WorldWideScience

Sample records for computational quantum chemistry

  1. Quantum Computing for Quantum Chemistry

    Science.gov (United States)

    2010-09-01

    This three-year project consisted on the development and application of quantum computer algorithms for chemical applications. In particular, we developed algorithms for chemical reaction dynamics, electronic structure and protein folding. The first quantum computing for

  2. Relativistic quantum chemistry on quantum computers

    DEFF Research Database (Denmark)

    Veis, L.; Visnak, J.; Fleig, T.

    2012-01-01

    The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only...... the nonrelativistic regime (i.e., the Schrodinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac......-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-NOT (CNOT) gates, which implement a proof...

  3. Handbook of computational quantum chemistry

    CERN Document Server

    Cook, David B

    2005-01-01

    Quantum chemistry forms the basis of molecular modeling, a tool widely used to obtain important chemical information and visual images of molecular systems. Recent advances in computing have resulted in considerable developments in molecular modeling, and these developments have led to significant achievements in the design and synthesis of drugs and catalysts. This comprehensive text provides upper-level undergraduates and graduate students with an introduction to the implementation of quantum ideas in molecular modeling, exploring practical applications alongside theoretical explanations.Wri

  4. Simulating chemistry using quantum computers

    CERN Document Server

    Kassal, Ivan; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán

    2010-01-01

    The difficulty of simulating quantum systems, well-known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  5. Simulating chemistry using quantum computers.

    Science.gov (United States)

    Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán

    2011-01-01

    The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  6. Exploiting Locality in Quantum Computation for Quantum Chemistry.

    Science.gov (United States)

    McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-12-18

    Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.

  7. Towards quantum chemistry on a quantum computer.

    Science.gov (United States)

    Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G

    2010-02-01

    Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

  8. Disciplines, models, and computers: the path to computational quantum chemistry.

    Science.gov (United States)

    Lenhard, Johannes

    2014-12-01

    Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.

  9. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  10. Computing protein infrared spectroscopy with quantum chemistry.

    Science.gov (United States)

    Besley, Nicholas A

    2007-12-15

    Quantum chemistry is a field of science that has undergone unprecedented advances in the last 50 years. From the pioneering work of Boys in the 1950s, quantum chemistry has evolved from being regarded as a specialized and esoteric discipline to a widely used tool that underpins much of the current research in chemistry today. This achievement was recognized with the award of the 1998 Nobel Prize in Chemistry to John Pople and Walter Kohn. As the new millennium unfolds, quantum chemistry stands at the forefront of an exciting new era. Quantitative calculations on systems of the magnitude of proteins are becoming a realistic possibility, an achievement that would have been unimaginable to the early pioneers of quantum chemistry. In this article we will describe ongoing work towards this goal, focusing on the calculation of protein infrared amide bands directly with quantum chemical methods.

  11. The Application of SCC-DV-Xα Computational Method of Quantum Chemistry in Cement Chemistry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It has been explored why quantum chemistry is applied to the research field of cement chemistry. The fundamental theory of SCC-DV-Xα computational method of quantum chemistry is synopsized. The results obtained by computational quantum chemistry method in recent years of valence-bond structures and hydration activity of some cement clinker minerals, mechanical strength and stabilization of some hydrates are summarized and evaluated. Finally the prospects of the future application of quantum chemistry to cement chemistry are depicted.

  12. From transistor to trapped-ion computers for quantum chemistry.

    Science.gov (United States)

    Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E

    2014-01-07

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

  13. Virtually going green: The role of quantum computational chemistry in reducing pollution and toxicity in chemistry

    Science.gov (United States)

    Stevens, Jonathan

    2017-07-01

    Continuing advances in computational chemistry has permitted quantum mechanical calculation to assist in research in green chemistry and to contribute to the greening of chemical practice. Presented here are recent examples illustrating the contribution of computational quantum chemistry to green chemistry, including the possibility of using computation as a green alternative to experiments, but also illustrating contributions to greener catalysis and the search for greener solvents. Examples of applications of computation to ambitious projects for green synthetic chemistry using carbon dioxide are also presented.

  14. Computational quantum chemistry and adaptive ligand modeling in mechanistic QSAR.

    Science.gov (United States)

    De Benedetti, Pier G; Fanelli, Francesca

    2010-10-01

    Drugs are adaptive molecules. They realize this peculiarity by generating different ensembles of prototropic forms and conformers that depend on the environment. Among the impressive amount of available computational drug discovery technologies, quantitative structure-activity relationship approaches that rely on computational quantum chemistry descriptors are the most appropriate to model adaptive drugs. Indeed, computational quantum chemistry descriptors are able to account for the variation of the intramolecular interactions of the training compounds, which reflect their adaptive intermolecular interaction propensities. This enables the development of causative, interpretive and reasonably predictive quantitative structure-activity relationship models, and, hence, sound chemical information finalized to drug design and discovery.

  15. Quantum information and computation for chemistry

    CERN Document Server

    Kais, Sabre; Rice, Stuart A

    2014-01-01

    Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science

  16. Optimizing qubit resources for quantum chemistry simulations in second quantization on a quantum computer

    Science.gov (United States)

    Moll, Nikolaj; Fuhrer, Andreas; Staar, Peter; Tavernelli, Ivano

    2016-07-01

    Quantum chemistry simulations on a quantum computer suffer from the overhead needed for encoding the Fermionic problem in a system of qubits. By exploiting the block diagonality of a Fermionic Hamiltonian, we show that the number of required qubits can be reduced while the number of terms in the Hamiltonian will increase. All operations for this reduction can be performed in operator space. The scheme is conceived as a pre-computational step that would be performed prior to the actual quantum simulation. We apply this scheme to reduce the number of qubits necessary to simulate both the Hamiltonian of the two-site Fermi-Hubbard model and the hydrogen molecule. Both quantum systems can then be simulated with a two-qubit quantum computer. Despite the increase in the number of Hamiltonian terms, the scheme still remains a useful tool to reduce the dimensionality of specific quantum systems for quantum simulators with a limited number of resources.

  17. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  18. Molecular Orbitals of NO, NO[superscript+], and NO[superscript-]: A Computational Quantum Chemistry Experiment

    Science.gov (United States)

    Orenha, Renato P.; Galembeck, Sérgio E.

    2014-01-01

    This computational experiment presents qualitative molecular orbital (QMO) and computational quantum chemistry exercises of NO, NO[superscript+], and NO[superscript-]. Initially students explore several properties of the target molecules by Lewis diagrams and the QMO theory. Then, they compare qualitative conclusions with EHT and DFT calculations…

  19. Computational chemistry

    OpenAIRE

    2000-01-01

    Computational chemistry has come of age. With significant strides in computer hardware and software over the last few decades, computational chemistry has achieved full partnership with theory and experiment as a tool for understanding and predicting the behavior of a broad range of chemical, physical, and biological phenomena. The Nobel Prize award to John Pople and Walter Kohn in 1998 highlighted the importance of these advances in computational chemistry. With massively parallel computers ...

  20. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  1. Quantum computing

    OpenAIRE

    Li, Shu-Shen; Long, Gui-lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi

    2001-01-01

    Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization.

  2. Computational chemistry

    Science.gov (United States)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  3. Uquantchem: A versatile and easy to use Quantum Chemistry Computational Software

    CERN Document Server

    Souvatzis, Petros

    2013-01-01

    In this paper we present the Uppsala Quantum Chemistry package (UQUANTCHEM), a new and versatile computational platform with capabilities ranging from simple Hartree-Fock calculations to state of the art First principles Extended Lagrangian Born Oppenheimer Molecular Dynamics (XL- BOMD) and diffusion quantum Monte Carlo (DMC). The UQUANTCHEM package is distributed under the general public license and can be directly downloaded from the code web-site. Together with a presentation of the different capabilities of the uquantchem code and a more technical discus- sion on how these capabilities have been implemented, a presentation of the user-friendly aspect of the package on the basis of the large number of default settings will also be presented. Furthermore, since the code has been parallelized within the framework of the message passing interface (MPI), the timing of some benchmark calculations are reported to illustrate how the code scales with the number of computational nodes for different levels of chemic...

  4. Quantum Computing

    CERN Document Server

    Steane, A M

    1998-01-01

    The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarise not just quantum computing, but the whole subject of quantum information theory. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, the review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the EPR experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from classical information theory, and, arguably, quantum from classical physics. Basic quantum information ideas are described, including key distribution, teleportation, data compression, quantum error correction, the universal quantum computer and qua...

  5. Advances in quantum chemistry

    CERN Document Server

    Sabin, John R

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features

  6. Quantum Computers

    Science.gov (United States)

    2010-03-04

    efficient or less costly than their classical counterparts. A large-scale quantum computer is certainly an extremely ambi- tious goal, appearing to us...outperform the largest classical supercomputers in solving some specific problems important for data encryption. In the long term, another application...which the quantum computer depends, causing the quantum mechanically destructive process known as decoherence . Decoherence comes in several forms

  7. Principles of quantum chemistry

    CERN Document Server

    George, David V

    2013-01-01

    Principles of Quantum Chemistry focuses on the application of quantum mechanics in physical models and experiments of chemical systems.This book describes chemical bonding and its two specific problems - bonding in complexes and in conjugated organic molecules. The very basic theory of spectroscopy is also considered. Other topics include the early development of quantum theory; particle-in-a-box; general formulation of the theory of quantum mechanics; and treatment of angular momentum in quantum mechanics. The examples of solutions of Schroedinger equations; approximation methods in quantum c

  8. Quantum mechanics in chemistry

    CERN Document Server

    Schatz, George C

    2002-01-01

    Intended for graduate and advanced undergraduate students, this text explores quantum mechanical techniques from the viewpoint of chemistry and materials science. Dynamics, symmetry, and formalism are emphasized. An initial review of basic concepts from introductory quantum mechanics is followed by chapters examining symmetry, rotations, and angular momentum addition. Chapter 4 introduces the basic formalism of time-dependent quantum mechanics, emphasizing time-dependent perturbation theory and Fermi's golden rule. Chapter 5 sees this formalism applied to the interaction of radiation and matt

  9. International journal of quantum chemistry. Quantum Chemistry Symposium Number 27: Proceedings of the International Symposium on Atomic, Molecular, and Condensed Matter Theory and Computational Methods

    Science.gov (United States)

    Lowdin, Per-Olov; Ohrn, N. Y.; Sabin, John R.; Zerner, Michael C.

    1993-03-01

    The topics covered at the 33rd annual Sanibel Symposium, organized by the faculty and staff of the Quantum Theory Project of the University of Florida, and held March 13 - 20, 1993, include advanced scientific computing, interaction of photons and matter, quantum molecular dynamics, electronic structure methods, polymeric systems, and quantum chemical methods for extended systems.

  10. Quantum chemistry an introduction

    CERN Document Server

    Kauzmann, Walter

    2013-01-01

    Quantum Chemistry: An Introduction provides information pertinent to the fundamental aspects of quantum mechanics. This book presents the theory of partial differentiation equations by using the classical theory of vibrations as a means of developing physical insight into this essential branch of mathematics.Organized into five parts encompassing 16 chapters, this book begins with an overview of how quantum mechanical deductions are made. This text then describes the achievements and limitations of the application of quantum mechanics to chemical problems. Other chapters provide a brief survey

  11. Quantum computers.

    Science.gov (United States)

    Ladd, T D; Jelezko, F; Laflamme, R; Nakamura, Y; Monroe, C; O'Brien, J L

    2010-03-04

    Over the past several decades, quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit unique quantum properties? Today it is understood that the answer is yes, and many research groups around the world are working towards the highly ambitious technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for quantum computation. However, it remains unclear which technology, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain the major challenges for the future.

  12. Fundamentals of quantum chemistry

    CERN Document Server

    House, J E

    2004-01-01

    An introduction to the principles of quantum mechanics needed in physical chemistry. Mathematical tools are presented and developed as needed and only basic calculus, chemistry, and physics is assumed. Applications include atomic and molecular structure, spectroscopy, alpha decay, tunneling, and superconductivity. New edition includes sections on perturbation theory, orbital symmetry of diatomic molecules, the Huckel MO method and Woodward/Hoffman rules as well as a new chapter on SCF and Hartree-Fock methods. * This revised text clearly presents basic q

  13. The Variation Theorem Applied to H-2+: A Simple Quantum Chemistry Computer Project

    Science.gov (United States)

    Robiette, Alan G.

    1975-01-01

    Describes a student project which requires limited knowledge of Fortran and only minimal computing resources. The results illustrate such important principles of quantum mechanics as the variation theorem and the virial theorem. Presents sample calculations and the subprogram for energy calculations. (GS)

  14. Exercises in Computational Chemistry

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2016-01-01

    A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16).......A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16)....

  15. Exercises in Computational Chemistry

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2016-01-01

    A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16).......A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16)....

  16. The Physics of Quantum Computation

    Science.gov (United States)

    Falci, Giuseppe; Paladino, Elisabette

    2015-10-01

    Quantum Computation has emerged in the past decades as a consequence of down-scaling of electronic devices to the mesoscopic regime and of advances in the ability of controlling and measuring microscopic quantum systems. QC has many interdisciplinary aspects, ranging from physics and chemistry to mathematics and computer science. In these lecture notes we focus on physical hardware, present day challenges and future directions for design of quantum architectures.

  17. Recent computational chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Taku [Department of Chemistry for Materials, and The Center of Ultimate Technology on nano-Electronics, Mie University (Japan); Center for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo (Norway)

    2015-12-31

    Now we can investigate quantum phenomena for the real materials and molecules, and can design functional materials by computation, due to the previous developments of quantum theory and calculation methods. As there still exist the limit and problem in theory, the cooperation between theory and computation is getting more important to clarify the unknown quantum mechanism, and discover more efficient functional materials. It would be next-generation standard. Finally, our theoretical methodology for boundary solid is introduced.

  18. Recent computational chemistry

    Science.gov (United States)

    Onishi, Taku

    2015-12-01

    Now we can investigate quantum phenomena for the real materials and molecules, and can design functional materials by computation, due to the previous developments of quantum theory and calculation methods. As there still exist the limit and problem in theory, the cooperation between theory and computation is getting more important to clarify the unknown quantum mechanism, and discover more efficient functional materials. It would be next-generation standard. Finally, our theoretical methodology for boundary solid is introduced.

  19. Computational Chemistry Using Modern Electronic Structure Methods

    Science.gov (United States)

    Bell, Stephen; Dines, Trevor J.; Chowdhry, Babur Z.; Withnall, Robert

    2007-01-01

    Various modern electronic structure methods are now days used to teach computational chemistry to undergraduate students. Such quantum calculations can now be easily used even for large size molecules.

  20. Experimental study of quantum simulation for quantum chemistry with a nuclear magnetic resonance simulator.

    Science.gov (United States)

    Lu, Dawei; Xu, Nanyang; Xu, Boruo; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-10-13

    Quantum computers have been proved to be able to mimic quantum systems efficiently in polynomial time. Quantum chemistry problems, such as static molecular energy calculations and dynamical chemical reaction simulations, become very intractable on classical computers with scaling up of the system. Therefore, quantum simulation is a feasible and effective approach to tackle quantum chemistry problems. Proof-of-principle experiments have been implemented on the calculation of the hydrogen molecular energies and one-dimensional chemical isomerization reaction dynamics using nuclear magnetic resonance systems. We conclude that quantum simulation will surpass classical computers for quantum chemistry in the near future.

  1. First-principles quantum chemistry in the life sciences.

    Science.gov (United States)

    van Mourik, Tanja

    2004-12-15

    The area of computational quantum chemistry, which applies the principles of quantum mechanics to molecular and condensed systems, has developed drastically over the last decades, due to both increased computer power and the efficient implementation of quantum chemical methods in readily available computer programs. Because of this, accurate computational techniques can now be applied to much larger systems than before, bringing the area of biochemistry within the scope of electronic-structure quantum chemical methods. The rapid pace of progress of quantum chemistry makes it a very exciting research field; calculations that are too computationally expensive today may be feasible in a few months' time! This article reviews the current application of 'first-principles' quantum chemistry in biochemical and life sciences research, and discusses its future potential. The current capability of first-principles quantum chemistry is illustrated in a brief examination of computational studies on neurotransmitters, helical peptides, and DNA complexes.

  2. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules.

    Science.gov (United States)

    Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2016-08-18

    Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.

  3. Quantum Computer Games: Quantum Minesweeper

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  4. Quantum Computer Games: Quantum Minesweeper

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  5. Duality Computing in Quantum Computers

    Institute of Scientific and Technical Information of China (English)

    LONG Gui-Lu; LIU Yang

    2008-01-01

    In this letter, we propose a duality computing mode, which resembles particle-wave duality property when a quantum system such as a quantum computer passes through a double-slit. In this mode, computing operations are not necessarily unitary. The duality mode provides a natural link between classical computing and quantum computing. In addition, the duality mode provides a new tool for quantum algorithm design.

  6. Integrating Computational Chemistry into a Course in Classical Thermodynamics

    Science.gov (United States)

    Martini, Sheridan R.; Hartzell, Cynthia J.

    2015-01-01

    Computational chemistry is commonly addressed in the quantum mechanics course of undergraduate physical chemistry curricula. Since quantum mechanics traditionally follows the thermodynamics course, there is a lack of curricula relating computational chemistry to thermodynamics. A method integrating molecular modeling software into a semester long…

  7. Quantum robots and quantum computers

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.

    1998-07-01

    Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.

  8. Quantum Computing for Computer Architects

    CERN Document Server

    Metodi, Tzvetan

    2011-01-01

    Quantum computers can (in theory) solve certain problems far faster than a classical computer running any known classical algorithm. While existing technologies for building quantum computers are in their infancy, it is not too early to consider their scalability and reliability in the context of the design of large-scale quantum computers. To architect such systems, one must understand what it takes to design and model a balanced, fault-tolerant quantum computer architecture. The goal of this lecture is to provide architectural abstractions for the design of a quantum computer and to explore

  9. Elementary quantum chemistry

    CERN Document Server

    Pilar, Frank L

    2003-01-01

    Useful introductory course and reference covers origins of quantum theory, Schrödinger wave equation, quantum mechanics of simple systems, electron spin, quantum states of atoms, Hartree-Fock self-consistent field method, more. 1990 edition.

  10. Visually impaired researchers get their hands on quantum chemistry: application to a computational study on the isomerization of a sterol.

    Science.gov (United States)

    Lounnas, Valère; Wedler, Henry B; Newman, Timothy; Schaftenaar, Gijs; Harrison, Jason G; Nepomuceno, Gabriella; Pemberton, Ryan; Tantillo, Dean J; Vriend, Gert

    2014-11-01

    In molecular sciences, articles tend to revolve around 2D representations of 3D molecules, and sighted scientists often resort to 3D virtual reality software to study these molecules in detail. Blind and visually impaired (BVI) molecular scientists have access to a series of audio devices that can help them read the text in articles and work with computers. Reading articles published in this journal, though, is nearly impossible for them because they need to generate mental 3D images of molecules, but the article-reading software cannot do that for them. We have previously designed AsteriX, a web server that fully automatically decomposes articles, detects 2D plots of low molecular weight molecules, removes meta data and annotations from these plots, and converts them into 3D atomic coordinates. AsteriX-BVI goes one step further and converts the 3D representation into a 3D printable, haptic-enhanced format that includes Braille annotations. These Braille-annotated physical 3D models allow BVI scientists to generate a complete mental model of the molecule. AsteriX-BVI uses Molden to convert the meta data of quantum chemistry experiments into BVI friendly formats so that the entire line of scientific information that sighted people take for granted-from published articles, via printed results of computational chemistry experiments, to 3D models-is now available to BVI scientists too. The possibilities offered by AsteriX-BVI are illustrated by a project on the isomerization of a sterol, executed by the blind co-author of this article (HBW).

  11. Study of Quantum Computing

    Directory of Open Access Journals (Sweden)

    Prashant Anil Patil

    2012-04-01

    Full Text Available This paper gives the detailed information about Quantum computer, and difference between quantum computer and traditional computers, the basis of Quantum computers which are slightly similar but still different from traditional computer. Many research groups are working towards the highly technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. Quantum computer is very much use full for computation purpose in field of Science and Research. Large amount of data and information will be computed, processing, storing, retrieving, transmitting and displaying information in less time with that much of accuracy which is not provided by traditional computers.

  12. Topological quantum chemistry

    Science.gov (United States)

    Bradlyn, Barry; Elcoro, L.; Cano, Jennifer; Vergniory, M. G.; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2017-07-01

    Since the discovery of topological insulators and semimetals, there has been much research into predicting and experimentally discovering distinct classes of these materials, in which the topology of electronic states leads to robust surface states and electromagnetic responses. This apparent success, however, masks a fundamental shortcoming: topological insulators represent only a few hundred of the 200,000 stoichiometric compounds in material databases. However, it is unclear whether this low number is indicative of the esoteric nature of topological insulators or of a fundamental problem with the current approaches to finding them. Here we propose a complete electronic band theory, which builds on the conventional band theory of electrons, highlighting the link between the topology and local chemical bonding. This theory of topological quantum chemistry provides a description of the universal (across materials), global properties of all possible band structures and (weakly correlated) materials, consisting of a graph-theoretic description of momentum (reciprocal) space and a complementary group-theoretic description in real space. For all 230 crystal symmetry groups, we classify the possible band structures that arise from local atomic orbitals, and show which are topologically non-trivial. Our electronic band theory sheds new light on known topological insulators, and can be used to predict many more.

  13. Introducing Relativity into Quantum Chemistry

    Science.gov (United States)

    Li, Wai-Kee; Blinder, S. M.

    2011-01-01

    It is not often realized by chemists that the special theory of relativity is behind several aspects of quantum chemistry. The Schrdinger equation itself is based on relations between space-time and energy-momentum four vectors. Electron spin is, of course, the most obvious manifestation of relativity. The chemistry of some heavy elements is…

  14. Remedial Mathematics for Quantum Chemistry

    Science.gov (United States)

    Koopman, Lodewijk; Brouwer, Natasa; Heck, Andre; Buma, Wybren Jan

    2008-01-01

    Proper mathematical skills are important for every science course and mathematics-intensive chemistry courses rely on a sound mathematical pre-knowledge. In the first-year quantum chemistry course at this university, it was noticed that many students lack basic mathematical knowledge. To tackle the mathematics problem, a remedial mathematics…

  15. Introducing Relativity into Quantum Chemistry

    Science.gov (United States)

    Li, Wai-Kee; Blinder, S. M.

    2011-01-01

    It is not often realized by chemists that the special theory of relativity is behind several aspects of quantum chemistry. The Schrdinger equation itself is based on relations between space-time and energy-momentum four vectors. Electron spin is, of course, the most obvious manifestation of relativity. The chemistry of some heavy elements is…

  16. Computational chemistry at Janssen.

    Science.gov (United States)

    van Vlijmen, Herman; Desjarlais, Renee L; Mirzadegan, Tara

    2016-12-19

    Computer-aided drug discovery activities at Janssen are carried out by scientists in the Computational Chemistry group of the Discovery Sciences organization. This perspective gives an overview of the organizational and operational structure, the science, internal and external collaborations, and the impact of the group on Drug Discovery at Janssen.

  17. Computational chemistry at Janssen

    Science.gov (United States)

    van Vlijmen, Herman; Desjarlais, Renee L.; Mirzadegan, Tara

    2016-12-01

    Computer-aided drug discovery activities at Janssen are carried out by scientists in the Computational Chemistry group of the Discovery Sciences organization. This perspective gives an overview of the organizational and operational structure, the science, internal and external collaborations, and the impact of the group on Drug Discovery at Janssen.

  18. Accuracy of color prediction of anthraquinone dyes in methanol solution estimated from first principle quantum chemistry computations.

    Science.gov (United States)

    Cysewski, Piotr; Jeliński, Tomasz

    2013-10-01

    The electronic spectrum of four different anthraquinones (1,2-dihydroxyanthraquinone, 1-aminoanthraquinone, 2-aminoanthraquinone and 1-amino-2-methylanthraquinone) in methanol solution was measured and used as reference data for theoretical color prediction. The visible part of the spectrum was modeled according to TD-DFT framework with a broad range of DFT functionals. The convoluted theoretical spectra were validated against experimental data by a direct color comparison in terms of CIE XYZ and CIE Lab tristimulus model color. It was found, that the 6-31G** basis set provides the most accurate color prediction and there is no need to extend the basis set since it does not improve the prediction of color. Although different functionals were found to give the most accurate color prediction for different anthraquinones, it is possible to apply the same DFT approach for the whole set of analyzed dyes. Especially three functionals seem to be valuable, namely mPW1LYP, B1LYP and PBE0 due to very similar spectra predictions. The major source of discrepancies between theoretical and experimental spectra comes from L values, representing the lightness, and the a parameter, depicting the position on green→magenta axis. Fortunately, the agreement between computed and observed blue→yellow axis (parameter b) is very precise in the case of studied anthraquinone dyes in methanol solution. Despite discussed shortcomings, color prediction from first principle quantum chemistry computations can lead to quite satisfactory results, expressed in terms of color space parameters.

  19. IMPLEMENTATION OF REACTION FIELD METHODS IN QUANTUM-CHEMISTRY COMPUTER CODES

    NARCIS (Netherlands)

    DEVRIES, AH; VANDUIJNEN, PT; JUFFER, AH; RULLMANN, JAC; DIJKMAN, JP; MERENGA, H; THOLE, BT

    1995-01-01

    The embedding of a quantum mechanically described subsystem by classical representations of its surroundings is reviewed. The choices for a distributed monopole representation and a distributed (group) polarizability representation, as well as the continuum approach to model bulk effects, are discus

  20. Inverse Quantum Chemistry: Concepts and Strategies for Rational Compound Design

    CERN Document Server

    Weymuth, Thomas

    2014-01-01

    The rational design of molecules and materials is becoming more and more important. With the advent of powerful computer systems and sophisticated algorithms, quantum chemistry plays an important role in rational design. While traditional quantum chemical approaches predict the properties of a predefined molecular structure, the goal of inverse quantum chemistry is to find a structure featuring one or more desired properties. Herein, we review inverse quantum chemical approaches proposed so far and discuss their advantages as well as their weaknesses.

  1. Duality quantum computing

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this article,we make a review on the development of a newly proposed quantum computer,duality computer,or the duality quantum computer and the duality mode of quantum computers.The duality computer is based on the particle-wave duality principle of quantum mechanics.Compared to an ordinary quantum computer,the duality quantum computer is a quantum computer on the move and passing through a multi-slit.It offers more computing operations than is possible with an ordinary quantum computer.The most two distinct operations are:the quantum division operation and the quantum combiner operation.The division operation divides the wave function of a quantum computer into many attenuated,and identical parts.The combiner operation combines the wave functions in different parts into a single part.The duality mode is a way in which a quantum computer with some extra qubit resource simulates a duality computer.The main structure of duality quantum computer and duality mode,the duality mode,their mathematical description and algorithm designs are reviewed.

  2. Optical Quantum Computing

    National Research Council Canada - National Science Library

    Jeremy L. O'Brien

    2007-01-01

    In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors...

  3. Quantum computing and probability.

    Science.gov (United States)

    Ferry, David K

    2009-11-25

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.

  4. Introduction to Quantum Computation

    Science.gov (United States)

    Ekert, A.

    A computation is a physical process. It may be performed by a piece of electronics or on an abacus, or in your brain, but it is a process that takes place in nature and as such it is subject to the laws of physics. Quantum computers are machines that rely on characteristically quantum phenomena, such as quantum interference and quantum entanglement in order to perform computation. In this series of lectures I want to elaborate on the computational power of such machines.

  5. Problems in Quantum Chemistry and Spectroscopy

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2015-01-01

    A collection of 22 introductory exercise problems for the course "Quantum Chemistry and Spectroscopy (QCS)".......A collection of 22 introductory exercise problems for the course "Quantum Chemistry and Spectroscopy (QCS)"....

  6. Quantum analogue computing.

    Science.gov (United States)

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  7. Integrating Computational Chemistry into the Physical Chemistry Curriculum

    Science.gov (United States)

    Johnson, Lewis E.; Engel, Thomas

    2011-01-01

    Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…

  8. Integrating Computational Chemistry into the Physical Chemistry Curriculum

    Science.gov (United States)

    Johnson, Lewis E.; Engel, Thomas

    2011-01-01

    Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…

  9. Computational quantum chemistry for single Heisenberg spin couplings made simple: just one spin flip required.

    Science.gov (United States)

    Mayhall, Nicholas J; Head-Gordon, Martin

    2014-10-07

    We highlight a simple strategy for computing the magnetic coupling constants, J, for a complex containing two multiradical centers. On the assumption that the system follows Heisenberg Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a single electron is excited (and spin-flipped), from the single reference with maximum Ŝz, M, to the M - 1 manifold, regardless of the number of unpaired electrons, 2M, on the radical centers. In an active space picture involving 2M orbitals, only one β electron is required, together with only one α hole. While this observation is extremely simple, the reduction in the number of essential configurations from exponential in M to only linear provides dramatic computational benefits. This (M, M - 1) strategy for evaluating J is an unambiguous, spin-pure, wave function theory counterpart of the various projected broken symmetry density functional theory schemes, and likewise gives explicit energies for each possible spin-state that enable evaluation of properties. The approach is illustrated on five complexes with varying numbers of unpaired electrons, for which one spin-flip calculations are used to compute J. Some implications for further development of spin-flip methods are discussed.

  10. Computational quantum chemistry for single Heisenberg spin couplings made simple: Just one spin flip required

    Energy Technology Data Exchange (ETDEWEB)

    Mayhall, Nicholas J.; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-10-07

    We highlight a simple strategy for computing the magnetic coupling constants, J, for a complex containing two multiradical centers. On the assumption that the system follows Heisenberg Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a single electron is excited (and spin-flipped), from the single reference with maximum S{sup ^}{sub z}, M, to the M − 1 manifold, regardless of the number of unpaired electrons, 2M, on the radical centers. In an active space picture involving 2M orbitals, only one β electron is required, together with only one α hole. While this observation is extremely simple, the reduction in the number of essential configurations from exponential in M to only linear provides dramatic computational benefits. This (M, M − 1) strategy for evaluating J is an unambiguous, spin-pure, wave function theory counterpart of the various projected broken symmetry density functional theory schemes, and likewise gives explicit energies for each possible spin-state that enable evaluation of properties. The approach is illustrated on five complexes with varying numbers of unpaired electrons, for which one spin-flip calculations are used to compute J. Some implications for further development of spin-flip methods are discussed.

  11. Introduction to quantum computers

    CERN Document Server

    Berman, Gennady P; Mainieri, Ronnie; Tsifrinovich, Vladimir I

    1998-01-01

    Quantum computing promises to solve problems which are intractable on digital computers. Highly parallel quantum algorithms can decrease the computational time for some problems by many orders of magnitude. This important book explains how quantum computers can do these amazing things. Several algorithms are illustrated: the discrete Fourier transform, Shor’s algorithm for prime factorization; algorithms for quantum logic gates; physical implementations of quantum logic gates in ion traps and in spin chains; the simplest schemes for quantum error correction; correction of errors caused by im

  12. Quantum Chemistry via the Periodic Law.

    Science.gov (United States)

    Blinder, S. M.

    1981-01-01

    Describes an approach to quantum mechanics exploiting the periodic structure of the elements as a foundation for the quantum theory of matter. Indicates that a quantum chemistry course can be developed using this approach. (SK)

  13. Simulation of quantum computers

    NARCIS (Netherlands)

    De Raedt, H; Michielsen, K; Hams, AH; Miyashita, S; Saito, K; Landau, DP; Lewis, SP; Schuttler, HB

    2001-01-01

    We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software con

  14. Quantum Knitting Computer

    OpenAIRE

    Fujii, Toshiyuki; Matsuo, Shigemasa; Hatakenaka, Noriyuki

    2009-01-01

    We propose a fluxon-controlled quantum computer incorporated with three-qubit quantum error correction using special gate operations, i.e., joint-phase and SWAP gate operations, inherent in capacitively coupled superconducting flux qubits. The proposed quantum computer acts exactly like a knitting machine at home.

  15. Deep learning for computational chemistry.

    Science.gov (United States)

    Goh, Garrett B; Hodas, Nathan O; Vishnu, Abhinav

    2017-06-15

    The rise and fall of artificial neural networks is well documented in the scientific literature of both computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on multilayer neural networks. Within the last few years, we have seen the transformative impact of deep learning in many domains, particularly in speech recognition and computer vision, to the extent that the majority of expert practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. In this review, we provide an introductory overview into the theory of deep neural networks and their unique properties that distinguish them from traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including quantitative structure activity relationship, virtual screening, protein structure prediction, quantum chemistry, materials design, and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against non-neural networks state-of-the-art models across disparate research topics, and deep neural network-based models often exceeded the "glass ceiling" expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a valuable tool for computational chemistry. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Reliable Quantum Computers

    CERN Document Server

    Preskill, J

    1997-01-01

    The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from errors can work effectively even if occasional mistakes occur during the recovery procedure. Furthermore, encoded quantum information can be processed without serious propagation of errors. Hence, an arbitrarily long quantum computation can be performed reliably, provided that the average probability of error per quantum gate is less than a certain critical value, the accuracy threshold. A quantum computer storing about 10^6 qubits, with a probability of error per quantum gate of order 10^{-6}, would be a formidable factoring engine. Even a smaller, less accurate quantum computer would be able to perform many useful tasks. (This paper is based on a talk presented at the ITP Conference on Quantum Coherence and Decoherence, 15-18 December 1996.)

  17. Selected new developments in computational chemistry.

    Science.gov (United States)

    Darden, T A; Bartolotti, L; Pedersen, L G

    1996-01-01

    Molecular dynamics is a general technique for simulating the time-dependent properties of molecules and their environments. Quantum mechanics, as applied to molecules or clusters of molecules, provides a prescription for predicting properties exactly (in principle). It is reasonable to expect that both will have a profound effect on our understanding of environmental chemistry in the future. In this review, we consider several recent advances and applications in computational chemistry. Images Figure 1. PMID:8722111

  18. Multiresolution computational chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Robert J [Oak Ridge National Laboratory, PO Box 2008 MS6367, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville (United States); Fann, George I [Oak Ridge National Laboratory, PO Box 2008 MS6367, Oak Ridge, TN 37831 (United States); Gan Zhengting [Oak Ridge National Laboratory, PO Box 2008 MS6367, Oak Ridge, TN 37831 (United States); Yanai, Takeshi [Oak Ridge National Laboratory, PO Box 2008 MS6367, Oak Ridge, TN 37831 (United States); Sugiki, Shinichiro [Oak Ridge National Laboratory, PO Box 2008 MS6367, Oak Ridge, TN 37831 (United States); Beste, Ariana [Oak Ridge National Laboratory, PO Box 2008 MS6367, Oak Ridge, TN 37831 (United States); Beylkin, Gregory [University of Tennessee, Knoxville (United States)

    2005-01-01

    Multiresolution techniques in multiwavelet bases, made practical in three and higher dimensions by separated representations, have enabled significant advances in the accuracy and manner of computation of molecular electronic structure. The mathematical and numerical techniques are described in the article by Fann. This paper summarizes the major accomplishments in computational chemistry which represent the first substantial application of most of these new ideas in three and higher dimensions. These include basis set limit computation with linear scaling for Hartree-Fock and Density Functional Theory with a wide variety of functionals including hybrid and asymptotically corrected forms. Current capabilities include energies, analytic derivatives, and excitation energies from linear response theory. Direct solution in 6-D of the two-particle wave equation has also been demonstrated. These methods are written using MADNESS which provides a high level of composition using functions and operators with guarantees of speed and precision.

  19. Quantum computing classical physics.

    Science.gov (United States)

    Meyer, David A

    2002-03-15

    In the past decade, quantum algorithms have been found which outperform the best classical solutions known for certain classical problems as well as the best classical methods known for simulation of certain quantum systems. This suggests that they may also speed up the simulation of some classical systems. I describe one class of discrete quantum algorithms which do so--quantum lattice-gas automata--and show how to implement them efficiently on standard quantum computers.

  20. Real-time Quantum Chemistry

    CERN Document Server

    Haag, Moritz P

    2012-01-01

    Significant progress in the development of efficient and fast algorithms for quantum chemical calculations has been made in the past two decades. The main focus has always been the desire to be able to treat ever larger molecules or molecular assemblies---especially linear and sub-linear scaling techniques are devoted to the accomplishment of this goal. However, as many chemical reactions are rather local, they usually involve only a limited number of atoms so that models of about two hundred (or even less) atoms embedded in a suitable environment are sufficient to study their mechanisms. Thus, the system size does not need to be enlarged, but remains constant for reactions of this type that can be described by less than two hundred atoms. The question then arises how fast one can obtain the quantum chemical results. This question is not directly answered by linear-scaling techniques. In fact, ideas such as haptic quantum chemistry or interactive quantum chemistry require an immediate provision of quantum che...

  1. Elucidating reaction mechanisms on quantum computers.

    Science.gov (United States)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias

    2017-07-18

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  2. Quantum Computation and Quantum Spin Dynamics

    NARCIS (Netherlands)

    Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji

    2001-01-01

    We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum

  3. Quantum Computation and Quantum Spin Dynamics

    NARCIS (Netherlands)

    Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji

    2001-01-01

    We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum

  4. Molecular electromagnetism a computational chemistry approach

    CERN Document Server

    Sauer, Stephan P A

    2011-01-01

    A textbook for a one-semester course for students in chemistry physics and nanotechnology, this book examines the interaction of molecules with electric and magnetic fields as, for example in light. The book provides the necessary background knowledge for simulating these interactions on computers with modern quantum chemical software.

  5. Probabilistic Cloning and Quantum Computation

    Institute of Scientific and Technical Information of China (English)

    GAO Ting; YAN Feng-Li; WANG Zhi-Xi

    2004-01-01

    @@ We discuss the usefulness of quantum cloning and present examples of quantum computation tasks for which the cloning offers an advantage which cannot be matched by any approach that does not resort to quantum cloning.In these quantum computations, we need to distribute quantum information contained in the states about which we have some partial information. To perform quantum computations, we use a state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation.

  6. Explorations in quantum computing

    CERN Document Server

    Williams, Colin P

    2011-01-01

    By the year 2020, the basic memory components of a computer will be the size of individual atoms. At such scales, the current theory of computation will become invalid. ""Quantum computing"" is reinventing the foundations of computer science and information theory in a way that is consistent with quantum physics - the most accurate model of reality currently known. Remarkably, this theory predicts that quantum computers can perform certain tasks breathtakingly faster than classical computers -- and, better yet, can accomplish mind-boggling feats such as teleporting information, breaking suppos

  7. Algorithms for Quantum Computers

    CERN Document Server

    Smith, Jamie

    2010-01-01

    This paper surveys the field of quantum computer algorithms. It gives a taste of both the breadth and the depth of the known algorithms for quantum computers, focusing on some of the more recent results. It begins with a brief review of quantum Fourier transform based algorithms, followed by quantum searching and some of its early generalizations. It continues with a more in-depth description of two more recent developments: algorithms developed in the quantum walk paradigm, followed by tensor network evaluation algorithms (which include approximating the Tutte polynomial).

  8. Blind Quantum Signature with Blind Quantum Computation

    Science.gov (United States)

    Li, Wei; Shi, Ronghua; Guo, Ying

    2017-04-01

    Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

  9. Blind Quantum Signature with Blind Quantum Computation

    Science.gov (United States)

    Li, Wei; Shi, Ronghua; Guo, Ying

    2016-12-01

    Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

  10. Computational chemistry research

    Science.gov (United States)

    Levin, Eugene

    1987-01-01

    Task 41 is composed of two parts: (1) analysis and design studies related to the Numerical Aerodynamic Simulation (NAS) Extended Operating Configuration (EOC) and (2) computational chemistry. During the first half of 1987, Dr. Levin served as a member of an advanced system planning team to establish the requirements, goals, and principal technical characteristics of the NAS EOC. A paper entitled 'Scaling of Data Communications for an Advanced Supercomputer Network' is included. The high temperature transport properties (such as viscosity, thermal conductivity, etc.) of the major constituents of air (oxygen and nitrogen) were correctly determined. The results of prior ab initio computer solutions of the Schroedinger equation were combined with the best available experimental data to obtain complete interaction potentials for both neutral and ion-atom collision partners. These potentials were then used in a computer program to evaluate the collision cross-sections from which the transport properties could be determined. A paper entitled 'High Temperature Transport Properties of Air' is included.

  11. Quantum Computational Cryptography

    Science.gov (United States)

    Kawachi, Akinori; Koshiba, Takeshi

    As computational approaches to classical cryptography have succeeded in the establishment of the foundation of the network security, computational approaches even to quantum cryptography are promising, since quantum computational cryptography could offer richer applications than the quantum key distribution. Our project focused especially on the quantum one-wayness and quantum public-key cryptosystems. The one-wayness of functions (or permutations) is one of the most important notions in computational cryptography. First, we give an algorithmic characterization of quantum one-way permutations. In other words, we show a necessary and sufficient condition for quantum one-way permutations in terms of reflection operators. Second, we introduce a problem of distinguishing between two quantum states as a new underlying problem that is harder to solve than the graph automorphism problem. The new problem is a natural generalization of the distinguishability problem between two probability distributions, which are commonly used in computational cryptography. We show that the problem has several cryptographic properties and they enable us to construct a quantum publickey cryptosystem, which is likely to withstand any attack of a quantum adversary.

  12. Quantum Analog Computing

    Science.gov (United States)

    Zak, M.

    1998-01-01

    Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.

  13. Adiabatic quantum simulation of quantum chemistry.

    Science.gov (United States)

    Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-10-13

    We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.

  14. Quantum Nanobiology and Biophysical Chemistry

    DEFF Research Database (Denmark)

    2013-01-01

    An introduction was provided in the first issue by way of an Editorial to this special two issue volume of Current Physical Chemistry – “Quantum Nanobiology and Biophysical Chemistry” [1]. The Guest Editors would like to thank all the authors and referees who have contributed to this second issue....... demonstrate extremely low detection performance of acyl-homoserine lactone in a biologically relevant system using surface enhanced Raman spectroscopy. Sugihara and Bondar evaluate the influence of methyl-groups and the protein environment on retinal geometries in rhodopsin and bacteriorhodopsin, two...

  15. Quantum computing with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  16. Computational Chemistry and Lubrication

    Science.gov (United States)

    Zehe, Michael J.

    1998-01-01

    Members of NASA Lewis Research Center's Tribology and Surface Science Branch are applying high-level computational chemistry techniques to the development of new lubrication systems for space applications and for future advanced aircraft engines. The next generation of gas turbine engines will require a liquid lubricant to function at temperatures in excess of 350 C in oxidizing environments. Conventional hydrocarbon-based lubricants are incapable of operating in these extreme environments, but a class of compounds known as the perfluoropolyether (PFAE) liquids (see the preceding illustration) shows promise for such applications. These commercially available products are already being used as lubricants in conditions where low vapor pressure and chemical stability are crucial, such as in satellite bearings and composite disk platters. At higher temperatures, however, these compounds undergo a decomposition process that is assisted (catalyzed) by metal and metal oxide bearing surfaces. This decomposition process severely limits the applicability of PFAE's at higher temperatures. A great deal of laboratory experimentation has revealed that the extent of fluid degradation depends on the chemical properties of the bearing surface materials. Lubrication engineers would like to understand the chemical breakdown mechanism to design a less vulnerable PFAE or to develop a chemical additive to block this degradation.

  17. Quantum science in secondary chemistry: Influence of teachers' beliefs and knowledge on the use of interactive computer models

    Science.gov (United States)

    Robblee, Karen M.

    Current science education reform efforts promote inquiry-based learning, a goal that requires appropriate tools and instructional approaches. This study investigated the influence of the beliefs and knowledge of four experienced secondary chemistry teachers in their use of new instructional software that generates models of atoms and molecules based on quantum mechanics. The software, which was developed through a National Science Foundation funded project, Quantum Science Across Disciplines (QSAD), was designed to promote inquiry learning. Qualitative research methods were used for this multiple case study. Data from surveys, interviews, and extended classroom observations revealed a close correlation between a teacher's model of the learner and his or her model of teaching. Combined models of learner and teacher had the greatest influence on their decisions about implementing QSAD software. Teachers who espoused a constructivist model of learning and related models of teaching used the software to promote student investigations and inductive approaches to learning. Other factors that appeared to support the use of inquiry methods included sufficient time for students to investigate phenomena, the extent of the teacher's pedagogical content knowledge, and the amount of training using QSAD software. The Views-On-Science-Technology-Society (VOSTS) instrument was used to compare the informants' beliefs about the epistemology of science to their classroom practices. Data related to the role of teachers' beliefs about scientific knowledge were inconclusive, and VOSTS results were inconsistent with the informants' stated beliefs. All four cases revealed that the teachers acted as agents of the school culture. In schools that promoted development of critical thinking, questioning, and self-direction in students, teachers were more likely to use a variety of instructional methods and emphasize construction of knowledge. These findings suggest that educational reform

  18. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    an inspiring speech at the MIT Physics of Computation 1st Conference in 1981, Feynman proposed the development of a computer that would obey the...on ion trap based 36 quantum computing for physics and computer science students would include lecture notes, slides, lesson plans, a syllabus...reading lists, videos, demonstrations, and laboratories. 37 LIST OF REFERENCES [1] R. P. Feynman , “Simulating physics with computers,” Int. J

  19. Concurrent Quantum Computation

    CERN Document Server

    Yamaguchi, F; Yamamoto, Y

    2000-01-01

    A quantum computer is a multi-particle interferometer that comprises beam splitters at both ends and arms, where the n two-level particles undergo the interactions among them. The arms are designed so that relevant functions required to produce a computational result is stored in the phase shifts of the 2^n arms. They can be detected by interferometry that allows us to utilize quantum parallelism. Quantum algorithms are accountable for what interferometers to be constructed to compute particular problems. A standard formalism for constructing the arms has been developed by the extension of classical reversible gate arrays. By its nature of sequential applications of logic operations, the required number of gates increases exponentially as the problem size grows. This may cause a crucial obstacle to perform a quantum computation within a limited decoherence time. We propose a direct and concurrent construction of the interferometer arms by one-time evolution of a physical system with arbitrary multi-particle i...

  20. Quantum computing: towards reality

    Science.gov (United States)

    Trabesinger, Andreas

    2017-03-01

    The concept of computers that harness the laws of quantum mechanics has transformed our thinking about how information can be processed. Now the environment exists to make prototype devices a reality.

  1. Adiabatic quantum computing

    OpenAIRE

    Lobe, Elisabeth; Stollenwerk, Tobias; Tröltzsch, Anke

    2015-01-01

    In the recent years, the field of adiabatic quantum computing has gained importance due to the advances in the realisation of such machines, especially by the company D-Wave Systems. These machines are suited to solve discrete optimisation problems which are typically very hard to solve on a classical computer. Due to the quantum nature of the device it is assumed that there is a substantial speedup compared to classical HPC facilities. We explain the basic principles of adiabatic ...

  2. Algorithms versus architectures for computational chemistry

    Science.gov (United States)

    Partridge, H.; Bauschlicher, C. W., Jr.

    1986-01-01

    The algorithms employed are computationally intensive and, as a result, increased performance (both algorithmic and architectural) is required to improve accuracy and to treat larger molecular systems. Several benchmark quantum chemistry codes are examined on a variety of architectures. While these codes are only a small portion of a typical quantum chemistry library, they illustrate many of the computationally intensive kernels and data manipulation requirements of some applications. Furthermore, understanding the performance of the existing algorithm on present and proposed supercomputers serves as a guide for future programs and algorithm development. The algorithms investigated are: (1) a sparse symmetric matrix vector product; (2) a four index integral transformation; and (3) the calculation of diatomic two electron Slater integrals. The vectorization strategies are examined for these algorithms for both the Cyber 205 and Cray XMP. In addition, multiprocessor implementations of the algorithms are looked at on the Cray XMP and on the MIT static data flow machine proposed by DENNIS.

  3. Steps toward fault-tolerant quantum chemistry.

    Energy Technology Data Exchange (ETDEWEB)

    Taube, Andrew Garvin

    2010-05-01

    Developing quantum chemistry programs on the coming generation of exascale computers will be a difficult task. The programs will need to be fault-tolerant and minimize the use of global operations. This work explores the use a task-based model that uses a data-centric approach to allocate work to different processes as it applies to quantum chemistry. After introducing the key problems that appear when trying to parallelize a complicated quantum chemistry method such as coupled-cluster theory, we discuss the implications of that model as it pertains to the computational kernel of a coupled-cluster program - matrix multiplication. Also, we discuss the extensions that would required to build a full coupled-cluster program using the task-based model. Current programming models for high-performance computing are fault-intolerant and use global operations. Those properties are unsustainable as computers scale to millions of CPUs; instead one must recognize that these systems will be hierarchical in structure, prone to constant faults, and global operations will be infeasible. The FAST-OS HARE project is introducing a scale-free computing model to address these issues. This model is hierarchical and fault-tolerant by design, allows for the clean overlap of computation and communication, reducing the network load, does not require checkpointing, and avoids the complexity of many HPC runtimes. Development of an algorithm within this model requires a change in focus from imperative programming to a data-centric approach. Quantum chemistry (QC) algorithms, in particular electronic structure methods, are an ideal test bed for this computing model. These methods describe the distribution of electrons in a molecule, which determine the properties of the molecule. The computational cost of these methods is high, scaling quartically or higher in the size of the molecule, which is why QC applications are major users of HPC resources. The complexity of these algorithms means that

  4. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  5. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  6. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  7. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  8. Understanding Quantum Numbers in General Chemistry Textbooks

    Science.gov (United States)

    Niaz, Mansoor; Fernandez, Ramon

    2008-01-01

    Quantum numbers and electron configurations form an important part of the general chemistry curriculum and textbooks. The objectives of this study are: (1) Elaboration of a framework based on the following aspects: (a) Origin of the quantum hypothesis, (b) Alternative interpretations of quantum mechanics, (c) Differentiation between an orbital and…

  9. Understanding Quantum Numbers in General Chemistry Textbooks

    Science.gov (United States)

    Niaz, Mansoor; Fernandez, Ramon

    2008-01-01

    Quantum numbers and electron configurations form an important part of the general chemistry curriculum and textbooks. The objectives of this study are: (1) Elaboration of a framework based on the following aspects: (a) Origin of the quantum hypothesis, (b) Alternative interpretations of quantum mechanics, (c) Differentiation between an orbital and…

  10. Computational Quantum Chemistry for Multiple-Site Heisenberg Spin Couplings Made Simple: Still Only One Spin-Flip Required.

    Science.gov (United States)

    Mayhall, Nicholas J; Head-Gordon, Martin

    2015-05-21

    We provide a simple procedure for using inexpensive ab initio calculations to compute exchange coupling constants, J(AB), for multiradical molecules containing both an arbitrary number of radical sites and an arbitrary number of unpaired electrons. For a system comprised of 2M unpaired electrons, one needs only to compute states having the Ŝ(z) quantum number M - 1. Conveniently, these are precisely the states that are accessed by the family of single spin-flip methods. Building an effective Hamiltonian with these states allows one to extract all of the J(AB) constants in the molecule. Unlike approaches based on density functional theory, this procedure relies on neither spin-contaminated states nor nonunique spin-projection formulas. A key benefit is that it is possible to obtain completely spin-pure exchange coupling constants with inexpensive ab initio calculations. A couple of examples are provided to illustrate the approach, including a 4-nickel cubane complex and a 6-chromium horseshoe complex with 18 entangled electrons.

  11. Adiabatic Quantum Computing

    CERN Document Server

    Pinski, Sebastian D

    2011-01-01

    Adiabatic Quantum Computing (AQC) is a relatively new subject in the world of quantum computing, let alone Physics. Inspiration for this project has come from recent controversy around D-Wave Systems in British Columbia, Canada, who claim to have built a working AQC which is now commercially available and hope to be distributing a 1024 qubit chip by the end of 2008. Their 16 qubit chip was demonstrated online for the Supercomputing 2007 conference within which a few small problems were solved; although the explanations that journalists and critics received were minimal and very little was divulged in the question and answer session. This 'unconvincing' demonstration has caused physicists and computer scientists to hit back at D-Wave. The aim of this project is to give an introduction to the historic advances in classical and quantum computing and to explore the methods of AQC. Through numerical simulations an algorithm for the Max Independent Set problem is empirically obtained.

  12. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    Science.gov (United States)

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  13. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    Science.gov (United States)

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  14. Perspectives on Computational Organic Chemistry

    Science.gov (United States)

    Streitwieser, Andrew

    2009-01-01

    The author reviews how his early love for theoretical organic chemistry led to experimental research and the extended search for quantitative correlations between experiment and quantum calculations. The experimental work led to ion pair acidities of alkali-organic compounds and most recently to equilibria and reactions of lithium and cesium enolates in THF. This chemistry is now being modeled by ab initio calculations. An important consideration is the treatment of solvation in which coordination of the alkali cation with the ether solvent plays a major role. PMID:19518150

  15. Optical quantum computing.

    Science.gov (United States)

    O'Brien, Jeremy L

    2007-12-07

    In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors. Although it was in principle scalable, the massive resource overhead made the scheme practically daunting. However, several simplifications were followed by proof-of-principle demonstrations, and recent approaches based on cluster states or error encoding have dramatically reduced this worrying resource overhead, making an all-optical architecture a serious contender for the ultimate goal of a large-scale quantum computer. Key challenges will be the realization of high-efficiency sources of indistinguishable single photons, low-loss, scalable optical circuits, high-efficiency single-photon detectors, and low-loss interfacing of these components.

  16. The density matrix renormalization group for ab initio quantum chemistry

    CERN Document Server

    Wouters, Sebastian

    2014-01-01

    During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active orbital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the computational co...

  17. Density functional theory in quantum chemistry

    CERN Document Server

    Tsuneda, Takao

    2014-01-01

    This book examines density functional theory based on the foundation of quantum chemistry. Unconventional in approach, it reviews basic concepts, then describes the physical meanings of state-of-the-art exchange-correlation functionals and their corrections.

  18. Introduction to topological quantum matter & quantum computation

    CERN Document Server

    Stanescu, Tudor D

    2017-01-01

    What is -topological- about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-know...

  19. Quantum probabilistically cloning and computation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this article we make a review on the usefulness of probabilistically cloning and present examples of quantum computation tasks for which quantum cloning offers an advantage which cannot be matched by any approach that does not resort to it.In these quantum computations,one needs to distribute quantum information contained in states about which we have some partial information.To perform quantum computations,one uses state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation.And we discuss the achievable efficiencies and the efficient quantum logic network for probabilistic cloning the quantum states used in implementing quantum computation tasks for which cloning provides enhancement in performance.

  20. Abstract quantum computing machines and quantum computational logics

    Science.gov (United States)

    Chiara, Maria Luisa Dalla; Giuntini, Roberto; Sergioli, Giuseppe; Leporini, Roberto

    2016-06-01

    Classical and quantum parallelism are deeply different, although it is sometimes claimed that quantum Turing machines are nothing but special examples of classical probabilistic machines. We introduce the concepts of deterministic state machine, classical probabilistic state machine and quantum state machine. On this basis, we discuss the question: To what extent can quantum state machines be simulated by classical probabilistic state machines? Each state machine is devoted to a single task determined by its program. Real computers, however, behave differently, being able to solve different kinds of problems. This capacity can be modeled, in the quantum case, by the mathematical notion of abstract quantum computing machine, whose different programs determine different quantum state machines. The computations of abstract quantum computing machines can be linguistically described by the formulas of a particular form of quantum logic, termed quantum computational logic.

  1. Deep Learning for Computational Chemistry

    OpenAIRE

    Goh, Garrett B.; Hodas, Nathan O.; Vishnu, Abhinav

    2017-01-01

    The rise and fall of artificial neural networks is well documented in the scientific literature of both computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on multilayer neural networks. Within the last few years, we have seen the transformative impact of deep learning in many domains, particularly in speech recognition and computer vision, to the extent that the majority of...

  2. Demonstration of blind quantum computing.

    Science.gov (United States)

    Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joseph F; Zeilinger, Anton; Walther, Philip

    2012-01-20

    Quantum computers, besides offering substantial computational speedups, are also expected to preserve the privacy of a computation. We present an experimental demonstration of blind quantum computing in which the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated. The client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.

  3. Alternative algebraic approaches in quantum chemistry

    Science.gov (United States)

    Mezey, Paul G.

    2015-01-01

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.

  4. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry

    OpenAIRE

    Rappoport, Dmitrij; Galvin, Cooper J.; Zubarev, Dmitry; Aspuru-Guzik, Alan

    2014-01-01

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reacti...

  5. Basic concepts in quantum computation

    CERN Document Server

    Ekert, A K; Inamori, H; Ekert, Artur; Hayden, Patrick; Inamori, Hitoshi

    2000-01-01

    Section headings: 1 Qubits, gates and networks 2 Quantum arithmetic and function evaluations 3 Algorithms and their complexity 4 From interferometers to computers 5 The first quantum algorithms 6 Quantum search 7 Optimal phase estimation 8 Periodicity and quantum factoring 9 Cryptography 10 Conditional quantum dynamics 11 Decoherence and recoherence 12 Concluding remarks

  6. Quantum Mobile Crypto-Computation

    Institute of Scientific and Technical Information of China (English)

    XIONGYan; CHENHuanhuan; GUNaijie; MIAOFuyou

    2005-01-01

    In this paper, a quantum approach for solving the mobile crypto-computation problem is proposed. In our approach, quantum signature and quantum entanglement have been employed to strengthen the security of mobile computation. Theory analysis shows that our solution is secure against classic and quantum attacks.

  7. Theoretical and computational chemistry.

    Science.gov (United States)

    Meuwly, Markus

    2010-01-01

    Computer-based and theoretical approaches to chemical problems can provide atomistic understanding of complex processes at the molecular level. Examples ranging from rates of ligand-binding reactions in proteins to structural and energetic investigations of diastereomers relevant to organo-catalysis are discussed in the following. They highlight the range of application of theoretical and computational methods to current questions in chemical research.

  8. Holographic quantum computing.

    Science.gov (United States)

    Tordrup, Karl; Negretti, Antonio; Mølmer, Klaus

    2008-07-25

    We propose to use a single mesoscopic ensemble of trapped polar molecules for quantum computing. A "holographic quantum register" with hundreds of qubits is encoded in collective excitations with definite spatial phase variations. Each phase pattern is uniquely addressed by optical Raman processes with classical optical fields, while one- and two-qubit gates and qubit readout are accomplished by transferring the qubit states to a stripline microwave cavity field and a Cooper pair box where controllable two-level unitary dynamics and detection is governed by classical microwave fields.

  9. Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation

    CERN Document Server

    Aharonov, D; Kempe, J; Landau, Z; Lloyd, S; Regev, O; Aharonov, Dorit; Dam, Wim van; Kempe, Julia; Landau, Zeph; Lloyd, Seth; Regev, Oded

    2004-01-01

    Adiabatic quantum computation has recently attracted attention in the physics and computer science communities, but its computational power has been unknown. We settle this question and describe an efficient adiabatic simulation of any given quantum algorithm, which implies that the adiabatic computation model and the conventional quantum circuit model are polynomially equivalent. Our result can be extended to the physically realistic setting of particles arranged on a two-dimensional grid with nearest neighbor interactions. The equivalence between the models provides a new vantage point from which to tackle the central issues in quantum computation, namely designing new quantum algorithms and constructing fault tolerant quantum computers. In particular, by translating the main open questions in quantum algorithms to the language of spectral gaps of sparse matrices, the result makes quantum algorithmic questions accessible to a wider scientific audience, acquainted with mathematical physics, expander theory a...

  10. Understanding MAOS through computational chemistry.

    Science.gov (United States)

    Prieto, P; de la Hoz, A; Díaz-Ortiz, A; Rodríguez, A M

    2017-01-23

    The importance of microwave irradiation in organic synthesis today is unquestionable, but in many cases the nature of these improvements remains unknown. Exploiting the benefits that microwave irradiation has in chemistry is still hindered by a lack of understanding of the physical principles of the interaction of microwave irradiation with the components of a reaction. Moreover, dielectric properties vary with temperature and along the reaction coordinate and this makes the situation more complex. Experimental determinations employed to date in Microwave-Assisted Organic Chemistry (MAOS) are characterized by the importance of thermal heating. In this way the separation of thermal heating from any other effect of electromagnetic radiation is completely impossible. This review provides an overview of the use of Computational Chemistry in MAOS to provide a theoretical understanding of the factors that can be used to explain the improvements in MAOS and how computational calculations can be used as a predictive tool.

  11. Quantum Computation Toward Quantum Gravity

    Science.gov (United States)

    Zizzi, P. A.

    2001-08-01

    The aim of this paper is to enlighten the emerging relevance of Quantum Information Theory in the field of Quantum Gravity. As it was suggested by J. A. Wheeler, information theory must play a relevant role in understanding the foundations of Quantum Mechanics (the "It from bit" proposal). Here we suggest that quantum information must play a relevant role in Quantum Gravity (the "It from qubit" proposal). The conjecture is that Quantum Gravity, the theory which will reconcile Quantum Mechanics with General Relativity, can be formulated in terms of quantum bits of information (qubits) stored in space at the Planck scale. This conjecture is based on the following arguments: a) The holographic principle, b) The loop quantum gravity approach and spin networks, c) Quantum geometry and black hole entropy. From the above arguments, as they stand in the literature, it follows that the edges of spin networks pierce the black hole horizon and excite curvature degrees of freedom on the surface. These excitations are micro-states of Chern-Simons theory and account of the black hole entropy which turns out to be a quarter of the area of the horizon, (in units of Planck area), in accordance with the holographic principle. Moreover, the states which dominate the counting correspond to punctures of spin j = 1/2 and one can in fact visualize each micro-state as a bit of information. The obvious generalization of this result is to consider open spin networks with edges labeled by the spin -1/ 2 representation of SU(2) in a superposed state of spin "on" and spin "down." The micro-state corresponding to such a puncture will be a pixel of area which is "on" and "off" at the same time, and it will encode a qubit of information. This picture, when applied to quantum cosmology, describes an early inflationary universe which is a discrete version of the de Sitter universe.

  12. Computational Chemistry Robots

    OpenAIRE

    2005-01-01

    ACS Fall Conference 2005 Millions of compounds are now Openly available (e.g. PubChem) and we describe the automatic computation of their geometries and properties. Using completely automatic procedures, based on modular components and workflow technology (Taverna) we can: * extract structures from 3D databases or crystallographic publications * determine a cost-effective level of theory * optimise ground state geometry and calculate properties * disseminate the results Openl...

  13. Quantum Computation and Spin Electronics

    OpenAIRE

    DiVincenzo, David P.; Burkard, Guido; Loss, Daniel; Sukhorukov, Eugene V.

    1999-01-01

    In this chapter we explore the connection between mesoscopic physics and quantum computing. After giving a bibliography providing a general introduction to the subject of quantum information processing, we review the various approaches that are being considered for the experimental implementation of quantum computing and quantum communication in atomic physics, quantum optics, nuclear magnetic resonance, superconductivity, and, especially, normal-electron solid state physics. We discuss five ...

  14. Blind Quantum Computation

    CERN Document Server

    Arrighi, P; Arrighi, Pablo; Salvail, Louis

    2003-01-01

    We investigate the possibility of having someone carry out the work of executing a function for you, but without letting him learn anything about your input. Say Alice wants Bob to compute some well-known function f upon her input x, but wants to prevent Bob from learning anything about x. The situation arises for instance if client Alice has limited computational resources in comparison with mistrusted server Bob, or if x is an inherently mobile piece of data. Could there be a protocol whereby Bob is forced to compute f(x) "blindly", i.e. without observing x? We provide such a blind computation protocol for the class of functions which admit an efficient procedure to generate random input-output pairs, e.g. factorization. The setting is quantum, the security is unconditional, the eavesdropper is as malicious as can be. Keywords: Secure Circuit Evaluation, Secure Two-party Computation, Information Hiding, Information gain vs disturbance.

  15. Exploring Do-It-Yourself Approaches in Computational Quantum Chemistry: The Pedagogical Benefits of the Classical Boys Algorithm

    Science.gov (United States)

    Orsini, Gabriele

    2015-01-01

    The ever-increasing impact of molecular quantum calculations over chemical sciences implies a strong and urgent need for the elaboration of proper teaching strategies in university curricula. In such perspective, this paper proposes an extensive project for a student-driven, cooperative, from-scratch implementation of a general Hartree-Fock…

  16. Short Introduction to Quantum Computation

    Science.gov (United States)

    2007-11-02

    Proceedings of the Air Force Office of Scientific Research Computational Mathematics Meeting 1996 Revision 2 Short Introduction to Quantum...useful for nanoscale computing and quantum computing. KEY WORDS: quantum computing, nano-scale computing, Moore’s law 1 Introduction It is likely that...memory) Digital Devices magnetostrictive delay line Intel 1103 integrated circuit IBM 3340 disk drive Smallest DRAM cell reported on at ISSC Current

  17. Quantum computing of semiclassical formulas.

    Science.gov (United States)

    Georgeot, B; Giraud, O

    2008-04-01

    We show that semiclassical formulas such as the Gutzwiller trace formula can be implemented on a quantum computer more efficiently than on a classical device. We give explicit quantum algorithms which yield quantum observables from classical trajectories, and which alternatively test the semiclassical approximation by computing classical actions from quantum evolution. The gain over classical computation is in general quadratic, and can be larger in some specific cases.

  18. Quantum Computing, Metrology, and Imaging

    CERN Document Server

    Lee, H; Dowling, J P; Lee, Hwang; Lougovski, Pavel; Dowling, Jonathan P.

    2005-01-01

    Information science is entering into a new era in which certain subtleties of quantum mechanics enables large enhancements in computational efficiency and communication security. Naturally, precise control of quantum systems required for the implementation of quantum information processing protocols implies potential breakthoughs in other sciences and technologies. We discuss recent developments in quantum control in optical systems and their applications in metrology and imaging.

  19. Outlook Bright for Computers in Chemistry.

    Science.gov (United States)

    Baum, Rudy M.

    1981-01-01

    Discusses the recent decision to close down the National Resource for Computation in Chemistry (NRCC), implications of that decision, and various alternatives in the field of computational chemistry. (CS)

  20. Quantum computing on encrypted data.

    Science.gov (United States)

    Fisher, K A G; Broadbent, A; Shalm, L K; Yan, Z; Lavoie, J; Prevedel, R; Jennewein, T; Resch, K J

    2014-01-01

    The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.

  1. Quantum computing on encrypted data

    Science.gov (United States)

    Fisher, K. A. G.; Broadbent, A.; Shalm, L. K.; Yan, Z.; Lavoie, J.; Prevedel, R.; Jennewein, T.; Resch, K. J.

    2014-01-01

    The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.

  2. Quantum computer for dummies (in Russian)

    OpenAIRE

    Grozin, Andrey

    2011-01-01

    An introduction (in Russian) to quantum computers, quantum cryptography, and quantum teleportation for students who have no previous knowledge of these subjects, but know quantum mechanics. Several simple examples are considered in detail using the quantum computer emulator QCL.

  3. Programmable architecture for quantum computing

    NARCIS (Netherlands)

    Chen, J.; Wang, L.; Charbon, E.; Wang, B.

    2013-01-01

    A programmable architecture called “quantum FPGA (field-programmable gate array)” (QFPGA) is presented for quantum computing, which is a hybrid model combining the advantages of the qubus system and the measurement-based quantum computation. There are two kinds of buses in QFPGA, the local bus and t

  4. Fluxon-controlled quantum computer

    Science.gov (United States)

    Fujii, Toshiyuki; Matsuo, Shigemasa; Hatakenaka, Noriyuki

    2016-11-01

    We propose a fluxon-controlled quantum computer incorporated with three-qubit quantum error correction using special gate operations, i.e. joint-phase and SWAP gate operations, inherent in capacitively coupled superconducting flux qubits. The proposed quantum computer acts exactly like a knitting machine at home.

  5. Programmable architecture for quantum computing

    NARCIS (Netherlands)

    Chen, J.; Wang, L.; Charbon, E.; Wang, B.

    2013-01-01

    A programmable architecture called “quantum FPGA (field-programmable gate array)” (QFPGA) is presented for quantum computing, which is a hybrid model combining the advantages of the qubus system and the measurement-based quantum computation. There are two kinds of buses in QFPGA, the local bus and t

  6. Quantum computing with defects.

    Science.gov (United States)

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

  7. Aplicação da química quântica computacional no estudo de processos químicos envolvidos em espectrometria de massas Application of computational quantum chemistry to chemical processes involved in mass spectrometry

    Directory of Open Access Journals (Sweden)

    Ricardo Vessecchi

    2008-01-01

    Full Text Available The field of application of mass spectrometry (MS has increased considerably due to the development of ionization techniques. Other factors that have stimulated the use of MS are the tandem mass spectrometry (MS/MS and sequential mass spectrometry (MSn techniques. However, the interpretation of the MS/MS and MSn data may lead to speculative conclusions. Thus, various quantum chemical methods have been applied for obtaining high quality thermochemical data in gas phase. In this review, we show some applications of computational quantum chemistry to understand the formation and fragmentation of gaseous ions of organic compounds in a MS analysis.

  8. Brick by Brick Computation of the Gibbs Free Energy of Reaction in Solution Using Quantum Chemistry and COSMO-RS

    CERN Document Server

    Hellweg, Arnim

    2016-01-01

    The computational modelling of reactions is simple in theory but can be quite tricky in practice. This article aims at the purpose of providing an assistance to a proper way of describing reactions theoretically and provides rough guidelines to the computational methods involved. Reactions in liquid phase chemical equilibrium can be described theoretically in terms of the Gibbs free energy of reaction. This property can be divided into a sum of three disjunct terms, namely the gas phase reaction energy, the finite temperature contribution to the Gibbs free energy, and the Gibbs free energy of solvation. The three contributions to the Gibbs free energy of reaction can be computed separately, using different theoretico--chemical calculation methods. While some of these terms can be obtained reliably by computationally cheap methods, for others a high level of theory is required to obtain predictions of quantitative quality. In order to propose workflows which can strike the balance between accuracy and computat...

  9. Layered Architecture for Quantum Computing

    National Research Council Canada - National Science Library

    Jones, N. Cody; Van Meter, Rodney; Fowler, Austin G; McMahon, Peter L; Kim, Jungsang; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2012-01-01

    .... We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface-code quantum error correction...

  10. Quantum computing: Efficient fault tolerance

    Science.gov (United States)

    Gottesman, Daniel

    2016-12-01

    Dealing with errors in a quantum computer typically requires complex programming and many additional quantum bits. A technique for controlling errors has been proposed that alleviates both of these problems.

  11. Hypercomputation based on quantum computing

    CERN Document Server

    Sicard, A; Ospina, J; Sicard, Andr\\'es; V\\'elez, Mario; Ospina, Juan

    2004-01-01

    We present a quantum algorithm for a (classically) incomputable decision problem: the Hilbert's tenth problem; namely, we present a hypercomputation model based on quantum computation. The model is inspired by the one proposed by Tien D. Kieu. Our model exploits the quantum adiabatic process and the characteristics of the representation of the dynamical algebra su(1,1) associated to the infinite square well. Furthermore, it is demonstrated that the model proposed is a universal quantum computation model.

  12. Addition on a Quantum Computer

    CERN Document Server

    Draper, Thomas G

    2000-01-01

    A new method for computing sums on a quantum computer is introduced. This technique uses the quantum Fourier transform and reduces the number of qubits necessary for addition by removing the need for temporary carry bits. This approach also allows the addition of a classical number to a quantum superposition without encoding the classical number in the quantum register. This method also allows for massive parallelization in its execution.

  13. Interfacing external quantum devices to a universal quantum computer.

    Science.gov (United States)

    Lagana, Antonio A; Lohe, Max A; von Smekal, Lorenz

    2011-01-01

    We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.

  14. Interfacing external quantum devices to a universal quantum computer.

    Directory of Open Access Journals (Sweden)

    Antonio A Lagana

    Full Text Available We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.

  15. Structural and Thermodynamic Properties of the Argon Dimer: A Computational Chemistry Exercise in Quantum and Statistical Mechanics

    Science.gov (United States)

    Halpern, Arthur M.

    2010-01-01

    Using readily available computational applications and resources, students can construct a high-level ab initio potential energy surface (PES) for the argon dimer. From this information, they can obtain detailed molecular constants of the dimer, including its dissociation energy, which compare well with experimental determinations. Using both…

  16. Massively parallel quantum computer simulator

    NARCIS (Netherlands)

    De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.

    2007-01-01

    We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray

  17. Block-adaptive quantum mechanics: an adaptive divide-and-conquer approach to interactive quantum chemistry.

    Science.gov (United States)

    Bosson, Maël; Grudinin, Sergei; Redon, Stephane

    2013-03-05

    We present a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. Although quantum chemistry models are known to be computationally demanding, we achieve interactive rates by focusing computational resources on the most active parts of the system. BAQM is based on a divide-and-conquer technique and constrains some nucleus positions and some electronic degrees of freedom on the fly to simplify the simulation. As a result, each time step may be performed significantly faster, which in turn may accelerate attraction to the neighboring local minima. By applying our approach to the nonself-consistent Atom Superposition and Electron Delocalization Molecular Orbital theory, we demonstrate interactive rates and efficient virtual prototyping for systems containing more than a thousand of atoms on a standard desktop computer.

  18. Fault-tolerant quantum computation

    CERN Document Server

    Preskill, J

    1997-01-01

    The discovery of quantum error correction has greatly improved the long-term prospects for quantum computing technology. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment, or due to imperfect implementations of quantum logical operations. Recovery from errors can work effectively even if occasional mistakes occur during the recovery procedure. Furthermore, encoded quantum information can be processed without serious propagation of errors. In principle, an arbitrarily long quantum computation can be performed reliably, provided that the average probability of error per gate is less than a certain critical value, the accuracy threshold. It may be possible to incorporate intrinsic fault tolerance into the design of quantum computing hardware, perhaps by invoking topological Aharonov-Bohm interactions to process quantum information.

  19. The Semi-Quantum Computer

    CERN Document Server

    Vianna, R O; Monken, C H; Vianna, Reinaldo O.; Rabelo, Wilson R. M.

    2003-01-01

    We discuss the performance of the Search and Fourier Transform algorithms on a hybrid computer constituted of classical and quantum processors working together. We show that this semi-quantum computer would be an improvement over a pure classical architecture, no matter how few qubits are available and, therefore, it suggests an easier implementable technology than a pure quantum computer with arbitrary number of qubits.

  20. Quantum information. Teleportation - cryptography - quantum computer; Quanteninformation. Teleportation - Kryptografie - Quantencomputer

    Energy Technology Data Exchange (ETDEWEB)

    Koenneker, Carsten (comp.)

    2012-11-01

    The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)

  1. State of the art in quantum chemistry today

    Science.gov (United States)

    Stepanov, Nikolai F.

    2004-01-01

    Modern quantum chemistry is the quantum theory of structure an dynamics of molecular systems. The development of quantum chemistry for almost 8 decades gave birth to many concepts of modern chemistry and created many calculation technique which are widely used to obtain preliminary as well as high-precision information on molecular properties. In the end of XXth century it becomes the real fundamental base of chemistry and the active tool for the qualitative interpretation of structural features and physical and chemical properties including dynamics of chemical transformations. It turns out to be a very power means to obtaining quantitative results for molecular clusters as well as isolated molecules in free states and in external fields. The computational programs created in the last decades of the XXth century and permanently refined provide the reliable quantitative information on molecular equilibrium configurations, harmonic vibrational frequencies and anharmonic force constants, frequencies and intensities of the first electronic transitions, energies of the formations and potential barriers, the parameters important for interpretation of ESR and NMR spectra, electric and magnetic moments, and many other characteristics of molecular systems. The last two decades turned many quantum chemists to comparatively large molecules especially those with the distinctly pronounced biological activity. Nevertheless, small molecules the calculation results for which can pretend on the highest precision still serve as a strong attractor for the people who deal with methodological as well as applied problems.

  2. Can the human brain do quantum computing?

    Science.gov (United States)

    Rocha, A F; Massad, E; Coutinho, F A B

    2004-01-01

    The electrical membrane properties have been the key issues in the understanding of the cerebral physiology for more than almost two centuries. But, molecular neurobiology has now discovered that biochemical transactions play an important role in neuronal computations. Quantum computing (QC) is becoming a reality both from the theoretical point of view as well as from practical applications. Quantum mechanics is the most accurate description at atomic level and it lies behind all chemistry that provides the basis for biology ... maybe the magic of entanglement is also crucial for life. The purpose of the present paper is to discuss the dendrite spine as a quantum computing device, taking into account what is known about the physiology of the glutamate receptors and the cascade of biochemical transactions triggered by the glutamate binding to these receptors.

  3. Quantum Computing over Finite Fields

    CERN Document Server

    James, Roshan P; Sabry, Amr

    2011-01-01

    In recent work, Benjamin Schumacher and Michael~D. Westmoreland investigate a version of quantum mechanics which they call "modal quantum theory" but which we prefer to call "discrete quantum theory". This theory is obtained by instantiating the mathematical framework of Hilbert spaces with a finite field instead of the field of complex numbers. This instantiation collapses much the structure of actual quantum mechanics but retains several of its distinguishing characteristics including the notions of superposition, interference, and entanglement. Furthermore, discrete quantum theory excludes local hidden variable models, has a no-cloning theorem, and can express natural counterparts of quantum information protocols such as superdense coding and teleportation. Our first result is to distill a model of discrete quantum computing from this quantum theory. The model is expressed using a monadic metalanguage built on top of a universal reversible language for finite computations, and hence is directly implementab...

  4. Algorithms on ensemble quantum computers.

    Science.gov (United States)

    Boykin, P Oscar; Mor, Tal; Roychowdhury, Vwani; Vatan, Farrokh

    2010-06-01

    In ensemble (or bulk) quantum computation, all computations are performed on an ensemble of computers rather than on a single computer. Measurements of qubits in an individual computer cannot be performed; instead, only expectation values (over the complete ensemble of computers) can be measured. As a result of this limitation on the model of computation, many algorithms cannot be processed directly on such computers, and must be modified, as the common strategy of delaying the measurements usually does not resolve this ensemble-measurement problem. Here we present several new strategies for resolving this problem. Based on these strategies we provide new versions of some of the most important quantum algorithms, versions that are suitable for implementing on ensemble quantum computers, e.g., on liquid NMR quantum computers. These algorithms are Shor's factorization algorithm, Grover's search algorithm (with several marked items), and an algorithm for quantum fault-tolerant computation. The first two algorithms are simply modified using a randomizing and a sorting strategies. For the last algorithm, we develop a classical-quantum hybrid strategy for removing measurements. We use it to present a novel quantum fault-tolerant scheme. More explicitly, we present schemes for fault-tolerant measurement-free implementation of Toffoli and σ(z)(¼) as these operations cannot be implemented "bitwise", and their standard fault-tolerant implementations require measurement.

  5. Quantum information processing in nanostructures Quantum optics; Quantum computing

    CERN Document Server

    Reina-Estupinan, J H

    2002-01-01

    Since information has been regarded os a physical entity, the field of quantum information theory has blossomed. This brings novel applications, such as quantum computation. This field has attracted the attention of numerous researchers with backgrounds ranging from computer science, mathematics and engineering, to the physical sciences. Thus, we now have an interdisciplinary field where great efforts are being made in order to build devices that should allow for the processing of information at a quantum level, and also in the understanding of the complex structure of some physical processes at a more basic level. This thesis is devoted to the theoretical study of structures at the nanometer-scale, 'nanostructures', through physical processes that mainly involve the solid-state and quantum optics, in order to propose reliable schemes for the processing of quantum information. Initially, the main results of quantum information theory and quantum computation are briefly reviewed. Next, the state-of-the-art of ...

  6. Models of optical quantum computing

    Directory of Open Access Journals (Sweden)

    Krovi Hari

    2017-03-01

    Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  7. Quantum Computer Using Coupled Quantum Dot Molecules

    CERN Document Server

    Wu, N J; Natori, A; Yasunaga, H; Wu*, Nan-Jian

    1999-01-01

    We propose a method for implementation of a quantum computer using artificial molecules. The artificial molecule consists of two coupled quantum dots stacked along z direction and one single electron. One-qubit and two-qubit gates are constructed by one molecule and two coupled molecules, respectively.The ground state and the first excited state of the molecule are used to encode the |0> and |1> states of a qubit. The qubit is manipulated by a resonant electromagnetic wave that is applied directly to the qubit through a microstrip line. The coupling between two qubits in a quantum controlled NOT gate is switched on (off) by floating (grounding) the metal film electrodes. We study the operations of the gates by using a box-shaped quantum dot model and numerically solving a time-dependent Schridinger equation, and demonstrate that the quantum gates can perform the quantum computation. The operating speed of the gates is about one operation per 4ps. The reading operation of the output of the quantum computer can...

  8. Quasicrystals and Quantum Computing

    Science.gov (United States)

    Berezin, Alexander A.

    1997-03-01

    In Quantum (Q) Computing qubits form Q-superpositions for macroscopic times. One scheme for ultra-fast (Q) computing can be based on quasicrystals. Ultrafast processing in Q-coherent structures (and the very existence of durable Q-superpositions) may be 'consequence' of presence of entire manifold of integer arithmetic (A0, aleph-naught of Georg Cantor) at any 4-point of space-time, furthermore, at any point of any multidimensional phase space of (any) N-particle Q-system. The latter, apart from quasicrystals, can include dispersed and/or diluted systems (Berezin, 1994). In such systems such alleged centrepieces of Q-Computing as ability for fast factorization of long integers can be processed by sheer virtue of the fact that entire infinite pattern of prime numbers is instantaneously available as 'free lunch' at any instant/point. Infinitely rich pattern of A0 (including pattern of primes and almost primes) acts as 'independent' physical effect which directly generates Q-dynamics (and physical world) 'out of nothing'. Thus Q-nonlocality can be ultimately based on instantaneous interconnectedness through ever- the-same structure of A0 ('Platonic field' of integers).

  9. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    Science.gov (United States)

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  10. Minicomputer and computations in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The introduction of multiple-precision hardware and longer word lengths has given the minicomputer a much more general potential for chemistry applications. It was the purpose of this workshop to address this potential, particularly as it is related to computations. The workshop brought together persons with minicomputer experience and those who are considering how the minicomputer might enhance their research activities. The workshop sessions were arranged in sequence to address the following questions: (1) Is the general purpose minicomputer an appropriate tool to meet the computational requirements of a chemistry research laboratory. (2) What are the procedures for wisely designing a minicomputer configuration. (3) What special-purpose hardware is available to enhance the speed of a minicomputer. (4) How does one select the appropriate minicomputer and ensure that it can accomplish the tasks for which is was designed. (5) How can one network minicomputers for more efficient and flexible operation. (6) Can one do really large-scale computations on a minicomputer and what modifications are necessary to convert existing programs and algorithms. (7) How can the minicomputer be used to access the maxicomputers at the NRCC. (8) How are computers likely to evolve in the future. (9) What should be the role of the NRCC in relation to minicomputers. This report of the workshop consists mainly of edited transcripts of introductory remarks. These were augmented by relevant bibliographies as an alternative to transcription of the entire workshop. There was no attempt in the workshop to give final answers to the questions that were raised, since the answers are determined in large part by each particular minicomputer environment.

  11. Avoiding Quantum Chaos in Quantum Computation

    CERN Document Server

    Berman, G P; Izrailev, F M; Tsifrinovich, V I

    2001-01-01

    We study a one-dimensional chain of nuclear $1/2-$spins in an external time-dependent magnetic field. This model is considered as a possible candidate for experimental realization of quantum computation. According to the general theory of interacting particles, one of the most dangerous effects is quantum chaos which can destroy the stability of quantum operations. According to the standard viewpoint, the threshold for the onset of quantum chaos due to an interaction between spins (qubits) strongly decreases with an increase of the number of qubits. Contrary to this opinion, we show that the presence of a magnetic field gradient helps to avoid quantum chaos which turns out to disappear with an increase of the number of qubits. We give analytical estimates which explain this effect, together with numerical data supporting

  12. Quantum theory and chemistry: Two propositions

    Science.gov (United States)

    Aronowitz, S.

    1980-01-01

    Two propositions concerning quantum chemistry are proposed. First, it is proposed that the nonrelativistic Schroedinger equation, where the Hamiltonian operator is associated with an assemblage of nuclei and electrons, can never be arranged to yield specific molecules in the chemists' sense. It is argued that this result is a necessary condition if the Schroedinger has relevancy to chemistry. Second, once a system is in a particular state with regard to interactions among its components (the assemblage of nuclei and electrons), it cannot spontaneously eliminate any of those interactions. This leads to a subtle form of irreversibility.

  13. Quantum entanglement and quantum computational algorithms

    Indian Academy of Sciences (India)

    Arvind

    2001-02-01

    The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped onto a classical optical scheme. It is only for three and more input bits that the DJ algorithm requires the implementation of entangling transformations and in these cases it is impossible to implement this algorithm classically

  14. Orbital entanglement in quantum chemistry

    CERN Document Server

    Boguslawski, Katharina

    2014-01-01

    The basic concepts of orbital entanglement and its application to chemistry are briefly reviewed. The calculation of orbital entanglement measures from correlated wavefunctions is discussed in terms of reduced $n$-particle density matrices. Possible simplifications in their evaluation are highlighted in case of seniority-zero wavefunctions. Specifically, orbital entanglement allows us to dissect electron correlation effects in its strong and weak contributions, to determine bond orders, to assess the quality and stability of active space calculations, to monitor chemical reactions, and to identify points along the reaction coordinate where electronic wavefunctions change drastically. Thus, orbital entanglement represents a useful and intuitive tool to interpret complex electronic wavefunctions and to facilitate a qualitative understanding of electronic structure and how it changes in chemical processes.

  15. Quantum computing in neural networks

    CERN Document Server

    Gralewicz, P

    2004-01-01

    According to the statistical interpretation of quantum theory, quantum computers form a distinguished class of probabilistic machines (PMs) by encoding n qubits in 2n pbits. This raises the possibility of a large-scale quantum computing using PMs, especially with neural networks which have the innate capability for probabilistic information processing. Restricting ourselves to a particular model, we construct and numerically examine the performance of neural circuits implementing universal quantum gates. A discussion on the physiological plausibility of proposed coding scheme is also provided.

  16. Scalable Computational Chemistry: New Developments and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, Yuri [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    The computational part of the thesis is the investigation of titanium chloride (II) as a potential catalyst for the bis-silylation reaction of ethylene with hexaclorodisilane at different levels of theory. Bis-silylation is an important reaction for producing bis(silyl) compounds and new C-Si bonds, which can serve as monomers for silicon containing polymers and silicon carbides. Ab initio calculations on the steps involved in a proposed mechanism are presented. This choice of reactants allows them to study this reaction at reliable levels of theory without compromising accuracy. The calculations indicate that this is a highly exothermic barrierless reaction. The TiCl2 catalyst removes a 50 kcal/mol activation energy barrier required for the reaction without the catalyst. The first step is interaction of TiCl2 with ethylene to form an intermediate that is 60 kcal/mol below the energy of the reactants. This is the driving force for the entire reaction. Dynamic correlation plays a significant role because RHF calculations indicate that the net barrier for the catalyzed reaction is 50 kcal/mol. They conclude that divalent Ti has the potential to become an important industrial catalyst for silylation reactions. In the programming part of the thesis, parallelization of different quantum chemistry methods is presented. The parallelization of code is becoming important aspects of quantum chemistry code development. Two trends contribute to it: the overall desire to study large chemical systems and the desire to employ highly correlated methods which are usually computationally and memory expensive. In the presented distributed data algorithms computation is parallelized and the largest arrays are evenly distributed among CPUs. First, the parallelization of the Hartree-Fock self-consistent field (SCF) method is considered. SCF method is the most common starting point for more accurate calculations. The Fock build (sub step of SCF) from AO integrals is

  17. Scalable Computational Chemistry: New Developments and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yuri Alexeev

    2002-12-31

    The computational part of the thesis is the investigation of titanium chloride (II) as a potential catalyst for the bis-silylation reaction of ethylene with hexaclorodisilane at different levels of theory. Bis-silylation is an important reaction for producing bis(silyl) compounds and new C-Si bonds, which can serve as monomers for silicon containing polymers and silicon carbides. Ab initio calculations on the steps involved in a proposed mechanism are presented. This choice of reactants allows them to study this reaction at reliable levels of theory without compromising accuracy. The calculations indicate that this is a highly exothermic barrierless reaction. The TiCl{sub 2} catalyst removes a 50 kcal/mol activation energy barrier required for the reaction without the catalyst. The first step is interaction of TiCl{sub 2} with ethylene to form an intermediate that is 60 kcal/mol below the energy of the reactants. This is the driving force for the entire reaction. Dynamic correlation plays a significant role because RHF calculations indicate that the net barrier for the catalyzed reaction is 50 kcal/mol. They conclude that divalent Ti has the potential to become an important industrial catalyst for silylation reactions. In the programming part of the thesis, parallelization of different quantum chemistry methods is presented. The parallelization of code is becoming important aspects of quantum chemistry code development. Two trends contribute to it: the overall desire to study large chemical systems and the desire to employ highly correlated methods which are usually computationally and memory expensive. In the presented distributed data algorithms computation is parallelized and the largest arrays are evenly distributed among CPUs. First, the parallelization of the Hartree-Fock self-consistent field (SCF) method is considered. SCF method is the most common starting point for more accurate calculations. The Fock build (sub step of SCF) from AO integrals is also

  18. Quantum Computation Beyond the Circuit Model

    OpenAIRE

    Jordan, Stephen P.

    2008-01-01

    The quantum circuit model is the most widely used model of quantum computation. It provides both a framework for formulating quantum algorithms and an architecture for the physical construction of quantum computers. However, several other models of quantum computation exist which provide useful alternative frameworks for both discovering new quantum algorithms and devising new physical implementations of quantum computers. In this thesis, I first present necessary background material for a ge...

  19. Quantum kernel applications in medicinal chemistry.

    Science.gov (United States)

    Huang, Lulu; Massa, Lou

    2012-07-01

    Progress in the quantum mechanics of biological molecules is being driven by computational advances. The notion of quantum kernels can be introduced to simplify the formalism of quantum mechanics, making it especially suitable for parallel computation of very large biological molecules. The essential idea is to mathematically break large biological molecules into smaller kernels that are calculationally tractable, and then to represent the full molecule by a summation over the kernels. The accuracy of the kernel energy method (KEM) is shown by systematic application to a great variety of molecular types found in biology. These include peptides, proteins, DNA and RNA. Examples are given that explore the KEM across a variety of chemical models, and to the outer limits of energy accuracy and molecular size. KEM represents an advance in quantum biology applicable to problems in medicine and drug design.

  20. Cryptography, quantum computation and trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard J.

    1998-03-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  1. Universal blind quantum computation for hybrid system

    Science.gov (United States)

    Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang

    2017-08-01

    As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.

  2. Experimental quantum computing without entanglement.

    Science.gov (United States)

    Lanyon, B P; Barbieri, M; Almeida, M P; White, A G

    2008-11-14

    Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.

  3. Quantum information and computing

    CERN Document Server

    Ohya, M; Watanabe, N

    2006-01-01

    The main purpose of this volume is to emphasize the multidisciplinary aspects of this very active new line of research in which concrete technological and industrial realizations require the combined efforts of experimental and theoretical physicists, mathematicians and engineers. Contents: Coherent Quantum Control of ?-Atoms through the Stochastic Limit (L Accardi et al.); Recent Advances in Quantum White Noise Calculus (L Accardi & A Boukas); Joint Extension of States of Fermion Subsystems (H Araki); Fidelity of Quantum Teleportation Model Using Beam Splittings (K-H Fichtner et al.); Quantum

  4. Plug Pulled on Chemistry Computer Center.

    Science.gov (United States)

    Robinson, Arthur L.

    1980-01-01

    Discusses the controversy surrounding the initial decision to establish, and the current decision to phase out, the National Resource for Computation in Chemistry (NRCC), a computational chemistry center jointly sponsored by the National Science Foundation and the Department of Energy. (CS)

  5. Computational Chemistry Comparison and Benchmark Database

    Science.gov (United States)

    SRD 101 NIST Computational Chemistry Comparison and Benchmark Database (Web, free access)   The NIST Computational Chemistry Comparison and Benchmark Database is a collection of experimental and ab initio thermochemical properties for a selected set of molecules. The goals are to provide a benchmark set of molecules for the evaluation of ab initio computational methods and allow the comparison between different ab initio computational methods for the prediction of thermochemical properties.

  6. Informatics, machine learning and computational medicinal chemistry.

    Science.gov (United States)

    Mitchell, John B O

    2011-03-01

    This article reviews the use of informatics and computational chemistry methods in medicinal chemistry, with special consideration of how computational techniques can be adapted and extended to obtain more and higher-quality information. Special consideration is given to the computation of protein-ligand binding affinities, to the prediction of off-target bioactivities, bioactivity spectra and computational toxicology, and also to calculating absorption-, distribution-, metabolism- and excretion-relevant properties, such as solubility.

  7. Computing on Anonymous Quantum Network

    CERN Document Server

    Kobayashi, Hirotada; Tani, Seiichiro

    2010-01-01

    This paper considers distributed computing on an anonymous quantum network, a network in which no party has a unique identifier and quantum communication and computation are available. It is proved that the leader election problem can exactly (i.e., without error in bounded time) be solved with at most the same complexity up to a constant factor as that of exactly computing symmetric functions (without intermediate measurements for a distributed and superposed input), if the number of parties is given to every party. A corollary of this result is a more efficient quantum leader election algorithm than existing ones: the new quantum algorithm runs in O(n) rounds with bit complexity O(mn^2), on an anonymous quantum network with n parties and m communication links. Another corollary is the first quantum algorithm that exactly computes any computable Boolean function with round complexity O(n) and with smaller bit complexity than that of existing classical algorithms in the worst case over all (computable) Boolea...

  8. Quantum-enhanced Sensing and Efficient Quantum Computation

    Science.gov (United States)

    2015-07-27

    Quantum -enhanced sensing and efficient quantum computation Ian Walmsley THE UNIVERSITY OF...COVERED (From - To) 1 February 2013 - 31 January 2015 4. TITLE AND SUBTITLE Quantum -enhanced sensing and efficient quantum computation 5a. CONTRACT...1895616013 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Final report for “ Quantum ‐Enhanced Sensing and Efficient  Quantum   Computation

  9. Quantum Dots: An Experiment for Physical or Materials Chemistry

    Science.gov (United States)

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  10. Quantum Computing via The Bethe Ansatz

    OpenAIRE

    Zhang, Yong,

    2011-01-01

    We recognize quantum circuit model of computation as factorisable scattering model and propose that a quantum computer is associated with a quantum many-body system solved by the Bethe ansatz. As an typical example to support our perspectives on quantum computation, we study quantum computing in one-dimensional nonrelativistic system with delta-function interaction, where the two-body scattering matrix satisfies the factorisation equation (the quantum Yang--Baxter equation) and acts as a para...

  11. A quantum computer network

    CERN Document Server

    Kesidis, George

    2009-01-01

    Wong's diffusion network is a stochastic, zero-input Hopfield network with a Gibbs stationary distribution over a bounded, connected continuum. Previously, logarithmic thermal annealing was demonstrated for the diffusion network and digital versions of it were studied and applied to imaging. Recently, "quantum" annealed Markov chains have garnered significant attention because of their improved performance over "pure" thermal annealing. In this note, a joint quantum and thermal version of Wong's diffusion network is described and its convergence properties are studied. Different choices for "auxiliary" functions are discussed, including those of the kinetic type previously associated with quantum annealing.

  12. Massive Parallel Quantum Computer Simulator

    CERN Document Server

    De Raedt, K; De Raedt, H; Ito, N; Lippert, T; Michielsen, K; Richter, M; Trieu, B; Watanabe, H; Lippert, Th.

    2006-01-01

    We describe portable software to simulate universal quantum computers on massive parallel computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray X1E, a SGI Altix 3700 and clusters of PCs running Windows XP. We study the performance of the software by simulating quantum computers containing up to 36 qubits, using up to 4096 processors and up to 1 TB of memory. Our results demonstrate that the simulator exhibits nearly ideal scaling as a function of the number of processors and suggest that the simulation software described in this paper may also serve as benchmark for testing high-end parallel computers.

  13. Parallel computing in atmospheric chemistry models

    Energy Technology Data Exchange (ETDEWEB)

    Rotman, D. [Lawrence Livermore National Lab., CA (United States). Atmospheric Sciences Div.

    1996-02-01

    Studies of atmospheric chemistry are of high scientific interest, involve computations that are complex and intense, and require enormous amounts of I/O. Current supercomputer computational capabilities are limiting the studies of stratospheric and tropospheric chemistry and will certainly not be able to handle the upcoming coupled chemistry/climate models. To enable such calculations, the authors have developed a computing framework that allows computations on a wide range of computational platforms, including massively parallel machines. Because of the fast paced changes in this field, the modeling framework and scientific modules have been developed to be highly portable and efficient. Here, the authors present the important features of the framework and focus on the atmospheric chemistry module, named IMPACT, and its capabilities. Applications of IMPACT to aircraft studies will be presented.

  14. Continuous Quantum Computation

    Science.gov (United States)

    2007-03-01

    Eigenvalues and Eigenvectors”, by D.S. Abrams and S. Lloyd Physical Review Letters , 1999, Vol. 83, 5162-5156 [6] “Design of Strongly Modulating...by Y.S. Weinstein, S.Lloyd, J.V. Emerson and D.G. Cory, Physical Review Letters , 2002, Vol. 89,157902 [8] “The Edge of Quantum Chaos”, by Y.S...Weinstein, S. Lloyd and C. Tsallis, Physical Review Letters , 2002, Vol. 89, 214101 [9] “Fidelity Decay as an Efficient Indicator of Quantum Chaos

  15. Development of massively parallel quantum chemistry program SMASH

    Energy Technology Data Exchange (ETDEWEB)

    Ishimura, Kazuya [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585 (Japan)

    2015-12-31

    A massively parallel program for quantum chemistry calculations SMASH was released under the Apache License 2.0 in September 2014. The SMASH program is written in the Fortran90/95 language with MPI and OpenMP standards for parallelization. Frequently used routines, such as one- and two-electron integral calculations, are modularized to make program developments simple. The speed-up of the B3LYP energy calculation for (C{sub 150}H{sub 30}){sub 2} with the cc-pVDZ basis set (4500 basis functions) was 50,499 on 98,304 cores of the K computer.

  16. Delegating private quantum computations12

    Science.gov (United States)

    Broadbent, Anne

    2015-09-01

    We give a protocol for the delegation of quantum computation on encrypted data. More specifically, we show that in a client-server scenario, where the client holds the encryption key for an encrypted quantum register held by the server, it is possible for the server to perform a universal set of quantum gates on the quantum data. All Clifford group gates are non-interactive, while the remaining non-Clifford group gate that we implement (the p/8 gate) requires the client to prepare and send a single random auxiliary qubit (chosen among four possibilities), and exchange classical communication. This construction improves on previous work, which requires either multiple auxiliary qubits or two-way quantum communication. Using a reduction to an entanglement-based protocol, we show privacy against any adversarial server according to a simulation-based security definition.

  17. QCE : A Simulator for Quantum Computer Hardware

    NARCIS (Netherlands)

    Michielsen, Kristel; Raedt, Hans De

    2003-01-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms.

  18. Blind Quantum Computation

    DEFF Research Database (Denmark)

    Salvail, Louis; Arrighi, Pablo

    2006-01-01

    protocol for the class of functions which admit an efficient procedure to generate random input-output pairs, e.g. factorization. The cheat-sensitive security achieved relies only upon quantum theory being true. The security analysis carried out assumes the eavesdropper performs individual attacks....

  19. Cavity QED: applications to quantum computation

    Science.gov (United States)

    Xiong, Han; Zubairy, M. Suhail

    2004-10-01

    Possible schemes to implement the basic quantum gates for quantum computation have been presented based on cavity quantum electrodynamics (QED) systems. We then discuss schemes to implement several important quantum algorithms such as the discrete quantum fourier transform (QFT) algorithm and Grover's quantum search algorithm based on these quantum gates. Some other applications of cavity QED based systems including the implementations of a quantum disentanglement eraser and an entanglement amplifier are also discussed.

  20. Using a quantum computer to investigate quantum chaos

    OpenAIRE

    Schack, Ruediger

    1997-01-01

    We show that the quantum baker's map, a prototypical map invented for theoretical studies of quantum chaos, has a very simple realization in terms of quantum gates. Chaos in the quantum baker's map could be investigated experimentally on a quantum computer based on only 3 qubits.

  1. Formulating and Solving Problems in Computational Chemistry.

    Science.gov (United States)

    Norris, A. C.

    1980-01-01

    Considered are the main elements of computational chemistry problems and how these elements can be used to formulate the problems mathematically. Techniques that are useful in devising an appropriate solution are also considered. (Author/TG)

  2. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    Science.gov (United States)

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.

  3. Adiabatic quantum computation along quasienergies

    CERN Document Server

    Tanaka, Atushi

    2009-01-01

    The parametric deformations of quasienergies and eigenvectors of unitary operators are applied to the design of quantum adiabatic algorithms. The conventional, standard adiabatic quantum computation proceeds along eigenenergies of parameter-dependent Hamiltonians. By contrast, discrete adiabatic computation utilizes adiabatic passage along the quasienergies of parameter-dependent unitary operators. For example, such computation can be realized by a concatenation of parameterized quantum circuits, with an adiabatic though inevitably discrete change of the parameter. A design principle of adiabatic passage along quasienergy is recently proposed: Cheon's quasienergy and eigenspace anholonomies on unitary operators is available to realize anholonomic adiabatic algorithms [Tanaka and Miyamoto, Phys. Rev. Lett. 98, 160407 (2007)], which compose a nontrivial family of discrete adiabatic algorithms. It is straightforward to port a standard adiabatic algorithm to an anholonomic adiabatic one, except an introduction of...

  4. A Química Quântica na compreensão de teorias de Química Orgânica The Quantum Chemistry in the understanding of theories of Organic Chemistry

    Directory of Open Access Journals (Sweden)

    Régis Casimiro Leal

    2010-01-01

    Full Text Available Quantum chemical calculations were performed in order to obtain molecular properties such as electronic density, dipole moment, atomic charges, and bond lengths, which were compared to qualitative results based on the theories of the organic chemistry. The quantum chemistry computational can be a useful tool to support the main theories of the organic chemistry.

  5. Quantum Walks for Computer Scientists

    CERN Document Server

    Venegas-Andraca, Salvador

    2008-01-01

    Quantum computation, one of the latest joint ventures between physics and the theory of computation, is a scientific field whose main goals include the development of hardware and algorithms based on the quantum mechanical properties of those physical systems used to implement such algorithms. Solving difficult tasks (for example, the Satisfiability Problem and other NP-complete problems) requires the development of sophisticated algorithms, many of which employ stochastic processes as their mathematical basis. Discrete random walks are a popular choice among those stochastic processes. Inspir

  6. Reversible computing fundamentals, quantum computing, and applications

    CERN Document Server

    De Vos, Alexis

    2010-01-01

    Written by one of the few top internationally recognized experts in the field, this book concentrates on those topics that will remain fundamental, such as low power computing, reversible programming languages, and applications in thermodynamics. It describes reversible computing from various points of view: Boolean algebra, group theory, logic circuits, low-power electronics, communication, software, quantum computing. It is this multidisciplinary approach that makes it unique.Backed by numerous examples, this is useful for all levels of the scientific and academic community, from undergr

  7. From Physical Chemistry to Quantum Chemistry: How Chemists Dealt with Mathematics

    OpenAIRE

    Kostas Gavroglu; Ana Simões

    2012-01-01

    Discussing the relationship of mathematics to chemistry is closely related to the emergence of physical chemistry and of quantum chemistry. We argue that, perhaps, the most significant issue that the 'mathematization of chemistry' has historically raised is not so much methodological, as it is philosophical: the discussion over the ontological status of theoretical entities which were introduced in the process. A systematic study of such an approach to the mathematization of chemistry may, pe...

  8. Control through operators for quantum chemistry

    CERN Document Server

    Laurent, Philippe; Salomon, Julien; Turinici, Gabriel

    2012-01-01

    We consider the problem of operator identification in quantum control. The free Hamiltonian and the dipole moment are searched such that a given target state is reached at a given time. A local existence result is obtained. As a by-product, our works reveals necessary conditions on the laser field to make the identification feasible. In the last part of this work, some algorithms are proposed to compute effectively these operators.

  9. Atomic physics: A milestone in quantum computing

    Science.gov (United States)

    Bartlett, Stephen D.

    2016-08-01

    Quantum computers require many quantum bits to perform complex calculations, but devices with more than a few bits are difficult to program. A device based on five atomic quantum bits shows a way forward. See Letter p.63

  10. Nanophotonic quantum computer based on atomic quantum transistor

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, S N [Institute of Advanced Research, Academy of Sciences of the Republic of Tatarstan, Kazan (Russian Federation); Moiseev, S A [Kazan E. K. Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences, Kazan (Russian Federation)

    2015-10-31

    We propose a scheme of a quantum computer based on nanophotonic elements: two buses in the form of nanowaveguide resonators, two nanosized units of multiatom multiqubit quantum memory and a set of nanoprocessors in the form of photonic quantum transistors, each containing a pair of nanowaveguide ring resonators coupled via a quantum dot. The operation modes of nanoprocessor photonic quantum transistors are theoretically studied and the execution of main logical operations by means of them is demonstrated. We also discuss the prospects of the proposed nanophotonic quantum computer for operating in high-speed optical fibre networks. (quantum computations)

  11. Phase Information in Quantum Oracle Computing

    OpenAIRE

    Machta, J.

    1998-01-01

    Computational devices may be supplied with external sources of information (oracles). Quantum oracles may transmit phase information which is available to a quantum computer but not a classical computer. One consequence of this observation is that there is an oracle which is of no assistance to a classical computer but which allows a quantum computer to solve undecidable problems. Thus useful relativized separations between quantum and classical complexity classes must exclude the transmissio...

  12. Quantum chemistry-assisted synthesis route development

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Kenji; Sumimoto, Michinori [Graduate School of Science and Engineering, Yamaguchi University, Tokiwadai, Ube, Yamaguchi 755-8611 (Japan); Murafuji, Toshihiro [Graduate School of Medicine, Yamaguchi University, Yamaguchi, Yamaguchi 753-8512 (Japan)

    2015-12-31

    We have been investigating “quantum chemistry-assisted synthesis route development” using in silico screenings and applied the method to several targets. Another example was conducted to develop synthesis routes for a urea derivative, namely 1-(4-(trifluoromethyl)-2-oxo-2H-chromen-7-yl)urea. While five synthesis routes were examined, only three routes passed the second in silico screening. Among them, the reaction of 7-amino-4-(trifluoromethyl)-2H-chromen-2-one and O-methyl carbamate with BF{sub 3} as an additive was ranked as the first choice for synthetic work. We were able to experimentally obtain the target compound even though its yield was as low as 21 %. The theoretical result was thus consistent with that observed. The summary of transition state data base (TSDB) is also provided. TSDB is the key to reducing time of in silico screenings.

  13. Computational Chemistry of Adhesive Bonds

    Science.gov (United States)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  14. ASCR Workshop on Quantum Computing for Science

    Energy Technology Data Exchange (ETDEWEB)

    Aspuru-Guzik, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Dam, Wim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farhi, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaitan, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humble, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Landahl, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lucas, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preskill, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Svore, Krysta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiebe, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Carl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.

  15. Quantum Computation: Entangling with the Future

    Science.gov (United States)

    Jiang, Zhang

    2017-01-01

    Commercial applications of quantum computation have become viable due to the rapid progress of the field in the recent years. Efficient quantum algorithms are discovered to cope with the most challenging real-world problems that are too hard for classical computers. Manufactured quantum hardware has reached unprecedented precision and controllability, enabling fault-tolerant quantum computation. Here, I give a brief introduction on what principles in quantum mechanics promise its unparalleled computational power. I will discuss several important quantum algorithms that achieve exponential or polynomial speedup over any classical algorithm. Building a quantum computer is a daunting task, and I will talk about the criteria and various implementations of quantum computers. I conclude the talk with near-future commercial applications of a quantum computer.

  16. Barium Ions for Quantum Computation

    CERN Document Server

    Dietrich, M R; Bowler, R; Kurz, N; Salacka, J S; Shu, G; Blinov, B B

    2009-01-01

    Individually trapped 137Ba+ in an RF Paul trap is proposed as a qubit ca ndidate, and its various benefits are compared to other ionic qubits. We report the current experimental status of using this ion for quantum computation. Fut ure plans and prospects are discussed.

  17. Fuzzy electron density fragments in macromolecular quantum chemistry, combinatorial quantum chemistry, functional group analysis, and shape-activity relations.

    Science.gov (United States)

    Mezey, Paul G

    2014-09-16

    Conspectus Just as complete molecules have no boundaries and have "fuzzy" electron density clouds approaching zero density exponentially at large distances from the nearest nucleus, a physically justified choice for electron density fragments exhibits similar behavior. Whereas fuzzy electron densities, just as any fuzzy object, such as a thicker cloud on a foggy day, do not lend themselves to easy visualization, one may partially overcome this by using isocontours. Whereas a faithful representation of the complete fuzzy density would need infinitely many such isocontours, nevertheless, by choosing a selected few, one can still obtain a limited pictorial representation. Clearly, such images are of limited value, and one better relies on more complete mathematical representations, using, for example, density matrices of fuzzy fragment densities. A fuzzy density fragmentation can be obtained in an exactly additive way, using the output from any of the common quantum chemical computational techniques, such as Hartree-Fock, MP2, and various density functional approaches. Such "fuzzy" electron density fragments properly represented have proven to be useful in a rather wide range of applications, for example, (a) using them as additive building blocks leading to efficient linear scaling macromolecular quantum chemistry computational techniques, (b) the study of quantum chemical functional groups, (c) using approximate fuzzy fragment information as allowed by the holographic electron density theorem, (d) the study of correlations between local shape and activity, including through-bond and through-space components of interactions between parts of molecules and relations between local molecular shape and substituent effects, (e) using them as tools of density matrix extrapolation in conformational changes, (f) physically valid averaging and statistical distribution of several local electron densities of common stoichiometry, useful in electron density databank mining, for

  18. An Early Quantum Computing Proposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen Russell [Los Alamos National Laboratory; Alexander, Francis Joseph [Los Alamos National Laboratory; Barros, Kipton Marcos [Los Alamos National Laboratory; Daniels, Marcus G. [Los Alamos National Laboratory; Gattiker, James R. [Los Alamos National Laboratory; Hamada, Michael Scott [Los Alamos National Laboratory; Howse, James Walter [Los Alamos National Laboratory; Loncaric, Josip [Los Alamos National Laboratory; Pakin, Scott D. [Los Alamos National Laboratory; Somma, Rolando Diego [Los Alamos National Laboratory; Vernon, Louis James [Los Alamos National Laboratory

    2016-04-04

    The D-Wave 2X is the third generation of quantum processing created by D-Wave. NASA (with Google and USRA) and Lockheed Martin (with USC), both own D-Wave systems. Los Alamos National Laboratory (LANL) purchased a D-Wave 2X in November 2015. The D-Wave 2X processor contains (nominally) 1152 quantum bits (or qubits) and is designed to specifically perform quantum annealing, which is a well-known method for finding a global minimum of an optimization problem. This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be a powerful method for solving particular kinds of problems, it also means that the D-Wave 2X processor is not a general computing processor and cannot be programmed to perform a wide variety of tasks. It is a highly specialized processor, well beyond what NNSA currently thinks of as an “advanced architecture.”A D-Wave is best described as a quantum optimizer. That is, it uses quantum superposition to find the lowest energy state of a system by repeated doses of power and settling stages. The D-Wave produces multiple solutions to any suitably formulated problem, one of which is the lowest energy state solution (global minimum). Mapping problems onto the D-Wave requires defining an objective function to be minimized and then encoding that function in the Hamiltonian of the D-Wave system. The quantum annealing method is then used to find the lowest energy configuration of the Hamiltonian using the current D-Wave Two, two-level, quantum processor. This is not always an easy thing to do, and the D-Wave Two has significant limitations that restrict problem sizes that can be run and algorithmic choices that can be made. Furthermore, as more people are exploring this technology, it has become clear that it is very difficult to come up with general approaches to optimization that can both utilize the D-Wave and that can do better than highly developed algorithms on conventional computers for

  19. Experimental realization of nonadiabatic holonomic quantum computation.

    Science.gov (United States)

    Feng, Guanru; Xu, Guofu; Long, Guilu

    2013-05-10

    Because of its geometric nature, holonomic quantum computation is fault tolerant against certain types of control errors. Although proposed more than a decade ago, the experimental realization of holonomic quantum computation is still an open challenge. In this Letter, we report the first experimental demonstration of nonadiabatic holonomic quantum computation in a liquid NMR quantum information processor. Two noncommuting one-qubit holonomic gates, rotations about x and z axes, and the two-qubit holonomic CNOT gate are realized by evolving the work qubits and an ancillary qubit nonadiabatically. The successful realizations of these universal elementary gates in nonadiabatic holonomic quantum computation demonstrates the experimental feasibility of this quantum computing paradigm.

  20. A Need to Reassess Physical-Organic Curricula: A Course Enhancement Using Readily Available Quantum Chemistry Programs.

    Science.gov (United States)

    Lipkowitz, Kenny B.

    1982-01-01

    Describes a graduate-level course in physical-organic chemistry in which students learn to solve problems using computer programs available through the Quantum Chemistry Program Exchange. Includes condensed syllabus and time line showing where various computational programs are introduced. (Author/JN)

  1. Integrating Free Computer Software in Chemistry and Biochemistry Instruction: An International Collaboration

    Science.gov (United States)

    Cedeno, David L.; Jones, Marjorie A.; Friesen, Jon A.; Wirtz, Mark W.; Rios, Luz Amalia; Ocampo, Gonzalo Taborda

    2010-01-01

    At the Universidad de Caldas, Manizales, Colombia, we used their new computer facilities to introduce chemistry graduate students to biochemical database mining and quantum chemistry calculations using freeware. These hands-on workshops allowed the students a strong introduction to easily accessible software and how to use this software to begin…

  2. Quantum Chromodynamics: Computational Aspects

    CERN Document Server

    Schaefer, Thomas

    2016-01-01

    We present a brief introduction to QCD, the QCD phase diagram, and non-equilibrium phenomena in QCD. We emphasize aspects of the theory that can be addressed using computational methods, in particular euclidean path integral Monte Carlo, fluid dynamics, kinetic theory, classical field theory and holographic duality.

  3. General Quantum Interference Principle and Duality Computer

    Institute of Scientific and Technical Information of China (English)

    LONG Gui-Lu

    2006-01-01

    In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of thesub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer,the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer,it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented:the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.

  4. Quantum mechanics and computation; Quanta y Computacion

    Energy Technology Data Exchange (ETDEWEB)

    Cirac Sasturain, J. I.

    2000-07-01

    We review how some of the basic principles of Quantum Mechanics can be used in the field of computation. In particular, we explain why a quantum computer can perform certain tasks in a much more efficient way than the computers we have available nowadays. We give the requirements for a quantum system to be able to implement a quantum computer and illustrate these requirements in some particular physical situations. (Author) 16 refs.

  5. Digitized adiabatic quantum computing with a superconducting circuit.

    Science.gov (United States)

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-09

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  6. Digitized adiabatic quantum computing with a superconducting circuit

    Science.gov (United States)

    Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U. Las; Babbush, R.; Fowler, A. G.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Solano, E.; Neven, H.; Martinis, John M.

    2016-06-01

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  7. Problems and solutions in quantum computing and quantum information

    CERN Document Server

    Steeb, Willi-Hans

    2012-01-01

    Quantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. Entanglement, teleportation and the possibility of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest. This book supplies a huge collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as researchers in these fields. All the important concepts and topics such as quantum gates and quantum circuits, product Hilbert spaces, entanglement and entanglement measures, deportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error corrections, number states and Bose operators, coherent states, squeezed states, Gaussian states, POVM measurement, quantum optics networks, beam splitter, phase shifter and Kerr Hamilton opera...

  8. Classical computing, quantum computing, and Shor's factoring algorithm

    CERN Document Server

    Manin, Yu I

    1999-01-01

    This is an expository talk written for the Bourbaki Seminar. After a brief introduction, Section 1 discusses in the categorical language the structure of the classical deterministic computations. Basic notions of complexity icluding the P/NP problem are reviewed. Section 2 introduces the notion of quantum parallelism and explains the main issues of quantum computing. Section 3 is devoted to four quantum subroutines: initialization, quantum computing of classical Boolean functions, quantum Fourier transform, and Grover's search algorithm. The central Section 4 explains Shor's factoring algorithm. Section 5 relates Kolmogorov's complexity to the spectral properties of computable function. Appendix contributes to the prehistory of quantum computing.

  9. Strange attractor simulated on a quantum computer

    OpenAIRE

    2002-01-01

    We show that dissipative classical dynamics converging to a strange attractor can be simulated on a quantum computer. Such quantum computations allow to investigate efficiently the small scale structure of strange attractors, yielding new information inaccessible to classical computers. This opens new possibilities for quantum simulations of various dissipative processes in nature.

  10. Experimental demonstration of blind quantum computing

    Science.gov (United States)

    Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joe; Zeilinger, Anton; Walther, Philip

    2012-02-01

    Quantum computers are among the most promising applications of quantum-enhanced technologies. Quantum effects such as superposition and entanglement enable computational speed-ups that are unattainable using classical computers. The challenges in realising quantum computers suggest that in the near future, only a few facilities worldwide will be capable of operating such devices. In order to exploit these computers, users would seemingly have to give up their privacy. It was recently shown that this is not the case and that, via the universal blind quantum computation protocol, quantum mechanics provides a way to guarantee that the user's data remain private. Here, we demonstrate the first experimental version of this protocol using polarisation-entangled photonic qubits. We demonstrate various blind one- and two-qubit gate operations as well as blind versions of the Deutsch's and Grover's algorithms. When the technology to build quantum computers becomes available, this will become an important privacy-preserving feature of quantum information processing.

  11. Experimental Demonstration of Blind Quantum Computing

    CERN Document Server

    Barz, Stefanie; Broadbent, Anne; Fitzsimons, Joseph F; Zeilinger, Anton; Walther, Philip

    2011-01-01

    Quantum computers, besides offering substantial computational speedups, are also expected to provide the possibility of preserving the privacy of a computation. Here we show the first such experimental demonstration of blind quantum computation where the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. We demonstrate various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover algorithms. Remarkably, the client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for future unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.

  12. Quantum computing and the entanglement frontier

    CERN Document Server

    Preskill, John

    2012-01-01

    Quantum information science explores the frontier of highly complex quantum states, the "entanglement frontier." This study is motivated by the observation (widely believed but unproven) that classical systems cannot simulate highly entangled quantum systems efficiently, and we hope to hasten the day when well controlled quantum systems can perform tasks surpassing what can be done in the classical world. One way to achieve such "quantum supremacy" would be to run an algorithm on a quantum computer which solves a problem with a super-polynomial speedup relative to classical computers, but there may be other ways that can be achieved sooner, such as simulating exotic quantum states of strongly correlated matter. To operate a large scale quantum computer reliably we will need to overcome the debilitating effects of decoherence, which might be done using "standard" quantum hardware protected by quantum error-correcting codes, or by exploiting the nonabelian quantum statistics of anyons realized in solid state sy...

  13. Quantum Computation and Decision Trees

    CERN Document Server

    Farhi, E; Farhi, Edward; Gutmann, Sam

    1998-01-01

    Many interesting computational problems can be reformulated in terms of decision trees. A natural classical algorithm is to then run a random walk on the tree, starting at the root, to see if the tree contains a node n levels from the root. We devise a quantum mechanical algorithm that evolves a state, initially localized at the root, through the tree. We prove that if the classical strategy succeeds in reaching level n in time polynomial in n, then so does the quantum algorithm. Moreover, we find examples of trees for which the classical algorithm requires time exponential in n, but for which the quantum algorithm succeeds in polynomial time. The examples we have so far, however, could also be solved in polynomial time by different classical algorithms.

  14. Applications of Quantum Chemistry to the Study of Carbon Nanotubes

    Science.gov (United States)

    Jaffe, Richard L.

    2005-01-01

    For several years, scientists at NASA Ames have been studying the properties of carbon nanotubes using various experimental and computational methods. In this talk, I will compare different strategies for using quantum chemistry calculations to describe the electronic structure, deformation and chemical functionalization of single wall carbon nanotubes (SWNT) and the physisorption of small molecules on nanotube surfaces. The SWNT can be treated as an infinite (periodic) or finite length carbon cylinder or as a polycyclic aromatic hydrocarbon (PAH) molecule with an imposed curvature maintained by external constraints (as if it were cut out of the SWNT surface). Calculations are carried out using DFT and MP2 methods and a variety of atomic orbital basis sets from minimal (STO-3G) to valence triple zeta. The optimal approach is based on the particular SWNT property of interest. Examples to be discussed include: nanotube fluorination and other functionalization reactions; coating of nanotubes by water vapor and low-molecular weight organic molecules; and the nature of the interface between SWNT and liquids such as water and amines. In many cases, the quantum chemistry calculations are used to parameterize or validate force fields for molecular dynamics simulations. The results of these calculations have helped explain experimental data and contributed to the design of novel materials and sensors based on carbon nanotubes. Some of this research is described in the following papers:

  15. Geometry of quantum computation with qutrits.

    Science.gov (United States)

    Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming

    2013-01-01

    Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.

  16. Optically simulated universal quantum computation

    Science.gov (United States)

    Francisco, D.; Ledesma, S.

    2008-04-01

    Recently, classical optics based systems to emulate quantum information processing have been proposed. The analogy is based on the possibility of encoding a quantum state of a system with a 2N-dimensional Hilbert space as an image in the input of an optical system. The probability amplitude of each state of a certain basis is associated with the complex amplitude of the electromagnetic field in a given slice of the laser wavefront. Temporal evolution is represented as the change of the complex amplitude of the field when the wavefront pass through a certain optical arrangement. Different modules that represent universal gates for quantum computation have been implemented. For instance, unitary operations acting on the qbits space (or U(2) gates) are represented by means of two phase plates, two spherical lenses and a phase grating in a typical image processing set up. In this work, we present CNOT gates which are emulated by means of a cube prism that splits a pair of adjacent rays incoming from the input image. As an example of application, we present an optical module that can be used to simulate the quantum teleportation process. We also show experimental results that illustrate the validity of the analogy. Although the experimental results obtained are promising and show the capability of the system for simulate the real quantum process, we must take into account that any classical simulation of quantum phenomena, has as fundamental limitation the impossibility of representing non local entanglement. In this classical context, quantum teleportation has only an illustrative interpretation.

  17. The performance of low-cost commercial cloud computing as an alternative in computational chemistry.

    Science.gov (United States)

    Thackston, Russell; Fortenberry, Ryan C

    2015-05-05

    The growth of commercial cloud computing (CCC) as a viable means of computational infrastructure is largely unexplored for the purposes of quantum chemistry. In this work, the PSI4 suite of computational chemistry programs is installed on five different types of Amazon World Services CCC platforms. The performance for a set of electronically excited state single-point energies is compared between these CCC platforms and typical, "in-house" physical machines. Further considerations are made for the number of cores or virtual CPUs (vCPUs, for the CCC platforms), but no considerations are made for full parallelization of the program (even though parallelization of the BLAS library is implemented), complete high-performance computing cluster utilization, or steal time. Even with this most pessimistic view of the computations, CCC resources are shown to be more cost effective for significant numbers of typical quantum chemistry computations. Large numbers of large computations are still best utilized by more traditional means, but smaller-scale research may be more effectively undertaken through CCC services.

  18. Brain Neurons as Quantum Computers:

    Science.gov (United States)

    Bershadskii, A.; Dremencov, E.; Bershadskii, J.; Yadid, G.

    The question: whether quantum coherent states can sustain decoherence, heating and dissipation over time scales comparable to the dynamical timescales of brain neurons, has been actively discussed in the last years. A positive answer on this question is crucial, in particular, for consideration of brain neurons as quantum computers. This discussion was mainly based on theoretical arguments. In the present paper nonlinear statistical properties of the Ventral Tegmental Area (VTA) of genetically depressive limbic brain are studied in vivo on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in the generation of pleasure and in the development of psychological drug addiction. We found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal properties for interspike frequencies on the scales where healthy VTA dopaminergic neurons exhibit bursting activity. For high moments the observed multifractal (generalized dimensions) spectrum coincides with the generalized dimensions spectrum calculated for a spectral measure of a quantum system (so-called kicked Harper model, actively used as a model of quantum chaos). This observation can be considered as a first experimental (in vivo) indication in the favor of the quantum (at least partially) nature of brain neurons activity.

  19. Computational chemistry and aeroassisted orbital transfer vehicles

    Science.gov (United States)

    Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.

    1985-01-01

    An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.

  20. Diamond NV centers for quantum computing and quantum networks

    NARCIS (Netherlands)

    Childress, L.; Hanson, R.

    2013-01-01

    The exotic features of quantum mechanics have the potential to revolutionize information technologies. Using superposition and entanglement, a quantum processor could efficiently tackle problems inaccessible to current-day computers. Nonlocal correlations may be exploited for intrinsically secure co

  1. Quantum Computing Resource Estimate of Molecular Energy Simulation

    CERN Document Server

    Whitfield, James D; Aspuru-Guzik, Alán

    2010-01-01

    Over the last century, ingenious physical and mathematical insights paired with rapidly advancing technology have allowed the field of quantum chemistry to advance dramatically. However, efficient methods for the exact simulation of quantum systems on classical computers do not exist. The present paper reports an extension of one of the authors' previous work [Aspuru-Guzik et al., Science {309} p. 1704, (2005)] where it was shown that the chemical Hamiltonian can be efficiently simulated using a quantum computer. In particular, we report in detail how a set of molecular integrals can be used to create a quantum circuit that allows the energy of a molecular system with fixed nuclear geometry to be extracted using the phase estimation algorithm proposed by Abrams and Lloyd [Phys. Rev. Lett. {83} p. 5165, (1999)]. We extend several known results related to this idea and present numerical examples of the state preparation procedure required in the algorithm. With future quantum devices in mind, we provide a compl...

  2. Quantum Computation with Nonlinear Optics

    Science.gov (United States)

    Liu, Yang; Zhang, Wen-Hong; Zhang, Cun-Lin; Long, Gui-Lu

    2008-01-01

    We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the course of the computation; (3) It is resource efficient and conceptually simple.

  3. Quantum Computation with Nonlinear Optics

    Institute of Scientific and Technical Information of China (English)

    LU Ke; LIU Yang; LIN Zhen-Quan; ZHANG Wen-Hong; SUN Yun-Fei; ZHANG Cun-Lin; LONG Gui-Lu

    2008-01-01

    We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the courseof the computation; (3) It is resource efficient and conceptually simple.

  4. Quantum ballistic evolution in quantum mechanics application to quantum computers

    CERN Document Server

    Benioff, P

    1996-01-01

    Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e. motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also pr...

  5. EXPLORATIONS IN QUANTUM COMPUTING FOR FINANCIAL APPLICATIONS

    OpenAIRE

    Gare, Jesse

    2010-01-01

    Quantum computers have the potential to increase the solution speed for many computational problems. This paper is a first step into possible applications for quantum computing in the context of computational finance. The fundamental ideas of quantum computing are introduced, followed by an exposition of the algorithms of Deutsch and Grover. Improved mean and median estimation are shown as results of Grover?s generalized framework. The algorithm for mean estimation is refined to an improved M...

  6. Holonomic Quantum Computation in Subsystems

    Science.gov (United States)

    Oreshkov, Ognyan

    2009-08-01

    We introduce a generalized method of holonomic quantum computation (HQC) based on encoding in subsystems. As an application, we propose a scheme for applying holonomic gates to unencoded qubits by the use of a noisy ancillary qubit. This scheme does not require initialization in a subspace since all dynamical effects factor out as a transformation on the ancilla. We use this approach to show how fault-tolerant HQC can be realized via 2-local Hamiltonians with perturbative gadgets.

  7. Holonomic quantum computation in subsystems

    OpenAIRE

    Oreshkov, Ognyan

    2009-01-01

    We introduce a generalized method of holonomic quantum computation (HQC) based on encoding in subsystems. As an application, we propose a scheme for applying holonomic gates to unencoded qubits by the use of a noisy ancillary qubit. This scheme does not require initialization in a subspace since all dynamical effects factor out as a transformation on the ancilla. We use this approach to show how fault-tolerant HQC can be realized via 2-local Hamiltonians with perturbative gadgets.

  8. Solutions to selected exercise problems in quantum chemistry and spectroscopy

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2016-01-01

    Suggested solutions to a number of problems from the collection "Exercise Problems in Quantum Chemistry and Spectroscopy", previously published on ResearchGate (DOI: 10.13140/RG.2.1.4024.8162).......Suggested solutions to a number of problems from the collection "Exercise Problems in Quantum Chemistry and Spectroscopy", previously published on ResearchGate (DOI: 10.13140/RG.2.1.4024.8162)....

  9. Solutions to selected exercise problems in quantum chemistry and spectroscopy

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2016-01-01

    Suggested solutions to a number of problems from the collection "Exercise Problems in Quantum Chemistry and Spectroscopy", previously published on ResearchGate (DOI: 10.13140/RG.2.1.4024.8162).......Suggested solutions to a number of problems from the collection "Exercise Problems in Quantum Chemistry and Spectroscopy", previously published on ResearchGate (DOI: 10.13140/RG.2.1.4024.8162)....

  10. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    Science.gov (United States)

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  11. Geometry of discrete quantum computing

    Science.gov (United States)

    Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung

    2013-05-01

    Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.

  12. Simulation of electronic structure Hamiltonians in a superconducting quantum computer architecture

    Energy Technology Data Exchange (ETDEWEB)

    Kaicher, Michael; Wilhelm, Frank K. [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany); Love, Peter J. [Department of Physics, Haverford College, Haverford, Pennsylvania 19041 (United States)

    2015-07-01

    Quantum chemistry has become one of the most promising applications within the field of quantum computation. Simulating the electronic structure Hamiltonian (ESH) in the Bravyi-Kitaev (BK)-Basis to compute the ground state energies of atoms/molecules reduces the number of qubit operations needed to simulate a single fermionic operation to O(log(n)) as compared to O(n) in the Jordan-Wigner-Transformation. In this work we will present the details of the BK-Transformation, show an example of implementation in a superconducting quantum computer architecture and compare it to the most recent quantum chemistry algorithms suggesting a constant overhead.

  13. Experimental one-way quantum computing.

    Science.gov (United States)

    Walther, P; Resch, K J; Rudolph, T; Schenck, E; Weinfurter, H; Vedral, V; Aspelmeyer, M; Zeilinger, A

    2005-03-10

    Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.

  14. Quantum Chemistry via Walks in Determinant Space

    Energy Technology Data Exchange (ETDEWEB)

    Umrigar, Cyrus J. [Cornell Univ., Ithaca, NY (United States)

    2016-01-05

    There are many chemical questions of practical interest to the DOE that could be answered if there were an electronic structure method that provided consistently accurate results for all systems at an affordable computational cost. The coupled cluster method with single, double and perturbative triple excitations (CCSD(T)) is the most frequently used high-order method, but it has known deficiencies, e.g., in the description of stretched bonds. The full configuration interaction (FCI) method is the most robust method for treating electronic correlations, but it is little used because its computational cost scales exponentially in the size of the system. The largest calculation that has been done to date employed 10 billion determinants. In this regard, there was a major advance in 2010. The Alavi group at Cambridge University developed a stochastic approach to FCI --- combining it with ideas from quantum Monte Carlo (QMC) --- called FCIQMC, that allows one to go to a far larger number of determinants in certain circumstances. The computational cost is exponential in the system and basis size but with a much reduced exponent compared to conventional FCI. In this project Umrigar's group made several major improvements to the FCIQMC method that increased its efficiency by many orders of magnitude. In addition this project resulted in a cross-fertilization of ideas between the FCIQMC method, the older phaseless auxilliary-field quantum Monte Carlo (AFQMC) method developed by Zhang and Krakauer (two of the PI's of this project), and symmetry-restored wavefunctions developed by Scuseria (also a PI of this project).

  15. Quantum machine learning what quantum computing means to data mining

    CERN Document Server

    Wittek, Peter

    2014-01-01

    Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine L

  16. Adiabatic quantum computation and quantum annealing theory and practice

    CERN Document Server

    McGeoch, Catherine C

    2014-01-01

    Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'''' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a nov

  17. Quantum Computing with Very Noisy Devices

    CERN Document Server

    Knill, E

    2004-01-01

    There are quantum algorithms that can efficiently simulate quantum physics, factor large numbers and estimate integrals. As a result, quantum computers can solve otherwise intractable computational problems. One of the main problems of experimental quantum computing is to preserve fragile quantum states in the presence of errors. It is known that if the needed elementary operations (gates) can be implemented with error probabilities below a threshold, then it is possible to efficiently quantum compute with arbitrary accuracy. Here we give evidence that for independent errors the theoretical threshold is well above 3%, which is a significant improvement over that of earlier calculations. However, the resources required at such high error probabilities are excessive. Fortunately, they decrease rapidly with decreasing error probabilities. If we had quantum resources comparable to the considerable resources available in today's digital computers, we could implement non-trivial quantum algorithms at error probabil...

  18. Cuby: An integrative framework for computational chemistry.

    Science.gov (United States)

    Řezáč, Jan

    2016-05-15

    Cuby is a computational chemistry framework written in the Ruby programming language. It provides unified access to a wide range of computational methods by interfacing external software and it implements various protocols that operate on their results. Using structured input files, elementary calculations can be combined into complex workflows. For users, Cuby provides a unified and userfriendly way to automate their work, seamlessly integrating calculations carried out in different computational chemistry programs. For example, the QM/MM module allows combining methods across the interfaced programs and the builtin molecular dynamics engine makes it possible to run a simulation on the resulting potential. For programmers, it provides high-level, object-oriented environment that allows rapid development and testing of new methods and computational protocols. The Cuby framework is available for download at http://cuby4.molecular.cz. © 2016 Wiley Periodicals, Inc.

  19. The Quantum Human Computer (QHC) Hypothesis

    Science.gov (United States)

    Salmani-Nodoushan, Mohammad Ali

    2008-01-01

    This article attempts to suggest the existence of a human computer called Quantum Human Computer (QHC) on the basis of an analogy between human beings and computers. To date, there are two types of computers: Binary and Quantum. The former operates on the basis of binary logic where an object is said to exist in either of the two states of 1 and…

  20. Computational Chemistry Studies on the Carbene Hydroxymethylene

    Science.gov (United States)

    Marzzacco, Charles J.; Baum, J. Clayton

    2011-01-01

    A density functional theory computational chemistry exercise on the structure and vibrational spectrum of the carbene hydroxymethylene is presented. The potential energy curve for the decomposition reaction of the carbene to formaldehyde and the geometry of the transition state are explored. The results are in good agreement with recent…

  1. Computational solution of chemistry problems

    Science.gov (United States)

    Ake, Robert L.

    1989-01-01

    AB initio quantum chemical techniques have been used to investigate weakly bound complexes of H2O and SO2. An energy gradient program was used to locate stable structures for the H2O, SO2 complexes, and SCF calculations were carried out to determine the binding energies of complexes with multiple water molecules. A 4-31G basis set was used for most potential energy searches. More accurate basis sets including a generally contracted basis set with d orbitals on the sulfur were used for geometry and binding energy verification. For single water complexes, five different stable geometries were located with binding energies between 4 and 11 Kcal mol(-1), suggesting a binding shell for H2O around SO2 and a mechanism for the formation of an SO2-containing water droplet. Calculations on one of the complexes utilizing a larger double zeta basis and d functions on the sulfur atom lead to adjusted binding energies in the range 3 to 8 Kcal mol(-1). Very little charge transfer between SO2 and H2O was present. Addition of more than one H2O was found to be energetically favorable although the addition of the fourth water in certain geometries did not increase the stability of the complex. An alternative mechanism for the tropospheric gas phase production of acid rain is suggested.

  2. Universal quantum computation with qudits

    Science.gov (United States)

    Luo, MingXing; Wang, XiaoJun

    2014-09-01

    Quantum circuit model has been widely explored for various quantum applications such as Shors algorithm and Grovers searching algorithm. Most of previous algorithms are based on the qubit systems. Herein a proposal for a universal circuit is given based on the qudit system, which is larger and can store more information. In order to prove its universality for quantum applications, an explicit set of one-qudit and two-qudit gates is provided for the universal qudit computation. The one-qudit gates are general rotation for each two-dimensional subspace while the two-qudit gates are their controlled extensions. In comparison to previous quantum qudit logical gates, each primitive qudit gate is only dependent on two free parameters and may be easily implemented. In experimental implementation, multilevel ions with the linear ion trap model are used to build the qudit systems and use the coupling of neighbored levels for qudit gates. The controlled qudit gates may be realized with the interactions of internal and external coordinates of the ion.

  3. Exponentially more precise quantum simulation of fermions I: Quantum chemistry in second quantization

    CERN Document Server

    Babbush, Ryan; Kivlichan, Ian D; Wei, Annie Y; Love, Peter J; Aspuru-Guzik, Alán

    2015-01-01

    We introduce novel algorithms for the quantum simulation of molecular systems which are asymptotically more efficient than those based on the Trotter-Suzuki decomposition. We present the first application of a recently developed technique for simulating Hamiltonian evolution using a truncated Taylor series to obtain logarithmic scaling with the inverse of the desired precision, an exponential improvement over all prior methods. The two algorithms developed in this work rely on a second quantized encoding of the wavefunction in which the state of an $N$ spin-orbital system is encoded in ${\\cal O}(N)$ qubits. Our first algorithm has time complexity $\\widetilde{\\cal O}(N^8 t)$. Our second algorithm involves on-the-fly computation of molecular integrals, in a way that is exponentially more precise than classical sampling methods, by using the truncated Taylor series simulation technique. Our second algorithm has the lowest asymptotic time complexity of any second quantized approach to quantum chemistry simulation...

  4. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach.

    Science.gov (United States)

    Ramakrishnan, Raghunathan; Dral, Pavlo O; Rupp, Matthias; von Lilienfeld, O Anatole

    2015-05-12

    Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k isomers of C7H10O2 we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semiempirical quantum chemistry and machine learning models trained on 1 and 10% of 134k organic molecules, to reproduce enthalpies of all remaining molecules at density functional theory level of accuracy.

  5. Big Data meets Quantum Chemistry Approximations: The $\\Delta$-Machine Learning Approach

    CERN Document Server

    Ramakrishnan, Raghunathan; Rupp, Matthias; von Lilienfeld, O Anatole

    2015-01-01

    Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k constitutional isomers of C$_7$H$_{10}$O$_2$ we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semi-empirical quantum chemistry and machine learning models trained on 1 and 10\\% of 134k organ...

  6. NWChem: Quantum Chemistry Simulations at Scale

    Energy Technology Data Exchange (ETDEWEB)

    Apra, Edoardo; Kowalski, Karol; Hammond, Jeff R.; Klemm, Michael

    2015-01-17

    Methods based on quantum mechanics equations have been developed since the 1930's with the purpose of accurately studying the electronic structure of molecules. However, it is only during the last two decades that intense development of new computational algorithms has opened the possibility of performing accurate simulations of challenging molecular processes with high-order many-body methods. A wealth of evidence indicates that the proper inclusion of instantaneous interactions between electrons (or the so-called electron correlation effects) is indispensable for the accurate characterization of chemical reactivity, molecular properties, and interactions of light with matter. The availability of reliable methods for benchmarking of medium-size molecular systems provides also a unique chance to propagate high-level accuracy across spatial scales through the multiscale methodologies. Some of these methods have potential to utilize computational resources in an effi*cient way since they are characterized by high numerical complexity and appropriate level of data granularity, which can be effi*ciently distributed over multi-processor architectures. The broad spectrum of coupled cluster (CC) methods falls into this class of methodologies. Several recent CC implementations clearly demonstrated the scalability of CC formalisms on architectures composed of hundreds thousand computational cores. In this context NWChem provides a collection of Tensor Contraction Engine (TCE) generated parallel implementations of various coupled cluster methods capable of taking advantage of many thousand of cores on leadership class parallel architectures.

  7. Energy-efficient quantum computing

    Science.gov (United States)

    Ikonen, Joni; Salmilehto, Juha; Möttönen, Mikko

    2017-04-01

    In the near future, one of the major challenges in the realization of large-scale quantum computers operating at low temperatures is the management of harmful heat loads owing to thermal conduction of cabling and dissipation at cryogenic components. This naturally raises the question that what are the fundamental limitations of energy consumption in scalable quantum computing. In this work, we derive the greatest lower bound for the gate error induced by a single application of a bosonic drive mode of given energy. Previously, such an error type has been considered to be inversely proportional to the total driving power, but we show that this limitation can be circumvented by introducing a qubit driving scheme which reuses and corrects drive pulses. Specifically, our method serves to reduce the average energy consumption per gate operation without increasing the average gate error. Thus our work shows that precise, scalable control of quantum systems can, in principle, be implemented without the introduction of excessive heat or decoherence.

  8. Computational chemistry in 25 years

    Science.gov (United States)

    Abagyan, Ruben

    2012-01-01

    Here we are making some predictions based on three methods: a straightforward extrapolations of the existing trends; a self-fulfilling prophecy; and picking some current grievances and predicting that they will be addressed or solved. We predict the growth of multicore computing and dramatic growth of data, as well as the improvements in force fields and sampling methods. We also predict that effects of therapeutic and environmental molecules on human body, as well as complex natural chemical signalling will be understood in terms of three dimensional models of their binding to specific pockets.

  9. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing.

    Science.gov (United States)

    Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro

    2012-11-21

    In this review we discuss the relevance of polyoxometalate (POM) chemistry to provide model objects in molecular magnetism. We present several potential applications in nanomagnetism, in particular, in molecular spintronics and quantum computing.

  10. Parallel computing and quantum chromodynamics

    CERN Document Server

    Bowler, K C

    1999-01-01

    The study of Quantum Chromodynamics (QCD) remains one of the most challenging topics in elementary particle physics. The lattice formulation of QCD, in which space-time is treated as a four- dimensional hypercubic grid of points, provides the means for a numerical solution from first principles but makes extreme demands upon computational performance. High Performance Computing (HPC) offers us the tantalising prospect of a verification of QCD through the precise reproduction of the known masses of the strongly interacting particles. It is also leading to the development of a phenomenological tool capable of disentangling strong interaction effects from weak interaction effects in the decays of one kind of quark into another, crucial for determining parameters of the standard model of particle physics. The 1980s saw the first attempts to apply parallel architecture computers to lattice QCD. The SIMD and MIMD machines used in these pioneering efforts were the ICL DAP and the Cosmic Cube, respectively. These wer...

  11. Non-unitary probabilistic quantum computing

    Science.gov (United States)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.

  12. Model dynamics for quantum computing

    Science.gov (United States)

    Tabakin, Frank

    2017-08-01

    A model master equation suitable for quantum computing dynamics is presented. In an ideal quantum computer (QC), a system of qubits evolves in time unitarily and, by virtue of their entanglement, interfere quantum mechanically to solve otherwise intractable problems. In the real situation, a QC is subject to decoherence and attenuation effects due to interaction with an environment and with possible short-term random disturbances and gate deficiencies. The stability of a QC under such attacks is a key issue for the development of realistic devices. We assume that the influence of the environment can be incorporated by a master equation that includes unitary evolution with gates, supplemented by a Lindblad term. Lindblad operators of various types are explored; namely, steady, pulsed, gate friction, and measurement operators. In the master equation, we use the Lindblad term to describe short time intrusions by random Lindblad pulses. The phenomenological master equation is then extended to include a nonlinear Beretta term that describes the evolution of a closed system with increasing entropy. An external Bath environment is stipulated by a fixed temperature in two different ways. Here we explore the case of a simple one-qubit system in preparation for generalization to multi-qubit, qutrit and hybrid qubit-qutrit systems. This model master equation can be used to test the stability of memory and the efficacy of quantum gates. The properties of such hybrid master equations are explored, with emphasis on the role of thermal equilibrium and entropy constraints. Several significant properties of time-dependent qubit evolution are revealed by this simple study.

  13. Embracing the quantum limit in silicon computing.

    Science.gov (United States)

    Morton, John J L; McCamey, Dane R; Eriksson, Mark A; Lyon, Stephen A

    2011-11-16

    Quantum computers hold the promise of massive performance enhancements across a range of applications, from cryptography and databases to revolutionary scientific simulation tools. Such computers would make use of the same quantum mechanical phenomena that pose limitations on the continued shrinking of conventional information processing devices. Many of the key requirements for quantum computing differ markedly from those of conventional computers. However, silicon, which plays a central part in conventional information processing, has many properties that make it a superb platform around which to build a quantum computer.

  14. Decoherence, Control, and Symmetry in Quantum Computers

    CERN Document Server

    Bacon, D J

    2003-01-01

    In this thesis we describe methods for avoiding the detrimental effects of decoherence while at the same time still allowing for computation of the quantum information. The philosophy of the method discussed in the first part of this thesis is to use a symmetry of the decoherence mechanism to find robust encodings of the quantum information. Stability, control, and methods for using decoherence-free information in a quantum computer are presented with a specific emphasis on decoherence due to a collective coupling between the system and its environment. Universal quantum computation on such collective decoherence decoherence-free encodings is demonstrated. Rigorous definitions of control and the use of encoded universality in quantum computers are addressed. Explicit gate constructions for encoded universality on ion trap and exchange based quantum computers are given. In the second part of the thesis we examine physical systems with error correcting properties. We examine systems that can store quantum infor...

  15. On the computation of quantum characteristic exponents

    CERN Document Server

    Vilela-Mendes, R; Coutinho, Ricardo

    1998-01-01

    A quantum characteristic exponent may be defined, with the same operational meaning as the classical Lyapunov exponent when the latter is expressed as a functional of densities. Existence conditions and supporting measure properties are discussed as well as the problems encountered in the numerical computation of the quantum exponents. Although an example of true quantum chaos may be exhibited, the taming effect of quantum mechanics on chaos is quite apparent in the computation of the quantum exponents. However, even when the exponents vanish, the functionals used for their definition may still provide a characterization of distinct complexity classes for quantum behavior.

  16. Contextuality supplies the 'magic' for quantum computation.

    Science.gov (United States)

    Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph

    2014-06-19

    Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.

  17. Helping Students Learn Quantum Mechanics for Quantum Computing

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    Quantum information science and technology is a rapidly growing interdisciplinary field drawing researchers from science and engineering fields. Traditional instruction in quantum mechanics is insufficient to prepare students for research in quantum computing because there is a lack of emphasis in the current curriculum on quantum formalism and dynamics. We are investigating the difficulties students have with quantum mechanics and are developing and evaluating quantum interactive learning tutorials (QuILTs) to reduce the difficulties. Our investigation includes interviews with individual students and the development and administration of free-response and multiple-choice tests. We discuss the implications of our research and development project on helping students learn quantum mechanics relevant for quantum computing.

  18. Quantum fields on the computer

    CERN Document Server

    1992-01-01

    This book provides an overview of recent progress in computer simulations of nonperturbative phenomena in quantum field theory, particularly in the context of the lattice approach. It is a collection of extensive self-contained reviews of various subtopics, including algorithms, spectroscopy, finite temperature physics, Yukawa and chiral theories, bounds on the Higgs meson mass, the renormalization group, and weak decays of hadrons.Physicists with some knowledge of lattice gauge ideas will find this book a useful and interesting source of information on the recent developments in the field.

  19. Associated Legendre Polynomials and Spherical Harmonics Computation for Chemistry Applications

    CERN Document Server

    Limpanuparb, Taweetham

    2014-01-01

    Associated Legendre polynomials and spherical harmonics are central to calculations in many fields of science and mathematics - not only chemistry but computer graphics, magnetic, seismology and geodesy. There are a number of algorithms for these functions published since 1960 but none of them satisfy our requirements. In this paper, we present a comprehensive review of algorithms in the literature and, based on them, propose an efficient and accurate code for quantum chemistry. Our requirements are to efficiently calculate these functions for all non-negative integer degrees and orders up to a given number (<=1000) and the absolute or the relative error of each calculated value should not exceed 10E-10. We achieve this by normalizing the polynomials, employing efficient and stable recurrence relations, and precomputing coefficients. The algorithm presented here is straightforward and may be used in other areas of science.

  20. The use of quantum chemistry in pharmaceutical research as illustrated by case studies of indometacin and carbamazepine

    DEFF Research Database (Denmark)

    Gordon, Keith C; McGoverin, Cushla M; Strachan, Clare J

    2007-01-01

    A number of case studies that illustrate how quantum chemistry may be used in studying pharmaceutical systems are reviewed. A brief introduction to quantum methods is provided and the use of these methods in understanding the structure and properties of indometacin and carbamazepine is discussed....... The use of calculated structures and molecular electrostatic potentials in developing quantitative structure-activity relationships is discussed along with the use of computation chemistry to predict spectroscopic properties....

  1. Distributed Quantum Computation over Noisy Channels

    CERN Document Server

    Ekert, A K; Macchiavello, C; Cirac, J I

    1999-01-01

    We analyse the use of entangled states to perform quantum computations non locally among distant nodes in a quantum network. We show that for a sufficiently large number of nodes maximally entangled states are always advantageous over independent computations in each node, even in the presence of noise during the computation process.

  2. Quantum computation with two-dimensional graphene quantum dots

    Institute of Scientific and Technical Information of China (English)

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin

    2012-01-01

    We study an array of graphene nano sheets that form a two-dimensional S =1/2 Kagome spin lattice used for quantum computation.The edge states of the graphene nano sheets axe used to form quantum dots to confine electrons and perform the computation.We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots.It is shown that both schemes contain a great amount of information for quantum computation.The corresponding gate operations are also proposed.

  3. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  4. An introduction to reliable quantum computation

    CERN Document Server

    Aliferis, Panos

    2011-01-01

    This is an introduction to software methods of quantum fault tolerance. Broadly speaking, these methods describe strategies for using the noisy hardware components of a quantum computer to perform computations while continually monitoring and actively correcting the hardware faults. We discuss parallels and differences with similar methods for ordinary digital computation, we discuss some of the noise models used in designing and analyzing noisy quantum circuits, and we sketch the logic of some of the central results in this area of research.

  5. Quantum computing. Defining and detecting quantum speedup.

    Science.gov (United States)

    Rønnow, Troels F; Wang, Zhihui; Job, Joshua; Boixo, Sergio; Isakov, Sergei V; Wecker, David; Martinis, John M; Lidar, Daniel A; Troyer, Matthias

    2014-07-25

    The development of small-scale quantum devices raises the question of how to fairly assess and detect quantum speedup. Here, we show how to define and measure quantum speedup and how to avoid pitfalls that might mask or fake such a speedup. We illustrate our discussion with data from tests run on a D-Wave Two device with up to 503 qubits. By using random spin glass instances as a benchmark, we found no evidence of quantum speedup when the entire data set is considered and obtained inconclusive results when comparing subsets of instances on an instance-by-instance basis. Our results do not rule out the possibility of speedup for other classes of problems and illustrate the subtle nature of the quantum speedup question.

  6. Quantum computing with incoherent resources and quantum jumps.

    Science.gov (United States)

    Santos, M F; Cunha, M Terra; Chaves, R; Carvalho, A R R

    2012-04-27

    Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that, when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing how to efficiently prepare graph states for the implementation of measurement-based quantum computation.

  7. Prospects for quantum computation with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.; James, D.F.V.

    1997-12-31

    Over the past decade information theory has been generalized to allow binary data to be represented by two-state quantum mechanical systems. (A single two-level system has come to be known as a qubit in this context.) The additional freedom introduced into information physics with quantum systems has opened up a variety of capabilities that go well beyond those of conventional information. For example, quantum cryptography allows two parties to generate a secret key even in the presence of eavesdropping. But perhaps the most remarkable capabilities have been predicted in the field of quantum computation. Here, a brief survey of the requirements for quantum computational hardware, and an overview of the in trap quantum computation project at Los Alamos are presented. The physical limitations to quantum computation with trapped ions are discussed.

  8. Quantum chemistry and charge transport in biomolecules with superconducting circuits

    Science.gov (United States)

    García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.

    2016-06-01

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.

  9. Quantum chemistry and charge transport in biomolecules with superconducting circuits

    Science.gov (United States)

    García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.

    2016-01-01

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects. PMID:27324814

  10. Quantum chemistry and charge transport in biomolecules with superconducting circuits.

    Science.gov (United States)

    García-Álvarez, L; Las Heras, U; Mezzacapo, A; Sanz, M; Solano, E; Lamata, L

    2016-06-21

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.

  11. Quantum computing with realistically noisy devices.

    Science.gov (United States)

    Knill, E

    2005-03-03

    In theory, quantum computers offer a means of solving problems that would be intractable on conventional computers. Assuming that a quantum computer could be constructed, it would in practice be required to function with noisy devices called 'gates'. These gates cause decoherence of the fragile quantum states that are central to the computer's operation. The goal of so-called 'fault-tolerant quantum computing' is therefore to compute accurately even when the error probability per gate (EPG) is high. Here we report a simple architecture for fault-tolerant quantum computing, providing evidence that accurate quantum computing is possible for EPGs as high as three per cent. Such EPGs have been experimentally demonstrated, but to avoid excessive resource overheads required by the necessary architecture, lower EPGs are needed. Assuming the availability of quantum resources comparable to the digital resources available in today's computers, we show that non-trivial quantum computations at EPGs of as high as one per cent could be implemented.

  12. Multilayer microwave integrated quantum circuits for scalable quantum computing

    Science.gov (United States)

    Brecht, Teresa; Pfaff, Wolfgang; Wang, Chen; Chu, Yiwen; Frunzio, Luigi; Devoret, Michel H.; Schoelkopf, Robert J.

    2016-02-01

    As experimental quantum information processing (QIP) rapidly advances, an emerging challenge is to design a scalable architecture that combines various quantum elements into a complex device without compromising their performance. In particular, superconducting quantum circuits have successfully demonstrated many of the requirements for quantum computing, including coherence levels that approach the thresholds for scaling. However, it remains challenging to couple a large number of circuit components through controllable channels while suppressing any other interactions. We propose a hardware platform intended to address these challenges, which combines the advantages of integrated circuit fabrication and the long coherence times achievable in three-dimensional circuit quantum electrodynamics. This multilayer microwave integrated quantum circuit platform provides a path towards the realisation of increasingly complex superconducting devices in pursuit of a scalable quantum computer.

  13. Computational quantum-classical boundary of noisy commuting quantum circuits.

    Science.gov (United States)

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-18

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  14. Quantum Computer Games: Schrodinger Cat and Hounds

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2012-01-01

    The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…

  15. Quantum Computer Games: Schrodinger Cat and Hounds

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2012-01-01

    The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…

  16. Nonlinear optics quantum computing with circuit QED.

    Science.gov (United States)

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  17. The one-way quantum computer - a non-network model of quantum computation

    CERN Document Server

    Raussendorf, R; Briegel, H J; Raussendorf, Robert; Browne, Daniel E.; Briegel, Hans J.

    2001-01-01

    A one-way quantum computer works by only performing a sequence of one-qubit measurements on a particular entangled multi-qubit state, the cluster state. No non-local operations are required in the process of computation. Any quantum logic network can be simulated on the one-way quantum computer. On the other hand, the network model of quantum computation cannot explain all ways of processing quantum information possible with the one-way quantum computer. In this paper, two examples of the non-network character of the one-way quantum computer are given. First, circuits in the Clifford group can be performed in a single time step. Second, the realisation of a particular circuit --the bit-reversal gate-- on the one-way quantum computer has no network interpretation. (Submitted to J. Mod. Opt, Gdansk ESF QIT conference issue.)

  18. An overview of quantum computation models: quantum automata

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Quantum automata,as theoretical models of quantum computers,include quantum finite automata (QFA),quantum sequential machines (QSM),quantum pushdown automata (QPDA),quantum Turing machines (QTM),quantum cellular automata (QCA),and the others,for example,automata theory based on quantum logic (orthomodular lattice-valued automata).In this paper,we try to outline a basic progress in the research on these models,focusing on QFA,QSM,QPDA,QTM,and orthomodular lattice-valued automata.Also,other models closely relative to them are mentioned.In particular,based on the existing results in the literature,we finally address a number of problems to be studied in future.

  19. Quantum state diffusion, localization and computation

    CERN Document Server

    Schack, R; Percival, I C

    1995-01-01

    Numerical simulation of individual open quantum systems has proven advantages over density operator computations. Quantum state diffusion with a moving basis (MQSD) provides a practical numerical simulation method which takes full advantage of the localization of quantum states into wave packets occupying small regions of classical phase space. Following and extending the original proposal of Percival, Alber and Steimle, we show that MQSD can provide a further gain over ordinary QSD and other quantum trajectory methods of many orders of magnitude in computational space and time. Because of these gains, it is even possible to calculate an open quantum system trajectory when the corresponding isolated system is intractable. MQSD is particularly advantageous where classical or semiclassical dynamics provides an adequate qualitative picture but is numerically inaccurate because of significant quantum effects. The principles are illustrated by computations for the quantum Duffing oscillator and for second harmonic...

  20. Distributed measurement-based quantum computation

    CERN Document Server

    Danos, V; Kashefi, E; Panangaden, P; Danos, Vincent; Hondt, Ellie D'; Kashefi, Elham; Panangaden, Prakash

    2005-01-01

    We develop a formal model for distributed measurement-based quantum computations, adopting an agent-based view, such that computations are described locally where possible. Because the network quantum state is in general entangled, we need to model it as a global structure, reminiscent of global memory in classical agent systems. Local quantum computations are described as measurement patterns. Since measurement-based quantum computation is inherently distributed, this allows us to extend naturally several concepts of the measurement calculus, a formal model for such computations. Our goal is to define an assembly language, i.e. we assume that computations are well-defined and we do not concern ourselves with verification techniques. The operational semantics for systems of agents is given by a probabilistic transition system, and we define operational equivalence in a way that it corresponds to the notion of bisimilarity. With this in place, we prove that teleportation is bisimilar to a direct quantum channe...

  1. Advances in computational actinide chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering

    2014-04-01

    The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)

  2. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.

    Science.gov (United States)

    Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter

    2012-08-07

    : This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  3. The semantics of Chemical Markup Language (CML for computational chemistry : CompChem

    Directory of Open Access Journals (Sweden)

    Phadungsukanan Weerapong

    2012-08-01

    Full Text Available Abstract This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  4. The potential of the quantum computer

    CERN Multimedia

    2006-01-01

    The Physics Section of the University of Geneva is continuing its series of lectures, open to the general public, on the most recent developments in the field of physics. The next lecture, given by Professor Michel Devoret of Yale University in the United States, will be on the potential of the quantum computer. The quantum computer is, as yet, a hypothetical machine which would operate on the basic principles of quantum mechanics. Compared to standard computers, it represents a significant gain in computing power for certain complex calculations. Quantum operations can simultaneously explore a very large number of possibilities. The correction of quantum errors, which until recently had been deemed impossible, has now become a well-established technique. Several prototypes for, as yet, very simple quantum processors have been developed. The lecture will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de M...

  5. Quantum computer of wire circuit architecture

    CERN Document Server

    Moiseev, S A; Andrianov, S N

    2010-01-01

    First solid state quantum computer was built using transmons (cooper pair boxes). The operation of the computer is limited because of using a number of the rigit cooper boxes working with fixed frequency at temperatures of superconducting material. Here, we propose a novel architecture of quantum computer based on a flexible wire circuit of many coupled quantum nodes containing controlled atomic (molecular) ensembles. We demonstrate wide opportunities of the proposed computer. Firstly, we reveal a perfect storage of external photon qubits to multi-mode quantum memory node and demonstrate a reversible exchange of the qubits between any arbitrary nodes. We found optimal parameters of atoms in the circuit and self quantum modes for quantum processing. The predicted perfect storage has been observed experimentally for microwave radiation on the lithium phthalocyaninate molecule ensemble. Then also, for the first time we show a realization of the efficient basic two-qubit gate with direct coupling of two arbitrary...

  6. Adiabatic Quantum Computation: Coherent Control Back Action

    Science.gov (United States)

    Goswami, Debabrata

    2013-01-01

    Though attractive from scalability aspects, optical approaches to quantum computing are highly prone to decoherence and rapid population loss due to nonradiative processes such as vibrational redistribution. We show that such effects can be reduced by adiabatic coherent control, in which quantum interference between multiple excitation pathways is used to cancel coupling to the unwanted, non-radiative channels. We focus on experimentally demonstrated adiabatic controlled population transfer experiments wherein the details on the coherence aspects are yet to be explored theoretically but are important for quantum computation. Such quantum computing schemes also form a back-action connection to coherent control developments. PMID:23788822

  7. Quantum Computing: Linear Optics Implementations

    CERN Document Server

    Sundsøy, Pål

    2016-01-01

    One of the main problems that optical quantum computing has to overcome is the efficient construction of two-photon gates. Theoretically these gates can be realized using Kerr-nonlinearities, but the techniques involved are experimentally very difficult. We therefore employ linear optics with projective measurements to generate these non-linearities. The downside is that the measurement-induced nonlinearities achieved with linear optics are less versatile and the success rate can be quite low. This project is mainly the result of a literature study but also a theoretical work on the physics behind quantum optical multiports which is essential for realizing two-photon gates. By applying different postcorrection techniques we increase the probability of success in a modifed non-linear sign shift gate which is foundational for the two photon controlled-NOT gate. We prove that it's not possible to correct the states by only using a single beam splitter. We show that it might be possible to increase the probabilit...

  8. Quantum Mechanics in Chemistry (by Jack Simons and Jeff Nichols)

    Science.gov (United States)

    McCallum, C. Michael

    1998-12-01

    Topics in Physical Chemistry Series. Oxford University Press: New York, 1997. xxiii + 612 pp. Illustrations. ISBN 0-19-508200-1. $75.00. One of the problems faced by graduate-level quantum mechanics courses in chemistry is that there is often little time for studying chemical problems. Students must learn so much matrix algebra and notation that a first-semester course seems more like a math or physics course than chemistry. Another problem is the focus of most graduate texts. Excellent texts, such as those by Sakurai, and older treatments, such as Messiah and Cohen-Tannoudji, offer a comprehensive amount of mathematical rigor to go along with chemistry problems, but it seems the intended audience is hard-core theoretical or physical chemistry students. Requirements that are more general, such as reaction-path dynamics, structure and term symbols, and symmetry in quantum mechanical problems, are often left behind. Schatz and Ratner's Book Quantum Mechanics in Chemistry (Prentice Hall) is one book that fills this gap (at least for second-semester students); Simons and Nichols' new book is another, but it is a book that requires revision before it can be seriously considered.

  9. Quantum Genetic Algorithms for Computer Scientists

    OpenAIRE

    Rafael Lahoz-Beltra

    2016-01-01

    Genetic algorithms (GAs) are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data) has led to a new class of GAs known as “Quantum Geneti...

  10. On the completeness of quantum computation models

    CERN Document Server

    Arrighi, Pablo

    2010-01-01

    The notion of computability is stable (i.e. independent of the choice of an indexing) over infinite-dimensional vector spaces provided they have a finite "tensorial dimension". Such vector spaces with a finite tensorial dimension permit to define an absolute notion of completeness for quantum computation models and give a precise meaning to the Church-Turing thesis in the framework of quantum theory. (Extra keywords: quantum programming languages, denotational semantics, universality.)

  11. Quantum computation architecture using optical tweezers

    DEFF Research Database (Denmark)

    Weitenberg, Christof; Kuhr, Stefan; Mølmer, Klaus;

    2011-01-01

    We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits...... quantum computing....

  12. Quantum computer: an appliance for playing market games

    OpenAIRE

    Piotrowski, Edward W.; Jan Sladkowski

    2003-01-01

    Recent development in quantum computation and quantum information theory allows to extend the scope of game theory for the quantum world. The authors have recently proposed a quantum description of financial market in terms of quantum game theory. The paper contain an analysis of such markets that shows that there would be advantage in using quantum computers and quantum strategies.

  13. Mathematical challenges from theoretical/computational chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The committee believes that this report has relevance and potentially valuable suggestions for a wide range of readers. Target audiences include: graduate departments in the mathematical and chemical sciences; federal and private agencies that fund research in the mathematical and chemical sciences; selected industrial and government research and development laboratories; developers of software and hardware for computational chemistry; and selected individual researchers. Chapter 2 of this report covers some history of computational chemistry for the nonspecialist, while Chapter 3 illustrates the fruits of some past successful cross-fertilization between mathematical scientists and computational/theoretical chemists. In Chapter 4 the committee has assembled a representative, but not exhaustive, survey of research opportunities. Most of these are descriptions of important open problems in computational/theoretical chemistry that could gain much from the efforts of innovative mathematical scientists, written so as to be accessible introductions to the nonspecialist. Chapter 5 is an assessment, necessarily subjective, of cultural differences that must be overcome if collaborative work is to be encouraged between the mathematical and the chemical communities. Finally, the report ends with a brief list of conclusions and recommendations that, if followed, could promote accelerated progress at this interface. Recognizing that bothersome language issues can inhibit prospects for collaborative research at the interface between distinctive disciplines, the committee has attempted throughout to maintain an accessible style, in part by using illustrative boxes, and has included at the end of the report a glossary of technical terms that may be familiar to only a subset of the target audiences listed above.

  14. Adiabatic quantum computation and quantum phase transitions

    CERN Document Server

    Latorre, J I; Latorre, Jose Ignacio; Orus, Roman

    2003-01-01

    We analyze the ground state entanglement in a quantum adiabatic evolution algorithm designed to solve the NP-complete Exact Cover problem. The entropy of entanglement seems to obey linear and universal scaling at the point where the mass gap becomes small, suggesting that the system passes near a quantum phase transition. Such a large scaling of entanglement suggests that the effective connectivity of the system diverges as the number of qubits goes to infinity and that this algorithm cannot be efficiently simulated by classical means. On the other hand, entanglement in Grover's algorithm is bounded by a constant.

  15. Quantum Chemistry Meets Rotational Spectroscopy for Astrochemistry: Increasing Molecular Complexity

    Science.gov (United States)

    Puzzarini, Cristina

    2016-06-01

    For many years, scientists suspected that the interstellar medium was too hostile for organic species and that only a few simple molecules could be formed under such extreme conditions. However, the detection of approximately 180 molecules in interstellar or circumstellar environments in recent decades has changed this view dramatically. A rich chemistry has emerged, and relatively complex molecules such as C60 and C70 are formed. Recently, researchers have also detected complex organic and potentially prebiotic molecules, such as amino acids, in meteorites and in other space environments. Those discoveries have further stimulated the debate on the origin of the building blocks of life in the universe. Rotational spectroscopy plays a crucial role in the investigation of planetary atmosphere and the interstellar medium. Increasingly these astrochemical investigations are assisted by quantum-mechanical calculations of structures as well as spectroscopic and thermodynamic properties to guide and support observations, line assignments, and data analysis in these new and chemically complicated situations. However, it has proved challenging to extend accurate quantum-chemical computational approaches to larger systems because of the unfavorable scaling with the number of degrees of freedom (both electronic and nuclear). In this contribution, it is demonstrated that it is now possible to compute physicochemical properties of building blocks of biomolecules with an accuracy rivaling that of the most sophisticated experimental techniques. We analyze the spectroscopic properties of representative building blocks of DNA bases (uracil and thiouracil), of proteins (glycine and glycine dipeptide analogue), and also of PAH (phenalenyl radical and cation). V. Barone, M. Biczysko, C. Puzzarini 2015, Acc. Chem. Res., 48, 1413

  16. Computer Simulations of Quantum Theory of Hydrogen Atom for Natural Science Education Students in a Virtual Lab

    Science.gov (United States)

    Singh, Gurmukh

    2012-01-01

    The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…

  17. Computer Simulations of Quantum Theory of Hydrogen Atom for Natural Science Education Students in a Virtual Lab

    Science.gov (United States)

    Singh, Gurmukh

    2012-01-01

    The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…

  18. Simulated Quantum Computation of Molecular Energies

    CERN Document Server

    Aspuru-Guzik, A; Love, P J; Head-Gordon, M; Aspuru-Guzik, Al\\'an; Dutoi, Anthony D.; Love, Peter J.; Head-Gordon, Martin

    2005-01-01

    The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.

  19. Performing quantum computing experiments in the cloud

    Science.gov (United States)

    Devitt, Simon J.

    2016-09-01

    Quantum computing technology has reached a second renaissance in the past five years. Increased interest from both the private and public sector combined with extraordinary theoretical and experimental progress has solidified this technology as a major advancement in the 21st century. As anticipated my many, some of the first realizations of quantum computing technology has occured over the cloud, with users logging onto dedicated hardware over the classical internet. Recently, IBM has released the Quantum Experience, which allows users to access a five-qubit quantum processor. In this paper we take advantage of this online availability of actual quantum hardware and present four quantum information experiments. We utilize the IBM chip to realize protocols in quantum error correction, quantum arithmetic, quantum graph theory, and fault-tolerant quantum computation by accessing the device remotely through the cloud. While the results are subject to significant noise, the correct results are returned from the chip. This demonstrates the power of experimental groups opening up their technology to a wider audience and will hopefully allow for the next stage of development in quantum information technology.

  20. Computing a Turing-Incomputable Problem from Quantum Computing

    CERN Document Server

    Sicard, A; Ospina, J; Sicard, Andr\\'es; V\\'elez, Mario; Ospina, Juan

    2003-01-01

    A hypercomputation model named Infinite Square Well Hypercomputation Model (ISWHM) is built from quantum computation. This model is inspired by the model proposed by Tien D. Kieu quant-ph/0203034 and solves an Turing-incomputable problem. For the proposed model and problem, a simulation of its behavior is made. Furthermore, it is demonstrated that ISWHM is a universal quantum computation model.

  1. Universal quantum computation with little entanglement.

    Science.gov (United States)

    Van den Nest, Maarten

    2013-02-01

    We show that universal quantum computation can be achieved in the standard pure-state circuit model while the entanglement entropy of every bipartition is small in each step of the computation. The entanglement entropy required for large-scale quantum computation even tends to zero. Moreover we show that the same conclusion applies to many entanglement measures commonly used in the literature. This includes e.g., the geometric measure, localizable entanglement, multipartite concurrence, squashed entanglement, witness-based measures, and more generally any entanglement measure which is continuous in a certain natural sense. These results demonstrate that many entanglement measures are unsuitable tools to assess the power of quantum computers.

  2. Teleportation of Two Quantum States via the Quantum Computation

    Institute of Scientific and Technical Information of China (English)

    FENG Mang; ZHU Xi-Wen; FANG Xi-Ming; YAN Min; SHI Lei

    2000-01-01

    A scheme of teleportation of two unknown quantum states via quantum computation is proposed. The comparison with the former proposals shows that our scheme is more in tune with the original teleportation proposal and the effciency is higher. The teleportation of an unknown entangled state is also discussed.

  3. Numerical characteristics of quantum computer simulation

    Science.gov (United States)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  4. Quantum Mechanics and Conceptual Change in High School Chemistry Textbooks.

    Science.gov (United States)

    Shiland, Thomas W.

    1997-01-01

    Examines the presentation of quantum mechanics in eight secondary chemistry texts for elements associated with a conceptual change model: (1) dissatisfaction; (2) intelligibility; (3) plausibility; and (4) fruitfulness. Reports that these elements were not present in sufficient quantities to promote conceptual change. Presents recommendations for…

  5. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    Science.gov (United States)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  6. Computational security of quantum encryption

    NARCIS (Netherlands)

    Alagic, G.; Broadbent, A.; Fefferman, B.; Gagliardoni, T.; Schaffner, C.; St. Jules, M.; Nascimento, A.C.A.; Barreto, P.

    2016-01-01

    Quantum-mechanical devices have the potential to transform cryptography. Most research in this area has focused either on the information-theoretic advantages of quantum protocols or on the security of classical cryptographic schemes against quantum attacks. In this work, we initiate the study of

  7. Numerical computation for teaching quantum statistics

    Science.gov (United States)

    Price, Tyson; Swendsen, Robert H.

    2013-11-01

    The study of ideal quantum gases reveals surprising quantum effects that can be observed in macroscopic systems. The properties of bosons are particularly unusual because a macroscopic number of particles can occupy a single quantum state. We describe a computational approach that supplements the usual analytic derivations applicable in the thermodynamic limit. The approach involves directly summing over the quantum states for finite systems and avoids the need for doing difficult integrals. The results display the unusual behavior of quantum gases even for relatively small systems.

  8. Introducing the Practical Aspects of Computational Chemistry to Undergraduate Chemistry Students

    Science.gov (United States)

    Pearson, Jason K.

    2007-01-01

    Various efforts are being made to introduce the different physical aspects and uses of computational chemistry to the undergraduate chemistry students. A new laboratory approach that demonstrates all such aspects via experiments has been devised for the purpose.

  9. Integrating Computational Chemistry into the Physical Chemistry Laboratory Curriculum: A Wet Lab/Dry Lab Approach

    Science.gov (United States)

    Karpen, Mary E.; Henderleiter, Julie; Schaertel, Stephanie A.

    2004-01-01

    The usage of computational chemistry in a pedagogically effective manner in the undergraduate chemistry curriculum is described. The changes instituted for an effective course structure and the assessment of the course efficacy are discussed.

  10. Hyper-parallel photonic quantum computation with coupled quantum dots

    Science.gov (United States)

    Ren, Bao-Cang; Deng, Fu-Guo

    2014-01-01

    It is well known that a parallel quantum computer is more powerful than a classical one. So far, there are some important works about the construction of universal quantum logic gates, the key elements in quantum computation. However, they are focused on operating on one degree of freedom (DOF) of quantum systems. Here, we investigate the possibility of achieving scalable hyper-parallel quantum computation based on two DOFs of photon systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating on both the spatial-mode and the polarization DOFs of a two-photon system simultaneously, by exploiting the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics (QED). This hyper-CNOT gate is implemented by manipulating the four qubits in the two DOFs of a two-photon system without auxiliary spatial modes or polarization modes. It reduces the operation time and the resources consumed in quantum information processing, and it is more robust against the photonic dissipation noise, compared with the integration of several cascaded CNOT gates in one DOF. PMID:24721781

  11. Conceptual aspects of geometric quantum computation

    Science.gov (United States)

    Sjöqvist, Erik; Azimi Mousolou, Vahid; Canali, Carlo M.

    2016-10-01

    Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.

  12. Effective pure states for bulk quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E.; Chuang, I.; Laflamme, R.

    1997-11-01

    In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers by parallel unitary operations and measure expectation values of certain observables with limited sensitivity. The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure input states by a series of manipulations have been described by Gershenfeld and Chuang (logical labeling) and Corey et al. (spatial averaging) for the case of quantum computation with nuclear magnetic resonance. We give a different technique called temporal averaging. This method is based on classical randomization, requires no ancilla qubits and can be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal averaging algorithms suitable for both high temperature and low temperature bulk quantum computing and analyze the signal to noise behavior of each.

  13. Quantum Computing with Electron Spins in Quantum Dots

    CERN Document Server

    Vandersypen, L M K; Van Beveren, L H W; Elzerman, J M; Greidanus, J S; De Franceschi, S; Kouwenhoven, Leo P

    2002-01-01

    We present a set of concrete and realistic ideas for the implementation of a small-scale quantum computer using electron spins in lateral GaAs/AlGaAs quantum dots. Initialization is based on leads in the quantum Hall regime with tunable spin-polarization. Read-out hinges on spin-to-charge conversion via spin-selective tunneling to or from the leads, followed by measurement of the number of electron charges on the dot via a charge detector. Single-qubit manipulation relies on a microfabricated wire located close to the quantum dot, and two-qubit interactions are controlled via the tunnel barrier connecting the respective quantum dots. Based on these ideas, we have begun a series of experiments in order to demonstrate unitary control and to measure the coherence time of individual electron spins in quantum dots.

  14. Fault tolerant quantum computation with nondeterministic gates.

    Science.gov (United States)

    Li, Ying; Barrett, Sean D; Stace, Thomas M; Benjamin, Simon C

    2010-12-17

    In certain approaches to quantum computing the operations between qubits are nondeterministic and likely to fail. For example, a distributed quantum processor would achieve scalability by networking together many small components; operations between components should be assumed to be failure prone. In the ultimate limit of this architecture each component contains only one qubit. Here we derive thresholds for fault-tolerant quantum computation under this extreme paradigm. We find that computation is supported for remarkably high failure rates (exceeding 90%) providing that failures are heralded; meanwhile the rate of unknown errors should not exceed 2 in 10(4) operations.

  15. Measurement Based Quantum Computation on Fractal Lattices

    Directory of Open Access Journals (Sweden)

    Michal Hajdušek

    2010-06-01

    Full Text Available In this article we extend on work which establishes an analology between one-way quantum computation and thermodynamics to see how the former can be performed on fractal lattices. We find fractals lattices of arbitrary dimension greater than one which do all act as good resources for one-way quantum computation, and sets of fractal lattices with dimension greater than one all of which do not. The difference is put down to other topological factors such as ramification and connectivity. This work adds confidence to the analogy and highlights new features to what we require for universal resources for one-way quantum computation.

  16. Non-Mechanism in Quantum Oracle Computing

    CERN Document Server

    Castagnoli, G C

    1999-01-01

    A typical oracle problem is finding which software program is installed on a computer, by running the computer and testing its input-output behaviour. The program is randomly chosen from a set of programs known to the problem solver. As well known, some oracle problems are solved more efficiently by using quantum algorithms; this naturally implies changing the computer to quantum, while the choice of the software program remains sharp. In order to highlight the non-mechanistic origin of this higher efficiency, also the uncertainty about which program is installed must be represented in a quantum way.

  17. Quantum Computation explained to my Mother

    CERN Document Server

    Arrighi, P

    2003-01-01

    There are many falsely intuitive introductions to quantum theory and quantum computation in a handwave. There are also numerous documents which teach those subjects in a mathematically sound manner. To my knowledge this paper is the shortest of the latter category. The aim is to deliver a short yet rigorous and self-contained introduction to Quantum Computation, whilst assuming the reader has no prior knowledge of anything but the fundamental operations on real numbers. Successively I introduce complex matrices; the postulates of quantum theory and the simplest quantum algorithm. The document originates from a fifty minutes talk addressed to a non-specialist audience, in which I sought to take the shortest mathematical path that proves a quantum algorithm right.

  18. Quantum chemistry, band structures and polymers

    Science.gov (United States)

    André, Jean-Marie

    2012-06-01

    A short review of the long way from the first calculations on polyenes after the second world war to the recent electronic devices like Organic Light Emitting Diodes or Photovoltaic Cells is given. It shows how quantum chemical methods on one side and synthesis or experiments have (or should have) interacted as incentives to new methods and technologies.

  19. A quantum chemistry study of natural gas hydrates.

    Science.gov (United States)

    Atilhan, Mert; Pala, Nezih; Aparicio, Santiago

    2014-04-01

    The structure and properties of natural gas hydrates containing hydrocarbons, CO₂, and N₂ molecules were studied by using computational quantum chemistry methods via the density functional theory approach. All host cages involved in I, II, and H types structures where filled with hydrocarbons up to pentanes, CO₂ and N₂ molecules, depending on their size, and the structures of these host-guest systems optimized. Structural properties, vibrational spectra, and density of states were analyzed together with results from atoms-in-a-molecule and natural bond orbitals methods. The inclusion of dispersion terms in the used functional plays a vital role for obtaining reliable information, and thus, B97D functional was shown to be useful for these systems. Results showed remarkable interaction energies, not strongly affected by the type of host cage, with molecules tending to be placed at the center of the cavities when host cages and guest molecules cavities are of similar size, but with molecules approaching hexagonal faces for larger cages. Vibrational properties show remarkable features in certain regions, with shiftings rising from host-guest interactions, and useful patterns in the terahertz region rising from water surface vibrations strongly coupled with guest molecules. Likewise, calculations on crystal systems for the I and H types were carried out using a pseudopotential approach combined with Grimme's method to take account of dispersion.

  20. Computational chemistry at the petascale: Are we there yet?

    Science.gov (United States)

    Aprá, E.; Harrison, R. J.; Shelton, W. A.; Tipparaju, V.; Vázquez-Mayagoitia, A.

    2009-07-01

    We have run computational chemistry calculations approaching the Petascale level of performance (~ 0.5 PFlops). We used the Coupled Cluster CCSD(T) module of the computational chemistry code NWChem to evaluate accurate energetics of water clusters on a 1.4 PFlops Cray XT5 computer.

  1. Ramsey numbers and adiabatic quantum computing.

    Science.gov (United States)

    Gaitan, Frank; Clark, Lane

    2012-01-06

    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.

  2. Materials Frontiers to Empower Quantum Computing

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette Jane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarrao, John Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richardson, Christopher [Laboratory for Physical Sciences, College Park, MD (United States)

    2015-06-11

    This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their origins in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.

  3. Reducing computational complexity of quantum correlations

    Science.gov (United States)

    Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal

    2015-12-01

    We address the issue of reducing the resource required to compute information-theoretic quantum correlation measures such as quantum discord and quantum work deficit in two qubits and higher-dimensional systems. We show that determination of the quantum correlation measure is possible even if we utilize a restricted set of local measurements. We find that the determination allows us to obtain a closed form of quantum discord and quantum work deficit for several classes of states, with a low error. We show that the computational error caused by the constraint over the complete set of local measurements reduces fast with an increase in the size of the restricted set, implying usefulness of constrained optimization, especially with the increase of dimensions. We perform quantitative analysis to investigate how the error scales with the system size, taking into account a set of plausible constructions of the constrained set. Carrying out a comparative study, we show that the resource required to optimize quantum work deficit is usually higher than that required for quantum discord. We also demonstrate that minimization of quantum discord and quantum work deficit is easier in the case of two-qubit mixed states of fixed ranks and with positive partial transpose in comparison to the corresponding states having nonpositive partial transpose. Applying the methodology to quantum spin models, we show that the constrained optimization can be used with advantage in analyzing such systems in quantum information-theoretic language. For bound entangled states, we show that the error is significantly low when the measurements correspond to the spin observables along the three Cartesian coordinates, and thereby we obtain expressions of quantum discord and quantum work deficit for these bound entangled states.

  4. Experimental comparison of two quantum computing architectures

    Science.gov (United States)

    Linke, Norbert M.; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A.; Wright, Kenneth; Monroe, Christopher

    2017-01-01

    We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www.research.ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future. PMID:28325879

  5. Is the Brain a Quantum Computer?

    Science.gov (United States)

    Litt, Abninder; Eliasmith, Chris; Kroon, Frederick W.; Weinstein, Steven; Thagard, Paul

    2006-01-01

    We argue that computation via quantum mechanical processes is irrelevant to explaining how brains produce thought, contrary to the ongoing speculations of many theorists. First, quantum effects do not have the temporal properties required for neural information processing. Second, there are substantial physical obstacles to any organic…

  6. Experimental comparison of two quantum computing architectures.

    Science.gov (United States)

    Linke, Norbert M; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A; Wright, Kenneth; Monroe, Christopher

    2017-03-28

    We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www. ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future.

  7. Directional coupling for quantum computing and communication.

    Science.gov (United States)

    Nikolopoulos, Georgios M

    2008-11-14

    We introduce the concept of directional coupling, i.e., the selective transfer of a state between adjacent quantum wires, in the context of quantum computing and communication. Our analysis rests upon a mathematical analogy between a dual-channel directional coupler and a composite spin system.

  8. An introduction to quantum computing algorithms

    CERN Document Server

    Pittenger, Arthur O

    2000-01-01

    In 1994 Peter Shor [65] published a factoring algorithm for a quantum computer that finds the prime factors of a composite integer N more efficiently than is possible with the known algorithms for a classical com­ puter. Since the difficulty of the factoring problem is crucial for the se­ curity of a public key encryption system, interest (and funding) in quan­ tum computing and quantum computation suddenly blossomed. Quan­ tum computing had arrived. The study of the role of quantum mechanics in the theory of computa­ tion seems to have begun in the early 1980s with the publications of Paul Benioff [6]' [7] who considered a quantum mechanical model of computers and the computation process. A related question was discussed shortly thereafter by Richard Feynman [35] who began from a different perspec­ tive by asking what kind of computer should be used to simulate physics. His analysis led him to the belief that with a suitable class of "quantum machines" one could imitate any quantum system.

  9. Scaling ion traps for quantum computing

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available The design, fabrication and preliminary testing of a chipscale, multi-zone, surface electrode ion trap is reported. The modular design and fabrication techniques used are anticipated to advance scalability of ion trap quantum computing architectures...

  10. Optimised resource construction for verifiable quantum computation

    Science.gov (United States)

    Kashefi, Elham; Wallden, Petros

    2017-04-01

    Recent developments have brought the possibility of achieving scalable quantum networks and quantum devices closer. From the computational point of view these emerging technologies become relevant when they are no longer classically simulatable. Hence a pressing challenge is the construction of practical methods to verify the correctness of the outcome produced by universal or non-universal quantum devices. A promising approach that has been extensively explored is the scheme of verification via encryption through blind quantum computation. We present here a new construction that simplifies the required resources for any such verifiable protocol. We obtain an overhead that is linear in the size of the input (computation), while the security parameter remains independent of the size of the computation and can be made exponentially small (with a small extra cost). Furthermore our construction is generic and could be applied to any universal or non-universal scheme with a given underlying graph.

  11. Universality of Black Hole Quantum Computing

    CERN Document Server

    Dvali, Gia; Lust, Dieter; Omar, Yasser; Richter, Benedikt

    2016-01-01

    By analyzing the key properties of black holes from the point of view of quantum information, we derive a model-independent picture of black hole quantum computing. It has been noticed that this picture exhibits striking similarities with quantum critical condensates, allowing the use of a common language to describe quantum computing in both systems. We analyze such quantum computing by allowing coupling to external modes, under the condition that the external influence must be soft-enough in order not to offset the basic properties of the system. We derive model-independent bounds on some crucial time-scales, such as the times of gate operation, decoherence, maximal entanglement and total scrambling. We show that for black hole type quantum computers all these time-scales are of the order of the black hole half-life time. Furthermore, we construct explicitly a set of Hamiltonians that generates a universal set of quantum gates for the black hole type computer. We find that the gates work at maximal energy e...

  12. Quantum Mechanical Nature in Liquid NMR Quantum Computing

    Institute of Scientific and Technical Information of China (English)

    LONGGui-Lu; YANHai-Yang; 等

    2002-01-01

    The quantum nature of bulk ensemble NMR quantum computing-the center of recent heated debate,is addressed.Concepts of the mixed state and entanglement are examined,and the data in a two-qubit liquid NMR quantum computation are analyzed.the main points in this paper are;i) Density matrix describes the "state" of an average particle in an ensemble.It does not describe the state of an individual particle in an ensemble;ii) Entanglement is a property of the wave function of a microscopic particle(such as a molecule in a liquid NMR sample),and separability of the density matrix canot be used to measure the entanglement of mixed ensemble;iii) The state evolution in bulkensemble NMR quantum computation is quantum-mechanical;iv) The coefficient before the effective pure state density matrix,ε,is a measure of the simultaneity of the molecules in an ensemble,It reflets the intensity of the NMR signal and has no significance in quantifying the entanglement in the bulk ensemble NMR system.The decomposition of the density matrix into product states is only an indication that the ensemble can be prepared by an ensemble with the particles unentangeld.We conclude that effective-pure-state NMR quantum computation is genuine,not just classical simulations.

  13. Delayed Commutation in Quantum Computer Networks

    Science.gov (United States)

    García-Escartín, Juan Carlos; Chamorro-Posada, Pedro

    2006-09-01

    In the same way that classical computer networks connect and enhance the capabilities of classical computers, quantum networks can combine the advantages of quantum information and communication. We propose a nonclassical network element, a delayed commutation switch, that can solve the problem of switching time in packet switching networks. With the help of some local ancillary qubits and superdense codes, we can route a qubit packet after part of it has left the network node.

  14. Delayed commutation in quantum computer networks

    CERN Document Server

    Garcia-Escartin, J C; Chamorro-Posada, Pedro; Garcia-Escartin, Juan Carlos

    2005-01-01

    In the same way that classical computer networks connect and enhance the capabilities of classical computers, quantum networks can combine the advantages of quantum information and communications. We propose a non-classical network element, a delayed commutation switch, that can solve the problem of switching time in packet switching networks. With the help of some local ancillary qubits and superdense codes we can route the information after part of it has left the network node.

  15. Braid group representation on quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Ryan Kasyfil, E-mail: kasyfilryan@gmail.com [Department of Computational Sciences, Bandung Institute of Technology (Indonesia); Muchtadi-Alamsyah, Intan, E-mail: ntan@math.itb.ac.id [Algebra Research Group, Bandung Institute of Technology (Indonesia)

    2015-09-30

    There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.

  16. Quantum Computing and Shor`s Factoring Algorithm

    OpenAIRE

    Volovich, Igor V.

    2001-01-01

    Lectures on quantum computing. Contents: Algorithms. Quantum circuits. Quantum Fourier transform. Elements of number theory. Modular exponentiation. Shor`s algorithm for finding the order. Computational complexity of Schor`s algorithm. Factoring integers. NP-complete problems.

  17. Linear-scaling and parallelizable algorithms for stochastic quantum chemistry

    CERN Document Server

    Booth, George H; Alavi, Ali

    2013-01-01

    For many decades, quantum chemical method development has been dominated by algorithms which involve increasingly complex series of tensor contractions over one-electron orbital spaces. Procedures for their derivation and implementation have evolved to require the minimum amount of logic and rely heavily on computationally efficient library-based matrix algebra and optimized paging schemes. In this regard, the recent development of exact stochastic quantum chemical algorithms to reduce computational scaling and memory overhead requires a contrasting algorithmic philosophy, but one which when implemented efficiently can often achieve higher accuracy/cost ratios with small random errors. Additionally, they can exploit the continuing trend for massive parallelization which hinders the progress of deterministic high-level quantum chemical algorithms. In the Quantum Monte Carlo community, stochastic algorithms are ubiquitous but the discrete Fock space of quantum chemical methods is often unfamiliar, and the metho...

  18. Private quantum computation: an introduction to blind quantum computing and related protocols

    Science.gov (United States)

    Fitzsimons, Joseph F.

    2017-06-01

    Quantum technologies hold the promise of not only faster algorithmic processing of data, via quantum computation, but also of more secure communications, in the form of quantum cryptography. In recent years, a number of protocols have emerged which seek to marry these concepts for the purpose of securing computation rather than communication. These protocols address the task of securely delegating quantum computation to an untrusted device while maintaining the privacy, and in some instances the integrity, of the computation. We present a review of the progress to date in this emerging area.

  19. JACOB: an enterprise framework for computational chemistry.

    Science.gov (United States)

    Waller, Mark P; Dresselhaus, Thomas; Yang, Jack

    2013-06-15

    Here, we present just a collection of beans (JACOB): an integrated batch-based framework designed for the rapid development of computational chemistry applications. The framework expedites developer productivity by handling the generic infrastructure tier, and can be easily extended by user-specific scientific code. Paradigms from enterprise software engineering were rigorously applied to create a scalable, testable, secure, and robust framework. A centralized web application is used to configure and control the operation of the framework. The application-programming interface provides a set of generic tools for processing large-scale noninteractive jobs (e.g., systematic studies), or for coordinating systems integration (e.g., complex workflows). The code for the JACOB framework is open sourced and is available at: www.wallerlab.org/jacob.

  20. EDITORIAL: Quantum Computing and the Feynman Festival

    Science.gov (United States)

    Brandt, Howard E.; Kim, Young S.; Man'ko, Margarita A.

    2003-12-01

    The Feynman Festival is a new interdisciplinary conference developed for studying Richard Feynman and his physics. The first meeting of this new conference series was held at the University of Maryland on 23--28 August 2002 (http://www.physics.umd.edu/robot/feynman.html) and the second meeting is scheduled for August 2004 at the same venue. According to Feynman, the different aspects of nature are different aspects of the same thing. Therefore, the ultimate purpose of the conference is to find Feynman's same thing from all different theories. For this reason, the first meeting of the Festival did not begin with a fixed formula, but composed its scientific programme based on responses from the entire physics community. The conference drew the most enthusiastic response from the community of quantum computing, the field initiated by Feynman. Encouraged by the response, we decided to edit a special issue of Journal of Optics B: Quantum and Semiclassical Optics on quantum computing in connection with the first Feynman Festival. The authorship is not restricted to the participants of the Feynman Festival, and all interested parties were encouraged to submit their papers on this subject. Needless to say, all the papers were peer reviewed according to the well-established standards of the journal. The subject of quantum computing is not restricted to building and operating computers. It requires a deeper understanding of how quantum mechanics works in materials as well as in our minds. Indeed, it covers the basic foundations of quantum mechanics, measurement theory, information theory, quantum optics, atomic physics and condensed matter physics. It may be necessary to develop new mathematical tools to accommodate the language that nature speaks. It is gratifying to note that this special issue contains papers covering all these aspects of quantum computing. As Feynman noted, we could be discussing these diversified issues to study one problem. In our case, this `one

  1. Superadiabatic holonomic quantum computation in cavity QED

    Science.gov (United States)

    Liu, Bao-Jie; Huang, Zhen-Hua; Xue, Zheng-Yuan; Zhang, Xin-Ding

    2017-06-01

    Adiabatic quantum control is a powerful tool for quantum engineering and a key component in some quantum computation models, where accurate control over the timing of the involved pulses is not needed. However, the adiabatic condition requires that the process be very slow and thus limits its application in quantum computation, where quantum gates are preferred to be fast due to the limited coherent times of the quantum systems. Here, we propose a feasible scheme to implement universal holonomic quantum computation based on non-Abelian geometric phases with superadiabatic quantum control, where the adiabatic manipulation is sped up while retaining its robustness against errors in the timing control. Consolidating the advantages of both strategies, our proposal is thus both robust and fast. The cavity QED system is adopted as a typical example to illustrate the merits where the proposed scheme can be realized in a tripod configuration by appropriately controlling the pulse shapes and their relative strength. To demonstrate the distinct performance of our proposal, we also compare our scheme with the conventional adiabatic strategy.

  2. Fundamental gravitational limitations to quantum computing

    CERN Document Server

    Gambini, R; Pullin, J; Gambini, Rodolfo; Porto, Rafael A.; Pullin, Jorge

    2005-01-01

    Lloyd has considered the ultimate limitations physics places on quantum computers. He concludes in particular that for an ``ultimate laptop'' (a computer of one liter of volume and one kilogram of mass) the maximum number of operations per second is bounded by $10^{51}$. The limit is derived considering ordinary quantum mechanics. Here we consider additional limits that are placed by quantum gravity ideas, namely the use of a relational notion of time and fundamental gravitational limits that exist on time measurements. We then particularize for the case of an ultimate laptop and show that the maximum number of operations is further constrained to $10^{47}$ per second.

  3. Natural and artificial atoms for quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Buluta, Iulia; Ashhab, Sahel; Nori, Franco, E-mail: fnori@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan)

    2011-10-15

    Remarkable progress towards realizing quantum computation has been achieved using natural and artificial atoms as qubits. This paper presents a brief overview of the current status of different types of qubits. On the one hand, natural atoms (such as neutral atoms and ions) have long coherence times, and could be stored in large arrays, providing ideal 'quantum memories'. On the other hand, artificial atoms (such as superconducting circuits or semiconductor quantum dots) have the advantage of custom-designed features and could be used as 'quantum processing units'. Natural and artificial atoms can be coupled with each other and can also be interfaced with photons for long-distance communications. Hybrid devices made of natural/artificial atoms and photons may provide the next-generation design for quantum computers.

  4. Quantum Fourier transform in computational basis

    Science.gov (United States)

    Zhou, S. S.; Loke, T.; Izaac, J. A.; Wang, J. B.

    2017-03-01

    The quantum Fourier transform, with exponential speed-up compared to the classical fast Fourier transform, has played an important role in quantum computation as a vital part of many quantum algorithms (most prominently, Shor's factoring algorithm). However, situations arise where it is not sufficient to encode the Fourier coefficients within the quantum amplitudes, for example in the implementation of control operations that depend on Fourier coefficients. In this paper, we detail a new quantum scheme to encode Fourier coefficients in the computational basis, with fidelity 1 - δ and digit accuracy ɛ for each Fourier coefficient. Its time complexity depends polynomially on log (N), where N is the problem size, and linearly on 1/δ and 1/ɛ . We also discuss an application of potential practical importance, namely the simulation of circulant Hamiltonians.

  5. Brain-Computer Interfaces and Quantum Robots

    CERN Document Server

    Pessa, Eliano

    2009-01-01

    The actual (classical) Brain-Computer Interface attempts to use brain signals to drive suitable actuators performing the actions corresponding to subject's intention. However this goal is not fully reached, and when BCI works, it does only in particular situations. The reason of this unsatisfactory result is that intention cannot be conceived simply as a set of classical input-output relationships. It is therefore necessary to resort to quantum theory, allowing the occurrence of stable coherence phenomena, in turn underlying high-level mental processes such as intentions and strategies. More precisely, within the context of a dissipative Quantum Field Theory of brain operation it is possible to introduce generalized coherent states associated, within the framework of logic, to the assertions of a quantum metalanguage. The latter controls the quantum-mechanical computing corresponding to standard mental operation. It thus become possible to conceive a Quantum Cyborg in which a human mind controls, through a qu...

  6. Cat-qubits for quantum computation

    Science.gov (United States)

    Mirrahimi, Mazyar

    2016-08-01

    The development of quantum Josephson circuits has created a strong expectation for reliable processing of quantum information. While this progress has already led to various proof-of-principle experiments on small-scale quantum systems, a major scaling step is required towards many-qubit protocols. Fault-tolerant computation with protected logical qubits usually comes at the expense of a significant overhead in the hardware. Each of the involved physical qubits still needs to satisfy the best achieved properties (coherence times, coupling strengths and tunability). Here, and in the aim of addressing alternative approaches to deal with these obstacles, I overview a series of recent theoretical proposals, and the experimental developments following these proposals, to enable a hardware-efficient paradigm for quantum memory protection and universal quantum computation. xml:lang="fr"

  7. The Dalton quantum chemistry program system

    DEFF Research Database (Denmark)

    Aidas, Kestutis; Angeli, C.; Bak, K.L.

    2014-01-01

    Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self-consistent-field, Møller–Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide vari......-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms....

  8. Computational Chemistry in the Pharmaceutical Industry: From Childhood to Adolescence.

    Science.gov (United States)

    Hillisch, Alexander; Heinrich, Nikolaus; Wild, Hanno

    2015-12-01

    Computational chemistry within the pharmaceutical industry has grown into a field that proactively contributes to many aspects of drug design, including target selection and lead identification and optimization. While methodological advancements have been key to this development, organizational developments have been crucial to our success as well. In particular, the interaction between computational and medicinal chemistry and the integration of computational chemistry into the entire drug discovery process have been invaluable. Over the past ten years we have shaped and developed a highly efficient computational chemistry group for small-molecule drug discovery at Bayer HealthCare that has significantly impacted the clinical development pipeline. In this article we describe the setup and tasks of the computational group and discuss external collaborations. We explain what we have found to be the most valuable and productive methods and discuss future directions for computational chemistry method development. We share this information with the hope of igniting interesting discussions around this topic.

  9. Robust dynamical decoupling for quantum computing and quantum memory.

    Science.gov (United States)

    Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter

    2011-06-17

    Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.

  10. Quantum algorithms for computational nuclear physics

    Directory of Open Access Journals (Sweden)

    Višňák Jakub

    2015-01-01

    Full Text Available While quantum algorithms have been studied as an efficient tool for the stationary state energy determination in the case of molecular quantum systems, no similar study for analogical problems in computational nuclear physics (computation of energy levels of nuclei from empirical nucleon-nucleon or quark-quark potentials have been realized yet. Although the difference between the above mentioned studies might seem negligible, it will be examined. First steps towards a particular simulation (on classical computer of the Iterative Phase Estimation Algorithm for deuterium and tritium nuclei energy level computation will be carried out with the aim to prove algorithm feasibility (and extensibility to heavier nuclei for its possible practical realization on a real quantum computer.

  11. Quantum Chemistry of Solids LCAO Treatment of Crystals and Nanostructures

    CERN Document Server

    Evarestov, Robert A

    2012-01-01

    Quantum Chemistry of Solids delivers a comprehensive account of the main features and possibilities of LCAO methods for the first principles calculations of electronic structure of periodic systems. The first part describes the basic theory underlying the LCAO methods  applied to periodic systems and the use of Hartree-Fock(HF), Density Function theory(DFT) and hybrid Hamiltonians. The translation and site symmetry consideration is included to establish connection between k-space solid –state physics and real-space quantum chemistry. The inclusion of electron correlation effects for periodic systems is considered on the basis of localized crystalline orbitals. The possibilities of LCAO methods for chemical bonding analysis in periodic systems are discussed. The second part deals with the applications of LCAO methods  for calculations of bulk crystal properties, including magnetic ordering and crystal structure optimization.  In the second edition two new chapters are added in the application part II of t...

  12. Quantum Genetic Algorithms for Computer Scientists

    Directory of Open Access Journals (Sweden)

    Rafael Lahoz-Beltra

    2016-10-01

    Full Text Available Genetic algorithms (GAs are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data has led to a new class of GAs known as “Quantum Genetic Algorithms” (QGAs. In this review, we present a discussion, future potential, pros and cons of this new class of GAs. The review will be oriented towards computer scientists interested in QGAs “avoiding” the possible difficulties of quantum-mechanical phenomena.

  13. Elements of quantum computing history, theories and engineering applications

    CERN Document Server

    Akama, Seiki

    2015-01-01

    A quantum computer is a computer based on a computational model which uses quantum mechanics, which is a subfield of physics to study phenomena at the micro level. There has been a growing interest on quantum computing in the 1990's, and some quantum computers at the experimental level were recently implemented. Quantum computers enable super-speed computation, and can solve some important problems whose solutions were regarded impossible or intractable with traditional computers. This book provides a quick introduction to quantum computing for readers who have no backgrounds of both theory of computation and quantum mechanics. “Elements of Quantum Computing” presents the history, theories, and engineering applications of quantum computing. The book is suitable to computer scientists, physicist, and software engineers.

  14. Universality of black hole quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); New York Univ., NY (United States). Center for Cosmology and Particle Physics; Gomez, Cesar [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM-CSIC; Luest, Dieter [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); Omar, Yasser [Instituto de Telecomunicacoes (Portugal). Physics of Information and Quantum Technologies Group; Lisboa Univ. (Portugal). Inst. Superior Tecnico; Richter, Benedikt [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Instituto de Telecomunicacoes (Portugal). Physics of Information and Quantum Technologies Group; Lisboa Univ. (Portugal). Inst. Superior Tecnico

    2017-01-15

    By analyzing the key properties of black holes from the point of view of quantum information, we derive a model-independent picture of black hole quantum computing. It has been noticed that this picture exhibits striking similarities with quantum critical condensates, allowing the use of a common language to describe quantum computing in both systems. We analyze such quantum computing by allowing coupling to external modes, under the condition that the external influence must be soft-enough in order not to offset the basic properties of the system. We derive model-independent bounds on some crucial time-scales, such as the times of gate operation, decoherence, maximal entanglement and total scrambling. We show that for black hole type quantum computers all these time-scales are of the order of the black hole half-life time. Furthermore, we construct explicitly a set of Hamiltonians that generates a universal set of quantum gates for the black hole type computer. We find that the gates work at maximal energy efficiency. Furthermore, we establish a fundamental bound on the complexity of quantum circuits encoded on these systems, and characterize the unitary operations that are implementable. It becomes apparent that the computational power is very limited due to the fact that the black hole life-time is of the same order of the gate operation time. As a consequence, it is impossible to retrieve its information, within the life-time of a black hole, by externally coupling to the black hole qubits. However, we show that, in principle, coupling to some of the internal degrees of freedom allows acquiring knowledge about the micro-state. Still, due to the trivial complexity of operations that can be performed, there is no time advantage over the collection of Hawking radiation and subsequent decoding. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Compressed quantum computation using a remote five-qubit quantum computer

    Science.gov (United States)

    Hebenstreit, M.; Alsina, D.; Latorre, J. I.; Kraus, B.

    2017-05-01

    The notion of compressed quantum computation is employed to simulate the Ising interaction of a one-dimensional chain consisting of n qubits using the universal IBM cloud quantum computer running on log2(n ) qubits. The external field parameter that controls the quantum phase transition of this model translates into particular settings of the quantum gates that generate the circuit. We measure the magnetization, which displays the quantum phase transition, on a two-qubit system, which simulates a four-qubit Ising chain, and show its agreement with the theoretical prediction within a certain error. We also discuss the relevant point of how to assess errors when using a cloud quantum computer with a limited amount of runs. As a solution, we propose to use validating circuits, that is, to run independent controlled quantum circuits of similar complexity to the circuit of interest.

  16. Quasi-classical alternatives in quantum chemistry

    CERN Document Server

    Gineityte, V

    2014-01-01

    The article contains an overview of authors achievements in development of alternative quantum-chemical approaches oriented towards revival of the classical tradition of qualitative chemical thinking instead of obtaining numerical results. The above-mentioned tradition is concluded to be based mainly on principles (rules) of additivity, transferability and locality of molecular properties. Accordingly, model Hamiltonian matrices are used in the approaches under development (called quasi-classical alternatives), wherein algebraic parameters play the role of matrix elements and these are assumed to be transferable for similar atoms and/or atomic orbitals in addition. Further, passing to delocalized descriptions of electronic structures (as usual) is expected to be the main origin of difficulties seeking to formulate quasi-classical alternatives. In the framework of the canonical method of molecular orbitals (MOs), delocalization is shown to be partially avoidable by invoking a recently-suggested approach to sec...

  17. Let Students Derive, by Themselves, Two-Dimensional Atomic and Molecular Quantum Chemistry from Scratch

    Science.gov (United States)

    Ge, Yingbin

    2016-01-01

    Hands-on exercises are designed for undergraduate physical chemistry students to derive two-dimensional quantum chemistry from scratch for the H atom and H[subscript 2] molecule, both in the ground state and excited states. By reducing the mathematical complexity of the traditional quantum chemistry teaching, these exercises can be completed…

  18. Efficient quantum circuits for one-way quantum computing.

    Science.gov (United States)

    Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco

    2009-03-13

    While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.

  19. Medicinal electrochemistry: integration of electrochemistry, medicinal chemistry and computational chemistry.

    Science.gov (United States)

    Almeida, M O; Maltarollo, V G; de Toledo, R A; Shim, H; Santos, M C; Honorio, K M

    2014-01-01

    Over the last centuries, there were many important discoveries in medicine that were crucial for gaining a better understanding of several physiological processes. Molecular modelling techniques are powerful tools that have been successfully used to analyse and interface medicinal chemistry studies with electrochemical experimental results. This special combination can help to comprehend medicinal chemistry problems, such as predicting biological activity and understanding drug action mechanisms. Electrochemistry has provided better comprehension of biological reactions and, as a result of many technological improvements, the combination of electrochemical techniques and biosensors has become an appealing choice for pharmaceutical and biomedical analyses. Therefore, this review will briefly outline the present scope and future advances related to the integration of electrochemical and medicinal chemistry approaches based on various applications from recent studies.

  20. Opportunities and challenges of high-performance computing in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Guest, M.F.; Kendall, R.A.; Nichols, J.A. [eds.] [and others

    1995-06-01

    The field of high-performance computing is developing at an extremely rapid pace. Massively parallel computers offering orders of magnitude increase in performance are under development by all the major computer vendors. Many sites now have production facilities that include massively parallel hardware. Molecular modeling methodologies (both quantum and classical) are also advancing at a brisk pace. The transition of molecular modeling software to a massively parallel computing environment offers many exciting opportunities, such as the accurate treatment of larger, more complex molecular systems in routine fashion, and a viable, cost-effective route to study physical, biological, and chemical `grand challenge` problems that are impractical on traditional vector supercomputers. This will have a broad effect on all areas of basic chemical science at academic research institutions and chemical, petroleum, and pharmaceutical industries in the United States, as well as chemical waste and environmental remediation processes. But, this transition also poses significant challenges: architectural issues (SIMD, MIMD, local memory, global memory, etc.) remain poorly understood and software development tools (compilers, debuggers, performance monitors, etc.) are not well developed. In addition, researchers that understand and wish to pursue the benefits offered by massively parallel computing are often hindered by lack of expertise, hardware, and/or information at their site. A conference and workshop organized to focus on these issues was held at the National Institute of Health, Bethesda, Maryland (February 1993). This report is the culmination of the organized workshop. The main conclusion: a drastic acceleration in the present rate of progress is required for the chemistry community to be positioned to exploit fully the emerging class of Teraflop computers, even allowing for the significant work to date by the community in developing software for parallel architectures.

  1. Bond additivity corrections for quantum chemistry methods

    Energy Technology Data Exchange (ETDEWEB)

    C. F. Melius; M. D. Allendorf

    1999-04-01

    In the 1980's, the authors developed a bond-additivity correction procedure for quantum chemical calculations called BAC-MP4, which has proven reliable in calculating the thermochemical properties of molecular species, including radicals as well as stable closed-shell species. New Bond Additivity Correction (BAC) methods have been developed for the G2 method, BAC-G2, as well as for a hybrid DFT/MP2 method, BAC-Hybrid. These BAC methods use a new form of BAC corrections, involving atomic, molecular, and bond-wise additive terms. These terms enable one to treat positive and negative ions as well as neutrals. The BAC-G2 method reduces errors in the G2 method due to nearest-neighbor bonds. The parameters within the BAC-G2 method only depend on atom types. Thus the BAC-G2 method can be used to determine the parameters needed by BAC methods involving lower levels of theory, such as BAC-Hybrid and BAC-MP4. The BAC-Hybrid method should scale well for large molecules. The BAC-Hybrid method uses the differences between the DFT and MP2 as an indicator of the method's accuracy, while the BAC-G2 method uses its internal methods (G1 and G2MP2) to provide an indicator of its accuracy. Indications of the average error as well as worst cases are provided for each of the BAC methods.

  2. Free spin quantum computation with semiconductor nanostructures

    CERN Document Server

    Zhang, W M; Soo, C; Zhang, Wei-Min; Wu, Yin-Zhong; Soo, Chopin

    2005-01-01

    Taking the excess electron spin in a unit cell of semiconductor multiple quantum-dot structure as a qubit, we can implement scalable quantum computation without resorting to spin-spin interactions. The technique of single electron tunnelings and the structure of quantum-dot cellular automata (QCA) are used to create a charge entangled state of two electrons which is then converted into spin entanglement states by using single spin rotations. Deterministic two-qubit quantum gates can also be manipulated using only single spin rotations with help of QCA. A single-short read-out of spin states can be realized by coupling the unit cell to a quantum point contact.

  3. Universality of Entanglement and Quantum Computation Complexity

    CERN Document Server

    Orus, R; Orus, Roman; Latorre, Jose I.

    2004-01-01

    We study the universality of scaling of entanglement in Shor's factoring algorithm and in adiabatic quantum algorithms across a quantum phase transition for both the NP-complete Exact Cover problem as well as the Grover's problem. The analytic result for Shor's algorithm shows a linear scaling of the entropy in terms of the number of qubits, therefore difficulting the possibility of an efficient classical simulation protocol. A similar result is obtained numerically for the quantum adiabatic evolution Exact Cover algorithm, which also shows universality of the quantum phase transition the system evolves nearby. On the other hand, entanglement in Grover's adiabatic algorithm remains a bounded quantity even at the critical point. A classification of scaling of entanglement appears as a natural grading of the computational complexity of simulating quantum phase transitions.

  4. Computação em química teórica: informações técnicas Computation in theoretical chemistry: technical informations

    Directory of Open Access Journals (Sweden)

    Nelson Henrique Morgon

    2001-10-01

    Full Text Available The purpose of this work is to demonstrate the usefulness of low cost high performance computers. It is presented technics and software packages used by computational chemists. Access to high-performance computing power remains crucial for many computational quantum chemistry. So, this work introduces the concept of PC cluster, an economical computing plataform.

  5. Progress in theoretical quantum computing

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Computing is perhaps one of the most distinguished features that differentiate humans from animals.Aside from counting numbers using fingers and toes,abacus was the first great computing machine of human civilization.

  6. Quantum Computation by Pairing Trapped Ultracold Ions

    Institute of Scientific and Technical Information of China (English)

    冯芒; 朱熙文; 高克林; 施磊

    2001-01-01

    Superpositional wavefunction oscillations for the implementation of quantum algorithms modify the desired interference required for the quantum computation. We propose a scheme with trapped ultracold ion-pairs beingqubits to diminish the detrimental effect of the wavefunction oscillations, which is applied to the two-qubitGrover's search. It can be also found that the qubits in our scheme are more robust against the decoherencecaused by the environment, and the model is scalable.

  7. Entanglement and Quantum Computation: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Perez, R.B.

    2000-06-27

    This report presents a selective compilation of basic facts from the fields of particle entanglement and quantum information processing prepared for those non-experts in these fields that may have interest in an area of physics showing counterintuitive, ''spooky'' (Einstein's words) behavior. In fact, quantum information processing could, in the near future, provide a new technology to sustain the benefits to the U.S. economy due to advanced computer technology.

  8. Quantum Computational Complexity of Spin Glasses

    Science.gov (United States)

    2011-03-19

    canonical problem of classical statistical mechanics: computation of the classical partition function. We have approached this problem using the Potts...enumerator polynomial from coding theory and Z and exploited the fact that there exists a quantum algorithm for efficiently estimating Gauss sums in...computational complexity of the canonical problem of classical statistical mechanics: computation of the classical partition function. We have approached this

  9. Quantum computation with ``hot`` trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    James, D.F.V. [Los Alamos National Lab., NM (United States); Schneider, S. [Los Alamos National Lab., NM (United States)]|[Univ. of Queensland, St. Lucia, Queensland (Australia); Milburn, G.J. [Univ. of Queensland, St. Lucia, Queensland (Australia)

    1998-12-31

    The authors describe two methods that have been proposed to circumvent the problem of heating by external electromagnetic fields in ion trap quantum computers. Firstly the higher order modes of ion oscillation (i.e., modes other than the center-of-mass mode) have much slower heating rates, and can therefore be employed as a reliable quantum information bus. Secondly they discuss a recently proposed method combining adiabatic passage and a number-state dependent phase shift which allows quantum gates to be performed using the center-of-mass mode as the information bus, regardless of its initial state.

  10. Computations in quantum mechanics made easy

    Science.gov (United States)

    Korsch, H. J.; Rapedius, K.

    2016-09-01

    Convenient and simple numerical techniques for performing quantum computations based on matrix representations of Hilbert space operators are presented and illustrated by various examples. The applications include the calculations of spectral and dynamical properties for one-dimensional and two-dimensional single-particle systems as well as bosonic many-particle and open quantum systems. Due to their technical simplicity these methods are well suited as a tool for teaching quantum mechanics to undergraduates and graduates. Explicit implementations of the presented numerical methods in Matlab are given.

  11. Quantum computation with ions in microscopic traps

    Science.gov (United States)

    Šašura, Marek; Steane, Andrew M.

    2002-12-01

    We discuss a possible experimental realization of fast quantum gates with high fidelity with ions confined in microscopic traps. The original proposal of this physical system for quantum computation comes from Cirac and Zoller (Nature 404, 579 (2000)). In this paper we analyse a sensitivity of the ion-trap quantum gate on various experimental parameters which was omitted in the original proposal. We address imprecision of laser pulses, impact of photon scattering, nonzero temperature effects and influence of laser intensity fluctuations on the total fidelity of the two-qubit phase gate.

  12. Quantum Mechanical Nature in Liquid NMR Quantum Computing

    Institute of Scientific and Technical Information of China (English)

    LONG Gui-Lu; YAN Hai-Yang; LI Yan-Song; TU Chang-Cun; ZHU Sheng-Jiang; RUAN Dong; SUN Yang; TAO Jia-Xun; CHEN Hao-Ming

    2002-01-01

    The quantum nature of bulk ensemble NMR quantum computing the center of recent heated debate,is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMRquantum computation are analyzed. The main points in this paper are: i) Density matrix describes the "state" of anaverage particle in an ensemble. It does not describe the state of an individual particle in an ensemble; ii) Entanglementis a property of the wave function of a microscopic particle (such as a molecule in a liquid NMR sample), and separabilityof the density matrix cannot be used to measure the entanglement of mixed ensemble; iii) The state evolution in bulk-ensemble NMRquantum computation is quantum-mechanical; iv) The coefficient before the effective pure state densitymatrix, e, is a measure of the simultaneity of the molecules in an ensemble. It reflects the intensity of the NMR signaland has no significance in quantifying the entanglement in the bulk ensemble NMR system. The decomposition of thedensity matrix into product states is only an indication that the ensemble can be prepared by an ensemble with theparticles unentangled. We conclude that effective-pure-state NMR quantum computation is genuine, not just classicalsimulations.

  13. Fault-Tolerant Postselected Quantum Computation: Threshold Analysis

    CERN Document Server

    Knill, E

    2004-01-01

    The schemes for fault-tolerant postselected quantum computation given in [Knill, Fault-Tolerant Postselected Quantum Computation: Schemes, http://arxiv.org/abs/quant-ph/0402171] are analyzed to determine their error-tolerance. The analysis is based on computer-assisted heuristics. It indicates that if classical and quantum communication delays are negligible, then scalable qubit-based quantum computation is possible with errors above 1% per elementary quantum gate.

  14. Quantum Computation by Adiabatic Evolution

    CERN Document Server

    Farhi, E; Gutmann, S; Sipser, M; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Sipser, Michael

    2000-01-01

    We give a quantum algorithm for solving instances of the satisfiability problem, based on adiabatic evolution. The evolution of the quantum state is governed by a time-dependent Hamiltonian that interpolates between an initial Hamiltonian, whose ground state is easy to construct, and a final Hamiltonian, whose ground state encodes the satisfying assignment. To ensure that the system evolves to the desired final ground state, the evolution time must be big enough. The time required depends on the minimum energy difference between the two lowest states of the interpolating Hamiltonian. We are unable to estimate this gap in general. We give some special symmetric cases of the satisfiability problem where the symmetry allows us to estimate the gap and we show that, in these cases, our algorithm runs in polynomial time.

  15. Quantum computing without wavefunctions: time-dependent density functional theory for universal quantum computation.

    Science.gov (United States)

    Tempel, David G; Aspuru-Guzik, Alán

    2012-01-01

    We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.

  16. Quantum Computing Using Superconducting Qubits

    Science.gov (United States)

    2006-04-01

    highlighted in the " Molecular Motors" first feature article of the November, 2002, Physics Today, page 38. http://www.physicstoday.org/vol-5 5/iss-I I...12-2003. the article was in http://www.mosac.com/ fisica /news/leggi.php?codice= 191. News coverage in French include the following three newspapers... molecular vibra- Josephson junction devices have been proposed and experi- tional mode [12], motional quantum states of a trapped - - mentally

  17. Methodological testing: Are fast quantum computers illusions?

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Steven [Tachyon Design Automation, San Francisco, CA (United States)

    2013-07-01

    Popularity of the idea for computers constructed from the principles of QM started with Feynman's 'Lectures On Computation', but he called the idea crazy and dependent on statistical mechanics. In 1987, Feynman published a paper in 'Quantum Implications - Essays in Honor of David Bohm' on negative probabilities which he said gave him cultural shock. The problem with imagined fast quantum computers (QC) is that speed requires both statistical behavior and truth of the mathematical formalism. The Swedish Royal Academy 2012 Nobel Prize in physics press release touted the discovery of methods to control ''individual quantum systems'', to ''measure and control very fragile quantum states'' which enables ''first steps towards building a new type of super fast computer based on quantum physics.'' A number of examples where widely accepted mathematical descriptions have turned out to be problematic are examined: Problems with the use of Oracles in P=NP computational complexity, Paul Finsler's proof of the continuum hypothesis, and Turing's Enigma code breaking versus William tutte's Colossus. I view QC research as faith in computational oracles with wished for properties. Arther Fine's interpretation in 'The Shaky Game' of Einstein's skepticism toward QM is discussed. If Einstein's reality as space-time curvature is correct, then space-time computers will be the next type of super fast computer.

  18. Quantum Physics for Scientists and Technologists Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists

    CERN Document Server

    Sanghera, Paul

    2011-01-01

    Presenting quantum physics for the non-physicists, Quantum Physics for Scientists and Technologists is a self-contained, cohesive, concise, yet comprehensive, story of quantum physics from the fields of science and technology, including computer science, biology, chemistry, and nanotechnology. The authors explain the concepts and phenomena in a practical fashion with only a minimum amount of math. Examples from, and references to, computer science, biology, chemistry, and nanotechnology throughout the book make the material accessible to biologists, chemists, computer scientists, and non-techn

  19. Graph theory data for topological quantum chemistry

    Science.gov (United States)

    Vergniory, M. G.; Elcoro, L.; Wang, Zhijun; Cano, Jennifer; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei; Bradlyn, Barry

    2017-08-01

    Topological phases of noninteracting particles are distinguished by the global properties of their band structure and eigenfunctions in momentum space. On the other hand, group theory as conventionally applied to solid-state physics focuses only on properties that are local (at high-symmetry points, lines, and planes) in the Brillouin zone. To bridge this gap, we have previously [Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268] mapped the problem of constructing global band structures out of local data to a graph construction problem. In this paper, we provide the explicit data and formulate the necessary algorithms to produce all topologically distinct graphs. Furthermore, we show how to apply these algorithms to certain "elementary" band structures highlighted in the aforementioned reference, and thus we identified and tabulated all orbital types and lattices that can give rise to topologically disconnected band structures. Finally, we show how to use the newly developed bandrep program on the Bilbao Crystallographic Server to access the results of our computation.

  20. Towards universal quantum computation through relativistic motion

    CERN Document Server

    Bruschi, David Edward; Kok, Pieter; Johansson, Göran; Delsing, Per; Fuentes, Ivette

    2013-01-01

    We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tunable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes.

  1. Towards Lagrangian approach to quantum computations

    CERN Document Server

    Vlasov, A Yu

    2003-01-01

    In this work is discussed possibility and actuality of Lagrangian approach to quantum computations. Finite-dimensional Hilbert spaces used in this area provide some challenge for such consideration. The model discussed here can be considered as an analogue of Weyl quantization of field theory via path integral in L. D. Faddeev's approach. Weyl quantization is possible to use also in finite-dimensional case, and some formulas may be simply rewritten with change of integrals to finite sums. On the other hand, there are specific difficulties relevant to finite case. This work has some allusions with phase space models of quantum computations developed last time by different authors.

  2. Resource-efficient linear optical quantum computation.

    Science.gov (United States)

    Browne, Daniel E; Rudolph, Terry

    2005-07-01

    We introduce a scheme for linear optics quantum computation, that makes no use of teleported gates, and requires stable interferometry over only the coherence length of the photons. We achieve a much greater degree of efficiency and a simpler implementation than previous proposals. We follow the "cluster state" measurement based quantum computational approach, and show how cluster states may be efficiently generated from pairs of maximally polarization entangled photons using linear optical elements. We demonstrate the universality and usefulness of generic parity measurements, as well as introducing the use of redundant encoding of qubits to enable utilization of destructive measurements--both features of use in a more general context.

  3. Processor core model for quantum computing.

    Science.gov (United States)

    Yung, Man-Hong; Benjamin, Simon C; Bose, Sougato

    2006-06-09

    We describe an architecture based on a processing "core," where multiple qubits interact perpetually, and a separate "store," where qubits exist in isolation. Computation consists of single qubit operations, swaps between the store and the core, and free evolution of the core. This enables computation using physical systems where the entangling interactions are "always on." Alternatively, for switchable systems, our model constitutes a prescription for optimizing many-qubit gates. We discuss implementations of the quantum Fourier transform, Hamiltonian simulation, and quantum error correction.

  4. Topics in linear optical quantum computation

    Science.gov (United States)

    Glancy, Scott Charles

    This thesis covers several topics in optical quantum computation. A quantum computer is a computational device which is able to manipulate information by performing unitary operations on some physical system whose state can be described as a vector (or mixture of vectors) in a Hilbert space. The basic unit of information, called the qubit, is considered to be a system with two orthogonal states, which are assigned logical values of 0 and 1. Photons make excellent candidates to serve as qubits. They have little interactions with the environment. Many operations can be performed using very simple linear optical devices such as beam splitters and phase shifters. Photons can easily be processed through circuit-like networks. Operations can be performed in very short times. Photons are ideally suited for the long-distance communication of quantum information. The great difficulty in constructing an optical quantum computer is that photons naturally interact weakly with one another. This thesis first gives a brief review of two early approaches to optical quantum computation. It will describe how any discrete unitary operation can be performed using a single photon and a network of beam splitters, and how the Kerr effect can be used to construct a two photon logic gate. Second, this work provides a thorough introduction to the linear optical quantum computer developed by Knill, Laflamme, and Milburn. It then presents this author's results on the reliability of this scheme when implemented using imperfect photon detectors. This author finds that quantum computers of this sort cannot be built using current technology. Third, this dissertation describes a method for constructing a linear optical quantum computer using nearly orthogonal coherent states of light as the qubits. It shows how a universal set of logic operations can be performed, including calculations of the fidelity with which these operations may be accomplished. It discusses methods for reducing and

  5. Computational Chemistry Data Management Platform Based on the Semantic Web.

    Science.gov (United States)

    Wang, Bing; Dobosh, Paul A; Chalk, Stuart; Sopek, Mirek; Ostlund, Neil S

    2017-01-12

    This paper presents a formal data publishing platform for computational chemistry using semantic web technologies. This platform encapsulates computational chemistry data from a variety of packages in an Extensible Markup Language (XML) file called CSX (Common Standard for eXchange). On the basis of a Gainesville Core (GC) ontology for computational chemistry, a CSX XML file is converted into the JavaScript Object Notation for Linked Data (JSON-LD) format using an XML Stylesheet Language Transformation (XSLT) file. Ultimately the JSON-LD file is converted to subject-predicate-object triples in a Turtle (TTL) file and published on the web portal. By leveraging semantic web technologies, we are able to place computational chemistry data onto web portals as a component of a Giant Global Graph (GGG) such that computer agents, as well as individual chemists, can access the data.

  6. Allenes and computational chemistry: from bonding situations to reaction mechanisms.

    Science.gov (United States)

    Soriano, Elena; Fernández, Israel

    2014-05-07

    The present review is focused on the application of computational/theoretical methods to the wide and rich chemistry of allenes. Special emphasis is made on the interplay and synergy between experimental and computational methodologies, rather than on recent developments in methods and algorithms. Therefore, this review covers the state-of-the-art applications of computational chemistry to understand and rationalize the bonding situation and vast reactivity of allenes. Thus, the contents of this review span from the most fundamental studies on the equilibrium structure and chirality of allenes to recent advances in the study of complex reaction mechanisms involving allene derivatives in organic and organometallic chemistry.

  7. Quantum game simulator, using the circuit model of quantum computation

    Science.gov (United States)

    Vlachos, Panagiotis; Karafyllidis, Ioannis G.

    2009-10-01

    We present a general two-player quantum game simulator that can simulate any two-player quantum game described by a 2×2 payoff matrix (two strategy games).The user can determine the payoff matrices for both players, their strategies and the amount of entanglement between their initial strategies. The outputs of the simulator are the expected payoffs of each player as a function of the other player's strategy parameters and the amount of entanglement. The simulator also produces contour plots that divide the strategy spaces of the game in regions in which players can get larger payoffs if they choose to use a quantum strategy against any classical one. We also apply the simulator to two well-known quantum games, the Battle of Sexes and the Chicken game. Program summaryProgram title: Quantum Game Simulator (QGS) Catalogue identifier: AEED_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEED_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3416 No. of bytes in distributed program, including test data, etc.: 583 553 Distribution format: tar.gz Programming language: Matlab R2008a (C) Computer: Any computer that can sufficiently run Matlab R2008a Operating system: Any system that can sufficiently run Matlab R2008a Classification: 4.15 Nature of problem: Simulation of two player quantum games described by a payoff matrix. Solution method: The program calculates the matrices that comprise the Eisert setup for quantum games based on the quantum circuit model. There are 5 parameters that can be altered. We define 3 of them as constant. We play the quantum game for all possible values for the other 2 parameters and store the results in a matrix. Unusual features: The software provides an easy way of simulating any two-player quantum games. Running time: Approximately

  8. Random Numbers and Quantum Computers

    Science.gov (United States)

    McCartney, Mark; Glass, David

    2002-01-01

    The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…

  9. Quantum-Enhanced Cyber Security: Experimental Computation on Quantum-Encrypted Data

    Science.gov (United States)

    2017-03-02

    AFRL-AFOSR-UK-TR-2017-0020 Quantum-Enhanced Cyber Security : Experimental Computation on Quantum-Encrypted Data Philip Walther UNIVERSITT WIEN Final...REPORT TYPE Final 3. DATES COVERED (From - To) 15 Oct 2015 to 31 Dec 2016 4. TITLE AND SUBTITLE Quantum-Enhanced Cyber Security : Experimental Computation...FORM SF 298 Final Report for FA9550-1-6-1-0004 Quantum-enhanced cyber security : Experimental quantum computation with quantum-encrypted data

  10. Quantum error correcting codes and one-way quantum computing: Towards a quantum memory

    CERN Document Server

    Schlingemann, D

    2003-01-01

    For realizing a quantum memory we suggest to first encode quantum information via a quantum error correcting code and then concatenate combined decoding and re-encoding operations. This requires that the encoding and the decoding operation can be performed faster than the typical decoherence time of the underlying system. The computational model underlying the one-way quantum computer, which has been introduced by Hans Briegel and Robert Raussendorf, provides a suitable concept for a fast implementation of quantum error correcting codes. It is shown explicitly in this article is how encoding and decoding operations for stabilizer codes can be realized on a one-way quantum computer. This is based on the graph code representation for stabilizer codes, on the one hand, and the relation between cluster states and graph codes, on the other hand.

  11. Quantum Computing in Non Euclidean Geometry

    CERN Document Server

    Resconi, Germano

    2009-01-01

    The recent debate on hyper-computation has raised new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics. We propose here the idea of geometry of effective physical process as the essentially physical notion of computation. In Quantum mechanics we cannot use the traditional Euclidean geometry but we introduce more sophisticate non Euclidean geometry which include a new kind of information diffuse in the entire universe and that we can represent as Fisher information or active information. We remark that from the Fisher information we can obtain the Bohm and Hiley quantum potential and the classical Schrodinger equation. We can see the quantum phenomena do not affect a limited region of the space but is reflected in a change of the geometry of all the universe. In conclusion any local physical change or physical process is reflected in all the universe by the change of its geometry, This is the deepest meaning of the entanglement in Quantum mechanics a...

  12. A surface code quantum computer in silicon.

    Science.gov (United States)

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.

  13. Molecular Modeling and Computational Chemistry at Humboldt State University.

    Science.gov (United States)

    Paselk, Richard A.; Zoellner, Robert W.

    2002-01-01

    Describes a molecular modeling and computational chemistry (MM&CC) facility for undergraduate instruction and research at Humboldt State University. This facility complex allows the introduction of MM&CC throughout the chemistry curriculum with tailored experiments in general, organic, and inorganic courses as well as a new molecular modeling…

  14. Relativistic quantum chemistry the fundamental theory of molecular science

    CERN Document Server

    Reiher, Markus

    2014-01-01

    Einstein proposed his theory of special relativity in 1905. For a long time it was believed that this theory has no significant impact on chemistry. This view changed in the 1970s when it was realized that (nonrelativistic) Schrödinger quantum mechanics yields results on molecular properties that depart significantly from experimental results. Especially when heavy elements are involved, these quantitative deviations can be so large that qualitative chemical reasoning and understanding is affected. For this to grasp the appropriate many-electron theory has rapidly evolved. Nowadays relativist

  15. Quantum Computing: Selected Internet Resources for Librarians, Researchers, and the Casually Curious

    OpenAIRE

    Cirasella, Jill

    2009-01-01

    This article is an annotated selection of the most important and informative Internet resources for learning about quantum computing, finding quantum computing literature, and tracking quantum computing news.

  16. Code interoperability and standard data formats in quantum chemistry and quantum dynamics: The Q5/D5Cost data model.

    Science.gov (United States)

    Rossi, Elda; Evangelisti, Stefano; Laganà, Antonio; Monari, Antonio; Rampino, Sergio; Verdicchio, Marco; Baldridge, Kim K; Bendazzoli, Gian Luigi; Borini, Stefano; Cimiraglia, Renzo; Angeli, Celestino; Kallay, Peter; Lüthi, Hans P; Ruud, Kenneth; Sanchez-Marin, José; Scemama, Anthony; Szalay, Peter G; Tajti, Attila

    2014-03-30

    Code interoperability and the search for domain-specific standard data formats represent critical issues in many areas of computational science. The advent of novel computing infrastructures such as computational grids and clouds make these issues even more urgent. The design and implementation of a common data format for quantum chemistry (QC) and quantum dynamics (QD) computer programs is discussed with reference to the research performed in the course of two Collaboration in Science and Technology Actions. The specific data models adopted, Q5Cost and D5Cost, are shown to work for a number of interoperating codes, regardless of the type and amount of information (small or large datasets) to be exchanged. The codes are either interfaced directly, or transfer data by means of wrappers; both types of data exchange are supported by the Q5/D5Cost library. Further, the exchange of data between QC and QD codes is addressed. As a proof of concept, the H + H2 reaction is discussed. The proposed scheme is shown to provide an excellent basis for cooperative code development, even across domain boundaries. Moreover, the scheme presented is found to be useful also as a production tool in the grid distributed computing environment.

  17. Quantum computation over the butterfly network

    CERN Document Server

    Kinjo, Yoshiyuki; Soeda, Akihito; Turner, Peter S

    2010-01-01

    In order to investigate distributed quantum computation under restricted network resources, we introduce a quantum computation task over the butterfly network where both quantum and classical communications are limited. We consider performing a two qubit global unitary operation on two unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular resource scenario introduced by Hayashi, which is capable of performing a swap operation by adding two maximally entangled qubits (ebits) between the two input nodes, we show that any controlled unitary operation can be performed without adding any entanglement resource. We also construct protocols for performing controlled traceless unitary operations with a 1-ebit resource and for performing global Clifford operations with a 2-ebit resource.

  18. A simulator for quantum computer hardware

    NARCIS (Netherlands)

    Michielsen, K.F L; de Raedt, H.A.; De Raedt, K.

    2002-01-01

    We present new examples of the use of the quantum computer (QC) emulator. For educational purposes we describe the implementation of the CNOT and Toffoli gate, two basic building blocks of a QC, on a three qubit NMR-like QC.

  19. The quantum computer game: citizen science

    Science.gov (United States)

    Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob

    2013-05-01

    Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.

  20. Computer animations of quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E. (Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique)

    1992-07-01

    A visualization mehtod for quantum field theories based on the transfer matrix formalism is presented. It generates computer animations simulating the time evolution of complex physical systems subject to local Hamiltonians. The method may be used as a means of gaining insight to theories such as QCD, and as an educational tool in explaining high-energy physics. (orig.).

  1. Blind quantum computing with weak coherent pulses.

    Science.gov (United States)

    Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony

    2012-05-18

    The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ϵ blindness for UBQC, in analogy to the concept of ϵ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ϵ-blind UBQC for any ϵ>0, even if the channel between the client and the server is arbitrarily lossy.

  2. Geometry of abstraction in quantum computation

    NARCIS (Netherlands)

    Pavlovic, D.; Abramsky, S.; Mislove, M.W.

    2012-01-01

    Quantum algorithms are sequences of abstract operations, per­ formed on non-existent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contribu­ tions of Abramsky, Goecke and Selinger. In particular, we analyze f

  3. Blind Quantum Computing with Weak Coherent Pulses

    Science.gov (United States)

    Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony

    2012-05-01

    The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ɛ blindness for UBQC, in analogy to the concept of ɛ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ɛ-blind UBQC for any ɛ>0, even if the channel between the client and the server is arbitrarily lossy.

  4. Simulations of Probabilities for Quantum Computing

    Science.gov (United States)

    Zak, M.

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  5. Applications of digital computers in analytical chemistry--I.

    Science.gov (United States)

    Childs, C W; Hallman, P S; Perrin, D D

    1969-06-01

    Digital computers are currently applied to a wide range of chemical problems. Aspects of particular interest to analytical chemists, including statistical treatment. X-ray analysis, spectroscopy, mass spectrometry, gas chromatography and electroanalytical chemistry, are discussed.

  6. Thole's interacting polarizability model in computational chemistry practice

    NARCIS (Netherlands)

    deVries, AH; vanDuijnen, PT; Zijlstra, RWJ; Swart, M

    1997-01-01

    Thole's interacting polarizability model to calculate molecular polarizabilities from interacting atomic polarizabilities is reviewed and its major applications in computational chemistry are illustrated. The applications include prediction of molecular polarizabilities, use in classical expressions

  7. Quantum Computation and Information From Theory to Experiment

    CERN Document Server

    Imai, Hiroshi

    2006-01-01

    Recently, the field of quantum computation and information has been developing through a fusion of results from various research fields in theoretical and practical areas. This book consists of the reviews of selected topics charterized by great progress and cover the field from theoretical areas to experimental ones. It contains fundamental areas, quantum query complexity, quantum statistical inference, quantum cloning, quantum entanglement, additivity. It treats three types of quantum security system, quantum public key cryptography, quantum key distribution, and quantum steganography. A photonic system is highlighted for the realization of quantum information processing.

  8. Quantum computation with nuclear spins in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.

    2008-01-24

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  9. Monte Carlo methods in AB initio quantum chemistry quantum Monte Carlo for molecules

    CERN Document Server

    Lester, William A; Reynolds, PJ

    1994-01-01

    This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are: Clear exposition of the basic theory at a level to facilitate independent study. Discussion of the various versions of the theory: diffusion Monte Carlo, Green's function Monte Carlo, and release n

  10. Quantum Computing: Theoretical versus Practical Possibility

    CERN Document Server

    Paraoanu, G S

    2011-01-01

    An intense effort is being made today to build a quantum computer. Instead of presenting what has been achieved, I invoke here analogies from the history of science in an attempt to glimpse what the future might hold. Quantum computing is possible in principle - there are no known laws of Nature that prevent it - yet scaling up the few qubits demonstrated so far has proven to be exceedingly difficult. While this could be regarded merely as a technological or practical impediment, I argue that this difficulty might be a symptom of new laws of physics waiting to be discovered. I also introduce a distinction between "strong" and "weak" emergentist positions. The former assumes that a critical value of a parameter exists (one that is most likely related to the complexity of the states involved) at which the quantum-mechanical description breaks down, in other words, that quantum mechanics will turn out to be an incomplete description of reality. The latter assumes that quantum mechanics will remain as a universal...

  11. Quantum computing implementations with neutral particles

    DEFF Research Database (Denmark)

    Negretti, Antonio; Treutlein, Philipp; Calarco, Tommaso

    2011-01-01

    We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discu...... optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.......We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our...... discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how...

  12. Quantum Computers: A New Paradigm in Information Technology

    Directory of Open Access Journals (Sweden)

    Mahesh S. Raisinghani

    2001-01-01

    Full Text Available The word 'quantum' comes from the Latin word quantus meaning 'how much'. Quantum computing is a fundamentally new mode of information processing that can be performed only by harnessing physical phenomena unique to quantum mechanics (especially quantum interference. Paul Benioff of the Argonne National Laboratory first applied quantum theory to computers in 1981 and David Deutsch of Oxford proposed quantum parallel computers in 1985, years before the realization of qubits in 1995. However, it may be well into the 21st century before we see quantum computing used at a commercial level for a variety of reasons discussed in this paper. The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This paper discusses some of the current advances, applications, and chal-lenges of quantum computing as well as its impact on corporate computing and implications for management. It shows how quantum computing can be utilized to process and store information, as well as impact cryptography for perfectly secure communication, algorithmic searching, factorizing large numbers very rapidly, and simulating quantum-mechanical systems efficiently. A broad interdisciplinary effort will be needed if quantum com-puters are to fulfill their destiny as the world's fastest computing devices.

  13. A repeat-until-success quantum computing scheme

    Energy Technology Data Exchange (ETDEWEB)

    Beige, A [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Lim, Y L [DSO National Laboratories, 20 Science Park Drive, Singapore 118230, Singapore (Singapore); Kwek, L C [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore (Singapore)

    2007-06-15

    Recently we proposed a hybrid architecture for quantum computing based on stationary and flying qubits: the repeat-until-success (RUS) quantum computing scheme. The scheme is largely implementation independent. Despite the incompleteness theorem for optical Bell-state measurements in any linear optics set-up, it allows for the implementation of a deterministic entangling gate between distant qubits. Here we review this distributed quantum computation scheme, which is ideally suited for integrated quantum computation and communication purposes.

  14. QCWAVE, a Mathematica quantum computer simulation update

    CERN Document Server

    Tabakin, Frank

    2011-01-01

    This Mathematica 7.0/8.0 package upgrades and extends the quantum computer simulation code called QDENSITY. Use of the density matrix was emphasized in QDENSITY, although that code was also applicable to a quantum state description. In the present version, the quantum state version is stressed and made amenable to future extensions to parallel computer simulations. The add-on QCWAVE extends QDENSITY in several ways. The first way is to describe the action of one, two and three- qubit quantum gates as a set of small ($2 \\times 2, 4\\times 4$ or $8\\times 8$) matrices acting on the $2^{n_q}$ amplitudes for a system of $n_q$ qubits. This procedure was described in our parallel computer simulation QCMPI and is reviewed here. The advantage is that smaller storage demands are made, without loss of speed, and that the procedure can take advantage of message passing interface (MPI) techniques, which will hopefully be generally available in future Mathematica versions. Another extension of QDENSITY provided here is a mu...

  15. Efficient quantum computing using coherent photon conversion.

    Science.gov (United States)

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  16. Scheme for Quantum Computing Immune to Decoherence

    Science.gov (United States)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report

  17. Holographic computations of the Quantum Information Metric

    CERN Document Server

    Trivella, Andrea

    2016-01-01

    In this note we show how the Quantum Information Metric can be computed holographically using a perturbative approach. In particular when the deformation of the conformal field theory state is induced by a scalar operator the corresponding bulk configuration reduces to a scalar field perturbatively probing the unperturbed background. We study two concrete examples: a CFT ground state deformed by a primary operator and thermofield double state in $d=2$ deformed by a marginal operator. Finally, we generalize the bulk construction to the case of a multi dimensional parameter space and show that the Quantum Information Metric coincides with the metric of the non-linear sigma model for the corresponding scalar fields.

  18. Ion Trap Quantum Computers: Performance Limits and Experimental Progress

    Science.gov (United States)

    Hughes, Richard

    1998-03-01

    In a quantum computer information would be represented by the quantum mechanical states of suitable atomic-scale systems. (A single bit of information represented by a two-level quantum system is known as a qubit.) This notion leads to the possibility of computing with quantum mechanical superpositions of numbers ("quantum parallelism"), which for certain problems would make Quantum/quantum.html>quantum computation very much more efficient than classical computation. The possibility of rapidly factoring the large integers used in public-key cryptography is an important example. (Public key cryptosystems derive their security from the difficuty of factoring, and similar problems, with conventional computers.) Quantum computational hardware development is in its infancy, but an experimental study of quantum computation with laser-cooled trapped calcium ions that is under way at Los Alamos will be described. One of the pricipal obstacles to practical quantum computation is the inevitable loss of quantum coherence of the complex quantum states involved. The results of a theoretical analysis showing that quantum factoring of small integers should be possible with trapped ions will be presented. The prospects for larger-scale computations will be discussed.

  19. Measurement-Based and Universal Blind Quantum Computation

    Science.gov (United States)

    Broadbent, Anne; Fitzsimons, Joseph; Kashefi, Elham

    Measurement-based quantum computation (MBQC) is a novel approach to quantum computation where the notion of measurement is the main driving force of computation. This is in contrast with the more traditional circuit model which is based on unitary operation. We review here the mathematical model underlying MBQC and the first quantum cryptographic protocol designed using the unique features of MBQC.

  20. Expression of results in quantum chemistry physical chemistry division commission on physicochemical symbols, terminology and units

    CERN Document Server

    Whiffen, D H

    2013-01-01

    Expression of Results in Quantum Chemistry recommends the appropriate insertion of physical constants in the output information of a theoretical paper in order to make the numerical end results of theoretical work easily transformed to SI units by the reader. The acceptance of this recommendation would circumvent the need for a set of atomic units each with its own symbol and name. It is the traditional use of the phrase """"atomic units"""" in this area which has obscured the real problem. The four SI dimensions of length, mass, time, and current require four physical constants to be permitte

  1. Few-Qubit Magnetic Resonance Quantum Information Processors: Simulating Chemistry and Physics

    CERN Document Server

    Criger, Ben; Baugh, Jonathan

    2012-01-01

    We review recent progress made in quantum information processing (QIP) which can be applied in the simulation of quantum systems and chemical phenomena. The review is focused on quantum algorithms which are useful for quantum simulation of chemistry and advances in nuclear magnetic resonance (NMR) and electron spin resonance (ESR) QIP. Discussions also include a number of recent experiments demonstrating the current capabilities of the NMR QIP for quantum simulation and prospects for spin-based implementations of QIP.

  2. Quantum-State-Resolved Ion-Molecule Chemistry

    Science.gov (United States)

    Chen, Gary; Yang, Tiangang; Campbell, Wesley; Hudson, Eric

    2016-05-01

    We propose a method to achieve quantum-state-resolved ion-molecule chemistry by utilizing cryogenic buffer gas cooling techniques and a combination of ion imaging and mass spectrometry of targets in an RF Paul trap. Cold molecular species produced by a cryogenic buffer gas beam (CBGB) are introduced to target ion species in an linear quadrupole trap (LQT) where ion imaging techniques and time of flight mass spectrometry (ToF) are then used to observe the target ions and the charged reaction products [1,2]. By taking advantage of the large ion-neutral interaction cross sections and characteristically long ion trap lifetimes, we can utilize the precision control over quantum states allowed by an ion trap to resolve state-to-state quantum chemical reactions without high-density molecular sample production, well within proposed capabilities. The combination of these two very general cold species production techniques allows for production and observation of a broad range of ion-neutral reactions. We initially plan to study chemical reactions between sympathetically cooled carbon ions (via laser cooled beryllium ions) with buffer gas cooled water. This work is supported by the US Air Force Office of Scientific Research.

  3. Logic and algebraic structures in quantum computing

    CERN Document Server

    Eskandarian, Ali; Harizanov, Valentina S

    2016-01-01

    Arising from a special session held at the 2010 North American Annual Meeting of the Association for Symbolic Logic, this volume is an international cross-disciplinary collaboration with contributions from leading experts exploring connections across their respective fields. Themes range from philosophical examination of the foundations of physics and quantum logic, to exploitations of the methods and structures of operator theory, category theory, and knot theory in an effort to gain insight into the fundamental questions in quantum theory and logic. The book will appeal to researchers and students working in related fields, including logicians, mathematicians, computer scientists, and physicists. A brief introduction provides essential background on quantum mechanics and category theory, which, together with a thematic selection of articles, may also serve as the basic material for a graduate course or seminar.

  4. Realizing the quantum baker's map on a 3-qubit NMR quantum computer

    CERN Document Server

    Brun, T A; Brun, Todd A.; Schack, Ruediger

    1999-01-01

    By numerically simulating an implementation of the quantum baker's map on a 3-qubit NMR quantum computer based on the molecule trichloroethylene, we demonstrate the feasibility of quantum chaos experiments on present-day quantum computers. We give detailed descriptions of proposed experiments that investigate (a) the rate of entropy increase due to decoherence and (b) the phenomenon of hypersensitivity to perturbation.

  5. QDENSITY—A Mathematica quantum computer simulation

    Science.gov (United States)

    Juliá-Díaz, Bruno; Burdis, Joseph M.; Tabakin, Frank

    2009-03-01

    This Mathematica 6.0 package is a simulation of a Quantum Computer. The program provides a modular, instructive approach for generating the basic elements that make up a quantum circuit. The main emphasis is on using the density matrix, although an approach using state vectors is also implemented in the package. The package commands are defined in Qdensity.m which contains the tools needed in quantum circuits, e.g., multiqubit kets, projectors, gates, etc. New version program summaryProgram title: QDENSITY 2.0 Catalogue identifier: ADXH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26 055 No. of bytes in distributed program, including test data, etc.: 227 540 Distribution format: tar.gz Programming language: Mathematica 6.0 Operating system: Any which supports Mathematica; tested under Microsoft Windows XP, Macintosh OS X, and Linux FC4 Catalogue identifier of previous version: ADXH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 914 Classification: 4.15 Does the new version supersede the previous version?: Offers an alternative, more up to date, implementation Nature of problem: Analysis and design of quantum circuits, quantum algorithms and quantum clusters. Solution method: A Mathematica package is provided which contains commands to create and analyze quantum circuits. Several Mathematica notebooks containing relevant examples: Teleportation, Shor's Algorithm and Grover's search are explained in detail. A tutorial, Tutorial.nb is also enclosed. Reasons for new version: The package has been updated to make it fully compatible with Mathematica 6.0 Summary of revisions: The package has been updated to make it fully compatible with Mathematica 6.0 Running time: Most examples

  6. A Rosetta Stone for Quantum Mechanics with an Introduction to Quantum Computation

    CERN Document Server

    Lomonaco, S J

    2000-01-01

    The purpose of these lecture notes is to provide readers, who have some mathematical background but little or no exposure to quantum mechanics and quantum computation, with enough material to begin reading the research literature in quantum computation and quantum information theory. This paper is a written version of the first of eight one hour lectures given in the American Mathematical Society (AMS) Short Course on Quantum Computation held in conjunction with the Annual Meeting of the AMS in Washington, DC, USA in January 2000, and will appear in the AMS PSAPM volume entitled "Quantum Computation." Part 1 of the paper is an introduction the to the concept of the qubit. Part 2 gives an introduction to quantum mechanics covering such topics as Dirac notation, quantum measurement, Heisenberg uncertainty, Schrodinger's equation, density operators, partial trace, multipartite quantum systems, the Heisenberg versus the Schrodinger picture, quantum entanglement, EPR paradox, quantum entropy. Part 3 gives a brief ...

  7. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    Science.gov (United States)

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  8. Methodology of Parameterization of Molecular Mechanics Force Field From Quantum Chemistry Calculations using Genetic Algorithm: A case study of methanol

    CERN Document Server

    Li, Ying; Chan, Maria K Y; Sankaranarayanan, Subramanian; Rouxb, Benoît

    2016-01-01

    In molecular dynamics (MD) simulation, force field determines the capability of an individual model in capturing physical and chemistry properties. The method for generating proper parameters of the force field form is the key component for computational research in chemistry, biochemistry, and condensed-phase physics. Our study showed that the feasibility to predict experimental condensed phase properties (i.e., density and heat of vaporization) of methanol through problem specific force field from only quantum chemistry information. To acquire the satisfying parameter sets of the force field, the genetic algorithm (GA) is the main optimization method. For electrostatic potential energy, we optimized both the electrostatic parameters of methanol using the GA method, which leads to low deviations of between the quantum mechanics (QM) calculations and the GA optimized parameters. We optimized the van der Waals (vdW) parameters both using GA and guided GA methods by calibrating interaction energy of various met...

  9. Universal quantum gates for Single Cooper Pair Box based quantum computing

    Science.gov (United States)

    Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.

    2000-01-01

    We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.

  10. Introductory Molecular Orbital Theory: An Honors General Chemistry Computational Lab as Implemented Using Three-Dimensional Modeling Software

    Science.gov (United States)

    Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.

    2012-01-01

    In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…

  11. Computational chemistry: A multitude of spins

    Science.gov (United States)

    Harvey, Jeremy N.

    2013-08-01

    Accurately representing molecules with many coupled unpaired electrons is currently impossible using conventional electronic-structure theories. Now, using a recently developed approach, the near-exact quantum wavefunction of the highly complex Mn4CaO5 cluster of photosystem II has been calculated.

  12. Applications of computational quantum mechanics

    Science.gov (United States)

    Temel, Burcin

    This original research dissertation is composed of a new numerical technique based on Chebyshev polynomials that is applied on scattering problems, a phenomenological kinetics study for CO oxidation on RuO2 surface, and an experimental study on methanol coupling with doped metal oxide catalysts. Minimum Error Method (MEM), a least-squares minimization method, provides an efficient and accurate alternative to solve systems of ordinary differential equations. Existing methods usually utilize matrix methods which are computationally costful. MEM, which is based on the Chebyshev polynomials as a basis set, uses the recursion relationships and fast Chebyshev transforms which scale as O(N). For large basis set calculations this provides an enormous computational efficiency in the calculations. Chebyshev polynomials are also able to represent non-periodic problems very accurately. We applied MEM on elastic and inelastic scattering problems: it is more efficient and accurate than traditionally used Kohn variational principle, and it also provides the wave function in the interaction region. Phenomenological kinetics (PK) is widely used in industry to predict the optimum conditions for a chemical reaction. PK neglects the fluctuations, assumes no lateral interactions, and considers an ideal mix of reactants. The rate equations are tested by fitting the rate constants to the results of the experiments. Unfortunately, there are numerous examples where a fitted mechanism was later shown to be erroneous. We have undertaken a thorough comparison between the phenomenological equations and the results of kinetic Monte Carlo (KMC) simulations performed on the same system. The PK equations are qualitatively consistent with the KMC results but are quantitatively erroneous as a result of interplays between the adsorption and desorption events. The experimental study on methanol coupling with doped metal oxide catalysts demonstrates the doped metal oxides as a new class of catalysts

  13. Non-unitary probabilistic quantum computing circuit and method

    Science.gov (United States)

    Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)

    2009-01-01

    A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.

  14. Walking in the woods with quantum chemistry--applications of quantum chemical calculations in natural products research.

    Science.gov (United States)

    Tantillo, Dean J

    2013-08-01

    This Highlight describes applications of quantum chemical calculations to problems in natural products chemistry, including the elucidation of natural product structures (distinguishing between constitutional isomers, distinguishing between diastereomers, and assigning absolute configuration) and determination of reasonable mechanisms for their formation.

  15. Computational solution of atmospheric chemistry problems

    Science.gov (United States)

    Jafri, J.; Ake, R. L.

    1986-01-01

    Extensive studies were performed on problems of interest in atmospheric chemistry. In addition to several minor projects, four major projects were performed and described (theoretical studies of ground and low-lying excited states of ClO2; ground and excited state potential energy surfaces of the methyl peroxy radical; electronic states ot the FO radical; and theoretical studies S02 (H2O) (sub n)).

  16. A Program of Computational Chemistry Exercises for the First-Semester General Chemistry Course

    Science.gov (United States)

    Feller, Scott E.; Dallinger, Richard F.; McKinney, Paul Caylor

    2004-01-01

    The computer systems available for molecular modeling are described, along with a discussion of a molecular modeling program created and supported by computational techniques for the first-semester general chemistry course. Various exercises are listed, which direct the learner from a beginner's course in software practice to more complex…

  17. Interactive quantum chemistry: a divide-and-conquer ASED-MO method.

    Science.gov (United States)

    Bosson, Mäel; Richard, Caroline; Plet, Antoine; Grudinin, Sergei; Redon, Stephane

    2012-03-15

    We present interactive quantum chemistry simulation at the atom superposition and electron delocalization molecular orbital (ASED-MO) level of theory. Our method is based on the divide-and-conquer (D&C) approach, which we show is accurate and efficient for this non-self-consistent semiempirical theory. The method has a linear complexity in the number of atoms, scales well with the number of cores, and has a small prefactor. The time cost is completely controllable, as all steps are performed with direct algorithms, i.e., no iterative schemes are used. We discuss the errors induced by the D&C approach, first empirically on a few examples, and then via a theoretical study of two toy models that can be analytically solved for any number of atoms. Thanks to the precision and speed of the D&C approach, we are able to demonstrate interactive quantum chemistry simulations for systems up to a few hundred atoms on a current multicore desktop computer. When drawing and editing molecular systems, interactive simulations provide immediate, intuitive feedback on chemical structures. As the number of cores on personal computers increases, and larger and larger systems can be dealt with, we believe such interactive simulations-even at lower levels of theory-should thus prove most useful to effectively understand, design and prototype molecules, devices and materials.

  18. How detrimental is decoherence in adiabatic quantum computation?

    CERN Document Server

    Albash, Tameem

    2015-01-01

    Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time-scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit $T_2$ time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary canc...

  19. PREFACE: Quantum Information, Communication, Computation and Cryptography

    Science.gov (United States)

    Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D.

    2007-07-01

    The application of quantum mechanics to information related fields such as communication, computation and cryptography is a fast growing line of research that has been witnessing an outburst of theoretical and experimental results, with possible practical applications. On the one hand, quantum cryptography with its impact on secrecy of transmission is having its first important actual implementations; on the other hand, the recent advances in quantum optics, ion trapping, BEC manipulation, spin and quantum dot technologies allow us to put to direct test a great deal of theoretical ideas and results. These achievements have stimulated a reborn interest in various aspects of quantum mechanics, creating a unique interplay between physics, both theoretical and experimental, mathematics, information theory and computer science. In view of all these developments, it appeared timely to organize a meeting where graduate students and young researchers could be exposed to the fundamentals of the theory, while senior experts could exchange their latest results. The activity was structured as a school followed by a workshop, and took place at The Abdus Salam International Center for Theoretical Physics (ICTP) and The International School for Advanced Studies (SISSA) in Trieste, Italy, from 12-23 June 2006. The meeting was part of the activity of the Joint European Master Curriculum Development Programme in Quantum Information, Communication, Cryptography and Computation, involving the Universities of Cergy-Pontoise (France), Chania (Greece), Leuven (Belgium), Rennes1 (France) and Trieste (Italy). This special issue of Journal of Physics A: Mathematical and Theoretical collects 22 contributions from well known experts who took part in the workshop. They summarize the present day status of the research in the manifold aspects of quantum information. The issue is opened by two review articles, the first by G Adesso and F Illuminati discussing entanglement in continuous variable

  20. A Quantum Chemistry Study on Structural Properties of Petroleum Resin

    Institute of Scientific and Technical Information of China (English)

    Wang Daxi; Pan Yueqiu; Zhang Hongye

    2007-01-01

    The geometries of resins with single-layer (SG), double-layer (DG) and triple-layer (TG) were calculated with the quantum chemistry method. The geometries and net charges of atoms were obtained. The calculated average distances between layers were 0.5348 nm and 0.5051 nm and the action energies were -9.6355 kJ/mol and -32.2803 kJ/mol for resins DG and TG, respectively. Higher electronegative polar atoms can easily form hydrogen bonds with hydrogen atoms of other resin molecules, resulting in resin aggregates. The minimum cross-sectional diameters of resin molecules are too large to enter the pores of zeolite, so they are likely to crack on the surface of zeolite.

  1. A Geometric Algebra Perspective On Quantum Computational Gates And Universality In Quantum Computing

    CERN Document Server

    Cafaro, Carlo

    2010-01-01

    We investigate the utility of geometric (Clifford) algebras (GA) methods in two specific applications to quantum information science. First, using the multiparticle spacetime algebra (MSTA, the geometric algebra of a relativistic configuration space), we present an explicit algebraic description of one and two-qubit quantum states together with a MSTA characterization of one and two-qubit quantum computational gates. Second, using the above mentioned characterization and the GA description of the Lie algebras SO(3) and SU(2) based on the rotor group Spin+(3, 0) formalism, we reexamine Boykin's proof of universality of quantum gates. We conclude that the MSTA approach does lead to a useful conceptual unification where the complex qubit space and the complex space of unitary operators acting on them become united, with both being made just by multivectors in real space. Finally, the GA approach to rotations based on the rotor group does bring conceptual and computational advantages compared to standard vectoria...

  2. Interdisciplinary Educational Collaborations: Chemistry and Computer Science

    Science.gov (United States)

    Haines, Ronald S.; Woo, Daniel T.; Hudson, Benjamin T.; Mori, Joji C.; Ngan, Evey S. M.; Pak, Wing-Yee

    2007-01-01

    Research collaborations between chemists and other scientists resulted in significant outcomes such as development of software. Such collaboration provided a realistic learning experience for computer science students.

  3. Type II Quantum Computing Algorithm For Computational Fluid Dynamics

    Science.gov (United States)

    2006-03-01

    Hall/CRC (2003) 30. Gilbert Strang, Linear Algebra and its Applications. Thompson Learning, Inc (1988) 31. George Arfken and Hans Weber, Mathematical ... method is called ensemble Figure 3. Ensemble measurement averages the measurement results of N identical quantum computers to obtain the magnitude of...the lattice Boltzmann equation. There are two methods of modeling this mesoscopic equation. The first approach is to directly simulate the

  4. Interactive Quantum Mechanics Quantum Experiments on the Computer

    CERN Document Server

    Brandt, S; Dahmen, H.D

    2011-01-01

    Extra Materials available on extras.springer.com INTERACTIVE QUANTUM MECHANICS allows students to perform their own quantum-physics experiments on their computer, in vivid 3D color graphics. Topics covered include: •        harmonic waves and wave packets, •        free particles as well as bound states and scattering in various potentials in one and three dimensions (both stationary and time dependent), •        two-particle systems, coupled harmonic oscillators, •        distinguishable and indistinguishable particles, •        coherent and squeezed states in time-dependent motion, •        quantized angular momentum, •        spin and magnetic resonance, •        hybridization. For the present edition the physics scope has been widened appreciably. Moreover, INTERQUANTA can now produce user-defined movies of quantum-mechanical situations. Movies can be viewed directly and also be saved to be shown later in any browser. Sections on spec...

  5.  The application of computational chemistry to lignin

    Science.gov (United States)

    Thomas Elder; Laura Berstis; Nele Sophie Zwirchmayr; Gregg T. Beckham; Michael F. Crowley

    2017-01-01

    Computational chemical methods have become an important technique in the examination of the structure and reactivity of lignin. The calculations can be based either on classical or quantum mechanics, with concomitant differences in computational intensity and size restrictions. The current paper will concentrate on results developed from the latter type of calculations...

  6. Quantum chaos and random matrix theory for fidelity decay in quantum computations with static imperfections

    CERN Document Server

    Frahm, K M; Shepelyansky, D L; Fleckinger, Robert; Frahm, Klaus M.; Shepelyansky, Dima L.

    2004-01-01

    We determine the universal law for fidelity decay in quantum computations of complex dynamics in presence of internal static imperfections in a quantum computer. Our approach is based on random matrix theory applied to quantum computations in presence of imperfections. The theoretical predictions are tested and confirmed in extensive numerical simulations of a quantum algorithm for quantum chaos in the dynamical tent map with up to 18 qubits. The theory developed determines the time scales for reliable quantum computations in absence of the quantum error correction codes. These time scales are related to the Heisenberg time, the Thouless time, and the decay time given by Fermi's golden rule which are well known in the context of mesoscopic systems. The comparison is presented for static imperfection effects and random errors in quantum gates. A new convenient method for the quantum computation of the coarse-grained Wigner function is also proposed.

  7. Software Systems for High-performance Quantum Computing

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL; Britt, Keith A [ORNL

    2016-01-01

    Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventional computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.

  8. Computational chemistry: Making a bad calculation

    Science.gov (United States)

    Winter, Arthur

    2015-06-01

    Computations of the energetics and mechanism of the Morita-Baylis-Hillman reaction are ``not even wrong'' when compared with experiments. While computational abstinence may be the purest way to calculate challenging reaction mechanisms, taking prophylactic measures to avoid regrettable outcomes may be more realistic.

  9. Introducing Computers Early in the Undergraduate Chemistry Curriculum

    Science.gov (United States)

    Kantardjieff, Katherine A.; Hardinger, Steven A.; van Willis, W.

    1999-05-01

    In the Department of Chemistry and Biochemistry at California State University Fullerton, majors are introduced to chemical computation early in the undergraduate curriculum in an electronic classroom equipped with networked Silicon Graphics workstations. CHEM210, "Introduction to Chemical Computation", is a 2-unit, sophomore-level course that has replaced the computer programming requirement in the undergraduate chemistry major. Our students engage in exploration activities whereby they learn how to use modern software packages as tools to understand chemistry. At the same time they learn how to develop a logical sequence of steps toward solving chemical problems or investigating molecular systems. By spending time analyzing data, searching for connections within it, and representing it in different ways to better understand it, they learn skills needed to become practitioners of their discipline. CHEM210 has become an essential component of our curriculum. It has been enthusiastically received by students, and it has had a positive pedagogical impact.

  10. Applicability of Rydberg atoms to quantum computers

    Science.gov (United States)

    Ryabtsev, Igor I.; Tretyakov, Denis B.; Beterov, Ilya I.

    2005-01-01

    The applicability of Rydberg atoms to quantum computers is examined from an experimental point of view. In many recent theoretical proposals, the excitation of atoms into highly excited Rydberg states was considered as a way to achieve quantum entanglement in cold atomic ensembles via dipole-dipole interactions that could be strong for Rydberg atoms. Appropriate conditions to realize a conditional quantum phase gate have been analysed. We also present the results of modelling experiments on microwave spectroscopy of single- and multi-atom excitations at the one-photon 37S1/2 → 37P1/2 and two-photon 37S1/2 → 38S1/2 transitions in an ensemble of a few sodium Rydberg atoms. The microwave spectra were investigated for various final states of the ensemble initially prepared in its ground state. The results may be applied to the studies on collective laser excitation of ground-state atoms aiming to realize quantum gates.

  11. Review on the study of entanglement in quantum computation speedup

    Institute of Scientific and Technical Information of China (English)

    DING ShengChao; JIN Zhi

    2007-01-01

    The role the quantum entanglement plays in quantum computation speedup has been widely disputed.Some believe that quantum computation's speedup over classical computation is impossible if entanglement is absent, while others claim that the presence of entanglement is not a necessary condition for some quantum algorithms.This paper discusses this problem systematically.Simulating quantum computation with classical resources is analyzed and entanglement in known algorithms is reviewed.It is concluded that the presence of entanglement is a necessary but not sufficient condition in the pure state or pseudo-pure state quantum computation speedup.The case with the mixed state remains open.Further work on quantum computation will benefit from the presented results.

  12. MRA and low-separation rank approximation with applications to quantum electronics structures computations

    Energy Technology Data Exchange (ETDEWEB)

    Fann, G I [Computational Mathematics Group, Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Harrison, R J [Computational Chemical Sciences Group, Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Beylkin, G [Department of Chemistry, University of Tennessee at Knoxville (United States)

    2005-01-01

    We describe some recent mathematical results in constructing computational methods that lead to the development of fast and accurate multiresolution numerical methods for solving problems in computational chemistry (the so-called multiresolution quantum chemistry). Using low separation rank representations of functions and operators and representations in multiwavelet bases, we developed a multiscale solution method for integral and differential equations and integral transforms. The Poisson equation and the Schrodinger equation, the projector on the divergence free functions, provide important examples with a wide range of applications in computational chemistry, computational electromagnetic and fluid dynamics. We have implemented these ideas that include adaptive representations of operators and functions in the multiwavelet basis and low separation rank approximation of operators and functions. These methods have been implemented into a software package called Multiresolution Adaptive Numerical Evaluation for Scientific Simulation (MADNESS)

  13. Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation

    OpenAIRE

    Broadbent, Anne

    2015-01-01

    In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the pa...

  14. Semi-Empirical Quantum Chemistry Method for Pre-Polymerization Rational Design of Ciprofloxacin Imprinted Polymer and Adsorption Studies

    OpenAIRE

    Marestoni,Luiz D.; Wong,Ademar; Feliciano, Gustavo T.; Marchi,Mary R. R.; Tarley, César R. T.; Sotomayor,Maria D. P. T.

    2016-01-01

    It is well known that selectivity of molecularly imprinted polymers (MIPs) depends on adequate choice of functional monomer before the experimental synthesis. Computational simulation seems to be an ideal way to produce selective MIPs. In this work, we have proposed the use of semi-empirical simulation to obtain the best monomer able to strongly interact with ciprofloxacin. Twenty functional monomers were evaluated through semi-empirical quantum chemistry method and three MIPs were synthesize...

  15. Going beyond "no-pair relativistic quantum chemistry".

    Science.gov (United States)

    Liu, Wenjian; Lindgren, Ingvar

    2013-07-07

    The current field of relativistic quantum chemistry (RQC) has been built upon the no-pair and no-retardation approximations. While retardation effects must be treated in a time-dependent manner through quantum electrodynamics (QED) and are hence outside RQC, the no-pair approximation (NPA) has to be removed from RQC for it has some fundamental defects. Both configuration space and Fock space formulations have been proposed in the literature to do this. However, the former is simply wrong, whereas the latter is still incomplete. To resolve the old problems pertinent to the NPA itself and new problems beyond the NPA, we propose here an effective many-body (EMB) QED approach that is in full accordance with standard methodologies of electronic structure. As a first application, the full second order energy E2 of a closed-shell many-electron system subject to the instantaneous Coulomb-Breit interaction is derived, both algebraically and diagrammatically. It is shown that the same E2 can be obtained by means of 3 Goldstone-like diagrams through the standard many-body perturbation theory or 28 Feynman diagrams through the S-matrix technique. The NPA arises naturally by retaining only the terms involving the positive energy states. The potential dependence of the NPA can be removed by adding in the QED one-body counter terms involving the negative energy states, thereby leading to a "potential-independent no-pair approximation" (PI-NPA). The NPA, PI-NPA, EMB-QED, and full QED then span a continuous spectrum of relativistic molecular quantum mechanics.

  16. Quantum simulation of superconductors on quantum computers. Toward the first applications of quantum processors

    Energy Technology Data Exchange (ETDEWEB)

    Dallaire-Demers, Pierre-Luc

    2016-10-07

    Quantum computers are the ideal platform for quantum simulations. Given enough coherent operations and qubits, such machines can be leveraged to simulate strongly correlated materials, where intricate quantum effects give rise to counter-intuitive macroscopic phenomena such as high-temperature superconductivity. Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model. In general, no closed-form solution is known for lattices of more than one spatial dimension, but they can be numerically approximated using cluster methods. To model long-range effects such as order parameters, a powerful method to compute the cluster's Green's function consists in finding its self-energy through a variational principle. As is shown in this thesis, this allows the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model. However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation variables. We show theoretically that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory usage scales linearly with the number of orbitals in the simulated cluster and the number of measurements scales quadratically. We also provide a gate decomposition of the cluster Hamiltonian and a simple planar architecture for a quantum simulator that can also be used to simulate more general fermionic systems. We briefly analyze the Trotter-Suzuki errors and estimate the scaling properties of the algorithm for more complex applications. A quantum computer with a few tens of qubits could therefore simulate the thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.

  17. Computational chemistry reviews of current trends v.4

    CERN Document Server

    1999-01-01

    This volume presents a balanced blend of methodological and applied contributions. It supplements well the first three volumes of the series, revealing results of current research in computational chemistry. It also reviews the topographical features of several molecular scalar fields. A brief discussion of topographical concepts is followed by examples of their application to several branches of chemistry.The size of a basis set applied in a calculation determines the amount of computer resources necessary for a particular task. The details of a common strategy - the ab initio model potential

  18. Possible topological quantum computation via Khovanov homology: D-brane topological quantum computer

    Science.gov (United States)

    Vélez, Mario; Ospina, Juan

    2009-05-01

    A model of a D-Brane Topological Quantum Computer (DBTQC) is presented and sustained. The model is based on four-dimensional TQFTs of the Donaldson-Witten and Seiber-Witten kinds. It is argued that the DBTQC is able to compute Khovanov homology for knots, links and graphs. The DBTQC physically incorporates the mathematical process of categorification according to which the invariant polynomials for knots, links and graphs such as Jones, HOMFLY, Tutte and Bollobás-Riordan polynomials can be computed as the Euler characteristics corresponding to special homology complexes associated with knots, links and graphs. The DBTQC is conjectured as a powerful universal quantum computer in the sense that the DBTQC computes Khovanov homology which is considered like powerful that the Jones polynomial.

  19. Integrating Free Computer Software in Chemistry and Biochemistry Instruction: An International Collaboration

    Science.gov (United States)

    Cedeño, David L.; Jones, Marjorie A.; Friesen, Jon A.; Wirtz, Mark W.; Ríos, Luz Amalia; Ocampo, Gonzalo Taborda

    2010-10-01

    At the Universidad de Caldas, Manizales, Colombia, we used their new computer facilities to introduce chemistry graduate students to biochemical database mining and quantum chemistry calculations using freeware. These hands-on workshops allowed the students a strong introduction to easily accessible software and how to use this software to begin to explore computer modeling. Each workshop was scheduled for 2 h and each included a tutorial exercise to familiarize the students with the main menus and features of the software. In addition, accompanying lectures and practical laboratory sections were provided. Both courses were taught in Spanish although the written instructions were in English. This was not a problem since these students have a comfort level with reading English. Student feedback following these workshops was highly enthusiastic and positive. This international collaborative will impact both the teaching and research goals for this cohort of graduate students.

  20. Milestones Toward Majorana-Based Quantum Computing

    Science.gov (United States)

    Aasen, David; Hell, Michael; Mishmash, Ryan V.; Higginbotham, Andrew; Danon, Jeroen; Leijnse, Martin; Jespersen, Thomas S.; Folk, Joshua A.; Marcus, Charles M.; Flensberg, Karsten; Alicea, Jason

    2016-07-01

    We introduce a scheme for preparation, manipulation, and read out of Majorana zero modes in semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-dot experiments, including gate control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. We outline a sequence of milestones interpolating between zero-mode detection and quantum computing that includes (1) detection of fusion rules for non-Abelian anyons using either proximal charge sensors or pumped current, (2) validation of a prototype topological qubit, and (3) demonstration of non-Abelian statistics by braiding in a branched geometry. The first two milestones require only a single wire with two islands, and additionally enable sensitive measurements of the system's excitation gap, quasiparticle poisoning rates, residual Majorana zero-mode splittings, and topological-qubit coherence times. These pre-braiding experiments can be adapted to other manipulation and read out schemes as well.

  1. Virtual drug discovery: beyond computational chemistry?

    Science.gov (United States)

    Gilardoni, Francois; Arvanites, Anthony C

    2010-02-01

    This editorial looks at how a fully integrated structure that performs all aspects in the drug discovery process, under one company, is slowly disappearing. The steps in the drug discovery paradigm have been slowly increasing toward virtuality or outsourcing at various phases of product development in a company's candidate pipeline. Each step in the process, such as target identification and validation and medicinal chemistry, can be managed by scientific teams within a 'virtual' company. Pharmaceutical companies to biotechnology start-ups have been quick in adopting this new research and development business strategy in order to gain flexibility, access the best technologies and technical expertise, and decrease product developmental costs. In today's financial climate, the term virtual drug discovery has an organizational meaning. It represents the next evolutionary step in outsourcing drug development.

  2. Homomorphic encryption experiments on IBM's cloud quantum computing platform

    Science.gov (United States)

    Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su

    2017-02-01

    Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.

  3. The Quantum Socket: Three-Dimensional Wiring for Extensible Quantum Computing

    CERN Document Server

    Béjanin, J H; Rinehart, J R; Earnest, C T; McRae, C R H; Shiri, D; Bateman, J D; Rohanizadegan, Y; Penava, B; Breul, P; Royak, S; Zapatka, M; Fowler, A G; Mariantoni, M

    2016-01-01

    Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realization of quantum error correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum ...

  4. Measurement-only verifiable blind quantum computing with quantum input verification

    Science.gov (United States)

    Morimae, Tomoyuki

    2016-10-01

    Verifiable blind quantum computing is a secure delegated quantum computing where a client with a limited quantum technology delegates her quantum computing to a server who has a universal quantum computer. The client's privacy is protected (blindness), and the correctness of the computation is verifiable by the client despite her limited quantum technology (verifiability). There are mainly two types of protocols for verifiable blind quantum computing: the protocol where the client has only to generate single-qubit states and the protocol where the client needs only the ability of single-qubit measurements. The latter is called the measurement-only verifiable blind quantum computing. If the input of the client's quantum computing is a quantum state, whose classical efficient description is not known to the client, there was no way for the measurement-only client to verify the correctness of the input. Here we introduce a protocol of measurement-only verifiable blind quantum computing where the correctness of the quantum input is also verifiable.

  5. One-way quantum computing in the optical frequency comb.

    Science.gov (United States)

    Menicucci, Nicolas C; Flammia, Steven T; Pfister, Olivier

    2008-09-26

    One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadratures of the optical frequency comb of the OPO.

  6. Computing the Exit Complexity of Knowledge in Distributed Quantum Computers

    Directory of Open Access Journals (Sweden)

    M.A.Abbas

    2013-01-01

    Full Text Available Distributed Quantum computers abide from the exit complexity of the knowledge. The exit complexity is the accrue of the nodal information needed to clarify the total egress system with deference to a distinguished exit node. The core objective of this paper is to compile an arrogant methodology for assessing the exit complexity of the knowledge in distributed quantum computers. The proposed methodology is based on contouring the knowledge using the unlabeled binary trees, hence building an benchmarked and a computer based model. The proposed methodology dramatizes knowledge autocratically calculates the exit complexity. The methodology consists of several amphitheaters, starting with detecting the baron aspect of the tree of others entitled express knowledge and then measure the volume of information and the complexity of behavior destining from the bargain of information. Then calculate egress resulting from episodes that do not lead to the withdrawal of the information. In the end is calculated total egress complexity and then appraised total exit complexity of the system. Given the complexity of the operations within the Distributed Computing Quantity, this research addresses effective transactions that could affect the three-dimensional behavior of knowledge. The results materialized that the best affair where total exit complexity as minimal as possible is a picture of a binary tree is entitled at the rate of positive and negative cardinal points medium value. It could be argued that these cardinal points should not amass the upper bound apex or minimum.

  7. Reversible logic synthesis methodologies with application to quantum computing

    CERN Document Server

    Taha, Saleem Mohammed Ridha

    2016-01-01

    This book opens the door to a new interesting and ambitious world of reversible and quantum computing research. It presents the state of the art required to travel around that world safely. Top world universities, companies and government institutions  are in a race of developing new methodologies, algorithms and circuits on reversible logic, quantum logic, reversible and quantum computing and nano-technologies. In this book, twelve reversible logic synthesis methodologies are presented for the first time in a single literature with some new proposals. Also, the sequential reversible logic circuitries are discussed for the first time in a book. Reversible logic plays an important role in quantum computing. Any progress in the domain of reversible logic can be directly applied to quantum logic. One of the goals of this book is to show the application of reversible logic in quantum computing. A new implementation of wavelet and multiwavelet transforms using quantum computing is performed for this purpose. Rese...

  8. The successful merger of theoretical thermochemistry with fragment-based methods in quantum chemistry.

    Science.gov (United States)

    Ramabhadran, Raghunath O; Raghavachari, Krishnan

    2014-12-16

    CONSPECTUS: Quantum chemistry and electronic structure theory have proven to be essential tools to the experimental chemist, in terms of both a priori predictions that pave the way for designing new experiments and rationalizing experimental observations a posteriori. Translating the well-established success of electronic structure theory in obtaining the structures and energies of small chemical systems to increasingly larger molecules is an exciting and ongoing central theme of research in quantum chemistry. However, the prohibitive computational scaling of highly accurate ab initio electronic structure methods poses a fundamental challenge to this research endeavor. This scenario necessitates an indirect fragment-based approach wherein a large molecule is divided into small fragments and is subsequently reassembled to compute its energy accurately. In our quest to further reduce the computational expense associated with the fragment-based methods and overall enhance the applicability of electronic structure methods to large molecules, we realized that the broad ideas involved in a different area, theoretical thermochemistry, are transferable to the area of fragment-based methods. This Account focuses on the effective merger of these two disparate frontiers in quantum chemistry and how new concepts inspired by theoretical thermochemistry significantly reduce the total number of electronic structure calculations needed to be performed as part of a fragment-based method without any appreciable loss of accuracy. Throughout, the generalized connectivity based hierarchy (CBH), which we developed to solve a long-standing problem in theoretical thermochemistry, serves as the linchpin in this merger. The accuracy of our method is based on two strong foundations: (a) the apt utilization of systematic and sophisticated error-canceling schemes via CBH that result in an optimal cutting scheme at any given level of fragmentation and (b) the use of a less expensive second

  9. The clock of a quantum computer

    CERN Document Server

    Apolloni, B

    2002-01-01

    If the physical agent (the 'pointer', or 'cursor', or 'clocking mechanism') that sequentially scans the T lines of a long computer program is a microscopic system, two quantum phenomena become relevant: spreading of the probability distribution of the pointer along the program lines, and scattering of the probability amplitude at the two endpoints of the physical space allowed for its motion. We show that the first effect determines an upper bound O(T sup - sup 2 sup / sup 3) on the probability of finding the pointer exactly at the END line. By adding an adequate number delta of further empty lines ('telomers'), one can store the result of the computation up to the moment in which the pointer is scattered back into the active region. This leads to a less severe upper bound O(sq root delta/T) on the probability of finding the pointer either at the END line or within the additional empty lines. Our analysis is performed in the context of Feynman's model of quantum computation, the only model, to our knowledge, ...

  10. National Resource for Computation in Chemistry (NRCC). Attached scientific processors for chemical computations: a report to the chemistry community

    Energy Technology Data Exchange (ETDEWEB)

    Ostlund, N.S.

    1980-01-01

    The demands of chemists for computational resources are well known and have been amply documented. The best and most cost-effective means of providing these resources is still open to discussion, however. This report surveys the field of attached scientific processors (array processors) and attempts to indicate their present and possible future use in computational chemistry. Array processors have the possibility of providing very cost-effective computation. This report attempts to provide information that will assist chemists who might be considering the use of an array processor for their computations. It describes the general ideas and concepts involved in using array processors, the commercial products that are available, and the experiences reported by those currently using them. In surveying the field of array processors, the author makes certain recommendations regarding their use in computational chemistry. 5 figures, 1 table (RWR)

  11. Quantum Computation: Particle and Wave Aspects of Algorithms

    CERN Document Server

    Patel, Apoorva

    2011-01-01

    The driving force in the pursuit for quantum computation is the exciting possibility that quantum algorithms can be more efficient than their classical analogues. Research on the subject has unraveled several aspects of how that can happen. Clever quantum algorithms have been discovered in recent years, although not systematically, and the field remains under active investigation. Richard Feynman was one of the pioneers who foresaw the power of quantum computers. In this issue dedicated to him, I give an introduction to how particle and wave aspects contribute to the power of quantum computers. Shor's and Grover's algorithms are analysed as examples.

  12. Quantum Computing, $NP$-complete Problems and Chaotic Dynamics

    CERN Document Server

    Ohya, M; Ohya, Masanori; Volovich, Igor V.

    1999-01-01

    An approach to the solution of NP-complete problems based on quantumcomputing and chaotic dynamics is proposed. We consider the satisfiabilityproblem and argue that the problem, in principle, can be solved in polynomialtime if we combine the quantum computer with the chaotic dynamics amplifierbased on the logistic map. We discuss a possible implementation of such achaotic quantum computation by using the atomic quantum computer with quantumgates described by the Hartree-Fock equations. In this case, in principle, onecan build not only standard linear quantum gates but also nonlinear gates andmoreover they obey to Fermi statistics. This new type of entaglement relatedwith Fermi statistics can be interesting also for quantum communication theory.

  13. [Computational chemistry in structure-based drug design].

    Science.gov (United States)

    Cao, Ran; Li, Wei; Sun, Han-Zi; Zhou, Yu; Huang, Niu

    2013-07-01

    Today, the understanding of the sequence and structure of biologically relevant targets is growing rapidly and researchers from many disciplines, physics and computational science in particular, are making significant contributions to modern biology and drug discovery. However, it remains challenging to rationally design small molecular ligands with desired biological characteristics based on the structural information of the drug targets, which demands more accurate calculation of ligand binding free-energy. With the rapid advances in computer power and extensive efforts in algorithm development, physics-based computational chemistry approaches have played more important roles in structure-based drug design. Here we reviewed the newly developed computational chemistry methods in structure-based drug design as well as the elegant applications, including binding-site druggability assessment, large scale virtual screening of chemical database, and lead compound optimization. Importantly, here we address the current bottlenecks and propose practical solutions.

  14. Computational Chemistry of Cyclopentane Low Temperature Oxidation

    KAUST Repository

    El Rachidi, Mariam

    2015-03-30

    Cycloalkanes are significant constituents of conventional fossil fuels, but little is known concerning their combustion chemistry and kinetics, particularly at low temperatures. This study investigates the pressure dependent kinetics of several reactions occurring during low-temperature cyclopentane combustion using theoretical chemical kinetics. The reaction pathways of the cyclopentyl + O2 adduct is traced to alkylhydroperoxide, cyclic ether, β-scission and HO2 elimination products. The calculations are carried out at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The barrierless entrance channel is treated using variable-reaction-coordinate transition state theory (VRC-TST) at the CASPT2(7e,6o) level of theory, including basis set, geometry relaxation and ZPE corrections. 1-D time-dependent multiwell master equation analysis is used to determine pressure-and temperature-dependent rate parameters of all investigated reactions. Tunneling corrections are included using Eckart barriers. Comparison with cyclohexane is used to elucidate the effect of ring size on the low temperature reactivity of naphthenes. The rate coefficients reported herein are suitable for use in cyclopentane and methylcyclopentane combustion models, even below ~900 K, where ignition is particularly sensitive to these pressure-dependent values.

  15. Decomposition and fragmentation principles in computational chemistry

    Science.gov (United States)

    Mezey, Paul G.

    2015-12-01

    A common approach to the mathematical modeling of various objects and processes is the subdivision of the problem into smaller, (and, as hoped), more easily understandable entities. By modeling these smaller entities, which are often fragments of the whole, and eventually re-combining these smaller fragment models into a model of the whole, one may expect that a reasonably reliable modeling approach for the complete problem may be obtained. One crucial aspect of such an approach is the level of complexity of the interrelations between the fragments. If the interrelations are weak and relatively simple, than the fragmentation approach may succeed and provide satisfactory results. However, as often happens, the interrelations are complex and not well understood, and then the fragmentation approach may face difficulties and even fail. One field where the interrelations between potential fragments is strong, yet the fragment-based approach has proven to be successful, is the modelling of both small and large molecules, providing valuable lessons for some fields not directly linked to chemistry.

  16. Quantum computing accelerator I/O : LDRD 52750 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Schroeppel, Richard Crabtree; Modine, Normand Arthur; Ganti, Anand; Pierson, Lyndon George; Tigges, Christopher P.

    2003-12-01

    In a superposition of quantum states, a bit can be in both the states '0' and '1' at the same time. This feature of the quantum bit or qubit has no parallel in classical systems. Currently, quantum computers consisting of 4 to 7 qubits in a 'quantum computing register' have been built. Innovative algorithms suited to quantum computing are now beginning to emerge, applicable to sorting and cryptanalysis, and other applications. A framework for overcoming slightly inaccurate quantum gate interactions and for causing quantum states to survive interactions with surrounding environment is emerging, called quantum error correction. Thus there is the potential for rapid advances in this field. Although quantum information processing can be applied to secure communication links (quantum cryptography) and to crack conventional cryptosystems, the first few computing applications will likely involve a 'quantum computing accelerator' similar to a 'floating point arithmetic accelerator' interfaced to a conventional Von Neumann computer architecture. This research is to develop a roadmap for applying Sandia's capabilities to the solution of some of the problems associated with maintaining quantum information, and with getting data into and out of such a 'quantum computing accelerator'. We propose to focus this work on 'quantum I/O technologies' by applying quantum optics on semiconductor nanostructures to leverage Sandia's expertise in semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in information theory, processing, and algorithms. The work will be guided by understanding of practical requirements of computing and communication architectures. This effort will incorporate ongoing collaboration between 9000, 6000 and 1000 and between junior and senior personnel. Follow-on work to fabricate and evaluate appropriate experimental nano/microstructures will be

  17. High Fidelity Adiabatic Quantum Computation via Dynamical Decoupling

    CERN Document Server

    Quiroz, Gregory

    2012-01-01

    We introduce high-order dynamical decoupling strategies for open system adiabatic quantum computation. Our numerical results demonstrate that a judicious choice of high-order dynamical decoupling method, in conjunction with an encoding which allows computation to proceed alongside decoupling, can dramatically enhance the fidelity of adiabatic quantum computation in spite of decoherence.

  18. Investigating the Effectiveness of Computer Simulations for Chemistry Learning

    Science.gov (United States)

    Plass, Jan L.; Milne, Catherine; Homer, Bruce D.; Schwartz, Ruth N.; Hayward, Elizabeth O.; Jordan, Trace; Verkuilen, Jay; Ng, Florrie; Wang, Yan; Barrientos, Juan

    2012-01-01

    Are well-designed computer simulations an effective tool to support student understanding of complex concepts in chemistry when integrated into high school science classrooms? We investigated scaling up the use of a sequence of simulations of kinetic molecular theory and associated topics of diffusion, gas laws, and phase change, which we designed…

  19. Recent applications of digital computers in analytical chemistry.

    Science.gov (United States)

    Perrin, D D

    1977-06-01

    Minicomputers are finding increasing use for the control and operation of analytical instruments. This role is likely to be shared in the near future with dedicated microcomputers. Applications of computers to electroanalytical chemistry, Fourier transform techniques, spectroscopy, rapid-reaction kinetics, equilibrium constants, studies of analytical methods and to literature searching, are also discussed.

  20. Dissociation of the Ethyl Radical: An Exercise in Computational Chemistry

    Science.gov (United States)

    Nassabeh, Nahal; Tran, Mark; Fleming, Patrick E.

    2014-01-01

    A set of exercises for use in a typical physical chemistry laboratory course are described, modeling the unimolecular dissociation of the ethyl radical to form ethylene and atomic hydrogen. Students analyze the computational results both qualitatively and quantitatively. Qualitative structural changes are compared to approximate predicted values…