manifolds and prove that we recover results previously obtained in the literature.

  10. The super-W sub infinity (. lambda. ) algebra

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, E; Vasiliev, M [European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Wit, B de [Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica

    1991-03-07

    We present the super-W{sub {infinity}}({lambda}) algebra, an extension of the Virasoro algebra that contains operators of al spins s {ge} 1/2 and depends on an arbitrary parameter {lambda}. It encompasses all previously known versions of W{sub {infinity}}-type algebras as special cases. We discuss various properties and truncations of the algebra and present a realization in terms of the currents of a supersymmetric bc system. (orig.).

  11. Genetic coding and united-hypercomplex systems in the models of algebraic biology.

    Science.gov (United States)

    Petoukhov, Sergey V

    2017-08-01

    Structured alphabets of DNA and RNA in their matrix form of representations are connected with Walsh functions and a new type of systems of multidimensional numbers. This type generalizes systems of complex numbers and hypercomplex numbers, which serve as the basis of mathematical natural sciences and many technologies. The new systems of multi-dimensional numbers have interesting mathematical properties and are called in a general case as "systems of united-hypercomplex numbers" (or briefly "U-hypercomplex numbers"). They can be widely used in models of multi-parametrical systems in the field of algebraic biology, artificial life, devices of biological inspired artificial intelligence, etc. In particular, an application of U-hypercomplex numbers reveals hidden properties of genetic alphabets under cyclic permutations in their doublets and triplets. A special attention is devoted to the author's hypothesis about a multi-linguistic in DNA-sequences in a relation with an ensemble of U-numerical sub-alphabets. Genetic multi-linguistic is considered as an important factor to provide noise-immunity properties of the multi-channel genetic coding. Our results attest to the conformity of the algebraic properties of the U-numerical systems with phenomenological properties of the DNA-alphabets and with the complementary device of the double DNA-helix. It seems that in the modeling field of algebraic biology the genetic-informational organization of living bodies can be considered as a set of united-hypercomplex numbers in some association with the famous slogan of Pythagoras "the numbers rule the world". Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Jordan algebras versus C*- algebras

    International Nuclear Information System (INIS)

    Stormer, E.

    1976-01-01

    The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)

  13. Realization of preconditioned Lanczos and conjugate gradient algorithms on optical linear algebra processors.

    Science.gov (United States)

    Ghosh, A

    1988-08-01

    Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.

  14. Elements of matrix modeling and computing with Matlab

    CERN Document Server

    White, Robert E

    2006-01-01

    As discrete models and computing have become more common, there is a need to study matrix computation and numerical linear algebra. Encompassing a diverse mathematical core, Elements of Matrix Modeling and Computing with MATLAB examines a variety of applications and their modeling processes, showing you how to develop matrix models and solve algebraic systems. Emphasizing practical skills, it creates a bridge from problems with two and three variables to more realistic problems that have additional variables. Elements of Matrix Modeling and Computing with MATLAB focuses on seven basic applicat

  15. Quantum algebra of N superspace

    International Nuclear Information System (INIS)

    Hatcher, Nicolas; Restuccia, A.; Stephany, J.

    2007-01-01

    We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the κ-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra

  16. A Cohomological Perspective on Algebraic Quantum Field Theory

    Science.gov (United States)

    Hawkins, Eli

    2018-05-01

    Algebraic quantum field theory is considered from the perspective of the Hochschild cohomology bicomplex. This is a framework for studying deformations and symmetries. Deformation is a possible approach to the fundamental challenge of constructing interacting QFT models. Symmetry is the primary tool for understanding the structure and properties of a QFT model. This perspective leads to a generalization of the algebraic quantum field theory framework, as well as a more general definition of symmetry. This means that some models may have symmetries that were not previously recognized or exploited. To first order, a deformation of a QFT model is described by a Hochschild cohomology class. A deformation could, for example, correspond to adding an interaction term to a Lagrangian. The cohomology class for such an interaction is computed here. However, the result is more general and does not require the undeformed model to be constructed from a Lagrangian. This computation leads to a more concrete version of the construction of perturbative algebraic quantum field theory.

  17. A Cohomological Perspective on Algebraic Quantum Field Theory

    Science.gov (United States)

    Hawkins, Eli

    2018-02-01

    Algebraic quantum field theory is considered from the perspective of the Hochschild cohomology bicomplex. This is a framework for studying deformations and symmetries. Deformation is a possible approach to the fundamental challenge of constructing interacting QFT models. Symmetry is the primary tool for understanding the structure and properties of a QFT model. This perspective leads to a generalization of the algebraic quantum field theory framework, as well as a more general definition of symmetry. This means that some models may have symmetries that were not previously recognized or exploited. To first order, a deformation of a QFT model is described by a Hochschild cohomology class. A deformation could, for example, correspond to adding an interaction term to a Lagrangian. The cohomology class for such an interaction is computed here. However, the result is more general and does not require the undeformed model to be constructed from a Lagrangian. This computation leads to a more concrete version of the construction of perturbative algebraic quantum field theory.

  18. Contribution to the minimization of time for the solution of algebraic differential equations system

    International Nuclear Information System (INIS)

    Michael, Samir.

    1982-11-01

    This note deals with the solution of large algebraic-differential systems involved in physical sciences specially in electronics and nuclear physics. The theoretical aspects for the stability of multistep methods is presented in detail. The stability condition is developed and we present our own conditions of stability. These conditions give rise to many new formulae that have very small truncation error. However for a real time simulation, it is necessary to obtain a very high computation speed. For this purpose, we have considered a multiprocessor machine and we have investigated the parallelization of the algorithm of generalized GEAR method. For a linear system, the method of GAUSS-JORDAN is used with some modifications. A new algorithm is presented for parallel matrix multiplication. This research work has been applied to the resolution of a system of equations corresponding to an experiment of gamma thermometry in a nuclear reactor (four thermometers in this case) [fr

  19. Implicative Algebras

    African Journals Online (AJOL)

    Tadesse

    In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...

  20. Open algebraic surfaces

    CERN Document Server

    Miyanishi, Masayoshi

    2000-01-01

    Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...

  1. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  2. Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras

    Science.gov (United States)

    Escobar-Ruiz, Mauricio A.; Kalnins, Ernest G.; Miller, Willar, Jr.; Subag, Eyal

    2017-03-01

    Quadratic algebras are generalizations of Lie algebras which include the symmetry algebras of 2nd order superintegrable systems in 2 dimensions as special cases. The superintegrable systems are exactly solvable physical systems in classical and quantum mechanics. Distinct superintegrable systems and their quadratic algebras can be related by geometric contractions, induced by Bôcher contractions of the conformal Lie algebra {so}(4,C) to itself. In this paper we give a precise definition of Bôcher contractions and show how they can be classified. They subsume well known contractions of {e}(2,C) and {so}(3,C) and have important physical and geometric meanings, such as the derivation of the Askey scheme for obtaining all hypergeometric orthogonal polynomials as limits of Racah/Wilson polynomials. We also classify abstract nondegenerate quadratic algebras in terms of an invariant that we call a canonical form. We describe an algorithm for finding the canonical form of such algebras. We calculate explicitly all canonical forms arising from quadratic algebras of 2D nondegenerate superintegrable systems on constant curvature spaces and Darboux spaces. We further discuss contraction of quadratic algebras, focusing on those coming from superintegrable systems.

  3. Separable algebras

    CERN Document Server

    Ford, Timothy J

    2017-01-01

    This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.

  4. Confluence via strong normalisation in an algebraic λ-calculus with rewriting

    Directory of Open Access Journals (Sweden)

    Pablo Buiras

    2012-03-01

    Full Text Available The linear-algebraic lambda-calculus and the algebraic lambda-calculus are untyped lambda-calculi extended with arbitrary linear combinations of terms. The former presents the axioms of linear algebra in the form of a rewrite system, while the latter uses equalities. When given by rewrites, algebraic lambda-calculi are not confluent unless further restrictions are added. We provide a type system for the linear-algebraic lambda-calculus enforcing strong normalisation, which gives back confluence. The type system allows an abstract interpretation in System F.

  5. Galois Connections for Flow Algebras

    DEFF Research Database (Denmark)

    Filipiuk, Piotr; Terepeta, Michal Tomasz; Nielson, Hanne Riis

    2011-01-01

    to the approach taken by Monotone Frameworks and other classical analyses. We present a generic framework for static analysis based on flow algebras and program graphs. Program graphs are often used in Model Checking to model concurrent and distributed systems. The framework allows to induce new flow algebras...

  6. Generalized EMV-Effect Algebras

    Science.gov (United States)

    Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.

    2018-04-01

    Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.

  7. Special set linear algebra and special set fuzzy linear algebra

    OpenAIRE

    Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.

    2009-01-01

    The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...

  8. On one method of realization of commutation relation algebra

    International Nuclear Information System (INIS)

    Sveshnikov, K.A.

    1983-01-01

    Method for constructing the commulation relation representations based on the purely algebraic construction of joined algebraic representation with specially selected composition law has been suggested9 Purely combinatorial construction realizing commulation relations representation has been obtained proceeding from formal equivalence of operatopr action on vector and adding a simbol to a sequences of symbols. The above method practically has the structure of calculating algorithm, which assigns some rule of ''word'' formation of an initial set of ''letters''. In other words, a computer language with definite relations between words (an analogy between quantum mechanics and computer linguistics has been applied)

  9. A Structural Model of Algebra Achievement: Computational Fluency and Spatial Visualisation as Mediators of the Effect of Working Memory on Algebra Achievement

    Science.gov (United States)

    Tolar, Tammy Daun; Lederberg, Amy R.; Fletcher, Jack M.

    2009-01-01

    The goal of this study was to develop and evaluate a structural model of the relations among cognitive abilities and arithmetic skills and college students' algebra achievement. The model of algebra achievement was compared to a model of performance on the Scholastic Assessment in Mathematics (SAT-M) to determine whether the pattern of relations…

  10. Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that people from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.

  11. Banach Synaptic Algebras

    Science.gov (United States)

    Foulis, David J.; Pulmannov, Sylvia

    2018-04-01

    Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

  12. Algebra of 2D periodic operators with local and perpendicular defects

    DEFF Research Database (Denmark)

    Kutsenko, Anton

    2016-01-01

    We show that 2D periodic operators with local and perpendicular defects form an algebra. We provide an algorithm for finding spectrum for such operators. While the continuous spectral components can be computed by simple algebraic operations on some matrix-valued functions and a few number...

  13. Algebra, Geometry and Mathematical Physics Conference

    CERN Document Server

    Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander

    2014-01-01

    This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...

  14. The structure of the super-W∞(λ) algebra

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Wit, B. de; Vasiliev, M.

    1991-01-01

    We give a comprehensive treatment of the super-W ∞ (λ) algebra, an extension of the super-Virasoro algebra that contains generators of spin S ≥ 1/2. The parameter λ defines the embedding of the Virasoro subalgebra. We describe how to obtain the super-W ∞ (λ) algebra from the associative algebra of superspace differential operators. We discuss the structure of this associative algebra and its relation with the so-called wedge algebra, in which the generators for given spin are restricted to finite-dimensional representations of sl(2). From the super-W ∞ (λ) algebra one can obtain a variety of W ∞ algebras by consistent truncations for specific values of λ. Without truncation the algebras are formally isomorphic for different values of λ. We present a realization in terms of the currents of a supersymmetric bc system. (orig.)

  15. Symbolic derivation of high-order Rayleigh-Schroedinger perturbation energies using computer algebra: Application to vibrational-rotational analysis of diatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, John M. [Kansas State Univ., Manhattan, KS (United States). Dept. of Chemistry

    1997-01-01

    Rayleigh-Schroedinger perturbation theory is an effective and popular tool for describing low-lying vibrational and rotational states of molecules. This method, in conjunction with ab initio techniques for computation of electronic potential energy surfaces, can be used to calculate first-principles molecular vibrational-rotational energies to successive orders of approximation. Because of mathematical complexities, however, such perturbation calculations are rarely extended beyond the second order of approximation, although recent work by Herbert has provided a formula for the nth-order energy correction. This report extends that work and furnishes the remaining theoretical details (including a general formula for the Rayleigh-Schroedinger expansion coefficients) necessary for calculation of energy corrections to arbitrary order. The commercial computer algebra software Mathematica is employed to perform the prohibitively tedious symbolic manipulations necessary for derivation of generalized energy formulae in terms of universal constants, molecular constants, and quantum numbers. As a pedagogical example, a Hamiltonian operator tailored specifically to diatomic molecules is derived, and the perturbation formulae obtained from this Hamiltonian are evaluated for a number of such molecules. This work provides a foundation for future analyses of polyatomic molecules, since it demonstrates that arbitrary-order perturbation theory can successfully be applied with the aid of commercially available computer algebra software.

  16. Noncommutative Chern-Connes characters of some noncompact quantum algebras

    International Nuclear Information System (INIS)

    Do Ngoc Diep; Kuku, Aderemi O.

    2001-09-01

    We prove in this paper that the periodic cyclic homology of the quantized algebras of functions on coadjoint orbits of connected and simply connected Lie group, are isomorphic to the periodic cyclic homology of the quantized algebras of functions on coadjoint orbits of compact maximal subgroups, without localization. Some noncompact quantum groups and algebras were constructed and their irreducible representations were classified in recent works of Do Ngoc Diep and Nguyen Viet Hai [DH1]-[DH2] by using deformation quantization. In this paper we compute their K-groups, periodic cyclic homology groups and their Chern characters. (author)

  17. Grassmann algebras

    International Nuclear Information System (INIS)

    Garcia, R.L.

    1983-11-01

    The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt

  18. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  19. Equationally Noetherian property of Ershov algebras

    OpenAIRE

    Dvorzhetskiy, Yuriy

    2014-01-01

    This article is about equationally Noetherian and weak equationally Noetherian property of Ershov algebras. Here we show two canonical forms of the system of equations over Ershov algebras and two criteria of equationally Noetherian and weak equationally Noetherian properties.

  20. Partially-massless higher-spin algebras and their finite-dimensional truncations

    International Nuclear Information System (INIS)

    Joung, Euihun; Mkrtchyan, Karapet

    2016-01-01

    The global symmetry algebras of partially-massless (PM) higher-spin (HS) fields in (A)dS d+1 are studied. The algebras involving PM generators up to depth 2 (ℓ−1) are defined as the maximal symmetries of free conformal scalar field with 2 ℓ order wave equation in d dimensions. We review the construction of these algebras by quotienting certain ideals in the universal enveloping algebra of (A)dS d+1 isometries. We discuss another description in terms of Howe duality and derive the formula for computing trace in these algebras. This enables us to explicitly calculate the bilinear form for this one-parameter family of algebras. In particular, the bilinear form shows the appearance of additional ideal for any non-negative integer values of ℓ−d/2 , which coincides with the annihilator of the one-row ℓ-box Young diagram representation of so d+2 . Hence, the corresponding finite-dimensional coset algebra spanned by massless and PM generators is equivalent to the symmetries of this representation.

  1. Linear algebra a first course with applications

    CERN Document Server

    Knop, Larry E

    2008-01-01

    Linear Algebra: A First Course with Applications explores the fundamental ideas of linear algebra, including vector spaces, subspaces, basis, span, linear independence, linear transformation, eigenvalues, and eigenvectors, as well as a variety of applications, from inventories to graphics to Google's PageRank. Unlike other texts on the subject, this classroom-tested book gives students enough time to absorb the material by focusing on vector spaces early on and using computational sections as numerical interludes. It offers introductions to Maple™, MATLAB®, and TI-83 Plus for calculating matri

  2. Classification of all solutions of the algebraic Riccati equations for infinite-dimensional systems

    NARCIS (Netherlands)

    Iftime, O; Curtain, R; Zwart, H

    2003-01-01

    We obtain a complete classification of all self-adjoint solution of the control algebraic Riccati equation for infinite-dimensional systems under the following assumptions: the system is output stabilizable, strongly detectable and the filter Riccati equation has an invertible self-adjoint

  3. Forward error correction based on algebraic-geometric theory

    CERN Document Server

    A Alzubi, Jafar; M Chen, Thomas

    2014-01-01

    This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.

  4. Converting nested algebra expressions into flat algebra expressions

    NARCIS (Netherlands)

    Paredaens, J.; Van Gucht, D.

    1992-01-01

    Nested relations generalize ordinary flat relations by allowing tuple values to be either atomic or set valued. The nested algebra is a generalization of the flat relational algebra to manipulate nested relations. In this paper we study the expressive power of the nested algebra relative to its

  5. ASAP - A symbolic algebra package for accelerator design

    International Nuclear Information System (INIS)

    Bozoki, E.; Friedman, A.; Ben-Zvi, I.

    1991-01-01

    The design of a modern accelerator is a complicated task that involves the integration of many devices. As a consequence many parameters must be optimized in order to achieve a satisfactory result. Even the design of a simple subsystem, such as a bending system, requires that the designer will pick a successful choice from a wide range of alternatives. Usually, the task is too large to allow an analytical design, and the designer has to use a computer code (such as MAD or TRANSPORT) to simulate the system and numerically find the desired conditions. The disadvantages of this numerical method are, that (1) the solutions, i.e. the choice of the parameters may or may not be optimal and (2) each change in a parameter requires to recalculate the whole system, thus a detailed design is lengthy and costly. The authors report the conceptual design and primary implementation steps of a symbolic algebra program based on MACSYMA for the design of accelerators, storage rings and transport lines. The motivation for using symbolic algebra is discussed and a design case is presented that shows the advantage of this approach

  6. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  7. Representations of the Virasoro algebra from lattice models

    International Nuclear Information System (INIS)

    Koo, W.M.; Saleur, H.

    1994-01-01

    We investigate in detail how the Virasoro algebra appears in the scaling limit of the simplest lattice models of XXZ or RSOS type. Our approach is straightforward but to our knowledge had never been tried so far. We simply formulate a conjecture for the lattice stress-energy tensor motivated by the exact derivation of lattice global Ward identities. We then check that the proper algebraic relations are obeyed in the scaling limit. The latter is under reasonable control thanks to the Bethe-ansatz solution. The results, which are mostly numerical for technical reasons, are remarkably precise. They are also corroborated by exact pieces of information from various sources, in particular Temperley-Lieb algebra representation theory. Most features of the Virasoro algebra (like central term, null vectors, metric properties, etc.) can thus be observed using the lattice models. This seems of general interest for lattice field theory, and also more specifically for finding relations between conformal invariance and lattice integrability, since a basis for the irreducible representations of the Virasoro algebra should now follow (at least in principle) from Bethe-ansatz computations. ((orig.))

  8. Research Progress in Mathematical Analysis of Map Projection by Computer Algebra

    Directory of Open Access Journals (Sweden)

    BIAN Shaofeng

    2017-10-01

    Full Text Available Map projection is an important component of modern cartography, and involves many fussy mathematical analysis processes, such as the power series expansions of elliptical functions, differential of complex and implicit functions, elliptical integral and the operation of complex numbers. The derivation of these problems by hand not only consumes much time and energy but also makes mistake easily, and sometimes can not be realized at all because of the impossible complexity. The research achievements in mathematical analysis of map projection by computer algebra are systematically reviewed in five aspects, i.e., the symbolic expressions of forward and inverse solution of ellipsoidal latitudes, the direct transformations between map projections with different distortion properties, expressions of Gauss projection by complex function, mathematical analysis of oblique Mercator projection, polar chart projection with its transformation. Main problems that need to be further solved in this research field are analyzed. It will be helpful to promote the development of map projection.

  9. Parallel computing: numerics, applications, and trends

    National Research Council Canada - National Science Library

    Trobec, Roman; Vajteršic, Marián; Zinterhof, Peter

    2009-01-01

    ... and/or distributed systems. The contributions to this book are focused on topics most concerned in the trends of today's parallel computing. These range from parallel algorithmics, programming, tools, network computing to future parallel computing. Particular attention is paid to parallel numerics: linear algebra, differential equations, numerica...

  10. Current algebra and differential geometry

    International Nuclear Information System (INIS)

    Alekseev, Anton; Strobl, Thomas

    2005-01-01

    We show that symmetries and gauge symmetries of a large class of 2-dimensional sigma models are described by a new type of a current algebra. The currents are labeled by pairs of a vector field and a 1-form on the target space of the sigma model. We compute the current-current commutator and analyse the anomaly cancellation condition, which can be interpreted geometrically in terms of Dirac structures, previously studied in the mathematical literature. Generalized complex structures correspond to decompositions of the current algebra into pairs of anomaly free subalgebras. Sigma models that we can treat with our method include both physical and topological examples, with and without Wess-Zumino type terms. (author)

  11. C*-algebras over topological spaces

    DEFF Research Database (Denmark)

    Meyer, Ralf; Nest, Ryszard

    2012-01-01

    We define the filtrated K-theory of a C*-algebra over a finite topological space X and explain how to construct a spectral sequence that computes the bivariant Kasparov theory over X in terms of filtrated K-theory. For finite spaces with a totally ordered lattice of open subsets, this spectral...

  12. Algebraic model checking for Boolean gene regulatory networks.

    Science.gov (United States)

    Tran, Quoc-Nam

    2011-01-01

    We present a computational method in which modular and Groebner bases (GB) computation in Boolean rings are used for solving problems in Boolean gene regulatory networks (BN). In contrast to other known algebraic approaches, the degree of intermediate polynomials during the calculation of Groebner bases using our method will never grow resulting in a significant improvement in running time and memory space consumption. We also show how calculation in temporal logic for model checking can be done by means of our direct and efficient Groebner basis computation in Boolean rings. We present our experimental results in finding attractors and control strategies of Boolean networks to illustrate our theoretical arguments. The results are promising. Our algebraic approach is more efficient than the state-of-the-art model checker NuSMV on BNs. More importantly, our approach finds all solutions for the BN problems.

  13. Universal R-matrix for quantized (super) algebras

    International Nuclear Information System (INIS)

    Khoroshkin, S.M.; Tolstoj, V.N.

    1991-01-01

    For quantum deformations of finite-dimensional contragredient Lie (super)algebras an explicit formula for the universal R-matrix is given. This formula generalizes the analogous formulae for quantized semisimple Lie algebras obtained by M. Rosso, A.N. Kirillov and N. Reshetikhin, Yas.S. Soibelman and S.Z. Levendorskii. Approach is based on careful analysis of quantized rank 1 and 2 (super)algebras, a combinatorial structure of the root systems and algebraic properties of q-exponential functions. Quantum Weyl group is not used. 19 refs.; 2 tabs

  14. Algebraic monoids, group embeddings, and algebraic combinatorics

    CERN Document Server

    Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang

    2014-01-01

    This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids.   Topics presented include:   v  structure and representation theory of reductive algebraic monoids v  monoid schemes and applications of monoids v  monoids related to Lie theory v  equivariant embeddings of algebraic groups v  constructions and properties of monoids from algebraic combinatorics v  endomorphism monoids induced from vector bundles v  Hodge–Newton decompositions of reductive monoids   A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular.   Graduate students as well a...

  15. Algebraic invariant curves of plane polynomial differential systems

    Science.gov (United States)

    Tsygvintsev, Alexei

    2001-01-01

    We consider a plane polynomial vector field P(x,y) dx + Q(x,y) dy of degree m>1. With each algebraic invariant curve of such a field we associate a compact Riemann surface with the meromorphic differential ω = dx/P = dy/Q. The asymptotic estimate of the degree of an arbitrary algebraic invariant curve is found. In the smooth case this estimate has already been found by Cerveau and Lins Neto in a different way.

  16. Leavitt path algebras

    CERN Document Server

    Abrams, Gene; Siles Molina, Mercedes

    2017-01-01

    This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...

  17. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E

    2012-01-01

    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  18. GPU Linear algebra extensions for GNU/Octave

    International Nuclear Information System (INIS)

    Bosi, L B; Mariotti, M; Santocchia, A

    2012-01-01

    Octave is one of the most widely used open source tools for numerical analysis and liner algebra. Our project aims to improve Octave by introducing support for GPU computing in order to speed up some linear algebra operations. The core of our work is a C library that executes some BLAS operations concerning vector- vector, vector matrix and matrix-matrix functions on the GPU. OpenCL functions are used to program GPU kernels, which are bound within the GNU/octave framework. We report the project implementation design and some preliminary results about performance.

  19. Exploiting Data Sparsity In Covariance Matrix Computations on Heterogeneous Systems

    KAUST Repository

    Charara, Ali M.

    2018-05-24

    Covariance matrices are ubiquitous in computational sciences, typically describing the correlation of elements of large multivariate spatial data sets. For example, covari- ance matrices are employed in climate/weather modeling for the maximum likelihood estimation to improve prediction, as well as in computational ground-based astronomy to enhance the observed image quality by filtering out noise produced by the adap- tive optics instruments and atmospheric turbulence. The structure of these covariance matrices is dense, symmetric, positive-definite, and often data-sparse, therefore, hier- archically of low-rank. This thesis investigates the performance limit of dense matrix computations (e.g., Cholesky factorization) on covariance matrix problems as the number of unknowns grows, and in the context of the aforementioned applications. We employ recursive formulations of some of the basic linear algebra subroutines (BLAS) to accelerate the covariance matrix computation further, while reducing data traffic across the memory subsystems layers. However, dealing with large data sets (i.e., covariance matrices of billions in size) can rapidly become prohibitive in memory footprint and algorithmic complexity. Most importantly, this thesis investigates the tile low-rank data format (TLR), a new compressed data structure and layout, which is valuable in exploiting data sparsity by approximating the operator. The TLR com- pressed data structure allows approximating the original problem up to user-defined numerical accuracy. This comes at the expense of dealing with tasks with much lower arithmetic intensities than traditional dense computations. In fact, this thesis con- solidates the two trends of dense and data-sparse linear algebra for HPC. Not only does the thesis leverage recursive formulations for dense Cholesky-based matrix al- gorithms, but it also implements a novel TLR-Cholesky factorization using batched linear algebra operations to increase hardware occupancy and

  20. Approximation of complex algebraic numbers by algebraic numbers of bounded degree

    OpenAIRE

    Bugeaud, Yann; Evertse, Jan-Hendrik

    2007-01-01

    We investigate how well complex algebraic numbers can be approximated by algebraic numbers of degree at most n. We also investigate how well complex algebraic numbers can be approximated by algebraic integers of degree at most n+1. It follows from our investigations that for every positive integer n there are complex algebraic numbers of degree larger than n that are better approximable by algebraic numbers of degree at most n than almost all complex numbers. As it turns out, these numbers ar...

  1. Q-deformed algebras and many-body physics

    Energy Technology Data Exchange (ETDEWEB)

    Galetti, D; Lunardi, J T; Pimentel, B M [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C L [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1995-11-01

    A review is presented of some applications of q-deformed algebras to many-body systems. The rotational and pairing nuclear problems will be discussed in the context of q-deformed algebras, before presenting a more microscopically based application of q-deformed concepts to many-fermion systems. (author). 30 refs., 5 figs.

  2. Operadic formulation of topological vertex algebras and gerstenhaber or Batalin-Vilkovisky algebras

    International Nuclear Information System (INIS)

    Huang Yizhi

    1994-01-01

    We give the operadic formulation of (weak, strong) topological vertex algebras, which are variants of topological vertex operator algebras studied recently by Lian and Zuckerman. As an application, we obtain a conceptual and geometric construction of the Batalin-Vilkovisky algebraic structure (or the Gerstenhaber algebra structure) on the cohomology of a topological vertex algebra (or of a weak topological vertex algebra) by combining this operadic formulation with a theorem of Getzler (or of Cohen) which formulates Batalin-Vilkovisky algebras (or Gerstenhaber algebras) in terms of the homology of the framed little disk operad (or of the little disk operad). (orig.)

  3. Advanced linear algebra for engineers with Matlab

    CERN Document Server

    Dianat, Sohail A

    2009-01-01

    Matrices, Matrix Algebra, and Elementary Matrix OperationsBasic Concepts and NotationMatrix AlgebraElementary Row OperationsSolution of System of Linear EquationsMatrix PartitionsBlock MultiplicationInner, Outer, and Kronecker ProductsDeterminants, Matrix Inversion and Solutions to Systems of Linear EquationsDeterminant of a MatrixMatrix InversionSolution of Simultaneous Linear EquationsApplications: Circuit AnalysisHomogeneous Coordinates SystemRank, Nu

  4. An introduction to central simple algebras and their applications to wireless communication

    CERN Document Server

    Berhuy, Gre�gory

    2013-01-01

    Central simple algebras arise naturally in many areas of mathematics. They are closely connected with ring theory, but are also important in representation theory, algebraic geometry and number theory. Recently, surprising applications of the theory of central simple algebras have arisen in the context of coding for wireless communication. The exposition in the book takes advantage of this serendipity, presenting an introduction to the theory of central simple algebras intertwined with its applications to coding theory. Many results or constructions from the standard theory are presented in classical form, but with a focus on explicit techniques and examples, often from coding theory. Topics covered include quaternion algebras, splitting fields, the Skolem-Noether Theorem, the Brauer group, crossed products, cyclic algebras and algebras with a unitary involution. Code constructions give the opportunity for many examples and explicit computations. This book provides an introduction to the theory of central alg...

  5. A linear process-algebraic format for probabilistic systems with data

    NARCIS (Netherlands)

    Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette; Timmer, Mark; Gomes, L.; Khomenko, V.; Fernandes, J.M.

    This paper presents a novel linear process algebraic format for probabilistic automata. The key ingredient is a symbolic transformation of probabilistic process algebra terms that incorporate data into this linear format while preserving strong probabilistic bisimulation. This generalises similar

  6. Wn(2) algebras

    International Nuclear Information System (INIS)

    Feigin, B.L.; Semikhatov, A.M.

    2004-01-01

    We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras

  7. Algebraic classification of the Weyl tensor in higher dimensions based on its 'superenergy' tensor

    International Nuclear Information System (INIS)

    Senovilla, Jose M M

    2010-01-01

    The algebraic classification of the Weyl tensor in the arbitrary dimension n is recovered by means of the principal directions of its 'superenergy' tensor. This point of view can be helpful in order to compute the Weyl aligned null directions explicitly, and permits one to obtain the algebraic type of the Weyl tensor by computing the principal eigenvalue of rank-2 symmetric future tensors. The algebraic types compatible with states of intrinsic gravitational radiation can then be explored. The underlying ideas are general, so that a classification of arbitrary tensors in the general dimension can be achieved. (fast track communication)

  8. A rigorous approach to investigating common assumptions about disease transmission: Process algebra as an emerging modelling methodology for epidemiology.

    Science.gov (United States)

    McCaig, Chris; Begon, Mike; Norman, Rachel; Shankland, Carron

    2011-03-01

    Changing scale, for example, the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper, we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interactions.

  9. The vacuum preserving Lie algebra of a classical W-algebra

    International Nuclear Information System (INIS)

    Feher, L.; Tsutsui, I.

    1993-07-01

    We simplify and generalize an argument due to Bowcock and Watts showing that one can associate a finite Lie algebra (the 'classical vacuum preserving algebra') containing the Moebius sl(2) subalgebra to any classical W-algebra. Our construction is based on a kinematical analysis of the Poisson brackets of quasi-fields. In the case of the W S G -subalgebra S of a simple Lie algebra G, we exhibit a natural isomorphism between this finite Lie algebra and G whereby the Moebius sl(2) is identified with S. (orig.)

  10. Nonflexible Lie-admissible algebras

    International Nuclear Information System (INIS)

    Myung, H.C.

    1978-01-01

    We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type

  11. On 2-Banach algebras

    International Nuclear Information System (INIS)

    Mohammad, N.; Siddiqui, A.H.

    1987-11-01

    The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs

  12. Algebraic solutions of shape-invariant position-dependent effective mass systems

    Energy Technology Data Exchange (ETDEWEB)

    Amir, Naila, E-mail: naila.amir@live.com, E-mail: naila.amir@seecs.edu.pk [School of Electrical Engineering and Computer Sciences, National University of Sciences and Technology, Islamabad (Pakistan); Iqbal, Shahid, E-mail: sic80@hotmail.com, E-mail: siqbal@sns.nust.edu.pk [School of Natural Sciences, National University of Sciences and Technology, Islamabad (Pakistan)

    2016-06-15

    Keeping in view the ordering ambiguity that arises due to the presence of position-dependent effective mass in the kinetic energy term of the Hamiltonian, a general scheme for obtaining algebraic solutions of quantum mechanical systems with position-dependent effective mass is discussed. We quantize the Hamiltonian of the pertaining system by using symmetric ordering of the operators concerning momentum and the spatially varying mass, initially proposed by von Roos and Lévy-Leblond. The algebraic method, used to obtain the solutions, is based on the concepts of supersymmetric quantum mechanics and shape invariance. In order to exemplify the general formalism a class of non-linear oscillators has been considered. This class includes the particular example of a one-dimensional oscillator with different position-dependent effective mass profiles. Explicit expressions for the eigenenergies and eigenfunctions in terms of generalized Hermite polynomials are presented. Moreover, properties of these modified Hermite polynomials, like existence of generating function and recurrence relations among the polynomials have also been studied. Furthermore, it has been shown that in the harmonic limit, all the results for the linear harmonic oscillator are recovered.

  13. Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis

    International Nuclear Information System (INIS)

    Martin, J.; Shore, B.W.; Bergmann, K.

    1995-01-01

    We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid

  14. Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis

    Science.gov (United States)

    Martin, J.; Shore, B. W.; Bergmann, K.

    1995-07-01

    We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.

  15. Coherent states and classical limit of algebraic quantum models

    International Nuclear Information System (INIS)

    Scutaru, H.

    1983-01-01

    The algebraic models for collective motion in nuclear physics belong to a class of theories the basic observables of which generate selfadjoint representations of finite dimensional, real Lie algebras, or of the enveloping algebras of these Lie algebras. The simplest and most used for illustrations model of this kind is the Lipkin model, which is associated with the Lie algebra of the three dimensional rotations group, and which presents all characteristic features of an algebraic model. The Lipkin Hamiltonian is the image, of an element of the enveloping algebra of the algebra SO under a representation. In order to understand the structure of the algebraic models the author remarks that in both classical and quantum mechanics the dynamics is associated to a typical algebraic structure which we shall call a dynamical algebra. In this paper he shows how the constructions can be made in the case of the algebraic quantum systems. The construction of the symplectic manifold M can be made in this case using a quantum analog of the momentum map which he defines

  16. Fault detection and diagnosis in nonlinear systems a differential and algebraic viewpoint

    CERN Document Server

    Martinez-Guerra, Rafael

    2014-01-01

    The high reliability required in industrial processes has created the necessity of detecting abnormal conditions, called faults, while processes are operating. The term fault generically refers to any type of process degradation, or degradation in equipment performance because of changes in the process's physical characteristics, process inputs or environmental conditions. This book is about the fundamentals of fault detection and diagnosis in a variety of nonlinear systems which are represented by ordinary differential equations. The fault detection problem is approached from a differential algebraic viewpoint, using residual generators based upon high-gain nonlinear auxiliary systems (‘observers’). A prominent role is played by the type of mathematical tools that will be used, requiring knowledge of differential algebra and differential equations. Specific theorems tailored to the needs of the problem-solving procedures are developed and proved. Applications to real-world problems, both with constant an...

  17. On the q-exponential of matrix q-Lie algebras

    Directory of Open Access Journals (Sweden)

    Ernst Thomas

    2017-01-01

    Full Text Available In this paper, we define several new concepts in the borderline between linear algebra, Lie groups and q-calculus.We first introduce the ring epimorphism r, the set of all inversions of the basis q, and then the important q-determinant and corresponding q-scalar products from an earlier paper. Then we discuss matrix q-Lie algebras with a modified q-addition, and compute the matrix q-exponential to form the corresponding n × n matrix, a so-called q-Lie group, or manifold, usually with q-determinant 1. The corresponding matrix multiplication is twisted under τ, which makes it possible to draw diagrams similar to Lie group theory for the q-exponential, or the so-called q-morphism. There is no definition of letter multiplication in a general alphabet, but in this article we introduce new q-number systems, the biring of q-integers, and the extended q-rational numbers. Furthermore, we provide examples of matrices in suq(4, and its corresponding q-Lie group. We conclude with an example of system of equations with Ward number coeficients.

  18. Integrability of dynamical systems algebra and analysis

    CERN Document Server

    Zhang, Xiang

    2017-01-01

    This is the first book to systematically state the fundamental theory of integrability and its development of ordinary differential equations with emphasis on the Darboux theory of integrability and local integrability together with their applications. It summarizes the classical results of Darboux integrability and its modern development together with their related Darboux polynomials and their applications in the reduction of Liouville and elementary integrabilty and in the center—focus problem, the weakened Hilbert 16th problem on algebraic limit cycles and the global dynamical analysis of some realistic models in fields such as physics, mechanics and biology. Although it can be used as a textbook for graduate students in dynamical systems, it is intended as supplementary reading for graduate students from mathematics, physics, mechanics and engineering in courses related to the qualitative theory, bifurcation theory and the theory of integrability of dynamical systems.

  19. Max plus at work modeling and analysis of synchronized systems a course on max-plus algebra and its applications

    CERN Document Server

    Heidergott, Bernd; van der Woude, Jacob

    2014-01-01

    Trains pull into a railroad station and must wait for each other before leaving again in order to let passengers change trains. How do mathematicians then calculate a railroad timetable that accurately reflects their comings and goings? One approach is to use max-plus algebra, a framework used to model Discrete Event Systems, which are well suited to describe the ordering and timing of events. This is the first textbook on max-plus algebra, providing a concise and self-contained introduction to the topic. Applications of max-plus algebra abound in the world around us. Traffic systems, compu

  20. Polynomial Heisenberg algebras

    International Nuclear Information System (INIS)

    Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M

    2004-01-01

    Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively

  1. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    Science.gov (United States)

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  2. "E pluribus unum" or How to Derive Single-equation Descriptions for Output-quantities in Nonlinear Circuits using Differential Algebra

    OpenAIRE

    Gerbracht, Eberhard H. -A.

    2008-01-01

    In this paper we describe by a number of examples how to deduce one single characterizing higher order differential equation for output quantities of an analog circuit. In the linear case, we apply basic "symbolic" methods from linear algebra to the system of differential equations which is used to model the analog circuit. For nonlinear circuits and their corresponding nonlinear differential equations, we show how to employ computer algebra tools implemented in Maple, which are based on diff...

  3. Applied linear algebra

    CERN Document Server

    Olver, Peter J

    2018-01-01

    This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...

  4. Complex Algebraic Varieties

    CERN Document Server

    Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf

    1992-01-01

    The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...

  5. The Boolean algebra and central Galois algebras

    Directory of Open Access Journals (Sweden)

    George Szeto

    2001-01-01

    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

  6. Wavelets and quantum algebras

    International Nuclear Information System (INIS)

    Ludu, A.; Greiner, M.

    1995-09-01

    A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs

  7. System for multiprogram control of a specialized computer for geophysical investigations

    International Nuclear Information System (INIS)

    Gol'bek, G.R.; Grachev, E.M.; Kirillova, B.F.; Veksler, B.E.

    1973-01-01

    The paper describes the microprogrammed control device of a specialized computer for solving problems of the cyclical type (especially those involving a system of linear algebraic equations) in which the functions of an instruction storage unit are distributed between an address directory and an operational group switch. This made it possible to combine in a single instruction a group of elementary operations over a few numbers and eventually led to a simplification of the operational logic of the device. (author)

  8. Novikov-Jordan algebras

    OpenAIRE

    Dzhumadil'daev, A. S.

    2002-01-01

    Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.

  9. An Algebraic View of Super-Belnap Logics

    Czech Academy of Sciences Publication Activity Database

    Albuquerque, H.; Přenosil, Adam; Rivieccio, U.

    2017-01-01

    Roč. 105, č. 6 (2017), s. 1051-1086 ISSN 0039-3215 R&D Projects: GA ČR GBP202/12/G061 Grant - others:EU(XE) PIRSES- GA-2012-31898 Institutional support: RVO:67985807 Keywords : Super-Belnap logics * Four-valued logic * Paraconsistent logic * Belnap–Dunn logic * FDE * Logic of Paradox * Kleene logic * Exactly True logic * De Morgan algebras * Abstract Algebraic Logic * Leibniz filters * Strong versions of logics Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.589, year: 2016

  10. Applications of Maple To Algebraic Cryptography.

    Science.gov (United States)

    Sigmon, Neil P.

    1997-01-01

    Demonstrates the use of technology to enhance the appreciation of applications involving abstract algebra. The symbolic manipulator Maple can perform computations required for a linear cryptosystem. One major benefit of this process is that students can encipher and decipher messages using a linear cryptosystem without becoming confused and…

  11. Current algebra, statistical mechanics and quantum models

    Science.gov (United States)

    Vilela Mendes, R.

    2017-11-01

    Results obtained in the past for free boson systems at zero and nonzero temperatures are revisited to clarify the physical meaning of current algebra reducible functionals which are associated to systems with density fluctuations, leading to observable effects on phase transitions. To use current algebra as a tool for the formulation of quantum statistical mechanics amounts to the construction of unitary representations of diffeomorphism groups. Two mathematical equivalent procedures exist for this purpose. One searches for quasi-invariant measures on configuration spaces, the other for a cyclic vector in Hilbert space. Here, one argues that the second approach is closer to the physical intuition when modelling complex systems. An example of application of the current algebra methodology to the pairing phenomenon in two-dimensional fermion systems is discussed.

  12. Linear algebra as an alternative approach to the synthesis of digital devices of automation and control systems

    Directory of Open Access Journals (Sweden)

    Nikolay Chernov

    2018-01-01

    Full Text Available The article considers linear algebra as an alternative mathematical tool of logic synthesis of digital structures to Boolean algebra and synthesis methods of digital electronic component base (ECB on its ground. The methods of solving the applied problems of logic synthesis are shown, including the expansion of an arbitrary logic function by means of monotonic functions. The proposed mathematical apparatus actually provides the creation of digital structures on the principles of analog circuitry. It can find application in the design of multivalued digital ECB, specialized system-on-chip and analog-digital sensors with current output. The examples of synthesis of the combinational and sequential two-valued and multivalued digital devices are given. In conclusion, the advantages of linear algebra in comparison with Boolean algebra are formulated.

  13. Strong Bisimilarity of Simple Process Algebras

    DEFF Research Database (Denmark)

    Srba, Jirí

    2003-01-01

    We study bisimilarity and regularity problems of simple process algebras. In particular, we show PSPACE-hardness of the following problems: (i) strong bisimilarity of Basic Parallel Processes (BPP), (ii) strong bisimilarity of Basic Process Algebra (BPA), (iii) strong regularity of BPP, and (iv......) strong regularity of BPA. We also demonstrate NL-hardness of strong regularity problems for the normed subclasses of BPP and BPA. Bisimilarity problems of simple process algebras are introduced in a general framework of process rewrite systems, and a uniform description of the new techniques used...

  14. Toward robust scalable algebraic multigrid solvers

    International Nuclear Information System (INIS)

    Waisman, Haim; Schroder, Jacob; Olson, Luke; Hiriyur, Badri; Gaidamour, Jeremie; Siefert, Christopher; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2010-01-01

    This talk highlights some multigrid challenges that arise from several application areas including structural dynamics, fluid flow, and electromagnetics. A general framework is presented to help introduce and understand algebraic multigrid methods based on energy minimization concepts. Connections between algebraic multigrid prolongators and finite element basis functions are made to explored. It is shown how the general algebraic multigrid framework allows one to adapt multigrid ideas to a number of different situations. Examples are given corresponding to linear elasticity and specifically in the solution of linear systems associated with extended finite elements for fracture problems.

  15. Many-core graph analytics using accelerated sparse linear algebra routines

    Science.gov (United States)

    Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric

    2016-05-01

    Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.

  16. (Quasi-)Poisson enveloping algebras

    OpenAIRE

    Yang, Yan-Hong; Yao, Yuan; Ye, Yu

    2010-01-01

    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  17. Iterated Leavitt Path Algebras

    International Nuclear Information System (INIS)

    Hazrat, R.

    2009-11-01

    Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)

  18. Analytic transfer maps for Lie algebraic design codes

    International Nuclear Information System (INIS)

    van Zeijts, J.; Neri, F.; Dragt, A.J.

    1990-01-01

    Lie algebraic methods provide a powerful tool for modeling particle transport through Hamiltonian systems. Briefly summarized, Lie algebraic design codes work as follows: first the time t flow generated by a Hamiltonian system is represented by a Lie algebraic map acting on the initial conditions. Maps are generated for each element in the lattice or beamline under study. Next all these maps are concatenated into a one-turn or one-pass map that represents the complete dynamics of the system. Finally, the resulting map is analyzed and design decisions are made based on the linear and nonlinear entries in the map. The authors give a short description of how to find Lie algebraic transfer maps in analytic form, for inclusion in accelerator design codes. As an example they find the transfer map, through third order, for the combined-function quadrupole magnet, and use such magnets to correct detrimental third-order aberrations in a spot forming system

  19. Chiral determinant formulae and subsingular vectors for the N=2 superconformal algebras

    International Nuclear Information System (INIS)

    Gato-Rivera, B.; Rosado, J.I.

    1997-01-01

    We derive conjectures for the N=2 ''chiral'' determinant formulae of the topological algebra, the antiperiodic NS algebra, and the periodic R-algebra, corresponding to incomplete Verma modules built on chiral topological primaries, chiral and antichiral NS primaries, and Ramond ground states, respectively. Our method is based on the analysis of the singular vectors in chiral Verma modules and their spectral flow symmetries, together with some computer exploration and some consistency checks. In addition, and as a consequence, we uncover the existence of subsingular vectors in these algebras, giving examples (subsingular vectors are non-highest-weight null vectors which are not descendants of any highest-weight singular vectors). (orig.)

  20. Formalized Linear Algebra over Elementary Divisor Rings in Coq

    OpenAIRE

    Cano , Guillaume; Cohen , Cyril; Dénès , Maxime; Mörtberg , Anders; Siles , Vincent

    2016-01-01

    International audience; This paper presents a Coq formalization of linear algebra over elementary divisor rings, that is, rings where every matrix is equivalent to a matrix in Smith normal form. The main results are the formalization that these rings support essential operations of linear algebra, the classification theorem of finitely pre-sented modules over such rings and the uniqueness of the Smith normal form up to multiplication by units. We present formally verified algorithms comput-in...